
OPTIMAL BIWEIGHTED BINARY TREES AND THE
COMPLEXITY OF MAINTAINING PARTIAL SUMS∗

HARIPRIYAN HAMPAPURAM† AND MICHAEL L. FREDMAN‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 1–9

Abstract. Let A be an array. The partial sum problem concerns the design of a data structure
for implementing the following operations. The operation update(j, x) has the effect A[j]← A[j]+x ,

and the query operation sum(j) returns the partial sum
∑j

i=1
A[i] . Our interest centers upon the

optimal efficiency with which sequences of such operations can be performed, and we derive new
upper and lower bounds in the semigroup model of computation. Our analysis relates the optimal
complexity of the partial sum problem to optimal binary trees relative to a type of weighting scheme
that defines the notion of biweighted binary tree.

Key words. data structures, partial sums, lower bounds

AMS subject classifications. 68P05, 68Q25

PII. S0097539795291598

1. Introduction. Let A be an array of length N . The partial sum problem
concerns the design of a data structure for implementing the following operations.
The operation update(j, x) has the effect A[j] ← A[j] + x (where 1 ≤ j ≤ N), and

the query operation sum(j) returns the partial sum
∑j

i=1 A[i] . We refer to N as the
size of the partial sum problem. Our interest centers upon the optimal efficiency with
which sequences of such operations can be performed, and we derive new upper and
lower bounds.

In this paper we investigate complexity relative to the semigroup model of com-
putation: the array A can store values from an arbitrary commutative semigroup,
and the implementations of the update and sum operations must perform correctly
irrespective of the particular choice of the semigroup. In particular, the implementa-
tions are not permitted to utilize the subtraction operation. The model assumes the
availability of memory registers z1 , z2 , . . . which store semigroup values and permits
operations of the form zi ← zj +zk . In this setting an O(logN) upper bound is read-
ily established, and Yao [8] has shown that Ω(logN/ log logN) is an inherent lower
bound for the amortized complexity of the operations (worst case). Here we consider
average case complexity relative to a large class of probability distributions, and as
a by-product of this approach, we are able to improve upon Yao’s result, deriving
an Ω(logN) lower bound for the amortized complexity, even when the operations are
performed off-line. We remark that with a slight change in the definition of the par-
tial sum problem, namely, by redefining the operation update(j, x) to have the effect
A[j] ← x , we find that matching θ(logN) upper and lower bounds have been previ-
ously established for this problem [3]. This latter definition of the update operation
is more readily exploited in a lower bound argument. In particular, in the semigroup

∗Received by the editors September 6, 1995; accepted for publication (in revised form) October
15, 1996; published electronically May 15, 1998. A preliminary version of this paper appeared under
the same title in Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer
Science, 1993, pp. 480–485.

http://www.siam.org/journals/sicomp/28-1/29159.html
†Intrinsa Corporation, 444 Castro St, Suite 130, Mountain View, CA 94041. This research was

supported by NSF grant NSF-STC-91-19999.
‡Department of Computer Science, Rutgers University, Hill Center, New Brunswick, NJ 08903

(fredman@cs.rutgers.edu). This research was supported by NSF grant CCR-9008072.

1

2 H. HAMPAPURAM AND M. L. FREDMAN

setting all structural quantities that depend on the old value of A[j] are subsequently
unusable after the current update is performed.

Our average case analysis concerns sequences of independently selected operations
in which the operation update(j, x) is selected with probability pj to be the next
operation in the sequence, and the operation sum(j) is selected with probability qj
to be the next operation in the sequence, where

∑N
j=1 pj +

∑N
j=1 qj = 1 . We are

able to approximately characterize the optimal expected cost of implementing such
sequences in terms of optimal binary trees relative to a type of weighting scheme,
defining the notion of biweighted binary tree.

In the following section we define the notion of biweighted binary tree and demon-
strate the connection between biweighted binary trees and data structures for the par-
tial sum problem. We also present a heuristic for constructing approximately optimal
biweighted binary trees. This heuristic serves to motivate the lower bound theorem
presented in section 3.

In what remains of this section we describe a class of data structures which is
natural with respect to the partial sum problem and which has provided a framework
for some previous work. These structures also provide a starting point for the current
analysis. Consider the obvious O(logN) data structure for the partial sum problem
which consists of a balanced binary tree with N leaves labeled from 1 to N in order
from left to right. The value in A[i] is stored in leaf i, and stored in each internal
node η is the sum of the values that are stored in the leaves of the subtree of η. The
operation update(j, x) is performed by incrementing by x the values stored in the
nodes along the path from leaf j to the root. The operation sum(j) is performed by
summing the values in a minimal collection of nodes whose subtrees exactly cover
the first j leaves. This data structure can be viewed as a particular instance of
(and motivates) the following class of structures. Let z1 , z2 , . . . designate memory
registers that store values from the space pertinent to the array A. A data structure
belonging to our class consists of two sequences U1 , . . . , UN and R1 , . . . , RN , where
the Ui and the Ri are individual subsets of the memory registers z1 , z2 , The task
update(j, x) is performed by adding x to each register in the set Uj , and sum(j) is
performed by summing the registers in the set Rj . The sizes of the Uj and Rj sets
reflect the complexity of our operations, and it is readily demonstrated [4] that to
correctly implement the partial sum problem, it is both necessary and sufficient that
the following condition be satisfied:

|Ui ∩Rj | =

{
1 if i ≤ j ,
0 otherwise.

(1.1)

We refer to data structures for the partial sum problem that fall within this framework
as U-R systems.

By imposing size restrictions on the Ui subsets (or the Ri subsets) it is possible to
investigate update time versus query time tradeoffs within this class of data structures,
as investigated in [1]. The investigation of such tradeoffs is motivated by circumstances
in which, say, update operations are more frequently performed than query operations.
In this paper we address directly those circumstances under which the operations are
known to be requested with varying frequencies. Thus, if update(j, x) is performed
with probability pj and sum(j) is performed with probability qj , then the expected
cost of an operation is given by

C(p̄, q̄) =

N∑
j=1

(pj |Uj |+ qj |Rj |) ,(1.2)

COMPLEXITY OF PARTIAL SUMS 3

where p̄ and q̄ represent the pj and qj probability sequences, respectively. We assume
throughout this paper that all of the pj and qj probabilities are strictly positive;
otherwise we can effectively reduce the size N of the array A. In the sequel we
solve the problem of minimizing the quantity C(p̄, q̄) subject to the condition (1.1).
Let Cmin(p̄, q̄) denote this minimum value for C(p̄, q̄). It is shown in section 3 that
Cmin(p̄, q̄) approximates (to within a constant factor) the optimal cost of doing the
operations in the general semigroup model of computation, extending beyond data
structures that fall within the framework of U-R systems. Moreover, in terms of
expected cost, this lower bound extends to off-line processing.

2. Biweighted trees. We proceed to define a family of valid data structures
for the partial sum problem that fall within the U-R system framework. Let T be
a binary tree with N nodes. We assume that the nodes of T have zero, one, or two
children, and that T is ordered, so that each child of a given node is designated as a
left child or right child. We also number the nodes of T from 1 to N in order from
left to right. Now in terms of T we define a U-R system for the partial sum problem
of size N as follows.

Let η be the jth node of T , and let η0(= η), η1, . . . , ηh , h ≥ 0 , be the nodes
along the path from η to the root ηh of T . Then Uj consists of η and for i > 0 those
ηi such that ηi−1 is the left child of ηi; and Rj consists of η and for i > 0 those ηi
such that ηi−1 is the right child of ηi. Now let ηij denote the lowest common ancestor
of the ith and jth nodes of T . It is easily checked that

Ui ∩Rj =

{
ηij if i ≤ j ,
φ otherwise.

(2.1)

The condition (1.1) directly follows from (2.1) and therefore our construction yields
a valid data structure for the partial sum problem. We let ∆(T) denote this data
structure.

Next, we interpret the quantity C(p̄, q̄), the expected cost of an operation under
the distribution (p̄, q̄), when implemented using ∆(T). Associate with the ith node
of T the pair of probabilities (pi, qi), 1 ≤ i ≤ N . Relative to these associated
probabilities we then define the biweighted path length of T to be

W (T, p̄, q̄) =

N∑
i=1

(pi`i + qiri) ,

where `i is the number of left links on the path from the root of T to the ith node
and ri is the number of right links on this same path. Because `i = |Ui| − 1 and
ri = |Ri| − 1 it follows immediately that

C(p̄, q̄) = W (T, p̄, q̄) + 1 .(2.2)

Note also that W (T, p̄, q̄) defines (one-half of) the usual weighted path length of T
when p̄ = q̄.

Equation (2.2) suggests the possibility that a good data structure for the partial
sum problem, relative to the distribution (p̄, q̄), is given by ∆(Tp̄,q̄), where Tp̄,q̄ is
chosen to have minimum biweighted path length W (T, p̄, q̄). The following theorem
addresses this possibility relative to U-R systems.

Theorem 2.1. Relative to the distribution (p̄, q̄) with strictly positive probabili-
ties, an optimal U-R system for the partial sum problem is given by ∆(Tp̄,q̄). In other

4 H. HAMPAPURAM AND M. L. FREDMAN

words,

Cmin(p̄, q̄) = W (Tp̄,q̄ , p̄ , q̄) + 1 .

Proof of Theorem 2.1. We relax the requirement that the weights (p̄, q̄) sum to 1
and establish that

Cmin(p̄, q̄) = W (Tp̄,q̄ , p̄ , q̄) +

N∑
j=1

(pj + qj)

from which Theorem 2.1 follows as an immediate consequence. (We use equation
(1.2) to define C(p̄, q̄) for arbitrary positive weights (p̄, q̄) .) The above equality is
established once we show that we can construct, given an arbitrary U-R system, a
tree T such that

C(p̄, q̄) ≥ W (T, p̄, q̄) +

N∑
j=1

(pj + qj) .(2.3)

Now given a U-R system (Ū , R̄) consisting of sequences Ū = U1 , . . . , UN and
R̄ = R1 , . . . , RN , for some integer k ∈ [1, N] our construction below yields two U-R
systems (Ū `, R̄`) and (Ūr, R̄r) for arrays of lengths k−1 and N−k, respectively, such
that

|U `
i | ≤ |Ui| − 1 and |R`

i | = |Ri|(2.4)

for 1 ≤ i ≤ k − 1; and

|Ur
i | = |Ui+k| and |Rr

i | ≤ |Ri+k| − 1(2.5)

for 1 ≤ i ≤ N − k .
Assume for the moment that an integer k and U-R systems (Ū `, R̄`) and (Ūr, R̄r)

satisfying (2.4) and (2.5) can be constructed. Let (p̄`, q̄`) designate the first k − 1
pairs (pi, qi) of the weights (p̄, q̄) and let (p̄r, q̄r) designate the last N − k pairs of
these weights. By assigning the weights (p̄`, q̄`) to the system (Ū `, R̄`), assigning the
weights (p̄r, q̄r) to the system (Ūr, R̄r), and noting that |Uk|, |Rk| ≥ 1, we conclude
from (2.4) and (2.5) that

C(p̄, q̄)

≥ C(p̄`, q̄`) + C(p̄r, q̄r)

+

k−1∑
j=1

pj +
N∑

j=k+1

qj + (pk + qk) .(2.6)

We construct the tree T satisfying (2.3) recursively as follows. The root of T is
the kth node, where k defines the partition of (Ū , R̄) as described above. The left
subtree Tleft of T is obtained recursively from (Ū `, R̄`), and the right subtree Tright
is obtained recursively from (Ūr, R̄r). Upon assigning the weights (p̄, q̄) to the nodes
to T , so that (p̄`, q̄`) designates the weights assigned to Tleft and (p̄r, q̄r) designates
the weights assigned to Tright, we find that

W (T, p̄, q̄) = W (T`, p̄`, q̄`) + W (Tr, p̄r, q̄r)

+
k−1∑
j=1

pj +
N∑

j=k+1

qj .(2.7)

COMPLEXITY OF PARTIAL SUMS 5

It follows by induction, using (2.7) and (2.6), that (2.3) is satisfied.
We complete the proof of Theorem 2.1 by giving the construction satisfying (2.4)

and (2.5). Let

Γ = U1 ∪ · · · ∪ UN ∪R1 ∪ · · · ∪RN .

For each element x in Γ, let

u-extent(x) = max{j|x ∈ Uj} .

Observe that for any set Rj condition (1.1) implies that

u-extent(x) ≤ j for each x in Rj .(2.8)

For each set Rj let

u-extent(Rj) = min{u-extent(x)|x ∈ Rj} .

Finally, let

k = max{u-extent(Rj)|1 ≤ j ≤ N} ,

and choose k′ so that k = u-extent(Rk′) . From (2.8) we have that k ≤ k′ . Also,
for each x ∈ Rk′ , u-extent(x) ≥ k . Because Uj ∩ Rk′ 6= φ for j < k′ , it follows that
each set Uj with j < k′ contains an element xj such that u-extent(xj) ≥ k . On the
other hand (2.8) asserts that for each j < k the set Rj contains no element x with
u-extent(x) ≥ k . Thus we can find in each set Uj with j < k an element xj (with
u-extent(xj) ≥ k) not contained in any set Rh with h < k .

Accordingly, we construct the system (Ū `, R̄`) by setting U `
j = Uj −{xj}, where

xj is some element in Uj with u-extent(xj) ≥ k , and setting R`
j = Rj , 1 ≤ j ≤ k−1 .

Certainly (2.4) is satisfied and moreover the system (Ū `, R̄`) inherits condition (1.1)
from the system (Ū , R̄) since the deleted elements xj do not appear in any of the
intersections Uh ∩Ri when h, i ≤ k − 1 .

Now every set Rj contains an element xj with u-extent(xj) ≤ k . For h > k, none
of these elements xj appear within the sets Uh by definition of u-extent(x) . Thus, if
we set Ur

j = Uj+k and Rr
j = Rj+k − {xj} , for 1 ≤ j ≤ N − k , then the resulting

system (Ūr, R̄r) satisfies (2.5), and, as before, condition (1.1) is satisfied.
Equation (2.7) suggests that the following balancing heuristic is reasonable to

consider in constructing a tree T with near optimal biweighted path length: choose the
root to be the kth node where k is chosen to equalize the sums

∑k−1
j=1 pj and

∑N
j=k+1 qj

and construct the subtrees recursively. More precisely we define TBAL so that its root
is the kth node, where k is the least integer satisfying

∑k−1
j=1 pj ≥ ∑N

j=k+1 qj , and
whose subtrees are recursively constructed.

Theorem 2.2. Let TBAL be defined as above. Then W (TBAL , p̄, q̄) ≤ 2 ·
W (Tp̄,q̄ , p̄, q̄) + 1.

Comment. Theorem 2.2 justifies using a balancing heuristic for constructing near
optimal U-R systems. However, in view of Theorem 2.1 it is easy to construct truly
optimal U-R systems by using dynamic programming to construct a tree having op-
timal biweighted path length. (The recurrence that forms the basis for the dynamic
programming algorithm is obtained by selecting k in equation (2.7) to minimize the
right-hand side.) But the true significance of Theorem 2.2 is revealed in the next

6 H. HAMPAPURAM AND M. L. FREDMAN

section when we consider the full class data structures within the semigroup model
of computation. As a means for estimating complexity, TBAL is a considerably more
convenient object to reason about than the optimal tree, Tp̄,q̄ .

Proof of Theorem 2.2. Let η be any node in TBAL, say, the jth node, let Tη,left
be the left subtree descending from η, and let Tη,right be the right subtree descending
from η. Let Psum denote the sum of the pi values associated with the nodes in Tη,left,
and let Qsum be the sum of the qi values associated with the nodes in Tη,right. Now
let γ be the lowest common ancestor in Tp̄,q̄ of those nodes which comprise the subtree
descending from η within TBAL . Then either

(i) the left subtree Tη,left descending from η lies to the left of γ in Tp̄,q̄ , or
(ii) the right subtree Tη,right descending from η lies to the right of γ in Tp̄,q̄ .

For the purpose of estimating W (Tp̄,q̄ , p̄, q̄) , in the case (i) we can charge the quantity
Psum to the left link of γ and in the case (ii) we can charge the quantity Qsum to the
right link of γ . We will demonstrate below that no pi or qi value gets charged to the
same link of Tp̄,q̄ twice. Assuming this, it follows that W (Tp̄,q̄ , p̄, q̄) ≥ the sum over
all nodes in TBAL of the quantities min(Psum, Qsum) = SBAL (say). By definition
of TBAL we have that Psum ≥ Qsum and Qsum > Psum − qj − pj−1. It follows that

min(Psum, Qsum) = Qsum >
1

2
(Psum +Qsum − qj − pj−1) .(2.9)

Applying equation (2.7) to TBAL, we note that W (TBAL , p̄, q̄) equals the sum over all
nodes in TBAL of the quantities Psum +Qsum . Using the inquality (2.9) to compare
the sums over the nodes of TBAL that give, respectively, SBAL and W (TBAL , p̄, q̄) ,
we conclude that SBAL ≥ 1

2W (TBAL , p̄, q̄) − 1
2 . Combining these inequalities for

SBAL yields the inequality in the statement of our theorem.

To complete the proof, we proceed to show that no pi or qi value gets charged to
the same link of Tp̄,q̄ twice. Suppose to the contrary that pi (say) gets charged twice
to the left link of γ , a node in Tp̄,q̄ . Now the first charge is through some node η1

of TBAL and the second charge is through some node η2 of TBAL . With respect to
TBAL both η1 and η2 are ancestors of the node τ with which pi is associated and τ
lies in the left subtrees of both η1 and η2 . Therefore, the nearer ancestor η1 (say) lies
in the left subtree of η2 . Also in Tp̄,q̄ we have that the nodes belonging (in TBAL) to
the left subtree of η2 all lie to the left of γ. Consequently, the lowest common ancestor
γ′ (in Tp̄,q̄) of the nodes in the subtree of η1 (with respect to TBAL) must lie to the
left of γ . But the charge through η1 must be assessed to a link of γ′ , contrary to the
assumption.

3. Unrestricted semigroup lower bound. In this section we generalize the
lower bounds established in the preceding section for U-R systems to all computations
that fall within the semigroup model of computation. Our bounds also apply to off-line
computations. Our method of attack is to combine the biweighted tree perspective
with the method of Wilber [7] used to analyze the off-line complexity of performing
search tree operations intermixed with appropriately timed node rotations. Whereas
the two problems, search tree operations versus partial sum operations, are very
different, similar treatments succeed with both problems.

In the spirit of Wilber [7] we define a lower bound tree Υ that will be used to esti-
mate the expected amount of work required to perform a random sequence of update
and sum operations. For the partial sum problem of size N , with operations being
requested randomly and independently in accordance with the distribution (p̄, q̄), we

COMPLEXITY OF PARTIAL SUMS 7

choose Υ to be the tree TBAL from the preceding section. Our argument proceeds in
accordance with the following outline.

Part A. Given a specific sequence s of update and sum operations, we define the
score of Υ with respect to the sequence s .

Part B. We show that the score defined in Part A provides a lower bound for the
number of semigroup operations required to implement the sequence s off-line.

Part C. We estimate the expected value of the score defined in Part A for a
random sequence s of operations.

Part A. Let η be the kth node in Υ , and let a and b be the smallest and
largest nodes in the subtree descending from η. Now remove from the sequence s
all update(j, x) and sum(j) operations with j outside of the interval [a, b], remove all
operations update(j, x) with j > k, and remove all operations sum(j) with j < k.
Let s′ be the resulting sequence. Then we define λ(η, s) to be the number of pairs
of consecutive terms in s′ such that first term of the pair is an update operation and
the second term is a sum operation. (Observe that λ(η, s) =λ(η, s′) .) Finally, the
score of Υ with respect to s is given by

Λ(Υ, s) =
∑
η∈Υ

λ(η, s) .

Part B. We choose as our semigroup the set of linear expressions over a set con-
sisting of an infinite number of indeterminates. Assume that initially the quantity
stored in A[j] is given by xj , where the xj are distinct indeterminates. Also, assume
that whenever an update(j, x) operation is performed, the quantity x is a newly intro-
duced indeterminate. We associate with each indeterminate x the index j designating
the array position A[j] to which x contributes, and we refer to j as the index of x .

Our proof that Λ(Υ, s) provides a lower bound for the required number of semi-
group operations proceeds by induction. Assume that the root η of Υ is the kth
node in the tree. Consider an implementation σ of the sequence s of update and sum
operations. If we eliminate from σ all semigroup operations involving indeterminates
with index ≥ k , then the remaining operations, σleft , implement the subsequence s′′

of update and sum operations in s whose array indices correspond to nodes in the
left subtree Υleft of Υ. Similarly, if we set to 0 all indeterminates with index ≤ k
and then eliminate from σ any semigroup operations involving the addition of 0, then
the remaining operations, σright , implement the subsequence s′′′ of update and sum
operations whose array indices correspond to nodes in the right subtree Υright of Υ,
treating the array A as though its index ranges over the interval [k + 1, N] .

Now observe that

Λ(Υ, s)(3.1)

= Λ(Υleft, s
′′) + Λ(Υright, s

′′′) + λ(η, s′) ,

where s′ is defined in Part A. We easily see that the two sequences of semigroup
operations σleft and σright reflect disjoint semigroup operations in σ, and by the
induction hypothesis, the number of operations in σleft and σright dominate the first
two terms on the right-hand side of equation (3.1). Part B is completed once we show
that σ includes λ(η, s′) further semigroup operations.

Consider a pair of consecutive operations update(j′, x), sum(j) in s′ . The inde-
terminate x must be combined with xj , the indeterminate originally stored in A[j],
by executing a semigroup operation. We may conclude, therefore, that there exists in

8 H. HAMPAPURAM AND M. L. FREDMAN

σ an operation α : zp ← zq + zr contributing to the computation of sum(j), in which
x gets combined with some indeterminate whose index is ≥ k , and where x is not al-
ready found to be so combined among the operands on the right. This operation does
not contribute to σleft by definition. Likewise, it does not contribute to σright since
the index j′ of x does not exceed k (so that the operand in α containing x contains
only indeterminates with index ≤ k and thus gets set to 0 in the process defining
σright). Last, we may assume that the operation α excludes any indeterminate x′

that follows x in s′, since x must be produced in the sum(j) operation without the
presence of x′. (In other words, if we remove from σ all semigroup operations that
involve x′ , then the remaining operations would suffice to generate the required value
for sum(j) .) Thus, we can account for λ(η, s′) such operations α .

Part C. Let η be a node in TBAL = Υ , and assume that η is the kth node of Υ .
We compute the expected value of λ(η, s) . Assume that the sequence s is of length m .
Then the expected number of terms in s′ is given by m(Psum+Qsum+pk+qk) = mR
(say). The conditional probability y1 that a given term in s′ is an update operation
is given by (Psum + pk)/R , and the conditional probability y2 that this term is a sum
operation is given by (Qsum + qk)/R . By our definition of TBAL we have Psum ≥
Qsum and Qsum + qk > Psum − pk−1 . Therefore, Psum + pk ≥ 1

2 (R − qk) , and
Qsum + qk ≥ 1

2 (R − pk−1 − pk) . We conclude that the expected number of pairs

contributing to λ(η, s) is given by (mR − 1) · y1 · y2 ≥ mR
4 (1 − qk/R)(1 − (pk−1 +

pk)/R) − 1 ≥ m
4 (R − pk−1 − pk − qk) − 1 . Summing over all nodes η we conclude

that Λ(Υ, s) = Ω(m(W (TBAL, p̄, q̄)− 1)) = Ω(m(W (Tp̄,q̄, p̄, q̄)− 1)) .
Summarizing the above discussion we have established the following theorem.
Theorem 3.1. For a random sequence s of update(j, x) and sum(j) operations,

the optimal expected cost of executing the operations in s is given by θ(W (Tp̄,q̄, p̄, q̄))
per operation. In other words, U-R systems derived from optimal biweighted trees are
near optimal within the semigroup model of computation. Moreover, the lower bound
applies to off-line computations.

Remark. Consider the special case pi = qi = 1
2N for 1 ≤ i ≤ N . It is clear

in this case that we may choose the optimal tree Tp̄,q̄ to be the fully balanced tree
with N nodes. Since W (Tp̄,q̄, p̄, q̄) = Ω(logN) in this instance, we conclude that the
optimal off-line complexity of the partial sum problem is Ω(logN) per operation. This
improves upon the Ω(logN/ log logN) lower bound that was established for on-line
computations [8].

4. Discussion. The problem of maintaining partial sums is perhaps the least
complicated example of a nontrivial range or geometric query problem, and this prob-
lem is not yet fully understood. The partial sum problem is now well understood
in the semigroup model of computation, but much remains to be resolved for less
restrictive computational models. For example, in the group model of computation,
wherein the space of array values is given by a group so that subtraction is available,
a gap remains that separates the best upper and lower bounds for the worst-case
amortized complexities. The best upper bound is O(logN) and the best lower bound
is Ω(logN/ log logN) [5]. It seems reasonable to conjecture, however, that the truth
will favor the upper bound. In particular, the notion of U-R systems generalizes for
the group model; the sets Ui remain as before, and the sets Ri are replaced with
linear expressions over the memory registers with integer coefficients. In this setting
logN bounds are known [4] (both upper and lower), including even a determination
of the constant factor. The biweighted tree treatment, however, does not seem to
easily extend to cover the group case. In particular, lower bounds seem difficult.

COMPLEXITY OF PARTIAL SUMS 9

Similarly, in the cell-probe model of computation with polylog(N) word size and
with the space of array values given by ZN , the integers mod N , the same gap exists
between the best upper and lower bounds [5]. On the other hand, if the space of array
values is given by Z2, then matching upper and lower bounds of size θ(logN/ log logN)
exist in the cell probe model [5] (see also [2]).

The nature of the possible tradeoffs between query versus update time in these
less restrictive models is likewise not well understood. There is also an absence of
off-line lower bounds in these other models.

As an object of independent interest, the biweighted trees pose some open ques-
tions. In particular, there seems to be no easy analogue to the entropy function,
which is used to estimate the weighted path length of optimal trees in the usual
setting. Complicating the situation is the fact that the function Cmin(p̄, q̄) highly
depends on the ordering of the probabilities, even when the pi and qi values remain
coupled. Simple examples exist which demonstrate the phenomenon that permuting
the order of the probabilities can cause Cmin(p̄, q̄) to vary over the range from O(1)
and O(logN) .

Finally, it is interesting to note that given any probability distribution with
strictly positive probabilities, it is possible to explicitly exhibit arbitrarily large se-
quences of update and sum operations that have the corresponding proportions of the
update and sum operations and satisfy the bounds of Theorem 3.1. The sequence is a
generalization of the bit reversal sequence [7, 8]. The details of the construction can
be found in [6].

Acknowledgment. The first author wishes to thank Vivek Gore for many help-
ful discussions.

REFERENCES

[1] W. A. Burkhard, M. L. Fredman, and D. J. Kleitman, Inherent complexity trade–offs for
range query problems, Theoret. Comput. Sci., 16 (1981), pp. 279–290.

[2] P. Dietz, Optimal algorithms for list indexing and subset rank , Algorithms and Data Struc-
tures: Workshop WADS ’89, Ottawa, Canada, 1989.

[3] M. L. Fredman, A lower bound on the complexity of orthogonal range queries, J. Assoc.
Comput. Mach., 28 (1981), pp. 696–705.

[4] M. L. Fredman, The complexity of maintaining an array and computing its partial sums, J.
Assoc. Comput. Mach., 29 (1982), pp. 250–260.

[5] M. L. Fredman and M. E. Saks, The cell probe complexity of dynamic data structures,
in Proceedings of 21st ACM Symposium on Theory of Computing, Seattle, WA, 1989,
pp. 345–354.

[6] H. Hampapuram, The Partial Sum Problem: Tight Upper and Lower Bounds, Ph.D. thesis,
Department of Computer Science, Rutgers—The State University of New Jersey, New
Brunswick, 1994.

[7] R. Wilber, Lower bounds for accessing binary trees with rotations, SIAM J. Comput., 18
(1989), pp. 56–67.

[8] A. C. Yao, On the complexity of maintaining partial sums, SIAM J. Comput., 14 (1985),
pp. 277–288.

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING∗

JOHANNES A. LA POUTRÉ† AND JEFFERY WESTBROOK‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 10–26

Abstract. We give algorithms and data structures that maintain the 2-edge and 2-vertex-
connected components of a graph under insertions and deletions of edges and vertices, where dele-
tions occur in a backtracking fashion (i.e., deletions undo the insertions in the reverse order). Our
algorithms run in Θ(log n) worst-case time per operation and use Θ(n) space, where n is the number
of vertices. Using our data structure we can answer queries, which ask whether vertices u and v
belong to the same 2-connected component, in Θ(log n) worst-case time.

Key words. dynamic graph algorithms, backtracking

AMS subject classifications. 68Q20, 68Q25

PII. S0097539794272582

1. Introduction. Dynamic graph problems have been studied extensively in the
last several years. Roughly speaking, the research has concentrated on two categories
of dynamic graphs, viz., partially dynamic or incremental graphs, which are graphs
that grow on line by the insertion of vertices and edges, and fully dynamic graphs,
which are subject to arbitrary insertion and deletion of edges and vertices.

A number of different problems on incremental and fully dynamic graphs have
been studied, including 2- and 3-edge connectivity, 2- and 3-vertex connectivity, span-
ning trees, and planarity testing [1], [5], [7], [8], [9], [10], [12], [13], [22], [18], [19], [20],
[21], [26], [27], [30], [31], [33]. Deterministic algorithms for incremental 2-edge and
2-vertex connectivity running in Θ(α(m,n)) amortized time per operation, where m is
the maximum number of edges and n the maximum number of vertices, are described
in [18], [33]. Those algorithms require Θ(n) time per operation in the worst case. A
fully dynamic deterministic algorithm for 2-edge connectivity running in O(

√
n) time

is given by Eppstein et al. [7], and an O(
√
n log n) time algorithm for fully dynamic

2-vertex connectivity is given by Rauch [27]. (Again, m is the maximum number of
edges and n the maximum number of vertices.)

Thus, there is a substantial gap in deterministic time complexity between the
incremental and fully dynamic problems.1 A tantalizing question is whether we can
obtain much better time bounds than those for the fully dynamic problems by putting
restrictions on the deletions of edges. A natural and useful restriction is to limit

∗Received by the editors August 8, 1994; accepted for publication (in revised form) October 28,
1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/27258.html
†Department of Computer Science, Princeton University, Princeton NJ 08540 and Department of

Computer Science, Utrecht University, 3508 TB Utrecht, The Netherlands. At Princeton University,
the research was supported by a NATO Science Fellowship awarded by NWO (the Netherlands
Organization for Scientific Research) and DIMACS (Center for Discrete Mathematics and Theoretical
Computer Science - NSF-STC88-09648). At Utrecht University, the research of the author has been
made possible by a fellowship of the Royal Netherlands Academy of Sciences and Arts (KNAW).
Current address: Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA
Leiden, The Netherlands (han@wi.leidenuniv.nl).

‡AT&T Labs-Research, Florham Park, NJ 07932 (westbrook@att.com). This research was done
while the author was at the Department of Computer Science, Yale University, and was partially
supported by National Science Foundation grant CCR-9009753.

1Recently randomization has been used to derive polylogarithmic time algorithms for several
fully dynamic graph problems [17].

10

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 11

deletions to a backtracking Undo, which removes the most recently added edge not
yet removed.

Dynamic backtracking problems appear to be an important research area for
several reasons. The backtracking operation Undo is a common feature of interactive
software systems. Also, backtracking search is a common search strategy in many logic
and artificial intelligence applications. For example, maintaining 2-vertex-connected
components (with backtracking) has been proposed as a way to improve search in
Prolog [25]. Furthermore, dynamic graphs with backtracking suffice for many interac-
tive system applications like, e.g., CAD/CAM systems and VLSI layout. Maintaining
2-vertex-connected components could potentially be used for problems in reliable net-
work design, or for designing VLSI layouts.

Previous work on backtracking addressed the Union-Find problem, in which the
standard disjoint set operations of Union and Find are augmented by the backtracking
operation Deunion. (A Deunion undoes the most recent Union that has not been
undone.) Union-Find with backtracking is a central problem in the implementation
of unification and backtracking search in the logic programming language Prolog.
Mannila and Ukkonen [23], [24] first formalized and studied this problem and proposed
several algorithms which Westbrook and Tarjan [32] subsequently analyzed: each
operation can be performed in Θ(logn/ log log n) amortized time. Blum [3] gave a
data structure for Union-Find without backtracking that runs in Θ(logn/ log log n)
worst-case time per operation. As observed in [32], Blum’s data structure can be
adapted to handle Deunions in the same time bound. Variants and extensions of this
problem are studied in [11], [14].

In [30] it is observed that backtracking graph connectivity could be solved in
Θ(logn/ log log n) time by a straightforward application of the backtracking Union-
Find algorithm (as incremental graph connectivity can be solved by straightforwardly
applying standard Union-Find). Tamassia [29] gave an algorithm for a hierarchical
embedding problem related to VLSI design that is essentially an algorithm with Undo
operations for maintaining an embedded planar st-orientable graph (such a graph
is 2-connected if one edge (s, t) is added) under a restricted set of modifications; it
thus gives a better time complexity than its fully dynamic counterpart for general,
unrestricted embedded planar graphs [16] but only by a factor logn.

In this paper, we consider maintaining the 2-edge and 2-vertex connectivity rela-
tions in dynamic graphs with backtracking, i.e., graphs subject to the modifications
Insert Vertex (), which adds a new, isolated vertex to the graph; Insert Edge(u, v),
which inserts a new edge between vertices u and v; and Undo, which undoes the effects
of the most recent insertion not yet undone. We give algorithms and data structures
that maintain a decomposition of a dynamic backtracking graph into its 2-edge and
2-vertex-connected components throughout any sequence of backtracking operations.
Using our data structure we can answer Test(u, v) queries, which ask whether vertices
u and v belong to the same 2-connected component, in Θ(log n) worst-case time. Our
algorithms run in worst-case time Θ(log n) per operation and use Θ(n) space, where
n is the current number of vertices (“existing”) in the graph.

To our knowledge, the algorithms in this paper are the first nontrivial results
for dynamic backtracking graph problems that yield a substantial improvement in
time complexity over their fully dynamic counterparts. Our algorithms also solve the
corresponding incremental problems in logarithmic worst-case time, improving the
Θ(n) worst-case bounds on the algorithms given in [18], [33]. In fact, we present our
results by first describing new incremental algorithms and then augmenting them to

12 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

support backtracking.
For comparison, we mention several alternate approaches to solving the back-

tracking problem. The simplest one is to push each edge on a stack as it is added,
popping the stack for each Undo. A test query is answered by copying the edges on
the stack, constructing the graph, and running a standard biconnectivity algorithm
[4]. Updates require Θ(1) time in the worst case, queries take Θ(m) time, and the
space required is Θ(m), where m is the maximum number of edges ever in the graph.

Another possibility is to use the techniques of persistence [6]. A normal data
structure is ephemeral in the sense that after an update the old version is destroyed
and replaced by the updated version. Using the techniques of Driscoll et al. [6],
a pointer-based data structure in which all nodes have constant bounded in-degree
and out-degree can be made fully persistent. In a fully persistent data structure all
versions of the data structure can be accessed, and any old version can be updated
to yield a new version. The amortized time per operation of the persistent data
structure is equal to the worst-case time per operation of the underlying ephemeral
data structure, and the space requirement of the persistent data structure is equal
to the total number of pointer changes made in all versions of the ephemeral data
structure. Applying persistence to a data structure for the incremental 2 connectivity
problem gives a solution to the backtracking problem. The data structures of [19],
[33] do not have constant bounded in-degree, and the worst-case time per operation
is Θ(n). When we replace nodes with high in-degree with balanced binary trees,
persistent versions of these data structures give a backtracking algorithm that runs in
Θ(n log n) amortized time per operation and requires Θ(Mn) space, where M is the
total number of edge insertion operations. Applying persistence to the incremental
data structures developed in this paper gives less dismal results: Θ(logn)2 amortized
time per operation and Θ(n + M log n) space. (The additional factor of logn again
arises from replacing nodes with high in-degree by balanced binary trees.) In contrast,
our direct solution to the backtracking problem gives Θ(logn) time in the worst-case
and only Θ(n) space.

This paper is organized as follows. In section 3, we present a solution for 2-
edge connectivity that runs in Θ(logn) time per operation and Θ(n) space. Although
obtaining these bounds for 2-edge connectivity is relatively simple, obtaining O(log n)
bounds for 2-vertex connectivity requires rather more sophisticated data structuring
and accounting. These are presented in section 4. There we first give an intermediate
and simpler solution that runs in Θ(log2 n/ log log n) time per operation and then
present the Θ(logn) solution.

2. Preliminaries.

2.1. Terminology. In this paper, we use the standard graph terminology in
Harary [15].

Let G = (V,E) be a graph. A path is a sequence of vertices v0, v1, . . . , vk such
that {vi, vi+1} ∈ E, 0 ≤ i < k. Vertices v0 and vk are endpoints of the path; the
remaining vertices are internal. Two vertices in V are connected if there exists a
path between them. The connected components of G are the maximal subgraphs of
mutually connected vertices.

Let {u, v} be an edge of graph G whose removal disconnects the graph. Such
an edge is called a bridge. The 2-edge-connected components of G are the connected
components that remain after all bridges are removed. Two vertices are 2-edge con-
nected if they belong to the same 2-edge-connected component. If u and v are 2-edge
connected, then there are at least two edge disjoint paths between them.

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 13

Let u be a vertex whose removal disconnects G. Such a vertex is called a cut-
point. Two edges are called 2-vertex connected if they lie on a common simple cycle.
Thus, 2-vertex connectivity is an equivalence relation on the edge set. The 2-vertex-
connected components or blocks of G are the subgraphs of G induced by the edges in
an equivalence class plus their end nodes. Two vertices are 2-vertex connected if they
belong to the same 2-vertex-connected component. Thus, two vertices are 2-vertex
connected if and only if there are at least two vertex-disjoint paths between them,
and any two 2-vertex-connected components intersect at most at one cutpoint.

Recall from [33] that for the 2-edge and the 2-vertex connectivity relation, Θ(n)
2-connected components may be merged in case of an edge insertion, and, similarly,
Θ(n) new components may arise in case of an Undo operation. Thus, it is possible
to construct a sequence of operations in which each operation changes the number
of 2-connected components by Θ(n). This is in contrast with connected components,
where only two components may be joined or separated by an insertion or Undo
operation.

2.2. Dynamic trees. In [28], Sleator and Tarjan presented their dynamic tree
data structure. For later reference, we briefly describe the main features of this data
structure.

The data structure maintains a rooted tree with costs on each edge or, alterna-
tively, on each vertex. It performs the following operations (among others) in Θ(logn)
worst-case time:

find root(u), which returns the root of the tree in which node u is contained;

parent(u), which returns the parent of node u in the tree (if any);

find min(u), which returns the edge of minimum cost on the path from u to the
root;

add cost(u, x), which adds value x to the cost of all edges on the path from u to
the root;

cut(u), which creates two trees from one by cutting the edge from u to its parent;

link(u, v, x), which combines two trees into one by making u a child of v (it
presumes that u is the root of a tree distinct from the tree containing v), where edge
(u, v) has cost x;

and evert(u), which reroots the tree containing u at u.

If costs are associated with nodes, add cost(u, x) adds value x to the cost of all
nodes on the path from u to the root, and find min(u) returns the node of minimal
cost on the path from u to the root.

As observed in [30], maintaining the connectivity relation with backtracking can
be performed in Θ(log / log log n) time per operation and Θ(n) space by using a Union-
Find structure with backtracking. We remark that the connectivity relation can
also be maintained using dynamic trees in Θ(logn) time per operation. For each
component we maintain a spanning tree in the obvious way and test whether u and
v are in the same component by find root operations for u and v. We will not make
the maintenance of the connectivity relation explicit in our algorithms for 2-edge and
2-vertex connectivity.

3. 2-edge connectivity. In this section, we describe algorithms and data struc-
tures for maintaining the 2-edge connectivity relation in dynamic graphs with back-
tracking. We first describe a data structure that performs 2-edge connectivity queries
and edge insertions in Θ(logn) worst-case time, and we then extend this algorithm
to handle backtracking.

14 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

Let T be a spanning tree of a graph G. An edge e ∈ T is covered if it lies on the
fundamental cycle (with respect to T) of some nontree edge f ∈ G.

Lemma 3.1 (see [10]). Two vertices are in the same 2-edge-connected component
of G if and only if all edges on the path in T between u and v are covered.

Using this lemma, it is easy to solve the incremental 2-edge connectivity problem
in worst-case Θ(log n) time per operation, using the variant of the dynamic tree data
structure in which cost is attached to the tree edges. A spanning tree is maintained
for each component of G and used for testing 2-edge connectivity. Each edge of G is
classified as either a spanning tree edge, an essential nontree edge, or a nonessential
nontree edge. The edge is a spanning tree edge if at the time of insertion it connected
two previously unconnected components. The edge is an essential edge if at the time
of insertion it reduced the number of 2-edge-connected components. Otherwise it is
nonessential. At any time, let G′ be the subgraph of G consisting of all vertices of G,
all spanning tree edges, and all essential nontree edges. Thus, G and G′ have the same
2-edge-connected components. The size of G′ is 2(n − 1) because each edge in G′ is
either a spanning tree edge or an edge that reduced the number of 2-edge-connected
components by 1, which can happen at most n−1 times. The cost of a tree edge e will
be the number of nonspanning tree edges in G′ covering tree edge e. The operations
on G defined in the introduction are implemented as follows.

Insert Vertex (): Create a new single-node tree and return a pointer to the new node.

Test(u, v): If u and v are in different components, return “no.” Otherwise perform
evert(v) followed by find min(u). If the minimum value is zero, return “no,” otherwise
“yes.”

Insert Edge(u, v): If u and v are in different components, do evert(u) and perform
link(u, v, 0), creating a new tree edge e with cost 0. Otherwise, compute Test(u, v).
If the result is “no,” then evert(v) and add cost(u, 1). Otherwise do nothing.

The correctness of these routines is easily seen by induction on the number of
requests. The crucial observation is that the cost of an edge is exactly equal to the
number of covering edges in the graph G′, and that if there is an edge in G covering
edge e, then there is an edge in G′ covering e. Each operation runs in worst-case time
Θ(logn), since each performs a constant number of dynamic tree operations.

So far, we have a data structure for the incremental problem. To support Undo, we
utilize a backtrack stack. If an Insert Edge(u, v) or Insert Vertex () operation changes
the number of components or 2-edge-connected components, then it is essential and
G′ is augmented accordingly; a new record is pushed on the backtrack stack. The
record contains the type of operation performed, the endpoints of the new edge in the
case of an edge insertion, the name of the new vertex in the case of a vertex insertion,
and a counter initialized to zero. This counter contains the number of nonessential,
not yet undone insertions performed after the one described in the record (which is an
essential one), and before the essential insertion described in the next record (if any).
Thus, if an Insert Edge(u, v) operation adds an edge between two vertices that are
already in the same 2-edge-connected component, the counter in the top stack-record
is simply incremented.

To perform Undo, proceed as follows. Examine the counter in the top record on
the stack. If it is greater than zero, decrement the counter and terminate. Otherwise
pop the top record. If the operation stored in this record is an Insert Vertex (), then

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 15

delete the appropriate vertex. If the operation is Insert Edge(u, v), then do evert(v)
and add cost(u,−1). Perform find min(u). If it returns an edge e of cost −1 (meaning
e is an edge that, when inserted, connected two previously unconnected components),
then cut(u) is performed, while e is deleted. We obtain the following theorem.

Theorem 3.2. A sequence of Test(u, v), Insert Vertex(), Insert Edge(u, v), and
Undo operations can be performed in Θ(logn) worst-case time per operation and in
Θ(n) space, where n is the current number of nodes.

Proof. It is readily seen that the relation between G and G′ is maintained. To
show the correctness of the backtracking procedure, it suffices to confirm that an Undo
performed immediately after an insertion restores the data structure to its condition
prior to the insertion. The time bound follows from [28]. The space complexity follows
since the size of the stack (i.e., the number of records in it) is bounded by the size of
G′.

4. 2-vertex connectivity. In this section, we describe algorithms and data
structures for maintaining the 2-vertex connectivity relation in dynamic graphs with
backtracking. As in the previous section, we begin by describing a data structure
that performs only 2-vertex test queries and edge insertions in O((log n)2/ log log n)
worst-case time. This then serves as a basis for a backtracking algorithm with this
time complexity. Subsequently, we present data structures and algorithms to achieve
O(log n) time per operation.

As in the case of 2-edge connectivity, our approach is to maintain a spanning tree
of the graph and store information with the vertices and edges of the spanning tree
that can be used efficiently to answer test queries. In the case of 2-vertex connectivity,
however, there is no simple covering lemma, and our algorithms and data structures
are consequently more complex. Our approach to 2-vertex connectivity is based on
the following lemma.

Lemma 4.1. Let T be a spanning tree of graph G. Two nodes are in the same
block of G if and only if all tree edges on the path P between u and v are in the same
block.

Proof. If all edges on P are in the same block, then u and v are in the same block,
since if an edge is in block B so are its endpoints. Conversely, assume u and v are
in the same block B. Any simple path between u and v (such as P) must be entirely
contained inside B. Otherwise, it must pass out of B through some cutpoint, and
by definition of a cutpoint it cannot return into B without going through the same
cutpoint, contradicting the assumption that P is simple.

To use the lemma we must find an efficient way to test 2-vertex connectivity along
tree paths. We will use the dynamic tree data structure of Sleator and Tarjan with
cost related to nodes as a basis. By itself, however, this data structure is insufficient
for our needs. We augment the data structure to solve 2-vertex connectivity with
backtracking.

4.1. The dynamic tree data structure of Sleator and Tarjan. The funda-
mental principle behind the data structure is a partitioning of tree edges into vertex-
disjoint paths, called a path decomposition. An edge within a path is called solid,
while a nonpath edge is called dashed. Dynamic tree operations are performed by
manipulating the path partition so as to place relevant vertices in the same path.
Each path p has two endnodes head(p) and tail(p), which are the nodes on p that are
farthest from and nearest to the root, respectively.

Let T be a tree rooted at r. There is a unique path decomposition of T defined
by its heavy edges. Denote by s(v) the number of descendants of node v, and denote

16 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

by p(v) the parent of v. Let 〈u, v〉 denote a tree edge with v = p(u). Call edge 〈u, v〉
heavy if 2s(u) > s(v), otherwise light. Removal of light edges leaves a collection of
disjoint paths. There are O(log n) light edges on any path to the root.

The solid path decomposition maintained by the Sleator–Tarjan dynamic tree
data structure is exactly the heavy path decomposition, except possibly during the
execution of one of the dynamic tree operations. At the conclusion of each opera-
tion, however, the correspondence between solid paths and the unique heavy path
decomposition is restored.

The costs of nodes are examined and changed using only two functions: find-min-
on-path and add-cost-to-path. The former operation finds the minimum cost node on
a solid path, and the latter increases the cost of all nodes on a single solid path. To
perform a find min(u) operation, for example, the path from u to the root r must
be turned into a single solid path to which find-min-on-path is applied. After the
minimum is found, the heavy path decomposition is restored. Each solid path p is
stored in a binary search tree Dp, where the leaves of the tree correspond to the nodes
on the path so that in order on the tree corresponds to path order from head to tail.
Each internal node of Dp has a “partial” cost. The cost of the solid path node v
stored at leaf l of Dp is the sum of all the partial costs stored with the internal nodes
on the path from the root of Dp down to the leaf node l. Thus, the cost of all nodes
on the solid path p can be changed by ∆ by adding ∆ to the partial cost of the root
of Dp. By maintaining minima of subtrees in Dp, the minimum on path p can be
found in time linear in the depth of Dp. Using the binary tree data structure, a path
p can be split at node v to give three new paths, p1, v, and p2, with p1 containing
the former head of p and p2 containing the former tail. After the split, the cost of v
can be determined in O(1) time. The inverse of splitting is a concatenation, which
produces a single path p consisting of p1, followed by v, followed by p2.

The path decomposition is manipulated by means of three functions: expose,
conceal, and reverse [28]. An expose creates a solid path starting at a specified node v
and ending at the root. The new path may not necessarily contain only heavy edges.
A conceal takes a solid path p containing the root and possibly some light edges and
modifies the collection of solid paths so that every edge incident with a node of p is
solid if and only if it is heavy. A reverse operation reverses the direction of tree edges
in a solid path ending at the root. Thus, for example, an evert at v is implemented by
an expose of v, a reverse of the resulting path, and a conceal of the path now rooted
at v.

Let P be the path from node v to the root of T . The expose(v) operation turns
all the dashed edges on P into solid edges and simultaneously turns all the solid
edges incident to but not on P into dashed edges. Let 〈x, y〉 be a dashed edge on P
(y = p(x)), and let 〈z, y〉 be the solid edge containing a sibling z of x. If y has no
heavy child, there is no such edge. The process of making 〈x, y〉 into a solid edge and
〈z, y〉 into a dashed edge is called a splice, denoted splice(x). At the time of the splice,
let px be the solid path containing x as its tail. A splice involves splitting the solid
path p containing y into p1, y, p2 (both p1 and p2 may be empty) and concatenating
px, y, p2. While y is a singleton, its cost can be obtained or updated in O(1) time.
The expose operation performs the necessary splices in order from v to the root. The
solid path initially containing v is split as necessary so that v has no descendant solid
edge.

The conceal operation is the inverse of expose. Given a solid path P containing
the root, with head v, a conceal turns all the light edges on P into dashed edges, and

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 17

all the heavy edges incident to but not on P into solid edges. It thus restores the
heavy path decomposition. Conceal processes P from its tail down. Let 〈x, y〉 be a
solid light edge on P and let 〈z, y〉 be the dashed heavy edge incident on y. If y has
no heavy child z, there is no such edge. The process of making 〈x, y〉 into a dashed
edge and 〈z, y〉 into a solid edge is called a slice, denoted slice(x). Obviously, slice is
the inverse of splice. At the time of the slice, let pz be the solid path containing z
as its tail. A slice involves splitting the solid path P into p1, y, p2 (both p1 and p2

may be empty) and concatenating pz, y, p2. The conceal then continues down path p1,
which has tail x, unless p1 is empty. The method by which conceal determines which
edges are light is quite clever and intricate. It involves keeping track of the number
of descendants of dashed edges in the data structure.

4.2. A dynamic tree data structure for 2-vertex connectivity. We use
the Sleator–Tarjan data structure as a basis for our data structure.

Let T be a tree rooted at r. Given a path decomposition for T , we categorize
the tree edges incident on a node v in three ways. Edge 〈v, w〉 is a parent edge if
w = p(v) with respect to the current tree root. (The parent edge may be either solid
or dashed.) Edge 〈u, v〉 is a solid child edge if it belongs to a solid path and v = p(u).
All other edges are dashed child edges. A solid edge can change to a parent edge, and
vice versa, via a reverse. A solid child edge can change to a dashed child edge, or vice
versa, via an expose or conceal. No single operation, however, can change an edge
incident on v from being a parent to being a dashed child.

With each node v we associate an integer counter value c(v) that, roughly speak-
ing, takes the place of the cost value maintained by the basic dynamic tree structure.
The counter value differs from the cost value, however, in that it depends on both
the current 2-connected components of G and the current path decomposition of the
spanning tree T . The counter values satisfy the following:

(i) if v has both a solid child edge and a parent edge, then c(v) is zero if these
two edges are in different blocks of G, and positive (including ∞) otherwise;

(ii) if v has no solid child edge or no parent edge, then c(v) = +∞.
The counter condition implies that two edges belonging to the same solid path

are in the same block if and only if all intervening path vertices have value greater
than zero. Solid paths are implemented in the same manner as in the standard
Sleator–Tarjan data structure, and counter values can be examined or set using the
find-min-on-path and add-cost-to-path functions. The symbol +∞ indicates a positive
number that cannot be changed by add-cost-to-path. (Below, we explain this further.)

The counter value of node v says nothing about the relationship between dashed
edges incident on v nor between dashed edges and solid edges incident upon v. An
additional data structure handles these relationships. For each vertex v we maintain
a block partition, Bv, of the edges {e1, e2, . . . , ek} adjacent to v. Let Bv(ei) denote
the set of Bv containing edge ei. Let y be the solid child edge, if any, of v, and let
z be the parent edge, if any, of v. At all times, edges ei and ej belong to the same
2-vertex-connected component (block) of G if and only if at least one of the following
holds:

1. Bv(ei) = Bv(ej).
2. Bv(ei) = Bv(y), Bv(ej) = Bv(z), and c(v) > 0.
3. As in 2, but with ei and ej exchanged.

The block partition is subject to Unions, Finds, and eventually Deunions. For
each tree edge e = 〈u, v〉 there is a record containing the names of its endpoints
and pointers to two representatives, one for Bu and one for Bv. We denote these

18 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

representatives by ev,u(u) and eu,v(v), respectively. The two representatives of e
contain back pointers to the record for e. This edge data structure is created and
initialized when a new tree edge connecting two previously unconnected components
is added.

To implement edge insertions, we use the standard dynamic tree operations such
as evert and link. Each of these operations is in turn implemented with O(1) invoca-
tions of the primitives reverse, expose, and conceal. We will also call these primitives
directly in our implementations. As these primitives are executed, the block partitions
and counter values must be modified to preserve the needed invariants.

If the counter values and block partitions are valid prior to a reverse operation,
they remain valid after a reverse. The other two primitives change the solid path
decomposition, however, and hence may cause changes in our counter values and
block partitions. The expose primitive uses the function splice, which makes a light
dashed edge solid and a heavy solid edge dashed. The conceal primitive uses the
function slice, which makes a light solid edge dashed and a heavy dashed edge solid.
For our purposes, whether the edges are heavy or light does not matter. The block
partition and counter values are modified as follows.

Let y = 〈u, v〉 be a solid child edge of v which must be made dashed. Let z be
the parent edge, if any, of v. If Bv(y) 6= Bv(z) and c(v) > 0, then unite Bv(y) and
Bv(z). In any case, set c(v) = +∞.

Let y = 〈u, v〉 be a dashed child edge of v which must be made solid (there is
no solid child edge of v at this point). Let z be the parent edge, if any, of v. If
Bv(y) 6= Bv(z), then set c(v) = 0; otherwise set c(v) = +∞.

It is straightforward to verify by case analysis that these algorithms correctly
maintain the counter values and block partitions through any sequence of queries and
edge insertions. To facilitate access to the representatives for edges y and z in the
above algorithms, each tree node v is augmented with pointers to the representatives
in Bv of the solid edges incident to v, or the dashed edge from v to its parent, as
appropriate. These pointers can be updated as part of the extended splice and slice
in O(1) time.

4.3. Implementation of test and insertion operations. In this subsection
we present the implementation of Test(u, v) and Insert Edge(u, v). (The implemen-
tation of Insert Vertex () is straightforward.)

Test(u, v):
1. If u and v are in different components, return “no” and terminate.
2. Save the tree root r.
3. Evert the tree at v, making v the root. (Expose v and reverse the path from

v to r.)
4. Expose u.
5. Perform find-min-on-path on the resulting solid path. Return “no” if the

minimum value is 0; otherwise return “yes.”
6. Conceal u and evert the tree at r.

Insert Edge(u, v):
1. If u and v are in different components, and hence different trees, evert at u,

and perform Link(u, v). Add two singleton sets to the block partitions Bu
and Bv, each representing edge {u,v}. Then terminate.

2. If u and v are in the same tree, compute Test(u, v).

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 19

3. If the result is “no,” then evert at v; expose u; increment counters on the
resultant path with add-cost-to-path; conceal u.

Lemma 4.2. The above implementations of Test(u, v) and Insert Edge(u, v) are
correct.

Proof. Each operation uses O(1) calls to the primitives add-cost-to-path, find-min-
on-path, expose, conceal, and reverse. By the discussion from the previous section,
these operations are correct.

Consider the Test(u, v) operation. Step 1 is trivially correct. Steps 2–4 construct
a new path decomposition in which u and v are in the same solid path and u is
the root of the tree. The primitives expose, conceal, and reverse construct correct
counter values and block partitions, as defined in the previous section, for the new
path decomposition. The endpoints of the path to which find-min-on-path is applied
always have counter value +∞. Hence the find-min-on-path operation determines
whether there is a zero on a node internal to the path, which in turn determines
whether u and v are in the same 2-connected component. Step 6 restores the original
path decomposition.

The correctness of Insert Edge(u, v) follows from a similar argument. Step 3
increases all counter values along the path, so there is no longer a node of zero cost
separating u and v. The final conceal will possibly change the path partition but will
correctly construct new counter values and block partitions.

Lemma 4.3. The above implementations of Test(u, v) and Insert Edge(u, v) run
in Θ((logn)2/ log log n) worst-case time per operation.

Proof. The implementations of add-cost-to-path, find-min-on-path, expose, con-
ceal, and reverse given by Sleator and Tarjan run in Θ(logn) time in the worst case. In
addition, the number of splices and slices performed per expose or conceal is Θ(logn)
in the worst case. Node counter values can be obtained or set to a particular value in
O(1) time when paths are split and concatenated during splices and slices. (We defer
explaining how to implement +∞ for the moment.) There are O(1) Union and Find
operations on block partitions during a splice or slice. Unions and Finds can be done
in Θ(logn/ log log n) worst-case time per operation using Blum’s data structure [3].

Hence, an incremental algorithm that runs in Θ((logn)2/ log log n) worst-case
time per operation is the result of this section.

4.4. The Undo operation. The algorithms for 2-vertex connectivity are more
complicated than those for 2-edge connectivity, and the Undo operation is correspond-
ingly more complex. Correct backtracking can be guaranteed by logging every change
to a pointer or data field done in the course of an operation. By unwinding the log,
each change can be exactly undone and the exact previous state of the data structure
restored. This approach is space intensive, however. Our goal is to store a minimal
amount of backtracking information. This means that the Undo will not restore the
exact state of the data structure prior to the operation being undone. In particular,
an Undo will restore the exact previous path decomposition, block partitions, counter
values, and backtracking stack, but it will not necessarily restore the previous states
of the data structures used to implement the solid paths and block partitions. There
is no conceptual problem, since several different data structure states may represent
the same solid path or block partition.

To prove the correctness of our implementation of backtracking, it suffices to
show that by using the information stored on the backtracking stack during an update

20 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

operation, the update operation can be immediately undone. That is, no matter what
the states of the data structures implementing the solid paths and block partitions, the
previous path decomposition, block partitions, counter values, and backtracking stack
can be restored. The correctness of the whole algorithm then follows by induction on
the number of operations, since the answers to biconnectivity queries are determined
only by these attributes.

The implementation of Test(u, v) given in subsection 4.3 may change the block
partition, since it executes expose and conceal operations. It is most convenient to
undo these changes immediately after the test operation is completed. This can be
done in a brute-force fashion by logging each change to any pointer or data field and by
storing the location of the field and the previous value. The old values can be restored
by going backward through the log. Since Test(u, v) runs in O((log n)2/ log log n) time
in the worst-case, the total size of the log and the time to restore the previous values
is O((log n)2/ log log n). A better approach is to observe that the implementation of
Test(u, v) is almost the same as the implementation of Insert Edge(u, v). Hence we
may use the Undo algorithm for Insert Edge(u, v) developed below with only minor
modification.

Each time an essential edge is inserted, a record is pushed onto the backtracking
stack. As in the algorithm for 2-edge connectivity, an edge is essential only if its
insertion reduces the number of components or 2-vertex components. Each record
contains a counter that indicates the number of not-yet-undone nonessential edge
insertions performed after the essential one described in the record. Upon an insertion
of a nonessential edge, the only change to the data structure is to increment the
counter in the top record. Upon an Undo, the counter in the top record is examined.
If greater than zero, it is simply decremented. This suffices to restore the state of the
data structure prior to the most recent insertion.

If the insertion is essential, a new record with a zero counter is pushed on the
stack. The record describes the operation performed and the effect: either a decrease
in the number of components or a decrease in the number of blocks. The record also
describes each of the O(1) “suboperations,” expose, reverse, conceal, and add-cost-to-
path, that were done.

A reverse can be undone by another reverse on the same path. The effect of
incrementing counters by add-cost-to-path can be undone by using add-cost-to-path to
add −1 to the same path.

Undoing the effects of an expose or conceal is more complicated. For each such
operation, the main backtracking record contains a substack of subrecords. This
substack will record changes to the block partitions that occur during the operation.

Suppose we expose v and we want to immediately undo the expose. The heavy
path decomposition that existed prior to the expose can be restored by an immediate
conceal. Since the heavy path decomposition is unique, each splice occurring in the
expose will be exactly undone by a slice in the conceal. The conceal algorithm processes
each sliced edge in the reverse order that it was spliced by the expose. Similarly, a
conceal operation, which travels down a solid path turning light edges on the path
into dashed edges, can be immediately undone by an expose starting at the last vertex
on the solid path traversed by the conceal. Each slice done by the conceal is exactly
undone by a splice in the expose.

To restore the counter values and block partitions, it suffices to show how to
modify splice to undo the effects of an immediately preceding slice and vice versa.
The function splice makes a heavy solid child dashed, if there is one, and then makes

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 21

a light dashed child solid. The function slice makes a light solid child dashed, and
then makes a heavy dashed child solid, if there is one. With respect to the counter
and block partition, it does not matter whether the edges are heavy or light. Hence
it suffices to show how to undo the effect of turning a dashed edge solid and how to
undo the effect of turning a solid edge dashed.

The block partitions are managed by an algorithm for set Union with backtracking
that supports the operations Find, Union, and Deunion. As described in section 1,
these operations can be implemented in Θ(logn/ log log n) time, either worst case or
amortized.

Let y = 〈u, v〉 be solid child edge of v which must be made dashed as part of
a normal edge insertion. Let z be the parent edge, if any, of v. If Bv(y) 6= Bv(z)
and c(v) > 0, then unite Bv(y) and Bv(z); push a new subrecord on the substack,
labeled with the name “v”; store the current value of c(v) into the subrecord; and
set c(v) = +∞. In all other cases, simply set c(v) = +∞. If x is being made dashed
during an Undo, simply set c(v) = +∞.

Let y = 〈u, v〉 be a dashed child edge of v which must be made solid. Let z
be the parent edge, if any, of v. If Bv(y) 6= Bv(z), then set c(v) = 0; otherwise set
c(v) = +∞. If y is being made dashed as part of an Undo, then examine the top
subrecord on the substack. If it is labeled “v,” then pop the subrecord, execute a
Deunion in the block partition for v, and set c(v) equal to the value stored in the
subrecord.

By inspecting these routines, one may verify that after a normal solid-to-dashed
operation, an immediate dashed-to-solid operation in Undo mode will correctly restore
the previous block partition and counter value. Similarly, after a normal dashed-
to-solid operation, an immediate solid-to-dashed operation in Undo mode correctly
restores the previous state. Recall that to make a dashed child solid, v can have no
other solid child, and hence c(v) = +∞.

Theorem 4.4. A sequence of m Test(u, v), Insert Vertex(), Insert Edge(u, v),
and Undo operations can be performed in Θ((logn)2/ log log n) worst-case time per
operation and in Θ(n) space.

Proof. As discussed above, the correctness of the Undo algorithm follows by
induction, since sufficient information is stored on the backtrack stack to allow each
function that changes the path decomposition or counter values to be immediately
undone. The running time of an Undo is order of the running time of the operation
being undone, which is Θ((logn)2/ log log n) in both cases.

Next we consider the space utilization. After O(n) essential edge insertions, all
edges are in the same 2-vertex component. Since O(1) records are only pushed on
the backtrack stack if components or blocks are joined, and O(1) subrecords are only
pushed on a substack if sets in the block partitions are united, the total space required
on the backtrack stack is O(n) main records plus O(n) total subrecords. Obviously,
Ω(n) space is required just to store the vertices.

We use +∞ to ease designing and analyzing the algorithm. It ensures that the
endpoints of a path always have positive counter value and so cannot interfere with
the operation find-min-on-path. If v is internal to a solid path, and both incident solid
edges belong to the same set of the block partition, then c(v) is also +∞. This is an
easy way to ensure that no amount of counter decrements performed during Undos
will accidentally reduce c(v) to zero, thereby violating the counter condition. For
theoretical purposes, there is no difficulty in assuming that the arithmetic operations
of the target machine are augmented to handle +∞. For actual implementations,

22 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

we can dispose of +∞ as follows. Say that the value of c(v) is equivalent to +∞ if
it is greater than the number of not-yet-undone counter increments that have been
applied to v. Since this number is at least zero, a value equivalent to +∞ is always
positive. Modify the algorithms so that wherever a counter was previously set to +∞
it is now set to one more than the current size of the backtrack stack. One may show
the correctness of this modified algorithm by imagining that the original and modified
algorithms are run side by side on the same input and verifying by induction that a
counter in the modified algorithm is equivalent to +∞ exactly when the corresponding
counter in the original algorithm is equal to +∞.

4.5. An Θ(logn) algorithm for 2-vertex connectivity. We improve the
worst-case running time to Θ(logn) per operation by using globally biased binary
search trees [2], [28] to implement the block partitions. In the Sleator–Tarjan data
structure, the solid paths are already implemented by globally biased trees.

In a biased binary tree, A, each node has a specified weight w(x). Let Av be the
subtree of A rooted at v; the size of a biased-tree node, s(v), is defined as s(v) =∑

u∈Av
w(u). Define the rank of node v, r(v), as log s(v). We use r(A) to denote the

rank of the root of biased binary tree A.
The biased binary tree data structure has the following properties.

1. The depth of node v ∈ A is O(r(A)− r(v)).
2. For v ∈ A, the operation split(v) produces trees A1, v, A2 and requires time

O(r(A)− r(v)).
3. The operation concat(A1, A2) concatenates two trees A1 and A2 in time

O(max{r(A1), r(A2)} −max{r(right(A1)), r(left(A2))}),
where left(A) and right(A) denote the leftmost and rightmost nodes, respectively, in
tree A.

Note that concatenating trees A1, v, and A2 to give tree A requires time O(r(A)−
r(v)). For this can be done by concat(concat(A1, v), A2), requiring time O(r(A1) −
r(v)) +O(max(max(r(A1), r(v)) + 1, r(A2))− r(v)) which is O(r(A)− r(v)).

Thus, splitting a tree A into A1, v, A2 by split(v) can be undone by concatenating
A1, v, and A2 both within the same time bound O(r(A)− r(v)) and vice versa.

Recall that each tree edge 〈u, v〉 has two representatives, one each in the block
partitions for u and v. Denote these by ev,u(u) and eu,v(v), respectively. If 〈u, v〉 is a
dashed child edge of v, define w(eu,v(v)) to be the number of descendants of u in the
spanning tree T . If 〈u, v〉 is a parent or solid edge of v, define w(eu,v(v)) to be zero.
These weights are already explicitly maintained in the standard Sleator–Tarjan data
structure and can be accessed in O(1) time when needed by our modified algorithms.

Each block partition set B ∈ Bv is implemented by a header that contains pointers
to one or two biased binary trees. The binary trees contain the dashed child edges
of v, using the weights given above. Each tree root contains a back pointer to the
set header. Set B may be stored in two trees if it contains both the parent and solid
child edges of v, and it is stored in one tree otherwise. In case of two trees, one of
them precedes the other as indicated by the pointers (distinguished as a left and a
right pointer). We usually indicate this order by using indices with the trees, e.g.,
X1,X2. Furthermore, each parent or solid child edge e contains a pointer to the set
header of Bv(e). Hence testing whether Bv(e1) = Bv(e2) can be done by obtaining
and comparing the corresponding set header for e1 and e2, either by using a direct
pointer to a set header in case of a parent or solid child or by traversing the root path
and using the pointer from the root to the set header in the case of a dashed child.

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 23

For biased binary tree A, we denote by h(A) the node in A with maximum weight.
In the case of a tie, the node with largest index is taken. (We assume that nodes have
unique names 1, . . . , n). The following invariant is maintained.

If B ∈ Bv contains neither a parent nor a solid edge, then the (single)
biased tree A for set B satisfies right(A) = h(A).

If the counter values and block partitions are valid prior to a reverse operation,
they remain valid after the path reversal. This is because the block partition and
counter values are modified only when a dashed child turns into a solid child. The
primitives expose and conceal, however, may cause changes to counter values and block
partitions via the functions splice and slice. Recall from sections 4.2 and 4.4 that it
suffices to show how to turn a solid edge dashed, how to turn a dashed edge solid,
and how to undo each of these actions.

We first examine how the block partition and counter values change when a solid
edge y = 〈u, v〉 is made dashed. We assume that v is not the root, and that the parent
edge of v is z. If v is the root, execute the following algorithm as if z exists but forms
a singleton block, i.e., Bv(z) = {z}. We will use x, y, and z to denote both edges
incident on v and their representatives in the block partition trees of v.

1. If y is to be made dashed as part of a normal edge insertion, then test if
Bv(y) 6= Bv(z) and c(v) > 0. If so, then let Y be the tree of Bv(y) and Z the tree
of Bv(z). Unite sets Bv(y) and Bv(z) by creating a new set header with two pointers
to Y,Z, in that order. Push a new subrecord on the substack, labeled with the name
“v,” and copy c(v) into the subrecord. Continue with the rest of this routine.

2. If Bv(y) = Bv(z) then let Y1, Y2 be the two trees of set Bv(y). Concatenate
(Y1, y, Y2).

3. If Bv(y) 6= Bv(z) (c(v) = 0) then let Y be the tree for Bv(y). Let Y ′ =
concat(Y, y). Find y′ = h(Y ′). Perform split(y′), giving Y1, y

′, Y2, followed by con-
catenate (Y2, Y1, y

′). The result is the new biased tree for Bv(y).
4. Set c(v) = +∞.

We need to augment the biased tree data structure to allow us to search for the
maximum weighted node h(Y ′) in step 3. This can be done in a standard fashion,
storing at each internal node of the biased tree the maximum weight/index pair of any
descendant. Using this information, node h(Y ′) can be found in time proportional to
its depth, which is O(r(Y ′)− r(h(Y ′))).

Next we examine how the block partition and counter values change when a
dashed edge x = 〈u, v〉 is made solid. As before, if v is the root, execute the following
algorithm as if z exists but forms a singleton block, i.e., Bv(z) = {z}.

1. Let X be the biased tree of Bv(x). Perform split(x), giving X1, x,X2. (Pos-
sibly X2 = ∅.)

2. If Bv(x) 6= Bv(z), then set c(v) = 0, execute concat(X2, X1), and store a
pointer to the result in the header for Bv(x).

3. If Bv(x) = Bv(z), then set c(v) = +∞ and store pointers to X1, X2 in that
order.

4. If x is being made dashed as part of an Undo, then examine the top subrecord
on the substack. If it is labeled “v,” then pop the subrecord. Set c(v) equal to the
value stored in it. Undo the Union indicated by the subrecord creating two headers
for Bv(x) and Bv(z), respectively. Make X1 the tree for Bv(x) and X2 the tree for
Bv(z).

One may easily verify that these routines maintain valid counters and block par-
titions if no Undo operations are performed. We defer for the moment a discussion of

24 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

the Undo operation, and turn to an analysis of the running time.

Lemma 4.5. The functions splice(u) and slice(u) run in time O(1 + log s(v) −
log s(u)), where v = p(u), s(u), and s(v) are the number of descendants of u and v,
respectively, given the current root of the spanning tree T .

Proof. Consider the function that makes a solid child edge y dashed. Since the
set headers for y and z can be accessed in O(1) time, all set equivalence tests take
O(1) time. Step 1 requires O(1) time. Step 2 requires time O(r(Y ′) − r(y)) for the
concatenation, where Y ′ is the resulting tree. Step 3 requires time O(r(Y ′) − r(y))
for all the concatenation and split operations, since r(y′) ≥ r(y) by definition, and in
the final concatenation y is rightmost in Y2.

Consider the function that makes a dashed child edge x solid. The split in step 1
takes time O(r(X) − r(x)). After the split, we have O(1) time access to the set
header for Bv(x). The concatenation in step 2 requires time O(r(X) − r(h(X))) =
O(r(X)− r(x)). This follows because h(X) was rightmost in X by the invariant and
hence in X2 (if X2 6= ∅), and r(h(X)) ≥ r(x), by definition. Steps 3 and 4 take time
O(1).

Splice and slice both perform one each of these operations. In both cases, the
maximum rank of any tree in the block partition is log s(v). Hence the cost of a splice
or slice is O(1 + log s(v)− r(x)− r(y)).

In the case of a splice, r(x) = log s(u) by definition, and since y is a heavy child,
w(y) ≥ s(v)/2. It follows that a splice takes O(1 + log s(v)− log s(u)) time.

In the case of a slice, r(y) = log s(u) and w(x) ≥ s(v)/2 for the analogous reason.
This implies that slice takes O(1 + log s(v)− log s(u)) time.

Lemma 4.6. Using globally biased trees, an expose or conceal operation requires
time Θ(logn).

Proof. An expose(u) operation consists of a sequence of splices along the tree
path from u to the root. Let u1, u2, . . . , uk be the sequence of nodes at which a
splice occurs, and let vi = p(ui) for all i. By Lemma 4.5 the cost of the expose

is
∑k

i=1 O(1 + log s(vi) − log s(ui)). Since s(vi) ≤ s(ui+1) for 1 ≤ i ≤ k − 1, the
sum telescopes to O(k + log n). The heavy path decomposition guarantees that k =
O(log n), although k = Ω(log n) in the worst case. A conceal operation is implemented
by a sequence of slices going down the tree. Again the costs telescope for a total of
Θ(logn).

Now consider the Undo operation. As in section 4.4, it suffices to verify that after
a normal solid-to-dashed operation, an immediate dashed-to-solid operation in Undo
mode will correctly restore the previous block partition and counter value. Similarly,
after a normal dashed-to-solid operation, an immediate solid-to-dashed operation in
Undo mode correctly restores the previous state.

Suppose a solid edge is made dashed. Either steps 2 and 4, steps 3 and 4, or
steps 1, 2, and 4 of the solid-to-dashed routine are executed. Steps 2 and 4 of solid-
to-dashed will be undone by steps 1 and 3 of dashed-to-solid. Steps 3 and 4 of
solid-to-dashed will be undone by steps 1 and 2 of dashed-to-solid. Finally, steps 1,
2, and 4 of solid-to-dashed are undone by steps 1, 3, and 4 of dashed-to-solid.

Similarly, suppose a dashed edge is made solid. Either steps 1 and 2 or steps 1
and 3 of the dashed-to-solid routine are executed. Steps 1 and 2 of dashed-to-solid
are undone by steps 3 and 4 of solid-to-dashed. Steps 1 and 3 of dashed-to-solid are
undone by steps 2 and 4 of solid-to-dashed.

Theorem 4.7. A sequence of m Test(u, v), Insert Vertex(), Insert Edge(u, v),
and Undo operations can be performed in Θ(logn) worst-case time per operation and

DYNAMIC 2-CONNECTIVITY WITH BACKTRACKING 25

in Θ(n) space.
Proof. The running time follows from Lemma 4.6 and the previously established

running time for the Sleator–Tarjan data structure. The space bound follows from
the proof of Theorem 4.4.

5. Remarks. The only lower bound known for backtracking problems is one
of Ω(log n/ log log n) for a disjoint set union with backtracking [32]. This bound
can be applied to any class of algorithms for backtracking graph problems that keep
disjoint data structures for distinct components of the graph. Our algorithms fall
into that class. Hence there remains a gap of Θ(log logn) between the known upper
and lower bounds for 2-connectivity with backtracking. Note that in one operation,
Ω(n) 2-connected components may be joined (or unjoined), which makes the problem
apparently harder disjoint set union, where only two sets can be joined by a single
step.

Other interesting open problems are backtracking algorithms for 3-connectivity
and general planarity testing. The latter has as an application, e.g., VLSI design,
amongst others. We anticipate that our algorithms herein provide a basis for efficient
solutions of these problems.

Acknowledgments. We thank the anonymous referees for helpful comments.

REFERENCES

[1] G. D. Battista and R. Tamassia, On-line maintenance of triconnected components with spqr-
trees, Algorithmica, 15 (1996), pp. 302–318.

[2] S. Bent, D. D. Sleator, and R. E. Tarjan, Biased search trees, SIAM J. Comput., 14 (1985),
pp. 545–568.

[3] N. Blum, On the single-operation worst-case time complexity of the disjoint set union problem,
SIAM J. Comput., 15 (1986), pp. 1021–1024.

[4] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw-Hill, New
York, 1990.

[5] G. Di Battista and R. Tamassia, On-line planarity testing, SIAM J. Comput., 25 (1996),
pp. 956–997.

[6] J. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures persis-
tent, J. Comput. Sys. Sci., 38 (1989), pp. 86–124.

[7] D. Eppstein, Z. Galil, G. Italiano, and A. Nissenzweig, Sparsification: A general technique
for dynamic graph algorithms, in Proc. 33rd Symp. of Foundations of Computer Science,
1992.

[8] D. Eppstein, Z. Galil, G. Italiano, and T. Spencer, Separator based sparsification I. Pla-
narity testing and minimum spanning trees, J. Comput. Syst. Sci., 52 (1996), pp. 3–27.

[9] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, with
applications, SIAM J. Comput., 14 (1985), pp. 781–798.

[10] G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k small-
est spanning trees, SIAM J. Comput., 26 (1997), pp. 484–538.

[11] Z. Galil and G. F. Italiano, Data structures and algorithms for disjoint set union problems,
Computing Surveys, 23 (1991), 319–344.

[12] Z. Galil and G. F. Italiano, Fully dynamic algorithms for 2-edge connectivity, SIAM J.
Comput., 21 (1992), pp. 1047–1069.

[13] Z. Galil and G. F. Italiano, Maintaining the 3-edge connected components of a graph on-line,
SIAM J. Comput., 22 (1993), pp. 11–28.

[14] A. Apostolico, G. F. Italiano, G. Gambosi, and M. Talamo, The set union problem with
unlimited backtracking, SIAM J. Comput., 23 (1994), pp. 50–70.

[15] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[16] G. F. Italiano, J. A. La Poutré, and M. H. Rauch, Fully dynamic planarity testing in

planar embedded graphs, in Algorithms - ESA ’93, Lecture Notes in Computer Science 726,
T. Lengauer, ed., Springer-Verlag, Berlin, 1993, pp. 212–223.

[17] V. King and M. Rauch-Henzinger, Randomized dynamic algorithms with polylogarithmic
time per update, in Proc. 27th ACM Symp. on Theory of Computing, 1995, pp. 519–527.

26 JOHANNES A. LA POUTRÉ AND JEFFERY WESTBROOK

[18] J. A. La Poutré, Maintenance of 2- and 3-Connected Components of Graphs, part ii: 2- and
3-Edge-Connected Components and 2-Vertex-Connected Components, Technical Report
RUU-CS-90-27, Utrecht University, 1990.

[19] J. A. La Poutré, Dynamic Graph Algorithms and Data Structures, Ph.D. thesis, University
of Utrecht, Netherlands, 1991.

[20] J. A. La Poutré, Maintenance of triconnected components of graphs, in Proc. Int. Colloquium
on Automata, Languages, and Programming (ICALP ’92), Lecture Notes in Computer
Science 623, Springer-Verlag, New York, 1992, pp. 354–365.

[21] J. A. La Poutré, Alpha algorithms for incremental planarity testing, in Proc. 26th ACM
Symp. on Theory of Computing, 1994, pp. 706–715.

[22] J. A. La Poutré, J. van Leeuwen, and M. H. Overmars, Maintenance of 2- and 3-edge-
connected components of graphs, Discrete Math., 114 (1993), pp. 329–359.

[23] H. Mannila and E. Ukkonen, On the complexity of unification sequences, in Third Inter-
national Conference on Logic Programming, Lecture Notes in Computer Science 225,
Springer-Verlag, New York, 1986, pp. 122–133.

[24] H. Mannila and E. Ukkonen, The set union problem with backtracking, in Proc. 13th In-
ternational Colloquium on Automata, Languages, and Programming (ICALP 86), Lecture
Notes in Computer Science 226, Springer-Verlag, New York, 1986, pp. 236–243.

[25] G. Port, Private communication, 1988.
[26] M. Rauch Henzinger, Fully dynamic biconnectivity in graphs, Algorithmica, 13 (1995),

pp. 503–538.
[27] M. Rauch, Improved data structures for fully dynamic biconnectivity, in Proc. 26th ACM

Symp. on Theory of Computing, 1994, pp. 686–695.
[28] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System

Sci., 26 (1983), pp. 362–391.
[29] R. Tamassia, On-line planar graph embedding, J. Algorithms, 21 (1996), pp. 201–239.
[30] J. Westbrook, Algorithms and Data Structures for Dynamic Graph Problems, Ph.D. thesis,

Department of Computer Science, Princeton University, Princeton, NJ, October 1989.
[31] J. Westbrook, Fast incremental planarity testing, in Proc. Int. Symp. on Automata, Lan-

guages and Programming (ICALP ’92), Lecture Notes in Computer Science, Springer-
Verlag, New York, 1992.

[32] J. Westbrook and R. E. Tarjan, Amortized analysis of algorithms for set union with back-
tracking, SIAM J. Comput., 18 (1989), pp. 1–11.

[33] J. Westbrook and R. E. Tarjan, Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7 (1992), pp. 433–464.

ON THE STRUCTURE OF NPC
∗

GREGORIO MALAJOVICH† AND KLAUS MEER‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 27–35

Abstract. This paper deals with complexity classes PC and NPC as they were introduced over
the complex numbers by Blum, Shub, and Smale [Bull. Amer. Math. Soc., 21 (1989), p. 1]. Under
the assumption PC 6= NPC the existence of noncomplete problems in NPC not belonging to PC is
established.

Key words. complexity, NP-completeness, BSS machines over C, Hilbert Nullstellensatz

AMS subject classifications. Primary, 68Q15; Secondary, 68Q05, 03D15

PII. S0097539795294980

1. Introduction. In 1989 Blum, Shub, and Smale introduced a computational
model over arbitrary ring structures [3]. It especially results in a complexity theory
over the complex numbers C as well as a complex analogue “PC 6= NPC ?” of the
famous P 6= NP ? problem over the integers. One of the main parts in [3] is devoted
to asking for the existence of NPC-complete problems. The main example is Hilbert’s
Nullstellensatz.

Definition 1 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field.
The Hilbert–Nullstellensatz decision problem over K, denoted by HNK, is defined as
follows.

Let f1, . . . , fs ∈ K[x1, . . . , xn] be given polynomials, s, n ∈ N, deg fi = 2.
Decide if there is a common zero x ∈ Kn for all fi.
For example, following the terminology of [3] the polynomial systems over K build

the “input set” of decision problem HNK, whereas the solvable ones build the “yes
set.”)

Assume that K is the field C of complex numbers or the algebraic closure Q of
the rationals over C.

In the Blum, Shub, Smale (BSS) model over K, the computational cost of every
algebraic operation as well as the size of any element in K is supposed to be 1. Under
those assumptions, it was proven in [3] that HNK is NPK-complete.

Thus HNC represents the entire difficulty of classNPC; it is solvable in polynomial
time if and only if PC = NPC. In fact, most mathematicians assume PC 6= NPC,
implying that HNC does not allow efficient (i.e., polynomial-time) algorithms. (For
a more intensive treatment of related results we refer the interested reader to the
forthcoming book [2] as well as the survey paper [10].)

However, except for the above-mentioned result only a few things are known about
the intrinsic structure of NPC if PC 6= NPC is assumed.

In the present paper we want to go a step in this direction and will show the
following theorem.

∗ Received by the editors November 20, 1995; accepted for publication (in revised form) October
28, 1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/29498.html
† Departamento de Matematica Aplicada, Instituto de Matematica da UFRJ, Caixa Postal 68530,

LEP 21945, Rio, Brazil (gregorio@lyric.labma.ufrj.br). This research was partially supported by
CNPq (Brazil) grant 520305/94-9.

‡ Lehrstuhl C für Mathematik, RWTH Aachen, Templergraben 55, 52062 Aachen, Germany
(meer@rwth-aachen.de). This paper was written while Klaus Meer was visiting Gregorio Malajovich.
The visit was sponsored by CNPq (452267/95-1) and by UFRJ.

27

28 GREGORIO MALAJOVICH AND KLAUS MEER

Main Theorem. Assume PC 6= NPC. Then there is a decision problem in
NPC \ PC that is not NPC-complete.

The theorem is not surprising in stating that, once leaving the class of NPC-
complete problems, one will not directly jump into PC.

The proof is constructive in the sense that we will describe exactly how to build
a noncomplete decision problem in NPC \ PC. This problem is not a natural one.
Finding more natural noncomplete problems may be an interesting task. We will
discuss this question at the end of the paper.

Let us first briefly sketch the proof. The basic idea is to produce a noncomplete
problem not in PC, starting from a complete one. That idea was given by Ladner in
[8]. There the Turing model analogue of the main theorem was established. Also see
[12] for a more general approach to obtaining such results over the integers.

Given a complete problem one will switch stepwise to an easier one by changing the
problem “dimensionwise.” Here we will start with HNC and then carefully construct
another problem. On some input dimensions it will still represent the HNC problem,
whereas on the other dimensions it represents a trivial one.

However, Ladner’s approach heavily relies on the fact that in the Turing setting
the sets of P- and NP-machines are effectively countable. This is not at all the
case for BSS machines over C. We will circumvent the latter problem by using the
following transfer principle given in [2, Chapter 6].

Theorem 1 (Blum–Cucker–Shub–Smale). Let (Y, Y0) be a decision problem
solved by a BSS machine M over C. Moreover, let (Y

Q
, Y0Q

) be its restriction to

Q, i.e., Y
Q

:= Y ∩Q
∞

and Y0Q
:= Y0 ∩Q

∞
.

Then there exists a constant c ∈ N as well as a machine M ′ over Q solving
(Y

Q
, Y0Q

) s.t. the running time TM ′(y) of M ′ for all y ∈ Y
Q

is bounded by TM (y)c

(where TM (y) is the running time of M on y).
The transfer principle should be considered as follows. We first show the main

theorem for the BSS-model over Q. This will be carried out in a similar way as
Ladner’s proof, but attention must be paid to several details such as the enumeration
of all P

Q
-machines. To do this, symbolic computations for dealing with algebraic

numbers will be necessary. In that way we built up two subproblems of HN
Q

belonging

to NP
Q
\ P

Q
. Then both subproblems are shown to be noncomplete. This part also

differs from Ladner’s approach in that we do not need effective countability of NP
Q

machines.
We intend for this paper to be self-contained. Therefore, we will present the whole

construction over Q , even though those readers that are aware of [8] would be able
to fill in the remaining gaps by getting fewer details.

Finally, the above-mentioned subproblems are extended to decision problems over
NPC. The transfer principle guarantees that they do not to belong to PC, too.
Furthermore, its special structure will ensure that both of them will not be complete
for NPC.

2. Sketch of the proof for Q. In this section we are going to outline the proof
of the main theorem where C is replaced by Q. The proof is given in section 3.

Note that according to [3] HN
Q

is NP
Q

- complete. We will need Theorem 2.

Theorem 2. There is a decision procedure for NP
Q

working in time sO(n).

For more details, see [6], [4], [5], or [11].
We chose dense representation for the system f that appears in the Hilbert Null-

stellensatz. Therefore, its size S is greater than sn ≥ n log2(s). Hence, the Hilbert

ON THE STRUCTURE OF NPC 29

a1 a2 2a2 b1 b2 2b2 a3 a4 2a4 b3 b4

LK(a)

LK(b)

Fig. 1. Problems LK(a) and LK(b).

Nullstellensatz can be solved in exponential time 2O(S) with respect to the input size.
The idea is to start with HN

Q
and turn it into a sparser and sparser problem.

This will be done by changing the problem to look like the empty set over Q
n

for
certain “input dimensions” n.

Assume a fixed coding is given that represents an instance of HNC, respectively,
HN

Q
as an element of some space Cn or Q

n
(where n only depends on the number

of polynomials and the number of variables). The coding is assumed to be dense.
This means that polynomials are represented by the coefficients of all possible mono-
mials that may appear. For instance, the size of the representation of one quadratic
polynomial in two variables should be at least 6, regardless of zero coefficients.

The following definitions will be crucial for understanding the structure of the
decision problems we have to build.

Definition 2. Let K ∈ {Q,C}; for any strictly increasing sequence a := (a1, a2, . . .)
of natural numbers let LK(a) be the following decision problem over K:

for any input dimension n ∈ N,

LK(a) ∩ (Kn,Kn) :=

{
HNK ∩ (Kn,Kn) if ∃i ∈ N s.t. a2i−1 ≤ n < a2i,

(∅, ∅) otherwise.

We call each of the subsets {aj , . . . , aj+1} a cluster of the associated problem.
Definition 3. Two sequences (a) and (b) are said to have an exponential gap if

and only if they are strictly increasing and

a2i+1 > 2b2i (i ≥ 1),
b2i+1 > 2a2i+2 (i ≥ 0).

Or, again,

a1 < a2 < 2a2 < b1 < b2 < 2b2 < a3 < a4 < 2a4 < b3 < · · · .

Let’s make the preceding definition a little bit more clear. Assume (a) and (b)
have an exponential gap. Figure 1 shows the corresponding problems LK(a) and
LK(b). A dotted line corresponds to those dimensions where a problem looks like the
empty set, whereas a straight line represents those dimensions where it corresponds
to the HNK problem.

Lemma 1. Let K be one of Q or C. Assume PK 6= NPK . Moreover let (a) and
(b) be two sequences of natural numbers having an exponential gap. If both LK(a) and
LK(b) belong to NPK \ PK, then both of them are not NPK-complete.

30 GREGORIO MALAJOVICH AND KLAUS MEER

Proof. Assume, for example, that LK(b) isNPK-complete. Let M be a polynomial
time machine performing a reduction from LK(a) to LK(b). Aside from the fact that
(a) and (b) have an exponential gap, any instance y for problem LK(a) of dimension
n, a2i+1 ≤ n ≤ a2i+2 for some i ∈ N big enough, must be mapped by M to an
instance M(y) of LK(b) of dimension less than b2i ≤ log(n). This is due to the fact
that between dimensions b2i and b2i+1 the input- as well as the “yes”-set of LK(b) by
definition equal the empty set.

Applying a single exponential decision algorithm for HN
Q

to M(y) (cf. Theorem

2) will yield the right answer for M(y) and hence for y in a polynomial number of
steps with respect to size(y). Thus it would follow that problem LK(a) belongs to
PK, which contradicts the assumption.

The rest of section 2 is devoted to explaining informally how to produce two
sequences (v) and (w) such that the conditions listed below hold true:

(i) (v) and (w) have an exponential gap,
(ii) L

Q
(v) and L

Q
(w) both belong to class NP

Q
,

(iii) L
Q
(v) and L

Q
(w) both don’t belong to P

Q
.

Clearly, if all three conditions are satisfied simultaneously, then according to Lemma
1 the main theorem over Q will follow.

Let’s explain more explicitely how to reach this goal.

The elements of sequences (v) and (w) are produced two at a time, through al-
ternated steps. Each time a component v2j+2, respectively, w2i has been defined,
condition (i) is enforced just by demanding the next component w2j+1, respectively,
v2i+1 to be at least exponentially far away. Of course this must be done by simulta-
neously respecting (ii) and (iii).

In order to guarantee (ii) and (iii) we take an effective enumeration p1, p2, . . . of
all polynomial time machines over Q together with one of Q

∞
. “Effective” here means

that the enumeration can be produced by a BSS machine over Q. To do this we will
use symbolic computations over Q by representing algebraic numbers via minimal
polynomials with rational coefficients. (In fact an ordinary Turing machine would
suffice to perform this enumeration.)

The idea now is to define (v) and (w) such that for all i ∈ N machine pi computes
a false answer on at least one input of dimension n where v2i−1 ≤ n ≤ v2i, respectively,
w2i−1 ≤ n ≤ w2i. Note that if v2i−1 or w2i−1 are already defined there will always
exist a v2i, respectively, w2i with that property: on the clusters {v2i−1, . . . , v2i} and
{w2i−1, . . . , w2i} the problems L

Q
(v) and L

Q
(w) look like HN

Q
. Thus if v2i and w2i

are chosen large enough the polynomial time machine pi will “believe” the above
problems equal HN

Q
except on a finite-dimensional space; consequently it must make

a mistake.

The final task is to find the numbers v2i and w2i such that the resulting decision
problems are members of NP

Q
. This can be gained in the following way: assume we

already have defined v1, . . . , v2i+1 as well as w1, . . . , w2i satisfying the following:

(∗) the machines p1, . . . , pi all fail on problems L
Q
(v) and L

Q
(w)

for at least one input of dimension ≤ v2i+1.

In order to fool the next machine pi+1 on a cluster {v2i+1, . . . , v2i+2} choose
v2i+2 large enough such that within v2i+2 many steps one can perform the following
program:

• check condition (∗) to be true (this can be done inductively within v2i+1

steps);
• enumerate all possible inputs for HN

Q
of dimension at least v2i+1;

ON THE STRUCTURE OF NPC 31

• simulate pi+1 on these inputs;
• decide the solvability of the given system and compare with the result of pi+1;
• as soon as an input system is found on which pi+1 fails, the program stops.

Note that even though the decision procedure in between may use exponential
time with respect to the size of the given systems, we circumvent this problem by
enlarging the cluster until v2i+2 steps are sufficient to perform all the demanded
operations. In a similar way the next cluster {w2i+1, . . . , w2i+2} is defined (ensuring
w2i+1 > 2v2i+2).

This construction especially yields condition ii. The resulting NP
Q

algorithms

read as follows: given any polynomial system by a code in some Q
n
, one has to check

whether n belongs to one of the clusters. This can be done in polynomial time with
respect to n. If “yes,” the according L

Q
-problem on Q

n
corresponds to HN

Q
, and a

solution of the given system is guessed. If “no,” reject the input.
Let’s now present the formal construction of (v) and (w).

3. The main theorem over Q. The main result of this section is the following
theorem.

Theorem 3 (main theorem over Q). Assume that P
Q
6= NP

Q
. Then there are

(we can construct) sequences (v) and (w) such that L
Q
(v) and L

Q
(w) are in NP

Q
\P

Q
,

and both of them are not NP
Q
-complete.

3.1. Background: Computing over algebraic extensions. An algebraic ex-
tension of Q may be defined by a primitive element ζ or by the corresponding minimal
polynomial

a(z) = zd + ad−1z
d−1 + · · ·+ a0.

Elements of Q[ζ] are equivalence classes of Q[z] modulo a(z) and can be repre-
sented by a polynomial of degree d− 1 with coefficients in Q.

A general theory of computing over algebraic extensions can be found in the
review paper by Loos [7].

Addition and subtraction can be performed as in Q[z]. The product of elements
represented by b(z) and c(z) is b(z)c(z) mod a(z). It can be performed by multiplying
b(z) and c(z) in the usual way and then performing the Euclidian algorithm.

The extended Euclidian algorithm can be used to compute division: if b(z)c(z) +
a(z)d(z) = 1, then c(ζ) = d(ζ)−1 in Q[ζ].

Checking if b(ζ) is equal to zero (or not) is trivial.
Therefore, a machine over Q, without order, can simulate a given machine p over

an extension given by some a(z). It is also possible to check that a(z) is irreducible,
for example, using the Lenstra–Lenstra–Lovász algorithm (cf. [9]).

In this paper, we will need to perform computations in Q[ζ1, ζ2]. Given minimal
polynomials of ζ1 and ζ2 over Q, one may find (algorithmically) a primitive element
and a minimal polynomial of Q[ζ1, ζ2]. See [7, Theorem 6].

Computation with inputs in Q can be simulated using the very same techniques.

3.2. Timing a machine. One important ingredient to prove Theorem 3 is the
simulation of a machine for a given number of steps. Thus we have to deal with BSS
machines which additionally are able to count the number of steps they perform. The
construction of such timed machines is straightforward and can be performed as in
the discrete setting. Therefore, without loss of generality we will assume machines to
be timed whenever necessary.

32 GREGORIO MALAJOVICH AND KLAUS MEER

3.3. Enumeration. Let A = {A0, . . .} and B = {B0, . . .} be countable sets.
The triangular enumeration of A×B is

(A0, B0), (A1, B0), (A1, B1), (A2, B0)

We will enumerate Q, Q2, Q3 = Q2 ×Q this way. We may enumerate Q∞ in the
same way:

(0,), (q1, 0, . . .), (q1, q1, 0, . . .), (q2, 0 . . .),

where 0, q1, q2, . . . enumerates Q.
The algebraic closure Q of the rationals may be enumerated by enumerating all

extensions of Q through the minimal polynomials, together with the elements of the
extension. One has to pay attention to the fact that the polynomial defining an
extension should be irreducible.

One can enumerate Q
∞

in the same way. Finally, later on we need to enumerate
BSS machines over Q together with polynomial time bounds nk, k ∈ N. This will be
done as indicated above by taking A to be the set of all BSS machines over Q and
B := N.

3.4. A machine to fool a polynomial time machine. Under our general
hypothesis P

Q
6= NP

Q
, we will construct a machine M over Q that will take as input

• an integer m ∈ N,
• a list p ∈ (Qdeg a)∞ representing (possibly) a machine p̃ over an extension

Q[ζ];
• an integer r ∈ N representing a polynomial time bound size(x)r for p̃;
• an integer s ≥ m representing a total running time bound for M .

Machine M is used for the construction of the two decision problems we are
looking for. The purpose of this machine is the following.

Since HN
Q

is NP
Q
-complete, it remains complete when restricted to inputs ex-

ceeding the fixed dimension m. The list p is supposed to represent a machine that is a
candidate for deciding this restricted HN

Q
in polynomial time bound size(x)r, where

x is an input of size ≥ m.
Thus there must exist an input x̄, size(x̄) ≥ m such that p(x̄) does not provide

the right answer to the HN
Q

problem for input x̄. Machine M will check whether both
such x̄ exists up to dimension s and can be found within s steps.

Let us explain more precisely the way M works: consider an input (m, p, r, s)
and s ≥ m. We assume M is timed. As soon as the procedure described below
has performed more than s steps, machine M stops. In that case it returns the
answer TIMEOUT indicating that up to dimension s no input x̄ satisfying the above
conditions exists.

As long as fewer than s steps have been executed M behaves as follows.
1. Enumerate all possible inputs belonging to Q

∞
of size at least m; let x be

the actually enumerated element.
2. Simulate machine p for at most size(x)r many steps on input x.
3. Simulate a decision procedure for HN

Q
on input x.

4. If 2 and 3 yield the same answer, goto 1 and take the next element of the
enumeration; if 2 and 3 yield different answers, output c; here c denotes the maximum
among size(x) and the number of steps already performed by M .

Note that M(m, p, r, s) =TIMEOUT indicates that it is impossible to fool (p, r)
in the above sense on HN

Q
for an input of size at least m and at most s. On the

ON THE STRUCTURE OF NPC 33

other hand, if M returns c ≤ s there exists an x̄ ∈ Q
c

of size at least m such that
p(x̄) differs from the correct answer of HN

Q
(x̄), and this difference can be shown by

algorithm M in ≤ c steps.
We finally remark that in step 4 different answers comparing the simulation under

2 and 3 can be obtained either if the computation of p(x) cannot be finished within
size(x)r many steps or both simulations are completed but with different results.

Remark. Because of our assumption, P
Q
6= NP

Q
machine M will always end up

with a suitable dimension c ≤ s if s is large enough.

3.5. A machine to produce (v) and (w) up to s. Next we will use machine
M to construct another machine N that will produce sequences (v) and (w) in the
following way.

Given an input s ∈ N, all vj < s and wj < s will be computed. Sequences (v)
and (w) do not depend on s. Furthermore, the following statements hold.

• Sequences (v) and (w) have an exponential gap.
• Machines p1, . . . , pi are fooled (in the sense of the previous section) for inputs

of size in

{v1, . . . , v2} ∪ {v3, . . . , v4} ∪ · · · ∪ {v2i−1, . . . , v2i}

and also for inputs of size in

{w1, . . . , w2} ∪ {w3, . . . , w4} ∪ · · · ∪ {w2i−1, . . . , w2i}.

• The running time of N is a polynomial in s.
Machine N is defined as explained now.
As an input it gets a natural number s; for the first cluster of sequence (v) we set

v1 := 1. As long as those values v2i and w2i already computed do not exceed s, the
following algorithm is performed for i = 0, 1,

1. Enumerate all BSS machines over Q together with a natural number repre-
senting a polynomial time bound; let (p, r) be the actually enumerated element.

2. Let v2i+2 be the result of M(v2i+1, p, r, s).
3. If v2i+2 = TIMEOUT then algorithm N terminates.
4. Otherwise output v2i+2 as the next element of those clusters defining (v);

compute the starting point w2i+1 of the next cluster for sequence (w) as w2i+1 :=
2v2i+2 + 1.

5. If w2i+1 > s then algorithm N terminates.
6. Otherwise output w2i+1; let w2i+2 be the result of M(w2i+1, p, r, s).
7. If w2i+2 = TIMEOUT then algorithm N terminates.
8. Otherwise output w2i+2 as the next element of those clusters defining (w);

compute the starting point v2i+3 of the next cluster for sequence (v) as v2i+3 :=
2w2i+2 + 1.

9. If v2i+3 > s then algorithm N terminates.
10. Otherwise output v2i+3; increase i and goto 1.
The comparisons such as v2i+3 > s can be performed without any order relation

available, because it is assumed that the values involved are integers. The time bound
for each comparison is O(s).

Exponential gap and the fact that machines p1, . . . , pi are fooled follows from the
construction of machine M.

The running time of each call to M is bounded by s, so the time bound (O(s2))
follows.

34 GREGORIO MALAJOVICH AND KLAUS MEER

3.6. Proof of Theorem 3. According to the previous subsections, given s one
may compute in polynomial time (in s) the largest vi and wi < s. This implies the
following lemma holds.

Lemma 2. L
Q
(v) (respectively, L

Q
(w)) is in NP

Q
.

Proof. Given input x, set s = size(x). We may use machine N to compute the
largest vi (respectively, wi) such that vi < s (respectively, wi < s).

If i is even, L
Q
(v) ∩ (Q

s
,Q

s
) = (∅, ∅), so we may answer NO in polynomial time.

If i is odd, L
Q
(v) ∩ (Q

s
,Q

s
) = HN

Q
∩Q

size(x)
. This is known to be in NP

Q
.

Lemma 3. L
Q
(v) (respectively, L

Q
(w)) is not in P

Q
.

Proof. This follows from the above construction: eventually, every machine p
will appear in machine N , and it will be fooled at some time, inside a HN

Q
-cluster.

Therefore, L
Q
(v) (respectively, L

Q
(w)) cannot belong to P

Q
.

According to Lemma 1 we proved that L
Q
(v) and L

Q
(w) both are not NP

Q
-

complete. We also know that L
Q
(v) ∈ NP

Q
\P

Q
. Therefore, Theorem 3 is proved.

4. The main theorem over C. We are now ready to prove our main theorem.

Main Theorem. Assume PC 6= NPC. Then there is a decision problem in
NPC \ PC that is not NPC-complete.

Proof. Let the sequences (v) and (w) be as in Theorem 3. We extend the corre-
sponding problems L

Q
(v) and L

Q
(w) to the complex numbers. This will give LC(v)

and LC(w), respectively. Note that both LC(v) and LC(w) are closely related to their
Q− counterparts: intersecting the input-, respectively, the “yes”-set of each of them
with Q

∞
will give exactly the input-, respectively, the “yes”-set of the corresponding

L
Q
-problem. Since this is obvious for the input sets, this follows for the “yes”-sets by

Hilbert’s Nullstellensatz; see [2, Chapter 6].

Now assume the class NPC \ PC consists of NPC-complete problems only. Both
LC(v) and LC(w) belong to NPC.

Given x ∈ Cn, in order to check the cluster to which n belongs, the P
Q

algorithm
of section 3 can also be performed over C. Moreover, HNC is in NPC.

Furthermore, assume LC(v) belongs to PC. Then there is a polynomial time
machine M deciding LC(v). According to the transfer principle Theorem 1 there
exists a BSS machine M ′ over Q and a constant c s.t. M ′ solves L

Q
(v) in time

≤ TM (y)c ∀y ∈ Q
∞

. This implies L
Q
(v) ∈ P

Q
in contradiction to Theorem 3.

Thus our second assumption is wrong and it follows NPC-completeness of LC(v);
the same reasoning clearly holds true for LC(w). But (v) and (w) have an exponential
gap. Consequently according to Lemma 1 they are not NPC-complete. Hence the
introductory assumption was wrong, which finishes the proof.

Let us conclude with some final remarks. The problems LC(v) and LC(w) used
to establish the main theorem are quite artificial; the dimensions for which they
coincide with HNC are chosen just in order to fool all polynomial time machines over
Q according to a given enumeration and not by a “natural” condition. We consider it
an interesting task to figure out more natural problems neither belonging to PC nor
being NPC-complete. Here we just suggest one further problem which seems to be
promising from that point of view.

Considering the NPC-completeness proof of HNC in [3] it turns out to be sufficient
if all polynomials of the given system depend on three variables only.

Let 2−HNC be the problem of deciding solvability of such a system, if all involved
polynomials just depend on at most two unknowns.

ON THE STRUCTURE OF NPC 35

On the one hand, the completeness proof for HNC lets 2 − HNC seem unlikely
to be NPC-complete, too: reducing higher-degree systems to such a degree of two
uses substitutions intrinsically including equations with three unknowns. We don’t
see any way to proof NPC-completeness of 2 − HNC . On the other hand it can be
shown that problems like complex subset-sum (given z1, . . . , zn ∈ C, does there exist
a subset S ⊂ {1, . . . , n} s.t.

∑
i∈S zi = 1?) can be reduced to 2−HNC in polynomial

time. Note that the discrete version of subset-sum (rational inputs) is NP-complete
in the Turing model. Since there is no polynomial time algorithm known so far for
complex subset-sum, this will give good reason to conjecture 2 − HNC 6∈ PC . Thus
2−HNC seems to be a reasonable candidate of a noncomplete problem in NPC \ PC

(as well as complex subset-sum).
Finally consider the question treated in this paper for real BSS machines. The

above proof fails: there is no transfer principle available in order to reduce the un-
countable real case to a countable situation. However, over R one wouldn’t have to
pay attention to the computability of the sequences (v) and (w). The presence of the
order relation allows us to code any such sequence in a single real number from which
its components can be easily decoded (see [3]). Nevertheless, so far we see no way to
build up sequences (v) and (w) such that the resulting problems LR(v) and LR(w)
would force all (uncountable many) PR-machines to fail.

The situation over the real numbers will be treated more intensively in the forth-
coming paper [1].

Acknowledgment. Thanks are due to two unknown referees, whose comments
helped to improve readability of an earlier version of this paper.

REFERENCES

[1] S. Ben-David, K. Meer, and C. Michaux, A note on non-complete problems in NPR, 1997,
preprint.

[2] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer-
Verlag, Berlin, New York, to appear.

[3] L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the
real numbers: NP-completeness, recursive functions and universal machines, Bull. Amer.
Math. Soc., 21 (1989), p. 1.

[4] A. L. Chistov and D. Y. Grigoriev, Complexity of quantifier elimination in the theory of
algebraically closed fields, Lecture Notes in Comp. Sci. 176, Springer-Verlag, New York,
1984, pp. 17–31.

[5] D. Y. Grigoriev, The complexity of the decision problem for the first order theory of alge-
braically closed fields, Math. USSR Izvestiya, 29 (1987), pp. 459–475.

[6] L. Caniglia, A. Galligo, and J. Heintz, Some new effectivity bounds in computational
geometry, Lecture Notes in Comput. Sci. 357, Springer-Verlag, New York, 1988, pp. 131–
151.

[7] R. Loos, Computing in algebraic extensions, in Computer Algebra, Symbolic and Algebraic
Computation, 2nd ed., B. Buchberger, R. Loos, and R. Albrecht, eds., Springer-Verlag,
Wien, 1983, pp. 173–188.

[8] R. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22
(1975), pp. 155–171.

[9] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann., 261 (1982), pp. 515–534.

[10] K. Meer and C. Michaux, A Survey on Real Structural Complexity Theory, Bull. Belg. Math.
Soc. Simon Stevin, 4 (1997), pp. 113–148.

[11] J. Renegar, On the computational complexity and geometry of the first-order theory of the
reals, I–III, J. Symbolic Comput., 13 (1992), pp. 255–352.

[12] U. Schöning, A uniform approach to obtain diagonal sets in complexity classes, Theoret.
Comput. Sci., 18 (1982), pp. 95–103.

WEIGHTED NP OPTIMIZATION PROBLEMS: LOGICAL
DEFINABILITY AND APPROXIMATION PROPERTIES∗

MARIUS ZIMAND†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 36–56

Abstract. Extending a well-known property of NP optimization problems in which the value
of the optimum is guaranteed to be polynomially bounded in the length of the input, it is observed
that, by attaching weights to tuples over the domain of the input, all NP optimization problems
admit a logical characterization. It is shown that any NP optimization problem can be stated as a
problem in which the constraint conditions can be expressed by a Π2 first-order formula. The paper
analyzes the weighted analogue of all syntactically defined classes of optimization problems that are
known to have good approximation properties in the nonweighted case. Dramatic changes occur
when negative weights are allowed.

Key words. NP optimization problems, logical definability, approximation properties, multi-
prover interactive systems.

AMS subject classifications. 68Q15, 68Q25.

PII. S0097539795285102

1. Introduction. Recent years have seen considerable progress in the under-
standing of the approximation properties of NP optimization problems. Two ap-
proaches have been the main cause for the new advancements: (a) the development
of a robust model for optimization problems based on the logical definability of this
type of problem, and (b) the characterization of NP in terms of multiprover interactive
proof (MIP) or probabilistically checking proof (PCP) systems which allowed new re-
ductions that preserve approximation properties between NP complete problems. The
first approach was initiated by Papadimitriou and Yannakakis [PY91] who introduced
the classes MAX SNP and MAX NP (later called MAX Σ0 and MAX Σ1 by Kolaitis
and Thakur [KT94] in an attempt to uniformize notation). A maximization problem
is in MAX SNP (MAX NP) if: (1) the input I is viewed as a finite structure, (2) the
set of feasible solutions of an input I is given by the set of finite structures S having
the same domain as I and satisfying a Σ0(Σ1) first-order formula having a tuple of
free variables, and (3) the objective function maps each feasible solution S to the car-
dinality of tuples over the domain of I satisfying φ when substituting the tuple of free
variables and when the relation symbols in φ are interpreted as the relations of I and
S. MAX SNP and MAX NP contain many natural problems, including MAX 3SAT,
MAX CUT, and MAX SAT, and have the nice property that all the problems in these
classes are approximable by polynomial-time algorithms with constant approximation
ratio. Moreover, Khanna et al. [KMSV94] have shown that the class of NP optimiza-
tion problems admitting polynomial-time constant ratio approximating algorithms
coincides with the class of problems that are reducible to MAX SNP via a certain
type of reduction that preserves approximation properties. It is proved in [ALM+92],

∗Received by the editors April 26, 1995; accepted for publication (in revised form) October 30,
1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/28510.html
†School of Computer & Applied Sciences, Georgia Southwestern State University, Americus, GA

31709 (zimand@gswrs6k1.gsw.peachnet.edu). This author was supported in part by grants NSF-
CCR-8957604, NSF-INT-9116781/JSPS-ENG-207, and NSF-CCR-9322513 and by the Romanian
Department of Education and Science grant, 4975-92. A preliminary version appeared in Proc. of
the 10th IEEE Symp. on Structure in Complexity Theory, 1995, pp. 12–28. This work was done in
part while the author was visiting the University of Rochester, Rochester, NY 14627.

36

WEIGHTED NP OPTIMIZATION PROBLEMS 37

via a reduction from a PCP, that no complete problem in MAX SNP can be approx-
imated with arbitrarily small constant approximation ratio (i.e., have PTAS), unless
NP = P. Many important minimization problems, like VERTEX COVER, DOMI-
NATING SET, STEINER TREE, and TRAVELING SALESMAN with edge weights
1 and 2, and SHORTEST COMMON SUPERSTRING, are MAX SNP hard via re-
ductions that preserve approximation properties (see Johnson [Joh92] for references
and an excellent survey) and, thus, have the same approximation properties. Hence,
the approximation capabilities of a large number of natural, important optimization
problems have been fully understood by the joint contribution of the two approaches
(a) and (b). However, MAX SNP and MAX NP are far from being the whole story.
Panconesi and Ranjan [PR93] showed that MAX CLIQUE is not in MAX NP. This
problem belongs to the class MAX Π1 in which the feasible solutions are characterized
by Π1 formulae. By imposing a syntactical restriction on φ, Panconesi and Ranjan
identified, inside MAX Π1, the class RMAX(2) containing MAX CLIQUE and hav-
ing the property that all problems in the class are self-improvable, i.e., the existence
of approximation polynomial-time algorithms with a constant ratio of approxima-
tion implies the existence of PTAS. It has been shown, again by a reduction from
a certain type of PCP, that there is no constant ratio, polynomial approximation
algorithm for MAX CLIQUE, unless NP = P. Therefore, no complete problem in
RMAX(2) has PTAS, unless NP = P. In a later development, Kolaitis and Thakur
undertook in [KT94] a comprehensive investigation of the logical characterizations of
NP optimization problems. Considering an arbitrary number of alternations of blocks
of quantifiers, they introduced the classes MAX Πn, MAX Σn, MIN Πn, MIN Σn,
n ≥ 0. They showed that all NP optimization problems in which the value of the
optimum is polynomially bounded in the length of the input are in MAX Π2, in the
case of maximization problems, and in MIN Π1, in the case of minimization prob-
lems. Moreover, they proved that all polynomially bounded NP maximization and
minimization problems can be placed in one of the levels of the following proper hier-
archies: MAX Σ0 $ MAX Σ1 $ MAX Π1 = MAX Σ2 $ MAX Π2, for maximization
problems, and MIN Σ0 = MIN Σ1 $ MIN Π1 = MIN Σ2 = MIN Π2, for minimiza-
tion problems. Kolaitis and Thakur have also introduced and investigated in [KT94]
and [KT95] the classes MAX FΣn, MAX FΠn, MIN FΣn, MIN FΠn, n ≥ 1, which
are closely related to the above classes and offer a more natural logical description
for some NP polynomially bounded optimization problems. This time the formula
characterizing the set of feasible solutions is closed (i.e., it has no free variables) and
the objective function is defined to be the number of tuples satisfying a specified re-
lation from the structure S over which we maximize or minimize. They identified two
syntactically defined classes, MIN F+Π1 and MIN F+Π2(1), containing many natu-
ral important problems and having good approximation properties. Thus, MIN F+Π1

contains VERTEX COVER and many minimization node and edge deletion problems.
All the problems in this class have polynomial-time algorithms with constant approxi-
mation ratio. MIN F+Π2(1) contains SET COVER, DOMINATING SET, HITTING
SET, and other natural problems. All the problems in this class have polynomial-time
approximation algorithms with the approximation ratio bounded by logn, where n
is the length of the input. A further step was taken by Behrendt, Compton, and
Grädel [BCG92], who considered more powerful logics obtained by adding the least
fixpoint operator to the first-order syntax. It is observed that MAX ΣFP

1 , which is
just MAX Σ1 extended with the least fixpoint operator, continues to be approximable
within a constant factor. In [BCG92] and [GM93], limit laws are identified for many

38 MARIUS ZIMAND

of the above classes. These laws, similar to the 0-1 laws for various logics (see the
survey paper [Com88]) constitute useful necessary criteria for the expressibility of a
problem in the restricted syntax which define the respective classes.

In spite of the new techniques that have emerged in recent years, with one impor-
tant exception, there has been no thorough investigation of arbitrary NP optimiza-
tion problems, i.e., problems in which the optimum value is no longer polynomially
bounded in the length of the input. Since these problems usually arise when numerical
weights are added to the input data, we call them weighted NP optimization prob-
lems. There is no need to argue about the large percentage of problems of this type
that appear in real applications. The exception paper alluded to above is again the
work of Papadimitriou and Yannakakis [PY91]. They have considered the variants of
MAX SNP and MAX NP in which positive weights are attached to the tuples over
the domain of the input structure that can be substituted for the free variables ~x and
showed that these more general classes continue to have polynomial-time algorithms
with constant ratio.

In this work, we undertake a more comprehensive examination of weighted NP
optimization problems. We consider the classes weight-MAX FΣn, weight-MAX FΠn,
weight-MIN FΣn, weight-MIN FΠn, n ≥ 1, which are just the weighted variants of the
MAX FΣn, MAX FΠn, MIN FΣn, and MIN FΠn classes from [KT94] and [KT95].
For example, a problem is in weight-MAX FΠ2 if: (1) the set of feasible solutions
for an input structure I = (DI , RI) is given by the finite structures S having the
same domain as I and the relation S1, S2, . . . , Sp and satisfying a formula of the
form ∀~x ∃~y φ(~x, ~y,RI , S1, . . . , Sp) with φ closed and quantifier-free, (2) each m-tuple
(x1, . . . , xm) over the domain of I has a real-valued weight, where m is the arity of
S1, and (3) the objective function is to maximize over all structures S as above the
weight of tuples in S1. If the weights are positive, then the problem is in weight(+)-
MAX FΠ2. We notice that all NP optimization problems, not just the polynomially
bounded ones, admit a logical characterization. More precisely, all NP maximization
(minimization) problems are in weight-MAX FΠ2 (weight-MIN FΠ2). It is easy to
note that all problems in weight-MAX FΣ1 and weight(+)-MAX FΣ1 are solvable
in polynomial time, and weight-MAX FΣ2 and weight(+)-MAX FΣ2 can be reduced
in a way that preserves approximation properties to weight-MAX FΠ1 and, respec-
tively, to weight(+)-MAX FΠ1. Similar properties hold for the analogue minimization
classes and, consequently, these classes are less interesting from the point of view of
approximation properties. From the syntactical point of view, the weight(+) classes
satisfy the diagram in Figure 1, which is identical with the one satisfied by their non-
weighted analogues. For the classes with arbitrary weights we only know the trivial
relations represented in Figure 1. Making these relations more precise remains an
open problem.

For all classes C earlier identified as having polynomial-time approximation al-
gorithms with guaranteed low approximation ratio, we analyze the weight-C and
weight(+)-C variants. We consider C ∈ {MAX SNP,MAX NP,MAX SNP(π),
MAX FΠ1,MAX F+Π2(1)}. (MAX SNP(π) is a subclass of MAX SNP in which
the structure S over which the maximum is searched is required to be a permutation
of the domain of the input structure.)

In all cases, weight(+)-C continues to have the same approximation properties
as C, and weight-C fails to do likewise unless very unlikely hypotheses hold. Table 1
summarizes the approximation properties of the classes analyzed in this paper.

The notation is standard and most of it is explicitly introduced in the text. We

WEIGHTED NP OPTIMIZATION PROBLEMS 39

Π1

Σ2

Σ2

Σ1

Σ2

Π2

Π2

Π2

Π2

Σ2

Σ1

Π1

Σ1

Σ1

Π1

Π1

weight(+)-MAX F

weight(+)-MAX F

weight(+)-MIN F

weight(+)-MIN F

weight(+)- MIN F

weight-MAX F

weight-MAX F weight-MAX F

weight - MIN F

weight-MIN F

weight-MIN F

weight(+)-MIN F

weight-MAX F weight-MAX F

weight(+)- MAX NP

weight(+)- MIN NP

weight- MIN NP

weight- MAX NP

weight-MIN F

weight(+)-MAX F

weight(+)-MAX F

Fig. 1. The relations between the syntactically defined NP optimization classes. (<> denotes
incomparability.)

Table 1
Approximation properties of the classes with good approximation properties in the nonweighted

case.

Syntax Positive weights Arbitrary weights

MAX SNP const. approximable not approx. with ratio < n1/4

unless P = NP

MAX NP const. approximable not approx. with ratio < n1/4

unless P = NP

MAX SNP(π) const. approximable not approx. with ratio 2logµ n, for some µ > 0,
unless NP ⊆ DTIME[2logO(1) n]

MIN F+Π1 const. approximable not approx. with ratio 2n
q
, any q,

unless P = NP

MIN F+Π2(1) log. approximable not approx. with ratio 2n
q
, any q,

unless P = NP

note here only that Σ∗ is the set of finite binary strings and Σ=n is the set of binary
strings of length n; if x ∈ Σ∗, then |x| is the length of string x; if S is a set, then |S|
is the cardinality of S; and, finally, if y is a real number, then |y| is the modulus of y.

P̃ denotes DTIME[2logO(1) n] and logn is the integer part of log2 n.

2. Logical definability. The elements which define an optimization problem A
are:

(1) a set IA of input instances; we assume that this set can be recognized in
polynomial time,

(2) for each I ∈ IA, a set FA(I) of feasible solutions associated to each input in-
stance; we assume that each element in FA(I) has size polynomially bounded
in the size of I, and

(3) an objective function fA which maps to real numbers each pair (I, J) with I ∈
IA and J ∈ FA(I); we assume that this function is computable in polynomial
time. There is also a default value for the cases when the set of feasible
solutions is empty.

40 MARIUS ZIMAND

If the objective function takes only nonnegative values then A is called a positive opti-
mization problem. Given an instance I ∈ IA, the goal is to find optJ∈FA(I)fA(I, J) or
output the default value in case FA(I) is empty, where opt is max or min depending on
what kind of an optimization we have. It is convenient to denote optJ∈FA(I) fA(I, J)
by optA(I). A max (min) optimization problem A is an NP optimization problem if
the following associated decision problem B is in NP.

Instance: An input instance I ∈ IA and k ∈ Z.
Question: Does there exist a feasible solution J ∈ FA(I) such that fA(I, J) ≥ k
(fA(I, J) ≤ k, in the case of a min problem)?

Kolaitis and Thakur [KT94] have shown that each NP optimization problem in which
the optimum is polynomially bounded in the size of an encoding of the input instance
can be syntactically described as an optimization problem in which the goal is to find
the max (or min) cardinality of a relation which together with some other relations
satisfies a given first-order formula. Thus the objective function is the cardinality of
tuples satisfying a relation of some specified arity and the set of feasible solutions is
given by the structures satisfying a first-order formula. In order to make the above
statements more precise we need some standard definitions from descriptive compu-
tational complexity that we introduce in a simplified manner which mixes together
syntactical and semantical notions. For a rigorous treatment see [Fag74], [Gra84],
[Imm89], [Lyn82].

Definition 2.1. A finite type is a finite sequence of nonnegative integers.
Given a finite type T = (n1, n2, . . . , nk), a finite T -structure is a (k + 1)-tuple F =
(X, f1, f2, . . . , fk), where X is a nonempty finite set called the domain of the structure
F and, for all i, fi is a relation over X of arity ni.

Input instances of problems can naturally be viewed as finite structures of some
finite type. For example, graphs are finite structures of the form (V,E), where V is
the domain (the set of nodes) and E is a relation of arity 2 (the set of edges). Boolean
formulae in CNF are finite structures of the form ({x1, x2, . . . , xn, c1, . . . , cm}, P,N),
where {x1, x2, . . . , xn, c1, . . . , cm} is the set of variables and clauses and P and N are
relations of arity 2 such that P (xi, cj)(N(xi, cj)) has the significance that variable
xi appears positively (negatively) in clause cj . The following well-known theorem of
Fagin [Fag74] characterizes the class of NP decision problems in logical terms.

Theorem 2.2 (see [Fag74]). Let T be a finite type. A set L of finite T -structures
is in NP if and only if there exists a finite type S and a quantifier-free first-order
closed formula φ such that for all input structures I:

I ∈ L↔ ∃S ∀~x ∃~y φ(~x, ~y, I, S),

where S is a finite structure of type S having the same domain as I and ~x and ~y are
tuples of variables ranging over I’s domain.

The reader should be aware that the notation in the above statement of Theo-
rem 2.2 is highly abusive. While the “I” in the left-hand side denotes a whole finite
structure, the “I” and both “S”’s in the right-hand side are a shorthand notation
for the relations of the corresponding structures denoted by the same symbols. We
have implicitly assumed (by notation) that φ is compatible with I and S; i.e., for
each relation symbol occurring in φ there is a correspondent relation in I or S and
there is agreement on arities. Also, in ∀~x and ∃~y, the quantifier is applied to all
the components in the tuple ~x and, respectively, ~y. These conventions will be used

WEIGHTED NP OPTIMIZATION PROBLEMS 41

throughout the rest of the paper. As an example, if I is a finite structure describing
a CNF boolean formula as above, then

I ∈ SAT ↔ ∃T ∀c ∃x [(P (x, c) ∧ T (x)) ∨ (N(x, c) ∧ ¬T (x))].

As mentioned above, Kolaitis and Thakur [KT94] have shown a similar property for
polynomially bounded NP optimization problems.

Theorem 2.3 (see [KT94]). Let A be a polynomially bounded NP optimization
problem. There exists a finite type S and a closed first-order formula φ such that for
each input structure I

optA(I) = optS {|S1| : φ(~x, I, S)},

where S is a finite structure of type S with the same domain as I and relations
S1, S2, . . . , Sk, ~x is a tuple of variables ranging over I’s domain, and opt is max or
min. Moreover, formula φ has the form ∀~x ∃~y ψ(~x, ~y, I, S) with ψ quantifier-free.

Lautemann has observed in [Lau92] that this result can be improved to state that
all the values in the range of the objective function, not just the optimal one, can be
obtained through logical descriptions. Related to the above example, consider the NP
optimization problem MAX SAT. Input structures I are boolean formulae in CNF
and the goal is to find the maximum number of clauses that can be simultaneously
satisfied by some truth assignment. This problem can be expressed as

max Max Sat (I) = maxC,T {|C| : ∀c ∃x[C(c) → [(P (x, c)∧T (x))∨(N(x, c)∧¬T (x))]]}.

We generalize the above result to all NP optimization problems. The price for remov-
ing the polynomial bounding restriction is the introduction of weights for all n1-tuples
over the I’s domain, where n1 is the arity of S1. Note that the domain of I, being
finite, can be identified with a set of the form {1, 2, . . . , n}.

Definition 2.4.
(1) Let k ∈ N. A k-weight assignment is a sequence of recursive functions

{wi}i∈N, where each wi : {1, 2, . . . , i}k → R. For each k-tuplet ~x and
all i and j, if wi(~x) and wj(~x) are defined, then wi(~x) = wj(~x).

(2) A k-positive weight assignment is a sequence of recursive functions {wi}i∈N,
where each wi : {1, 2, . . . , i}k → R+. For each k-tuplet ~x and all i and j, if
wi(~x) and wj(~x) are defined, then wi(~x) = wj(~x).

(3) If S is a relation of arity k over {1, 2, . . . , i} and w is a k-weight assignment,
the weight of S is w(S) =

∑
~x∈S wi(~x).

Theorem 2.5. Let A be a (positive) NP optimization problem. There exists a
finite type S = (n1, n2, . . . , nk), a closed first-order formula φ, and an n1-weight (pos-
itive) assignment w such that for each input instance I whose set of feasible solutions
is not empty,

optA(I) = optS {w(S1) : φ(~x, I, S)},(2.1)

where S is a finite structure of type S with the same domain as I and relations
S1, S2, . . . , Sk, ~x is a tuple of variables ranging over I’s domain, and opt is max or
min. Moreover, formula φ has the form ∀~x ∃~y ψ(~x, ~y, I, S) with ψ quantifier-free.

Proof. Let A be an NP optimization problem. For simplicity we assume that
the objective function fA is integer-valued. Let I be an input structure with domain
{1, 2, . . . , n}. The structure I is encoded by a string whose length is bounded by

42 MARIUS ZIMAND

a polynomial in n. Since the objective function fA is polynomial-time computable,

there exists a constant d such that |optAI| ≤ 2n
d − 1, for all I, where n, as explained,

is the size of I. We define inductively the following (d + 1)-weight assignment w.
Initially we order in the lexicographical order the (d + 1)-tuples over {1, 2}, and we

assign to them, in this order, the weights −22d−1, . . . ,−20, 20, 21, . . . , 22d−1, 20, . . . , 20.

At the end of stage n, we have assigned the values −2n
d−1, . . . ,−20, 20, 21, . . . , 2n

d−1

to all (d + 1)-tuples over {1, . . . , n}. At stage n + 1, we order lexicographically all
(d + 1)-tuples over {1, . . . , n + 1} that contain n + 1 and assign to them the values

−2(n+1)d−1, . . . ,−2n
d

, 2n
d

, . . . , 2(n+1)d−1, 20, . . . , 20. There are (n+1)d+1−nd+1 such
tuples and 2((n + 1)d − nd) values of the form ±2k(k 6= 0) to assign, and thus, such
an assignment is possible. The fact that we need is that for each integer m in the

interval [−(2n
d − 1), 2n

d − 1] there exists a set of (d+ 1)-tuples over {1, . . . , n} whose
w weights sums to m. Let us suppose that A is a maximization problem (the case of
a minimization problem is similar). We consider the following decision problem B.

Instance: A finite input structure I ∈ IA with domain {1, 2, . . . , n}, a relation U
over {1, 2, . . . , n} of arity (d+ 1), the (d+ 1)-weight assignment w defined above.
Question: Is there a feasible solution J ∈ FA(I) such that fA(I, J) ≥ w(U) ?

This is the decision problem associated to the NP optimization problem A and there-
fore is in NP. Consequently, by Fagin’s Theorem 2.2, (I, U) is a YES instance to B
if and only if there exists a quantifier-free first-order formula ψ and a finite struc-
ture R such that ∀~x ∃~y ψ(~x, ~y, I, U,R), where ~x, ~y, and R satisfy the conditions in
Theorem 2.2. Now it is easy to see that if φ is the formula ∀~x ∃~y ψ(~x, ~y, I, U,R), then

optA(I) = maxU,R{w(U) : φ(~x, ~y, I, U,R)}.
Indeed, let m∗ = optA(I). By a previous observation, there exists a relation U of arity
(d+ 1) such that w(U) = m∗. It follows that (I, U) is a YES instance to the decision
problem B, and consequently, maxU,R{w(U) : φ(~x, ~y, I, U,R)} ≥ m∗. Conversely, let
U,R be relations such that φ(~x, ~y, I, U,R) holds and w(U) is maximum. Then (I, U)
is a YES instance to problem B. Therefore there exists a feasible solution J ∈ FA(I)
such that fA(J) ≥ w(U) and, consequently, m∗ ≥ maxU,R{w(U) : φ(~x, ~y, I, U,R)}.
The proof for an arbitrary objective function (i.e., not necessarily integer-valued) is
similar but more tedious. The key observation is that in polynomial time fA can
compute only rational values with a number of digits that is polynomial in n, and all
these possible values can be covered by weights assigned to tuples of constant arity.
The proof for positive NP optimization problems is absolutely similar.

It should be remarked that, except for the arity, the weight assignment built in
the proof of the above theorem is independent of the problem, and thus we have
proved a stronger fact. More precisely, there exists a canonical family of weight
assignments {w1, . . . , wk, . . .} where, for each k, wk is a k-assignment, such that for
any NP optimization problem the weight assignment w in the expression (2.1) belongs
to the family. Thus, the situation is completely similar to the polynomially bounded
case from Theorem 2.3 (where the canonical weight assignment assigns value 1 to each
tuplet).

We can now classify all NP optimization problems with respect to the quantifier
structure of the formulae describing them.

Definition 2.6. For n ≥ 1, a Σn(Πn) formula is a first-order closed formula
in prenex normal form that has n alternations of quantifiers starting with a block of

WEIGHTED NP OPTIMIZATION PROBLEMS 43

existential (universal) quantifiers. A Σ0 or Π0 formula is a first-order quantifier-free
closed formula.

Definition 2.7.
(1) For each n ≥ 1, weight-MAX FΣn is the set of optimization problems that

can be expressed as

maxA(I) =

maxS{w(S1) : φ(~x, I, S)}, if there is S such that φ(~x, I, S),

default otherwise,

where S, S1, w are as in Theorem 2.5, default is a real constant, and φ is a
Σn formula compatible with I and S.

(2) For each n ≥ 1, weight(+)-MAX FΣn is the subclass of weight-MAX FΣn in
which w is a positive weight assignment.

(3) The classes weight-MAX FΠn, weight(+)-MAX FΠn, weight-MIN FΣn,
weight(+)-MIN FΣn, weight-MIN FΠn, weight(+)-MIN FΠn are defined in
the similar obvious way.

It follows from Theorem 2.5 that all NP maximization (minimization) problems
(we denote these two classes by weight-MAX NP and weight-MIN NP) are in weight-
MAX FΠ2 (weight-MIN FΠ2). Also, all positive NP maximization (minimization)
problems (denoted weight(+)-MAX NP and weight(+)-MIN NP) are in weight(+)-
MAX FΠ2 (weight(+)-MIN FΠ2). From an algorithmic point of view, we observe
first (by considering all polynomially many possible substitutions for the existen-
tially quantified variables) that all problems in C FΣ1, where C ∈ {weight(+)-MAX,
weight(+)-MIN,weight-MAX,weight-MIN}, can be solved in polynomial time and the
problems in C FΣ2 can be reduced to problems in C FΠ1, with C as before. From the
syntactical characterization point of view, we can prove the following relations.

Theorem 2.8.
(1) weight(+)-MAX FΣ1 $ weight(+)-MAX FΠ1 = weight(+)-MAX FΣ2

$ weight(+)-MAX FΠ2 = weight(+)-MAX NP.
(2) weight(+)-MIN FΣ1 (weight(+)-MIN FΠ1) $ weight(+)-MIN FΣ2 $

weight(+)-MIN FΠ2 = weight(+)-MIN NP, and weight(+)-MIN FΣ1 and
weight(+)-MIN FΠ1 are incomparable.

(3) weight-MAX FΣ1 (weight-MAX FΠ1) ⊆ weight-MAX FΣ2 ⊆ weight-MAX FΠ2

= weight-MAX NP, and weight-MAX FΣ1 and weight-MAX FΠ1 are not
equal.

(4) weight-MIN FΣ1 (weight-MIN FΠ1) ⊆ weight-MIN FΣ2 ⊆ weight-MIN FΠ2

= weight-MIN NP, and weight-MIN FΣ1 and weight-MIN FΠ1 are not equal.
Proof. Most of the proof follows closely the arguments in the similar proofs

in [KT95]. For convenience, we provide the appropriate pointers.
By Theorem 2.5, C FΠ2 = C NP, where C ∈ {weight(+)-MAX, weight(+)-

MIN, weight-MAX, weight-MIN}, and thus, just from the syntactical characterization,
(C FΣ1, C FΠ1) ⊆ C FΣ2 ⊆ C FΠ2.

As in [KT95, Theorem 6.2], MIN VERTEX COVER is in weight(+)-MIN FΠ1

and in weight-MIN FΠ1 but not in weight(+)-MAX FΣ1 and not in weight-MIN FΣ1.
By the arguments in [PR93], it can be shown that MAX CLIQUE is in weight(+)-

MAX FΠ1 and in weight-MAX FΠ1 but not in weight(+)-MAX FΣ1 and not in
weight-MAX FΣ1.

As in [KT95, Remark 2.1 and Theorem 2.1], weight(+)-MAX FΠ1 = weight(+)-
MAX Π1 and weight(+)-MAX FΣi = weight(+)-MAX Σi, i = 1, 2 (where weight(+)-
MAX Σi and weight(+)-MAX Πi are the analogues of MAX Σi and MAX Πi but

44 MARIUS ZIMAND

with positive weights on tuples). As in [KT94, Theorem 2], weight(+)-MAX Σ2 =
weight(+)-MAX Π1. Thus, weight(+)-MAX FΣ2 = weight(+)-MAX Σ2 = weight(+)-
MAX Π1 = weight(+)-MAX FΠ1.

As in [KT95, Proposition 2.1], weight(+)-MIN FΠ1 = weight(+)-MIN Σ1 and
there exists a problem in weight(+)-MIN FΣ1 which is not in weight(+)-MIN Σ1 and,
therefore, is not in weight(+)-MIN FΠ1.

We have shown that weight(+)-MIN FΣ1 and weight(+)-MIN FΠ1 are incompa-
rable, and thus, both classes are properly included in weight(+)-MIN FΣ2.

As in [KT95, Theorem 6.2], MIN CYCLE (given a graph G, return the size of the
shortest cycle in G) is in weight(+)-MIN FΠ2 but not in weight(+)-MIN FΣ2.

The only relation left unproven is weight(+)-MAX FΣ2 $ weight(+)-MAX FΠ2.
Consider the following problem P: given a graph G = (V,E), find the length of the
longest cycle in G or output 0 if no cycle exists. By Theorem 2.5, P is in weight(+)-
MAX FΠ2. Since weight(+)-MAX FΣ2 = weight(+)-MAX FΠ1, it is enough to show
that P is not in weight(+)-MAX FΠ1. So, suppose that

maxP(G) = maxS1,...,Sq{w(S1) : ∀~xφ(~x,G, S1, . . . , Sq)}.

Let the arity of S1 be k and consider the graph G consisting of a cycle a1, a2, . . . , an,
i.e., (ai, ai+1) ∈ E and (an, a1) ∈ E, and these are the only tuples in E. Take
n > k. Let S∗ = (S∗1 , . . . , S

∗
q) be a relation that is optimal for G with respect to

the above formula. Since w(S∗1) = n, there must be a k-tuple (ai1 , . . . , aik) such
that w(ai1 , . . . , aik) > 0. Let H be the subgraph of G obtained by restricting G to
the vertices ai1 , . . . , aik . Since Π1 formulas are closed under taking substructures,
∀~x φ(~x,H, S∗1,H , . . . , S

∗
q,H) holds true, where S∗H = (S∗1,H , . . . , S

∗
q,H) is the restriction

of S∗ to ai1 , . . . , aik . Therefore, maxP(H) ≥ w(S∗q) > 0. But H is not a cycle, and
thus maxP(H) = 0.

3. Approximation properties. As explained in the Introduction, the logical
definability of optimization problems has in many important cases a direct impact on
their approximation properties. The syntactical form of formulae describing the con-
straint conditions of a problem can imply the existence of polynomial-time algorithms
achieving a specified ratio of approximation. Or, on the other hand, if a problem is
hard under L- or A-reductions (these are some restricted variants of reductions that
preserve approximation properties; they were introduced by Papadimitriou and Yan-
nakakis in [PY91] and Panconesi and Ranjan in [PR93]), then the existence of good
approximations algorithms is highly improbable. We investigate to what extent the
known properties of polynomially bounded optimization problems remain valid when
we pass to the positively weighted and arbitrarily weighted corresponding problems.

Definition 3.1.

(1) Let A be an optimization problem. An approximation algorithm B for A is a
function that maps input instances I ∈ IA to feasible solutions in FA(I). As a
technical convenience, we require that fA(I,B(I)) and opt A(I) have strictly
positive value for all I. The approximation algorithm B has approximation
ratio rB : N → [1,+∞) if for all input instances I:

rB(|I|) ≥

fA(I,B(I))
optAI

if A is a minimization problem,

optAI
fA(I,B(I)) if A is a maximization problem.

WEIGHTED NP OPTIMIZATION PROBLEMS 45

(2) An optimization problem A is constant (log)-approximable if there exists a
polynomial-time approximation algorithm B for A such that rB(|I|) = O(1)
(rB(|I|) = O(log(|I|))) for all input structures I of A.

(3) An optimization problem A is superpolylog approximable if there exists a

DTIME[2logO(1) n] approximation algorithm B for A and a constant µ > 0
such that rB(|I|) = 2logµ |I| for all input structures I of A.

For the sake of simplicity, the above definition assumes that the approximation
algorithm B outputs the result of the objective function applied to a feasible solution.
However, all the following results hold in the more liberal setting in which B is allowed
to compute just an approximation (from below or above) of the optimum.

Definition 3.2. The optimization problem Π L-reduces to the optimization prob-
lem Π′ if there are two polynomial-time algorithms f and g and constants α, β > 0
such that

(1) given any instance I of Π, f produces an instance I ′ of Π′ such that optΠ′I ′ ≤
α optΠI,

(2) given a feasible solution of I ′ of cost c′, g produces a feasible solution of I of
cost c such that |c− optΠI| ≤ β|c′ − optΠ′I ′|.

We next take into review all syntactically defined classes of NP optimization prob-
lems that have been identified in earlier works to have good approximation properties.

MAX SNP and MAX NP. A polynomially bounded maximization problem
A is in MAX NP if maxA(I) = maxS |{~x : ∃~y φ(~x, ~y, I, S)}|, where φ is a first-
order quantifier-free formula. If maxA(I) = maxS |{~x : φ(~x, I, S)}|, then A is in
MAX SNP. It is known from [PY91] that if A is in MAX NP or MAX SNP, then
A is constant approximable. The weighted variants of these classes are defined by
considering m-weight assignments for the ~x-tuples in the formulae above (m is the
arity of ~x) and proceeding as in the definition of the classes MAX FΣi or MAX FΠi.
Papadimitriou and Yannakakis have shown in [PY91] that all problems in weight(+)-
MAX NP and weight(+)-MAX SNP are constant approximable. This property does
not extend to weight-MAX SNP (and to weight-MAX NP), unless NP ⊆ P̃. In order
to prove this we consider the following well-known problem.

weight-MAX 2SAT: An instance of this problem is a CNF formula with two
literals per clause and with real-valued weights assigned to each clause. The goal is
to maximize the total weight of the clauses that can be simultaneously satisfied by a
truth assignment.

The problem is in weight-MAX SNP by the following logical description. An input
structure consists of a pair (V ar, C0, C1, C2, C3), where the domain V ar is the set of
variables and Ci are relations of arity 4 such that x1, x2, x1, x2 ∈ C0 means that there
exists a clause c = x1∨x2, x1, x2, x2, x1 ∈ C1 means that there exists a clause c = x1∨
x2, x1, x2, x1, x1 ∈ C2 means that there exists a clause c = x1∨x2, and x1, x2, x2, x2 ∈
C3 means that there exists a clause c = x1 ∨ x2 (we assume that all clauses have
distinct variables). Assigning weights to any 4-tuple of variables in the obvious way,
we can write maxMAX 2SAT (C) = maxT w({(t, u, v, w) : (C0(t, u, v, w) → (¬T (t) ∨
¬T (u))) ∧ (C1(t, u, v, w) → (T (t) ∨ ¬T (u))) ∧ (C2(t, u, v, w) → (¬T (t) ∨ T (u))) ∧
(C3(t, u, v, w) → (T (t)∨T (u)))}). The following lemma, whose proof is deferred until
the end of this section, holds.

Lemma 3.3. If NP 6= P, then weight-MAX 2SAT is not approximable within ratio
nc for any c < 1/4, and, if NP 6= coRP, then weight-MAX 2SAT is not approximable
within ratio nc for any c < 1/3.

Consequently we obtain the following theorem.

46 MARIUS ZIMAND

Theorem 3.4. If NP 6= P, there are problems in weight-MAX SNP that are not
approximable with approximation ratio nc for any c < 1/4. If NP 6= coRP, there are
problems in weight-MAX SNP that are not approximable with approximation ratio nc

for any c < 1/3.

We do not know if weight-MAX 2SAT is complete for weight-MAX SNP under
L- (or A-) reductions. Nevertheless, this problem could be a good starting point
for a chain of L-reductions showing that other natural problems do not possess the
superpolylog approximation property under the same hypothesis. For example, the
reduction from [PY91] shows that weight-MAX NOT-ALL-EQUAL-2 SAT falls into
this category.

Papadimitriou and Yannakakis have considered in [PY91] a variant of MAX SNP,
called MAX SNP(π), in which the structure over which we maximize is required to
be a total linear ordering (i.e., a permutation) of the domain of the input structure.
This class contains natural problems like MAX SUBDAG: given a directed graph
G = (V,E), find an acyclic subgraph G′ = (V,E′) with E′ as large as possible.
The weighted version of this problem is obtained, of course, by assigning weights to
edges. It was shown in [PY91] that MAX SUBDAG is L-complete for MAX SNP(π)
and it is straightforward to extend this result to weight(+)-MAX SUBDAG. MAX
SUBDAG and weight(+)-MAX SUBDAG can be approximated in polynomial time
with ratio 2: take any permutation of the vertices and its reverse and choose the
one that yields an orientation whose weight is larger. It follows that all problems
in MAX SNP(π) and weight(+)-MAX SNP(π) are constant approximable. Clearly,
weight-MAX SUBDAG continues to be constant approximable, because we can just
disregard the edges with negative weights. We consider another important natural
problem (see [GM84, p. 465 ff.]) in weight-MAX SNP(π), which is closely related to
MAX SUBDAG.

weight-PRIORITY ORDERING: Given a set X and real-valued weights w to
all pairs of distinct elements in X, find the maximum over all permutations π of∑

{(x,y):π(x)<π(y)} w(x, y).

In the hypothesis NP 6⊆ P̃, we show in the next section that this problem is not
superpolylog approximable. Thus we have established the following theorem.

Theorem 3.5. If NP 6⊆ P̃, there are problems in weight-MAX SNP(π) that are
not superpolylog approximable.

MIN F+Π1 and MIN+ FΠ2(1). These are subclasses of MIN FΠ1 and, respec-
tively, MIN FΠ2 and have been identified in [KT95] as having good approximation
properties. A minimization problem A is in MIN F+Π1 if minA(I) = minS{|S| :
∀~x φ(~x, I, S)}, where the structure S consists of a single relation and φ is a quantifier-
free formula in CNF with variables ~x in which all occurrences of S are positive. The
minimization problemA is in MIN F+Π2(1) if minA(I) = minS{|S| : ∀~x ∃~y φ(~x, ~y, I, S)},
where the structure S consists of a single relation and φ is a quantifier-free for-
mula in DNF with variables ~x, ~y in which all occurrences of S are positive and S
occurs at most once in each disjunct. The weighted versions of these classes are
defined in the obvious way. These apparently obscure classes have as complete
sets (under L-reductions) some very important optimization problems. Thus, it is
shown in [KT94] that k-HYPERVERTEX COVER is complete for MIN F+Π1(k)
(a subclass of MIN F+Π1, in which S is restricted to appear at most k times in
each clause of φ) and SET COVER, DOMINATING SET, and HITTING SET are
complete for MIN F+Π2(1) (see [KT95]). It is straightforward to extend these re-
sults for the weight and weight(+) versions of the problems and classes (e.g., weight

WEIGHTED NP OPTIMIZATION PROBLEMS 47

VERTEX COVER is L-complete for weight-MIN F+Π1(2), and so on). Since k-
HYPERVERTEX COVER is constant approximable and SET COVER is log ap-
proximable (see [KT95]), it follows that all the problems in MIN F+Π1 are constant
approximable and all the problems in MIN F+Π2(1) are log approximable. It can be
shown that weight(+)-k-HYPERVERTEX COVER continues to be constant approx-
imable (the results in [BYE81] and [Hoc82] concerning weight(+) VERTEX COVER
can be extended to weight(+)-k-HYPERVERTEX COVER). Chvàtal [Chv79] has
proved that weight(+)-SET COVER also continues to be log approximable. From
the L-completeness of these problems, we obtain the following theorem.

Theorem 3.6.

(1) All problems in weight(+)-MIN F+Π1 are constant approximable.
(2) All problems in weight(+)-MIN F+Π2(1) are log approximable.

We next pass to the general weighted version of these classes. Observe that
weight-VERTEX COVER is in both weight-MIN F+Π1 and weight-MIN F+Π2(1),
since minV C(G) = minS{w(S) : ∀x ∀y (¬E(x, y) ∨ S(x) ∨ S(y))}. The following
lemma, whose proof is deferred until the end of this section, holds.

Lemma 3.7. If P 6= NP, then for every constant q, weight-VERTEX COVER is
not approximable in polynomial time with ratio 2n

q

.

Consequently, we obtain the following theorem.

Theorem 3.8. If NP 6⊆ P̃, then, for every q, there are problems in weight-
MIN F+Π1 and weight-MIN FΠ2(1) that are not approximable in polynomial time
with approximation ratio 2n

q

.

It follows that the problems weight-SET COVER, weight-DOMINATING SET,
and weight-HITTING SET, being L-complete for weight-MIN F+Π2(1), are not ap-
proximable in polynomial time within a 2n

q

ratio, unless NP = P.

In the rest of this section, we prove the hard-to-approximate properties of weight-
MAX 2SAT and weight-VERTEX COVER.

Proof of Lemma 3.3. The proof consists of an L-reduction of INDEPENDENT
SET to weight-MAX 2SAT which is obtained by slightly modifying the reduction of
INDEPENDENT SET for graphs with bounded degree to MAX 2SAT from [PY91].
It can be easily shown that if δ is a lower bound on the approximation ratio of Π and
π L-reduces to Π′ with the constants α and β as in Definition 3.2, then δ/(αβ) is a
lower bound on the approximation ratio of Π′. We will achieve α = β = 1, and then
we use the results of Bellare, Goldreich, and Sudan [BGS95] stating that if P 6= NP
(NP 6= coRP) then INDEPENDENT SET is not approximable in polynomial time
with ratio nc for any c < 1/4 (respectively, c < 1/3).

We only have to exhibit the L-reduction. Given G = (V,E), an instance of
INDEPENDENT SET, we build a formula φ in 2-CNF as follows: for each node i, we
consider a clause xi, and for each edge (i, j) we consider a clause (xi ∨ xj). All these
clauses have weight 1. We consider a new variable y and two more clauses, y and y,
each with weight −|E|. It is easy to observe the following fact.

Fact. Given an assignment for φ with cost c, we can find in polynomial time
an assignment with cost c′ ≥ c such that all the clauses corresponding to edges are
satisfied in the new assignment. Such an assignment is said to be in normal form.

Now, it is easy to see that the nodes corresponding to the clauses that are made
true by a normal form assignment form an independent set. Taking into account that
one of the clauses y, ¬y is satisfied by any assignment, it follows that

optMAX2SAT (φ) = optIND.SET (G) + |E| − |E| = optIND.SET (G).

48 MARIUS ZIMAND

Also, given any assignment with cost c′, we can build in polynomial time a normal
form assignment with cost c ≥ c′ which corresponds to an independent set of size c
and, thus, opt(G)− c ≤ opt(φ)− c′.

Proof of Lemma 3.7. The proof consists of a slight modification of the “classical”
reduction of 3-SAT to VERTEX COVER in [GJ79]. Let φ be a formula in 3-CNF
having variables x1, . . . , xn and clauses C1, . . . , Cm. We build the following undirected
graph G = (V,E). The nodes in V are x1, x1, . . . , xn, xn, and for each clause Ci =
(α ∨ β ∨ γ), there are the nodes (α, i), (β, i), (γ, i). The nodes described so far each
have weight W = 2n

q

. There are two more special nodes, y and z, each of them having
weight 1− nW − 2mW . For each variable xi, there is the edge (xi, xi), and for each
clause Ci = (α ∨ β ∨ γ), we introduce in E the edges ((α, i), (β, i)), ((β, i), (γ, i)),
and ((γ, i), (α, i)) (forming a triangle). For all (α, i) ∈ V , we introduce in E the
edge (α, (α, i)) (the nodes labeled with over-lined variables correspond to negated
variables). G also contains the edge (y, z).

Observe that in order to cover an edge of the form (x1, xi) corresponding to the
variable xi, we need to select at least one of xi or xi in the vertex cover, and in order
to cover the three edges corresponding to a clause Ci = (α ∨ β ∨ γ), at least two
of the nodes (α, i), (β, i), (γ, i) must be taken in the vertex cover. Also, one of y or z
must also be chosen in the vertex cover. As in the classical reduction, it can be seen
that if φ is satisfiable, there is a vertex cover of G having only the minimum number
of nodes specified above and having weight nW +2mW +1−nW −2mW = 1. On the
other hand, if φ is not satisfiable, at least one more node, other than y or z, must be
taken in any vertex cover and, thus, in this case, minV C(G) ≥ 1 +W . Consequently,
if weight-VERTEX COVER would be approximable in polynomial time with ratio
less than W , then we could solve 3-SAT in polynomial time.

4. Reductions from MIP systems. The hard-to-approximate property of the
problem PRIORITY ORDERING, which was introduced in the previous section, is
established by a reduction from MIP systems running in one round. Such reductions
have been extensively used in recent years to investigate and solve long-standing
open problems regarding the approximation properties of many natural combinatorial
optimization problems [ALM+92, Bel92, BS94, Con91, FGL+91, FL92, LY93a, LY93b,
Zuc93, Zim93]. We now introduce the necessary terminology. Following [BGLR93], we
denote by MIP1(r, p, a, q, ε) a one-round MIP system in which the number of random
bits is r(n), the number of provers is p(n), the size of each verifier’s query is q(n),
the size of each prover’s answer is a(n), and the error probability is ε(n), where n
is the size of the input (which, for conciseness, will be omitted). We describe the
way such a system works. A MIP1(r, p, a, q, ε) system involves p + 1 parties: one
verifier V and p provers P1, P2, . . . , Pp. All these parties share a common input x,
and it is the joint goal of the provers to convince V to accept x. The interaction
between V, P1, . . . , Pp runs as follows. The verifier randomly selects a string R of
length r and computes π(x,R) = (q1, q2, . . . , qp), a p-tuplet of queries, all of length q,
and sends, for all i, the query qi to the prover Pi. The provers compute their answers
ai = Pi(x, qi), where Pi is the function defining the strategy of the prover Pi (note the
overload in the notation Pi) and the length of all ai’s is a. After the verifier receives
the answers a1, a2, . . . , ap, she computes ρ(x, q1, q2, . . . , qp, a1, a2, . . . , ap), which tells
her whether to accept x or not. We assume that π and ρ, which define the verifier
strategy, are polynomial-time computable functions, but there is no restriction on
the functions Pi (i.e., the provers are arbitrary powerful). Let ACCV,(P1,P2,...,Pp)(x)
denote the probability that ρ(x, q1, q2, . . . , qp, a1, a2, . . . , ap) = “accept,” when R is

WEIGHTED NP OPTIMIZATION PROBLEMS 49

chosen randomly of length r and the qi’s and ai’s are as above. The value of the
verifier strategy V at x is the maximum of ACCV,(P1,P2,...,Pp)(x) over all p-tuples
(P1, P2, . . . , Pp) of prover strategies. We denote this value by ACCV (x). We say that
V accepts a language L with error probability ε (where ε : N → R and L ⊂ Σ∗) if:

(1) x ∈ L implies ACCV (x) = 1, and
(2) x 6∈ L implies ACCV (x) < ε(|x|).

We say that L is accepted by a MIP1(r, p, a, q, ε) if there is a verifier V running the
above protocol that accepts L.

There has been a stream of important works, [BFL91], [ALM+92], [FGL+91],
[FRS88], [FL92], [BGLR93], [FK94], [PS94], leading to multiprover interactive sys-
tems accepting the NP complete set SAT with increasingly better parameters r, p, a, q, ε.
We use the following variant (see [BGLR93]).

Theorem 4.1. SAT is accepted by a MIP1(O(log3 n), 2, O(log3 n), O(log3 n), 1/n).
The general technique we use to prove that a maximization problem A is hard

to approximate consists in reducing via a function Φ a MIP1(r, p, a, q, ε) verifier
strategy V to A in such a way that valid provers’ strategies (P1, P2, . . . , Pp) cor-
respond to feasible solutions, ACCV,(P1,P2,...,Pp)(x) = fA(J), where J ∈ FA(Φ(x))

and maxA Φ(x) = 2r(|x|) ·ACCV (x).
Definition 4.2. We say that MIP1(r, p, a, q, ε) reduces to the maximization prob-

lem A if for any verifier strategy V running the MIP1(r, p, a, q, ε) protocol, there is a
function ΦV which maps a common input x for the verifier strategy into an instance
ΦV (x) ∈ IA of the optimization problem A and has the following properties:

(1) for all x ∈ Σ∗, maxA ΦV (x) = 2r(|x|) ·ACCV (x), and
(2) ΦV (x) is computable in time 2logc |x| for some constant c.
The following lemma is an easy consequence of Theorem 4.1.
Lemma 4.3. Suppose that a MIP1(r, p, a, q, ε) of the type in Theorem 4.1 reduces

to the maximization problem A. Then there is a constant µ > 0 such that the existence
of a DTIME[2logµ n] approximation algorithm B for A with rB(|I|) < 2logµ |I| implies

NP ⊆ DTIME[2O(log1/µ n)].
Proof. Let φ be a boolean formula. There exists a verifier strategy V running

a MIP1(r, p, a, q, ε) protocol of the type in Theorem 4.1 such that φ ∈ SAT →
ACCV (φ) = 1 and φ 6∈ SAT → ACCV (φ) ≤ ε(|φ|) = 1/|φ|. There exists a constant
c such that |ΦV (φ)| ≤ 2logc |φ|, where ΦV is the reduction function. Note that

φ ∈ SAT → ACCV (φ) = 1 → maxA(ΦV (φ)) = 2r(|φ|)

and

φ 6∈ SAT → ACCV (φ) ≤ 1

|φ| → maxA(ΦV (φ)) ≤ 1

|φ| · 2
r(|φ|).

Take µ = 1/c and suppose there is a DTIME[2logµ n] algorithm B for A with rB(|I|) <
2logµ |I|, which means rB(|ΦV (φ)|) < |φ|. In consequence:

φ ∈ SAT → B(ΦV (φ)) ≥ 1

rB(|ΦV (φ)|) ·maxA(ΦV (φ)) >
1

|φ| · 2
r(|φ|)

and

φ 6∈ SAT → B(ΦV (φ)) ≤ max A(ΦV (φ)) ≤ 1

|φ| · 2
r(|φ|).

50 MARIUS ZIMAND

Since B(ΦV (φ)) can be computed in time 2O(logc |φ|), it follows that

NP ⊆ DTIME[2O(log1/µ n)].

Taking into account Lemma 4.3, we need only to design the appropriate reduction
from MIP systems with parameters as in Theorem 4.1 to PRIORITY ORDERING.
This is the content of the next lemma.

Lemma 4.4. MIP1(O(log3 n), 2, O(log3 n), O(log3 n), 1/n) reduces to weight-
PRIORITY ORDERING.

Proof. Let V be a verifier executing a MIP1(d log3 n, 2, d log3 n, d log3 n, 1/n) pro-
tocol and let n = |x|, where x is the common input of the protocol. We build an

instance for weight-PRIORITY ORDERING. Let N = 2d log3 n. The set of elements
to be ordered is

X = {s1, s2, s3, s4} ∪X1 ∪X2 ∪X3,

where X1 = {(u, v, a, 1) : u, v, a ∈ Σ=d·log3 n}, X2 = {(u, v, b, 2) : u, v, b ∈
Σ=d·log3 n}, and X3 = {(u, v, b, 3) : u, v, b ∈ Σ=d·log3 n}. We first overview the
construction. Intuitively, u and v should be interpreted as queries to the first and,
respectively, the second prover, and a and b, with or without subscripts, should be
interpreted as answers provided by the first and, respectively, the second prover.
By using large weights, we force any arrangement π that is a candidate for being
the optimal one to achieve (i) s1 <π s2 <π s3 <π s4, (ii) s2 <π x <π s3 for all
x ∈ X2, (iii) x <π s4 for all x ∈ X1, and (iv) s1 <π x for all x ∈ X3. For all pairs

(u, v) ∈ (Σ=d·log3 n)2 we order the set Xu,v,1 = {(u, v, a, 1) : a ∈ Σ=d·log3 n} in the
lexicographical order <l, obtaining Xu,v,1 = {t1 <l t2 <l · · · <l tN}. We assign
weights such that ideally s3 <π t1 <π t2 <π · · · <π tN <π s1. Since s1 <π s3,
this is not possible and therefore there exists j such that tj+1 <π tj+2 <π · · · <π

tN <π s1 <π s3 <π t1 <π · · · <π tj . Similarly, for all pairs (u, v) ∈ (Σ=d·log3 n)2

we order the set Xu,v,3 = {(u, v, b, 3) : a ∈ Σ=d·log3 n} in the lexicographical or-
der <l, obtaining Xu,v,3 = {t1 <l t2 <l · · · <l tN}, and we force the existence of
k ∈ {1, . . . , N} with tk+1 <π tk+2 <π · · · <π tN <π s2 <π s4 <π t1 <π · · · <π tk.
Using some other combinations of weights involving the “stakes” s1, s2, s3, s4, we
guarantee that for all u ∈ Σ=d·log3 n there exists j ∈ {1, . . . , N} such that for all

v ∈ Σ=d·log3 n, (u, v, aj+1, 1) <π · · · <π (u, v, aN , 1) <π s1 <π s3 <π (u, v, a1, 1) <π

· · · <π (u, v, aj , 1) and for all v ∈ Σ=d·log3 n, there exists k ∈ {1, . . . , N} such that for

all u ∈ Σ=d·log3 n, (u, v, bk+1, 3) <π · · · <π (u, v, bN , 3) <π s2 <π s4 <π (u, v, b1, 3) <π

· · · <π (u, v, bk, 3). These unique values of j and k for each u and v define a pair of
provers’ strategies (P1, P2). Moreover, the weights are carefully defined in order to
insure that maxπ

∑
{(t,z) : π(t)<π(z)} w(t, z) = ACCV (x).

Now we proceed with the complete and formal description of the reduction. We
lexicographically order the sets of possible answers (i.e., the elements in Σ=d·log3 n)
obtaining: a1 < a2 · · · < aN and b1 < b2 · · · < bN (of course, ai = bi, but keep in
mind the above intuitive interpretation). Let S = 3N3 + 4 denote the number of
elements in X. We next define the weights, w(·, ·), for some pairs in X ×X. Given
an ordering π of X and a subset Y ⊆ X, the contribution of Y is defined to be
Cπ(Y) =

∑
x,y∈Y,π(x)<π(y) w(x, y). We call a permutation π reasonable if Cπ(X) ≥ 0.

Since there exists an ordering σ (to be described below; it corresponds to a tuple of
provers’ strategies) such that Cσ(X) ≥ 0, it follows that the optimal ordering π must
be looked for among the reasonable ones.

WEIGHTED NP OPTIMIZATION PROBLEMS 51

For each 4-tuplet (u, v, a, b) ∈ (Σ=d·log3 n)4, we denote

valu,v,a,b =

{
card{R ∈ Σ=d·log3 n : π(x,R) = (u, v)} if ρ(x, u, v, a, b) = “accept,”
0 otherwise,

and by solving a linear system, we fix for each u, v, ai, bh, a real value du,v,ai,bh such

that for each u, v ∈ Σ=d·log3 n, and for each j, k ∈ {1, . . . , N},∑1≤i≤j
∑

1≤h≤k du,v,ai,bh =

valu,v,aj ,bk . We now state the weights of pairs in X2 in six stages (1)–(6) (all the pairs
that are not mentioned below have weight 0).

(1) w(s2, s1) = −M1, w(s3, s2) = −M1, w(s4, s3) = −M1,
w(x, s2) = −M1 and w(s3, x) = −M1 for all x ∈ X2,
w(s4, x) = −M1 for all x ∈ X1,
w(x, s1) = −M1 for all x ∈ X3.
M1 is defined as follows. Let k be the maximum weight for any pair defined

in stages (2)–(6). Then M1 = S(S−1)
2 · k + 1. The effect of these definitions

is that if π is a reasonable ordering and <π denotes the order induced by π
(i.e., x <π y if and only if π(x) < π(y)), then (i) s1 <π s2 <π s3 <π s4, (ii)
s2 <π x <π s3 for all x ∈ X2, (iii) x <π s4 for all x ∈ X1, and (iv) s1 <π x
for all x ∈ X3. (See Figure 2.)

(2) For each pair (u, a) ∈ (Σ=d·log3 n)2, we fix a linear order <o on the set Yu,a,1 =

{(u, v, a, 1) : v ∈ Σ=d·log3 n}, obtaining Yu,a,1 = {z1 <o z2 <o · · · <o zN}.
The order <o must have the following property: ∀w ∀z [(w is the successor
relative to <o of z) → (w is not the lexicographical successor of z) and (z is
not the lexicographical successor of w)] and also z1 and zN are not the first
and, respectively, last elements from Yu,a,1 with respect to the lexicographical
ordering. We define the weights:

w(s3, z1) = M2, w(z1, s3) = −M2,
w(zi+1, zi) = −3M2, i = 1, . . . , N − 1,
w(zN , s1) = M2, w(s1, zN) = −M2.

M2 is defined by M2 = S(S−1)
2 · k + 1, where k is now the maximum weight

defined in the future stages (3)–(6). The effect of these definitions is that

for all u, a ∈ Σ=d·log3 n, if π is a reasonable ordering, then either all elements
from Yu,a,1 are smaller with respect to π than s1 or all elements from Yu,a,1
are larger with respect to π than s3. (See Figure 2.)

(3) For each pair (v, b) ∈ (Σ=d·log3 n)2, we fix a linear order <o on the set Yv,b,3 =

{(u, v, b, 3) : u ∈ Σ=d·log3 n}, obtaining Yv,b,3 = {z1 <o z2 <o · · · <o zN}.
The order <o is as in (2). We define the weights:

w(s4, z1) = M3, w(z1, s4) = −M3,
w(zi+1, zi) = −3M3, i = 1, . . . , N − 1,
w(zN , s2) = M3, w(s2, zN) = −M3.

M3 is defined by M3 = S(S−1)
2 ·k+1, where k is the maximum weight defined

in the future stages (4)–(6). The effect of these definitions is that for all

v, b ∈ Σ=d·log3 n, if π is a reasonable ordering, then either all elements from
Yv,b,3 are smaller with respect to π than s2 or all elements from Yv,b,3 are
larger with respect to π than s4. (See Figure 2.)

52 MARIUS ZIMAND

Fig. 2. The effect of stages (1), (2), and (3): the elements of X1, X2, and X3 must be positioned
between the stakes s1, s2, s3, and s4 as in the figure.

��
��

��
��

��
��
��
��

��
��

- ¡
¡¡�

6

HHHY

@
@@R

?

s1 s3

t1

t2

tN

· · ·

Fig. 3. The effect of stage (4): only one of the edges (t1, t2), . . . , (tN , s1) should be “broken” by
a reasonable π.

(4) For all pairs (u, v) ∈ (Σ=d·log3 n)2 we order the set Xu,v,1 = {(u, v, a, 1) : a ∈
Σ=d·log3 n} in the lexicographical order <l, obtaining Xu,v,1 = {t1 <l t2 <l

· · · <l tN}. We define the weights:

w(s3, t1) = M4, w(t1, s1) = −M4,
w(ti+1, ti) = −M4, i = 1, . . . , N − 1,
w(s1, tN) = −M4,

with M4 = S(S−1)
2 · k + 1, where k is now the maximum weight defined in

the future stages (5)–(6). It can be seen that, by the precautions we took
when selecting the order <o, there is no conflict between the definitions in
stages (2) and (4). It is important to note that, relative to an ordering π,
Cπ(Xu,v,1 ∪ {s1, s3}) = 0 if there exists j ∈ {1, . . . , N} such that

tj+1 <π tj+2 <π · · · <π tN <π s1 <π s3 <π t1 <π · · · <π tj

or Cπ(Xu,v,1 ∪ {s1, s3}) is less than −M4 in all other situations. Hence, a
reasonable ordering π must satisfy the above inequalities. (See Figure 3.)

(5) For all pairs (u, v) ∈ (Σ=d·log3 n)2 we order the set Xu,v,3 = {(u, v, b, 3) : a ∈
Σ=d·log3 n} in the lexicographical order <l, obtaining Xu,v,3 = {t1 <l t2 <l

· · · <l tN}. We define the weights:

w(s4, t1) = M5, w(t1, s4) = −M5,
w(ti+1, ti) = −M5, i = 1, . . . , N − 1,
w(s2, tN) = −M5,

with M5 = S(S−1)
2 · k + 1, where k is now the maximum weight defined in

stage (6). By the same arguments as in (4), a reasonable ordering π must

WEIGHTED NP OPTIMIZATION PROBLEMS 53

��
��

��
��
��
��

��
��

��
��

- ¡
¡¡�

6

HHHY

@
@@R

?
t1

t2

tN

· · ·

s2 s4

Fig. 4. The effect of stage (5): only one of the edges (t1, t2), . . . , (tN , s2) should be “broken” by
a reasonable π.

satisfy

tk+1 <π tk+2 <π · · · <π tN <π s2 <π s4 <π t1 <π · · · <π tk,

for some k ∈ {1, . . . , N}. (See Figure 4.)

(6) For all 4-tuples (u, v, a, b) ∈ (Σ=d·log3 n)4,

w((u, v, b, 2), (u, v, a, 1)) = du,v,a,b, w((u, v, b, 3), (u, v, a, 1)) = −du,v,a,b.

Claim 4.5. (i) Let u ∈ Σ=d·log3 n and let π be a reasonable ordering. There exists

j ∈ {1, . . . , N} such that for all v ∈ Σ=d·log3 n

(u, v, aj+1, 1) <π · · · <π (u, v, aN , 1) <π s1 <π s3 <π (u, v, a1, 1) <π · · · <π (u, v, aj , 1).

(ii) Let v ∈ Σ=d·log3 n and let π be a reasonable ordering. There exists k ∈
{1, . . . , N} such that for all u ∈ Σ=d·log3 n

(u, v, bk+1, 3) <π · · · <π (u, v, bN , 3) <π s2 <π s4 <π (u, v, b1, 3) <π · · · <π (u, v, bk, 3).

Proof. We prove (i). From the definitions in stage (4), for each v ∈ Σ=d·log3 n

there exists a value j(v) verifying the inequalities from (i). Suppose that for some
pair v 6= v′, j(v) < j(v′). Then (u, v, aj(v′), 1) <π s1 <π s3 <π (u, v′, aj(v′), 1), which
means that two elements from Yu,aj(v′),1 are on distinct “sides” of s1 <π s3. But then
π cannot be a reasonable ordering by the discussion following the definitions in stage
(2). It follows that for all v ∈ Σ=d·log3 n, j(v) represents the same value. The proof
of (ii) is similar.

If π is a reasonable ordering and (u, aj) are as in Claim 4.5 (i) and (v, bk) are as
in Claim 4.5 (ii), then we say that π forces answer aj to u and answer bk to v.

Claim 4.6. Let π be a reasonable ordering. We define the provers’ strategies
(P1, P2) by P1(u) = a if π forces answer a to u, and P2(v) = b if π forces answers b

to v. Then Cπ(X) = 2d log3 n ·ACCV,(P1,P2)(x).
Proof. Observe that the contribution of all pairs whose weight is defined in stages

(1)–(5) is 0. It remains to consider only the pairs whose weight is defined in stage (6).
For each u, let j(u) be defined by aj(u) = P1(u), and for each v, let k(v) be defined
by ak(v) = P2(v). We can see that only pairs in which the first component is from X2

and the second component is from X1 or in which the first component is from X3 and

54 MARIUS ZIMAND

the second component is from X1 matter. From the way the elements of X1, X2, and
X3 are arranged between the “stakes” s1, s2, s3, and s4 in the stages (1), (2), and (3),
the first type of pair occurs for (x, y) with x ∈ X2 and y ∈ X1, y > s3, and the second
type of pair occurs for (x, y) with x ∈ X3, s1 < x < s2, and y ∈ X1, s3 < y < s4.
Keeping in mind the definitions of j(u), k(v), and the “complementary” way in which
weights are defined in stage (6), we get:

Cπ(X) =
∑

u

∑
v

∑N
h=1

∑j(u)
i=1 w((u, v, bh, 2), (u, v, ai, 1))

+
∑

u

∑
v

∑N
h=k(v)+1

∑j(u)
i=1 w((u, v, bh, 3), (u, v, ai, 1))

=
∑

u

∑
v

∑k(v)
h=1

∑j(u)
i=1 du,v,ai,bh =

∑
u

∑
v valu,v,P1(u),P2(v)

= 2d log3 n ·ACCV,(P1,P2)(x).

In the above sums, u and v range over Σ=d·log3 n.
It follows from Claim 4.6 that maxπ Cπ(X) ≤ 2d log3 n · ACCV (x). On the other

hand, from any pair of provers’ strategies (P1, P2), one can easily build an order-

ing π such that Cπ(X) = 2d log3 n · ACCV,(P1,P2)(x). It is sufficient that π satisfy
the requirements from the discussions following stages (1), (2), and (3) and that it
force to any queries u and v the real answers of the provers P1 and P2. In conclu-
sion, maxπ Cπ(X) = 2d log3 n · ACCV (x). It is not difficult to check that the whole
construction can be made in DTIME[2logc n] for some constant c.

5. Final remarks. It is known that many combinatorial problems become more
difficult when we pass from positive parameters to arbitrary (i.e., both positive and
negative) parameters. The most notorious example is probably the SHORTEST
PATH problem (see [CLR90]). Our results offer an explicit expression to this paradigm:
most classes of combinatorial problems known to be approximable when dealing with
positive parameters lose this property when dealing with arbitrary parameters. This
contrasts with the situation of numerical problems, where the additional algebraic
structure provided by arbitrary parameters (i.e., the existence of inverses) may ac-
tually help. It would be interesting to detect a general, deep explanation for this
dichotomy. There are also some other less obscure questions left open by this work.
It would be interesting to find nontrivial syntactically defined classes which are well
approximable even with arbitrary parameters. And, finally, another topic of interest
is to investigate the real-valued weighted version of some other natural problems.

Acknowledgments. I thank Luca Trevisan for telling me the reductions in Lem-
mas 3.3 and 3.7, which strengthened and simplified the corresponding lemmas in an
earlier version of this work. I thank Erich Grädel for valuable comments and useful
pointers to the literature. I am grateful to Lane Hemaspaandra, Mitsunori Ogihara,
Joel Seiferas, and the anonymous referees for helping improve the presentation of this
paper.

REFERENCES

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification
and intractability of approximation problems, in Proc. 32nd IEEE Symposium on
Foundations of Computer Science, 1992, pp. 14–23.

[BCG92] Th. Behrendt, K. Compton, and E. Grädel, Optimization problems: Expressibility,
approximation properties and expected asymptotic growth of optimal solutions, in
Computer Science Logic, Selected Papers, San Miniato, Lecture Notes in Computer
Science 702, Springer-Verlag, New York, 1992, pp. 43–60.

WEIGHTED NP OPTIMIZATION PROBLEMS 55

[Bel92] M. Bellare, Interactive Proofs and Approximation, Technical Report IBM RC 17969,
IBM Thomas J. Watson Research Center, Yorktown, NY, May 1992.

[BFL91] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-
prover interactive protocols, Comput. Complexity, 1 (1991), pp. 3–40.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically
checkable proofs and applications to approximation, in Proc. 23th ACM Symposium
on Theory of Computing, 1993, pp. 294–304.

[BGS95] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs, and non-
approximability-towards tight results, in Proc. 35th IEEE Symposium on Foun-
dations of Computer Science, 1995, pp. 422–431. Full paper available from ECCC
at http://www.eccc.uni-trier.de/eccc/.

[BS94] M. Bellare and M. Sudan, Improved non-approximability results, in Proc. 24th ACM
Symposium on Theory of Computing, 1994, pp. 184–193.

[BYE81] R. Bar-Yehuda and S. Even, A linear time approximation algorithm for the weighted
vertex cover problem, J. Algorithms, 2 (1981), pp. 198–203.

[Chv79] V. Chvátal, A greedy heuristics for the set covering problem, Math. Oper. Res., 4
(1979), pp. 233–235.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[Com88] K. Compton, 0-1 laws in logic and combinatorics, in NATO Adv. Study Inst. on
Algorithms and Order, D. Reidel, Dordrecht, the Netherlands, 1988, pp. 353–383.

[Con91] A. Condon, The complexity of the max word problem and the power of one-way inter-
active proof systems, in Proc. 8th Annual Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Computer Science 480, Springer-Verlag, New
York, 1991, pp. 456–465.

[Fag74] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in
Complexity of Computation, Proceedings of SIAM-AMS Symposium in Applied
Mathematics, R. Karp, ed., 1974, pp. 27–41.

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating
clique is almost NP complete, in Proc. 31st IEEE Symposium on Foundations of
Computer Science, 1991, pp. 2–12.

[FK94] U. Feige and J. Kilian, Two prover protocols - low error at affordable rates, in Proc.
24th ACM Symposium on Theory of Computing, 1994, pp. 172–183.

[FL92] U. Feige and L. Lovász, Two-prover one round systems: Their power and their
problems, in Proc. 24th ACM Symposium on Theory of Computing, 1992, pp. 733–
744.

[FRS88] L. Fortnow, J. Rompel, and M. Sipser, On the power of multi-prover interactive
protocols, in Proc. 3rd IEEE Structure in Complexity Theory Conference, pp. 156–
161, 1988.

[GJ79] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

[GM84] M. Gondran and M. Minoux, Graphs and Algorithms, Wiley, New York, 1984.
[GM93] E. Grädel and A. Malmström, Approximable minimization problems and optimal

solutions on random inputs, in Computer Science Logic, 7th Workshop, CSL ‘93,
Swansea 1993, Selected Papers, Lecture Notes in Computer Science 832, Springer-
Verlag, New York, 1995, pp. 139–149.

[Gra84] E. Grandjean, The spectra of first-order sentences and computational complexity,
SIAM J. Comput., 13 (1984), pp. 356–373.

[Hoc82] D. S. Hochbaum, Approximation algorithms for the set covering and vertex covering
problems, SIAM J. Comput., 11 (1982), pp. 555–556.

[Imm89] N. Immerman, Descriptive and computational complexity, in Computational Complex-
ity Theory, Proceedings of AMS Symposium in Applied Mathematics, J. Hartma-
nis, ed., AMS, Providence, RI, 1989, pp. 75–91.

[Joh92] D. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms, 13
(1992), pp. 502–524.

[KMSV94] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, On syntactic versus compu-
tational views of approximability, in Proc. 34th IEEE Symposium on Foundations
of Computer Science, 1994, pp. 819–830.

[KT94] P. G. Kolaitis and M. N. Thakur, Logical definability of NP optimization problems,
Inform. and Comput., 115 (1994), pp. 321–353.

[KT95] P. G. Kolaitis and M. N. Thakur, Approximation properties of NP minimization
classes, J. Comput. System Sci., 50 (1995), pp. 390–411.

56 MARIUS ZIMAND

[Lau92] C. Lautemann, Logical definability of NP optimization problems with monadic auxil-
iary predicates, in Computer Science Logic, Selected Papers, San Miniato, Lecture
Notes in Computer Science 702, Springer-Verlag, New York, 1992, pp. 327–339.

[LY93a] C. Lund and M. Yannakakis, The approximation of maximum subgraph problems, in
Proc. 20th International Colloquium on Automata, Languages, and Programming,
Springer-Verlag, Berlin, 1993, pp. 40–51.

[LY93b] C. Lund and M. Yannakakis, On the hardness of approximating minimization prob-
lems, in Proc. 23th ACM Symposium on Theory of Computing, 1993, pp. 286–293.

[Lyn82] J. Lynch, Complexity classes and theories of finite models, Math. Systems Theory, 15
(1982), pp. 127–144.

[PR93] A. Panconesi and D. Ranjan, Quantifiers and approximation, Theoret. Comput. Sci.,
107 (1993), pp. 145–163.

[PS94] A. Polishchuk and D. Spielman, Nearly-linear size holographic proofs, in Proc. 24th
ACM Symposium on Theory of Computing, 1994, pp. 194–203.

[PY91] C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[Zim93] M. Zimand, The Complexity of the Optimal Spanning Hypertree Problem, Technical
Report 471, Dept. of Computer Science, Univ. of Rochester, NY, September 1993.

[Zuc93] D. Zuckerman, NP-complete problems have a version that’s hard to approximate, in
Proc. 8th IEEE Structure in Complexity Theory Conference, 1993, pp. 305–312.

THE COMPUTATIONAL STRUCTURE OF MONOTONE MONADIC
SNP AND CONSTRAINT SATISFACTION: A STUDY THROUGH

DATALOG AND GROUP THEORY∗

TOMÁS FEDER† AND MOSHE Y. VARDI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 57–104

Abstract. This paper starts with the project of finding a large subclass of NP which exhibits
a dichotomy. The approach is to find this subclass via syntactic prescriptions. While the paper
does not achieve this goal, it does isolate a class (of problems specified by) “monotone monadic SNP
without inequality” which may exhibit this dichotomy. We justify the placing of all these restrictions
by showing, essentially using Ladner’s theorem, that classes obtained by using only two of the above
three restrictions do not show this dichotomy. We then explore the structure of this class. We
show that all problems in this class reduce to the seemingly simpler class CSP. We divide CSP into
subclasses and try to unify the collection of all known polytime algorithms for CSP problems and
extract properties that make CSP problems NP-hard. This is where the second part of the title, “a
study through Datalog and group theory,” comes in. We present conjectures about this class which
would end in showing the dichotomy.

Key words. satisfiability, graph coloring, datalog, group theory, linear equations

AMS subject classifications. 68Q15, 68R99

PII. S0097539794266766

1. Introduction. We start with a basic overview of the framework explored in
this paper; for an accompanying pictorial description, see Figure 1. A more detailed
presentation of the work and its relationship to earlier work is given in the next
section.

It is well known that if P6=NP, then NP contains problems that are neither solvable
in polynomial time nor NP-complete. We explore the following question: what is the
most general subclass of NP that we can define that may not contain such in-between
problems? We investigate this question by means of syntactic restrictions. The logic
class SNP is contained in NP and can be restricted with three further requirements:
monotonicity, monadicity, and no inequalities. We show that if any two out of these
three conditions are imposed on SNP, then the resulting subclasses of SNP are still
general enough to contain a polynomially equivalent problem for every problem in NP,
and in particular for the in-between problems in NP. We thus address the question by
imposing all three restrictions simultaneously; the resulting subclass of SNP is called
MMSNP.

We examine MMSNP and observe that it contains a family of interesting prob-
lems. A constraint-satisfaction problem is given by a pair I (the instance) and T
(the template) of finite relational structures over the same vocabulary. The prob-
lem is satisfied if there is a homomorphism from I to T . It is well known that the
constraint-satisfaction problem is NP-complete. In practice, however, one often en-
counters the situation where the template T is fixed and it is only the instance I
that varies. We define CSP to be the class of constraint-satisfaction problems with

∗ Received by the editors April 27, 1994; accepted for publication (in revised form) October 31,
1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/26676.html
† IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099

(tomas@theory.stanford.edu).
‡ Rice University, Department of Computer Science, Herman Brown 230, Houston, TX 77251

(vardi@cs.rice.edu).

57

58 TOMÁS FEDER AND MOSHE Y. VARDI

NP

SNP

with inequality

monotone SNP

without inequality

monadic SNP

without inequality

monotone monadic SNP

with inequality

all contain

problems not

NP-complete

and not in P

if P 6=NP [35]

monotone monadic SNP

without inequality

CSP

digraph

homomorphism

graph

retract

partial order

retract

may only

contain

problems in P

(Datalog and

group theory)

or NP-complete

(1-in-3 SAT)

graph

homomorphism

Boolean

CSP

in P (bipartite)

or NP-complete (nonbipartite) [24]

in P (Horn clauses, 2SAT, linear

eq. mod 2) or NP-complete [48]

����������

XXXXXXXXXX

����������

XXXXXXXXXX

Fig. 1. Summary.

respect to fixed templates; that is, for every template T , the class CSP contains the
problem PT that asks for an instance I over the same vocabulary as T whether there
is a homomorphism from I to T or not. The class CSP is contained in MMSNP. We
show that CSP is in a sense the same as all of MMSNP: every problem in MMSNP
has an equivalent problem in CSP under randomized polynomial time reductions.

The class CSP in turn has some interesting subclasses: the graph-retract, digraph-
homomorphism, and partial order-retract problems. We show that in fact every prob-
lem in CSP has a polynomially equivalent problem in each of these three subclasses,
so that all three of them are as general as CSP. Some special cases were previously
investigated; for CSP with a Boolean template it was shown that there are three poly-
nomially solvable problems, namely, Horn clauses, 2SAT, and linear equations mod-
ulo 2, while the remaining problems are NP-complete. For the graph-homomorphism
problem, it was shown that bipartite graph templates are polynomially solvable and

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 59

nonbipartite graph templates are NP-complete. Could it then be that every problem
in CSP is either polynomially solvable or NP-complete?

Some representative problems that were previously observed as belonging to CSP
are k-satisfiability, k-colorability, and systems of linear equations modulo q; a poly-
nomially solvable problem that can be less obviously seen to belong to CSP is labeled
graph isomorphism. We notice here that at present, all known polynomially solvable
problems in CSP can be explained by a combination of Datalog and group theory.
More precisely, we define bounded-width problems as those that can be defined by
Datalog programs, and subgroup problems as those whose relations correspond to
subgroups or cosets of a given group; both subclasses are polynomially solvable. Two
decidable subclasses of the bounded-width case are the width 1 and the bounded strict
width problems; in fact, the three polynomially solvable cases with a Boolean template
are width 1, strict width 2, and subgroup, respectively. The three main polynomial
cases, namely, width 1, bounded strict width, and subgroup, are all characterized by
algebraic closure properties, and so is convex programming, a polynomial constraint
satisfaction problem over the reals.

We finally observe that the only way we know how to show that a problem is
not bounded-width requires the problem to have a property that we call the ability
to count. Once a problem has the ability to count, it seems that it must necessarily
contain the general subgroup problem for an abelian group as a special case. When
a new type of subset of a group, which we call nearsubgroup, is also allowed in a
subgroup problem, the resulting problem reduces to subgroup problems, at least for
solvable groups, and if an allowed nonsubgroup subset is not a nearsubgroup, then
the subgroup problem becomes NP-complete. Does this sequence of observations lead
to a classification of the problems in CSP as polynomially solvable or NP-complete?

2. Preliminaries. A large class of problems in artificial intelligence and other
areas of computer science can be viewed as constraint-satisfaction problems [10, 34,
40, 41, 42, 43, 45]. This includes problems in machine vision, belief maintenance,
scheduling, temporal reasoning, type reconstruction, graph theory, and satisfiability.

We start with some definitions. A vocabulary is a set V = {(R1, k1), . . . , (Rt, kt)}
of relation names and their arities. A relational structure over the vocabulary V is a
set S together with relations Ri of arity ki on the set S. An instance of constraint
satisfaction is given by a pair I, T of finite relational structures over the same vo-
cabulary. The instance is satisfied if there is a homomorphism from I to T ; that is,
there exists a mapping h such that for every tuple (x1, . . . , xk) ∈ Ri in I we have
(h(x1), . . . , h(xk)) ∈ Ri in T . Intuitively, the elements of I should be thought of as
variables and the elements of T should be thought of as possible values for the vari-
ables. The tuples in the relations of I and T should be viewed as constraints on the
set of allowed assignments of values to variables. The set of allowed assignments is
nonempty if and only if there exists a homomorphism from I to T . In what follows,
we shall use the homomorphism and variable-value views interchangeably in defining
constraint-satisfaction problems.

It is well known that the constraint-satisfaction problem is NP-complete. In
practice, however, one often encounters the situation where the structure T (which
we call the template) is fixed, and it is only the structure I (which we call the instance)
that varies.

For example, the template of the 3SAT problem has domain {0, 1} and four
ternary relations C0, C1, C2, C3 that contain all triples except for (0, 0, 0) in the case
of C0, except for (1, 0, 0) in the case of C1, except for (1, 1, 0) in the case of C2, and

60 TOMÁS FEDER AND MOSHE Y. VARDI

except for (1, 1, 1) in the case of C3. The tuples in the instance describe the clauses of
the problem. For example, a constraint C2(x, y, z) imposes a condition on the three
variables x, y, z that is equivalent to the clause x ∨ y ∨ z.

As a second example, the template of the 3-coloring problem is the graph K3; i.e.,
it has domain {r, b, g} and a single binary relation E that holds for all pairs (x, y) from
the domain with x 6= y. The tuples in the instance describe the edges of the graph.
Thus, the variables x1, x2, . . . , xn can be viewed as vertices to be colored with r, b, g,
and the constraints E(xi, xj) can be viewed as describing the edges whose endpoints
must be colored differently. If we replace the template K3 by an arbitrary graph H,
we get the so-called H-coloring problem [24].

As a third example, given an integer q ≥ 2, the template of the linear equations
modulo q problem has domain {0, 1, . . . , q− 1}, a monadic relation Z that holds only
for the element 0, and a ternary relation C that holds for the triples (x, y, z) with
x+y+ z = 1 (mod q). It is easy to show that any other linear relations on variables
modulo q can be expressed by introducing a few auxiliary variables and using only
the Z and C relations.

In this paper we consider constraint-satisfaction problems with respect to fixed
templates. We have defined CSP to be the class of such problems. It is easy to
see that CSP is contained in NP. We know that NP contains polynomially solvable
problems and NP-complete problems. We also know that if P6=NP, then there exist
problems in NP that are neither in P nor NP-complete [35]. The existence of such
“intermediate” problems is proved by a diagonalization argument. It seems, however,
impossible to carry this argument in CSP. This motivates our main question, which
follows.

Dichotomy question: Is every problem in CSP either in P or NP-complete?

Our question is supported by two previous investigations of constraint-satisfaction
problems that demonstrated dichotomies. Schaefer [48] showed that there are essen-
tially only three polynomially solvable constraint-satisfaction problems on the set
{0, 1}, namely, (1) 0-valid problems (problems where all-zeros is always a solution,
and similarly 1-valid problems); (2) Horn clauses (problems where every relation in
the template can be characterized by a conjunction of clauses with at most one pos-
itive literal per clause, and similarly anti-Horn clauses, with at most one negative
literal per clause); (3) 2SAT (problems where every relation in the template can be
characterized by a conjunction of clauses with two literals per clause); (4) linear equa-
tions modulo 2 (problems where every relation in the template is the solution set of a
system of linear equations modulo 2). All constraint-satisfaction problems on {0, 1}
that are not in one of these classes are NP-complete. The NP-complete cases in-
clude one-in-three SAT, where the template has a single relation containing precisely
(1, 0, 0), (0, 1, 0), and (0, 0, 1), and not-all-equal SAT, where the template has a single
relation that contains all triples except (0, 0, 0) and (1, 1, 1).

Hell and Nešetřil [24] showed that the H-coloring problem is in P if H is bipartite
and NP-complete for H nonbipartite. Bang-Jensen and Hell [8] conjecture that this
result extends to the digraph case when every vertex in the template has at least one
incoming and at least one outgoing edge: if the template is equivalent to a cycle then
the problem is polynomially solvable, otherwise NP-complete.

The issue that we address first is the robustness of the class CSP. We investi-
gate the dichotomy question in the context of the complexity class SNP, which is a
subclass of NP that is defined by means of a logical syntax [32, 44] and which, in
particular, includes CSP. We show that SNP is too general a class to address the

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 61

dichotomy question, because every problem in NP has an equivalent problem in SNP
under polynomial time reductions. Here two problems are said to be equivalent under
polynomial time reductions if there are polynomial time reductions from one to the
other, in both directions. We then impose three syntactic restrictions on SNP, namely,
monotonicity, monadicity, and no inequalities, since CSP is contained in SNP with
these restrictions imposed. It turns out that if only two of these three restrictions
are imposed, then the resulting subclass of SNP is still general enough to contain an
equivalent problem for every problem in NP.

When all three restrictions are imposed, we obtain the class MMSNP: monotone
monadic SNP without inequality. This class is still more general than CSP, because
it strictly contains CSP. We prove, however, that every problem in MMSNP has an
equivalent problem in CSP, this time under randomized polynomial time reductions
(we believe that it may be possible to derandomize the reduction).

Thus, CSP is essentially the same as the seemingly more general class MMSNP.
In the other direction, there are three special cases of CSP, namely, the graph-retract,
the digraph-homomorphism, and the partial-order-retract problems, that turn out to
be as hard as all of CSP, again under polynomial time reductions. The equivalence
between CSP and classes both above and below it seems to indicate that CSP is a
fairly robust class.

We then try to solve the dichotomy question by considering a more practical
question.

Primary classification question: Which problems in CSP are in P and which
are NP-complete?

In order to try to answer this question, we again consider Schaefer’s results for
constraint-satisfaction problems on the set {0, 1} [48]. Schaefer showed that there are
only three such polynomially solvable constraint-satisfaction problems. We introduce
two subclasses of CSP, namely, bounded-width CSP and subgroup CSP, respectively,
as generalizations of Schaefer’s three cases. Bounded-width problems are problems
that can be solved by considering only bounded sets of variables, which we formal-
ize in terms of the language Datalog [50]. Both Horn clauses and 2SAT fall into
this subclass; we show that linear equations modulo 2 do not. Subgroup problems
are group-theoretic problems where the constraints are expressed as subgroup con-
straints. Linear equations modulo 2 fall into this subclass. Not only are these sub-
classes solvable in polynomial time, but, at present, all known polynomially solvable
constraint-satisfaction problems can be explained in terms of these conditions.

Assuming that these conditions are indeed the only possible causes for polynomial
solvability for problems in CSP, this poses a new classification problem.

Secondary classification question: Which problems in CSP are bounded-width
problems and which are subgroup problems?

The main issue here is that it is not clear whether membership in these subclasses
of CSP is decidable.

Our results provide some progress in understanding the bounded-width and sub-
group subclasses. For example, for the bounded-width problems, our results provide
a classification for the 1-width problems in CSP (these are the problems that can be
solved by monadic Datalog programs). We also identify a property of problems, which
we call the ability to count. We prove that this property implies that the problem
cannot be solved by means of Datalog. Once a constraint-satisfaction problem has
the ability to count, it is still possible in many cases to solve it by group-theoretic
means.

62 TOMÁS FEDER AND MOSHE Y. VARDI

While all known polynomially solvable problems in CSP can be reduced to the
bounded-width and group-theoretic subclasses, not all such problems belong to those
classes from the start. For example, we show that under some conditions nonsub-
group problems can be reduced to the subgroup subclass. These conditions are stated
in terms of the new notion of nearsubgroup, and delineating the boundary between
polynomially solvable and NP-complete group-theoretical problems seems to require
certain progress in finite-group theory.

The remainder of the paper is organized as follows. Section 3 introduces the
logic class MMSNP as the largest subclass, in some sense, of SNP, that is not com-
putationally equivalent to all of NP. Section 4 introduces the class CSP as a subclass
of MMSNP which is essentially equivalent to MMSNP. Section 5 studies three sub-
classes of CSP, the graph-retract, digraph-homomorphism, and partial order-retract
problems, essentially equivalent to all of CSP. Section 6 considers classes of prob-
lems in CSP that are polynomially solvable. Section 6.1 considers the bounded-width
problems, which are those that can be solved by means of Datalog, and their rela-
tionship to two-player games. Sections 6.1.1 and 6.1.2 examine two special subclasses
of the bounded-width case for which membership is decidable, namely, the width 1
case with its connection to the notion of tree duality, and the strict width l case
with its connection to the Helly property. Section 6.2 examines which problems are
not of bounded width via a notion called the ability to count. Section 6.3 considers
the group-theoretic case and introduces the notion of nearsubgroup in an attempt to
understand the boundary between tractability and intractability. Section 7 explores
further directions for a possible complete classification. An appendix explores the
connection between constraint satisfaction and Etter’s link systems.

3. Monotone monadic SNP without inequality. The class SNP [32, 44] (see
also [14]) consists of all problems expressible by an existential second-order sentence
with a universal first-order part, namely, by a sentence of the form (∃S′)(∀x)Φ(x, S, S′),
where Φ is a first-order quantifier-free formula. That is, Φ is a formula built from
relations in S and S′ applied to variables in x, by means of conjunctions, disjunctions,
and negation. Intuitively, the problem is to decide, for an input structure S, whether
there exists a structure S′ on the same domain such that for all values in this domain
for the variables in x it is true that Φ(x, S, S′) holds. We will refer to the relations of
S as input relations, while the relations of S′ will be referred to as existential relations.
The 3SAT problem is an example of an SNP problem: the input structure S consists
of four ternary relations C0, C1, C2, C3 on the domain {0, 1}, where Ci corresponds to
a clause on three variables with the first i of them negated. The existential structure
S′ is a single monadic relation T describing a truth assignment. The condition that
must be satisfied states that for all x1, x2, x3, if C0(x1, x2, x3) then T (x1) or T (x2)
or T (x3), and similarly for the remaining Ci by negating T (xj) if j ≤ i. We are
interested in the following question.

Which subclasses of NP have the same computational power as all of NP?

That is, which subclasses of NP are such that for every problem in NP there is
a problem in the subclass equivalent to it under polynomial time reductions. More
precisely, we say that two problems A and B are equivalent under polynomial time
reductions if there is a polynomial time reduction from A to B, as well as a polynomial
time reduction from B to A. It turns out that every problem in NP is equivalent to
a problem in SNP under polynomial time reductions. This means that for every
problem A in NP, there is a problem B in SNP such that there is a polynomial
time reduction from A to B, as well as a polynomial time reduction from B to A.

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 63

In fact, we now show that this is the case even for restrictions of SNP. We start by
assuming that the equality or inequality relations are not allowed in the first-order
formula, only relations from the input structure S or the existential structure S′.
For monotone SNP without inequality, we require that all occurrences of an input
relation Ci in Φ have the same polarity. (The polarity of a relation is positive if it
is contained in an even number of subformulas with a negation applied to it, and
it is negative otherwise.) By convention, we assume that this polarity is negative,
so that the Ci can be interpreted as constraints, in the sense that imposing Ci on
more elements of the input structure can only make the instance “less satisfiable.”
Note that 3SAT as described above has this property. For monadic SNP without
inequality, we require that the existential structure S′ consist of monadic relations
only. This is again the case for 3SAT described above. For monotone monadic SNP
with inequality, we assume that the language also contains the equality relation, so
both equalities and inequalities are allowed in Φ. (If we consider that equalities and
inequalities appear with negative polarity, then only inequalities give more expressive
power, since a statement of the form “if x = y then Φ(x, y)” can be replaced by
“Φ(x, x).”)

We have thus taken the class SNP, and we are considering three possible syntactic
restrictions, namely, monotonicity, monadicity, and no inequality. We shall later be
especially interested in SNP with all three syntactic restrictions imposed. However,
for now, we are only considering the cases where only two of these three syntactic
restrictions are simultaneously imposed.

Theorem 1. Every problem in NP has an equivalent (under polynomial time
reductions) problem in monotone monadic SNP with inequality.

Proof. Hillebrand et al. [30] showed that monadic Datalog with inequality (but
without negation) can verify a polynomial time encoding of a Turing machine compu-
tation; the machine can be nondeterministic. A Datalog program is a formula Φ that
consists of a conjunction of formulas of the form R0(x0) ← R1(x1) ∧ · · · ∧ Rk(xk),
where the xi may share variables. The relation R0 cannot be an input relation, and
monadicity here means that R0, as a relation that is not an input relation, must be
monadic or of arity zero; furthermore an Ri may be an inequality relation. There is
a particular R̂0 of arity zero that must be derived by the program in order for the
program to accept its input; this means that the input is rejected by the Datalog
program if (∃R)(∀x)(Φ(R,S,x) ∧ ¬R̂0). Notice that this formula Φ′ is a monotone
monadic SNP with inequality formula. Here S describes the computation of a non-
deterministic Turing machine, including the input, the description of the movement
of the head on the tape of the machine, and the states of the machine and cell values
used during the computation. We would now like to assume that the computation of
the machine is not known ahead of time. That is, only the input to the machine is
given; the movement of the head and the cell values are not known and are quantified
existentially. Unfortunately, the description of the movement of the head does not
consist of monadic relations and may depend on the input to the machine. We avoid
this difficulty by assuming that the Turing machine is oblivious; i.e., the head traverses
the space initially occupied by the input back and forth from one end to the other,
and accepts in exactly nk steps for some k. We can then assume that the movement
of the head is given as part of the input, since it must be independent of the input for
such an oblivious machine. Thus only the states of the machine and cell values used
during the computation must be quantified existentially, giving a monotone monadic
SNP with inequality formula that expresses whether the machine accepts a given in-

64 TOMÁS FEDER AND MOSHE Y. VARDI

put or not. A particular computation is thus described by a choice of states and cell
values, which are described by monadic existential relations that are then used as in-
puts to the Datalog program. The condition that must be satisfied is that if a state is
marked as being the (nk)th state (this is determined by a deterministic component of
the machine), then it must also be marked as being an accepting state (this depends
on the nondeterministic choice of computation). The monotone monadic SNP with
inequality formula will thus reject an instance if it does not describe an input followed
by the correct movement of the head for the subsequent oblivious computation, accept
the instance if the number of cells allowed for the computation is smaller than nk,
and otherwise accept precisely when the machine accepts.

Theorem 2. Every problem in NP has an equivalent (under polynomial time
reductions) problem in monadic SNP without inequality.

Proof. Since the existence of an equivalent problem in monotone monadic SNP
with inequality for every problem in NP was previously shown, it is sufficient to
remove inequalities at the cost of monotonicity.

To remove inequalities at the cost of monotonicity, introduce a new binary input
relation eq, augment the formula by a conjunct requiring eq to be an equivalence
relation with the property that if an input or existential monadic relation holds on
some elements, then it also holds when an element in an argument position is replaced
by an element related to it under eq; finally, replace all occurrences of x 6= y by
¬eq(x, y). Thus the formula no longer contains inequalities, but it contains an input
relation that appears with both positive and negative polarity; i.e., it is no longer
monotone. The formula is therefore a monadic SNP without inequality formula.

Theorem 3. Every problem in NP has an equivalent (under polynomial time
reductions) problem in monotone SNP without inequality.

Proof. Since the existence of an equivalent problem in monotone monadic SNP
with inequality for every problem in NP was previously shown, it is sufficient to
remove inequalities at the cost of monadicity.

To remove inequalities at the cost of monadicity, the intuition is that up to equiv-
alence, certain marked elements form a succ path with pred as its transitive closure.
Introduce a monadic input relation special, a binary input relation succ, a monadic
existential relation marked, a binary existential relation eq, and a binary existential
relation pred. Require now that every special element be marked, and every element
related to a marked element under succ (in either direction) be marked. Require that
pred be transitive but not relate any element to itself, that two elements related by
succ be related by pred (in the same direction), that eq be an equivalence relation,
that any two special elements be related by eq, that pred be preserved under the re-
placement of an element by an element related to it by eq, and that if two elements
are related by eq and if each has a related element under succ (in the same direction),
then these two other elements are also related by eq. Finally, restrict the original
formula to marked elements, replace x 6= y by ¬eq(x, y), and consider that a relation
holds on some elements if it is imposed on elements related to them by eq . Note that
on elements that are forced to be marked, the relations eq and pred can be defined
in at most one way, giving a succ path (up to eq, with pred as its transitive closure).

From these three theorems, by Ladner’s result [35] that if P6=NP then there exist
problems in NP that are neither in P nor NP-complete, Theorem 4 follows.

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 65

Theorem 4. If P 6= NP, then there are problems in each monotone monadic
SNP with inequality, monadic SNP without inequality, and monotone SNP without
inequality, that are neither in P nor NP-complete.

We now consider the class MMSNP, which is monotone monadic SNP, without
inequality. That is, in MMSNP we impose all three restrictions simultaneously (in-
stead of just two at a time as in the three subclasses of SNP considered above). It
seems impossible to carry out Ladner’s diagonalization argument in MMSNP. Thus,
the dichotomy question from the introduction also applies to this class.

4. Constraint satisfaction. Let S and T be two finite relational structures over
the same vocabulary. A homomorphism from S to T is a mapping from the elements
of S to elements of T such that all elements related by some relation Ci in S map to
elements related by Ci in T . If T is the substructure of S obtained by considering
only relations on a subset of the elements of S, and the homomorphism h from S to
T is just the identity mapping when restricted to T , then h is called a retraction, and
T is called a retract of S. If no proper restriction T of S is a retract of S, then S is a
core; otherwise its core is a retract T that is a core. It is easy to show that the core
of a structure S is unique up to isomorphism.

Here a constraint-satisfaction problem (or structure-homomorphism problem) will
be a problem of the following form. Fix a finite relational structure T over some
vocabulary; T is called the template. An instance is a finite relational structure S
over the same vocabulary. The instance is satisfied if there is a homomorphism from
S to T . Such a homomorphism is called a solution. We define CSP to be the class
of constraint-satisfaction problems. We can assume that T is a core and include a
copy of T in the input structure S, so that the structure-homomorphism problem is
a structure-retract problem.

Remark. It is possible to define constraint satisfaction with respect to infinite
templates. For example, digraph acyclicity can be viewed as the question of whether
a given digraph can be homomorphically mapped to the transitive closure of an infinite
directed path. We will not consider infinite templates in this paper. If we allow infinite
structures T , then the constraint-satisfaction problems are just the problems whose
complement is closed under homomorphisms, with the additional property that an
instance with satisfiable connected components is satisfiable. Note that all problems in
monotone SNP, without inequality, have a complement closed under homomorphisms.

We shall later show that CSP is strictly contained in MMSNP, and that every
problem in MMSNP has an essentially equivalent problem in CSP, up to randomized
polynomial time reductions. To obtain this result, we need a preliminary result that
will often be used later in the paper as well.

We say that a structure S has girth greater that k if for any choice of at most k
occurrences of relations Ri of arity ri in S, the total number of elements mentioned
by these k occurrences is at least 1 +

∑
(ri − 1). That is, k or fewer occurrences of

relations never form a cycle.

Theorem 5. Fix two integers k, d. Then for every structure S on n elements
there exists a structure S′ on na elements (where a depends only on k and d) such
that the girth of S′ is greater than k, there is a homomorphism from S′ to S, and for
every structure T on at most d elements over the same vocabulary as S, there is a
homomorphism from S′ to T if and only if there is a homomorphism from S to T .
In brief, every instance S of the constraint-satisfaction problem defined by T can be
replaced by an instance S′ of high girth. Furthermore, S′ can be constructed from S
in randomized polynomial time.

66 TOMÁS FEDER AND MOSHE Y. VARDI

Proof. The transformation that enforces large girth is an adaptation of a random-
ized construction of Erdős [11] of graphs with large girth and large chromatic number.
Given a structure S on n elements, define S′ by making N = ns copies of each ele-
ment, where s is a large constant. If a relation R of arity r was initially imposed on
some r elements, then it could a priori be imposed on Nr choices of copies. Impose
R on each such choice with probability N1−r+ε, where ε is a small constant. We thus
expect to impose R on N1+ε copies. If R has arity r = 1, impose R on all copies of
the element.

Finally, remove one relation from each cycle with at most k relations, i.e., minimal
sets of relations Ri of arity ri involving t ≤ ∑(ri − 1) elements all together. Now,
given such a cycle, it must correspond to a cycle that existed before the copies were
made. The number of possible such short cycles is at most na for some constant
a. Each such short cycle could occur in N t choices of copies. For each such choice,
the probability that it occurs is

∏
N1−ri+ε, so the expected number of occurrences

is naN t
∏
N1−ri+ε ≤ Na/s+kε = N ε′ , and hence no more than twice this much with

probability at least 1/2 by Markov’s inequality.

It is clear that if before making copies, there is a homomorphism from S to
some T , then there is a homomorphism from S′ to T as well: S′ maps to S by a
homomorphism. To obtain a converse, suppose that a homomorphism maps S′ to T .
If we consider the N copies of a particular element, then at least N/d of the copies
agree on the image in T . If we select these copies, for each of the n elements, then
the expected number of copies of a relation R of arity r is (N/d)

r
N1−r+ε = N1+ε/b

for some constant b, and hence the probability that the number of copies is not even
half this much is only e−N

1+ε/c for some constant c by the Chernoff bound, since the
occurrences of copies are independent. The total number of occurrences of relations
R in the instance is nr, and the number of possible choices of subsets of size N/d for
the copies of the elements involved is at most 2rN , and hence the probability that
some choice of subsets will involve only N1+ε/2b copies of some relation is at most

nr2rNe−N
1+ε/c, hence very small. Once N1+ε/2b copies are present, the removal

of 2N ε′ of them is insignificant, provided s is large enough and ε is small enough.
Therefore any choice of values in T for elements that appears on N/d of the copies
will give a mapping from S to T .

It remains open to derandomize this construction. The key question seems to be
whether the construction of Erdős can be derandomized, i.e., whether given a fixed
integer k, for integers n, there is a deterministic algorithm running in time polynomial
in n that produces a graph of size polynomial in n, chromatic number at least n, and
girth at least k. It may be possible to use quasi-random graphs for this purpose.

It is easy to see that CSP is contained in MMSNP. Let T be a template. Then
there is a monadic monotone existential second-order sentence φT (without inequality)
that expresses the constraint-satisfaction problem defined by T . For each element a
in the domain of the template T , we introduce an existentially quantified monadic
relation Ta; intuitively, Ta(x) indicates that a variable x has been assigned value a by
the homomorphism. The sentence φT says that the sets Ta are disjoint and that the
tuples of S satisfy the constraints given by T .

It can be shown that CSP is strictly contained in MMSNP. Nevertheless, as the
following two theorems show, in terms of the complexity of its problems, CSP is just
as general as MMSNP.

We begin with a simple example of an MMSNP problem that is not a constraint-
satisfaction problem: testing whether a graph is triangle-free. If it were a constraint-

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 67

satisfaction problem, there would have to exist a triangle-free graph to which one can
map all triangle-free graphs by a homomorphism. This would require the existence
of a triangle-free graph containing as induced subgraphs all triangle-free graphs such
that all nonadjacent vertices are joined by both a path of length 2 and a path of
length 3 (since a homomorphism can add edges or collapse two vertices); there are

2Ω(n2) such graphs on n vertices, forcing T to grow exponentially in the size of S. On
the other hand, this monotone monadic SNP problem can be solved in polynomial
time, and is hence equivalent to a trivial constraint-satisfaction problem.

A more interesting example is the following: testing whether a graph can be
colored with two colors with no monochromatic triangle (it can easily be related to
the triangle-free problem to show that it is not a constraint-satisfaction problem).
However, it can be viewed as a special case of not-all-equal 3SAT, where each clause
is viewed as a triangle, and it is essentially equivalent to this NP-complete constraint-
satisfaction problem.

Theorem 6. CSP is contained in MMSNP. Every problem in MMSNP is poly-
nomially equivalent to a problem in CSP. The equivalence is by a randomized Turing
reduction from the CSP problem to the MMSNP problem and by a deterministic Karp
reduction from the MMSNP problem to the CSP problem.

Proof. We just saw that CSP is contained in MMSNP; we prove the second
statement. In fact, we can use a randomized Karp reduction if we only consider
connected instances of the constraint-satisfaction problem; disconnected instances
simply require a solution for each connected component.

Consider an MMSNP problem that asks, for an input structure S, whether there
exists a monadic structure S′ such that for all x, Φ(x, S, S′). We write Φ in conjunctive
normal form, or more precisely, as a conjunction of negated conjunctions. We can as-
sume that each negated conjunction describes a biconnected component. For consider
first the disconnected case, so that we have a conjunct of the form ¬(A(x) ∧ B(y)),
where x and y are disjoint variable sets. We can then introduce an existential zero-
adic relation p and write instead (A(x) → p) ∧ (B(y) → ¬p). The case where A and
B share a single variable z is treated similarly; we introduce an existential monadic
relation q, and replace ¬(A(x, z) ∧B(y, z)) by (A(x, z) → q(z)) ∧ (B(y, z) → ¬q(z)).
If the conjunction cannot be decomposed into either two disconnected parts, or two
parts that share a single articulation element z, we say that it describes a biconnected
component. Before carrying out this transformation, we assume for each negated
conjunction that every replacement of different variables by the same variable is also
present as a negated conjunction. For instance, if ¬A(x, y, z, t, u) is present, then so
is ¬A(x, x, z, z, u). This must be enforced beforehand, since biconnected components
may no longer be biconnected when distinct variables are collapsed. We also assume
that if an input relation R appears with all arguments equal, say, as R(x, x, x), then
it is the only input relation in the negated conjunction; otherwise, we can introduce
an existential monadic p, replace such an occurrence of R by p(x), and add a new
condition R(x, x, x) → p(x); in other words, x is in this case an articulation element.

The next transformation is the main step; we enforce that each negated conjunc-
tion contains at most one input relation, and that the arguments of this input relation
are different variables. For each negated conjunction, introduce a relation R whose
arity is the number of distinct variables in the negated conjunction. Intuitively, this
relation stands for the conjunction C of all input relations appearing in the negated
conjunction. We replace the conjunction C by the single relation R; also, if the corre-
sponding conjunction C ′ for some other negated conjunction is a subconjunction of C,

68 TOMÁS FEDER AND MOSHE Y. VARDI

then we include the negated conjunction obtained by replacing C ′ with the possibly
longer C, using new variables if necessary, and then replace C by R. Here we are
not considering the case where it might be necessary to replace two arguments in R
by the same argument; this will be justified because such instantiations were handled
beforehand.

We must argue that the new MMSNP problem of the special form is equivalent to
the original problem. Clearly, every instance of the original problem can be viewed as
an instance of the new problem, simply by introducing a relation R on distinct input
elements whenever the conjunction C that is represented by R is present on them in
the input instance.

On the other hand, the converse is not immediately true. If we replace each
occurrence of R by the appropriate conjunction C, then some additional occurrences of
R may be implicitly present. Consider, for example, the case where triangles E(x, y)∧
E(y, z) ∧ E(z, x) have been replaced by a single ternary relation R(x, y, z). Then an
instance of the new problem containing R(x1, y1, x2), R(x2, y2, x3), and R(x3, y3, x1)
also contains the triangle represented by R(x3, x2, x1), when each R is replaced by
the conjunction that it stands for.

To avoid such hidden occurrences of relations, we show that every instance of the
new problem involving the R relations can be transformed into an equivalent instance
of large girth; the girth is the length of the shortest cycle. Fix an integer k larger than
the number of conjuncts in any conjunction C that was replaced by an R. We shall
ensure that for any choice of at most k occurrences of relations Ri of arity ri in the
instance, the total number of elements mentioned by these k occurrences is at least
1+
∑

(ri−1), so the girth is greater than k; this implies that such k occurrences define
an acyclic substructure, so any biconnected R′ implicitly present in the union of k
such occurrences must be entirely contained in one of the Ri, and then the condition
stated by R′ was already stated for this Ri as well.

Large girth can be enforced by applying the previous theorem, provided the new
problem can be viewed as a constraint-satisfaction problem. The new problem is
very close to a constraint-satisfaction problem. In fact, it is a constraint-satisfaction
problem if there are no zero-ary existential relations: construct the structure T by
introducing one element for each combination of truth assignments for existential
monadic relations on a single element, except for those combinations explicitly for-
bidden by the formula; impose a relation R on all choices of elements in T except for
those combinations explicitly forbidden by the formula. To remove the assumption
that there are no existential zero-ary relations, do a case analysis on the possible truth
assignments for such relations, and make T the disjoint union of the Ti obtained in
the different cases. The only difficulty here is that we must ensure that a disconnected
instance still maps to a single Ti, so we introduce a new binary relation that holds
on all pairs of elements from the same Ti, and consider only connected instances of
the constraint-satisfaction problem. This concludes the proof. As mentioned before,
solving disconnected instances is equivalent to solving all connected components of
the constraint-satisfaction problem.

The construction in the last theorem can also be used to show the following result,
which will be proven useful later. The containment problem asks whether given two
problems A and B over the same vocabulary, every instance accepted by A is also
accepted by B.

Theorem 7. Containment is decidable for problems in MMSNP.

Proof. (This problem becomes undecidable when the antecedent of the contain-
ment is generalized to monotone binary SNP without inequality, using Datalog to

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 69

encode Turing machines as before.) To decide whether A is contained in B for MM-
SNP problems, first assume that A and B are written in the canonical form involving
biconnected components from the above proof. Also remove the existential quantifier
in A (since it is in the antecedent of an implication), so that A is now a universal for-
mula which is monotone except for monadic relations. Now, if B has an instance with
no solution that satisfies A, then making copies of elements of the instance as before,
we can assume that the only biconnected components that arise are those explicitly
stated in the conditions for B, so go through the forbidden biconnected components
stated in A and remove all negated conjunctions in B that mention them (since the
stated condition will never arise on instances satisfying A). Here we must assume
that B stated explicitly, for each element mentioned in a negated conjunction, which
monadic relations are true or false. Now we can assume that A holds, and we are left
to decide whether B is a tautology; this can be decided by considering the instance
consisting of one element for each possible combination of truth and falsity of monadic
input relations, and then imposing all other kinds of relations on all elements.

5. Graphs, digraphs, partial orders. We have seen that CSP has the same
computational power as all of MMSNP. We ask the following question.

Which subclasses of CSP have the same computational power as all of CSP?

The graph-retract problem is an example of a constraint-satisfaction problem. Fix
a graph H, and for an input graph G containing H as a subgraph, ask whether H is a
retract of G. (Note that when G and H are disjoint, we get the graph-homomorphism
or H-coloring problem mentioned in the introduction [24].)

The digraph-homomorphism problem is another example of a constraint-satisfaction
problem: this is the case where the template is a digraph. For an oriented cycle (cycle
with all edges oriented in either direction), the length of the cycle is the absolute value
of the difference between edges oriented in one direction and edges oriented in the op-
posite direction. A digraph is balanced if all its cycles have length zero; otherwise it
is unbalanced. The vertices of balanced digraphs are divided into levels, defined by
level(v) =level(u) + 1 if (u, v) is an edge of the digraph.

A partial order is a set with a reflexive antisymmetric transitive relation ≤ defined
on it. If reflexive is replace by antireflexive, we have a strict partial order. We may
also consider homomorphism and retract problems for partial orders.

Theorem 8. Every constraint-satisfaction problem is polynomially equivalent to
a bipartite graph-retract problem.

Proof. First ensure that the structure T defining the problem in CSP is a core.
This ensures that each element in T is uniquely identifiable by looking at the structure
T , up to isomorphisms of T ; i.e., we can include a copy of T in an instance S and
then assume that the elements of the copy of T in S must map to the corresponding
elements of T . Next, assume that T can be partitioned into disjoint sets Aj so that
for each relation Ci, the possible values for each argument come from a single Aj , and
the possible values for different arguments come from different Aj ; this can be ensured
by making copies Aj of the set of elements of T and allowing an equality constraint
between copies of the same element in different Aj . Now, the bipartite graph H
consists of a single vertex for each Aj which is adjacent to vertices representing the
elements of Aj ; a single vertex for each relation Ci which is adjacent to vertices
representing the tuples satisfying Ci; a bipartite graph joining the tuples coming from
each Ci to the elements of the tuples from the Aj ; and two additional adjacent vertices,
one of them adjacent to all the elements of sets Aj , and the other one adjacent to all
the tuples for conditions Ci.

70 TOMÁS FEDER AND MOSHE Y. VARDI

To see that the resulting retract problem on graphs is equivalent to the given
constraint-satisfaction problem, observe in one direction that an instance of the con-
straint-satisfaction problem can be transformed into an instance of the graph-retract
problem, by requiring each element to range over the copy A1 (just make it adjacent
to the vertex for A1 in H), and then to impose a constraint Ci of arity r on some
elements, create a vertex adjacent to the vertex for Ci, and make this vertex adjacent
to r vertices, each of which is adjacent to the vertex for the appropriate Aj (the r
values for j are distinct); then make sure that the value chosen in Aj is the same as
the value for the intended element in A1, using an equality constraint. In the other
direction, an instance of the graph-retract problem can be assumed to be bipartite,
since H is bipartite; furthermore, each vertex can be assumed to be adjacent to either
an Aj or Ci, since all other vertices can always be mapped to the two additional
vertices that were added for H at the end of the construction. Then each vertex
adjacent to vertex Aj can be viewed as an element ranging over Aj , and each vertex
adjacent to vertex Ci can be viewed as the application of Ci on certain elements.

Given a bipartite graph H, we say for two vertices x, y on the same side of H that
x dominates y if every neighbor of y is a neighbor of x. We say that H is domination-
free if it has no x 6= y such that x dominates y. If R is a graph, we say that H is
R-free if H contains no induced subgraph isomorphic to R. We are interested in the
cases where R is either K3,3, a complete bipartite graph with three vertices on each
side, or K3,3 minus a single edge. The following result will be used later in the study
of the partial order-retract problem.

Theorem 9. Every constraint-satisfaction problem is polynomially equivalent to
a domination-free, K3,3-free, K3,3\{e}-free bipartite graph-retract problem.

Proof. We first show that every constraint-satisfaction problem is equivalent
to a K3,3-free, K3,3\{e}-free bipartite graph-retract problem. We then show how
domination-freedom can in addition also be achieved.

We know that every constraint-satisfaction problem can be encoded as a bipartite
graph-retract problem. To achieve K3,3-freedom and K3,3\{e}-freedom, we encode the
bipartite graph-retract problem again as a bipartite graph-retract problem, by reusing
essentially the same reduction.

So we are given a bipartite graph-retract problem with template H = (S, T,E),
which we shall show polynomially equivalent to another bipartite graph-retract prob-
lem with template H ′ = (U, V, F). We introduce five new elements r, s, t, s′, t′, and
define H ′ by U = {r} ∪ S ∪ T , V = {s, t, s′, t′} ∪ E, and F = ({r} × ({s′, t′} ∪ E)) ∪
(S × {s, s′}) ∪ (T × {t, t′}) ∪ {(u, e) : u ∈ S ∪ T, e ∈ E, u ∈ e}.

Let G = (S′, T ′, E′) be an instance for H. (We can assume that G is bipartite
since it otherwise cannot map to H, and that we know that S′ maps to S and T ′

maps to T because it is connected to the subgraph H; any other component of G can
be mapped to a single edge of H.) We define an instance G′ = (U ′, V ′, F ′) for H ′

by letting U ′ = {r} ∪ S′ ∪ T ′, V ′ = {s, t, s′, t′} ∪ E′, and defining F ′ by letting r be
adjacent to all of E′, s adjacent to all of S′, t adjacent to all of T ′, and each e ∈ E′

adjacent to the two vertices in S′ ∪ T ′ it joins in G. It is immediate in the instance
G′ for H ′ that S′ must map to S, T ′ to T , and E′ to E with e ∈ E′ mapping to
the element of E joining the images of the two vertices incident on e in G, so the
retractions mapping G to H and those mapping G′ to H ′ correspond to each other.

In the other direction, let G′ = (U ′, V ′, F ′) be an instance for H ′. Since s′, t′

dominate s, t, respectively, no element need ever be mapped to s, t, other than s, t

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 71

themselves. So we can require that the neighbors of s, t map to elements of S, T ,
respectively, and then remove s, t from H ′ and G′. We can then assume that every
element of U ′ that is not required to map to S or T maps to r, since r is adjacent
to what remains of V . We can now remove r from H ′ and G′. Now if a vertex in
V ′ is only adjacent to vertices that map to S we map it to s′, if only to vertices that
map to T , we map it to t′, and if to both, it must map to E, thus defining a retract
problem instance for H.

It only remains to show that H ′ is K3,3-free and K3,3\{e}-free, and then to
enforce dominance-freedom. Suppose that H ′ contains H0, which is either a K3,3 or
a K3,3\{e}. Then every vertex v in the right side of H0 must belong to the 3-side
of a K2,3. This immediately gives v 6= s, t because any pair of neighbors of s is only
adjacent to s, s′, and similarly for t. So we can remove s, t in looking for H0. Two
vertices in S, T , respectively, share only one neighbor, so H0 involves at most one of
S, T, and we can remove one of them, say T . Two vertices in S have only s′ as a
common neighbor, so H0 can have at most one vertex u in S. But this leaves only
two vertices r, u in one side, so there is no H0.

The last step enforces dominance-freedom. Suppose that x dominates y. Let
H1 be the graph consisting of an 8-cycle C8 = (1, 2, 3, 4, 5, 6, 7, 8), a 4-cycle C4 =
(1′, 2′, 3′, 4′), and additional edges joining each i′ to both i and i+ 4. We join H1 to
H ′, with y = 1′ as common vertex in H1 and H ′. This does not introduce any new
dominated vertices, and y is no longer dominated. Furthermore H1 contains no K3,2.
So we only need to show that joining an H1 at a vertex y gives an equivalent retract
problem. If an instance for H ′ maps to H ′, it also maps to H ′ with H1 joined; if it
maps to H ′ with H1 joined, since no vertices are forced to map to H1 other than y,
we can map all of H1 to y and one of its neighbors in H ′, so the instance maps to H ′.
In the other direction, consider an instance for H ′ with H1 joined. Certain vertices
are required to map to specific vertices in C8. If a vertex is adjacent to two vertices
at distance 2 in C8, then it must map to their unique common neighbor in C8. So if a
vertex v is adjacent to vertices in C8, we may assume it is adjacent to either just one
vertex in C8 or two opposite vertices in C8; in either case, we may assume that such
a v maps to the unique vertex in C4 having these adjacencies, and remove C8 from
the template. So the template is now H ′ with C4 joined at a vertex y = 1′. Now for
3′, we may insist that its neighbors map to {2′, 4′}, and no other vertex maps to 3′

since 1′ now dominates 3′, so we may remove 3′ from the graph. Then if a vertex is
labeled 2′, 4′, or {2′, 4′}, its neighbors must map to 1′, and we may remove 2′ and 4′

from the graph since every neighbor of y = 1′ in H ′ now dominates them. So we have
reduced the instance for H ′ with H1 joined to an instance for H ′ alone, as desired.

Theorem 10. Every constraint-satisfaction problem is polynomially equivalent
to a balanced digraph-homomorphism problem.

Proof. We encode the graph-retract problem as a balanced digraph-homomorphism
problem. Draw the bipartite graph with one vertex set on the left and the other on
the right, and orient the edges from left to right. What remains is to distinguish the
different vertices on each side. We describe the transformation for vertices in the right;
a similar transformation is carried out for vertices in the left. In an oriented path, let
1 denote a forward edge and 0 a backward edge. If there are k vertices 0, 1, . . . , k− 1
on the right, starting at the ith vertex, add an oriented path (110)

i
1(110)

k−i−1
11.

The intuition is that none of these paths maps to another one of them, and that if a
digraph maps to two of them, then it maps to (110)

k
11, hence to all of them. Fur-

72 TOMÁS FEDER AND MOSHE Y. VARDI

thermore, the question of whether a digraph maps to an oriented path is polynomially
solvable; see sections 6.1.1 and 6.1.2.

Theorem 11. Every constraint-satisfaction problem is polynomially equivalent
to an unbalanced digraph-homomorphism problem.

Proof. First assume that the given constraint-satisfaction problem consists of a
single relation R of arity k; multiple relations can always be combined into a single
relation by taking their product and adding their arities. Now, define a new constraint-
satisfaction problem whose domain consists of k-tuples from the original domain; thus
R is now a monadic relation. In order to be able to state an equality constraint among
different components of different tuples, define a “shift” relation S(t, t′) on tuples
t = (x1, x2, . . . , xk−1, y) and t′ = (z, x1, x2, . . . , xk−1); one can use such shifts to state
that certain components of certain tuples coincide.

We have thus reduced the general constraint-satisfaction problem to a single
monadic and a single binary relation. It is clear that any instance of the original
problem can be represented using tuples on which the constraint R is imposed, and
the relation S allows us to state that components of different tuples take the same
value; similarly, the new problem only allows us to impose constraints from the orig-
inal problem. We wish to have a single binary relation alone, i.e., a digraph. Define
the following dag D. It has vertices corresponding to the tuples from the constraint-
satisfaction problem just constructed. For each relation S(t, t′) that holds, introduce
a new vertex joined by a path of length 1 to t and by a path of length 2 to t′. For
each relation R(t) that holds, introduce a new vertex joined by a path of length 3 to
t. This completes the dag.

We show that the digraph homomorphism problem for D is equivalent to the
original constraint-satisfaction problem. In one direction, given an instance of the
original problem involving S and R, tag each element with a reverse path of length 2
followed by a path of length 1 followed by a reverse path of length 2. This ensures that
the element can be mapped precisely to vertices in D representing elements of the
domain; note here that we are using the fact that each t′ is related to some t by S in
the domain of the constraint-satisfaction problem. To state S(t, t′) and R(t) on such
elements, use incoming paths of lengths 1, 2, 3 as for D above. In the other direction,
suppose that we have an instance of the digraph-homomorphism problem. We can
assume that the instance is a dag, since D is a dag. We can also assume that if a
vertex has both incoming and outgoing edges, then it has only a single incoming and
a single outgoing edge, because this holds in D, so we could always collapse neighbors
to enforce this. The input dag now looks like a bipartite graph (A,B, P), with disjoint
(except at their endpoints) paths of different lengths joining vertices in A to vertices
in B (all in the same direction). We can assume that the paths have length at most
3, since D has no path of length 4. We can also assume that a vertex at which a path
of length 3 starts necessarily starts just this path, because this is the case in D. We
can also assume that a vertex can start at most a single path of length 2, since this is
the case in D. We also assume that a vertex starts at most a single path of length 1;
the only way two different paths of length 1 could go in different directions would be
if one of them mapped on the path of length 2 out of an out-degree-2 vertex v in D;
but then, since the endpoint has no outgoing edges, all its neighbors would necessarily
map to v, and so we could have mapped this endpoint to the other neighbor of v along
the path of length 1. We can also assume that the only vertices that will map to an
attached path of length 3 are vertices on a path of length 3; the reason is that if a
directed graph containing no path of length 3 can be mapped to a reverse path of

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 73

length 3, then it can be mapped to a reverse path of length 2 followed by a path of
length 1 followed by a reverse path of length 2, and this configuration can be found
in D from a fixed endpoint of a path of length 3 without using this path (we used
this same configuration before). We can now assume that vertices in A and B map
to vertices in the two corresponding sides of the bipartite graph corresponding to D.
For vertices in B, this is clear if they have incoming paths of length 3, or of length
2 since we have assumed that they do not map to a vertex inside a path of length 3,
or of length 1 since we can assume that they do not map to a vertex inside a path of
length 2; the same is then clear for vertices in A. But then the vertices in B can be
viewed as elements of the original constraint-satisfaction problem, and the vertices in
A can be viewed as imposing constraints on them.

Theorem 12. Every constraint-satisfaction problem is polynomially equivalent
to a bipartite graph-retract problem, but now only allowing three specific vertices of the
template H to occur in the input G (but not just two vertices, which is polynomially
solvable).

Proof. We encode a digraph-homomorphism problem. The encoding introduces
three special vertices r, b, g, which may occur in G, three additional vertices r′, b′,
g′ (which cannot appear in G), and a vertex a adjacent to r′, b′, g′; it replaces each
vertex of the dag with a vertex adjacent to r and each edge in the dag with a path
0, 1, 2, 3, 4, 5, 6 of length 6, where the intermediate vertices in positions 2 and 4 are
adjacent to b and g, respectively, while those in positions 1, 3, 5 are adjacent to a;
and, finally, it links r′, b′, g′ to all the vertices linked to r, b, g, respectively. The proof
is here a straightforward encoding argument.

A bipartite graph with just two distinguished vertices can always be retracted to
just a path joining the two vertices, namely, a shortest such path; this is then the
core, which defines a polynomially solvable problem.

Theorem 13. Every constraint-satisfaction problem is polynomially equivalent
to a balanced digraph-homomorphism problem, but now for a balanced digraph with
only five levels (but not just four levels, which is polynomially solvable).

Proof. The digraph-homomorphism problem can be encoded as a balanced digraph-
homomorphism problem with only five levels. Given an arbitrary digraph without
self-loops, represent all vertices as vertices at level 1, and all edges as vertices at level
5. If vertex v has outgoing edge e, join their representations by an oriented path
111011. If vertex v has incoming edge e, join their representations by an oriented
path 110111. If neither relation holds, join their representations by an oriented path
11011011. The key properties are that neither of the first two paths map to each other,
and that a digraph maps to the third path if and only if it maps to the first two. Now
given a digraph, we can decompose it into connected components by removing the
vertices at levels 1 and 5. Each such component either maps to none of the three
paths (in which case no homomorphism exists), or to all three of them (in which case
it imposes no restriction on where the boundary vertices at levels 1 and 5 map), or to
exactly one of the first two paths (in which case it indicates an outgoing or incoming
edge in the original graph). Thus every instance of the new problem can be viewed
as an instance of the original problem, given the fact that mapping digraphs to paths
is polynomially solvable; see sections 6.1.1 and 6.1.2.

Another case of interest is that of reflexive graphs, i.e., graphs with self-loops.
The homomorphism problem is not interesting here, since all vertices may be mapped
to a single self-loop. We consider the reflexive graph-retract problem, as well as
two other related problems. The reflexive graph-list problem is the homomorphism

74 TOMÁS FEDER AND MOSHE Y. VARDI

problem where in addition we may require that some vertex maps to a chosen subset
of the vertices in the template. The reflexive graph-connected list problem allows only
subsets that induce a connected subset of the vertices in the template. The following
results are from Feder and Hell [18, 19].

Theorem 14. Every constraint-satisfaction problem is polynomially equivalent to
a reflexive graph-retract problem. The reflexive graph-retract problem is NP-complete
for graphs without triangles other than trees. The reflexive graph-list problem is poly-
nomially solvable for interval graphs, and NP-complete otherwise. The reflexive graph-
connected list problem is polynomially solvable for chordal graphs, and NP-complete
otherwise. The graph-retract problem for connected graphs with some self-loops is
NP-complete if the vertices with self-loops induce a disconnected subgraph.

For partial orders and strict partial orders, the homomorphism problem is easy,
since the core is either a single vertex, in the case of partial orders, or a total strict
order, in the case of strict partial orders. We examine the corresponding retract
problem. For strict partial orders, even if the strict partial order is bipartite, the
problem is equivalent to the bipartite graph-retract problem and hence to all of CSP.
For partial orders, there are applications to type reconstruction; see Mitchell [41],
Lincoln and Mitchell [42], Wand and O’Keefe [43]. Pratt and Tiuryn [45] showed that
the bipartite partial order-retract problem is polynomially solvable if the underlying
graph is a tree (in fact, in NLOGSPACE), and NP-complete otherwise. We can give
an alternative proof of this result here. If the underlying graph is a tree, we have
a directed reflexive graph whose underlying graph is a tree. If we then associate a
Boolean variable with each subtree, the problem is just a 2SAT problem, because if a
set of subtrees pairwise intersect, then they jointly intersect. For the NP-completeness
result, define an undirected reflexive graph on the same set as the bipartite partial
order, making x, y adjacent if there exist s, t such that s ≤ x, y ≤ t; in this case, this
means that x ≤ y or y ≤ x. This gives a reflexive graph-retract problem on a graph
without triangles and not a tree, which is NP-complete by the preceding theorem.
We now examine the general case. Let the depth of a partial order be the number of
elements in a total suborder.

Theorem 15. Every constraint-satisfaction problem is polynomially equivalent
to a partial order-retract problem, even if only the top and bottom elements of the
partial order can occur in an instance. The equivalence holds even for depth-3 partial
order-retract problems.

Proof. We prove the equivalence to the domination-free bipartite graph-retract
problem, which was shown to be equivalent to all of CSP above. We shall assume that
only the top and bottom elements of the partial order can be used in an instance; to
extend the result to the case where all elements can be used, we can simply consider
the core of the partial order. Let H = (S, T,E) be a domination-free bipartite graph.
Define the corresponding partial order P = (Q,≤) as follows. Let Q be the set of all
bipartite cliques A × B ⊆ E, with A,B 6= ∅. Let A × B ≤ A′ × B′ if A ⊆ A′ and
B′ ⊆ B. If N(v) denotes the set of neighbors of v in H, then the bottom elements
are {a} ×N(a) for a ∈ S and the top elements are N(b)× {b} for b ∈ T .

Given an instance G for H, we can assume that G is bipartite since H is bipartite,
and that G and H share at least a vertex, since otherwise G can be mapped to a single
edge in H, so that we know which side of G maps to S and which to T . Replace
adjacency in G with ≤ from the side mapping to S to the side mapping to T , replace
any occurrence of an H vertex in G by the corresponding bottom or top element in P ,
and ask whether this partial order maps to P . We can assume that top and bottom

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 75

elements map to top and bottom elements, respectively, and on these elements the
≤ relation in P corresponds to edges in H, so solving the problem on P solves the
instance G for H.

In the other direction, given an instance R for P , where R and P only share
top and bottom elements of P , we can assume that such elements are also top and
bottom in R, since everything below a bottom element must map to that bottom
element and everything above a top element must map to that top element. We can
also assume that top and bottom elements in R map to top and bottom elements in
P . To map such elements, determine the bipartite ≤ relation on them, and map them
by solving the problem as a bipartite graph-retract problem for H, with the natural
correspondence between bottom and top elements of P and vertices in the S, T sets
of H. Clearly, if the bipartite graph-retract problem does not have a solution, neither
does the partial order-retract problem. If the bipartite graph-retract problem has a
solution, it only remains to map the middle vertices. If a middle element is between
bottom and top elements that were mapped to subsets A ⊆ S and B ⊆ T , map that
middle element to A×B in P , completing the retraction.

In order to prove the depth-3 result, we first determine the core of the partial
order. Clearly, the core must contain every {a}×N(a) for a ∈ S and every N(b)×{b}
for b ∈ T , because these elements can be used in an instance. As a result, it must
also contain all maximal bipartite cliques A × B, because such maximal bipartite
cliques are the only bipartite cliques above the corresponding elements {a}×N(a) for
a ∈ A and below the corresponding elements N(b) × {b} for b ∈ B. Notice that the
maximal bipartite cliques are precisely those bipartite cliques A×B with A = N(B)
and B = N(A), where N(C) denotes here the vertices adjacent to all of C. We now
observe that the maximal bipartite cliques are indeed the entire core, because the
mapping f(A×B) = N(N(A))×N(A) is an appropriate retraction.

Having identified the core of the partial order as the partial order on maximal
bipartite cliques, we use the fact that the domination-free bipartite graph can also be
assumed to be K3,3-free and K3,3\{e}-free. Now, if A1 ×B1 < A2 ×B2 < A3 ×B3 <
A4 × B4 for maximal bipartite cliques, then the containments on the Ai and on the
Bi must be strict, so |Ai| ≥ i and |Bi| ≥ 5− i. In particular, A2 ×B2 must contain a
K2,3 and A3 × B3 must contain a K3,2, and furthermore their union must contain a
K3,3\{e} by maximality of the bipartite cliques. This establishes the depth-3 claim.
Notice also that K3,3-freedom implies that a bipartite clique A×B must have |A| ≤ 2
or |B| ≤ 2, and since for maximal bipartite cliques, A and B uniquely determine each
other, the partial order has size polynomial in the size of the bipartite graph.

Therefore, the dichotomy question for MMSNP is equivalent to the dichotomy
question for CSP, which in turn is equivalent to the dichotomy questions for graph-
retract, digraph-homomorphism problems, and partial order-retract problems.

6. Special classes. Schaefer [48] showed that there are only three polynomi-
ally solvable constraint-satisfaction problems on the set {0, 1}, namely, Horn clauses,
2SAT, and linear equations modulo 2; all constraint-satisfaction problems on {0, 1}
that do not fit into one of these three categories are NP-complete. For general
constraint-satisfaction problems, we introduce two classes, namely, bounded-width and
subgroup, and examine two subclasses of the bounded-width class, namely, the width
1 and bounded strict width classes. These are generalizations of Schaefer’s three cases,
since Horn clauses have width 1, 2SAT has strict width 2, and linear equations mod-
ulo 2 is a subgroup problem. At present, all known polynomially solvable constraint
satisfaction problems are simple combinations of the bounded-width case and the
subgroup case.

76 TOMÁS FEDER AND MOSHE Y. VARDI

Remark. A similar situation of only three polynomially solvable cases was ob-
served for Boolean network stability problems by Mayr and Subramanian [39] and
Feder [15]; the three cases there are monotone networks, linear networks, and nonex-
pansive networks, in close correspondence with Horn clauses, linear equations modulo
2, and 2SAT, respectively; it is the generalization of the nonexpansive case to metric
networks that leads to characterizations along the lines of the bounded strict width
case described below.

We describe the work on network stability in the context of constraint-satisfaction
in more detail here. Say that a template is functional if all relations have some arity
k+ l with k, l ≥ 0 and are described by a function f(x1, x2, . . . , xk) = (y1, y2, . . . , yl),
called a gate, where the xi are called inputs and the yi are called outputs. A network
stability problem is a constraint-satisfaction problem where the template is functional,
and where the input structure has the property that every element participates in
exactly two relation occurrences, one as an input and one as an output. The input
structure is then called a network. The work in [39, 15] established the following. Let
the constant gates be f() = e, and the absorption gate be f(x) = ().

Theorem 16. Every network stability problem over a Boolean functional template
containing the constant and absorption gates is NP-complete, with the exception of
the following polynomially solvable cases:

(1) monotone functional templates, where every output yj of every gate is a mono-
tone function of the inputs xi. For the general case with AND and OR gates, the
problem is P-complete and determining whether there is a solution other than the
zero-most and one-most solutions is NP-complete;

(2) linear functional templates, where every output yi of every gate is a linear
function of the inputs xi modulo 2;

(3) adjacency-preserving functional templates, where every gate f has the property
that changing the value of just one of the xi inputs can affect at most one of the
yj outputs. Here the set of solutions can be described by a 2SAT instance because
the median of three solutions, obtained by taking coordinate-wise majority, is also a
solution.

The case (3) extends to a non-Boolean domain case by assuming that the template
has an associated distance function on the elements satisfying the triangle inequality,
such that for every gate f , if f(x1, x2, . . . , xk) = (y1, y2, . . . , yl) and f(x′1, x

′
2, . . . , x

′
k) =

(y′1, y
′
2, . . . , y

′
l), then

∑
d(yj , y

′
j) ≤

∑
d(xi, x

′
i). The functional template is then called

nonexpansive and the associated network is metric; this case is also polynomially solv-
able. Here the structure of the set of solutions is a strict width 2 problem because the
solutions form a 2-isometric subspace, where the corresponding 2-mapping property
is obtained with the imprint function, yielding the 2-Helly property (see [15] for the
definitions of 2-isometric subspace and imprint function).

It is the structure presented in this theorem and its connection to Schaefer’s work
that initially led to the work presented here. In this paper, we are not considering
special cases, such as network stability or planar graph coloring; here the template is
fixed and the instance is not constrained.

6.1. Bounded-width problems. A problem is said to have bounded width if
its complement (i.e., the question of nonexistence of a solution) can be expressed in
Datalog. More precisely, it is said to have width (l, k) if the corresponding Datalog
program has rules with at most l variables in the head and at most k variables per
rule, and is said to have width l if it has width (l, k) for some k. For a related notion
of width, see Afrati and Cosmadakis [4].

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 77

Datalog is the language of logic programs without function symbols [50]. The
following Datalog program checks that an input graph is not 2-colorable:

oddpath(X ,Y) :– edge(X ,Y)
oddpath(X ,Y) :– oddpath(X ,Z), edge(Z ,T), edge(T,Y)
not2colorable :– oddpath(X ,X).

In this example, edge is an input binary relation, oddpath is a binary relation
computed by the program, and not2colorable is a zero-ary relation computed by the
program. The first rule says that a single edge forms an odd path; the second rule
tells that adding two edges to an odd path forms an odd path; and the third rule says
that the input graph is not 2-colorable if the graph contains an odd cycle. In Datalog
programs for constraint-satisfaction instances we assume that there is a distinguished
predicate p of arity zero (not2colorable in the above example) that must be derived
when no solution exists for the instance. We say that such a program solves the
problem.

The example above shows that 2-colorability has width (2, 3), since it can be
solved by a Datalog program with at most two variables in rule heads and at most
three variables per rule. Also, 3SAT-Horn can be shown to have width 1. It is not
hard to show that bounded-width problems are in monotone SNP without inequality.
Furthermore, problems of width 1 are in MMSNP.

It is easy to see that all bounded-width problems are in P, since the rules can
derive only a polynomial number of facts. Thus, we ask the following question.

Which problems in CSP have bounded width?
The predicates from the instance are called EDB predicates, and the new auxiliary

predicates are called IDB predicates. Given a Datalog program with EDB predicates
corresponding to the constraints of a constraint-satisfaction problem defined by a
template T , we assign to each predicate in the program a relation on values from T .
The EDB predicates already have an assigned relation in T . For IDB predicates, we
initially assign to them the empty relation, then add tuples as follows. Given a rule,
involving at most k variables, we consider the assignments of values from T to these k
variables such that the constraints imposed on them by the current relations assigned
to predicates in the body of the rule are satisfied. For these satisfying assignments
for the body, we consider the induced assignments on the at most l variables in the
head, and add all these tuples to the relation associated with the head of the rule.
This process of adding tuples over values from T to the relations associated with IDB
predicates must eventually terminate, mapping each IDB to a relation on values from
T .

The relation associated with the distinguished p at the end of this process must
be the empty relation. Otherwise, we could design an instance that has a solution
yet for which p can be derived, simply by viewing the derivation tree that made p
nonempty as an instance, contrary to the assumption that the Datalog program only
accepts instances with no solution.

Even if we know that a constraint-satisfaction problem has width (l, k), there
could be many Datalog programs that express the complement of the problem. Thus,
it seems that to answer the question above we need to consider all possible (l, k)-
programs. Surprisingly, it suffices to focus on very specific Datalog programs.

Theorem 17. For every constraint-satisfaction problem P there is a canonical
Datalog (l, k)-program with the following property: if any Datalog (l, k)-program solves
P , then the canonical one does.

78 TOMÁS FEDER AND MOSHE Y. VARDI

Proof. Intuitively, the canonical program of width (l, k) infers all possible con-
straints on l variables at a time by considering k variables at a time. This canonical
program infers constraints on the possible values for the variables in the instance, both
considered l at a time and k at a time, as follows. Initially, all constraints from the
instance can be viewed as constraints on variables, k at a time. Now, a constraint on
k variables can be projected down to a constraint on an l-subset of these k variables.
In the other direction, a constraint on an l-subset can be extended up to a constraint
on the k variables. This process can be iterated, and if a constraint on variables ever
becomes the empty set, we can infer that the instance has no solution. This inference
process can easily be described by a Datalog (l, k)-program, and in fact the inferences
carried out by this canonical program contain all inferences performed by any Datalog
(l, k)-program, with the interpretation of IDBs as relations on values from T defined
above.

Consider now the following two-player game on the structures S, the instance,
and T , the template. Player I selects k variables and asks Player II to assign to them
values from T . Then Player I keeps l out of these k assigned variables, extends this
set of l to a new set of k, and asks Player II to assign values to the new k− l variables,
back to the earlier situation with k assigned variables. The game proceeds from there
as before. Player I wins if at some point, some of the k assigned values violate a
constraint from the instance.

Theorem 18. The canonical (l, k)-program for a constraint-satisfaction problem
accepts an instance precisely when Player I has a winning strategy in the associated
(l, k)-two-player game.

Proof. Suppose the canonical program accepts an instance (such an instance
necessarily fails to have a solution). Consider the corresponding derivation tree. Each
node of the tree corresponds to a relation on at most k elements from S. This relation
has an associated set of tuples from T as defined above. Player I traverses a path
from the root to a leaf; at each step he holds a tuple that is not in the associated set.
He starts at the root, where the relation has arity zero; there he holds the arity-zero
tuple, which does not belong to the associated empty set. In general, at a given node
v where Player I holds a tuple of arity at most l not in the associated set, Player
I selects the rule corresponding to the node v and its children, and asks Player II
to assign values to the remaining variables in the rule, up to a total of at most k.
It cannot be that all the resulting assignments to at most l variables corresponding
to the children of the node v are tuples in the sets associated with them, because
then the original tuple would have been in the set associated with v. So Player I can
select some child of v such that the assignment to its at most l variables is not in the
associated set. When a leaf is reached, Player I holds an assignment violating a given
constraint in the instance.

For the converse, suppose that Player I has a winning strategy. The playing
of the game depending on the moves by Player II can then be viewed as a tree. For
instance, at the root, after Player I has made its initial choice k elements, the children
correspond to the possible choices of l elements out of these k that can be made by
Player I, depending on the assignment of values to the k elements by Player II. At
the next level, the extension of the l assigned values to a tuple of k variables chosen
by Player I is again considered, until at the leafs we have assignments to at most l
variables that violate a constraint. This tree is then precisely a derivation tree by
which the canonical program can accept the instance.

For related games, see Afrati, Cosmadakis, and Yannakakis [5], Kolaitis and Vardi

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 79

[33], and Lakshmanan and Mendelzon [36].

This notion of bounded width for constraint-satisfaction problems can also be
extended to allow infinite Datalog programs (allowing infinitely many IDBs, infinitely
many rules, and infinitely many conjuncts per rule); such programs have been studied
before under the name Lω. For constraint-satisfaction problems on a finite domain,
infinite programs are no more powerful than finite programs; the reason here is that
the canonical program has IDBs corresponding to constraint sets, but there are only
finitely many possible constraint sets.

Remark. For constraint-satisfaction problems, it can be shown that Datalog is
equivalent to Datalog(6=,¬), finite or infinite. This equivalence holds more generally
for problems closed under homomorphisms, finite and infinite cases being separate.
For such problems, it turns out that monadic SNP with inequality is no more powerful
than monotone monadic SNP without inequality, and the same holds for (binary) SNP
with inequality compared with monotone (binary) SNP without inequality [16].

6.1.1. Width 1 and tree duality. Horn clauses have width (1, k), where k is
the maximum number of variables per Horn clause. To see this, express Horn clauses
as implications with a conjunction of positive literals in the antecedent and at most
one positive literal in the consequent. An instance has no solution if it implicitly
contains a clause with an empty antecedent, which stands for “true” or 1, and an
empty consequent, which stands for “false” or 0. This situation can be detected by
Player I by selecting an appropriate clause with an empty consequent. Then Player
II must assign value 0 to some variable in the antecedent, then Player I selects some
appropriate clause with this variable as the consequent, and so on, until a clause with
an empty antecedent is reached; then Player I wins.

Using Theorems 17 and 7, we can prove the following theorem.

Theorem 19. The question of whether a constraint-satisfaction problem has
width (1, k) or width 1 is decidable.

Proof. The canonical program describes in that case a monotone monadic SNP
problem, and we have seen that containment for such problems is decidable. In fact, we
have also seen that it is never necessary to look at conditions for a monotone monadic
SNP problem that do not define a biconnected component contained in biconnected
components of the statement of the problem. However, these are only single relations
in the case of constraint-satisfaction problems, so we can assume that the Datalog
program looks only at single relations from the input. Thus k need not be larger than
the largest arity, and hence width 1 is decidable. There is another way to see this.
By Theorem 5, we may assume that an instance recognized by the monadic Datalog
program has high girth—larger than the size of any rule. We may then assume that
the body of the rule is a tree, and then the rule can be replaced by rules having only
one EDB per rule, by introducing additional monadic IDB relations. So k is bounded
by the largest arity.

Let S be a connected structure. An element x is an articulation element if the
structure S can be decomposed into two nonempty substructures that share only
x. If we decompose a structure into substructures by identifying all its articulation
elements, we say that the resulting substructures without articulation elements are
biconnected components. A tree is a structure whose biconnected components consist
of a single relation occurrence each. Following and generalizing the terminology of
Hell, Nešetřil, and Zhu [25], we say that a constraint-satisfaction problem defined by
a template T has tree duality if a structure S can be mapped to T if and only if every
tree that can be mapped to S can be mapped to T .

80 TOMÁS FEDER AND MOSHE Y. VARDI

Theorem 20. A constraint-satisfaction problem has tree duality if and only if it
has width 1.

Proof. Trees are precisely the objects generated by derivation trees of Datalog
programs with at most one variable in the head and at most one EDB per rule. We
observed in the proof of the previous theorem that if a problem has width 1, then it
has a Datalog program of this form. Then an instance S does not map to T if and
only if it is accepted by the Datalog program; i.e., some tree maps to S but does not
map to T . Thus width 1 implies tree duality. Conversely, if tree duality holds, then
width 1 follows by considering the Datalog program that generates all the trees that
do not map to T ; this is an infinite program, but we have observed before that infinite
programs can be transformed into finite ones for constraint-satisfaction problems, e.g.,
the canonical program from Theorem 17.

In fact, as observed in the proof of Theorem 7, width 1 can be decided as follows.

Tree duality decision procedure: Given a constraint-satisfaction problem with tem-
plate T , let U be the structure defined as follows. The elements of U are the nonempty
subsets A of the elements of T . For a relation R of arity k, impose R(A1, A2, . . . , Ak),
the Ai not necessarily distinct, if for every 1 ≤ i ≤ k and every ai in Ai there exist
elements aj in the remaining Aj such that R(a1, a2, . . . , ak) is in T . Then tree duality
holds if and only if U maps homomorphically to T .

For example, 2SAT will in particular enforce x ∨ y and x ∨ y on x = y = {0, 1},
hence no solution exists, showing that 2SAT does not have width 1. In general, the
question of whether a constraint-satisfaction problem has bounded width (or width l,
width (l, k), beyond the case l = 1) is not known to be decidable.

We give here an alternative proof of the correctness of the above decision proce-
dure based on tree duality and its equivalence to the existence of a Datalog program
for the problem with one EDB relation per rule and at most one variable in the head of
each rule, which infers constraints on the possible values for elements of the structure.

Theorem 21. The above decision procedure correctly decides tree duality.

Proof. Suppose that tree duality holds. Consider the structure U defined in the
decision procedure whose elements are nonempty sets A. We show that U can be
mapped to T . Every tree that maps to U has elements that are nonempty sets A.
The tree can be mapped to T by choosing one element from the root of the tree, one
consistent element from each of its children, and so on. Thus, by the definition of tree
duality, U maps to T . Conversely, suppose that U maps to T , and let S be a structure
such that every tree that maps to S maps to T . If we use the Datalog program on S,
then every element of S will be assigned a nonempty set A by the program, otherwise
the derivation tree would provide a tree that maps to S but not to T . This gives a
mapping from S to U , and by composition from S to T . Therefore tree duality holds.

Thus tree duality has a simple decision procedure. Consider the special case where
the template T is an oriented path (a path each of whose edges may be oriented in
either direction). This T was shown to have tree duality by Hell and Zhu [28]; in fact,
they showed that it satisfies the stronger path duality property that S maps to T if
and only if every oriented path that maps to S maps to T . We give a simple proof of
tree duality via the above decision procedure. Suppose that the elements of the path
T are numbered 1, 2, . . . , r in order. For every nonempty subset A of {1, . . . , r}, map
A to the least numbered element of A. If there is an edge from A to B, then the least
elements of A and B cannot be the same element a, since otherwise T would contain
an edge from a to a + 1 and one from a + 1 to a. So either a is the least element of

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 81

A, a + 1 is the least element of B, and T has an edge from a to a + 1, or a is the
least element of B, a+ 1 is the least element of A, and T has an edge from a+ 1 to
a. Thus T has an edge from the image of A to the image of B, as required.

A more general case is the case of oriented trees, which defines both polynomial
and NP-complete problems, as well as problems that have not yet been classified [26].

We say that a constraint-satisfaction problem defined by a template T with T a
core has extended tree duality if a connected structure S with one element s preassigned
a value t in T can be mapped to T , if and only if every tree that can be mapped to
S can be mapped to T in such a way that the elements of the tree that map to s
end up mapping to t. Just like tree duality could be decided by the existence of a
mapping from a particular structure U to T , extended tree duality can be decided
by the existence of a mapping from a particular structure U ′ to T , where U ′ is the
substructure of U consisting of the union of the connected components containing the
singletons {t} for t in T . The proof of correctness is similar to the tree duality case.
Since the extended tree duality property involves one special element s, and problems
with tree duality have width 1, problems with extended tree duality have width 2.
(The converse is false, e.g., 2SAT.)

Theorem 22. For a constraint-satisfaction problem with template T , tree dual-
ity is equivalent to the existence of a homomorphism from U to T . If T is a core,
then extended tree duality is equivalent to the existence of a homomorphism from the
substructure U ′ to T . Problems with extended tree duality have width 2.

Say that two elements are related if they both belong to the same set A in the
connected component U ′. A special case of extended tree duality for digraphs is the
case where there is a total ordering of the vertices of T such that if (a, b) and (c, d)
are two edges of T with a < b and c < d, with a, c related and b, d related, then (a, d)
is also an edge of T . In this case we can map a nonempty set A in U ′ to the least
element of A under the ordering. This case is essentially the same as the extended
X-property from [23, 25].

More generally, an (l, k)-tree is a structure given by a derivation tree of a Datalog
program whose rules have at most l variables in the head and at most k variables
per rule. Combinatorially, a structure S is an (l, k)-tree if there exists a tree t whose
nodes are sets of elements of S of cardinality at most k, where a node and a child in t
share at most l elements of S, the nodes in which an element of S participates form a
subtree of t, and each relation occurrence in S involves elements contained in a single
node of t. In the literature, when S is a graph and S is an (l, k)-tree, then it is said
to have tree-width k − 1 (see, e.g., [38, 47]).

Along the general lines of duality of graph homomorphisms (see Hell, Nešetřil,
and Zhu [27]), a constraint-satisfaction problem defined by a template T has (l, k)-tree
duality if a structure S can be mapped to T if and only if every (l, k)-tree that can
be mapped to S can be mapped to T . The following is immediate from the definition
of acceptance by a Datalog program.

Theorem 23. A constraint-satisfaction problem has (l, k)-tree duality if and only
if it has width (l, k).

Recall from section 3 the definition of the length of an oriented cycle and of
balanced and unbalanced digraphs. Hell and Zhu [29] show that in the case where T
is an unbalanced cycle, it is sufficient to test oriented paths, which are (1, 2)-trees, and
oriented cycles, which are (2, 3)-trees; therefore unbalanced cycles define a problem
of width (2, 3). The property that cycles of the instance S must satisfy is that their
length is a multiple of the length of T . Therefore, in the special case where the length

82 TOMÁS FEDER AND MOSHE Y. VARDI

is 1, cycles need not be tested, only oriented paths, and the problem has width (1, 2).
We show here that unbalanced cycles have extended tree duality, hence width 2, and
that when their length is 1, they have tree duality, hence width 1. Suppose that a
cycle has length m ≥ 1. Enumerate the vertices 0, 1, . . . , k in order around the cycle,
where vertices 0 and k coincide, in such a way that there is a level function such that
every edge (i, j) satisfies level(j) =level(i) + 1, with level(0) = m, level(k) = 0, and
level(i) ≥ 1 for i 6= k. Then define the total ordering mentioned above for extended
tree duality to be the lexicographical ordering on pairs (level(i), i). Notice that if two
elements are related, their levels must differ by a multiple of m. In the case where
m = 1, this imposes no restriction; i.e., we may use the structure U instead of U ′.
The same construction can be used to establish tree duality for balanced cycles such
that if we denote by l an occurrence of a lowest level element and by h an occurrence
of a highest level element, then the ordering lhlh does not occur when the cycle is
traversed once, so that the complete ordering of l and h is l+h+.

In general, for an arbitrary constraint-satisfaction problem, if we only consider
instances that are (l, k)-trees with l, k fixed, then the problem is solved in polynomial
time by the canonical Datalog (l, k)-program, since this program has as derivation
trees precisely the (l, k)-trees that do not have a solution for the constraint-satisfaction
problem.

Theorem 24. On (l, k)-tree instances, constraint-satisfaction problems are poly-
nomially solvable, for l, k fixed.

For more general results on polynomially solvable problems in the case of graphs
of bounded tree-width, see, e.g., [1, 9].

6.1.2. Bounded strict width and the Helly property. The canonical al-
gorithm for problems of width (l, k) involved inferring all possible constraints on l
variables at a time by considering k variables at a time. We may in addition require
that if this inference process does not reach a contradiction (the empty set), then it
should be possible to obtain a solution by greedily assigning values to the variables
one at a time while satisfying the inferred l-constraints. We say that a constraint-
satisfaction problem that can be solved in this way has strict width (l, k), and we say
that it has strict width l if it has strict width (l, k) for some k. It turns out that strict
width l is equivalent to strict width (l, k), for all k > l, so we can assume k = l + 1.

This intuition behind strict width l can also be captured in two other ways. First,
we can require that if we have an instance and that, after assigning specific values to
some of the variables, we obtain an instance with no solution, then some l out of the
specific value assignments chosen are sufficient to give an instance with no solution.
We refer to this property as the l-Helly property. Second, we could require that there
exists a function g that maps l + 1 elements from the domain of the structure T to
another element, with the property that if all but at most one of the l+ 1 arguments
are equal to some value b then the value of g is also b, and, furthermore, for all
constraints Ci in T , if we have l + 1 tuples satisfying Ci, then the tuple obtained
by applying g componentwise also satisfies Ci. We call this property the l-mapping
property.

Theorem 25. Strict width l, the l-Helly property, and the l-mapping property
are equivalent. These properties are polynomially decidable (for a fixed l).

Proof. The proof of the equivalence of the various formulations of bounded strict
width shows first that the correctness of the greedy (l, k)-algorithm implies that the
Helly property for l must hold. The reason is that the final step of finding a solution
uses only the inferred constraints on l variables at a time, hence these constraints

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 83

must precisely characterize the solutions, showing that the Helly property for l holds.
This in turn implies that the instance stating the existence of g must have a solution.
The reason is that l out of the constant value assignments imposed on g can always
be satisfied, because each of these constant value assignments has l out of the l +
1 arguments equal for g; there must be an argument position that is not the one
exceptional argument for any of the l constant value assignments being considered,
so we can always return the value of this argument, satisfying all conditions. Since
the constant value assignments considered l at a time are satisfiable, then altogether
they must be satisfiable by the Helly property for l, and hence g exists.

Finally, the existence of g implies the correctness of the greedy (l, l+1)-algorithm;
it implies in fact the correctness of a more restrictive algorithm that eliminates vari-
ables one by one in arbitrary order (by considering just the l+ 1-subsets containing a
chosen variable to infer a constraint on the remaining l variables) and assigns values
in reverse order. Consider the elimination of the first variable x1. We claim that
any solution x′ of the resulting instance on the remaining variables x2, . . . , xn can be
extended to a solution for x1. We must show that there exists a value for x1 satisfy-
ing all constraints involving x1 in conjunction with x′. We first consider constraints
involving only l of the variables in x′. If no value of x1 satisfies the constraints in-
volving x1 and the chosen l variables, then this would result in the inference step in
forbidding the value assignment on l variables induced by x′, and x′ would not have
been a solution of the resulting instance. Therefore constraints involving only x1 and
l of the variables in x′ can be satisfied (we are including here in the inference step
constraints obtained as projections of constraints involving x1 and variables possibly
different from the chosen l). Consider now constraints involving only x1 and k of the
variables in x′, for k ≥ l+ 1, where we assume inductively that k− 1 can be handled.
Consider l+1 particular variables out of the chosen k from x′. For each choice of one
variable (say, the ith one) out of these l+1, if we ignore it, then a value xi1 for x1 can
be found by inductive assumption. But then, we can set x1 = g(x1

1, x
2
1, . . . , x

l+1
1) and

satisfy the constraints on x1 and all k chosen variables. The reason is that any such
constraint involves l variables including x1. One of the l − 1 variables other than x1

may have been ignored in choosing xi1, but a value for it can be found since otherwise
xi1 would not have been considered consistent. Furthermore, a variable was ignored
in choosing at most one xi1, so g applied to the l+ 1 values for this variable gives the
correct majority value. Since the constraint is closed under g, the value x1 obtained
by applying g satisfies all the constraints, completing the induction. To handle the
elimination of subsequent variables analogously, it is only important to observe that
the constraints obtained by the inference step are also closed under g, since they are
obtained by intersection and projection of constraints closed under g. This proves the
correctness of the algorithm.

Note that the existence of g is itself an instance of the constraint-satisfaction
problem, hence strict width l is decidable and in fact polynomially decidable, for
fixed l. It is not known to be decidable when l is not fixed.

2-colorability is an example of a constraint-satisfaction problem with strict width
2. If a graph is bipartite, but after having 2-colored some of the vertices there is no
two-coloring consistent with this partial coloring, then either two vertices on different
sides of the bipartite graph were given the same color or two vertices in the same
side were given different colors. Also, 2SAT has strict width 2, and so does integer
programming with two variables per inequality with variables ranging over a fixed
range.

84 TOMÁS FEDER AND MOSHE Y. VARDI

Feder [17] showed that digraph-homomorphism for oriented cycles is either poly-
nomially solvable or NP-complete. The proof is a good illustration of some of the
techniques we have been using up to this point; we give here a sketch of the proof.

Theorem 26. Every oriented cycle digraph-homomorphism problem is either
polynomially solvable or NP-complete.

Proof (sketch). The case where a template is an oriented path, which we saw in
the previous section has width 1, also has strict width 2. To see this, number again
the vertices 1, 2, . . . , r and consider the mapping g(x, y, z) = median(x, y, z). In the
case where the template is a directed graph that maps to a cycle C, it is sufficient
to consider only argument lists for g such that all arguments map to the same vertex
in C. For unbalanced oriented cycles, which we saw have extended tree duality, we
also have strict width 2; the argument considers the lexicographic ordering on pairs
(level(i), i) as before and uses the median(x, y, z) function on three arguments whose
levels differ by a multiple of the length of the cycle. The same argument applies to
the balanced cycles not containing the ordering lhlh as mentioned before, so that the
complete pattern of l and h is l+h+. There is a family of balanced cycles that does
not have extended tree duality (it can encode 2SAT) yet has strict width 2: these are
the balanced cycles with two l and two h elements that form the pattern lhlh along
the cycle. Consider the four paths 1 = l1h1, 2 = l2h1, 3 = l2h2, 4 = l1h2 on the
cycle; given three paths i − 1, i, i + 1 out of these four (modulo 4), the middle path
is i. The mapping g(x, y, z), with the three arguments at the same level, is defined as
follows. (1) If x, y, z belong to three different paths, return the one that belongs to
the middle path. (2) If x, y, z belong to the same path, return the one in the middle
position on the path. (3) If exactly two out of x, y, z belong to the same path, return
the one of these two occurring earliest on the path. In each of the classes of the
form l+h+l+h+, other than the polynomial class lhlh, there are both polynomial and

NP-complete templates that are cores; the cases (l+h+)
≥3

are NP-complete for cores.
It is shown in [17] that in the remaining case l+h+l+h+, all problems are either in
P or NP-complete, completing the classification of oriented cycles. The proof uses
the 2-Helly property for paths, which have strict width 2, and a generalization of
Schaefer’s classification of Boolean satisfiability to a k-partite version [17, 48].

Problems with bounded strict width are a special case of bounded-width CSP.
For such problems we have a more efficient algorithm.

Theorem 27. A simplified version of the canonical algorithm runs in parallel
O∗(n) time using a polynomial number of processors (the O∗ notation ignores poly-
logarithmic factors). In the case l = 2, this algorithm can be implemented in parallel
O∗(

√
n) time, because variables can be eliminated in parallel.

Proof. First, observe that the number of constraints that could be inferred is
O(n2). Therefore the number of steps that infer at least n1.5 constraints is only
O(
√
n). Suppose that a step would infer only n1.5 constraints, i.e., only these many

pairs of values for pairs of variables are discarded. Suppose that we “charge” such
a pair of values eliminated for two variables xj , xk to a variable xi such that the
inference on these three variables causes the pair of values to be eliminated. Since
there are n variables, they are charged n0.5 eliminations each in average, and thus
at least half of them are charged at most 2n0.5 eliminations, involving at most 4n0.5

other variables. But then, it must be possible to choose a set of n0.5/8 variables that
are charged only 2n0.5 eliminations, each involving two other variables not in the set.
But then these n0.5/8 variables can be eliminated simultaneously, and hence this type
of step need only be performed only O(

√
n) times as well. All inferences will thus be

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 85

obtained by the standard algorithm in O(
√
n) steps (consider eliminating a chosen

pair last). To obtain a solution, either a value assignment for one variable restricts the
values for n0.5 others or there are n0.5 pairwise unconstrained variables; alternatively,
a maximal independent set computation works.

6.2. Problems with the ability to count. Which problems in CSP do not
have bounded width? Say that a constraint-satisfaction problem has the ability to
count if the following two conditions hold: (1) The template T contains at least the
values 0, 1, as well as a ternary relation C that includes at least the triples (1, 0, 0),
(0, 1, 0), and (0, 0, 1), as well as a monadic relation Z that includes at least 0; (2) If
an instance consists of only the constraints C and Z, with all constraints partitioned
into two sets A and B such that A contains one more C constraint than B, and
furthermore each variable appears in exactly two constraints, one from A and one
from B, then the instance has no solution.

Intuitively, we can think of C(x, y, z) as x+ y+ z = 1, and of Z(x) as x = 0, with
an obvious contradiction for instances of the special form, since adding the constraints
from A and subtracting those from B yields 0 = 1. Some problems of this form include
linear equations over an abelian group (finite or infinite), where 0 is the identity of the
group and 1 is any other element. In particular, this includes the problem for linear
equations modulo 2. Another example of such a problem is linear programs over the
nonnegative reals. For this last case, inexpressibility in Datalog(6=, succ) was shown
by Afrati, Cosmadakis, and Yannakakis [5] using Razborov’s monotone circuit lower
bound for matching.

We shall first show that if a constraint-satisfaction problem has the ability to
count, then it does not have polynomial size monotone circuits. We begin by citing
Razborov’s lower bound for matching [46]. In fact, Razborov’s lower bound is not
just for matching; it applies to any monotone problem such that certain particular
instances are “yes” instances, certain other instances are “no” instances, and the re-
maining instances may be either “yes” or “no.” Matching is just a specific application
of the result. The exact statement of Razborov’s result is the following.

Theorem 28. Consider a monotone problem on bipartite graphs such that (1) if
the instance has a perfect matching, then the answer is “yes,” and (2) if the instance
contains a bipartite connected component with a different number of vertices in the
two sides, then the answer is “no.” Then monotone circuits for the problem have size
mΩ(logm).

The lower bound for matching is thus obtained by requiring a “yes” answer for the
instances (1) and a “no” answer for all remaining instances, not just instances (2). The
other extreme case is also interesting, namely, the problem that requires a “no” answer
for the instances (2) and a “yes” answer for all remaining instances, not just instances
(1). This gives a lower bound for systems of linear equations over the integers, the
rationals, or the reals, as follows. View a complete bipartite graph with n vertices on
each side as an instance with n2 variables corresponding to the n2 edges. View each
vertex as stating the constraint that the sum of the variables corresponding to edges
incident on the vertex is equal to 1. If the bipartite graph is not complete, then each
missing edge is viewed as a constraint stating that the corresponding variable is equal
to 0. Now if an instance contains a bipartite connected component with k vertices in
the left side and k′ vertices in the right side, and with k 6= k′, then the kk′ variables
corresponding to the possible edges joining the two sides must add to k according to
the left side, and to k′ according to the right side, so an instance (2) is indeed a “no”
instance. On the other hand, if all connected components have k = k′, then we can

86 TOMÁS FEDER AND MOSHE Y. VARDI

pair up the k and k′ vertices in the two sides. For each such pair (u, v), there is an
odd length path from u to v, so we can assign to the edges on the path the values 1
and −1 in alternation, so that the sum is 1 for edges incident on u, and on v, but 0 for
edges incident on all other vertices; doing this for all chosen pairs (u, v) and adding
up the values corresponding to the different paths gives a sum 1 for each of the k and
k′ vertices. So the answer is “yes” for every instance other than (2).

This gives the basic idea for getting a monotone circuit size lower bound on
problems that have the ability to count, since both problems just considered have the
ability to count. However, the theorem cannot be applied directly for other problems
that have the ability to count, such as linear equations modulo 2. Nevertheless, a
result just slightly stronger than Razborov’s will yield what we need; we just weaken
(2) a little bit.

Theorem 29. Consider a monotone problem on bipartite graphs such that (1) if
the instance has a perfect matching, then the answer is “yes,” and (2) if the instance
contains a subgraph not connected to the rest of the graph with one more vertex on
the left than on the right, then the answer is “no.” Then monotone circuits for the
problem have size mΩ(logm).

Proof. Razborov’s proof involves a choice of a random bipartite E− on two vertex
sets A and B with m elements each by selecting random subsets A′ ⊆ A and B′ ⊆ B
and linking all vertices in A′ to all vertices in B′, as well as all vertices in A′ to all
vertices in B′. The random E− is used to bound probabilities for three events, namely
(stating equations directly from [46]) P (E− ∈ [E]) ≥ 2−s (30), P (E− ∈ A(fm)) ≤
m−1/2 (31), and P (E− ∈ S) ≤ h(t, r, s,m) (32). We replace E− by an event E′ chosen
from a smaller space, conditioning on |A′| = |B′| + 1 as well as |(|A′|) − (|A′|)| > s
(the latter for convenience only). Formula (30) measures the probability that a fixed
matching of size s will be contained in E−. To measure this for E′, we can first choose
|A′| from the appropriate distribution, then assume that A′ and B′ are fixed while
the s edges of the matching are chosen at random. From the assumptions on |A′| and
|B′|, it is clear that the first of these edges will fall in E′ with probability at least
1/2, and that if this has happened for the first i− 1 edges, then it will happen for the
ith edge with probability at least 1/2 as well, as long as i ≤ s. Hence (30) can only
become stronger for E′. Formula (31) measures the probability that E− has a perfect
matching, but this probability is zero for E′. Only (32) becomes weaker; an E− will
satisfy the conditioning with probability Ω(1/

√
m), so for E′ the bound increases by a

factor of
√
m; this factor carries over to the final mΩ(logm) lower bound on monotone

circuit size (where it is insignificant).

This result can now be applied to linear equations modulo q, with q ≥ 2. Relate
linear equations to bipartite graphs as before. If the bipartite graph has a perfect
matching, then giving value 1 to the edges in the matching and value 0 to all other
edges satisfies the linear equations. If the bipartite graph has a subgraph not con-
nected to the rest of the graph with k vertices on the left and k′ on the right, and
k = k′+1, then the kk′ variables involved must add up to k and to k′, yet now k 6= k′

holds even modulo q. We are now ready to apply the theorem to any problem with
the ability to count.

Theorem 30. If a constraint-satisfaction problem has the ability to count, then
monotone circuits for it have size mΩ(logm).

Proof. We first represent the complete bipartite graph with n vertices on each side
by a bipartite graph with vertices of degree 2 or 3, as follows. Replace every vertex of
degree n with a path on 2n − 1 vertices 0, 1, 2, . . . , 2n − 2, with the n incident edges

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 87

attached to the n vertices in even positions, thus achieving the degree constraint.
Notice that in a perfect matching, the n−1 vertices in odd positions must be matched
to n − 1 out of the n vertices in even positions, leaving exactly 1 vertex in the even
position left to be matched to a vertex not on that path. Thus perfect matchings
for subgraphs of the complete bipartite graph and perfect matchings for subgraphs
of the new graph obtained by removing edges other than those on the paths are in
1-to-1 correspondence. Similarly, subgraphs of the complete bipartite graph with one
more vertex in the left side correspond to subgraphs of the new graph obtained by
removing edges other than those on the paths, also with one more vertex in the left.

So we have reduced the previous theorem to the case of graphs that are subgraphs
of a bipartite graph G with vertices of degree at most 3. Now view each edge as a
variable, a vertex with three incident edges x, y, z as a constraint C(x, y, z), and a
vertex with two incident edges x, y as a constraint C(x, y, z), where z is an auxiliary
variable that is also constrained by Z(z). Removing an edge x not on one of the
paths corresponds to adding a constraint Z(x). Clearly, if the graph has a perfect
matching, then setting the variables in the matching to 1 and all other variables to
0 gives a solution for the problem with the ability to count. Similarly, if the graph
has a subgraph with one more vertex in the left, this gives an instance of the problem
with the ability to count that was required not to have a solution. The only technical
point here is that removing an edge x incident to two vertices corresponds to having
C(x, y, z), C(x, y′, z′), and Z(x), so x participates in three constraints instead of just
two as was required for problems with the ability to count with no solution. However,
we can replace x with two variables x, x′ constrained by C(x, y, z), C(x′, y′, z′), Z(x),
and Z(x′), use the fact that the resulting instance has no solution by the definition
of the ability to count, and then observe that identifying x and x′ cannot make the
constraint-satisfaction problem have a solution if it had no solution before identifying
x and x′.

Remark. The idea of obtaining monotone circuit lower bounds for problems that
are strictly between the required “yes” and “no” instances was used previously by Tar-
dos [49], who obtained a truly exponential monotone circuit lower bound for the Lo-
vasz θ function, a polynomially computable function strictly between the NP-complete
functions maximum clique and chromatic number.

Afrati, Cosmadakis, and Yannakakis [5] showed that if a problem does not have
polynomial size monotone circuits, then it is not expressible in Datalog(6=, succ). Thus
problems with the ability to count do not have bounded width. If we just want to
show that a problem does not have bounded width, then it suffices to show that it
does not have a Datalog (l, k)-program for any fixed l, k. This can be proved more
easily via two-player games, by an argument similar again to an argument used by
Afrati, Cosmadakis, and Yannakakis [5] for linear programs related to matching.

Theorem 31. If a constraint-satisfaction problem has the ability to count, then
it does not have bounded width.

Proof. An instance of the special form with no solution, as in the definition of the
ability to count, can be viewed as a bipartite graph with no perfect matching, where
the C constraints in A and B are viewed as two vertex sets, and the variables without
a Z constraint imposed on them are viewed as edges joining the two vertices in A and
B representing the constraints where they occur. Clearly, no perfect matching exists,
since there is one more C constraint in A than in B. However, we can construct such
an instance of size n such that if two players play the game with l, k about

√
n, where

Player I selects edges and Player II indicates whether they are in the matching or

88 TOMÁS FEDER AND MOSHE Y. VARDI

not, then Player II can ensure that if the two or three edges incident on a vertex are
ever selected together, then exactly one of them is claimed to be in the matching,
corresponding to satisfaction of C. First ignore the degree constraint and consider a
complete k + 1 by k bipartite graph. Then, intuitively, as long as fewer than k edges
are currently in the matching, an unmatched vertex can always be matched by Player
II. To bound the degree, we replace each vertex of degree d in this graph by a path
on 2d − 1 vertices, with the d incident edges attached to alternating vertices in the
graph; hence all vertices now have degree 2 or 3. (This last transformation is similar
to the one given in the proof of the previous theorem.) Here |A|, |B| and the number
of variables (edges) are quadratic in k.

Hence rules with about
√
n variables per rule will be needed to recognize certain

instances with no solution on n variables. In the case of abelian groups, we can
improve this lower bound to about n. The basic idea is that the complete bipartite
graph considered above can be viewed as describing constraints

∑
j xij = 1 for all

1 ≤ i ≤ k + 1 and
∑

i xij = 1 for all 1 ≤ j ≤ k, giving an obvious contradiction∑
i

∑
j xij = 1 +

∑
j

∑
i xij . This equation is of the form

∑
i yi = 1 +

∑
i yi, where

the yi are added in different order on the left- and right-hand sides. If we consider
the graph consisting of a path joining the yi in the order from the left-hand side
and another path joining the yi in the order from the right-hand side, then in the
case where the order of summation was exchanged, we essentially have a grid. For a
square grid, a bipartition of the vertices into two sets of about equal size must have
about

√
n edges across the bipartition. On the other hand, an expander increases this

quantity to about n, e.g., in the case where the order of yi in the two sides is chosen
independently at random. The game played by the two players consists of selecting
vertices (variables yi) and edges (variables representing partial sums); the removal
of these may disconnect the graph, and Player II can always ensure that values are
assigned so that the connected components with fewer than some constant fraction of
the vertices have a solution consistent with the boundary constraints. A contradiction
can only be reached by growing such components, but then the fact that the graph is
an expander forces the number k of edges out of a sufficiently large component to be
about n. We don’t know whether such a bound can be obtained in the more general
case via matchings.

Thus, the polynomial solvability of linear equations modulo 2 cannot be explained
in terms of Datalog.

It seems possible that the ability to count is the converse of having bounded
width. The intuition for this is that the nonexistence of solutions can be attributed
to the presence of the same variable in different constraints, something that cannot be
remembered by Datalog if these occurrences in two different places are not ordered,
and it seems that to keep track of equality of variables in different order one needs
the ability to count.

Say that a core T can simulate a core T ′ if for every relation Ci in T ′ there is an
instance Si that defines on some variables in Si a relation C ′

i over the domain of T

whose core is precisely Ci. (Here we can bound |Si| ≤ |T ||Ci|.)
We are then saying that it may be that a constraint-satisfaction problem is not of

bounded width if and only if it can simulate a problem that has the ability to count.

6.3. Subgroup problems. In this section we study subgroup problems, whose
template has as elements the elements of a finite group G, and a relation of arity
k in the template must be a subgroup or coset in the direct product Gk. We first
show that if a problem gets the ability to count with the two relations x = 0 and

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 89

x + y + z = 1 modulo p, then it can simulate the general subgroup problem for
G = Zp. Furthermore, if a set that is not a subgroup or a coset in Gk is added to
the general subgroup problem for an abelian G, the problem becomes NP-complete.
The natural way to obtain more general problems is to allow nonabelian groups G.
Here the subgroup problem with subgroups and cosets in Gk is polynomially solv-
able. Here again, if a subset is allowed whose projection into some abelian section
of Gk is not a subgroup or a coset, the problem can simulate one-in-three SAT and
is NP-complete. We call a subset containing the identity 1 whose projection into
abelian sections forms subgroups a nearsubgroup. So non-nearsubgroups added to
the general subgroup problem for G give NP-completeness. On the other hand, by
a result of Aschbacher [3], the intersection of nearsubgroups is a nearsubgroup, so
nearsubgroups alone cannot simulate one-in-three SAT and are thus unlikely to give
NP-completeness. In fact, we identify a 2-element property, which Aschbacher shows
holds for solvable groups, which implies polynomiality for nearsubgroups added to the
subgroup problem. We finally identify a weaker nearsubgroup intersection property
that also implies polynomiality for nearsubgroups added to the subgroup problem,
and here Aschbacher has found no finite group counterexample.

The simplest example of a problem that has the ability to count is the constraint-
satisfaction problem whose template is the integers modulo p for some prime p, with
two of the relations in the template given by x = 0 and x+ y + z = 1, modulo p. As
far as we know, any problem with a finite template that has the ability to count can
simulate this problem for some prime p. We wish to study the interaction between
these relations on Zp and other relations in the template. We begin with a simple
observation.

Theorem 32. Suppose that a problem with template Zp for p prime contains at
least the two relations x = 0 and x + y + z = 1 modulo p, thus getting the ability to
count. Then from these two relations, every relation that is a subgroup or a coset of
a subgroup of some power Zk

p can also be obtained.

Proof. Every subgroup or coset of a subgroup of Zk
p is an intersection of sets

defined by linear equations
∑k

i=1 aixi = b modulo p. So it suffices to show that every
such linear equation can be obtained. To obtain such a linear equation, it suffices
to obtain all equations of the form x = a, y = ax, and x + y = z, modulo p, since
every linear equation can be defined by combining these three basic types. In fact,
we only need x = 1 and x + y = z, since x = a is x = 1 + 1 + · · · + 1 and y = ax is
y = x+ x+ · · ·+ x, with a terms in the sums. To get x = 1, just set x+ y + z = 1,
y = 0, z = 0. To get x+ y = z, just set x+ y + t = 1, z + u+ t = 1, u = 0.

We shall later see that if in addition to all these subgroups and cosets for Zp and its
powers, the template also has a subset of Zk

p that is not a subgroup or coset, then the
constraint-satisfaction problem for that template is NP-complete. Thus if we wish to
examine constraint-satisfaction problems that have at least the ability to count modulo
p but are not NP-complete, it does not make sense to add new constraints in Zp. It
may still make sense, however, to examine templates where the p elements defining
Zp are only a subset of all the elements. Furthermore, the remaining elements should
interact in a natural manner with the p elements defining Zp, to avoid defining subsets
of Zk

p that are neither subgroups nor cosets. One way of achieving this is to encode
Zp as a problem such as digraph-homomorphism; the encoding adds extra elements to
the template, but only defines linear equations modulo p on some p specific elements.
This approach, however, does not create a template that is essentially different from
Zp itself, just an encoding of Zp. There seems to be only one way of obtaining a

90 TOMÁS FEDER AND MOSHE Y. VARDI

template with more than the p elements for Zp without interfering with the structure
of Zp: simply view Zp as a subgroup of a larger group, not necessarily abelian, and
allow subgroup and coset relations on the larger group. Here we have the following.

Let the general subgroup problem for a finite groupG be the constraint-satisfaction
problem with template G whose relations are subgroups and cosets of subgroups of
Gk. We shall need to bound k by some constant to obtain a finite template, but we
will always allow k to be as large as needed for the argument at hand.

Theorem 33. The general subgroup problem for a finite group G is polynomially
solvable.

Proof. The result follows immediately from a known algorithm that finds gener-
ators for a group obtained by Babai [6] and Furst, Hopcroft, and Luks [21]; see also
Theorem II.12 in Hoffmann [31].

The main observation is that, given a group H with known generators and a chain
of subgroups H = H0 > H1 > · · · > Hr = {1}, one can obtain distinct representatives
from each coset of each Hi in Hi−1 as follows. Select two elements x, x′ among the
generators of H0 that belong to the same coset of H1, say, x′ = xy with y ∈ H1; then
discard x′ and add y to the list of generators. Iterate until there is only one generator
in each coset of each Hi in Hi−1, and carry out the process for products xy of two
current generators as well. The fact that only products of pairs are needed to obtain
representatives for all cosets of each Hi in Hi−1 requires proof; see Theorem II.8 in
[31].

In our application, we have n elements that must be assigned values in G, so a
solution is an element of H = Gn. Each relation in an instance defines a subgroup
or more generally a coset aiJi in H, for some subgroup Ji of H, with 1 ≤ i ≤ s if
there are s relations in an instance. Let Hi = J1 ∩ J2 ∩ · · · ∩ Ji for 1 ≤ i ≤ s; then fix
each of the n components to 1 successively until Hr = Hs+n = {1} is obtained. Now
obtain representatives for all cosets of each Hi in Hi−1 using the algorithm above.

To solve the constraint-satisfaction problem, observe that the first relation a1J1

is a coset of H1 = J1 in H0, so we may select a representative a for this coset from
the above representation, and then look for a solution of the form ax with a fixed
and x in H1. Having fixed a, a condition ax ∈ aiJi now becomes x ∈ a−1aiJi = biJi.
Now we proceed with b2J2 and H2 as we did before for a1J1 and H1. Here it might
be that no coset representative b for H2 in H1 is in b2J2, in which case the problem
has no solution. If such a representative b exists, we may again look for a solution of
the form by with y in H2, and proceed as before to H3, H4, . . . , Hs. In the end, we
just need to select an element of Hs, with no constraints, and we may just take 1.

This gives a polynomial time algorithm because n, r, |G|, and |Hi|/|Hi−1| are
polynomially bounded.

Labeled graph isomorphism has polynomial time algorithms obtained by the au-
thors mentioned above, and the algorithm described in the preceding theorem is es-
sentially the same as the algorithm of Furst, Hopcroft, and Luks [21] as described
in Hoffmann [31]. In labeled graph isomorphism, two graphs have been colored with
each color occurring a bounded number of times, and we look for a color-preserving
isomorphism. For simplicity, assume that each color occurs in k of the vertices of
each of the two graphs. Let G be the group of permutations on 2k elements, corre-
sponding to the 2k vertices of the same color in the two graphs. The constraint that
vertices in one graph map to vertices in the other is a coset in G, while the constraint
that adjacent vertices map to adjacent vertices is a subgroup of G for adjacent ver-
tices of the same color, and a subgroup of G2 for adjacent vertices of different colors.

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 91

Thus labeled graph isomorphism can be viewed as a subgroup constraint-satisfaction
problem.

Let G be a finite group and consider the general subgroup problem for G. Suppose
that we consider adding a nonsubgroup constraint, where we mean a subset of Gk that
is neither a subgroup nor a coset. We have stated before that for Zp, this makes the
problem NP-complete. In fact, this is still true for any abelian group G. However, it
turns out that for nonabelian groups, it is sometimes possible to include a nonsubgroup
constraint and still have a polynomially solvable problem. The key notion turns out
to be what we call a nearsubgroup; nearsubgroups coincide with subgroups in the
abelian case, but not generally for an arbitrary nonabelian group.

Let G be a finite group, and let K be a subset of G such that 1 ∈ K. We say
that K is a nearsubgroup if for all b ∈ G such that 1 ∈ bK, for all subgroups M
of G, and for all normal subgroups N of M such that M∗ = M/N is abelian, the
set bK∗ = {aN ⊆ M : bK ∩ aN 6= ∅} is a subgroup of M∗. In other words, the
intersections of K with the abelian sections of G form subgroups.

An alternative definition is the following. Let G be a finite group and let K be a
subset of G such that 1 ∈ K and if x, y ∈ K, then xyx ∈ K. We call this condition the
cycles condition because, given that 1 ∈ K, it is equivalent to stating that if b, bx ∈ K,
then bx2 ∈ K. Furthermore, this implies that bxi ∈ K for all i, thus obtaining a coset
b〈x〉 of a cyclic group such that b〈x〉 ⊆ K, where 〈x〉 denotes the subgroup generated
by x. Suppose that K satisfies the cycles condition. If M is a subgroup of G, and N
is a normal subgroup of M with M/N isomorphic to E4 = Z2

2 , then there is no b ∈ G
such that bK ∩M meets exactly three of the four cosets of N in M . In this case, K
is a nearsubgroup.

It will be useful to consider nearsubgroups with the following stronger 2-element
property. Here K satisfies the cycles condition, and if S is the set of 2-elements in G,
and b is such that 1 ∈ bK, then S ∩ 〈S ∩ bK〉 ⊆ bK. That is, the 2-elements in bK
generate a subgroup whose 2-elements are in bK.

Our interest in these notions comes from the following three theorems. A non-
nearsubgroup is a bK with 1 ∈ K such that K is not a nearsubgroup.

Theorem 34. Let G be a finite group. Consider the general subgroup problem for
G. Also include a single subset of Gk for some k that is a non-nearsubgroup. Then
the subgroup problem with this additional non-nearsubgroup constraint can simulate
one-in-three SAT and is therefore NP-complete.

Proof. Let bK be the non-nearsubgroup in Gk. We can treat k-tuples as single
elements, and so assume that bK is a non-nearsubgroup in G. We can simulate the
constraint x ∈ K by y = bx and y ∈ bK, because y = bx is a coset (x, y) ∈ (1, b)H
where H = {(z, z) : z ∈ G}. So K itself is a set in the problem, with 1 ∈ K, and not
a nearsubgroup.

Suppose that K does not satisfy the cycles condition. If for y ∈ K, we also have
y−1 ∈ K, then the cycles condition can be restated as x, y ∈ K implies xy−1x ∈ K.
Setting a = y and az = x, we have a, az ∈ K but az2 /∈ K; we also have this if
y−1 /∈ K for some y ∈ K, letting a = y and az = 1. Furthermore, we can use the set
K ′ = a−1K as a constraint by x = ay and x ∈ K. So we have a constraint set K
with 1, z ∈ K but z2 /∈ K. We pass to 〈z〉, the group generated by z, which is Zn for
some n. We wish to obtain a set with just two elements 1, z in Zk = 〈z〉 for some k|n,
k ≥ 3.

We start with K itself and gradually reduce the size of K or the integer n down
to a smaller k. If zk, zk+1 ∈ K for some k 6= 0, then K ′ = K ∩ (z−kK) still has

92 TOMÁS FEDER AND MOSHE Y. VARDI

1, z ∈ K ′ but with K ′ strictly contained in K, unless x ∈ K if and only if xzk ∈ K,
in which case we may pass to the smaller Zk which is isomorphic to Zn/〈zk〉. So
we may assume that zk, zk+1 ∈ K only for k = 0, 1. If K contains some zk with
k 6= 0, 1 relatively prime to n, then we set K ′ = K ∩ (zkK−1), so that 1, zk ∈ K ′

but z /∈ K ′, so K ′ is strictly smaller than K and we may rename zk as z. Similarly,
if K contains some zk with k 6= 0, 1 and k − 1 relatively prime to n, then we set
K ′ = K ∩ (zk+1K−1). Therefore z, zk ∈ K ′ but 1 /∈ K ′, so K ′ is strictly smaller
than K and we may rename zk as 1 by a simple transformation. Now, if K contains
some zk with k 6= 0, 1 with k− 1, and k not relatively prime to n, then arguing in the
smaller groups generated by zk−1 and zk we may assume that K contains z2k and
z2k−1; but this is only possible if 2k − 1 = n, contrary to the assumption that k is
not relatively prime to n.

So we may indeed assume that K contains precisely 1, z in Zn = 〈z〉 with n ≥ 3.
Now consider x, y, t ∈ K∩Zn with the coset constraint xyt = z. Then one of x, y, t is z
and the other two are 1, thus defining one-in-three SAT and giving NP-completeness.

For the other case, suppose that K meets exactly three of the four cosets of N in
M . We may then pass to E4 = M/N = {1, a, b, ab} and assume K = {1, a, b}. Then
consider x, y, z ∈ {1, a} with xyz = a, which are all subgroup and coset constraints;
furthermore, add t ∈ {1, b} with (x, t) ∈ {(1, 1), (a, b)}, which are still subgroup
constraints. Finally, yt = u with u ∈ K. Then one of x, y, z is a and the other two
are 1, again defining one-in-three SAT and giving NP-completeness.

Theorem 35. Let G be a finite group. Consider the general subgroup problem
for G. Include also any number of subsets bK of Gk, where the sets K are near-
subgroups. Then the subgroup problem with these additional nearsubgroup constraints
cannot simulate one-in-three SAT (and is thus unlikely to be NP-complete).

Proof. Since the intersection of nearsubgroups is a nearsubgroup by a result of
Aschbacher [3], it suffices to show that a single one-nearsubgroup K of G3 cannot
represent the one-in-three SAT relation via some cK. Suppose that it does, so that
cK contains three elements (a, b, b), (b, a, b), (b, b, a) with a 6= b. We may assume
b = 1, and then multiply by (a−1, 1, 1), so the three triples are (1, 1, 1), (a−1, a, 1),
and (a−1, 1, a) in K. But the product (a−2, a, a) of the last two is also in K since the
last two also commute, so we have a triple (a−1, a, a) together with (a, 1, 1), (1, a, 1),
(1, 1, a). That is, the core will still contain some (x, a, a) for x = 1 or x = a, which
does not define one-in-three SAT.

Consider now a problem whose constraints are subsets of Gk containing the iden-
tity element 1; the only constraints that do not contain 1 are single-element subsets
{a} ∈ G. If every such a is of odd order, we call this the odd problem for G. If every
such a is of order a power of 2, we call this the 2-element problem for G.

Theorem 36. Consider a problem on a finite group G with arbitrary constraints.
This problem reduces to the odd problem and the 2-element problem together, with con-
straints aR corresponding to the constraints R in the original problem. Furthermore,
(1) the odd problem reduces to the subgroup problem for G if all constraints satisfy the
cycles condition; (2) the 2-element problem reduces to the subgroup problem for G if
all constraints K satisfy S ∩ 〈S ∩K〉 ⊆ K, where S is the set of two elements, and
also 〈x〉 ∈ K for x ∈ K. Therefore, the problem for G with nearsubgroup satisfying
the 2-element property reduces to the subgroup problem for G and is thus polynomially
solvable.

Proof. The first step takes arbitrary constraints on G and reduces them to odd
problems and 2-element problems. The basic idea is that if we have r constraints,

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 93

and s of them already contain the identity element 1, then we shall force one more
of these constraints to contain 1. Repeating this step eventually forces all constraints
to contain 1, and then 1 is a solution. Let K be the chosen set not containing 1, and
ignore the remaining r− s−1 constraints. For K ⊆ Gk itself, we may just try each of
the possible values for k variables involved. Suppose we just consider them one at a
time. We have thus reduced the problem to a problem where all constraints contain 1
except for a single constraint that assigns a value to a single variable. If this constant
is of odd order or of order a power of two, we have an odd problem or a 2-element
problem, respectively. If this constant is of order rs, with r odd and s a power of 2,
then it can be written as (a, b) in Zr × Zs, where a generates Zr and b generates Zs.
We initially replace b with a variable constrained to Zs, so we only have the odd order
constant a, and hence an odd problem. After solving the odd problem, we obtain a
solution s, and we may look for a solution of the form sx. This means that in Zr×Zs

we want the element (1, s−1
i b), and this is now a 2-element problem.

It remains to reduce the odd problem and the 2-element problem to the subgroup
problem in the cases mentioned in the theorem. We first consider the odd problem,
where the constraints are subsets K of Gk containing 1 and satisfying the cycles
condition. Additional constraints just assign a single odd order value to a variable.
We replace each variable with two variables. If K is a subset of Gk, we replace it
with the subgroup H of G2k generated by the pairs (x, x−1) in K. If a is a single

odd order constant, we replace it by the pair (a
1
2 , a−

1
2), where a

1
2 denotes a

r+1
2 , r

being the order of a. After a solution is found for the resulting subgroup problem,
we replace each pair (x, y−1) in the solution by the product xy to obtain a solution
for the original problem. If the original problem had a solution, we could choose s a
power of 2 such that xs = x for odd order elements x and xs has odd order for all
x. Raising the solution to the power s gives an odd order solution t, and we may use
the pair (t

1
2 , t−

1
2) as a solution to the new problem. Conversely, if the new problem

has a solution, then the odd constant pairs (a
1
2 , a−

1
2) give the right product value a.

Furthermore, a pair (x, y−1) in H can be written as (x1x2 · · ·xk, x−1
1 x−1

2 · · ·x−1
k) with

the xi in K, and then xy = x1x2 · · ·xkxk · · ·x2x1 is in K by the cycles condition, as
desired.

For the 2-element problem, the constraints are subsets K of Gk containing 1
and satisfying the condition S ∩ 〈S ∩ K〉 ⊆ K. Additional constraints just assign
a single 2-element value to a variable. The main point is that the set K and the
subgroup 〈S ∩K〉 are indistinguishable as far as their 2-elements are concerned, i.e.,
S ∩ 〈S ∩K〉 = S ∩K. So we replace the set K with the subgroup 〈S ∩K〉 and insist
for either problem that the solution consist of 2-elements. As before, we can choose
r odd such that xr = x for 2-elements x and xr is a 2-element for all x; raising a
solution to either problem to the power r guarantees that the solution is a 2-element,
as desired.

Summarizing, non-nearsubgroups give NP-completeness, nearsubgroups give non-
NP-completeness unless the reduction is not a simulation of one-in-three SAT, and
nearsubgroups with the 2-element property give polynomiality by a reduction to the
subgroup case.

We first showed that nearsubgroups are the same as subgroups in the abelian
case. We moved on to the nonabelian case, and still showed that nearsubgroups are
the same as subgroups for 2-groups. This led us to consider the case of odd order
groups, where we encountered a nearsubgroup that is not a subgroup: the elements are
triples from Zp with product operation (i, j, k)(i′, j′, k′) = (i+ i′ + jk′, j + j′, k + k′)

94 TOMÁS FEDER AND MOSHE Y. VARDI

and the nearsubgroup K consists of the elements of the form (1
2jk, j, k). For odd

order groups, nearsubgroups immediately satisfy the 2-element property. From this
we inferred that for groups that are the product of a 2-group and an odd order group,
in particular for nilpotent groups, nearsubgroups satisfy the 2-element property, and
so the constraint-satisfaction problem for nearsubgroups is polynomially solvable.

We then asked whether it might always be the case that nearsubgroups satisfy
the 2-element property, so that the constraint-satisfaction problem for nearsubgroups
is polynomially solvable. Aschbacher found a counterexample, where K = I is the set
of involutions (elements of order 2) plus the identity element 1, in a rank-1 simple Lie
group of even characteristic with at least one element of order 4.

Because of this example, we considered the case of groups with no element of or-
der 4 and showed for such groups that when the 2-Sylow subgroups have at most four
elements, then nearsubgroups satisfy the 2-element property; Aschbacher [3] proved a
general theorem that implies that nearsubgroups satisfy the 2-element property for all
groups with no element of order 4. Since all groups where we had previously shown
that nearsubgroups satisfy the 2-element property are solvable, and Aschbacher’s
counterexample is not a solvable group, we asked whether there might be any coun-
terexample for solvable groups. Here we could understand the case of a dihedral
group, 〈a, b〉, with a2 = bn = 1 and ab = b−1a; then the only nearsubgroups that are
not necessarily subgroups are given for r, s dividing n by the elements of the form bir

and abjs, provided that the same power of 2 divides r and s. Aschbacher showed that
nearsubgroups satisfy the 2-element property for solvable groups. Finally, since it
is not possible to simulate one-in-three SAT and obtain NP-completeness with near-
subgroups alone, we asked whether nearsubgroups could give a non-nearsubgroup by
intersection. Aschbacher showed that this is not possible—the intersection of near-
subgroups is a nearsubgroup.

Summarizing our findings and those of Aschbacher [3], we state the following
theorem.

Theorem 37. Let G be a finite group.

(1) If G is abelian, or a 2-group, then its nearsubgroups are subgroups.

(2) Let I be the involutions plus 1. If G has two involutions whose product has
order 4, then I is not a nearsubgroup. Otherwise, I is a nearsubgroup. If in addition
I generates no element of order 4, then I satisfies the 2-element property ; otherwise
it does not. There exist groups G that meet this condition for I being a nearsubgroup
but not satisfying the 2-element property.

(3) If G has no element of order 4, or if it is solvable, then its nearsubgroups
satisfy the 2-element property.

(4) The intersection of nearsubgroups is a nearsubgroup.

The fact that there are finite groups G with nearsubgroups that do not satisfy
the 2-element property, such as the ones in (2) above, creates an interesting situation.
Consider the nearsubgroup problem for G. We know that this problem cannot sim-
ulate one-in-three SAT, and is thus unlikely to be NP-complete. On the other hand,
only nearsubgroups with the 2-element property seem to be transformable into sub-
groups so as to obtain a subgroup problem, so the problem might not be polynomially
solvable. This is our best candidate for a constraint-satisfaction problem that might
be neither polynomially solvable nor NP-complete.

On the other hand, we have identified a property, the nearsubgroup intersection
property, that would imply that the problem with nearsubgroups is polynomially
solvable. We know of no counterexamples to the nearsubgroup intersection property,

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 95

and it is implied by the 2-element property. The nearsubgroup intersection property
is as follows. Let G be a finite group with a subgroup H of index 2. Then there exists
an element g in G\H such that g belongs to every nearsubgroup K of G such that the
2-elements in the intersection of K∗ and G∗\H∗ generate G∗. Here G∗ = G/N , where
N is some normal subgroup of G (dependent on K) such that H contains N , kN is
contained in K for every k in K, and H∗,K∗ are the corresponding induced subsets of
G∗ obtained from H,K. The weak nearsubgroup intersection property considers only
nearsubgroups K with N = 1. That is, for a finite group G with a subgroup H of
index 2, there exists an element g in G\H such that g belongs to every nearsubgroup
K of G such that the 2-elements in the intersection of K and G \H generate G. The
following theorem can be proved using the weak nearsubgroup intersection property;
we have chosen to use the stronger definition because it leads to a simpler proof and
algorithm.

Theorem 38. Suppose that the nearsubgroup intersection property holds. Then
the 2-element problem is polynomially solvable for nearsubgroups, and therefore the
problem for nearsubgroups is polynomially solvable.

Proof. We have already shown that to solve the problem with nearsubgroup
constraints, it is sufficient to solve the 2-element problem. In the 2-element problem,
we have a space which is the direct product of groups G1, G2, . . . , Gn, where G1 =
〈r〉 is a group generated by a 2-element r (we would like to obtain this element r in
a solution), and all constraints are nearsubgroups of the direct product of a bounded
number of Gi. Call G the product of all the Gi, and let H be the subgroup of index
2 obtained by replacing G1 with G′

1 = 〈r2〉. If we can obtain a solution g in G \H,
this solution will have r2i+1 in G1, and then a solution having r itself can be easily

obtained since r = (r2i+1)
j

for some j. So suppose we are looking for a solution g
in G \ H. Consider the first nearsubgroup constraint K, which constrains, say, the
direct product of the first k groups Gi. Call N the product of the remaining Gi. By
taking the factor group defined by N , we move to G∗ and obtain H∗ and K∗. It
is then sufficient to look for a solution in the group generated by the 2-elements in
the intersection of K∗ and G∗ \H∗. This gives a subgroup of G, and we may obtain
generators for this subgroup. By carrying out this process of further restricting G
by considering each nearsubgroup constraint K in turn, we obtain a decreasing chain
of subgroups (we may need to look at the same nearsubgroup more than once; this
process is similar to how the subgroup problem was solved). If at the end of this
process, the subgroup H still has index 2 in G, then the nearsubgroup intersection
property guarantees the existence of a solution with all nearsubgroup constraints. To
actually find such a solution, we may successively fix the values in G2, G3, . . . , Gn and
test that H still has index 2, until we find a complete solution.

7. Conclusions and further directions. Every known polynomially solvable
problem in CSP can be explained by a combination of Datalog and group theory.
In fact, only three specific cases combine to give all known polynomially solvable
problems. The three cases are width 1, bounded strict width, and subgroup problems.

These three cases have something in common, which is best illustrated by the
following characterizations, where we also include a fourth case where the template is
over the reals.

(1) A problem has width 1 if and only if there is a function f that maps nonempty
subsets of the template to elements of the template, such that for every relation R in
the template, of arity k, the following holds. Let S1, S2, . . . , Sk be subsets with the
property that for every xi in Si, there exist xj in Sj for j 6= i such that (x1, x2, . . . , xk)

96 TOMÁS FEDER AND MOSHE Y. VARDI

is in R. Then (f(S1), f(S2), . . . , f(Sk)) is in R. The case of extended width 1 is slightly
more general, because it only considers a fraction of the subsets of the template. The
existence of solutions can also be described in terms of tree duality.

(2) A problem has strict width l if and only if there is a function g that maps
(l+1)-tuples from the template to elements of the template, such that for every rela-
tion R in the template, of arity k, the following holds. First, if all but at most one of
some l+1 elements xi are equal to some specific element x, then g(x1, x2, . . . , xl+1) =
x. Second, let xij be elements with (x1j , x2j , . . . , xkj) in R for every j. Then
(g(x11, x12, . . . , x1(l+1)), g(x21, x22, . . . , x2(l+1)), . . . , g(xk1, xk2, . . . , xk(l+1))) is in R.
The existence of solutions can also be described in terms of the Helly property.

(3) A problem is a subgroup problem if and only if we can define a group operation
on the elements of the template such that for every relation R in the template, of
arity k, the following holds. If the three tuples (b1, b2, . . . , bk), (b1x1, b2x2, . . . , bkxk),
(b1y1, b2y2, . . . , bkyk) are in R, then the tuple (b1x1y1, b2x2y2, . . . , bkxkyk) is also in
R. This means that R is a coset of a subgroup of Gk. The case of nearsubgroups can
be viewed as mapping b, bx, by into bxyz, rather than into bxy, where z is an element
of the commutator group of the subgroup generated by x and y. The algorithm that
finds solutions depends on the fact that when G acts on itself every subgroup defines a
partition into cosets; we do not know whether a partition theory can also be developed
for nearsubgroups.

(4) Convex programming, a constraint satisfaction problem over the reals solvable
in polynomial time with the ellipsoid method, has the property that if (x1, . . . , xk)
and (y1, . . . , yk) are both in some convex set, then so is (hα(x1, y1), . . . , hα(xk, yk)),
where hα(x, y) = αx+ (1− α)y and 0 ≤ α ≤ 1. Here convex programming duality is
of interest in the study of solutions.

These four characterizations are all closure properties; i.e., there exists a function
(f , g, group operation, or hα) such that every relation R in the template is closed
under componentwise application of the function. Furthermore, there is always an
associated structure theory for the study of the existence of solutions (tree duality,
Helly property, coset partition, convex programming duality, respectively). Schaefer
[48] used such closure properties when he classified the polynomially solvable and
NP-complete problems in Boolean CSP. He was thus in a sense showing that Horn
clauses, 2SAT, and linear equations modulo 2, the three polynomially solvable cases,
are width 1, strict width 2, and subgroup, respectively. We do not know whether
polynomial solvability for CSP is always necessarily tied to a closure property.

The algorithmic significance of these closure properties is an interesting question.
For problems of width 1, the f mapping is not needed to solve the problem in poly-
nomial time, but can be used to obtain a solution directly once the Datalog program
has found nonempty sets associated with each variable. For problems of strict width
l, once the Datalog program has found nonempty sets associated with l-tuples of vari-
ables satisfying the Helly property, the g mapping can be used to obtain a solution
efficiently in parallel. There are, however, problems where the f and g mappings
help find fast algorithms without running the Datalog program. Here the following
results from Feder and Hell [18] are good examples. The connected list problem for
reflexive graphs is polynomially solvable for chordal graphs, and NP-complete other-
wise. For chordal graphs, this problem has width 1. By using the perfect elimination
ordering for perfect graphs, a fast parallel algorithm can be found for this problem,
and here the f mapping is based on the existence of a perfect elimination ordering.
Similarly, the arbitrary list problem for reflexive graphs is polynomially solvable for

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 97

interval graphs, and NP-complete otherwise. For interval graphs, this problem has
strict width 2. By using the interval representation for interval graphs, a reduction
to 2SAT can be found for this problem, giving again a fast parallel algorithm. Here
the g mapping is based on the existence of an interval representation. Thus the f and
g mappings can help understand the structure of a problem and lead to fast parallel
algorithms. For subgroup problems, the situation is more drastic: we do not know of
any algorithm that does not involve finding generators, and here the group operation
is used directly.

This raises an important question. For subgroup problems, the set of solutions
has a polynomial number of generators. This means that there exists a polynomial
number of solutions such that if we take the closure under the mapping that maps
s, sx, sy to sxy, then we obtain all solutions. Now we may ask whether there exist
a polynomial number of generators for the width 1 and bounded strict width cases,
when closure under f and g mappings is considered. We first study the bounded strict
width case. Here there does exist a polynomial number of generators; namely, if a
problem has strict width l, then for each choice of l variables x1, x2, . . . , xl, determine
the assignments of values to these variables for which a solution exists, and choose one
solution for each assignment. This produces at most nl generators. To see that these
are generators, suppose that we have a solution and consider the values it assigns to
l + 1 variables x1, . . . , xl+1. For each choice of a variable xi, there exists a generator
that assigns the correct value to the remaining xj , but not necessarily to xi. Find
l + 1 such generators, one for each i, and then applying the g mapping to them will
assign the correct value to the l + 1 variables. Inductively, we can then obtain the
correct assignment for all variables. Now consider the width 1 case. Here we write
f(S) = t for a set of solutions S and a solution t if for each variable xi, letting
Si be the set of values taken by xi in S, and letting ti be the value of xi in t, we
have f(Si) = ti. In general, the number of generators needed for this f mapping is
exponential. For Horn clauses, with f({0}) = 0, f({1}) = 1, and f({0, 1}) = 0, the
mapping f(S) = t corresponds to set intersection. Even for independent set, a special
case of Horn clauses, the set of generators with the f mapping must contain at least
the maximal number of independent sets, and there can be an exponential number
of them. Independent set, on the other hand, is also a special case of 2SAT, and the
number of generators with the g mapping is polynomial. For linear programming,
the generators with the hα mappings are the vertices of the polytope, and there
can be an exponential number of them. Notice now that Horn clauses and linear
programming are in general P-complete, while neither bounded strict width problems
nor subgroup problems seem to be P-complete; it might be that P-completeness is
tied to the nonexistence of a closure property that allows for a small (polynomial or
at least nonexponential) set of generators.

Our attempt to classify the problems in CSP and establish a dichotomy is based
on the following two conjectures.

Conjecture 1. A constraint-satisfaction problem is not in Datalog if and only
if the associated core T can simulate a core T ′ consisting of two relations C,Z that
give the ability to count. This is equivalent to simulating either Zp or one-in-three
SAT.

Conjecture 2. A constraint-satisfaction problem is NP-complete if and only
if the associated core T can simulate a core T ′ consisting of the single relation C
defining one-in-three SAT.

The first conjecture indicates a sharp line out of Datalog and into group theory:

98 TOMÁS FEDER AND MOSHE Y. VARDI

since one-in-three SAT can simulate Z2, and, when the two linear equations x = 0,
x+ y+ z = 1 modulo p give the ability to count, then every linear equation modulo p
can be simulated, it follows that the conjecture basically says that a problem not in
Datalog is at least as powerful as the general subgroup problem for Zp.

So we assume that a template not in Datalog contains at least the general sub-
group problem for Zp. We then move on to the second conjecture, which indicates a
sharp line into NP-completeness. We thus try to determine what can make a prob-
lem that can simulate Zp able to simulate one-in-three SAT, and thus NP-complete.
We first observe that on the p elements that simulate Zp, any relation that is not a
subgroup or a coset in a power of Zp makes it possible to simulate one-in-three SAT.
It is thus not possible to interfere with Zp itself and avoid NP-completeness. This
suggests that the only way to enlarge the Zp problem and still obtain a problem that
cannot simulate one-in-three SAT may be to view Zp as a subgroup of a larger, not
necessarily abelian, group. It seems that any other approach to extending Zp would
simply combine Zp with other problems without interfering with Zp itself, either by
taking the product of Zp with another problem or by encoding Zp in a special class
such as digraph-homomorphism.

Suppose then that we have the general subgroup problem for a finite group, which
is still polynomially solvable. It is no longer true that adding a nonsubgroup makes it
possible to simulate one-in-three SAT. We can show that adding a non-nearsubgroup
makes it possible to simulate one-in-three SAT. So we only allow nearsubgroups. The
intersection of nearsubgroups gives nearsubgroups. So nearsubgroups do not make it
possible to simulate one-in-three SAT, which by the second conjecture would mean
that adding nearsubgroups to a subgroup problem cannot make the problem NP-
complete. We can show that if we restrict our attention further to nearsubgroups with
the 2-element property, then nearsubgroups can be replaced with related subgroups,
and the resulting problem reduces to subgroup problems and is thus polynomially
solvable.

But then nearsubgroups have the 2-element property for many groups, including
solvable groups and groups with no element of order 4, by results of Aschbacher [3].
It may then be that a subgroup problem always remains polynomially solvable when
we add nearsubgroups. However, Aschbacher identifies a group with a nearsubgroup
that does not have the 2-element property. It does not seem possible to represent
this nearsubgroup as a subgroup, so the problem does not immediately reduce to a
subgroup problem, although it still contains the general subgroup problem for the
chosen group; this may mean that the problem is not polynomially solvable. On the
other hand, the fact that nearsubgroups cannot simulate one-in-three SAT may mean
that the problem is not NP-complete.

We thus have our best candidate for a problem in CSP that may be neither
polynomially solvable nor NP-complete, which is the following. Consider the general
subgroup problem for a finite group and focus on the set of involutions, including the
identity, which we wish to add as a new constraint. If some element of order 4 is the
product of two involutions, then involutions are not a nearsubgroup and the problem
is NP-complete. Otherwise, the involutions are a nearsubgroup. If no element of
order 4 is generated by involutions, then the involutions have the 2-element property,
and the problem is polynomially solvable. Otherwise, the involutions do not have the
2-element property. Aschbacher observed that there are such finite groups, where the
involutions form a nearsubgroup without the 2-element property. Could it be that
for such groups the involutions define a problem that is neither polynomially solvable

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 99

nor NP-complete? On the other hand, the following may hold.
Conjecture 3. The nearsubgroup intersection property holds for all finite groups.

Therefore, the constraint-satisfaction problem with nearsubgroup constraints is poly-
nomially solvable.

This is the current state of the attempt to classify the problems in CSP and
obtain a dichotomy. Considering the three main conjectures, it may be that there is
a direct approach towards proving the first one, concerning the ability to count. One
might start by showing that if a subgroup problem does not have the ability to count,
then it can be solved with Datalog, beginning with abelian groups. Similarly, one
could consider linear programming, a constraint-satisfaction problem over the reals
that gets the ability to count by representing bipartite matching or linear equations,
and show that if a linear programming template does not have the ability to count,
then it can be solved with Datalog.

The second conjecture cannot be approached directly, as we cannot show non-
NP-completeness without showing P6=NP. It might still be possible to show that if
a CSP problem cannot simulate one-in-three SAT, then it belongs to a class that
is unlikely to contain NP-complete problems, such as co-NP; this would establish
a dichotomy, namely, NP-complete versus in NP∩co-NP. An approach along these
lines was successful in showing that graph isomorphism is not NP-complete unless
the polynomial hierarchy collapses. The approach there was via interactive proofs for
graph nonisomorphism; interactive proofs have already been shown to be relevant in
the study of constraint satisfaction problems; see [20, 7].

It might be possible to answer the third conjecture with the theory of nearsub-
groups as studied by Aschbacher [3].

A basic question remains open. Find a deterministic construction of small graphs
of high chromatic number and high girth, in particular with the size of the graph
polynomial in the chromatic number, with the girth lower-bounded by a constant.
This would help derandomize the reduction between equivalent MMSNP and CSP
problems.

The class NP consists of all problems expressible by an existential second-order
sentence with an arbitrary first-order part (see [14]; the first-order part need not
be universal, as for SNP). What is the complexity of problems in MMNP, the class
monotone monadic NP without equality or inequality?

Appendix: Constraint satisfaction and link systems. In his paper “Pro-
cess, system, causality, and quantum mechanics” [12], Etter proposes link systems
as a unifying framework for i-o systems, Markov processes, and quantum mechan-
ics; he also suggests that link systems provide an interpretation for relativity and for
relational databases. In this paper, we have proposed constraint satisfaction as a uni-
fying framework for problems that can be solved with Datalog, such as Horn clauses
and 2-satisfiability; for NP-complete problems, such as 3-coloring and one-in-three-
satisfiability; for problems from group theory, such as systems of linear equations and
labeled graph isomorphism; for linear programming, graph matching, and a family of
matroid parity problems; and for network stability and stable matching.

In this Appendix we intend to expose a direct connection between constraint
satisfaction and link systems, so that this work and the work of Etter may benefit
from each other.

A link system is a stochastic process on a set of random variables x1, x2, . . . , xn,
together with a set of links. A link is a condition of the form x = y on two variables
x and y of a stochastic process, thereby creating a new process in which the uncondi-

100 TOMÁS FEDER AND MOSHE Y. VARDI

tional probability p(E) of any event E is p(E|x = y) in the old process. The duplicate
variable y is then dropped.

A proper link system is a link system in which all links are between different
independent parts of the stochastic process, and no two links involve the same variable.
Etter is primarily interested in proper link systems.

A white variable is a random variable with a uniform distribution. An i-o system
is a link system where every link is of the form x = w and where w is a white variable,
with x and w independent. Notice that when the process is conditioned on x = w,
so that x and w are linked and w is dropped, the distribution of x in the resulting
stochastic process is the same as in the original process, because w is white.

Suppose that x and y are independent random variables. Then the probability
that x and y will both have some value k is the product of the probabilities that they
will have value k separately, i.e., p(x = y = k) = p(x = k)p(y = k). Let’s call p(x = k)
and p(y = k) the unlinked probabilities of x being k and of y being k. Now suppose
we impose the link condition x = y. The linked probability is then the probability,
conditioned by x = y, that both x = k and y = k. The probability that x is k, as a
function of k, is proportional to p(x = k)p(y = k).

In short, linked probabilities are always quadratic in unlinked probabilities. If
the distributions of x and y are identical, which is the quantum situation, then linked
probabilities are the squares of unlinked probabilities. That is, quantum amplitudes
are simply unlinked probabilities, which explains the square root law. The main
additional element that appears in quantum mechanics is that probability theory
must be extended by allowing cases to count negatively. Much of the trouble that we
have when looking for an interpretation of quantum mechanics is that we are looking
for an i-o system, where one of the two linked variables is white, when instead it is
the case that the two variables are identically distributed.

This is in essence a summary of some of the basic ideas in Etter’s paper. He
also shows that the velocity law of relativity, which adds velocities as (v + v′)/(1 +
vv′), where the speed of light is 1, can be viewed as linking two variables x and x′

corresponding to coin tosses, where the velocity is the probability of heads minus the
probability of tails.

In a second paper, “Quantum mechanics as a branch of mereology” [13] Etter
proposes an approach to link systems from relational databases instead of probability
theory. The word mereology means the mathematical theory of parts and wholes. The
idea is to use the record count for database tables instead of probabilities. Linking
is then defined in the usual sense for combining tables in relational databases. For
example, let A be a two-field table with record count A(x, y) and let B be another two-
field table with record count B(y, z). When A and B are linked at y to obtain a three-
field table, the record counts multiply, giving record count A(x, y)B(y, z) for the entry
given by the triple x, y, z. When we hide the linked field y, we obtain a two-field table
C, adding the record counts over y, so the record count is C(x, z) =

∑
y A(x, y)B(y, z).

In short, when A,B,C are viewed as matrices, we have C = AB. That is, linking is
intimately tied to matrix multiplication. Etter uses this connection to examine the two
core laws of quantum mechanics, the Born probability rule and the unitary dynamical
law (whose best-known form is Schrödinger’s equation), formulated by von Neumann
in the language of Hilbert space in terms of matrices as prob(P) = trace(PS) and
S′T = TS, respectively. Etter observes that the algebraic forms of these two core
laws occur as completely general theorems about links.

We now turn to the connection with constraint satisfaction. Given an instance

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 101

I of constraint satisfaction, suppose we create an auxiliary instance I ′ where every
variable in I has been replaced by many variables, so that every variable occurs in
precisely one constraint. The instance I ′ always has a solution, namely, satisfying
each constraint separately. Now view I ′ as a stochastic process, by requiring for
each constraint (x1, . . . , xk) ∈ R that the variables xi be distributed so as to give a
uniform distribution over the satisfying assignments for R. Now I can be viewed as
the system obtained from I ′ by linking the many variables that came from the same
variable. The resulting distribution is then the uniform distribution over the set of
satisfying assignments to the instance I.

This is in essence the connection between constraint satisfaction and link sys-
tems. We may then ask what part of the framework of Etter makes sense in the
context of constraint satisfaction. A first observation is that the use of Datalog
allows for rules such as C(x, z):–A(x, y), B(y, z). When conjunctions and disjunc-
tions are replaced by multiplication and addition, respectively, the rule becomes
C(x, z) =

∑
y A(x, y)B(y, z), which we saw arises in link systems.

Consider next the network stability problem. Here the constraints are gates; i.e.,
they involve k+l variables via a functional constraint f(x1, x2, . . . , xk) = (y1, y2, . . . , yl).
In the instance I ′, prior to the linking, the xi variables are independently and uni-
formly distributed. All the links are of the form y = x, matching an output y to an
input x, where the input x is uniformly distributed, and hence a white variable. There-
fore, network stability is just an i-o system, in Etter’s terminology. Stable matching
is known to be the special case of network stability where all variables are Boolean
and all gates are the X gate X(x1, x2) = (x1x2, x2x1), in addition to the constant
generating gates with k = 0 and l = 1, as well as the absorption gate with k = 1 and
l = 0. For every network there is an underlying digraph, namely, the digraph with
a vertex for every constraint C, and a directed edge from C to C ′ if an output of C
is an input to C ′. This digraph need not be acyclic in general and, for example, sta-
ble matching problems give digraphs that are usually not acyclic. Then the network
stability may not have any solutions or more than one solution. When the digraph is
acyclic, the network is called a circuit, and there is then a unique solution obtained
by evaluating the gates in the order in which they appear in the digraph.

Notice that in the case of network stability, variables occur in disjoint linked pairs,
as in Etter’s proper linked systems. In general, we have not made the assumption
that every variable occurs in precisely two constraints in this paper. Without this
assumption, we have conjectured that the constraint-satisfaction problems are either
solved with Datalog or have the ability to count; in the latter case, we either have
linear equations or one-in-three satisfiability. Suppose we make the same conjecture
in the case where every variable occurs in precisely two constraints; then one-in-three
satisfibility becomes a polynomially solvable problem, namely, graph matching.

In fact, graph matching generalizes to a family of matroid parity problems as a
constraint-satisfaction problem with the property that every variable occurs in only
two constraints. To see this assume that each relation in the template is a matroid.
Then all relations occurring in an instance form a single matroid that decomposes into
a collection of small matroids—one for each relation. The constraints that pair up the
variables define a matroid parity problem. Notice that the bases exchange property
acts once again as a closure property. By limiting the number of relations involving
a single variable, we are in essence limiting fanout. In the case of network stability,
every variable occurs in one relation as an input and in one relation as an output.
This limits fanout unless we have a copy gate f(x) = (x, x) that creates fanout. Mayr

102 TOMÁS FEDER AND MOSHE Y. VARDI

and Subramanian [39] observed that in the Boolean case, forbidding such a copy gate
gives rise precisely to the adjacency-preserving case. In the case where the relations
are arbitrary, not necessarily gates, the constraint that each variable appear in only
two constraints limits fanout unless we have a copy relation R(x, x, x) that creates
fanout. Here we observe that in the Boolean case, if we consider only relations where
all tuples have the same number of zeros and the same number of ones, then forbidding
such a copy relation gives rise precisely to the matroid parity problems just described.
It is also interesting whether limiting fanout has relevance in the quantum context,
as suggested by applications in quantum cryptography.

Now let us look at the definition of the ability to count in detail. This definition
involves a system I ′ consisting of two disjoint parts A and B that do not share any
variables; and the links that produce I involve a pair of variables, one from A and
one from B, with each variable participating in exactly one pair. This is precisely the
main case of interest for Etter, where removing the links disconnects the system into
two independent parts A and B.

Finally, when we looked at group-theoretic problems, specifically in the odd order
problem, we saw that to turn the nearsubgroup problem into a subgroup problem,
each variable x had to be replaced by a pair (x1/2, x−1/2). That is, just as in quantum
mechanics, we have a square root law. It would be interesting to see whether the fact
that a square root law arises in group theory is not a coincidence, since group theory
has central importance in quantum mechanics. In fact, could it be that nearsubgroups
have some interpretation in quantum physics?

Etter has observed that, given that constraint satisfaction is the problem of map-
ping a structure S to a fixed template T , it makes sense to exchange the roles of S and
T and to look for a homomorphism from T to S. He has observed that this duality
has something in quantum mehanics that seems related to this strange reversal, which
is the Foch-space representation of the wave-particle duality that reverses the role of
vector and tensor components in Hilbert space. He suspects that duality will turn out
to be a key concept for unifying quantum mechanics with relativity. In the context of
constraint satisfaction, the simplest example of this form of duality is the case where
the template is a clique Kr on r vertices. Mapping S to Kr is the problem of coloring
a graph with r colors, while mapping Kr to S is the problem of whether a graph has
a clique of size r.

Acknowledgments. We benefitted greatly from early discussions with Yatin
Saraiya and with Peter Winkler. Christos Papadimitriou suggested the connection
between constraint satisfaction and two problems with a fixed structure that were pre-
viously studied, graph-homomorphism and the Boolean domain case. Milena Mihail
suggested that quasi-random graphs may derandomize the representation of monotone
monadic SNP in CSP. Tom McFarlane showed us the paper of Tom Etter on link sys-
tems. We also had very valuable conversations with Miki Ajtai, Michael Aschbacher,
Yossi Azar, Laszlo Babai, Ron Fagin, Jim Hafner, Pavol Hell, Rajeev Motwani, and
Moni Naor. The comments of two anonymous referees were very helpful in the final
writing of this paper.

REFERENCES

[1] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-decomposable graphs, J.
Algorithms, 12 (1991), pp. 308–340.

[2] M. Aschbacher, Finite Group Theory, Cambridge Stud. Adv. Math. 10, Cambridge University
Press, Cambridge, UK, 1986.

MONOTONE MONADIC SNP AND CONSTRAINT SATISFACTION 103

[3] M. Aschbacher, Near Subgroups of Finite Groups, manuscript.
[4] F. Afrati and S. S. Cosmadakis, Expressiveness of restricted recursive queries, in Proc. 21st

ACM Symp. on Theory of Computing, ACM, New York, 1989, pp. 113–126.
[5] F. Afrati, S. S. Cosmadakis, and M. Yannakakis, On Datalog vs. polynomial time, in Proc.

10th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, ACM,
New York, 1991, pp. 13–25.

[6] L. Babai, Monte Carlo Algorithms in Graph Isomorphism Testing, manuscript, 1979.
[7] R. Bač́ik and S. Mahajan, Semidefinite Programming and Its Applications to NP Problems,

manuscript, 1995.
[8] J. Bang-Jensen and P. Hell, The effect of two cycles on the complexity of colourings by

directed graphs, Discrete Appl. Math., 26 (1990), pp. 1–23.
[9] H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic index on

partial k-trees, J. Algorithms, 11 (1990), pp. 631–643.
[10] R. Dechter, Constraint networks, in Encyclopedia of Artificial Intelligence, 1992, pp. 276–285.
[11] P. Erdős, Graph theory and probability, Canad. J. Math., 11 (1959), pp. 34–38.
[12] T. Etter, Process, system, causality, and quantum mechanics – a psychoanalysis of animal

faith, Internat. J. General Systems (Special Issue on General Systems and the Emergence
of Physical Structure from Information Theory).

[13] T. Etter, Quantum mechanics as a branch of mereology, extended abstract, Phys. Comp.,
116 (1995).

[14] R. Fagin, Generalized first-order spectra, and polynomial-time recognizable sets, in Complexity
of Computations, R. Karp, ed., AMS, Providence, RI, 1974.

[15] T. Feder, Stable Networks and Product Graphs, Ph.d. Thesis, Stanford University, Stanford,
CA, 1991; also Mem. Amer. Math. Soc. 555, AMS, Providence, RI, 1995.

[16] T. Feder, Removing Inequalities and Negation for Homomorphism-Closed Problems,
manuscript.

[17] T. Feder, Classification of Homomorphisms to Oriented Cycles and of k-Partite Satisfiability
Problems, manuscript.

[18] T. Feder and P. Hell, List Problems for Reflexive Graphs, manuscript.
[19] T. Feder and P. Hell, Homomorphism Problems on Graphs with Some Self-Loops,

manuscript.
[20] U. Feige and L. Lovász, Two-prover one-round proof systems: Their power and their prob-

lems, 24th Annual ACM Symp. on Theory of Computing, ACM, New York, 1994, pp. 422–
431.

[21] M. Furst, J. E. Hopcroft, and E. Luks, Polynomial-time algorithms for permutation groups,
in Proc. 21st IEEE Symp. on Found. of Comp. Sci., IEEE, Piscataway, NJ, 1980, pp. 36–41.

[22] D. M. Goldschmidt, 2-fusion in finite groups, Ann. Math., 99 (1974), pp. 70–117.
[23] W. Gutjahr, E. Welzl, and G. Woeginger, Polynomial graph colourings, Discrete Appl.

Math., 35 (1992), pp. 29–46.
[24] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser. B, 48

(1990), pp. 92–110.
[25] P. Hell, J. Nešetřil, and X. Zhu, Duality and polynomial testing of tree homomorphisms,

Trans. Amer. Math. Soc.
[26] P. Hell, J. Nešetřil, and X. Zhu, Complexity of tree homomorphisms, Discrete Appl. Math.
[27] P. Hell, J. Nešetřil, and X. Zhu, Duality of graph homomorphisms, in Combinatorics, Paul

Erdos is Eighty, Bolyai Soc. Math. Stud. 2, 1995.
[28] P. Hell and X. Zhu, Homomorphisms to oriented paths, Discrete Math., 132 (1994), pp. 107–

114.
[29] P. Hell and X. Zhu, The existence of homomorphisms to oriented cycles, SIAM J. Discrete

Math., 8 (1995), pp. 208–222.
[30] G. G. Hillebrand, P. C. Kanellakis, H. G. Mairson, and M. Y. Vardi, Tools for Data-

log boundedness, in Proc. 10th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, ACM, New York, 1991, pp. 1–12.

[31] C. M. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in
Comput. Sci. 136 Springer-Verlag, New York, 1982.

[32] P. G. Kolaitis and M. Y. Vardi, The decision problem for the probabilities of higher-order
properties, in Proc. 19th ACM Symp. on Theory of Computing, 1987, pp. 425–435.

[33] P. G. Kolaitis and M. Y. Vardi, On the expressive power of Datalog: Tools and a case study,
in Proc. 9th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems,
ACM, New York, 1990, pp. 61–71.

[34] V. Kumar, Algorithms for constraint-satisfaction problems, AI Magazine, 13 (1992), pp. 32–44.
[35] R. E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22

(1975), pp. 155–171.

104 TOMÁS FEDER AND MOSHE Y. VARDI

[36] V. S. Lakshmanan and A. O. Mendelzon, Inductive pebble games and the expressive power of
Datalog, in Proc. 8th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, ACM, New York, 1989, pp. 301–310.

[37] A. Lubiw, Some NP-complete problems similar to graph isomorphism, SIAM J. Comput., 10
(1981), pp. 11–21.

[38] J. Matoušek and R. Thomas, Algorithms finding tree-decompositions of graphs, J. Algorithms,
12 (1991), pp. 1–22.

[39] E. Mayr and A. Subramanian, The complexity of circuit value and network stability, J.
Comput. System Sci., 44 (1992), pp. 302–323.

[40] P. Meseguer, Constraint satisfaction problem: An overview, AICOM, 2 (1989), pp. 3–16.
[41] J. C. Mitchell, Coercion and type inference (summary), in Conf. Rec. 11th ACM Symp. on

Principles of Programming Languages, ACM, New York, 1984, pp. 175–185.
[42] P. Lincoln and J. C. Mitchell, Algorithmic aspects of type inference with subtypes, in Conf.

Rec. 19th ACM Symp. on Principles of Programming Languages, ACM, New York, 1992,
pp. 293–304.

[43] M. Wand and P. M. O’Keefe, On the complexity of type inference with coercion, in Conf. on
Functional Programming Languages and Computer Architecture, 1989.

[44] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[45] V. Pratt and J. Tiuryn, Satisfiability of Inequalities in a Poset, manuscript.
[46] A. A. Razborov, Lower bounds on monotone complexity of the logical permanent, Math. Notes

Acad. Sci. USSR, 37 (1985), pp. 485–493.
[47] N. Robertson and P. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Al-

gorithms, 7 (1985), pp. 309–322.
[48] T. J. Schaefer, The complexity of satisfiability problems, in Proc. 10th ACM Symp. on Theory

of Computing, ACM, New York, 1978, 216–226.
[49] E. Tardos, The gap between monotone and non-monotone circuit complexity is exponential,

Combinatorica, 7–4 (1987), pp. 141–142.
[50] J. D. Ullman, Principles of Database and Knowledge-Base Systems, Vol. I, Computer Science

Press, Rockville, MD, 1989.

ASYMPTOTICALLY TIGHT BOUNDS FOR PERFORMING BMMC
PERMUTATIONS ON PARALLEL DISK SYSTEMS∗

THOMAS H. CORMEN† , THOMAS SUNDQUIST‡ , AND LEONARD F. WISNIEWSKI§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 105–136

Abstract. This paper presents asymptotically equal lower and upper bounds for the number of
parallel I/O operations required to perform bit-matrix-multiply/complement (BMMC) permutations
on the Parallel Disk Model proposed by Vitter and Shriver. A BMMC permutation maps a source
index to a target index by an affine transformation over GF (2), where the source and target indices
are treated as bit vectors. The class of BMMC permutations includes many common permutations,
such as matrix transposition (when dimensions are powers of 2), bit-reversal permutations, vector-
reversal permutations, hypercube permutations, matrix reblocking, Gray-code permutations, and
inverse Gray-code permutations. The upper bound improves upon the asymptotic bound in the
previous best known BMMC algorithm and upon the constant factor in the previous best known
bit-permute/complement (BPC) permutation algorithm. The algorithm achieving the upper bound
uses basic linear-algebra techniques to factor the characteristic matrix for the BMMC permutation
into a product of factors, each of which characterizes a permutation that can be performed in one
pass over the data.

The factoring uses new subclasses of BMMC permutations: memoryload-dispersal (MLD) per-
mutations and their inverses. These subclasses extend the catalog of one-pass permutations.

Although many BMMC permutations of practical interest fall into subclasses that might be
explicitly invoked within the source code, this paper shows how to quickly detect whether a given
vector of target addresses specifies a BMMC permutation. Thus, one can determine efficiently at
run time whether a permutation to be performed is BMMC and then avoid the general-permutation
algorithm and save parallel I/Os by using the BMMC permutation algorithm herein.

Key words. bit-defined permutations, BMMC permutations, matrix factoring, parallel disk
systems, parallel I/O, potential functions, universal lower bounds

AMS subject classifications. 15A03, 15A23, 68Q05, 68Q22, 68Q25

PII. S0097539795283681

1. Introduction. From both the theoretical and practical points of view, per-
muting is an interesting and important problem when the data reside on disk. As one
of the most basic data-movement operations, permuting is central to the theory of I/O
complexity. The problems that we attack with supercomputers are ever-increasing in
size, and in several applications matrices and vectors exceed the memory provided by
even the largest supercomputers. (Such applications include seismic problems, compu-

∗Received by the editors March 18, 1995; accepted for publication (in revised form) November 1,
1996; published electronically June 15, 1998. An extended abstract of this paper appeared in the
Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms and Architectures.

http://www.siam.org/journals/sicomp/28-1/28368.html
†Department of Computer Science, Dartmouth College, Hanover, NH 03755 (thc@cs.

dartmouth.edu). Portions of this research were performed while at the MIT Laboratory for Computer
Science and appear in [9] and were supported in part by the Defense Advanced Research Projects
Agency under grant N00014-91-J-1698 during that time. Other portions of this research were per-
formed while at Dartmouth College and were supported in part by funds from Dartmouth College
and in part by the National Science Foundation under grant CCR-9308667.

‡Department of Mathematics, Dartmouth College, Hanover, NH 03755. Current address: Secure
Computing Corporation, Roseville, MN 55113 (sundquis@sctc.com). This research was supported in
part by funds from Dartmouth College.

§Department of Computer Science, Dartmouth College, Hanover, NH 03755. Current address:
HPC Group, Sun Microsystems Computer Company, Chelmsford, MA 01824 (lenbo@east.sun.com).
This research was supported in part by INFOSEC grant 3-56666, by the National Science Foundation
under grant CCR-9308667, and by a Dartmouth Graduate Fellowship.

105

106 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

tational fluid dynamics, and processing large images. For a list of “grand challenge”
applications with huge I/O requirements, see the list compiled by del Rosario and
Choudhary [14].) One solution is to store large matrices and vectors on parallel disk
systems. The high latency of disk accesses makes it essential to minimize the number
of disk I/O operations. Permuting the elements of a matrix or vector is a common
operation, particularly in the data-parallel style of computing, and good permutation
algorithms can provide significant savings in disk-access costs over poor ones when
the data reside on parallel disk systems.

This paper examines the class of bit-matrix-multiply/complement (BMMC) per-
mutations for parallel disk systems and derives four important results:

1. a universal lower bound for BMMC permutations,
2. an algorithm for performing BMMC permutations whose I/O complexity

asymptotically matches the lower bound, thus making it asymptotically optimal,
3. an efficient method for determining at run time whether a given permutation

is BMMC, thus allowing us to use the BMMC algorithm if it is, and
4. two new subclasses of BMMC permutations, memoryload-dispersal (MLD)

permutations and their inverses, which we show how to perform in one pass.
Depending on the exact BMMC permutation, our asymptotically optimal bound

may be significantly lower than the asymptotically optimal bound proven for general
permutations. Moreover, the low constant factor in our algorithm makes it very
practical.

Model and previous results. We use the Parallel Disk Model first proposed by
Vitter and Shriver [24], who also gave asymptotically optimal algorithms for several
problems including sorting and general permutations. In the Parallel Disk Model, N
records are stored onD disks D0,D1, . . . ,DD−1, withN/D records stored on each disk.
The records on each disk are partitioned into blocks of B records each. When a disk
is read from or written to, an entire block of records is transferred. Disk I/O transfers
records between the disks and a random-access memory (which we shall refer to simply
as “memory”) capable of holding M records. Each parallel I/O operation transfers
up to D blocks between the disks and memory, with at most one block transferred
per disk, for a total of up to BD records transferred. We assume independent I/O,
in which the blocks accessed in a single parallel I/O may be at any locations on their
respective disks, as opposed to striped I/O, which has the restriction that the blocks
accessed in a given operation must be at the same location on each disk.

We measure an algorithm’s efficiency by the number of parallel I/O operations it
requires. Although this cost model does not account for the variation in disk access
times caused by head movement and rotational latency, programmers often have no
control over these factors. The number of disk accesses, however, can be minimized
by carefully designed algorithms. Optimal algorithms have appeared in the literature
for fundamental problems such as sorting [3, 6, 21, 22, 24], general permutations [24],
and structured permutations [9, 10, 26], as well as higher-level domains such as fast
Fourier transform (FFT) [24], matrix-matrix multiplication [24], LUP decomposition
[27], computational geometry problems [5, 18], graph algorithms [8], and boolean
function manipulation [4].

For convenience, we use the following notation extensively:

b = lgB , d = lgD , m = lgM , n = lgN .

We shall assume that b, d, m, and n are nonnegative integers, which implies that
B, D, M , and N are exact powers of 2. In order for the memory to accomodate

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 107

D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Fig. 1. The layout of N = 64 records in a parallel disk system with B = 2 and D = 8. Each
box represents one block. The number of stripes is N/BD = 4. Numbers indicate record indices.

 x0

 x1

 x2

 x3

 x4

 x5

 x6

 x7

 x8

 x9

 x10

 x11

 x12

b

d

s

offset

disk

stripe

n

relative
block
number

memoryload
number

m

Fig. 2. Parsing the address x = (x0, x1, . . . , xn−1) of a record on a parallel disk system. Here,
n = 13, b = 3, d = 4, m = 8, and s = 6. The least significant b bits contain the offset of a record
within its block, the next d bits contain the disk number, and the most significant s bits contain
the stripe number. The most significant n−m bits form the record’s memoryload number, and bits
b, b+ 1, . . . ,m− 1 form the relative block number, used in section 4.

the records transferred in a parallel I/O operation to all D disks, we require that
BD ≤ M . Also, we assume that M < N , since otherwise we can just perform all
operations in memory. These two requirements imply that b+ d ≤ m < n.

The Parallel Disk Model lays out data on a parallel disk system as shown in Fig. 1.
A stripe consists of the D blocks at the same location on all D disks. We indicate
the address, or index, of a record as an n-bit vector x with the least significant bit
first: x = (x0, x1, . . . , xn−1). Record indices vary most rapidly within a block, then
among disks, and finally among stripes. As Fig. 2 shows, the offset within the block
is given by the least significant b bits x0, x1, . . . , xb−1, the disk number by the next d
bits xb, xb+1, . . . , xb+d−1, and the stripe number by the s = n−(b+d) most significant
bits xb+d, xb+d+1, . . . , xn−1.

Since each parallel I/O operation accesses at most BD records, any algorithm
that must access all N records requires Ω(N/BD) parallel I/Os, and so O(N/BD)
parallel I/Os is the analogue of linear time in sequential computing. Vitter and

Shriver showed an upper bound of Θ(min(ND ,
N
BD

lg(N/B)
lg(M/B))) parallel I/Os for general

permutations, that is, for arbitrary mappings π : {0, 1, . . . , N − 1} 1-1→ {0, 1, . . . , N −
1}. The first term comes into play when the block size B is small, and the second

term is the sorting bound Θ(N
BD

lg(N/B)
lg(M/B)), which was shown by Vitter and Shriver for

randomized sorting and subsequently by Nodine and Vitter [22] and others [3, 6, 21]
for deterministic sorting. These bounds are asymptotically tight, because they match
the lower bounds proven earlier by Aggarwal and Vitter [2] using a model with one
disk and D independent read/write heads, which is at least as powerful as the Parallel
Disk Model.

108 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Table 1
Classes of permutations, their characteristic matrices, and upper bounds shown in [10] on

the number of passes needed to perform them. A pass consists of reading and writing each record
exactly once and therefore uses exactly 2N/BD parallel I/Os. For MRC permutations, submatrix
dimensions are shown on matrix borders. For BMMC permutations, r is the rank of the leading
lgM × lgM submatrix of A, and the function H(N,M,B) is given by equation (1). For BPC
permutations, the function ρ(A) is defined in equation (3).

Permutation Characteristic matrix Number of passes

BMMC
(bit-matrix-multiply/
complement)

Nonsingular matrix A 2

⌈
lgM − r

lg(M/B)

⌉
+H(N,M,B)

BPC
(bit-permute/
complement)

Permutation matrix A 2

⌈
ρ(A)

lg(M/B)

⌉
+ 1

MRC
(memory-
rearrangement/
complement)

m n−m[
nonsingular arbitrary

0 nonsingular

]
m

n−m

1

Specific classes of permutations sometimes require fewer parallel I/Os than general
permutations. Vitter and Shriver showed how to transpose an R×S matrix (N = RS)

with only Θ(N
BD (1 + lg min(B,R,S,N/B)

lg(M/B))) parallel I/Os. Subsequently, Cormen [10]

studied several classes of bit-defined permutations that include matrix transposition
as a special case. Table 1 shows some of the classes of permutations examined and
the corresponding upper bounds derived in [10].

BMMC permutations. The most general class considered in [10] is that of
BMMC permutations.1 A BMMC permutation is specified by an n × n character-
istic matrix A = (aij) whose entries are drawn from {0, 1} and is nonsingular (i.e.,
invertible) over GF (2).2 The specification also includes a complement vector c = (c0,
c1, . . . , cn−1) of length n. Treating a source address x as an n-bit vector, we perform
matrix-vector multiplication over GF (2) and then form the corresponding n-bit target
address y by complementing some subset of the resulting bits: y = Ax⊕ c, or

y0

y1

y2

...
yn−1

 =

a00 a01 a02 · · · a0,n−1

a10 a11 a12 · · · a1,n−1

a20 a21 a22 · · · a2,n−1

...
...

...
. . .

...
an−1,0 an−1,1 an−1,2 · · · an−1,n−1

x0

x1

x2

...
xn−1

⊕

c0
c1
c2
...

cn−1

 .

Because we require the characteristic matrix A to be nonsingular, the mapping of
source addresses to target addresses is one-to-one. (This property is a consequence of
Lemma 3 in section 2.)

We shall generally focus on the matrix multiplication portion of BMMC permu-
tations rather than on the complement vector. The permutation πA characterized by

1Edelman, Heller, and Johnsson [15] call BMMC permutations affine transformations or, if there
is no complementing, linear transformations.

2Matrix multiplication over GF (2) is like standard matrix multiplication over the reals but with
all arithmetic performed modulo 2. Equivalently, multiplication is replaced by logical-and, and
addition is replaced by exclusive-or.

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 109

a matrix A is the permutation for which πA(x) = Ax for all source addresses x.
The following lemma shows the equivalence of multiplying characteristic matrices

and composing permutations when the complement vectors are zero. For permutations
πY and πZ , the composition πZ ◦ πY is defined by (πZ ◦ πY)(x) = πZ(πY (x)) for all x
in the domain of πY .

Lemma 1. Let Z and Y be nonsingular n× n matrices and let πZ and πY be the
permutations characterized by Z and Y , respectively. Then the matrix product Z Y
characterizes the composition πZ ◦ πY .

Proof. For any source address x, we have

(πZ ◦ πY)(x) = πZ(πY (x))

= πZ(Y x)

= Z(Y x)

= (Z Y)x ,

and so the matrix product Z Y characterizes the composition πZ ◦ πY .
When we factor a characteristic matrix A into the product of several nonsingular

matrices, each factor characterizes a BMMC permutation. The following corollary
describes the order in which we perform these permutations to effect the permutation
characterized by A.

Corollary 2. Let the n×n characteristic matrix A be factored as A = A(k) A(k−1)

A(k−2) · · ·A(1), where each factor A(i) is a nonsingular n×n matrix. Then we can per-
form the BMMC permutation characterized by A by performing, in order, the BMMC
permutations characterized by A(1), A(2), . . . , A(k). That is, we perform the permuta-
tions characterized by the factors of a matrix from right to left.

Proof. The proof is a simple induction, using Lemma 1.
The BMMC algorithm in [10] exploits Corollary 2 to factor a characteristic matrix

into a product of other characteristic matrices, performing the permutations given by
the factors right to left. It uses

2N

BD

(
2

⌈
lgM − r

lg(M/B)

⌉
+H(N,M,B)

)
parallel I/Os, where r is the rank of the leading lgM × lgM submatrix of the char-
acteristic matrix and

H(N,M,B) =

4

⌈
lgB

lg(M/B)

⌉
+ 9 if M ≤ √

N ,

4

⌈
lg(N/B)

lg(M/B)

⌉
+ 1 if

√
N < M <

√
NB ,

5 if
√
NB ≤M .

(1)

One can adapt the lower bound proven in this paper to show that Ω
(

N
BD

lgM−r
lg(M/B)

)
parallel I/Os are necessary (see section 2.8 of [9]), but so far it has been unknown
whether the Θ

(
N
BD H(N,M,B)

)
term is necessary in all cases. This paper shows that

it is not.

BPC permutations. By restricting the characteristic matrix A of a BMMC
permutation to be a permutation matrix—having exactly one 1 in each row and each

110 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

column—we obtain the class of bit-permute/complement, or BPC, permutations.3 One
can think of a BPC permutation as forming each target address by applying a fixed
permutation to the source-address bits and then complementing a subset of the result-
ing bits. The class of BPC permutations includes many common permutations such
as matrix transposition (when dimensions are powers of 2), bit-reversal permutations
(used in performing FFTs), vector-reversal permutations, hypercube permutations,
and matrix reblocking.

Previous work [10] expressed the I/O complexity of BPC permutations in terms
of cross-ranks. For any n × n permutation matrix A and for any k = 0, 1, . . . , n− 1,
the k-cross-rank of A is

ρk(A) = rankAk..n−1,0..k−1 = rankA0..k−1,k..n−1 ,(2)

where, for example, Ak..n−1,0..k−1 denotes the submatrix of A consisting of the inter-
section of rows k, k + 1, . . . , n− 1 and columns 0, 1, . . . , k− 1. The cross-rank of A is
the maximum of the b- and m-cross-ranks:

ρ(A) = max(ρb(A), ρm(A)) .(3)

The BPC algorithm in [10] uses at most

2N

BD

(
2

⌈
ρ(A)

lg(M/B)

⌉
+ 1

)
parallel I/Os. One can adapt the lower bound we prove in section 3 for BMMC permu-
tations to show that this BPC algorithm is asymptotically optimal. The BMMC algo-
rithm in section 6, however, is asymptotically optimal for all BMMC permutations—
including those that are BPC—and it reduces the innermost factor of 2 in the above
bound to a factor of 1. Not only is the BPC algorithm in [10] improved upon by the
results in this paper, but the notion of cross-rank appears to be obviated as well.

MRC permutations. Memory-rearrangement/complement, or MRC, permuta-
tions are BMMC permutations with the additional restrictions shown in Table 1: both
the leading m × m and trailing (n − m) × (n − m) submatrices of the characteris-
tic matrix are nonsingular, the upper right m × (n −m) submatrix can contain any
0-1 values at all, and the lower left (n − m) × m submatrix is all 0. Cormen [10]
shows that any MRC permutation requires only one pass of N/BD parallel reads and
N/BD parallel writes. If we partition the N records into N/M consecutive sets of M
records each, we call each set a memoryload. Each memoryload consists of M/BD
consecutive stripes in which all addresses have the same value in the most significant
n−m bits, as Fig. 2 shows. Any MRC permutation can be performed by reading in
a memoryload, permuting its records in memory, and writing them out to a (possi-
bly different) memoryload number. Because a memoryload may be read and written
with striped I/Os, any MRC permutation may be performed with striped reads and
striped writes. The class of MRC permutations includes those characterized by unit
upper-triangular matrices. As [10] shows, both the standard binary-reflected Gray
code and its inverse have characteristic matrices of this form, and so they are MRC
permutations.

3Johnsson and Ho [19] call BPC permutations dimension permutations, and Aggarwal, Chandra,
and Snir [1] call BPC permutations without complementing rational permutations.

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 111

MLD permutations. We define here a new BMMC permutation subclass, which
we shall use in our asymptotically optimal BMMC algorithm. To define this subclass,
we first need the standard linear-algebraic notion of a kernel. The kernel of any p× q
matrix A is the set of q-vectors that map to 0 when multiplied by A. That is,

kerA = {x : Ax = 0} .

An MLD permutation has a characteristic matrix that is nonsingular and of the
following form:

m n−m arbitrary

λ arbitrary

µ

 b

m− b

n−m

,

subject to the kernel condition

kerλ ⊆ kerµ;(4)

or, equivalently, λx = 0 implies µx = 0.
As we shall see in section 4, the kernel condition implies that we can perform

any MLD permutation in one pass by reading in each source memoryload, permuting
its records in memory, and writing these records out to M/BD blocks on each disk.
Although the blocks read from each memoryload must come from M/BD consecutive
stripes, the blocks written may go to any locations at all, as long as M/BD blocks are
written to each disk. That is, MLD permutations use striped reads and independent
writes. We shall also see in section 4 that we can perform the inverse of an MLD
permutation in one pass with independent reads and striped writes.

Outline. The remainder of this paper is organized as follows. Section 2 reviews
some fundamental linear-algebraic notions and proves some properties that we shall
use in later sections. Section 3 states and proves the lower bound for BMMC per-
mutations. Section 4 shows how to perform any MLD permutation in one pass and
gives some additional properties of MLD permutations and their inverses. Section 5
previews several of the matrix forms used in section 6, which presents an algorithm for
BMMC permutations whose I/O complexity asymptotically matches the lower bound.
Section 7 shows how to detect at run time whether a vector of target addresses de-
scribes a BMMC permutation, thus enabling us to determine whether the BMMC
algorithm is applicable; this section also presents an easy method for determining
whether a nonsingular matrix satisfies the kernel condition (4) and therefore charac-
terizes an MLD permutation. Finally, section 8 contains some concluding remarks.

The algorithms for MLD and BMMC permutations in sections 4 and 6 take little
computation time and space. (They do, however, require permutations to be per-
formed in memory, and various architectures may differ in how efficiently they do so.)
The data structures are vectors of length lgN or matrices of size at most lgN × lgN .
Even sequential algorithms for the harder computations (e.g., finding a maximal set
of linearly independent columns of a bit matrix) take time polynomial in lgN , in fact,
O(lg3 N).

We shall not concern ourselves with memory issues when manipulating character-
istic matrices. That is, we assume throughout this paper that lg2 N �M , since as a
practical matter, the size of any characteristic matrix is much smaller than memory.

112 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Consider, for example, a problem with N = 260 records, or about one quintillion.
(This problem is much larger than any problem that one is likely to see for a long
time. If each record were only one byte long, such a data set would occupy one billion
gigabytes.) A 60 × 60 characteristic matrix for a problem this large would require
3600 bits, or 120 words of 32 bits if each column is packed into two words. This
amount is insignificant compared to memory sizes of even modest computer systems.
Consequently, we shall think of the M -record memory as holding only records and
not the characteristic matrix or complement vector.

We shall use several notational conventions in this paper, as in equation (2).
Matrix row and column numbers are indexed from 0 starting from the upper left.
Vectors are indexed from 0, too. We index rows and columns by sets to indicate
submatrices, using “. .” notation to indicate sets of contiguous numbers. When a
matrix is indexed by just one set rather than two, the set indexes column numbers;
the submatrix consists of entire columns. When a submatrix index is a singleton set,
we shall often omit the enclosing braces. We denote an identity matrix by I and a
matrix whose entries are all 0s by 0; the dimensions of such matrices will be clear from
their contexts. All matrix and vector elements are drawn from {0, 1}, and all matrix
and vector arithmetic is over GF (2). When convenient, we interpret bit vectors as
the integers they represent in binary. Vectors are treated as 1-column matrices in
context.

Some readers familiar with linear algebra may notice that a few of the lemmas in
this paper are special cases of standard linear-algebra properties restricted to GF (2).
We include the proofs here for completeness.

2. Linear-algebraic fundamentals. This section reviews some standard linear-
algebraic terms and proves a few simple properties that we shall use later on. It also
shows how to find a maximal set of linearly independent columns of a bit matrix.

Ranges and preimages. For a p × q matrix A with 0-1 entries, we define the
range of A by

R(A) = {y : y = Ax for some x ∈ {0, 1, . . . , 2q − 1}} ;

that is, R(A) is the set of p-vectors that can be produced by multiplying all q-vectors
with 0-1 entries (interpreted as integers in {0, 1, . . . , 2q − 1}) by A over GF (2). We
also adopt the notation

R(A)⊕ c = {z : z = y ⊕ c for some y ∈ R(A)} ;

that is, R(A)⊕ c is the exclusive-or of the range of A and a fixed vector c.

Lemma 3. Let A be a p × q matrix whose entries are drawn from {0, 1}, let
c be any p-vector whose entries are drawn from {0, 1}, and let r = rankA. Then
|R(A)⊕ c| = 2r.

Proof. Let S index a maximal set of linearly independent columns of A, so
that S ⊆ {0, 1, . . . , q − 1}, |S| = r, the columns of the submatrix AS are linearly
independent, and for any column number j 6∈ S, the column Aj is linearly dependent
on the columns of AS . We claim that R(A) = R(AS). Clearly, R(AS) ⊆ R(A), since
R(A) includes the sum (over GF (2)) of each subset of columns of A. To see that
R(A) ⊆ R(AS), consider any q-vector y ∈ R(A). There is some set T of column
indices such that y =

⊕
j∈T Aj . For each column index j ∈ T − S, let Sj ⊆ S index

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 113

the columns of AS that Aj depends on: Aj =
⊕

k∈Sj Ak. Then we have

y =
⊕
j∈T

Aj

=

(⊕
j∈T∩S

Aj

)
⊕
(⊕

j∈T−S
Aj

)

=

(⊕
j∈T∩S

Aj

)
⊕
 ⊕

j∈T−S

(⊕
k∈Sj

Ak

) ,

and so y is a linear combination of columns of AS . Thus, y ∈ R(AS), which in turn
proves that R(A) ⊆ R(AS), and consequently R(A) = R(AS).

We have |R(AS)| = 2|S| = 2r, since each vector in R(AS) is the sum of a unique
subset of the columns of S and each column index in S may or may not be included
in a sum of the columns. Thus, |R(A)| = 2r. Exclusive-oring the result of the matrix
multiplication by a constant p-vector does not change the cardinality of the range.
Therefore, |R(A)⊕ c| = |R(A)| = 2r.

For a p×q matrix A and a p-vector y ∈ R(A), we define the preimage of y under A
by

Pre(A, y) = {x : Ax = y} .

That is, Pre(A, y) is the set of q-vectors x that map to y when multiplied by A.
Lemma 4. Let A be a p× q matrix whose entries are drawn from {0, 1}, let y be

any p-vector in R(A), and let r = rankA. Then |Pre(A, y)| = 2q−r.
Proof. Let S index a maximal set of linearly independent columns of A, so

that S ⊆ {0, 1, . . . , q − 1}, |S| = r, the columns of the submatrix AS are linearly
independent, and for any column number j 6∈ S, the column Aj is linearly dependent
on the columns of AS . Let S′ = {0, 1, . . . , q − 1} − S.

We claim that for any value i ∈ {0, 1, . . . , 2q−r−1}, there is a unique q-vector x(i)

for which x
(i)
S′ is the binary representation of i and y = Ax(i). Why? We have

y = AS x
(i)
S ⊕AS′ x

(i)
S′ or, equivalently,

y ⊕AS′x
(i)
S′ = AS x

(i)
S .(5)

The columns of AS span R(A), which implies that for all z ∈ R(A), there is a unique

r-vector w such that z = AS w. Letting z = y⊕AS′ x
(i)
S′ , we see that there is a unique

r-vector x
(i)
S that satisfies equation (5), which proves the claim.

Thus, we have shown that |Pre(A, y)| ≥ 2q−r. If we had |Pre(A, y)| > 2q−r, then
because y is arbitrarily chosen fromR(A), we would have that

∑
y′∈R(A) |Pre(A, y′)| >

2q. But this inequality contradicts there being only 2q possible preimage vectors. We
conclude that |Pre(A, y)| = 2q−r.

Row spaces. The row space of a matrix A, written rowA, is the span of the
rows of A. We prove the following lemma about the relationship between kernels
and row spaces, which we shall use later to prove properties resulting from the kernel
condition of MLD permutations and to check that the kernel condition holds.

Lemma 5. Let K and L be q-column matrices. Then kerK ⊆ kerL if and only
if rowL ⊆ rowK.

114 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Proof. For any vector space X, the orthogonal space of X, written X⊥, is the set
of vectors Y such that for all x ∈ X and all y ∈ Y , the inner product x · y is 0. We
use the following well-known facts from linear algebra (see Strang [23, pp. 138–139],
for example).

1. The row space and the kernel are orthogonal spaces of each other. Thus,
(rowK)⊥ = kerK and (rowL)⊥ = kerL.

2. For any vector spaces X and Y , X ⊆ Y implies Y ⊥ ⊆ X⊥.
3. For any vector space X, (X⊥)⊥ = X.4

The latter two properties imply that if Y ⊥ ⊆ X⊥, then X ⊆ Y . Thus we have

kerK ⊆ kerL iff (rowK)⊥ ⊆ (rowL)⊥

iff rowL ⊆ rowK ,

which proves the lemma.

Finding a maximal set of linearly independent columns. We conclude
this section with a simple sequential algorithm to find a maximal set S of linearly
independent columns of a p× q matrix K. We shall use this technique several times
in this paper.

We use the following pseudocode:

1 S ← ∅
2 for each row index i← 0 to p− 1 do
3 if there exists some column index j for which Kij = 1
4 then for each column index j′ such that Kij′ = 1 do
5 add column j to column j′

6 S ← S ∪ {j}
At the completion of this algorithm, the set S contains the indices for a maximal

set of linearly independent columns of K. Lines 4–5 zero out any column in the set.
Each iteration of the outer loop zeros out the next row. By the end of the algorithm,
every column gets zeroed out as a column in S or by the addition of some subset of
columns in S.

This algorithm takes O(p2q) time on a sequential machine. In our applications
of this algorithm, p and q are at most lgN , and so the sequential time will always be
O(lg3 N).

3. A universal lower bound for BMMC permutations. In this section, we
state and prove the lower bound for BMMC permutations. After stating the lower
bound, we briefly discuss its significance before presenting the full proof. The lower
bound is given by the following theorem.

Theorem 6. Any algorithm that performs a nonidentity BMMC permutation
with characteristic matrix A requires

Ω

(
N

BD

(
1 +

rank γ

lg(M/B)

))
parallel I/Os, where γ is the submatrix Ab..n−1,0..b−1 of size lg(N/B)× lgB.

This lower bound is universal in the sense that it applies to all inputs other
than the identity permutation, which of course requires no data movement at all. In

4The proof that this property holds over GF (2) is not as straightforward as the conventional
proof that it holds over Rn. Lang [20, p. 131] contains a proof for GF (2).

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 115

contrast, lower bounds such as the standard Ω(N lgN) lower bound for sorting N
items on a sequential machine are existential : they apply to worst-case inputs, but
for some inputs an algorithm may be able to do better.

Section 6 presents an algorithm that achieves the bound given by Theorem 6, and
so this algorithm is asymptotically optimal.

Technique. To prove Theorem 6, we rely heavily on the technique used by Ag-
garwal and Vitter [2] to prove a lower bound on I/Os for matrix transposition; their
proof is based in turn on a method by Floyd [16]. We prove the lower bound for the
case in which D = 1; the general case follows by dividing by D. We consider only
I/Os that are simple. An input is simple if each record read is removed from the disk
and moved into an empty location in memory. An output is simple if the records are
removed from the memory and written to empty locations on the disk. When all I/Os
are simple, exactly one copy of each record exists at any time during the execution
of an algorithm. The following lemma, proven by Aggarwal and Vitter, allows us to
consider only simple I/Os when proving lower bounds.

Lemma 7. For each computation that implements a permutation of records, there
is a corresponding computation strategy involving only simple I/Os such that the total
number of I/Os is no greater.

The basic scheme of the proof of Theorem 6 uses a potential-function argument.
Time q is the time interval starting when the qth I/O completes and ending just
before the (q + 1)st I/O starts. We define a potential function Φ so that Φ(q) is the
potential at time q. This potential measures how close the current record ordering is
to the desired permutation order. Higher potentials indicate that the current ordering
is closer to the desired permutation. We compute the initial and final potentials and
bound the amount that the potential can increase in each I/O operation. The lower
bound then follows.

To be more precise, we start with some definitions. For i = 0, 1, . . . , N/B− 1, we
define the ith target group to be the set of records that belong in block i according to
the given BMMC permutation. We denote by gblock(i, k, q) the number of records in
the ith target group that are in block k on disk at time q, and gmem(i, q) denotes the
number of records in the ith target group that are in memory at time q. We define
the continuous function

f(x) =

{
x lg x if x > 0 ,
0 if x = 0 ,

and we define togetherness functions

Gblock(k, q) =

N/B−1∑
i=0

f(gblock(i, k, q))

for each block k at time q and

Gmem(q) =

N/B−1∑
i=0

f(gmem(i, q))

for memory at time q. Finally, we define the potential at time q, denoted Φ(q), as the
sum of the togetherness functions:

Φ(q) = Gmem(q) +

N/B−1∑
k=0

Gblock(k, q) .

116 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Aggarwal and Vitter embed the following lemmas in their lower-bound argument.
The first lemma is based on the observation that the number of parallel I/Os needed is
at least the total increase in potential over all parallel I/Os divided by the maximum
increase in potential (denoted ∆Φmax) in any single parallel I/O.

Lemma 8. Let D = 1, and consider any algorithm that uses t parallel I/Os to

perform a permutation. Then t = Ω
(

Φ(t)−Φ(0)
∆Φmax

)
.

Lemma 9. Let D = 1, and consider any permutation that can be performed with
t parallel I/Os. Then Φ(t) = N lgB and ∆Φmax = O(B lg(M/B)). Therefore, any

algorithm that performs a permutation uses Ω
(
N lgB−Φ(0)
B lg(M/B)

)
parallel I/Os.

Observe that these lemmas imply lower bounds that are universal. No matter
what permutation is being performed, the initial potential is Φ(0), the final potential is

Φ(t), the increase in potential per parallel I/O is at most ∆Φmax, and so Ω
(

Φ(t)−Φ(0)
∆Φmax

)
parallel I/Os are required.

We can now show a trivial lower bound for all nonidentity BMMC permutations.
Lemma 10. If D = 1, any algorithm that performs a nonidentity BMMC permu-

tation requires Ω(N/B) parallel I/Os.
Proof. Consider a BMMC permutation with characteristic matrix A and comple-

ment vector c. It is the identity permutation if and only if A = I and c = 0, so we
shall assume that either A 6= I or c 6= 0.

A fixed point of the BMMC permutation is a source address x for which

Ax⊕ c = x .(6)

If a record’s source address is not a fixed point, its source block must be read and
its target block must be written. We shall show that for any nonidentity BMMC
permutation, at least N/2 addresses are not fixed points. Even if these records are
clustered into as few source blocks as possible, then at least half the source blocks, or
N/2B, must be read. The lemma then follows.

To show that at least N/2 addresses are not fixed points, we shall show that at
most N/2 addresses are. Rewriting equation (6) as (A⊕ I)x = c, we see that we wish
to bound the size of Pre(A⊕ I, c). If c 6∈ R(A⊕ I), then this size is 0. Otherwise, by
Lemma 4, this size is 2n−rank(A⊕I). If A 6= I, then rank(A ⊕ I) ≥ 1, which implies
that |Pre(A⊕ I, c)| ≤ 2n−1 = N/2. If A = I, then A⊕ I is the 0 matrix, and the only
vector in its range is 0. But A = I and c = 0 yields the identity permutation, which
we specifically disallow.

Proof of Theorem 6. Recall that we shall prove Theorem 6 by proving the
lower bound for the case in which D = 1; the general case follows by dividing by D.
We work with characteristic matrix A and complement vector c. We assume that
all I/Os are simple and transfer exactly B records, some possibly empty. Since all
records start on disk and I/Os are simple, memory is initially empty.

We need to compute the initial potential in order to apply Lemma 9. The initial
potential depends on the number of records that start in the same source block and
are in the same target group. A record with source address x = (x0, x1, . . . , xn−1) is
in source block k if and only if

k = xb..n−1 ,(7)

interpreting k as an (n− b)-bit binary number with the least signficant bit first. This

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 117

record maps to target block i if and only if

i = Ab..n−1,0..n−1 x0..n−1 ⊕ cb..n−1

= Ab..n−1,0..b−1 x0..b−1 ⊕Ab..n−1,b..n−1 xb..n−1 ⊕ cb..n−1 ,(8)

also interpreting i as an (n − b)-bit binary number. The following lemma gives the
exact number of records that start in each source block and are in the same target
group.

Lemma 11. Let r = rankAb..n−1,0..b−1, and consider any source block k. There
are exactly 2r distinct target blocks that some record in source block k maps to, and
for each such target block, exactly B/2r records in source block k map to it.

Proof. For a given source block k, all source addresses fulfill condition (7), and so
they map to target block numbers given by condition (8) but with xb..n−1 fixed at k.
The range of target block numbers is thusR(Ab..n−1,0..b−1)⊕(Ab..n−1,b..n−1 k⊕cb..n−1)
which, by Lemma 3, has cardinality 2r.

Now we determine the set of source addresses in source block k that map to a
particular target block i in R(Ab..n−1,0..b−1)⊕(Ab..n−1,b..n−1 k⊕cb..n−1). Again fixing
xb..n−1 = k in condition (8) and exclusive-oring both sides by Ab..n−1,b..n−1 k⊕cb..n−1,
we see that this set is precisely Pre(Ab..n−1,0..b−1, i ⊕ Ab..n−1,b..n−1 k ⊕ cb..n−1). By
Lemma 4, this set has cardinality exactly 2b−r, which equals B/2r.

We can interpret Lemma 11 as follows. Let r = rankAb..n−1,0..b−1, and con-
sider a particular source block k. Then there are exactly 2r target blocks i for
which gblock(i, k, 0) is nonzero, and for each such nonzero target block, we have
gblock(i, k, 0) = B/2r.

Now we can compute Φ(0). Since memory is initially empty, gmem(i, 0) = 0 for
all blocks i, which implies that Gmem(0) = 0. We have

Φ(0) = Gmem(0) +

N/B−1∑
k=0

Gblock(k, 0)

= 0 +

N/B−1∑
k=0

N/B−1∑
i=0

f(gblock(i, k, 0))

=

N/B−1∑
k=0

2r
B

2r
lg
B

2r
(by Lemma 11)

=
N

B
B lg

B

2r

= N(lgB − r) .(9)

Combining Lemmas 9 and 10 with equation (9), we get a lower bound of

Ω

(
N

B
+
N lgB −N(lgB − r)

B lg(M/B)

)
= Ω

(
N

B

(
1 +

rankAb..n−1,0..b−1

lg(M/B)

))
parallel I/Os. Dividing through by D yields a lower bound of

Ω

(
N

BD

(
1 +

rankAb..n−1,0..b−1

lg(M/B)

))
,

which completes the proof of Theorem 6.

118 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

4. MLD permutations. In this section, we describe how to perform any MLD
permutation in only one pass. This section also discusses additional properties of MLD
and MRC permutations and concludes with a discussion of MLD−1 permutations,
which are permutations whose inverses are MLD permutations. Section 7 shows how
to determine whether a given matrix characterizes an MLD permutation.

How the kernel condition implies a one-pass permutation. We shall show
in three steps that the kernel condition implies that, for a given source memoryload,
the source records are permuted into full target blocks spread evenly across the disks.
To do so, we first need to define the notion of relative block number, as shown in
Fig. 2. For a given n-bit record address x0..n−1, the relative block number of x is
the m − b bits xb..m−1. The relative block number ranges from 0 to M/B − 1 and
determines the number of a block within its memoryload. Recall that the memoryload
number is the n−m bits xm..n−1. We shall prove that for a given source memoryload,
the following properties hold.

1. Its records map to all M/B relative block numbers, and each relative block
number has exactly B records mapping to it.

2. Records that map to the same relative block number map to the same target
memoryload number as well.

The first two properties imply that the records of each source memoryload map to
exactly M/B target blocks and that each such target block is full.

3. These M/B target blocks are distributed evenly among the disks, with M/BD
mapping to each disk.

Given these properties, we can perform an MLD permutation in one pass. Like
the other one-pass permutations described in [10], we allow the permutation to map
records from one set ofN/BD stripes (the “source portion” of the parallel disk system)
to a different set of N/BD stripes (the “target portion”). One can think of addresses
as relative to the beginning of the appropriate portion. In this way, we need not be
concerned with overwriting source records before we get a chance to read them. Note
that when we chain passes together, as in the BMMC algorithm of section 6 and the
BPC algorithm of [10], we can avoid allocating a new target portion in each pass by
reversing the roles of the source and target portions between passes, and so the total
disk space used is 2N records.

We perform an MLD permutation by processing source memoryload numbers
from 0 to N/M − 1. For each source memoryload, we first read into memory its
M/BD consecutive stripes from the source portion. We then permute its records
in memory, clustering them into M/B full target blocks that are distributed evenly
among the disks. We then write out these target blocks using M/BD independent
writes to the target portion. After processing all N/M source memoryloads, we have
read each record from the source portion and written it to where it belongs in the
target portion. Thus, we have performed the MLD permutation in one pass.

The following lemma gives an important consequence of the kernel condition.

Lemma 12. If the matrix A characterizes an MLD permutation, then the subma-
trix λ has rank m− b.

Proof. We shall prove that all rows of the leading m × m submatrix of A are
linearly independent. The lemma then follows because λ is a subset of these rows.

Because A is nonsingular, the rank of its leftmost m columns (i.e., the submatrix
A0..n−1,0..m−1) is m. The row rank of any matrix equals the column rank, and so
there are m linearly independent rows in A0..n−1,0..m−1.

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 119

Since kerλ ⊆ kerµ, Lemma 5 implies that row µ ⊆ row λ. Thus, every row of µ is
linearly dependent on some rows of λ and hence on some rows of the leading m×m
submatrix of A. Since there are m linearly independent rows in A0..n−1,0..m−1, all
rows of the leading m×m submatrix must be linearly independent.

We now prove property 1.
Lemma 13. The records of each source memoryload in an MLD permutation map

to exactly M/B relative block numbers. Moreover, for a given source memoryload,
each relative block number has exactly B records mapping to it.

Proof. Let A characterize an MLD permutation with complement vector c. By
Lemma 12, rankAb..m−1,0..m−1 = m − b. The target relative block number yb..m−1

corresponding to a source address x is given by the equation

yb..m−1 = Ab..m−1,0..m−1 x0..m−1 ⊕Ab..m−1,m..n−1 xm..n−1 ⊕ cb..m−1 .(10)

The value of xm..n−1 is fixed for a given source memoryload, and so the (m−b)-vector
Ab..m−1,m..n−1 xm..n−1 ⊕ cb..m−1 has the same value for all records. By Lemma 3,
yb..m−1 takes on 2rankAb..m−1,0..m−1 = 2m−b = M/B different values for the M different
values of x0..m−1. That is, the records of each source memoryload map to exactlyM/B
different relative block numbers.

Now consider some relative block number yb..m−1 that some source address in a
memoryload maps to. Using equation (10), the number of source addresses x0..m−1

within that memoryload that map to yb..m−1 is equal to |Pre(Ab..m−1,0..m−1, yb..m−1⊕
Ab..m−1,m..n−1 xm..n−1 ⊕ cb..m−1)|. By Lemma 4, this number is equal to

2m−rankAb..m−1,0..m−1 = 2m−(m−b) = B .

Property 2 follows directly from the kernel condition. Although we use kernel
notation for its simplicity of expression, the following lemma shows that the kernel
condition is equivalent to requiring that, for a given source memoryload, every record
destined for a particular relative block number must also be destined for the same
target memoryload.

Lemma 14. Let K and L be matrices with q columns. Then kerK ⊆ kerL if and
only if for all q-vectors x and y, Kx = Ky implies Lx = Ly.

Proof. Suppose that kerK ⊆ kerL and Kx = Ky. Then K(x ⊕ y) = 0, which
implies that L(x⊕ y) = 0, which in turn implies Lx = Ly.

Conversely, suppose that Kx = Ky implies Lx = Ly for all q-vectors x and y,
and consider any q-vector z ∈ kerK. We have Kz = 0 = K · 0, which implies
Lz = L · 0 = 0. Thus, z ∈ kerL.

For an MLD permutation, since kerλ ⊆ kerµ, we apply Lemma 14 with K = λ
and L = µ. Thus, any two source records x and y from the same source memoryload
that are mapped to relative block number λx0..m−1 are also mapped to the same
target memoryload µx0..m−1.

Property 3 follows from property 1. Each source memoryload maps to relative
block numbers 0, 1, . . . ,M/B−1. As Fig. 2 shows, the number of the disk that a block
resides on is encoded in the least significant d bits of its relative block number. The
M/B relative block numbers, therefore, are evenly distributed among the D disks,
with M/BD residing on each disk.

Thus, we have the following theorem.
Theorem 15. Any MLD permutation can be performed in one pass with striped

reads and independent writes.

120 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Proof. The above argument demonstrates that we can perform any MLD permu-
tation in one pass with independent writes. Because a memoryload can be read with
M/BD striped reads and the above method for performing MLD permutations reads
full memoryloads, it uses striped reads.

Additional properties of MLD and MRC permutations. We now exam-
ine some additional properties of MLD permutations. We shall use these properties
primarily to combine matrix factors in the BMMC algorithm, thus reducing the num-
ber of passes. The first property bounds the rank of the submatrix µ as another
consequence of the kernel condition.

Lemma 16. In the characteristic matrix for an MLD permutation, the subma-
trix µ has rank at most m− b.

Proof. By Lemma 5 and the kernel condition, rowµ ⊆ row λ, which in turn
implies that dim(rowµ) ≤ dim(row λ), where the dimension of a vector space is the
size of any basis for it. Applying Lemma 12, we have that rankµ ≤ rankλ = m− b.

Thus, if the lower left (n−m)×m submatrix of a characteristic matrix has rank
more than m− b, the matrix cannot characterize an MLD permutation.

Theorem 17. Let the matrix Y characterize an MLD permutation, and let the
matrix X characterize an MRC permutation. Then the matrix product Y X charac-
terizes an MLD permutation.

Proof. Write the nonsingular matrix Y as

m n−m

Y =

[
α β

γ δ

]
m

n−m
,

where

kerαb..m−1,0..m−1 ⊆ ker γ .(11)

Write the nonsingular matrix X as

m n−m

X =

[
φ σ

0 ν

]
m

n−m
,

where φ and ν are nonsingular. We now show that the product

m n−m

Y X =

[
αφ ασ ⊕ βν

γφ γσ ⊕ δν

]
m

n−m

characterizes an MLD permutation. Observe that the product Y X is nonsingular
because Y and X are each nonsingular.

We must also prove that the kernel condition (4) holds for the product, i.e., that
ker(αφ)b..m−1,0..m−1 ⊆ ker(γφ). For an m ×m matrix τ , note that τb..m−1,0..m−1 =
Ib..m−1,0..m−1 τ , where I is the usual m × m identity matrix. We have that x ∈
ker(αφ)b..m−1,0..m−1 implies (Ib..m−1,0..m−1αφ)x = 0 (taking αφ as τ), which in turn
implies that φx ∈ ker(Ib..m−1,0..m−1α) = kerαb..m−1,0..m−1 ⊆ ker γ, by property (11).
Thus, γφx = 0, and so x ∈ ker(γφ). We conclude that ker(αφ)b..m−1,0..m−1 ⊆
ker(γφ), which completes the proof.

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 121

Theorem 17 shows that the composition of an MLD permutation with an MRC
permutation is an MLD permutation. Since we have seen how to perform MLD per-
mutations, we can gain an intuitive understanding of why Theorem 17 holds. An
MRC permutation permutes memoryload numbers, with records that start together
within a source memoryload remaining together in a target memoryload. We per-
form an MLD permutation by reading in entire memoryloads. Thus, to perform the
composition as an MLD permutation, we only have to remap the source memoryload
numbers and adjust the in-memory permutations accordingly. Furthermore, as the
following lemma shows, the composition of two MRC permutations is merely the com-
position of their memoryload mappings with the in-memory permutations adjusted
accordingly.

Theorem 18. The class of MRC permutations is closed under composition and
inversion. That is, if a matrix A characterizes an MRC permutation, then so does
the matrix A−1, and if A(1) and A(2) characterize MRC permutations, then so does
the product A(1) A(2).

Proof. We first show that MRC permutations are closed under inverse. Let the
matrix

m n−m

A =

[
α β

0 δ

]
m

n−m

characterize an MRC permutation, so that the leading submatrix α and trailing sub-
matrix δ are nonsingular. The inverse of this matrix is

m n−m

A−1 =

[
α−1 α−1βδ−1

0 δ−1

]
m

n−m
,

where the leading m×m submatrix α−1 and trailing (n−m)×(n−m) submatrix δ−1

are nonsingular. Thus, the matrix A−1 characterizes an MRC permutation.
We now show that MRC permutations are closed under composition. Consider

MRC characteristic matrices

A(1) =

m n−m[
α(1) β(1)

0 δ(1)

]
m

n−m
,

A(2) =

m n−m[
α(2) β(2)

0 δ(2)

]
m

n−m
,

where the submatrices α(1), α(2), δ(1), and δ(2) are nonsingular. Then their product
is

A(1) A(2) =

m n−m[
α(1) α(2) α(1) β(2) ⊕ β(1) δ(2)

0 δ(1) δ(2)

]
m

n−m
.

Because α(1) and α(2) are nonsingular, so is their product α(1) α(2). Similarly, the
product δ(1) δ(2) is nonsingular. The product A(1) A(2), therefore, characterizes an
MRC permutation.

122 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

On the other hand, the composition of two MLD permutations is not necessarily
an MLD permutation. We can see this fact in two ways. First, since we perform an
MLD permutation by reading in entire memoryloads but writing blocks independently,
it may not be possible to remap the source memoryload numbers. Second, consider the
product of two matrices, each of which characterizes an MLD permutation. Although
the rank of the lower left (n −m) ×m submatrix of each factor is at most m − b, it
may be the case that the rank of the lower left (n−m)×m submatrix of the product
exceeds m − b. If so, then by Lemma 16, the product cannot characterize an MLD
permutation.

Moreover, the composition of an MRC permutation with an MLD permutation
(that is, reversing the order of the factors in Theorem 17) is not necessarily an MLD
permutation. A simple example is the product

b m− b n−m 0 I 0

I 0 0

0 0 I

b m− b n−m I 0 0

0 I 0

0 I I

 =

b m− b n−m 0 I 0

I 0 0

0 I I

 b

m− b

n−m

,

MRC MLD not MLD

with b = m− b = n−m. This product is not MLD since an m-vector with 0s in the
first b positions and 1s in the last m− b positions is a vector in kerλ, but it is not a
vector in kerµ.

Finally, we note that any MRC permutation is an MLD permutation. Observe
that the lower left (n−m)×m submatrix of an MRC permutation must be 0, which
implies that its kernel is the set of all m-vectors. No matter what kerλ is, it is a
subset of this set.

Inverses of MLD permutations. The first BMMC algorithm we shall see
works by factoring the BMMC characteristic matrix into matrices that character-
ize MRC and MLD permutations. In some settings, it may be easier to perform a
permutation whose inverse is MLD (we call this class MLD−1) than to perform an
MLD permutation. We shall see an alternative way to factor BMMC characteristic
matrices—into MRC and MLD−1 characteristic matrices—so that the resulting algo-
rithm takes the same number of parallel I/Os as the original factorization into MRC
and MLD permutations. In the remainder of this section, we examine the properties
of MLD−1 permutations that enable this alternative factorization.

Striped writes may be valuable when redundant data is maintained on a parallel
disk system to reduce the chance of data loss due to a failed device. Many common
parallel-disk organizations fall under the heading of RAID (redundant array of inex-
pensive disks) [7, 17], which is organized into “levels” of redundancy. In RAID levels
3 and 4, an additional disk is added to the disk array to store redundancy. Each block
of this parity disk contains the bitwise exclusive-or of the contents of the correspond-
ing blocks of the other D data disks. If any one data disk fails, its contents are easily
reconstructed from the contents of the D−1 remaining data disks and the parity disk.
If an entire stripe is written to the disk array, it is easy to compute the corresponding
parity information at the same time and write it to the parity disk in parallel with the
data being written to the data disks. On the other hand, when less than a full stripe
of data is being written to a given stripe of the disk array, updating the parity disk
is harder. For each partial stripe being written, the old data and parity information
must be read and the new data and parity information must be written. If k different

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 123

stripes are being written, accessing the parity disk may become a severe bottleneck
since k different blocks of the parity disk must be read and rewritten. Because an
independent write may update individual blocks in several different stripes, in a RAID
3 or 4 organization, algorithms that use striped writes are preferable to those that
use independent writes.

With this motivation, we begin our investigation of MLD−1 permutations with a
property that pertains to all one-pass permutations.

Lemma 19. If a permutation Π is a one-pass permutation, then its inverse per-
mutation Π−1 is also a one-pass permutation. Moreover, if we perform Π using striped
reads (respectively, writes), then we can perform Π−1 using striped writes (respectively,
reads).

Proof. Consider a one-pass algorithm to perform the permutation Π. It repeatedly
reads a set of blocks, permutes their records in memory, and writes the records as full
blocks. The one-pass algorithm reads and writes each record once. To perform the
inverse permutation Π−1, we invert each read-permute-write step in the algorithm
for Π. In each step, we read the blocks that were written in the corresponding step
for Π, we perform the inverse in-memory permutation, and we write the blocks that
were read in the corresponding step for Π. Each record is still read and written once,
and thus Π−1 is also a one-pass permutation. Note that if a read (respectively, write)
for Π is striped, then the corresponding write (respectively, read) for Π−1 is also
striped.

The following corollary follows directly from Theorem 15 and Lemma 19.

Corollary 20. Any MLD−1 permutation can be performed in one pass with
independent reads and striped writes.

Our final property of MLD−1 permutations is analogous to Theorem 17.

Lemma 21. Let the matrix X characterize an MRC permutation, and let the
matrix Y characterize an MLD−1 permutation. Then the matrix product X Y char-
acterizes an MLD−1 permutation.

Proof. Let Z = X Y , so that Z−1 = Y −1 X−1. Since the matrix Y characterizes
an MLD−1 permutation, the matrix Y −1 characterizes an MLD permutation. By
Theorem 18, the matrix X−1 characterizes an MRC permutation. By Theorem 17,
therefore, the matrix Z−1 characterizes an MLD permutation. We conclude that the
matrix Z characterizes an MLD−1 permutation.

5. Matrix-column operations. In this section, we classify forms of matrices
which, as factors, have the effect of adding columns of other matrices to yield a prod-
uct. We shall use matrices of this form in section 6 to transform the characteristic
matrix for any BMMC permutation into a characteristic matrix for an MRC permuta-
tion. This section shows the structure and useful properties of specific characteristic
matrix forms we shall use.

Column additions. We define a column-addition matrix as a matrix Q such
that the product A′ = AQ is a modified form of A in which specified columns of A
have been added into others. Denoting the kth column of A by Ak, we define the
matrix Q = (qij) by

qij =

1 if i = j ,
1 if column Ai is added into column Aj ,
0 otherwise .

124 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

For example,
1 0 1 1
0 1 1 0
1 1 0 0
0 1 0 1

1 1 1 0
0 1 0 0
0 0 1 0
0 1 0 1

 =

 A0 A0 ⊕A1 ⊕A3 A0 ⊕A2 A3

A Q

=

1 0 0 1
0 1 1 0
1 0 1 0
0 0 0 1

 .

A′

Column-addition matrices are also subject to a dependency restriction that if
column i is added into column j, then column j cannot be added into any other
column. That is, if qij = 1, then qjk = 0 for all k 6= j. The following lemma shows
that any column-addition matrix is the product of two nonsingular matrices, and so
any column-addition matrix is also nonsingular.

Lemma 22. Any column-addition matrix is nonsingular.
Proof. We shall prove by induction on the matrix size n that any column-addition

matrix Q is the product of two nonsingular matrices L and U . Thus, the matrix Q is
also nonsingular.

For the basis, when n = 2, the only column-addition matrices are [11
0
1], [10

1
1],

and [10
0
1]. Since each of these matrices is nonsingular, each of them is the product

of itself and the identity matrix.
For the inductive step, we assume that every (n − 1) × (n − 1) column-addition

matrix is the product of two nonsingular matrices. We partition an arbitrary n × n
column-addition matrix Q as

1 n− 1

Q =

[
1 ψ

θ χ

]
1

n− 1
.

The trailing (n − 1) × (n − 1) submatrix χ is a column-addition matrix because all
of its diagonal elements are 1s and, as a submatrix of Q, it obeys the dependency
restriction. By our inductive hypothesis, therefore, the submatrix χ is the product of
two (n−1)×(n−1) nonsingular matrices, say ν and η. By the dependency restriction,
if there are any 1s in θ, then there cannot be any 1s in ψ. Therefore, either ψ or θ is
a zero submatrix, and consequently we can factor Q as

Q =

1 n− 1[
1 0

θ ν

] 1 n− 1[
1 ψ

0 η

]
1

n− 1
.

L U

The rightmost n − 1 columns of L are linearly independent since the submatrix ν is
nonsingular and the upper right 1 × (n − 1) submatrix is 0. The leftmost column is
linearly independent of the rightmost n−1 columns since its top entry is 1 and the top
entry of each of the rightmost n− 1 columns is 0. Thus, L is nonsingular. Similarly,

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 125

because the submatrix η is nonsingular and the lower left (n− 1)× 1 submatrix of U
is 0, the matrix U is nonsingular. Thus, any column-addition matrix is the product
of two nonsingular matrices, and therefore is also nonsingular.

In fact, the factors L and U in the proof of Lemma 22 are unit lower-triangular
and unit upper-triangular matrices, respectively. Thus, we can factor the example
above as

Q =

1 1 1 0
0 1 0 0
0 0 1 0
0 1 0 1

 =

1 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

 = LU .

Partitioning the matrix. In section 6, we shall factor nonsingular matrices
into column-addition matrices and matrices that characterize MRC permutations.
These matrices will be of various block forms, and to classify these forms, we use
the following block representation. We partition a matrix into three sections: left,
middle, and right. The left section includes the leftmost b columns, the middle section
includes the middle m−b columns, and the right section includes the rightmost n−m
columns. When the form of a particular submatrix is known, we label that block
accordingly. Otherwise, we place an asterisk (*) in blocks whose contents are not of
any particular form.

For column-addition operations, the characteristic matrix has the following form.
Every entry on the diagonal is 1. We place an asterisk in each submatrix that contains
any nondiagonal 1s as defined by the operation. Returning to the example above,
if b = 1 and m = 2, the form of Q is

b = 1 m− b = 1 n−m = 2

Q =

 I ∗ ∗
0 I 0

0 ∗ I

 b = 1

m− b = 1

n−m = 2

.

We define several column-addition operations and MRC permutations by the form
of their characteristic matrices. Each of these forms is nonsingular and characterizes
a one-pass permutation. We shall show that the inverse of each of these one-pass
permutations falls into a specific class of one-pass permutations.

Trailer matrix form. In section 6, we shall need to transform a nonsingular
matrix into one that has a nonsingular trailing (n−m)× (n−m) submatrix. We shall
create the nonsingular trailing submatrix by adding some columns from the left and
middle sections to the right section. We define a trailer matrix as a column-addition
matrix that adds some columns from the left and middle sections into the columns of
the right section. The matrix T for this operation is of the form

b m− b n−m

T =

 I 0 ∗
0 I ∗
0 0 I

 b

m− b

n−m

.

The trailer matrix form characterizes an MRC permutation.

126 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Reducer matrix form. Once we have a matrix with a nonsingular trailing
submatrix, we need an operation that puts the matrix into “reduced form.” (We
shall define reduced form precisely in section 6.) We convert a matrix into reduced
form by adding columns from the left and middle sections into other columns in the
left and middle sections while respecting the dependency restriction. Thus, a reducer
matrix R is a column-addition matrix of the form

b m− b n−m

R =

 ∗ ∗ 0

∗ ∗ 0

0 0 I

 b

m− b

n−m

.

Since the dependency restriction is obeyed, the leading m × m submatrix of R is
nonsingular. Thus, the matrix R characterizes an MRC permutation.

We can multiply the forms T and R to create another matrix form that also
characterizes a one-pass permutation. The product T R results in a matrix of the
form

b m− b n−m

P =

 ∗ ∗ ∗
∗ ∗ ∗
0 0 I

 b

m− b

n−m

.

Since both of the matrix forms T and R characterize MRC permutations, by Theo-
rem 18, so does the matrix form P and its inverse.

Swapper matrix form. We shall also need to transform the columns in the
lower left and lower middle submatrices into columns of zeros. To do so, we must
move the nonzero columns in the lower left submatrix into the lower middle submatrix
positions by swapping at most m − b columns at a time from the left section with
those in the middle section. Thus, the swap operation is a permutation of the leftmost
m columns. A swapper matrix is of the form

m n−m

S =

[
permutation 0

0 I

]
m

n−m

,

so that the leading m × m submatrix is a permutation matrix, which dictates the
permutation of the leftmost m columns. The matrix form S characterizes an MRC
permutation and, by Theorem 18, so does its inverse.

Erasure matrix form. The last operation used in section 6 is an erasure oper-
ation to zero out columns in the lower middle submatrix. To perform this operation,
we add columns from the right section into columns in the middle section. Thus, an
erasure matrix form is defined as

b m− b n−m

E =

 I 0 0

0 I 0

0 ∗ I

 b

m− b

n−m

.

This matrix form characterizes an MLD permutation because Eb..m−1,0..m−1’s ker-
nel includes only those m-vectors x with xb..m−1 = 0, and each such vector is also

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 127

in the kernel of Em..n−1,0..m−1. Moreover, observe that any matrix of this form is
its own inverse. Consequently, the inverse of such a matrix characterizes an MLD
permutation.

6. An asymptotically optimal BMMC algorithm. In this section, we pre-
sent an algorithm to perform any BMMC permutation by factoring its characteristic
matrix into matrices which characterize one-pass permutations. We assume that the
BMMC permutation is given by an n× n characteristic matrix A and a complement
vector c of length n. We show that the number of parallel I/Os to perform any BMMC
permutation is at most 2N

BD (d rank γ
lg(M/B)e + 2) parallel I/Os, where γ is the submatrix

Ab..n−1,0..b−1, which appears in the lower bound given by Theorem 6.
Our strategy is to factor the matrix A into a product of matrices, each of which

characterizes an MRC or MLD permutation. For now, we ignore the complement
vector c. According to Corollary 2, we read the factors right to left to determine the
order in which to perform the permutations.

To obtain the factorization for A, we multiply A by matrices of the forms described
in Section 5. By applying these matrix-column operations, we transform the matrix A
into a matrix F that characterizes an MRC permutation. Multiplying F by the inverse
of each of the matrix-column factors yields the factorization.

Creating a nonsingular trailing submatrix. We start to transform the char-
acteristic matrix A by creating a nonsingular matrix A(1) which has a nonsingular
trailing (n−m)× (n−m) submatrix. We represent the matrix A as

m n−m

A =

[
α β

φ δ

]
m

n−m
.

Our algorithm depends on the structure of φ rather than γ. The following lemma
allows us to consider rankφ instead of rank γ with only a minor difference.

Lemma 23. For any matrix A,

rankAb..n−1,0..b−1− lg(M/B) ≤ rankAm..n−1,0..m−1 ≤ rankAb..n−1,0..b−1+lg(M/B) .

Proof. Because the rank of a submatrix is the maximum number of linearly
independent rows or columns, we have

rankAm..n−1,0..b−1 ≤ rankAb..n−1,0..b−1(12)

≤ rankAm..n−1,0..b−1 + lg(M/B) ,

rankAm..n−1,0..b−1 ≤ rankAm..n−1,0..m−1(13)

≤ rankAm..n−1,0..b−1 + lg(M/B) .

Subtracting lg(M/B) from the right-hand inequality of (12) and combining the result
with the left-hand inequality of (13) yields

rankAb..n−1,0..b−1 − lg(M/B) ≤ rankAm..n−1,0..b−1(14)

≤ rankAm..n−1,0..m−1 .

Adding lg(M/B) to the left-hand inequality of (12) and combining the result with
the right-hand inequality of (13) yields

rankAm..n−1,0..m−1 ≤ rankAm..n−1,0..b−1 + lg(M/B)(15)

≤ rankAb..n−1,0..b−1 + lg(M/B) .

128 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

Combining inequalities (14) and (15) proves the lemma.
By Lemma 23, therefore,

rankφ ≤ rank γ + lg(M/B) .(16)

We shall use this fact later in the analysis of the algorithm to express the bound in
terms of rank γ.

We make the trailing (n−m)×(n−m) submatrix nonsingular by adding columns
in φ into those in δ. Consider δ as a set of n−m columns and φ as a set of m columns.
Because A is nonsingular, the submatrix of A consisting of the bottom n −m rows
(i.e., submatrices φ and δ) has rank n−m. Hence, there exists a set of n−m linearly
independent columns in the bottom n−m rows of A. We use the method described
in section 2 to determine a maximal set V of rank δ linearly independent columns in δ
and a set W of n −m − rank δ columns in φ that, along with V , comprise a set of
n−m linearly independent columns. Denoting by V the n−m− rank δ columns of δ
not in V , we make the trailing submatrix of A nonsingular by pairing up columns
of W with columns of V and adding each column in W into its corresponding column
in V . Because V is a maximal set of linearly independent columns in δ, the columns
of V depend only on columns of V and not on columns of W . Adding a column
of W into a column of V must produce a column that is linearly independent of those
in V . Because each column of V has a different column of W added in, the resulting
columns are linearly independent of each other, too.

We must express the above transformation as a column-addition operation. Al-
though we focused above on adding columns of φ to columns of δ, column-addition
operations add entire columns, and so we must also add the corresponding columns
of α to the corresponding columns of β. Since we add columns from the leftmost
m columns of A to the rightmost n − m columns, the characteristic matrix of this
operation has the trailer matrix form T described in section 5. The matrix product
is now

m n−m

A(1) = AT =

[
α β̂

φ δ̂

]
m

n−m
,

where δ̂ is nonsingular. Since the matrices A and T are nonsingular, the matrix A(1)

is nonsingular.

Transforming the matrix into reduced form. The next step is to transform
the matrix A(1) into reduced form. For our purposes, a matrix is in reduced form
when there are rankφ linearly independent columns and m− rankφ columns of zeros
in the lower left (n−m)×m submatrix, and the trailing (n−m)× (n−m) submatrix
is nonsingular. Once again, we use the method of section 2 to determine a set U
that indexes rankφ linearly independent columns of φ. To perform the reduction,
we determine for each linearly dependent column φj a set of column indices Uj ⊆ U
such that φj = ⊕k∈Ujφk. Adding the set of columns of φ indexed by Uj into φj
zeros it out. We add linearly independent columns from the left and middle sections
into the linearly dependent columns of these sections. Since we never add a linearly
dependent column into any other column and there are no column additions into the
linearly independent columns, we respect the dependency restriction. The matrix R
that reduces the matrix A(1) has the reducer matrix form described in section 5.

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 129

Thus, the matrix product T R is of the form P also described in section 5, and it
characterizes an MRC permutation. We now have the product

m n−m

A(2) = A(1) R = AT R = AP =

[
α̂ β̂

φ̂ δ̂

]
m

n−m
,

with a nonsingular trailing submatrix δ̂ and a lower left submatrix φ̂ in reduced form.
Since A and P are nonsingular, the matrix A(2) is also nonsingular.

Zeroing out the lower left submatrix. Our eventual goal is to transform the
original matrix A into a matrix F that characterizes an MRC permutation. At this
point, the matrix A has been transformed into the nonsingular matrix A(2). Thus,
our final task is to multiply A(2) by a series of matrices that transform the rankφ
nonzero columns in the lower left (n − m) × m submatrix φ̂ into columns of zeros.
We do so by multiplying A(2) by matrices of the swapper and erasure matrix forms
described in section 5. Let us further partition the leftmost m columns of A(2) into
the leftmost b columns and the middle m− b columns:

b m− b n−m

A(2) =

[
α̂′ α̂′′ β̂

φ̂′ φ̂′′ δ̂

]
m

n−m
.

Our strategy is to repeatedly use swapper matrix forms to move at most m−b columns
from the left section into the middle section and then zero out those columns using
erasure matrix forms.

We begin by swapping m − b − rank φ̂′′ columns from φ̂′ with the zero columns
of φ̂′′. Multiplying the matrix A(2) by a nonsingular matrix S1 of the swapper matrix
form described in section 5, we swap at most m− b columns from the left section with
the appropriate columns in the middle section. After performing the swap operation
on the matrix A(2), the lower left submatrix has m − b − rank φ̂′′ additional zero
columns and the lower middle submatrix has full rank. The above discussion assumes
that rank φ̂′ ≥ m − b − rank φ̂′′; if the opposite holds, we swap rank φ̂′ columns and
the lower left submatrix becomes all zeros.

Our next step is to transform the m − b columns in the lower middle submatrix
into columns of zeros. Since the nonsingular trailing (n−m)× (n−m) submatrix δ̂
forms a basis for the columns of the lower n − m rows of matrix A(2), we zero out
each nonzero column in the lower middle submatrix by adding columns of δ̂. Since
we add columns from the rightmost n −m columns into the middle m − b columns,
we perform the matrix-column operation characterized by a nonsingular matrix E1

of the erasure matrix form described in section 5. After multiplying by the erasure
matrix E1, the original matrix is transformed into a nonsingular matrix

A(3) = AP S1 E1 ,

which has zero columns in the lower middle (n−m)× (m− b) submatrix and possibly
some more nonzero columns in the lower left (n−m)× b submatrix.

If there are still nonzero columns in the lower left (n − m) × b submatrix of
the matrix A(3), then those columns must also be swapped into the lower middle
(n−m)× (m− b) submatrix by a swapper matrix and transformed into zero columns
by an erasure matrix. We repeatedly swap in up to m − b nonzero columns of the

130 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

lower left submatrix into the lower middle submatrix. Each time we perform a swap
operation, we multiply the current product by a matrix Si of the swapper matrix
form. Note that we swap entire columns here, not just the portions in the lower
submatrices. After we perform each matrix-column operation Si, we zero out the
lower middle submatrix by multiplying the current product by a matrix Ei of the
erasure matrix form.

After repeatedly swapping and erasing each of the nonzero columns in the lower
left (n−m)×m submatrix, the lower left submatrix will contain only zero columns.
This matrix is the matrix F mentioned at the beginning of this section. Since the
matrix A(2) is in reduced form, there are at most rankφ columns in the submatrix φ̂
that need to be transformed into zero columns. Thus, at most

g =

⌈
rankφ

m− b

⌉
(17)

pairs of swap and erasure operations transform all the columns in the lower left (n−
m) ×m submatrix into zero columns. Since each matrix-column operation that we
performed on the original matrix A to transform it into F is nonsingular, the resulting
matrix product

F = AP S1 E1 S2 E2 · · ·Sg Eg

is a nonsingular matrix that characterizes an MRC permutation. Multiplying both
sides by the inverses of the factors yields the desired factorization of A:

A = F E−1
g S−1

g E−1
g−1 S

−1
g−1 · · · E−1

1 S−1
1 P−1 .(18)

Analysis. We now apply several properties that we have gathered to complete
the analysis of our BMMC permutation factoring method.

Theorem 24. We can perform any BMMC permutation with characteristic ma-
trix A and complement vector c in at most

2N

BD

(⌈
rank γ

lg(M/B)

⌉
+ 2

)
parallel I/Os, where γ = Ab..n−1,0..b−1, using striped reads, independent writes, and
2N records of disk space.

Proof. Ignore the complement vector c for the moment. In the factorization (18)
of A, both factors S−1

1 and P−1 characterize MRC permutations. By Theorem 18,
therefore, so does the product S−1

1 P−1. As we saw in section 5, each factor E−1
i

characterizes an MLD permutation. Applying Theorem 17, each grouping of factors
E−1

1 S−1
1 P−1 and E−1

i S−1
i , for i = 2, 3, . . . , g, characterizes an MLD permutation.

By Theorem 15, and adding in one more pass for the MRC permutation characterized
by F , we can perform A with g + 1 passes.

If the complement vector c is nonzero, we include it as part of the MRC permu-
tation characterized by the leftmost factor F . See [10] for details.

Regardless of the complement vector, therefore, we can perform the BMMC per-
mutation with g + 1 passes. Combining equation (17) and inequality (16), we obtain
a bound of

g + 1 =

⌈
rankφ

lg(M/B)

⌉
+ 1

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 131

≤
⌈

rank γ + lg(M/B)

lg(M/B)

⌉
+ 1

=

⌈
rank γ

lg(M/B)

⌉
+ 2

passes for a total of at most

2N

BD

(⌈
rank γ

lg(M/B)

⌉
+ 2

)
parallel I/Os.

Because each factor characterizes either an MRC permutation (performed with
striped reads and writes) or an MLD permutation (performed with striped reads and
independent writes), and striped I/O is a special case of independent I/O, the method
as a whole uses striped reads and independent writes. The method uses 2N records
of disk space by reversing the roles of the source and target portions between passes.
That is, the target portion written to in one pass becomes the source portion read
from in the next pass.

Performing BMMC permutations with striped writes. Here we describe
another way to compose the factors from the product of equation (18) into g + 1
factors, such that each factor characterizes either an MRC or MLD−1 permutation.
Both MRC and MLD−1 permutations can be performed with striped writes. As
mentioned in section 4, striped writes may have advantages in parallel disk systems
organized as RAID levels 3 or 4.

In our alternative factorization, we start by noting that because any erasure ma-
trix is its own inverse, not only does each factor E−1

i in the factorization (18) charac-
terize an MLD permutation, it also characterizes an MLD−1 permutation. Instead of
grouping the factors E−1

1 S−1
1 P−1 and E−1

i S−1
i for i = 2, 3, . . . , g, here we group by

F E−1
g and S−1

i E−1
i−1, for i = 2, 3, . . . , g. By Lemma 21, each such grouping of factors

characterizes an MLD−1 permutation. Thus, the resulting factorization of A has g
MLD−1 factors and the MRC product S−1

1 P−1. This alternative factorization of A
has the same number of one-pass factors as our previous grouping, but it uses only
MRC and MLD−1 permutations as its factors. Thus, we have proven the following.

Theorem 25. We can perform any BMMC permutation with characteristic ma-
trix A and complement vector c in at most

2N

BD

(⌈
rank γ

lg(M/B)

⌉
+ 2

)
parallel I/Os, where γ = Ab..n−1,0..b−1, using independent reads, striped writes, and
2N records of disk space.

7. Detecting BMMC permutations at run time. In practice, we wish to
run the BMMC algorithm of section 6 whenever possible to reap the savings over
having run the more costly algorithm for general permutations. For that matter, we
wish to run even faster algorithms for any of the special cases of BMMC permutations
(MRC, MLD, MLD−1, or block BMMC [10]) whenever possible as well. We must know
the characteristic matrix A and complement vector c, however, to run any of these
algorithms. If A and c are specified in the source code, before running the algorithm
we only need to check that A is of the correct form, e.g., that it is nonsingular for a
BMMC permutation, of the MLD or MRC form, etc. Later in this section, we show

132 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

how to check the kernel condition for MLD permutations. If instead the permutation
is given by a vector of N target addresses, we can detect at run time whether it is a
BMMC permutation by the following procedure.

1. Check that N is a power of 2.
2. Form a candidate characteristic matrix A and complement vector c such that

if the permutation is BMMC, then A and c must be the correct characterizations. This

section shows how to do so with only d lg(N/B)+1
D e parallel reads.

3. Check that the characteristic matrix is of the correct form. That is, check
that it is nonsingular, which is easily done by the method of section 2. If further
structure is desired, e.g., MRC or MLD forms, check further for the desired form.

4. Verify that all N target addresses are described by the candidate character-
istic matrix and complement vector. If for any source address x and its corresponding
target address y we have y 6= Ax ⊕ c, the permutation is not BMMC and we can
terminate verification. If y = Ax⊕ c for all N source-target pairs, the permutation is
BMMC. Verification uses at most N/BD parallel reads, since we need to read each
target address at most once. Source addresses are generated implicitly, and so they
do not entail any I/O cost.

The total number of parallel I/Os is at most

N

BD
+

⌈
lg(N/B) + 1

D

⌉
,

all of which are reads, and it is usually far fewer when the permutation turns out not
to be BMMC.

One benefit of run-time BMMC detection is that the programmer might not
realize that the desired permutation is BMMC. For example, as noted in section 1,
the standard binary reflected Gray code and its inverse are both MRC permutations.
Yet the programmer might not know to call a special MRC or BMMC routine. Even
if the system provides an entry point to perform the standard Gray code permutation
and this routine invokes the MRC algorithm, variations on the standard Gray code
may foil this approach. For example, a standard Gray code with all bits permuted
the same (i.e., a characteristic matrix of ΠG, where Π is a permutation matrix and
G is the MRC matrix that characterizes the standard Gray code) is BMMC but not
necessarily MRC. It might not be obvious enough that the permutation characterized
by ΠG is BMMC for the programmer to invoke the BMMC algorithm explicitly.

Forming the candidate characteristic matrix and complement vector.
The method for forming the candidate characteristic matrix A and candidate com-
plement vector c is based on two observations. First, if the permutation is BMMC,
then the complement vector c must be the target address corresponding to source
address 0. This relationship holds because x = 0 and y = Ax⊕ c imply that y = c.

The second observation is as follows. Consider a source address x = (x0, x1,
. . . , xn−1), and suppose that bit position k holds a 1, i.e., xk = 1. Let us denote the
jth column for matrix A by Aj . Also, let Sk denote the set of bit positions in x other
than k that hold a 1: Sk = {j : j 6= k and xj = 1}. If y = Ax⊕ c, then we have

y =

(⊕
j∈Sk

Aj

)
⊕Ak ⊕ c ,(19)

since only the bit positions j for which xj = 1 contribute a column of A to the sum of
columns that forms the matrix-vector product. If we know the target address y, the

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 133

complement vector c, and the columns Aj for all j 6= k, we can rewrite equation (19)
to yield the kth column of A:

Ak = y ⊕
(⊕

j∈Sk
Aj

)
⊕ c .(20)

We shall compute the complement vector c first and then the columns of the
characteristic matrix A one at a time, from A0 up to An−1. When computing Ak, we
will have already computed A0, A1, . . . , Ak−1, and these will be the only columns we
need in order to apply equation (20). In other words, Sk ⊆ {0, 1, . . . , k − 1}. Recall
that as Fig. 2 shows, the lower b bits of a record’s address give the record’s offset
within its block, the middle d bits give the disk number, and the upper s = n− (b+d)
bits give the stripe number.

From equation (20), it would be easy to compute Ak if Sk were empty. The set Sk
is empty if the source address is a unit vector, with its only 1 in position k. If we look
at these addresses, however, we find that the target addresses for a disproportionate
number—all but d of them—reside on disk D0. The block whose disk and stripe fields
are all zero contains b such addresses, so they can be fetched in one disk read. A
problem arises for the s source addresses with one 1 in the stripe field: their target
addresses all reside on different blocks of disk D0. If we use this method, each of
these blocks must be fetched in a separate read. The total number of parallel reads
to fetch all the target addresses corresponding to all unit-vector source addresses is
s+ 1 = lg(N/BD) + 1.

To achieve only d lg(N/B)+1
D e parallel reads, each read fetches one block from each

of the D disks. The first parallel read determines the complement vector, the first
b + d columns, and the next D − d − 1 columns. Each subsequent read determines
another D columns, until all n columns have been determined.

In the first parallel read, we do the same as above for the first b + d bits. That
is, we fetch blocks containing target addresses whose corresponding source addresses
are unit vectors with one 1 in the first b + d positions. As before, b of them are
in the same block on disk D0. This block also contains address 0, which we need
to compute the complement vector. The remaining d are in stripe number 0 of
disks D1,D2,D4,D8, . . . ,DD/2. Having fetched the corresponding target addresses,
we have all the information we need to compute the complement vector c and columns
A0, A1, . . . , Ab+d−1.

The columns we have yet to compute correspond to bit positions in the stripe
field. If we were to compute these columns in the same fashion as the first b + d,
we would again encounter the problem that all the blocks we need to read are on
disk D0. In the first parallel read, the only unused disks remaining are those whose
numbers are not a power of 2 (D3,D5,D6,D7,D9, . . .). The key observation is that we
have already computed all d columns corresponding to the disk field, and we can thus
apply equation (20). For example, let us compute column Ab+d, which corresponds
to the first bit of the stripe number. We read stripe 1 on disk D3 and find the first
target address y in this block. Disk number 3 corresponds to the first two disk-
number columns, Ab and Ab+1. Applying equation (20) with Sb+d = {b, b + 1}, we
compute Ab+d = y⊕Ab⊕Ab+1⊕c. The next column we compute is Ab+d+1. Reading
the block at stripe 2 on disk D5, we fetch a target address y and then compute
Ab+d+1 = y ⊕ Ab ⊕ Ab+2 ⊕ c. Continuing on in this fashion, we compute a total of
D − d− 1 stripe-bit columns from the first parallel read.

134 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

The remaining parallel reads compute the remaining stripe-bit columns. We fol-
low the stripe-bit pattern of the first read, but we use all disks, not just those whose
disk numbers are not powers of 2. Each block read fetches a target address y, which
we exclusive-or with a set of columns from the disk field and with the complement
vector to compute a new column from the stripe field. The first parallel read computes
b+D − 1 columns, and all subsequent parallel reads compute D columns. The total
number of parallel reads is thus

1 +

⌈
n− (b+D − 1)

D

⌉
= 1 +

⌈
lg(N/B)−D + 1

D

⌉
=

⌈
lg(N/B) + 1

D

⌉
.

Checking the kernel condition for MLD permutations. In practice, we
would like a simple procedure to verify that a given matrix characterizes an MLD
permutation. By the method of section 2, it is easy to verify that a candidate matrix
A is nonsingular. It may not be obvious how to verify that kerλ ⊆ kerµ when the
matrix is blocked into λ and µ. Instead of determining directly whether kerλ ⊆ kerµ,
we check whether row µ ⊆ row λ. By Lemma 5, these conditions are equivalent.

Checking whether rowµ ⊆ row λ is easy. Note that the rows of the submatrix
Ab..n−1,0..m−1 consist of the union of the rows of λ and µ, and observe that rowµ ⊆
row λ if and only if row λ = rowAb..n−1,0..m−1. That is, if including the rows of µ adds
no new vectors to the row space of λ, then the row space of µ must be a subset of the
row space of λ. The condition row λ = rowAb..n−1,0..m−1 is equivalent to dim row λ =
dim rowAb..n−1,0..m−1, which is in turn equivalent to rankλ = rankAb..n−1,0..m−1.
We can check this last condition easily by using the method of section 2.

8. Conclusions. This paper has shown an asymptotically tight bound on the
number of parallel I/Os required to perform BMMC permutations on parallel disk sys-
tems. It is particularly satisfying that the tight bound was achieved not by raising the
lower bound proven here and in [9], but by decreasing the upper bound in [10]. (Af-
ter all, we would rather perform BMMC permutations with fewer parallel I/Os.) The
multiplicative and additive constants in the I/O complexity of our algorithm are small,
which is especially fortunate in light of the expense of disk accesses. Our algorithm
has been implemented on a DEC 2100 server with eight disk drives [13]. This im-
plementation uses asynchronous independent reads and asynchronous striped writes,
so that when performing each MRC or MLD−1 permutation, it overlaps prefetching
the next memoryload, writing the previous memoryload, and permuting in memory
the current memoryload. A later implementation that runs on either the DEC 2100
server or a network of workstations [11] uses asynchronous striped reads and asyn-
chronous independent writes; it is a key subroutine in an efficient out-of-core FFT
implementation [12].

One can adapt the proof by Aggarwal and Vitter [2] of Lemma 9 to bound ∆Φmax

precisely, rather than just asymptotically. In particular, it is a straightforward exercise
to derive the bound

∆Φmax ≤ B

(
2

e ln 2
+ lg(M/B)

)
.

Moreover, the potential change is at most zero for write operations, and so the po-
tential increases only during read operations. If all I/Os are simple, then the total

BMMC PERMUTATIONS ON PARALLEL DISK SYSTEMS 135

number of blocks read equals the total number of blocks written. Therefore, we can

modify the lower bound of Lemma 8 to 2 Φ(t)−Φ(0)
∆Φmax

, with which we can derive a lower
bound of

2N

BD

rank γ
2

e ln 2 + lg(M/B)

parallel I/Os for any BMMC permutation. Since the quantity 2/(e ln 2) is approx-
imately 1.06, this lower bound is quite close to the exact upper bound given by
Theorem 24.

We have also shown how to detect BMMC permutations at run time, given a
vector of target addresses. Detection is inexpensive and, when successful, permits the
execution of our BMMC algorithm or possibly a faster algorithm for a more restricted
permutation class.

Wisniewski [25] uses the linear-algebraic technique of performing column addi-
tions and row additions to derive BMMC-permutation algorithms on distributed-
memory models and main-memory/cache models. On what other memory models
can we use this technique to efficiently perform BMMC permutations?

What other permutations can be performed quickly? Several O(1)-pass permu-
tation classes appear in [9], and this paper has added two more (MLD and MLD−1

permutations in section 4). We have shown that the inverse of any one-pass permuta-
tion is a one-pass permutation. One can also show that the composition of an MLD
permutation with an MLD−1 permutation is a one-pass permutation. What other
useful permutation classes can we show to be BMMC?

Finally, is the lower bound of Ω(Φ(t)−Φ(0)
∆Φmax

) parallel I/Os universally tight for all
permutations, not just those that are BMMC? One possible approach is to design an
algorithm that explicitly manages the potential. If each pass increases the potential
by Θ

(
N
BD (∆Φmax)

)
, the algorithm’s I/O count would match the lower bound.

Acknowledgments. Thanks to C. Esther Jeserum, Michael Klugerman, and the
anonymous referees for their helpful suggestions.

REFERENCES

[1] A. Aggarwal, A. K. Chandra, and M. Snir, Hierarchical memory with block transfer, in
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, IEEE,
Piscataway, NJ, 1987, pp. 204–216.

[2] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related problems,
Comm. ACM, 31 (1988), pp. 1116–1127.

[3] L. Arge,The buffer tree: A new technique for optimal I/O-algorithms, in 4th International
Workshop on Algorithms and Data Structures (WADS), Lecture Notes in Computer Science
955, Springer-Verlag, New York, 1995, pp. 334–345.

[4] L. Arge, The I/O-complexity of ordered binary-decision diagram manipulation, in Proceedings
of the 6th International Symposium on Algorithms and Computations (ISAAC ’95), Lecture
Notes in Computer Science 1004, J. Staples, P. Eades, N. Katoh, and A. Moffat, eds.,
Springer-Verlag, New York, 1995, pp. 82–91.

[5] L. Arge, D. E. Vengroff, and J. S. Vitter, External-memory algorithms for processing line
segments in geographic information systems, in Proceedings of the Third Annual European
Symposium on Algorithms (ESA ’95), Lecture Notes in Computer Science 979, P. Spirakis,
ed., Springer-Verlag, New York, 1995, pp. 295–310.

[6] R. D. Barve, E. F. Grove, and J. S. Vitter, Simple randomized mergesort for parallel
disks, in Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM, New York, 1996, pp. 109–118.

136 T. H. CORMEN, T. SUNDQUIST, AND L. F. WISNIEWSKI

[7] P. Chen, G. Gibson, R. H. Katz, D. A. Patterson, and M. Schulze, Two Papers on
RAIDs, Tech. Report UCB/CSD 88/479, Computer Science Division (EECS), University
of California, Berkeley, 1988.

[8] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter, External-memory graph algorithms, in Proceedings of the Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1995, pp. 139–149.

[9] T. H. Cormen,Virtual Memory for Data-Parallel Computing, Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, 1992; also available as Technical Report MIT/LCS/TR-559.

[10] T. H. Cormen, Fast permuting in disk arrays, J. Parallel Distrib. Computing, 17 (1993),
pp. 41–57.

[11] T. H. Cormen and M. Hirschl, Early experiences in evaluating the Parallel Disk Model with
the ViC* implementation, Parallel Comput., 23 (1997), pp. 571–600.

[12] T. H. Cormen and D. M. Nicol, Performing out-of-core FFTs on parallel disk systems, Tech.
Report PCS-TR96-294, Department of Computer Science, Dartmouth College, Hanover,
NH, 1996; Parallel Comput., to appear.

[13] S. R. Cushman, A Multiple Discrete Pass Algorithm on a DEC Alpha 2100, Tech. Report PCS-
TR95-259, Department of Computer Science, Dartmouth College, Hanover, NH, 1995.

[14] J. M. del Rosario and A. Choudhary, High-performance I/O for massively parallel comput-
ers, IEEE Computer, (1994), pp. 59–67.

[15] A. Edelman, S. Heller, and S. L. Johnsson, Index transformation algorithms in a linear
algebra framework, IEEE Trans. Parallel Distributed Systems, 5 (1994), pp. 1302–1309.

[16] R. W. Floyd, Permuting information in idealized two-level storage, in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972,
pp. 105–109.

[17] G. A. Gibson, Redundant Disk Arrays: Reliable, Parallel Secondary Storage, The MIT Press,
Cambridge, MA, 1992; also available as Tech. Report UCB/CSD 91/613, Computer Science
Division (EECS), University of California, Berkeley, 1991.

[18] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter, External-memory com-
putational geometry, in Proceedings of the 34th Annual Symposium on Foundations of
Computer Science, IEEE, Piscataway, NJ, 1993, pp. 714–723.

[19] S. L. Johnsson and C.-T. Ho, Generalized shuffle permutations on boolean cubes, J. Parallel
Distrib. Computing, 16 (1992), pp. 1–14.

[20] S. Lang, Linear Algebra, 3rd ed., Springer-Verlag, New York, 1987.
[21] M. H. Nodine and J. S. Vitter, Deterministic distribution sort in shared and distributed

memory multiprocessors, in Proceedings of the 5th Annual ACM Symposium on Parallel
Algorithms and Architectures, ACM, New York, 1993, pp. 120–129.

[22] M. H. Nodine and J. S. Vitter, Greed sort: Optimal deterministic sorting on parallel disks,
J. Assoc. Comput. Mach., 42 (1995), pp. 919–933.

[23] G. Strang, Linear Algebra and Its Applications, 3rd ed. Harcourt Brace Jovanovich, San
Diego, CA, 1988.

[24] J. S. Vitter and E. A. M. Shriver, Algorithms for parallel memory I: Two-level memories,
Algorithmica, 12 (1994), pp. 110–147.

[25] L. F. Wisniewski, Efficient Design and Implementation of Permutation Algorithms on the
Memory Hierarchy, Ph.D. thesis, Department of Computer Science, Dartmouth College,
Hanover, NH, 1996.

[26] L. F. Wisniewski, Structured permuting in place on parallel disk systems, in Proceedings of the
Fourth Annual Workshop on I/O in Parallel and Distributed Systems (IOPADS), ACM,
New York, 1996, pp. 128–139.

[27] D. Womble, D. Greenberg, S. Wheat, and R. Riesen, Beyond core: Making parallel com-
puter I/O practical, in DAGS ’93, Dartmouth Institute for Advanced Graduate Studies,
Hanover, NH, 1993.

L-PRINTABLE SETS∗

LANCE FORTNOW† , JUDY GOLDSMITH‡ , MATTHEW A. LEVY‡ , AND STEPHEN

MAHANEY§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 137–151

Abstract. A language is L-printable if there is a logspace algorithm which, on input 1n, prints
all members in the language of length n. Following the work of Allender and Rubinstein [SIAM J.
Comput., 17 (1988), pp. 1193–1202] on P-printable sets, we present some simple properties of the
L-printable sets. This definition of “L-printable” is robust and allows us to give alternate characteri-
zations of the L-printable sets in terms of tally sets and Kolmogorov complexity. In addition, we show
that a regular or context-free language is L-printable if and only if it is sparse, and we investigate
the relationship between L-printable sets, L-rankable sets (i.e., sets A having a logspace algorithm
that, on input x, outputs the number of elements of A that precede x in the standard lexicographic
ordering of strings), and the sparse sets in L. We prove that under reasonable complexity-theoretic
assumptions, these three classes of sets are all different. We also show that the class of sets of small
generalized Kolmogorov space complexity is exactly the class of sets that are L-isomorphic to tally
languages.

Key words. sparse sets, logspace, L-isomorphisms, Kolmogorov complexity, computational
complexity, ranking, regular languages, context-free languages

AMS subject classifications. 68Q15, 68Q30, 68Q05, 68Q68, 03D05, 03D15, 03D30

PII. S0097539796300441

1. Introduction. What is an easy set? Typically, complexity theorists view
easy sets as those with easy membership tests. An even stronger requirement might
be that there is an easy algorithm to print all the elements of a given length. These
“printable” sets are easy enough that we can efficiently retrieve all of the information
we might need about them.

Hartmanis and Yesha first defined P-printable sets in 1984 [HY84]. A set A is
P-printable if there is a polynomial-time algorithm that on input 1n outputs all of
the elements of A of length n. Any P-printable set must lie in P and be sparse; i.e.,
the number of strings of each length is bounded by a fixed polynomial of that length.
Allender and Rubinstein [AR88] give an in-depth analysis of the complexity of the
P-printable sets.

Once P-printability has been defined, it is natural to consider the analogous notion
of logspace-printability. Since it is not known whether or not L = P, an obvious ques-
tion to ask is: do the L-printable sets behave differently than the P-printable sets? In
this paper, we are able to answer this question in the affirmative, at least under plausi-
ble complexity-theoretic assumptions. Jenner and Kirsig [JK89] define L-printability
as the logspace computable version of P-printability. Because L-printability implies
P-printability, every L-printable set must be sparse and lie in L. In this paper we give

∗Received by the editors February 12, 1996; accepted for publication (in revised form) November
15, 1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/30044.html
†Department of Computer Science, University of Chicago, Chicago, IL 60637. The work of this

author was supported in part by NSF grant CCR-9253582.
‡Department of Computer Science, University of Kentucky, Lexington, KY 40506-0046. The

work of these authors was supported in part by NSF grant CCR-9315354. The work of the third
author was also supported in part by a University of Kentucky Presidential Fellowship.
§DIMACS Center, Rutgers University, Piscataway, NJ 08855. The work of this author was

supported by NSF cooperative agreement CCR-9119999 and a grant from the New Jersey Commission
on Science and Technology.

137

138 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

the first in-depth analysis of the complexity of L-printable sets. (Jenner and Kirsig
focused only one chapter on printability, and most of their printability results concern
NL-printable sets.)

Whenever a new class of sets is analyzed, it is natural to wonder about the
structure of those sets. Hence, we examine the regular and context-free L-printable
sets. Using characterizations of the sparse regular and context-free languages, we
show in section 4 that every sparse regular or context-free language is L-printable.
(Although the regular sets are a special case of the context-free sets, we include the
results for the regular languages because our characterization of the sparse regular
languages is simple and intuitive.)

We might expect many of the properties of P-printable sets to have logspace
analogues, and, in fact, this is the case. In section 5 we show that L-printable sets
(like their polynomial-time counterparts) are closely related to tally sets in L and to
sets in L with low generalized space-bounded Kolmogorov complexity.

A set is said to have small generalized Kolmogorov complexity if all of its strings
are highly compressible and easily restorable. Generalized time-bounded Kolmogorov
complexity and generalized space-bounded Kolmogorov complexity are introduced in
[Har83] and [Sip83]. Several researchers [Rub86, BB86, HH88] show that P-printable
sets are exactly the sets in P with small generalized time-bounded Kolmogorov com-
plexity. [AR88] show that a set has small generalized time-bounded Kolmogorov
complexity if and only if it is P-isomorphic to a tally set. Using similar techniques,
we show in section 5 that the L-printable sets are exactly the sets in L with small gen-
eralized space-bounded Kolmogorov complexity. We also prove that a set has small
generalized space-bounded Kolmogorov complexity if and only if it is L-isomorphic to
a tally set.

In section 6, we note that sets that can be ranked in logspace (i.e., given a string
x, a logspace algorithm can determine the number of elements in the set ≤ x) seem
different from the L-printable sets. For sparse sets, P-rankability is equivalent to
P-printability. We show a somewhat surprising result in section 6, namely, that the
sparse L-rankable sets and the L-printable sets are the same if and only if there are
no tally sets in P− L if and only if LinearSPACE = E.

Are all sparse sets in L either L-printable or L-rankable? Allender and Rubin-
stein [AR88] show that every sparse set in P is P-printable if and only if there are no
sparse sets in FewP − P. In section 6, we similarly show a stronger collapse: every
sparse set in L is L-printable if and only if every sparse set in L is L-rankable if and
only if there are no sparse sets in FewP− L if and only if LinearSPACE = FewE.

Unlike L-printable sets, L-rankable sets may have exponential density. Blum
(see [GS91]) shows that every set in P is P-rankable if and only if every #P function
is computable in polynomial time. In section 6, we also show that every set in L is
L-rankable if and only if every #P function is computable in logarithmic space.

2. Definitions. We assume a basic familiarity with Turing machines and Tur-
ing machine complexity. For more information on complexity theory, we suggest
either [BDG88] or [Pap94]. We also assume a familiarity with regular languages and
expressions and context-free languages as found in [Mar91]. We denote the character-
istic function of A by χA. We use the standard lexicographic ordering on strings and
let |w| be the length of the string w. (Recall that w ≤lex v iff |w| < |v| or |w| = |v|
and, if i is the position of the leftmost bit where w and v differ, wi < vi.) The alpha-
bet Σ = {0, 1}, and all strings are elements of Σ∗. We denote the complement of A
by A.

L-PRINTABLE SETS 139

The class P is deterministic polynomial time, and L is deterministic logarithmic
space; remember that in calculating space complexity, the machine is assumed to have
separate tapes for input, computation, and output. The space restriction applies only
to the work tape. It is known that L ⊆ P, but it is not known whether the two classes
are equal. The class E is deterministic time 2O(n), and LinearSPACE is deterministic
space O(n).

Definition 2.1. A set A is in the class PP if there is a polynomial-time non-
deterministic Turing machine that, on input x, accepts with more than half its com-
putations if and only if x ∈ A. A function f is in #P if there is a polynomial-time
nondeterministic Turing machine M such that for all x, f(x) is the number of ac-
cepting computations of M(x).

Allender[All86] defined the class FewP. FewE is defined analogously.

Definition 2.2 (see [All86]). A set A is in the class FewP if there is a polynomial-
time nondeterministic Turing machine M and a polynomial p such that on all inputs
x, M accepts x on at most p(|x|) paths. A set A is in the class FewE if there is an
exponential-time nondeterministic Turing machine M and a constant c such that on
all inputs x, M accepts x on at most 2cn paths. (Note that this is small compared
to the double exponential number of paths of an exponential-time nondeterministic
Turing machine.)

Definition 2.3. A set S is sparse if there is some polynomial p(n) such that for
all n, the number of strings in S of length n is bounded by p(n) (i.e., |S=n| ≤ p(n)).

A set T over alphabet Σ is a tally set if T ⊆ {σ}∗, for some character σ ∈ Σ.

The work here describes certain enumeration properties of sparse sets in L. There
are two notions of enumeration that are considered: rankability and printability.

Definition 2.4. If C is a complexity class, then a set A is C-printable if and
only if there is a function computable in C that, on any input of length n, outputs all
the strings of length n in A.

Note that P-printable sets are necessarily in P and are sparse, since all of the
strings of length n must be printed in time polynomial in n. Since every logspace
computable function is also computable in polynomial time, L-printable sets are also
P-printable, and thus are also sparse.

Definition 2.5. If C is a complexity class, then a set, A, is C-rankable if and
only if there is a function rA computable in C such that rA(x) = |{y ≤lex x : y ∈ A}|.
(In other words, rA(x) gives the lexicographic rank of x in A.) The function rA is
called the ranking function for A.

Note that P-rankable sets are necessarily in P but are not necessarily sparse.
Furthermore, a set is P-rankable if and only if its complement is P-rankable. Finally,
note that any P-printable set is P-rankable.

Definition 2.6. If C is a complexity class, then two sets, A and B, are C-
isomorphic (A ∼=C B) if there are total functions f and g computable in C that are
both one–one and onto, such that f(g(x)) = x and g(f(y)) = y, f is a reduction from
A to B, and g is a reduction from B to A.

In order for two sets to be P-isomorphic, their density functions must be close to
each other: if one set is sparse and the other is not, then any one–one reduction from
the sparse set to the dense set must have superpolynomial growth rate. By the same
argument, if one has a superpolynomial gap, the other must have a similar gap.

A lexicographic (or order-preserving) isomorphism from A to B is, informally, a
bijection that maps the ith element of A to the ith element of B and maps the ith
element of A to the ith element of B. Note that in the definition of similar densities,

140 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

the isomorphisms need not be computable in any particular complexity class. This
merely provides the necessary condition on densities in order for the two sets to be
P-isomorphic or L-isomorphic.

Definition 2.7. Two sets, A and B, have similar densities if the lexicographic
isomorphisms from A to B and from B to A are polynomial-size bounded.

The notion of printability, or of ranking on sparse sets, can be considered a form of
compression. Another approach to compression is found in the study of Kolmogorov
complexity; a string is said to have “low information content” if it has low Kolmogorov
complexity. We are interested in the space-bounded Kolmogorov complexity class
defined by Hartmanis [Har83].

Definition 2.8. Let Mv be a Turing machine, and let f and s be functions on
the natural numbers. Then we define

KSv[f(n), s(n)] = {w : |w| = n and ∃y(|y| ≤ f(n) and Mv(y) = w

and Mv uses s(n) space)}.
Following the notation of [AR88], we refer to y as the compressed string, f(n) as
the compression, and s(n) as the restoration space. Hartmanis [Har83] shows that
there exists a universal machine Mu such that for all v, there exists a constant c such
that KSv[f(n), s(n)] ⊆ KSu[f(n) + c, cs(n) + c]. We will drop the subscript and let
KS[f(n), s(n)] = KSu[f(n), s(n)].

3. Basic results. We begin by formalizing some observations from the previous
section.

Observation 3.1. If A is L-printable, then A has polynomially bounded density,
i.e., A is sparse.

This follows immediately from the fact that logspace computable functions are P-
time computable (i.e., L-printability implies P-printability), and from the observations
on P-printable sets.

Proposition 3.2 (see [JK89]). If A is L-printable, then A ∈ L.
Proof. To decide x ∈ A, simulate the L-printing function for A with input 1|x|.

As each y ∈ A is “printed,” compare it, bit by bit, with x. If y = x, accept. Because
the comparisons can be done using O(1) space, and the L-printing function takes
O(log |x|) space, this is a logspace procedure.

Proposition 3.3. If A is L-rankable, then A ∈ L.
Proof. Note that the function x − 1 (the lexicographic predecessor of x) can be

computed (though not written) in space logarithmic in |x|. Since logspace computable
functions are closed under composition, rA(x − 1) can be computed in logspace, as
can rA(x)− rA(x− 1) = χA(x).

Proposition 3.4. If A is L-printable, then A is L-rankable.
Proof. To compute the rank of x, we print the strings of A up to |x| and count the

ones that are lexicographically smaller than x. Since A is sparse, by Observation 3.1,
we can store this counter in logspace.

We can now prove the following, first shown by [JK89] with a different proof.
Proposition 3.5 (see [JK89]). If A is L-printable, then A is L-printable in

lexicographically increasing order.
Proof. To prove this, we use a variation on selection sort. Suppose the logspace

machine M L-prints A. Then we can construct another machine, N , to L-print A in
lexicographically increasing order. Note that it is possible to store an instantaneous
description of a logspace machine, i.e., the position of the input head, the state, the
contents of the worktape, and the character just output, in O(log |x|) space.

L-PRINTABLE SETS 141

The basic idea is that we store, during the computation, enough information
to produce three strings: the most recently printed string (in the lexicographically
ordered printing), the current candidate for the next string to be printed, and the
current contender. We can certainly store three IDs for M in logspace. Each ID
describes the state of M immediately prior to printing the desired string.

In addition to storing the IDs, we must simulate M on these three computations
in parallel, so that we can compare the resulting strings bit by bit. If the contender
string is greater than the last string output (so it has not already been output) and
less than the candidate, it becomes the new candidate. Otherwise, the final ID of
the computation becomes the new contender. These simulated computations do not
produce output for N ; when the next string is found for N to print, its initial ID is
available, and the simulation is repeated, with output.

Using the same technique as in the previous proof, one can easily show the fol-
lowing.

Proposition 3.6. If A is L-printable, and A ∼=log B, then B is L-printable as
well.

4. L-printable sets. We begin this section with a very simple example of a class
of L-printable sets.

Proposition 4.1 (see [JK89]). The tally sets in L are L-printable.
Proof. On input of length n, decide whether 1n ∈ A. If so, print it.
One may ask: are all of the L-printable sets as trivial as Proposition 4.1? We

demonstrate in the following sections that every regular language or context-free lan-
guage that is sparse is also L-printable (see Theorem 4.8 and Corollary 4.14). We also
give an L-printable set that is neither regular nor context-free (see Proposition 4.15).

4.1. Sparse regular languages. We show that the sparse regular languages
are L-printable. In order to do so, we give some preliminary results about regular
expressions.

Definition 4.2 (see [BEGO71]). Let r be a regular expression. We say r is
unambiguous if every string has at most one derivation from r.

Theorem 4.3 (see [BEGO71]). For every regular language L, there exists an
unambiguous regular expression r such that L(r) = L.

Proof (sketch). Represent L as the union of disjoint languages whose determin-
istic finite automatons (DFAs) have a unique final state. Using the standard union
construction of a nondeterministic finite automaton (NFA) from a DFA, we get an
NFA with the property that each string has a unique accepting path. Now, using
state elimination to construct a regular expression from this NFA, the unique path
for each string becomes a unique derivation from the regular expression.

We should note that even though removal of ambiguity from a regular expression
is, in general, PSPACE-complete [SH85], this does not concern us. Theorem 4.3
guarantees the existence of an unambiguous regular expression, corresponding to every
regular language, that is sufficient for our needs.

We now define a restricted form of regular expression that will generate precisely
the sparse regular languages. (Note that a similar, although more involved, character-
ization was given in [SSYZ92]. They give characterizations for a variety of densities,
whereas we are only concerned with sparse sets.)

Definition 4.4. We define a static regular expression (SRE) on an alphabet Σ
inductively, as follows.

1. The empty expression is an SRE, and defines ∅, the empty set.
2. If x ∈ Σ or x = λ (the empty string), then x is an SRE.

142 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

3. If s and t are SREs, then st, the concatenation of s and t, is an SRE.
4. If s and t are SREs, then s+ t, the union of s and t, is an SRE.
5. If s is an SRE, then s∗ is an SRE if and only if:

a) s does not contain a union of two SREs and
b) s does not contain any use of the ∗ operator.

Note the restriction of the ∗ operator in the above definition. That is, ∗ can only
be applied to a string. This is the only difference between SREs and standard regular
expressions.

We can alternatively define an SRE as a regular expression that is the sum of
terms, each of which is a concatenation of letters and starred strings.

Theorem 4.5. Let R be an unambiguous regular expression. Then L(R) is sparse
if and only if R is static.

Proof. We first prove two lemmas about “forbidden” subexpressions.
Lemma 4.6. Let α, β, S be nonempty regular expressions such that S = (α+ β)∗

and S is unambiguous. Then there is a constant k > 0 such that, for infinitely many
n, L(S) contains 2

n
k strings of length n.

Proof. Let u, v ∈ Σ∗ such that u ∈ L(α) and v ∈ L(β). Let k = |u| · |v|. Because
S is unambiguous, there must be at least two strings of length k in L(S), namely, u|v|

and v|u|. So, for any length n such that n = ik, i ≥ 1, there are at least 2i = 2i·
k
k = 2

n
k

strings of length n in L(S).
Lemma 4.7. Let α, β, S be nonempty regular expressions such that S is unam-

biguous, where S is either of the form (α∗β)∗ or of the form (αβ∗)∗. Then, there is
a constant k such that, for infinitely many n, L(S) contains 2

n
k strings of length n.

Proof. Let u, v ∈ Σ∗ such that u ∈ L(α) and v ∈ L(β). Suppose S = (α∗β)∗. Let
k = |u| · |v|+ |v|. If S is unambiguous, there are at least two distinct strings of length
k in L(S), namely, u|v|v and v|u|+1. So, for any length n such that n = ik, i ≥ 1,
there are at least 2i = 2

n
k strings of length n in L(S).

The proof is very similar if S = (αβ∗)∗ is unambiguous.
It is clear that unambiguity is necessary for both lemmas. For example, the

expression (a+ a)∗ is not static, but L((a+ a)∗) = L(a∗), which is sparse.
Note that if R is the empty expression, the theorem is true, since R is static, and

L(R) = ∅, which is certainly sparse. So, for the rest of the proof, we will assume that
R is nonempty.

To show one direction of Theorem 4.5, suppose R is not static. Then it contains
a subexpression that is either of the form (γ0(α+β)γ1)∗ or of the form (γ0α

∗γ1)∗. In
the first case, by a small modification to the proof of Lemma 4.6, L(R) is not sparse.
In the second case, by a similar modification to the proof of Lemma 4.7, L(R) cannot
be sparse.

Now, suppose R is static. If R = x, x ∈ Σ, L(R) contains only the string x. If
R = r∗, where r is either a string of characters or a single character, L(R) can have
at most one string of any length.

Suppose R = r + s, where r and s are SREs. Let pr(n) and ps(n) bound the
number of strings in L(r) and L(s), respectively. Then there are at most pr(n)+ps(n)
strings of length n.

Finally, suppose R = rs, where r and s are SREs. Let pr(n) and ps(n) bound
the number of strings in L(r) and L(s), respectively. Then, the number of strings of
length n is:

q(n) ≤
n∑
i=0

pr(i) · ps(n− i).

L-PRINTABLE SETS 143

The degree of q is bounded by 1 + degree(pr(n)) + degree(ps(n)). By induction
on the complexity of R, L(R) is sparse.

Note that the second half of the proof does not use unambiguity. Hence, any
static regular expression generates a sparse regular language.

Theorem 4.8. Let R be an SRE. Then L(R) is L-printable.
Proof. Basically, we divide R into terms that are either starred expressions or

nonstarred expressions. For example, we would divide 0(1 + 0)10(11)∗00(0 + 11) into
three parts: 0(1 + 0)10, (11)∗, and 00(0 + 11). Then, we internally L-print each
term independently, and check to see if the strings generated have the correct length.
In our example, to print strings of length 9, we might generate 0110, 11, and 0011,
respectively, and check that the combined string is in fact 9 characters long. (In this
case, the string is too long and is not printed.)

Let k be the number of stars that appear in R. Partition R into at most 2k + 1
subexpressions, k with stars, and the others containing no stars.

The machine to L-print L(R) has two types of counters. For each starred subex-
pression, the machine counts how many times that subexpression has been used. For
a string of length n, no starred subexpression can be used more than n times. Each
counter for a starred subexpression only needs to count up to n.

Each nonstarred subexpression generates only a constant number of strings. Thus,
up to k + 1 additional counters, each with a constant bound, are needed. (Note that
the production may intermix the two types of counters, for instance, if (x∗ + y∗)
occurs.)

The machine uses two passes for each potential string. First, the machine gen-
erates a current string, counting its length. If the string is the correct length, it
regenerates the string and prints it out. Otherwise, it increments the set of counters
and continues. In this way, all strings of lengths ≤ n are generated, and all strings of
length n are printed.

Lastly, we need to argue that this procedure can be done by a logspace machine.
Each of the at most 2k + 1 counters must count up to n (for n sufficiently large, say,
larger than |R|). Thus, the counting can be done in logn space. In addition, the
actual production of a string requires an additional counter, to store a loop variable.
The rest of the computation can be handled in O(1) space, using the states of the
machine. Thus, L(R) is L-printable.

Note that this L-printing algorithm may generate some strings in L(R) more
than once. To get a nonredundant L-printer, simply modify the program to output
the strings in lexicographic order, as in Proposition 3.5, or use an unambiguous SRE
for L(R).

Theorem 4.8 does not characterize the L-printable sets, as we see below.
Proposition 4.9. There exists a set S such that S is L-printable and not regu-

lar.
Proof. The language S = {0k1k : k ∈ N} is L-printable (for any n, we print out

0
n
2 1

n
2 only if n is even), but not regular.

4.2. Sparse context-free languages. Using the theory of bounded context-
free languages we can also show that every sparse context-free language is L-printable.

Definition 4.10. A set A is bounded if there exist strings w1, . . . , wk such that

A ⊆ (w1)∗ · · · (wk)∗.

144 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

Note the similarity between bounded languages and languages generated by SREs.
Note also that every bounded language is sparse.

Ibarra and Ravikumar [IR86] prove the following.
Theorem 4.11 (see [IR86]). If A is a context-free language then A is sparse if

and only if A is bounded.
Ginsburg [Gin66, p. 158] gives the following characterization of bounded context-

free languages.
Theorem 4.12 (see [Gin66]). The class of bounded context-free languages is the

smallest class consisting of the finite sets and fulfilling the following properties.
1. If A and B are bounded context-free languages then A ∪B is also a bounded

context-free language.
2. If A and B are bounded context-free languages then AB = {xy | x ∈ A and

y ∈ B} is also a bounded context-free language.
3. If A is a bounded context-free language and x and y are fixed strings then the

following set is also a bounded context-free language:

{xnayn : a ∈ A and n ∈ N}.

Corollary 4.13. Every bounded context-free language is L-printable.
Proof. Every finite set is L-printable. The L-printable sets are closed under the

three properties in Theorem 4.12.
Corollary 4.14. Every sparse context-free language is L-printable.
This completely characterizes the L-printable context-free languages. However,

the sparse context-free languages do not characterize the L-printable languages.
Proposition 4.15. There exists an L-printable set S such that S is not context-

free.
Proof. The language S = {0n1n0n : n ∈ N} is L-printable, but it is not context-

free.

5. L-isomorphisms. It is easy to show that two P-printable sets, or P-rankable
sets, of similar densities are P-isomorphic. Since the usual proof relies on binary
search, it does not immediately extend to L-rankable sets. However, we are able to
exploit the sparseness of L-printable sets to show the following.

Theorem 5.1. If A and B are L-printable and have similar densities, then A
and B are L-isomorphic (i.e., A ∼=log B).

Proof. For each x, define yx to be the image of x in the lexicographic isomorphism
from A to B. Since A and B are L-printable, they are both sparse. Let p(n) be a
strictly increasing polynomial that bounds the densities of both sets. If x /∈ A, then
x is “close” to yx in the sense that there are at most p(|x|) strings between them in
the lexicographic ordering. (Recall Definition 2.7.) In fact, for all x, |yx| ≤ p(|x|+ 1).

Let rA(x) be the rank of x in A. If x /∈ A, then the rank of x in A is x− rA(x).
Furthermore, x − rA(x) = yx − rB(yx), and yx is the unique element of B for which
this holds. Note that both rA(x) and rB(yx) can be written in space O(log |x|). Thus,
to compute yx, we need to compute x − rA(x) + rB(yx). We do so by maintaining
a variable d that is initialized to rA(x). Counter c is initialized to 0. The following
loop is iterated until c reaches p(|x|+ 1):

1. L-print (in lexicographic order) the elements of B of length c; for each string
that is lexicographically smaller than (x− d), decrement d;

2. increment c.
Output x− d.

L-PRINTABLE SETS 145

Note that, if d is written on the work tape, each bit of x − d can be computed
in logspace as needed, and the output of the L-printing function can be compared to
x− d in a bit-by-bit manner.

If x ∈ A, since the L-printing function outputs strings in lexicographic order,
computing yx is easy: compute rA(x), then “L-print” B internally, actually outputting
the rA(x)th string.

Without loss of generality, we can assume that the simulated L-printer for B
prints B in lexicographic order. Thus, as soon as the (rA(x) − 1)st element of B is
printed internally, the simulation switches to output mode.

The following is an overview of the logspace algorithm computing the desired
isomorphism.

1. Compute A(x).
2. Compute rA(x), and write it on a work tape.
3. If x ∈ A, find the rA(x)th element of B, and output it.
4. If x /∈ A, find the unique string yx /∈ B such that x − rA(x) = yx − rB(yx),

and output yx.

Using this theorem, we can now characterize the L-printable sets in terms of
isomorphisms to tally sets, and in terms of sets of low Kolmogorov space complexity.

Theorem 5.2. The following are equivalent:

1. S is L-printable.
2. S is L-isomorphic to some tally set in L.
3. There exists a constant k such that S ⊆ KS[k log n, k log n] and S ∈ L.

Although it is not known whether or not every sparse L-rankable set is L-isomor-
phic to a tally set (see Theorem 6.1), we can prove the following lemma, that will be
of use in the proof of Theorem 5.2.

Lemma 5.3. Let A be sparse and L-rankable. Then there exists a tally set T ∈ L
such that A and T have similar density.

Proof. Let A≤n denote the strings of length at most n in A. Let p(n) be an
everywhere positive monotonic increasing polynomial such that |A≤n| ≤ p(n) for all
n, and such that p(n)− p(n− 1) is greater than the number of strings of length n in
A. Let r(x) be the ranking function of A. We define the following tally set:

T = {1p(|x|−1)+r(x)−r(1|x|−1) : x ∈ A}.

To show that T ∈ L, notice that of the tally strings 1i, p(n−1) < i ≤ p(n), 1i ∈ T
if and only if p(n−1) < i ≤ p(n−1)+r(1i)−r(1i−1). So, to decide T (1m), we first find
the largest n such that p(n − 1) < m ≤ p(n). (Note that n can be written in binary
in space O(logm).) Then compute d1 = m− p(n− 1). This difference is bounded by
p(n), and thus can be written in logspace. Finally, compute d2 = r(1n)− r(1n−1) and
compare to d1. Accept if and only if d1 ≤ d2.

Finally, we show that T and A have similar density. Let f : A → T be the
lexicographic isomorphism between T and A. Note that f maps strings of length n to
strings of length at most p(n), so f is polynomially bounded. Note that p is always
positive, which implies that f is length-increasing. So, f−1 must also be polynomially
bounded. Thus, T and A have similar density.

The following proof of Theorem 5.2 is very similar to the proof of the analogous
theorem in [AR88].

Proof. [1⇒ 2] Let S be L-printable. Then it is sparse and L-rankable. Let T be
the tally set guaranteed by Lemma 5.3. By Proposition 4.1, T is L-printable. Thus,

146 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

T and S are L-printable, and T and S have similar density. So, by Theorem 5.1,
S ∼=log T .

[2 ⇒ 3] Let S be L-isomorphic to a tally set T , and let f be the L-isomorphism
from S to T . Let x ∈ S be a string of length n. Let f(x) = 0r. Since f is logspace
computable, there exists a constant c such that r ≤ nc, i.e., |r| ≤ c log n. In order to
recover x from r, we only have to compute f−1(0r). Computing 0r given r requires
log n space for one counter. Further, there exists a constant l such that computing
f−1(0r) requires at most lc log n space, since r ≤ nc. So, the total space needed to
compute x given r is less than or equal to log n+ lc log n ≤ k log n for some k. Hence,
S ⊆ KS[k log n, k log n]. If T ∈ L, then S ∈ L, since S ∼=log T .

[3⇒ 1] Assume S ⊆ KS[k log n, k log n] for some k, and S ∈ L. On input 0n, we
simulate Mu for each string of length k log n. For a given string x, |x| = k log n, we
first simulate Mu(x) and check whether it completes in space k log n. If it does, we
recompute Mu(x), this time checking whether the output is of length n and in S. If it
is, we recompute Mu(x) and print out the result. The entire computation only needs
O(log n) space, so S is L-printable.

It was shown in [AR88] that a set has small generalized Kolmogorov complexity
if and only if it is P-isomorphic to a tally set. (Note: this was an improvement
of the result in [BB86], which showed that a set has small generalized Kolmogorov
complexity if and only if it is “semi-isomorphic” to a tally set.) Using a similar
argument and Theorem 5.2 we can show an analogous result for sets with small
generalized Kolmogorov space complexity. First, we prove the following result.

Proposition 5.4. For all Mv and k, KSv[k log n, k log n] is L-printable.

Proof. To L-print for length n, simulate Mv on each string of length less than or
equal to k log n and output every string of length n produced.

Corollary 5.5. There exists a k such that A ⊆ KS[k log n, k log n] if and only
if A is L-isomorphic to a tally set.

Proof. Suppose A is L-isomorphic to a tally set. Then, by the argument given in
the proof of [2⇒ 3] in Theorem 5.2, A ⊆ KS[k log n, k log n].

Now, suppose A ⊆ KS[k log n, k log n]. By Proposition 5.4 and Theorem 5.2,
KS[k log n, k log n] is L-isomorphic to a tally set in L via some L-isomorphism f . It
is clear that A is L-isomorphic to f(A). Since f(A) is a subset of a tally set, f(A)
must also be a tally set.

6. Printability, rankability, and decision. In this section we examine the
relationship among L-printable sets, L-rankable sets, and L-decidable sets. We show
that any collapse of these classes, even for sparse sets, is equivalent to some unlikely
complexity class collapse.

Theorem 6.1. The following are equivalent:

1. Every sparse L-rankable set is L-printable.
2. There are no tally sets in P− L.
3. E = LinearSPACE.

Proof. [2 ⇔ 3] This equivalence follows from techniques similar to those of
Book [Boo74].

[2⇒ 1] Suppose A is a sparse L-rankable set. Note that A ∈ L.

Let

T = {1〈i,j〉 : The ith bit of the jth string in A is 1},

L-PRINTABLE SETS 147

where

〈i, j〉 =
(i+ j)(i+ j + 1)

2
+ i.

Note that 〈i, j〉 can be computed in space linear in |i| + |j|. Since A is sparse, i and
j are bounded by a polynomial in the length of the jth string. Hence, 〈i, j〉 can be
computed using logarithmic space with respect to the length of the jth string.

Given 〈i, j〉, we can determine i and j in polynomial time, and we can find the
jth string of A by using binary search and the ranking function of A. Hence, T ∈ P.
So, by assumption, T ∈ L.

Next we give a method for printing A in logspace. Given a length n, we compute
(and store) the ranks of 0n and 1n in A. Let rstart and rend be the ranks of 0n and
1n, respectively. If 0n 6∈ A, the string with rank rstart has length less than n. First,
we check to see if 0n ∈ A, and if so, print it. Then, for each j, rstart < j ≤ rend,
we output the jth string by computing and printing T (1〈i,j〉) for each bit i. This
procedure prints the strings of A of length n.

Note that since A is sparse, we can store rstart and rend in O(log n) space. Since
i ≤ n, we can also store and increment the current value of i in logn space.

[1 ⇒ 2] Let T ∈ P be a tally set. Since the monotone circuit value problem
is P-complete (see [GHR95]), there exists a logspace computable function f and a
nondecreasing polynomial p such that f(n) produces a circuit Cn with the following
properties.

1. Cn is monotone (i.e., Cn uses only AND and OR gates).
2. Cn has p(n) gates.
3. The only inputs to Cn are 0 and 1.
4. Cn outputs 1 if and only if 1n is in T .

We can assume that the reduction orders the gates of Cn so that the value of gate
gi depends only on the constants 0 and 1 and the values of gates gj for j < i [GHR95].
Let xn be the string of length p(n) such that the ith bit of xn is the value of gate gi.

Let A = {xn : n ∈ N}. Then A contains exactly one string of length p(n) for all
n and no strings of any other lengths.

Claim 6.1.1. The set A is L-rankable.
Proof. To prove this claim, let w be any string. In logspace, we can find the

greatest n such that p(n) ≤ |w|. If p(n) 6= |w| then w 6∈ A, and the rank of w is n.
Suppose |w| = p(n). Since xn is the only string of length p(n) in A, the rank of w is
n− 1 if w < xn, and n otherwise.

Consider the ith bit of w as a potential value for gate gi in Cn. Let j be the
smallest value such that wj is not the value of gj . In order to find the value of a gate
gi, we first use f(n) (our original reduction) to determine the inputs to gi. By the
time we consider the ith bit of w, we know that w is a correct encoding of all of the
gates gk such that k < i, so we can use those bits of w as the values for the gates.
Thus, we can determine the value of gi and compare it to the ith bit of w. If they
differ, we are done. If they are the same, we continue with the next gate. We can
count up to p(n) in logspace, so this whole process needs only O(log p(n)) space to
compute.

Once j is found, there are three cases to consider.
1. If j doesn’t exist then w = xn.
2. If the jth bit of w is 0 then w < xn.
3. If the jth bit of w is 1 then w > xn.

148 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

These follow since the ith bit of xn matches the ith bit of w for all i < j.

Thus A is L-rankable and, by assumption, L-printable.

So, to determine if 1n is in T , L-print A for length p(n) to get xn. The bit of xn
that encodes the output gate of Cn is 1 if and only if 1n ∈ T . Since every step of this
algorithm is computable in logspace, T ∈ L.

This completes the proof of Theorem 6.1.

Corollary 6.2. There exist two non-L-isomorphic L-rankable sets of the same
density, unless there are no tally sets in P− L.

Proof. Consider the sets T and A from the second part of the proof of Theorem 6.1.
The set B = {1p(n) : n ∈ N} has the same density as A. By Proposition 4.1, B is
L-printable. If A and B were L-isomorphic then by Proposition 3.6, A would also be
L-printable and T would be in L.

One may wonder whether every sparse set in L is L-printable or at least L-
rankable. We show that either case would lead to the unlikely collapse of FewP and
L. Recall that FewP consists of the languages in NP accepted by nondeterministic
polynomial-time Turing machines with at most a polynomial number of accepting
paths.

Fix a nondeterministic Turing machine M and an input x. Let p specify an
accepting path of M(x) represented as a list of configurations of each computation
step along that path. Note that in logarithmic space we can verify whether p is such
an accepting computation since if one configuration follows another only a constant
number of bits of the configuration change.

We can assume without loss of generality that all paths have the same length and
that no accepting path consists of all zeros or all ones.

Define the set PM by

PM = {x#p : p is an accepting path of M on x}.

From the above discussion we have the following proposition that we will use in the
proofs of Theorems 6.6 and 6.7.

Proposition 6.3. For any nondeterministic machine M , PM is in L.

Allender and Rubinstein [AR88] showed the following about P-printable sets.

Theorem 6.4 (see [AR88]). Every sparse set in P is P-printable if and only if
there are no sparse sets in FewP− P.

Allender [All86] also relates this question to inverting functions.

Definition 6.5. A function f is strongly L-invertible on a set S if there exists
a logspace computable function g such that for every x ∈ S, g(x) prints out all of the
strings y such that f(y) = x.

We extend the techniques of Allender [All86] and Allender and Rubinstein [AR88]
to show the following.

Theorem 6.6. The following are equivalent.

1. There are no sparse sets in FewP− L.
2. Every sparse set in L is L-printable.
3. Every sparse set in L is L-rankable.
4. Every L-computable, polynomial-to-one, length-preserving function is strong-

ly L-invertible on {1}∗.
5. FewE = LinearSPACE.

Proof. [1 ⇒ 2] Let A be a sparse set in L. Then A is in P. By (1) we have that
there are no sparse sets in FewP− P. By Theorem 6.4, A is P-printable.

L-PRINTABLE SETS 149

Consider the following set B:

B = {1〈n,i,j,b〉 : the ith bit of the jth element of A of length n is b}.
Since A is P-printable then B is in P. By statement 1 (as B is sparse and in P ⊆
FewP), we have that B is in L. Then A is L-printable by reading the bits off from B.

[2⇒ 3] Follows immediately from Proposition 3.4.
[3 ⇒ 1] Let A be a sparse set in FewP accepted by a nondeterministic machine

M with computation paths of length q(n) for inputs of length n.
Consider the set PM defined as above. Note that PM is sparse since for any length

n, M only accepts a polynomial number of strings with at most a polynomial number
of accepting paths each. Also, by Proposition 6.3, we have PM in L.

By statement 3 we have that PM is L-rankable. We can then determine in loga-
rithmic space whether M(x) accepts (and thus x is in A) by checking whether

rPM (x#0q(|x|)) < rPM (x#1q(|x|)).

[2⇒ 4] Let f be an L-computable, polynomial-to-one, length-preserving function.
Consider S = {y : f(y) ∈ {1}∗}. Since S is in L, S is L-printable.

[4⇒ 2] Let A be a sparse set in L. Define f(x) = 1|x| if x is in A and x otherwise.
If g is a strong L-inverse of f on {1}∗ then g(1n) will print out the strings of length
n of A and 1n. We can then print out the strings of length n in logspace by printing
the strings output by g(1n), except we print 1n only if 1n is in A.

[1⇔ 5] In [RRW94], Rao, Rothe, and Watanabe show that there are no sparse sets
in FewP− P if and only if FewE = E. A straightforward modification of their proofs
is sufficient to show that there are no sparse sets in FewP− L if and only if FewE =
LinearSPACE.

Unlike L-printability, L-rankability does not imply sparseness. One may ask
whether every set computable in logarithmic space may be rankable. We show this
equivalent to the extremely unlikely collapse of PP and L.

Theorem 6.7. The following are equivalent.
1. Every #P function is computable in logarithmic space.
2. L = PP.
3. Every set in L is L-rankable.

Our proof uses ideas from Blum (see [GS91]), who shows that every set in P is
P-rankable if and only if every #P function is computable in polynomial time. Note
that Hemachandra and Rudich [HR90] proved results similar to Blum’s.

Proof. [1⇒ 2] If A is in PP then there is a #P function f such that x is in A if
and only if the high-order bit of f(x) is 1.

[2⇒ 1] Note that L = PP implies that P = PP implies that P = PPP implies that
P = P#P. Thus we have L = P#P and we can compute every bit of a #P function in
logarithmic space.

[1 ⇒ 3] Let A be in L. Consider the nondeterministic polynomial-time machine
M that on input x guesses a y ≤lex x and accepts if y is in A. The number of
accepting paths of M(x) is a #P function equal to rA(x).

[3 ⇒ 1] Let f be a #P function. Let M be a nondeterministic polynomial-time
machine such that f(x) is the number of accepting computations of M(x). Let q(n) be
the polynomial-sized bound on the length of the computation paths of M . Consider
PM as defined above. By Proposition 6.3 we have that PM is in L, so by (3) PM is
L-rankable. We then can compute f(x) in logarithmic space by noticing

f(x) = rPM (x#1q(|x|))− rPM (x#0q(|x|)).

150 L. FORTNOW, J. GOLDSMITH, M. LEVY, AND S. MAHANEY

7. Conclusions. The class of L-printable sets has many properties analogous to
its polynomial-time counterpart. For example, even without the ability to do binary
searching, one can show that two L-printable sets of the same density are isomorphic.
However, some properties do not appear to carry over: it is very unlikely that every
sparse L-rankable set is L-printable.

Despite the strict computational limits on L-printability, this class still has some
bite: every tally set in L, every sparse regular and context-free language, and every
L-computable set of low space-bounded Kolmogorov complexity strings is L-printable.

Acknowledgments. The authors want to thank David Mix Barrington for a
counterexample to a conjecture about sparse regular sets, Alan Selman for suggesting
the tally set characterization of L-printable sets and Corollary 5.5, Chris Lusena for
proofreading, and Amy Levy, John Rogers, and Duke Whang for helpful discussions.
The simple proof sketch of Theorem 4.3 was provided by an anonymous referee. The
last equivalence of Theorem 6.6 was suggested by another anonymous referee. The
authors would like to thank both referees for many helpful suggestions and comments.

REFERENCES

[All86] E. Allender, The complexity of sparse sets in P, in Proc. Conference on Structure
in Complexity Theory, A. Selman, ed., Springer-Verlag, Berlin, New York, 1986,
pp. 1–11.

[AR88] E. Allender and R. Rubinstein, P-printable sets, SIAM J. Comput., 17 (1988),
pp. 1193–1202.

[BB86] J. Balcazar and R. Book, Sets with small generalized Kolmogorov complexity, Acta
Inform., 23 (1986), pp. 679–688.

[BDG88] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, Springer-Verlag,
Berlin, New York, 1988.

[BEGO71] R. Book, S. Even, S. Greibach, and G. Ott, Ambiguity in graphs and expressions,
IEEE Trans. Comput., C-20 (1971), pp. 149–153.

[Boo74] R. Book, Tally languages and complexity classes, Inform. and Control, 26 (1974),
pp. 186–193.

[Gin66] S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill,
New York, 1966.

[GHR95] R. Greenlaw, H. J. Hoover, and W. Ruzzo, Limits to Parallel Computation: P-
Completeness Theory, Oxford University Press, New York, 1995.

[GS91] A. Goldberg and M. Sipser, Compression and ranking, SIAM J. Comput., 20 (1991),
pp. 524–536.

[Har83] J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible com-
putations, in Proc. 24th IEEE Symposium on Foundations of Computer Science,
IEEE, Piscataway, NJ, 1983, pp. 439–445.

[HH88] J. Hartmanis and L. Hemachandra, On sparse oracles separating feasible complexity
classes, Inform. Process. Lett., 28 (1988), pp. 291–295.

[HR90] L. Hemachandra and S. Rudich On the complexity of ranking, J. Comput. System
Sci., 41 (1990), pp. 251–271.

[HY84] J. Hartmanis and Y. Yesha, Computation times of NP sets of different densities,
Theoret. Comput. Sci., 34 (1984), pp. 17–32.

[IR86] O. Ibarra and B. Ravikumar, On sparseness, ambiguity and other decision problems
for acceptors and transducers, in Proc. 3rd Annual Symposium on Theoretical
Aspects of Computer Science, Springer-Verlag, Berlin, New York, 1986, pp. 171–
179.

[JK89] B. Jenner and B. Kirsig, Alternierung und Logarithmischer Platz, Ph.D. Thesis,
Universität Hamburg, Hamburg, Germany, 1989.

[Mar91] J. Martin, Introduction to Languages and the Theory of Computation, McGraw-Hill,
New York, 1991.

[Pap94] C. Papadimitriou, Computational Complexity, Addison-Wesley, New York, 1994.
[RRW94] R. P. N. Rao, J. Rothe, and O. Watanabe, Upward separation for FewP and related

classes, Inform. Process. Lett., 52 (1994), pp. 175–180.

L-PRINTABLE SETS 151

[Rub86] R. Rubinstein, A Note on Sets with Small Generalized Kolmogorov Complexity, Tech-
nical Report TR 86-4, Iowa State University, Ames, IA, March 1986.

[SH85] R.E. Stearns and H.B. Hunt III, On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata, SIAM
J. Comput., 14 (1985), pp. 598-611.

[Sip83] M. Sipser, A complexity theoretic approach to randomness, in Proc. 15th ACM Sym-
posium on Theory of Computing, ACM, New York, 1983, pp. 330–335.

[SSYZ92] J. Shallit, A. Szilard, S. Yu, and K. Zhang, Characterizing regular languages
with polynomial densities, in Proc. 17th International Symposium on Mathemat-
ical Foundations of Computer Science, Springer-Verlag, Berlin, New York, 1992,
pp. 494–503.

THE INVERSE SATISFIABILITY PROBLEM∗

DIMITRIS KAVVADIAS† AND MARTHA SIDERI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 152–163

Abstract. We study the complexity of telling whether a set of bit-vectors represents the set of
all satisfying truth assignments of a Boolean expression of a certain type. We show that the problem
is coNP-complete when the expression is required to be in conjunctive normal form with three literals
per clause (3CNF). We also prove a dichotomy theorem analogous to the classical one by Schaefer,
stating that, unless P=NP, the problem can be solved in polynomial time if and only if the clauses
allowed are all Horn, or all anti-Horn, or all 2CNF, or all equivalent to equations modulo two.

Key words. computational complexity, polynomial-time algorithms, coNP-completeness, Boolean
satisfiability, model

AMS subject classifications. 11Y16, 68Q20, 68Q25, 68T30

PII. S0097539795285114

1. Introduction. Logic deals with logical formulae, and more particularly with
the syntax and the semantics of such formulae, as well as with the interplay between
these two aspects [CK90]. In the domain of Boolean logic, for example, a Boolean
formula φ may come in a variety of syntactic classes—conjunctive normal form (CNF),
its subclasses 3CNF, 2CNF, Horn, etc.— and its semantics is captured by its models
or satisfying truth assignments, that is, the set µ(φ) of all truth assignments that
satisfy the formula (see Figure 1 for an example).

Going back and forth between these two representations of a formula is therefore
of interest. One direction has been studied extensively from the standpoint of com-
putational complexity: going from φ to µ(φ). In particular, telling whether µ(φ) = ∅
is the famous satisfiability problem (SAT), which is known to be NP-complete in its
generality and its special case 3SAT, among others, and polynomial-time solvable in
its special cases Horn, 2SAT, and exclusive-or [Co71, Sc78, Pa94]. All in all, this
direction is a much-studied computational problem. In this paper we study, and in a
certain sense completely settle, the complexity of the inverse problem, that is, going
from µ(φ) back to φ. That is, for all the syntactic classes mentioned above, we iden-
tify the complexity of telling, given a set M of models, whether there is a formula φ
in the class (3SAT, Horn, etc.) such that M = µ(φ). We call this problem inverse
satisfiability.

Besides its fundamental nature, there are many more factors that make inverse
satisfiability a most interesting problem. A major motivation comes from AI (in fact,
what we call here the inverse satisfiability problem is implicit in much of the recent AI
literature [Ca93, DP92, KKS95, KKS93, KPS93]). A set of models such as those in
Figure 1(b) can be seen as a state of knowledge. That is, it may mean that at present,
for all we know, the state of our three-variable world can be in any one of the three
states indicated. In this context, formula φ is some kind of knowledge representation.
In AI there are many sophisticated competing methods for knowledge representation

∗Received by the editors April 24, 1995; accepted for publication (in revised form) November
20, 1996; published electronically June 15, 1998. This work was partially supported by the Esprit
Project ALCOM II and the Greek Ministry of Research (ΠENE∆ program 91E∆648).

http://www.siam.org/journals/sicomp/28-1/28511.html
†Department of Mathematics, University of Patras, Patras, Greece (djk@math.upatras.gr).
‡Department of Computer Science, Athens University of Economics and Business, Athens, Greece

(mss@dias.aueb.gr).

152

THE INVERSE SATISFIABILITY PROBLEM 153

φ = (x ∨ y ∨ z) ∧ (x ∨ y) ∧ (y ∨ z)

(a)

µ(φ) = {011, 010, 100}

(b)

Fig. 1. A Boolean formula in 3CNF (a), and the corresponding set of models (b).

(Boolean logic is perhaps the most primitive; see [GN87, Le86, Mc80, Mo84, Re80,
SK90]), and it is important to understand the expressibility of each. This is a form
of the inverse satisfiability problem.

The inverse satisfiability problem was also proposed in [DP92] as a form of dis-
covering structure in data. For example, establishing that a complex binary relation
is the set of models of a simple formula may indeed uncover the true structure and
nature of the heretofore meaningless table. [DP92] only address this problem in cer-
tain fairly straightforward cases. The problem of learning a formula [AFP92] can be
seen as a generalization of the inverse satisfiability problem.

A recent trend in AI is to approximate complex formulae by simple ones, such as
Horn formulae [SK91, KPS93, GPS94]. Quantifying the quality and computational
feasibility of such approximations also involves understanding the inverse satisfiability
problem.

The basic computational problem we study is this: given a set of models M , is
there a CNF formula φ with at most three literals per clause, such that M = µ(φ)?
We call this problem INVERSE 3SAT. Our first result is that INVERSE 3SAT is
coNP-complete (Theorem 1).

Note. INVERSE 3SAT, as well as all other problems we consider in this paper,
can be solved in polynomial time if the given m× n table M has m = 2Θ(n), that is,
if there are exponentially many models in M . The interesting cases of the problem
are therefore when m = 2o(n).

There are three well-known tractable cases of SAT: 2SAT (all clauses have two
literals), HORNSAT (all clauses are Horn, with at most one positive literal each,
and its symmetric case of anti-Horn formulae, in which all clauses have at most one
negative literal), and XORSAT (the clauses are equations modulo two). Schaefer’s
elegant dichotomy theorem [Sc78] states that, unless P=NP, in a certain sense these
are precisely the only tractable cases of SAT. Interestingly, the inverse problem for
these three cases happens to also be tractable! That is, we can tell in polynomial
time if a set of models is the set of models of a Horn (or anti-Horn) formula, of a
2CNF formula, or of an exclusive-or formula (interestingly, the latter two results were
in fact pointed out by Schaefer himself [Sc78], while the first, left open in [Sc78], is
from [DP92, KPS93]). The question comes to mind: are there other tractable cases of
the inverse problem? Our Theorem 2 answers this in the negative; rather surprisingly,
a strong dichotomy theorem similar to Schaefer’s holds for the inverse satisfiability
problem as well, in that the problem is coNP-complete for all syntactic classes of CNF
formulae except for the cases of Horn (and anti-Horn), 2CNF, and exclusive-or. The
proof of our dichotomy theorem draws from both that of Theorem 1 and Schaefer’s
proof, and in fact strengthens Schaefer’s main expressibility result (Theorem 3.0 in
[Sc78]).

154 DIMITRIS KAVVADIAS AND MARTHA SIDERI

2. Definitions. Most of the nonstandard terminology used in this paper comes
from [Sc78].

Let {x1, . . . , xn} be a set of Boolean variables. A literal is a variable or its
negation. A model is a vector in {0, 1}n, intuitively a truth assignment to the Boolean
variables. We denote by ∨ and ∧ the logical or and and, respectively. We also extend
this notation to bitwise operations between models. If t is a model, we denote by ti
the constant (i.e., 0 or 1) in the ith position of t.

A k-place logical relation is a subset of {0, 1}k (k integer). We use the notation [φ],
where φ is a Boolean formula, to denote the relation defined by φ when the variables
are taken in lexicographic order. Let R be a logical relation. Call R Horn if it is
logically equivalent to a conjunction of clauses, each with at most one positive literal.
We call it anti-Horn if it is equivalent to a conjunction of clauses with at most one
negative literal. We call it 2CNF if it is equivalent to a 2CNF expression. Finally, we
call it affine if it is the solution of a system of equations in the two-element field.

Let S = {R1, . . . , Rm} be a set of Boolean relations. An S-clause (of arity k)
is an expression of the form R(a1, . . . , ak), where R is a k-ary relation in S and the
ai’s are either Boolean literals or constants (0 or 1). Given a truth assignment, we
consider an S-clause to be true if the combination of the constants, if any, and the
values assigned to the variables form a tuple in R. Define an S-formula to be any
conjuction of S-clauses defined by the relations in S.

The generalized satisfiability problem is the problem of deciding whether a given
S-formula is satisfiable. Schaefer’s dichotomy theorem [Sc78] states that the satisfi-
ability of an S-formula can be decided in polynomial time in each of the following
cases: (a) all relations in S are Horn, (b) all relations in S are anti-Horn, (c) all
relations in S are 2CNF, (d) all relations in S are affine. In all other cases the
problem is NP-complete. That is, Schaefer’s result totally characterizes the complex-
ity of the CNF satisfiability problem where in addition, the clauses are allowed to
be arbitrary relations of bounded arity. It is interesting to note that several re-
stricted forms of SAT such as ONE-IN-THREE 3SAT, NOT-ALL-EQUAL 3SAT
etc., all follow as special cases of generalized satisfiability (see [GJ79, Pa94]). To
make this point more clear, notice that the problem ONE-IN-THREE 3SAT can be
considered as a set of four 3-ary relations S = {R1, . . . , R4}. The first relation is
{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} and corresponds to the S-clause R1(x1, x2, x3), the sec-
ond relation is {{0, 0, 0}, {1, 1, 0}, {1, 0, 1}} and corresponds to the S-clauses with one
negated literal, e.g., R2(x1, x2, x3), and so on.

For any Boolean formula φ we denote by µ(φ) its set of models. We say that a
set of models M is a 3CNF set (kCNF in general) if there is a formula φ in 3CNF
(respectively, kCNF) such that M = µ(φ). Notice that for any model set M we can
construct a kCNF formula that has M as its model set, but in general, this may
require extra existentially quantified variables.

Based on the above we define the INVERSE SAT problem for a set of relations
S as follows.

Given a set M ⊆ {0, 1}n, is there a conjunction of S-clauses over n variables that
has M as its set of models?

Our main result states that if the relations fall in each of the four cases above,
the INVERSE SAT problem is also polynomial. Otherwise it is coNP-complete.

Notice that we have excluded S from being part of the instance since we want to
emphasize that INVERSE SAT is actually a collection of infinitely many subproblems.
This means that all relations of S are of constant arity. Otherwise, relations of non-

THE INVERSE SATISFIABILITY PROBLEM 155

constant arity could have exponentially many tuples and the problem becomes trivially
intractable.

In the next section we prove that the INVERSE SAT problem is coNP-complete
for 3CNF formulas. This proof includes the main construction that will be used in
the proof of the main theorem in the last section. This last proof makes use of an
expressibility result which is interesting on its own and partially relies on Schaefer’s
main theorem but with several interesting extensions.

3. coNP-completeness of inverse 3SAT. We begin this section with a tech-
nical definition that will be used throughout the paper.

Definition. Let n be a positive integer and let M ⊆ {0, 1}n be a set of Boolean
vectors. For k > 1, we say that a Boolean vector m ∈ {0, 1}n is k-compatible with M
if for any sequence of k positions 0 ≤ i1 < · · · < ik ≤ n, there exists a vector in M
that agrees with m in these k positions.

The above definition implies that a vector m ∈ {0, 1}n is not k-compatible with a
set of Boolean vectors M if there exists a sequence of k positions in m that does not
agree with any vector of M . The following is a useful characterization of kCNF sets.

Lemma 1. Let M ⊆ {0, 1}n be a set of models. Then the following are equivalent.
(a) M is a kCNF set.
(b) If m ∈ {0, 1}n is k-compatible with M , then m ∈M .
Proof. Let φM be the conjuction of all possible kCNF clauses defined on n vari-

ables and satisfied by all models in M . Notice that φM is the most restricted kCNF
formula (in terms of its model set) which is satisfied by all models in M . Hence if
(a) holds, M = µ(φM). Let m ∈ {0, 1}n and m /∈ M . Then m does not satisfy at
least one clause of φM and concequently disagrees with all models in M in the same k
positions corresponding to the variables in the clause, that is, m is not k-compatible
with M .

Conversely, assume that any model not in M is not k-compatible with M . Then
m /∈ M means m does not satisfy φM : m differs from all members of M in some k
positions, so the k-clause indicating the complement of m in those k positions is in
φM , and m does not satisfy φM . So M = µ(φM) and M is a kCNF set.

The INVERSE 3SAT problem is this: given a set of models M , is it a 3CNF set?
We now state our first complexity result.

Theorem 1. INVERSE 3SAT is coNP-complete.
Proof. Lemma 1 establishes that the problem is in coNP: given a set M of models,

in order to prove that it is not a 3CNF set, it suffices to produce a model m /∈ M
that is 3-compatible with M (obviously, 3-compatibility can be checked in polynomial
time). Alternatively, given M , we immediately have a candidate 3CNF formula φM :
the conjunction of all 3CNF clauses that are satisfied by all models in M . Thus M is
not a 3CNF set iff there is a model not in M that satisfies φM .

To prove coNP-completeness, we shall reduce the following well-known coNP-
complete problem to INVERSE 3SAT: given a 3CNF formula, is it unsatisfiable?
Given a 3CNF formula ψ with n ≥ 4 variables and c clauses, we shall construct a set
of models M such that M is 3CNF iff ψ is unsatisfiable.

The set M will contain k = 8
(
n
3

)−c models, one for each set W of three variables,
and each truth assignment T to these three variables that does not contradict a clause
of ψ (since we may assume that ψ consists of clauses that have exactly three literals
each). Let W be a set of three variables chosen among the variables {x1, . . . , xn} of
formula ψ, and let T : W 7→ {0, 1} be a truth assignment to the variables of W , such
that ψ does not contain a clause not satisfied by T . Consider some total order among

156 DIMITRIS KAVVADIAS AND MARTHA SIDERI

the pairs (W,T), say the lexicographic one. The set M will contain a model mW,T

for each W and T and no other model.
Every boolean vector mW,T is a concatenation mW,T = τTW (x1) · · · τTW (xn) of the

encodings τTW (xi) for each variable xi occuring in the formula ψ. The encoding τTW (x)
of a variable x is a Boolean vector of length k + 2 and is defined as follows:

τTW (x) =

01

k positions︷ ︸︸ ︷
0 · · · 0 0 · · · 0 if x ∈W and T (x) = 1,

10 0 · · · 0 0 · · · 0 if x ∈W and T (x) = 0,
00 0 · · · 0︸ ︷︷ ︸

i−1

1 · · · 1 if x 6∈W,

where (W,T) is the ith pair in the total order mentioned above. Notice that if x ∈W ,
the value of x in T is determined by the first two positions of τTW : the code 01 stands
for the value 1, and the code 10 stands for x being 0. In these two cases we call the
string τTW (x) a value pattern. When x 6∈ W , the code 00 in the first two positions
denotes the absence of x from W , while the rest of the string uniquely determines
the pair (W,T). In this case we call the string τTW (x) a padding pattern. Notice that
by our construction in a vector mW,T = τTW (x1) · · · τTW (xn) there are exactly n − 3
occurences of the unique padding pattern for (W,T), while the remaining three are
value patterns. Hence, the length of each Boolean vector mW,T is n(k+ 2); therefore,
there is no exponential blow-up in the construction of the set M .

The proof of Theorem 1 now rests on the next claim.
Claim. There is a model not in M that is 3-compatible with M if and only if ψ

is satisfiable.
Proof of the claim. For the moment, consider a Boolean vector m = m1 · · ·mn,

where the length of each substring mi equals k + 2. It is obvious that if the model
m is 3-compatible with M , then it is 3-compatible in the positions restricted to one
substring mi = mi1 · · ·mi(k+2). That is, if we take three arbitrary positions of mi,
there is a vector mW,T in M that agrees with mi in these three positions. The 3-
compatibility of mi with M also implies something stronger: that there is a vector
mW,T ∈ M which contains a substring τTW (xi) identical to mi. To see this, first
assume that mi does not have the value 1 in any position j for 3 ≤ j ≤ k + 2. Then
3-compatibility forces mi to have the values 0 and 1 or 1 and 0 in the first and second
positions; i.e., mi is a value pattern. Now, if mi has the values 0 and 1 in positions
j − 1 and j, 3 ≤ j ≤ k + 2, then the values in any triple of positions that includes
positions j−1 and j can only agree with the values in the same positions of a specific
model of M , namely, the one having the padding pattern with 0 in position j − 1
and 1 in position j. Therefore, mi is identical to this padding pattern. In this case,
however, an analogous observation shows that the whole 3-compatible model m is
identical to the model of M that has this pattern. So if m is 3-compatible with M ,
either it is in M or it consists of value patterns only.

Assume now that there exists a model m /∈ M that is 3-compatible with M . As
already proved, this modelm = m1 · · ·mn consists only of value patterns mi. Model m
encodes a satisfying truth assignment to the variables of ψ. For suppose it did conflict
with a clause c of ψ over variables {xi, xj , x`}. Consider the three value patterns
mi,mj ,m` of m in the positions of the variables of c. Since m is 3-compatible with M
and each value pattern contains only one 1, we can conclude that there exists a model
mW,T = τTW (x1) · · · τTW (xn) in M , which encodes a truth assignment T to the set of
variables W = {xi, xj , x`} such that τTW (xi) = mi, τ

T
W (xj) = mj , and τTW (x`) = m`.

THE INVERSE SATISFIABILITY PROBLEM 157

But since by construction T does not contradict a clause of ψ, we couldn’t have
conflicted with a clause of ψ. Therefore, the Boolean vector m = m1 · · ·mn is an
encoding of a satisfying assignment to the variables for formula ψ: string mi is an
encoding of the truth value assigned to the variable xi for each i = 1, . . . , n. Hence,
formula ψ is satisfiable since every clause of ψ is satisfied by the truth assignment
described by vector m.

Conversely, assume that ψ is satisfiable; i.e., there exists a satisfying truth as-
signment s for the variables {x1, . . . , xn}. Construct the model m = m1 · · ·mn as a
concatenation of value patterns, where every string mi is defined as follows:

mi =

 01

k positions︷ ︸︸ ︷
0 · · · 0 if s(xi) = 1,

10 0 · · · 0 if s(xi) = 0.

Obviously, model m is not included in the set M , since every model in M contains a
padding pattern. Suppose that m is not 3-compatible with M . In this case m contains
three positions that do not agree with any model in M . Since m is a concatenation
of value patterns, it must contain three substrings mi,mj ,m` that represent a truth
assignment T for the set of variables W = {xi, xj , x`} such that the pair (W,T) is not
encoded in any model of M . All

(
n
3

)
sets of variables are, however, examined during

the construction of M , and the only truth assignments that are not encoded are those
conflicting with a clause of ψ. Since T does not conflict with any clause—because it
is a restriction of s to three variables—we conclude that the pair (W,T) is encoded
in some model of M . Hence, m is 3-compatible with M . So, if ψ is satisfiable, there
exists a model 3-compatible with M , specifically the model encoding a satisfying truth
assignment.

4. The dichotomy theorem. Our main result is the following generalization
of Theorem 1.

Theorem 2. The INVERSE SAT problem for S is in PTIME in each of the
following cases.

(a) All relations in S are Horn.
(b) All relations in S are anti-Horn.
(c) All relations in S are 2CNF.
(d) All relations in S are affine.

In all other cases, the INVERSE SAT problem for S is coNP-complete.
[Sc78] proves a surprisingly similar dichotomy theorem for SAT: SAT is in PTIME

for all of these four classes, and NP-complete otherwise. Our proof is based on an
interesting extension of Schaefer’s main result, explained below.

Definition. Let S be a set of Boolean relations and let R be another Boolean
relation, of arity r. We say that S faithfully represents R if there are binary Boolean
functions f1, . . . , fs such that there is a conjunction of S-clauses over the variables
x1, . . . , xr+s which is logically equivalent to the formula

R(x1, . . . , xr) ∧
s∧

`=1

(
xr+` ≡ f`(xi` , xj`)

)
,

for some i`, j` < r+ `, ` = 1, . . . , s. That is, S-clauses can express R with the help of
uniquely defined auxiliary variables.

This is a substantial restriction of Schaefer’s notion of “represents,” which allows
arbitrary existentially quantified conjunctions of S-clauses (our definition only allows

158 DIMITRIS KAVVADIAS AND MARTHA SIDERI

quantifiers which are logically equivalent to ∃!x). Hence our main technical result
below extends the main result of [Sc78, Theorem 3.0]. Independently, Creignou and
Hermann [CH96] have defined the concept “quasi-equivalent,” which is the same as
the concept of “faithful representation” defined in this paper.

Theorem 3. If S does not satisfy any of the four conditions of Theorem 2, then
S faithfully represents all Boolean relations.

Proof. Assuming that none of the four conditions are satisfied by S, the proof
proceeds by finding more and more elaborate Boolean relations that are faithfully
represented by S. Notice that, since the notion of faithful representation was defined
as equivalence of two S-formulas, we shall restrict the proof to the construction of
appropriate S-clauses—faithful representation of the corresponding relations will then
follow immediately. In this process the allowed operations must preserve the unique-
ness of the values of the auxiliary variables and produce a formula which is also in
conjuctive form. Therefore, if C and C ′ are S-formulas, the allowed operations are:
(a) C ∧ C ′, i.e., conjuction of two S-formulas, (b) C[a/x], i.e., substitution of a vari-
able symbol by another symbol, (c) C[0/x] and C[1/x], i.e., substitution of a variable
by a constant (this is actually a selection of the tuples that agree in the specified
constant), and (d) ∃!xC(x), i.e., existential quantification, where the bound variables
are uniquely defined. Some of the steps are provided by Schaefer’s proof, and some
are new.

Step 1. Expressing [x ≡ y]. This was shown in [Sc78, Lemma 3.2 and Corollary
3.2.1]. The following exposition is somewhat simpler and is based on the fact that a
set M ⊆ {0, 1}n is the model set of a Horn formula iff it is closed under bitwise ∧; see
the Appendix and [KPS93].

Let R be any non-Horn relation of S (say of arity k). The closure property
mentioned above implies that there exist models t and t′ in R such that t ∧ t′ /∈ R.
Based on R we may define the clause R′ = R(a1, a2, . . . , ak): set ai = 0 (resp., 1) to
all positions i where both ti and ti

′ are 0 (resp., 1). Set ai = x to all positions where
ti = 1 and ti

′ = 0, and ai = y to all positions where ti = 0 and ti
′ = 1. It is easy to

see that both x and y actually appear in R′. (If not, then one of t and t′ coincides
with their conjunction.) Now 01 and 10 are models of R′, but 00 is not. Hence R′ is
either (x ≡ y) or (x∨ y). If, in addition, S contains a relation which is not anti-Horn,
then a symmetric argument rules out tuple 11, resulting in a clause R′′ which is either
(x ≡ y) or (x ∨ y). Hence R′ ∧ R′′ is (x ≡ y). Notice that since this is the case we
shall henceforth feel free to use negative literals in our expressions.

Step 2. Expressing [x∨y]. Schaefer shows in Lemma 3.3 that there is an S-clause
involving variables x, y, z whose set of models contains 000, 101, 011, but not 110. The
proof is as follows: it is known (see the Appendix) that an S-clause is affine if and
only if for any three models t0, t1, t2, their exclusive-or t0 ⊕ t1 ⊕ t2 is also a model.
Consider, therefore, an S-clause that is not affine and assume that [x ≡ y] can be
represented. By the observation in Step 1 we may negate the variables of the clause in
the positions where t0 is 1. Now the new S-clause, call it S′, is satisfied by the all-zero
truth assignment and moreover by the assignments t1

′ = t1⊕ t0 and t2
′ = t2⊕ t0, but

not by 0⊕ t1
′⊕ t2

′. Construct a new clause R(a1, a2, . . . , ak) from S′ (k is the arity of
[S′]) as follows. Set ai = 0 in all positions i where both t1

′ and t2
′ are 0, ai = z where

both are 1, ai = x where t1
′ is 0 and t2

′ is 1, and finally ai = y where t1
′ is 1 and t2

′ is
0. The S-clause R defined on x, y, z, has models 000, 011, 101 (corresponding to the
all-zero assignment, t1

′ and t2
′ of S′, respectively), but not 110 (which corresponds

to t1
′ ⊕ t2

′).

THE INVERSE SATISFIABILITY PROBLEM 159

We will show that R faithfully represents one of the four versions of or: (x ∨ y),
(x ∨ y), (x ∨ y), and (x ∨ y). Observe that at least two of x, y, z actually occur in
R. If exactly two variables are present in R, then R represents a version of or as
follows: if x and y are present, then R(x, y) = (x ∨ y); if x and z are present, then
R(x, z) = (x ∨ z); if y and z are present, then R(y, z) = (y ∨ z). If all three variables
are present, depending on which of the remaining four possible models are also in the
model set of the S-clause, we have sixteen possible relations. Of these, the strongest,
with models identical to the set M = {000, 101, 011}, can be used to define X(x, y, z)
(which is true when exactly one of x, y, z is true) as follows: X(x, y, z) = R(x, y, z),
and in this case the current step is unnecessary. In each of the other fifteen cases,
we show by exhaustive analysis that there is an R-clause, with one constant, which
represents a version of or. If [R] = M ∪ {001}, then R(x, y, 1) = (x ∨ y). If [R] =
M ∪ {010}, then R(0, y, z) = (y ∨ z). If [R] = M ∪ {100}, then R(x, 0, z) = (x∨ z). If
[R] = M ∪{111}, then R(x, y, 1) = (x∨ y). If [R] = M ∪{001, 010}, then R(x, y, 1) =
(x ∨ y). If [R] = M ∪ {001, 100}, then R(x, y, 1) = (x ∨ y). If [R] = M ∪ {001, 111},
then R(0, y, z) = (y ∨ z). If [R] = M ∪ {010, 100}, then R(0, y, z) = (y ∨ z). If
[R] = M ∪ {010, 111}, then R(0, y, z) = (y ∨ z). If [R] = M ∪ {100, 111}, then
R(x, y, 1) = (x ∨ y). If [R] = M ∪ {001, 010, 100}, then R(x, y, 1) = (x ∨ y). If
[R] = M ∪ {001, 010, 111}, then R(x, 1, z) = (x ∨ z). If [R] = M ∪ {001, 111, 100},
then R(x, 0, z) = (x ∨ z). If [R] = M ∪ {111, 010, 100}, then R(x, y, 1) = (x ∨ y). If
[R] = M ∪ {001, 010, 100, 111}, then R(x, 1, z) = (x ∨ z). Since we can also faithfully
express [w ≡ x], by Step 1, we have all four versions of or.

Step 3. Expressing X(x, y, z). X is a formula which is satisfied if exactly one
of the three variables has the value 1. It is known (see the Appendix) that an S-
clause is 2CNF iff for any set of three satisfying assignments t0, t1, t2, the assignment
(t0 ∨ t1) ∧ (t1 ∨ t2) ∧ (t2 ∨ t0) is also a satisfying assignment.

We use this characterization to prove that if a relation set S contains a relation
which is not 2CNF and also contains relations which are not Horn, anti-Horn, and
affine, then X(x, y, z) can be faithfully represented.

Consider an S-clause which is not 2CNF. We may therefore find three satisfying
assignments t0, t1, t2 such that the expression (t0 ∨ t1) ∧ (t1 ∨ t2) ∧ (t2 ∨ t0) is not
a satisfying assignment. As in the previous step we may negate the variables in the
positions where t0 has the value 1, resulting in a new clause S′, which is satisfied by the
all-zero assignment, by t1

′ = t1⊕t0 and by t2
′ = t2⊕t0, but not by t1

′∧(t1
′∨t2′)∧t2′,

which is equal to t1
′ ∧ t2′. Set 0 to all positions where both t1

′ and t2
′ are 0, x to all

positions where both t1
′ and t2

′ are 1, y where t1
′ is 0 and t2

′ is 1, and finally z where
t1
′ is 1 and t2

′ is 0. Observe that all three variables actually occur in the constructed
clause R: if x is not present then t1

′ ∧ t2
′ is identical to the all-zero assignment, a

contradiction; if either y or z is not present then t1
′ ∧ t2

′ is identical to t1
′ or t2

′,
again a contradiction. The clause R = (x, y, z) so constructed includes models 000,
110, and 101, but not 100. Now the S-clause R(x, y, z)∧ (x∨ y)∧ (y ∨ z)∧ (z ∨x) has
exactly the models 100, 010, and 001; i.e., it is X(x, y, z).

Step 4. Expressing [x ≡ (y∨z)]. Notice that the expression X(x, s, y)∧X(x, t, z)∧
X(s, t, u) is equivalent to

(
x ≡ (y ∨ z)

) ∧ (s ≡ (y ∧ z)
) ∧ (t ≡ (y ∧ z)

) ∧ (u ≡ (y ≡ z)
)
.

Thus we prove that we can faithfully represent a relation in which a variable is logically
equivalent to the or of two other variables. Notice that the auxiliary variables s, t, u
are uniquely defined by the values of y and z.

160 DIMITRIS KAVVADIAS AND MARTHA SIDERI

Step 5. Using repeatedly [x ≡ (y ∨ z)] and [x ≡ y] we can faithfully represent any
clause, and by taking conjunctions of arbitrary clauses we can faithfully represent any
Boolean relation, completing the proof of Theorem 3.

Proof of Theorem 2. Let S be a set of relations satisfying one of conditions (a)–
(d), and let r be the maximum arity of any relation in S; we can solve the inverse
satisfiability problem for S as follows.

Given a set of models M , we first identify in time O(nr|M |) all S-clauses that
are satisfied by all models in M ; call the conjunction of these S-clauses φ. Clearly,
if there is a conjunction of S-clauses that has M as its set of models, then by the
arguments used in Lemma 1, it is precisely φ. To tell whether the set of models of φ
is indeed M , we show how to generate the set of models of φ with polynomial delay
between consecutive outputs [JPY88]. Provided that such generation is possible, we
can decide whether M = µ(φ) by checking if the generated models belong in M . If
a model not in M is generated, then we reply “no”; otherwise, if the set of models
generated is exactly M , we reply “yes.” Observe that the answer will be obtained
after at most |M |+ 1 generations, i.e., in overall polynomial time.

Our generation algorithm is based on a more general observation that also explains
the analogy of our dichotomy theorem to the one of Schaefer’s. Call a syntactic form
of a Boolean formula hereditary if the substitution of a variable by a constant results
in a new formula of the same syntactic form. Observe that the four cases for which
we claim that the inverse satisfiability problem is polynomial are indeed hereditary
and coincide with the polynomial cases of satisfiability [Sc78].

Theorem 4. If the following two conditions hold for a class of Boolean formulas:

(a) the syntactic form of the class is hereditary, and
(b) the satisfiability problem for the class is in PTIME,

then the models of any formula in the class can be generated with polynomial delay
between consecutive outputs.

Proof. Here is an informal description of the generation algorithm: at each step
we substitute a variable by a constant, first by the value 1 and then by 0. Since
(a) holds, the substitution results in a new formula of the same syntactic form. We
then ask a polynomial-time oracle whether the produced formula is satisfiable. Since
(b) holds, such an oracle exists. If the produced formula is satisfiable, we proceed
recursively and substitute the next variable until all variables have been assigned a
value, in which case we return the model. When at a certain step we are through
with the value 1 for a variable (either by discovering a model or by rejecting the value
because the produced formula is unsatisfiable), we try the value 0, and when finished,
we backtrack to the previous step. It is easy to see that after at most 2n queries to
the oracle (where n is the number of variables) we either generate a new model or we
know that all models of the formula have been generated.

Now, to show coNP-completeness of all other cases, let S be a set of Boolean
relations not satisfying conditions (a)–(d). It is clear that the INVERSE SAT problem
for S is in coNP: let r ≥ 3 be the largest arity of any relation in S. Given a set
of models M , we construct all S-clauses satisfied by all models in M—this takes
O(|M |nr) time. M is the set of models of a conjunction of S-clauses if and only if all
models not in M fail to satisfy at least one of these S-clauses.

To show completeness, we shall reduce UNSATISFIABILITY, the problem of
telling whether a 3CNF expression ψ is unsatisfiable, to the INVERSE SAT(S). We
suppose that ψ is a 3CNF expression on n > 3r variables. Set M contains a model
for each 3r-tuple of variables and values for these variables that don’t contradict any

THE INVERSE SATISFIABILITY PROBLEM 161

clause of ψ. Let k be the cardinality of M , a quantity bounded by a function of r
and of the number of variables and clauses of ψ. Notice that since r is constant, the
number of models is not exponential. Our construction is a generalization of that of
Theorem 1: we consider some total order among the pairs (W,T), where W is a set
of 3r variables and T a truth assignment to those variables that does not contradict
any clause of ψ. Every Boolean vector mW,T in M is a concatenation of two strings:
mW,T = βTW εTW .

String βTW is a concatenation of the encodings τTW (xi) for each variable xi occuring
in the formula ψ: βTW = τTW (x1) · · · τTW (xn). The encoding of τTW (x) of a variable x
is a Boolean vector of length k + 2 and is defined in the proof of Theorem 1. Notice
that in this construction the unique padding pattern for (W,T) occurs n − 3r times
in the string βTW . Call N = n(k + 2) the length of a string βTW .

The string εTW is constructed as follows: we consider all 3CNF clauses on N vari-
ables satisfied by the set of strings βTW for all sets of 3r variables W and assignments
T to those variables. Call φ the conjuction of all these clauses. We express φ faithfully
by S-clauses. This will involve auxiliary variables xN+1, . . . , xN+s. From the defini-
tion of faithful representation we see that xN+` ≡ f`(xi` , xj`), where ` = 1, . . . , s and
i`, j` < N+`. Notice, however, that each of the auxiliary variables depends on at most
three of the N variables appearing in the 3CNF clauses. This follows from the fact
that we are representing 3CNF clauses, and consequently, we can express each 3CNF
clause separately by S-clauses and then take the conjunction of the representations.
Thus, the overall dependency of an auxiliary variable xN+`, ` = 1, . . . , s, is through
a Boolean function f`(xi` , xj` , xk`), 1 ≤ i`, j`, k` ≤ N . Let b1 · · · bN be a string βTW .
The values in the s positions of the corresponding string εTW = bN+1 · · · bN+s are the
values of the auxiliary variables: bN+` = f`(bi` , bj` , bk`), ` = 1, . . . , s. (Note that these
values are stated explicitly, i.e., not encoded as value patterns.) This is where the
concept of faithful representation is necessary: for each string βTW there is a unique
string εTW . With ordinary representation the multiple ways to extend a string βTW via
the auxiliary variables would result in an exponential increase of our model set.

Let M ⊆ {0, 1}N+s be the constructed set of models. We claim that M is the
set of models of a conjunction of S-clauses iff the original 3CNF expression ψ is
unsatisfiable.

If ψ is satisfiable, then M is not the set of models of any rCNF expression.
Consider the model corresponding to the satisfying truth assignment. This model
is a concatenation of two parts: the first has N positions and consists of the value
patterns encoding the values of all variables in the satisfying truth assignment, exactly
as in the proof of Theorem 1, and the second consists of the corresponding values of
the s auxiliary variables. This model is r-compatible with M : any r-tuple restricted
to the first N positions certainly matches a corresponding tuple in some model, by
the construction of M . In fact, when the tuple is restricted to the first part, any
3r-tuple can be matched. This is precisely why an r-tuple that is not restricted to
the first N positions is also r-compatible: by the dependency of each auxiliary value
to at most 3 of the first N , a compatibility of an i-tuple (i ≤ r) in the second part
holds if a 3i-compatibility in the first part holds. Alternatively, instead of looking
at a position in the second part, we can look at the three corresponding positions
of the first part. Therefore, the whole model corresponding to the satisfying truth
assignment is r-compatible with M . It follows by Lemma 1 that M is not rCNF, and
as a result, M is not the set of models of any conjunction of S-clauses (recall that the
maximum arity in S is r).

162 DIMITRIS KAVVADIAS AND MARTHA SIDERI

Suppose then that ψ is unsatisfiable. Let M ′ be M restricted to the first N
positions. Then M ′ is exactly the set of models of φ (the conjuction of all 3CNF
clauses on N variables which don’t disagree with M ′) by the reasoning in Theorem 1:
no model is 3-compatible with M ′ except those in M ′. Since M ′ is the set of models
of φ, it follows that M is the set of models of the corresponding conjunction of S-
expressions that faithfully represents φ.

Appendix. This appendix contains the proof of the closure properties of Horn,
anti-Horn 2CNF, and affine sets of models, which are used in the proof of Theorem 3.
In what follows, M ⊆ {0, 1}n denotes a set of models.

Horn Sets. M is Horn iff for any two models t, t′ ∈M the model (t∧ t′) is also
in M .

The proof is based on the following proposition from [KPS93]. If t and t′ are
bit-vectors we use the notation t ≤ t′ to denote that ti = 1 implies ti

′ = 1.
Proposition. The following are equivalent.
(a) There is a Horn formula whose model set is M .
(b) For each t /∈ M either there is no t′ ∈ M with t ≤ t′, or there is a unique

minimal t′ ∈M such that t ≤ t′.
(c) If t, t′ ∈M , then also t ∧ t′ ∈M .
Proof. That (a) implies (c) is easy. To establish (b) from (c), take t′ to be the ∧

of all t′′ ∈M such that t ≤ t′′. Finally, if we have property (b), we can construct the
following set of Horn clauses: for each t /∈ M let t′ be the model guaranteed by (b);
create a Horn clause ((

∧
ti=1 xi) → xj) for each j such that tj = 0 and t′j = 1. It is

easy to see that the set of all these Horn clauses comprises the desired φ.
Anti-Horn Sets. This case is symmetric to the above. Just replace 1 with 0

and ∧ with ∨.
2CNF Sets. M is 2CNF iff for any set of three models t0, t1, t2 ∈M the model

(t0 ∨ t1) ∧ (t1 ∨ t2) ∧ (t2 ∨ t0) is also in M .
Proof. This was shown in [Sc78, Lemma 3.1B]. We give a different proof, which

is simpler and is based on Lemma 1 for k = 2. First notice that the model t =
(t0∨ t1)∧ (t1∨ t2)∧ (t2∨ t0) has the following property. The value of t in each position
i = 1, . . . , n is equal to a value, which is the majority among the three values of the
models t0, t1, t2 in this position (e.g., if the values of models t0, t1, t2 in position i
are (1, 1, 0), respectively, the value of t in position i is 1). Call the outcome of the
operation (t0 ∨ t1) ∧ (t1 ∨ t2) ∧ (t2 ∨ t0) the majority model of t0, t1, t2.

Only if: Suppose M is 2CNF. By Lemma 1 any 2-compatible model with M is
in M . It is easy to see that the majority model of any three models is 2-compatible
with these three models.

If: Suppose that the majority model of any set of three models t0, t1, t2 ∈ M is
also in M . We shall prove that any 2-compatible model with M is in M . We prove
this inductively, by showing that any 2-compatible model is in fact n-compatible.
Consider a model m k-compatible with M and a (k + 1)-tuple of positions in this
model. The k distinct k-tuples of this (k + 1)-tuple agree with some model in M .
Take three of those not necessarily distinct k models. (If the models are less than
three, then m ∈ M .) Notice that any one of those differs in at most one position of
the (k + 1)-tuple with m. Therefore, the (k + 1)-tuple of m agrees with the majority
model of those three models. Hence, m is (k+1)-compatible with M . Therefore, any
2-compatible model with M is in M and, by Lemma 1, M is a 2CNF set.

Affine Sets. M is affine iff for any three models t0, t1, t2 the model t0 ⊕ t1 ⊕ t2
is also in M .

THE INVERSE SATISFIABILITY PROBLEM 163

Proof. This fact follows from linear algebra and especially the theory of diophan-
tine linear equations. It states the intuitive observation (and its converse) that every
convex polytope is the convex hull of its vertices. For more on that see the book of
Schrijver [Sc86].

Acknowledgments. We are grateful to Christos Papadimitriou for helpful dis-
cussions and suggestions. We are also indebted to the anonymous referees for their
detailed comments and suggestions that decisively helped us improve the presentation
by making it more complete and precise.

REFERENCES

[AFP92] D. Angluin, M. Frazier, and L. Pitt, Learning conjunctions of Horn clauses, Machine
Learning, 9 (1992), pp. 147–164.

[Ca93] M. Cadoli, Semantical and computational considerations in Horn approximations, in
Proc. 13th International Joint Conference of Artificial Intelligence (IJCAI), Cham-
bery France, Springer-Verlag, Berlin, 1993, pp. 39–44.

[CH96] N Creignou and M. Hermann, Complexity of generalized satisfiability counting prob-
lems, Inform. and Comput., 125 (1996), pp. 1–12.

[CK90] C. C. Chang and H. J. Keisler, Model Theory, Studies in Logic and the Foundation of
Mathematics 73, 3rd ed., North-Holland, Amsterdam, 1990.

[Co71] S. A. Cook, The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM
Symposium on Theory of Computing, Shaker Heights, OH, 1971, pp. 151–158.

[DP92] R. Dechter and J. Pearl, Structure identification in relational data, Artificial Intelli-
gence, 58 (1992), pp. 237–270.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory
of NP-Completeness, W.H. Freeman, San Francisco, CA, 1979.

[GN87] M. R. Genesereth and N. J. Nilsson, Logical Foundations of Artificial Intelligence,
Morgan Kaufmann, San Francisco, CA, 1987.

[GPS94] G. Gogic, C. H. Papadimitriou, and M. Sideri, Incremental recompilation of knowl-
edge, in Proc. 12th National Conference on Artificial Intelligence, Seattle, WA, AAAI
Press, Menlo Park, CA, 1994, pp. 922–927.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, On generating all maximal
independent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

[KKS95] H. A. Kautz, M. J. Kearns, and B. Selman, Horn approximations of empirical data,
Artificial Intelligence, 74 (1995), pp. 129–145.

[KKS93] H. A. Kautz, M. J. Kearns, and B. Selman, Reasoning with characteristic models,
in Proc. 11th National Conference on Artificial Intelligence, Washington, DC, AAAI
Press, Menlo Park, CA, 1993, pp. 34–39.

[KPS93] D. Kavvadias, C. H. Papadimitriou, and M. Sideri, On Horn envelopes and hyper-
graph transversals, in Proc. 4th Annual International Symposium on Algorithms and
Complexity, Hong Kong, Springer-Verlag, Berlin, 1993, pp. 399–405.

[Le86] H. Levesque, Making believers out of computers, Artificial Intelligence, 30 (1986), pp. 81–
108.

[Mc80] J. McCarthy, Circumscription–a form of nonmonotonic reasoning, Artificial Intelli-
gence, 13 (1980), pp. 27–39.

[Mo84] R. Moore, Possible-world semantics for autoepistemic logic, in Proc. 1st Nonmonotonic
Reasoning Workshop, New Paltz, NY, 1984, pp. 344–354.

[Pa94] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[Re80] R. Reiter, A Logic for default reasoning, Artificial Intelligence, 13 (1980), pp. 81–132.
[Sc78] T. J. Schaefer, The complexity of satisfiability problems, in Proc. 10th Annual ACM

Symposium on Theory of Computing, San Diego, CA, 1978, pp. 216–226.
[Sc86] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.
[SK90] B. Selman and H. A. Kautz, Model preference default theories, Artificial Intelligence,

45 (1990), pp. 287–322.
[SK91] B. Selman and H. A. Kautz, Knowledge compilation using Horn approximation, in

Proc. 9th National Conference on Artificial Intelligence, Anaheim, CA, MIT Press,
Cambridge, MA, 1991, pp. 904–909.

ON SYNTACTIC VERSUS COMPUTATIONAL VIEWS OF
APPROXIMABILITY∗

SANJEEV KHANNA† , RAJEEV MOTWANI‡ , MADHU SUDAN§ , AND UMESH VAZIRANI¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 164–191

Abstract. We attempt to reconcile the two distinct views of approximation classes: syntactic
and computational. Syntactic classes such as MAX SNP permit structural results and have natural
complete problems, while computational classes such as APX allow us to work with classes of prob-
lems whose approximability is well understood. Our results provide a syntactic characterization of
computational classes and give a computational framework for syntactic classes.

We compare the syntactically defined class MAX SNP with the computationally defined class
APX and show that every problem in APX can be “placed” (i.e., has approximation-preserving
reduction to a problem) in MAX SNP. Our methods introduce a simple, yet general, technique for
creating approximation-preserving reductions which shows that any “well”-approximable problem
can be reduced in an approximation-preserving manner to a problem which is hard to approximate
to corresponding factors. The reduction then follows easily from the recent nonapproximability
results for MAX SNP-hard problems. We demonstrate the generality of this technique by applying
it to other classes such as MAX SNP-RMAX(2) and MIN F+Π2(1) which have the clique problem
and the set cover problem, respectively, as complete problems.

The syntactic nature of MAX SNP was used by Papadimitriou and Yannakakis [J. Comput.
System Sci., 43 (1991), pp. 425–440] to provide approximation algorithms for every problem in the
class. We provide an alternate approach to demonstrating this result using the syntactic nature of
MAX SNP. We develop a general paradigm, nonoblivious local search, useful for developing simple
yet efficient approximation algorithms. We show that such algorithms can find good approximations
for all MAX SNP problems, yielding approximation ratios comparable to the best known for a variety
of specific MAX SNP-hard problems. Nonoblivious local search provably outperforms standard local
search in both the degree of approximation achieved and the efficiency of the resulting algorithms.

Key words. approximation algorithms, complete problems, computational complexity, compu-
tational classes, polynomial reductions, local search

AMS subject classification. 68Q15

PII. S0097539795286612

1. Introduction. The approximability of NP optimization (NPO) problems has
been investigated in the past via the definition of two different types of problem classes:
syntactically defined classes such as MAX SNP (the class of NPO problems express-
ible as bounded-arity constraint satisfaction problems) and computationally defined
classes such as APX (the class of NPO problems to which a constant-factor approxima-
tion can be found in polynomial time); see section 2 for formal definitions. The former

∗Received by the editors May 26, 1996; accepted for publication (in revised form) November 22,
1996; published electronically June 15, 1998. A preliminary version of this paper appeared in The
Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994.

http://www.siam.org/journals/sicomp/28-1/28661.html.
†Department of Computer Science, Stanford University, Stanford, CA 94305. Current address:

Fundamental Math Research Department, Bell Labs, 700 Mountain Ave., Murray Hill, NJ 07974
(sanjeev@research.bell-labs.com). This research was supported by a Schlumberger Foundation Fel-
lowship, an OTL grant, and NSF grant CCR-9357849.
‡Department of Computer Science, Stanford University, Stanford, CA 94305 (ra-

jeev@theory.stanford.edu). This research was supported by an Alfred P. Sloan Research Fellowship,
an IBM Faculty Development Award, an OTL grant, and NSF Young Investigator Award CCR-
9357849, with matching funds from IBM, the Schlumberger Foundation, the Shell Foundation, and
Xerox Corporation.
§IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 (madhu@watson.ibm.com).
¶Computer Science Division, University of California at Berkeley, CA 94720 (vazirani@cs.

berkeley.edu). This research was supported by NSF grant CCR-9310214.

164

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 165

is useful for obtaining structural results and has natural complete problems, while the
latter allows us to work with classes of problems whose approximability is completely
determined. We attempt to develop linkages between these two views of approxima-
tion problems and thereby obtain new insights into both types of classes. We show
that a natural generalization of MAX SNP renders it identical to the class APX. This
further validates Papadimitriou and Yannakakis’s definition [23] of MAX SNP as pro-
viding a structural basis for the study of approximability. As a side-effect, we resolve
the open problem of identifying complete problems for MAX NP. Our techniques
extend to a generic theorem that can be used to create an approximation hierarchy.
We also develop a generic algorithmic paradigm which is guaranteed to provide good
approximations for MAX SNP problems and may also have other applications.

1.1. Background and motivation. A wide variety of classes is defined based
directly on the polynomial-time approximability of the problems contained within,
e.g., APX (constant-factor approximable problems), PTAS (problems with polynomial-
time approximation schemes), and FPTAS (problems with fully-polynomial-time ap-
proximation schemes). The advantage of working with classes defined using approx-
imability as the criterion is that it allows us to work with problems whose approx-
imability is well understood. Crescenzi and Panconesi [8] have recently also been
able to exhibit complete problems for such classes, particularly APX. Unfortunately
such complete problems seem to be rare and artificial, and do not seem to provide
insight into the more natural problems in the class. Research in this direction has
to find approximation-preserving reductions from the known complete but artificial
problems in such classes to the natural problems therein, with a view to understanding
the approximability of the latter.

The second family of classes of NPO problems that have been studied are those
defined via syntactic considerations, based on a syntactic characterization of NP due to
Fagin [10]. Research in this direction, initiated by Papadimitriou and Yannakakis [23]
and followed by Panconesi and Ranjan [22] and Kolaitis and Thakur [20], has led
to the identification of approximation classes such as MAX SNP, RMAX(2), and
MIN F+Π2(1). The syntactic prescription in the definition of these classes has proved
very useful in the establishment of complete problems. Moreover, the recent results
of Arora et al. [2] have established the hardness of approximating complete problems
for MAX SNP to within (specific) constant factors unless P = NP. It is natural to
wonder why the hardest problems in this syntactic subclass of APX should bear any
relation to all of NP.

Though the computational view allows us to precisely classify the problems based
on their approximability, it does not yield structural insights into natural questions
such as: Why are certain problems easier to approximate than some others? What is
the canonical structure of the hardest representative problems of a given approxima-
tion class? and so on. Furthermore, intuitively speaking, this view is too abstract to
facilitate identification of, and reductions to establish, natural complete problems for
a class. The syntactic view, on the other hand, is essentially a structural view. The
syntactic prescription gives a natural way of identifying canonical hard problems in
the class and performing approximation-preserving reductions to establish complete
problems.

Attempts at trying to find a class with both the above-mentioned properties, i.e.,
natural complete problems and capturing all problems of a specified approximability,
have not been very successful. Typically the focus has been to relax the syntactic
criteria to allow a wider class of problems to be included in the class. However, in

166 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

all such cases it seems inevitable that these classes cannot be expressive enough to
encompass all problems with a given approximability. This is because each of these
syntactically defined approximation classes is strictly contained in the class NPO; the
strict containment can be shown by syntactic considerations alone. As a result, if we
could show that any of these classes contains all of P, then we would have separated
P from NP. We would expect that every class of this nature would be missing some
problems from P, and this has indeed been the case with all current definitions.

We explore a different direction by studying the structure of the syntactically de-
fined classes when we look at their closure under approximation-preserving reductions.
The idea of looking at the closure of a class is implicit in the work of Papadimitriou
and Yannakakis [23] who state that minimization problems will be “placed” in the
classes through L-reductions to maximization problems. The advantage of looking at
the closure of a set is that it maintains the complete problems of the set, while manag-
ing to include all of P in the closure (for problems in P, the reduction is to simply use
a polynomial-time algorithm to compute an exact solution). It now becomes inter-
esting, for example, to compare the closure of MAX SNP (denoted MAX SNP) with
APX. A positive resolution, i.e., MAX SNP = APX, would immediately imply the
nonexistence of a PTAS for MAX SNP-hard problems, since it is known that PTAS
is a strict subset of APX, if P 6= NP. On the other hand, an unconditional negative
result would be difficult to obtain, since it would imply P 6= NP.

Here we resolve this question in the affirmative. The exact nature of the result
obtained depends upon the precise notion of an approximation-preserving reduction
used to define the closure of the class MAX SNP. The strictest notion of such re-
ductions available in the literature are the L-reductions due to Papadimitriou and
Yannakakis [23]. We work with a slight extension of the reduction, which we call
E-reductions. Using such reductions to define the class MAX SNP we show that
this equals APX-PB, the class of all polynomially bounded NPO problems which
are approximable to within constant factors. By using slightly looser definitions
of approximation-preserving reductions (and in particular the PTAS-reductions of
Crescenzi and Trevisan [9]) this can be extended to include all of APX in MAX SNP.
We then build upon this result to identify an interesting hierarchy of such approx-
imability classes. An interesting side-effect of our results is the positive answer to
the question of Papadimitriou and Yannakakis [23] about whether MAX NP has any
complete problems.

The syntactic view seems useful not only in obtaining structural complexity re-
sults but also in developing paradigms for designing efficient approximation algo-
rithms. This was demonstrated first by Papadimitriou and Yannakakis [23] who show
approximation algorithms for every problem in MAX SNP. We further exploit the
syntactic nature of MAX SNP to develop another paradigm for designing good ap-
proximation algorithms for problems in that class and thereby provide an alternate
computational view of it. We refer to this paradigm as nonoblivious local search,
and it is a modification of the standard local search technique [25]. We show that
every MAX SNP problem can be approximated to within constant factors by such
algorithms. It turns out that the performance of nonoblivious local search is compa-
rable to that of the best-known approximation algorithms for several interesting and
representative problems in MAX SNP. An intriguing possibility is that this is not
a coincidence, but rather a hint at the universality of the paradigm or some variant
thereof.

Our results are related to some extent to those of Ausiello and Protasi [4]. They

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 167

define a class GLO (for guaranteed local optima) of NPO problems which have the
property that for all locally optimum solutions, the ratio between the values of the
global and the local optima is bounded by a constant. It follows that GLO is a
subset of APX, and it was shown that it is in fact a strict subset. We show that a
MAX SNP problem is not contained in GLO, thereby establishing that MAX SNP is
not contained in GLO. This contrasts with our notion of nonoblivious local search
which is guaranteed to provide constant-factor approximations for all problems in
MAX SNP. In fact, our results indicate that nonoblivious local search is significantly
more powerful than standard local search in that it delivers strictly better constant
ratios, and will also provide constant-factor approximations to problems not in GLO.
Independently of our work, Alimonti [1] has used a similar local search technique for
the approximation of a specific problem not contained in GLO or MAX SNP.

1.2. Summary of results. In section 2, we present the definitions required to
state our results, and in particular the definitions of an E-reduction, APX, APX-PB,
MAX SNP, and MAX SNP. In section 3, we show that MAX SNP = APX-PB. A
generic theorem which allows us to equate the closure of syntactic classes to appropri-
ate computational classes is outlined in section 4; we also develop an approximation
hierarchy based on this result.

The notion of nonoblivious local search and Nonoblivious GLO is developed
in section 5. In section 6, we illustrate the power of nonobliviousness by first show-
ing that oblivious local search can achieve at most the performance ratio 3/2 for
MAX 2-SAT, even if it is allowed to search exponentially large neighborhoods; in con-
trast, a very simple nonoblivious local search algorithm achieves a performance ratio
of 4/3. We then establish that this paradigm yields a 2k/(2k − 1) approximation to
MAX k-SAT. In section 7, we provide an alternate characterization of MAX SNP
via a class of problems called MAX k-CSP. It is shown that a simple nonoblivious
algorithm achieves the best-known approximation for this problem, thereby providing
a uniform approximation for all of MAX SNP. In section 8, we further illustrate the
power of this class of algorithm by showing that it can achieve the best-known ratio
for a specific MAX SNP problem and for VERTEX COVER (which is not contained
in GLO). This implies that MAX SNP is not contained in GLO, and that GLO is
a strict subset of Nonoblivious GLO. In section 9, we apply it to approximating
the traveling salesman problem. Finally, in section 10, we apply this technique to
improving a long-standing approximation bound for maximum independent sets in
bounded-degree graphs.

2. Preliminaries and definitions. Given an NPO problem Π and an instance
I of Π, we use |I| to denote the length of I and OPT (I) to denote the optimum
value for this instance. For any solution S to I, the value of the solution, denoted by
V (I, S), is assumed to be a polynomial-time computable function which takes positive
integer values (see [7] for a precise definition of NPO).

Definition 1 (error). Given a solution S to an instance I of an NPO problem
Π, we define its error E(I, S) as

E(I, S) = max

{
V (I, S)

OPT (I)
,
OPT (I)

V (I, S)

}
− 1.

Notice that the above definition of error applies uniformly to the minimization
and maximization problems at all levels of approximability.

168 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

Definition 2 (performance ratio). An approximation algorithm A for an op-
timization problem Π has performance ratio R(n) if, given an instance I of Π with
|I| = n, the solution A(I) satisfies

max

{
V (I, A(I))

OPT (I)
,
OPT (I)

V (I, A(I))

}
≤ R(n).

A solution of value within a multiplicative factor r of the optimal value is referred to
as an r-approximation.

The performance ratio for A is R if it always computes a solution with error at
most R− 1.

2.1. E-reductions. We now describe the precise approximation-preserving re-
duction we will use in this paper. This reduction, which we call the E-reduction, is
essentially the same as the L-reduction of Papadimitriou and Yannakakis [23] and
differs from it in only one relatively minor aspect.

Definition 3 (E-reduction). A problem Π E-reduces to a problem Π′ (denoted
Π ∝E Π′) if there exist polynomial-time computable functions f , g and a constant β
such that

• f maps an instance I of Π to an instance I ′ of Π′ such that OPT (I) and
OPT (I ′) are related by a polynomial factor; i.e., there exists a polynomial
p(n) such that OPT (I ′) ≤ p(|I|)OPT (I).

• g maps solutions S′ of I ′ to solutions S of I such that

E(I, S) ≤ βE(I ′, S′).

Remark 1. Among the many approximation-preserving reductions in the liter-
ature, the L-reduction appears to be the strictest. The E-reduction appears to be
slightly weaker (in that it allows polynomial scaling of the problems), but is stricter
than any of the other known reductions. Since all the reductions given in this paper
are E-reductions, they would also qualify as approximation-preserving reductions un-
der most other definitions, and in particular, they fit the definitions of F -reductions
and P -reductions of Crescenzi and Panconesi [8].

Remark 2. Having Π ∝E Π′ implies that Π is as well approximable as Π′; in
fact, an E-reduction is an FPTAS-preserving reduction. An important benefit is
that this reduction can be applied uniformly at all levels of approximability. This
is not the case with the other existing definitions of FPTAS-preserving reduction
in the literature. For example, the FPTAS-preserving reduction (F -reduction) of
Crescenzi and Panconesi [8] is much more unrestricted in scope and does not share
this important property of the E-reduction. Note that Crescenzi and Panconesi [8]
showed that there exists a problem Π′ ∈ PTAS such that for any problem Π ∈ APX,
Π ∝F Π′. Thus, there is the undesirable situation that a problem Π with no PTAS
has an FPTAS-preserving reduction to a problem Π′ with a PTAS.

Remark 3. The L-reduction of Papadimitriou and Yannakakis [23] enforces the
condition that the optima of an instance I of Π be linearly related to the optima of the
instance I ′ of Π′ to which it is mapped. This appears to be an unnatural restriction
considering that the reduction itself is allowed to be an arbitrary polynomial-time
computation. This is the only real difference between their L-reduction and our
E-reduction, and an E-reduction in which the linearity relation of the optimas is
satisfied is an L-reduction. Intuitively, however, in the study of approximability the
desirable attribute is simply that the errors in the corresponding solutions are closely

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 169

(linearly) related. The somewhat artificial requirement of a linear relation between
the optimum values precludes reductions between problems which are related to each
other by some scaling factor. For instance, it seems desirable that two problems
whose objective functions are simply related by any fixed polynomial factor should
be interreducible under any reasonable definition of an approximation-preserving re-
duction. Our relaxation of the L-reduction constraint is motivated precisely by this
consideration.

Let C be any class of NPO problems. Using the notion of an E-reduction, we
define hardness and completeness of problems with respect to C, as well as its closure
and polynomially bounded subclass.

Definition 4 (hard and complete problems). A problem Π′ is said to be C-hard
if for all problems Π ∈ C, we have Π ∝E Π′. A C-hard problem Π is said to be
C-complete if, in addition, Π ∈ C.

Definition 5 (closure). The closure of C, denoted by C, is the set of all NPO
problems Π such that Π ∝E Π′ for some Π′ ∈ C.

Remark 4. The closure operation maintains the set of complete problems for a
class.

Definition 6 (polynomially bounded subset). The polynomially bounded subset
of C, denoted C-PB, is the set of all problems Π ∈ C for which there exists a polynomial
p(n) such that for all instances I ∈ Π, OPT (I) ≤ p(|I|).

2.2. Computational and syntactic classes. We first define the basic compu-
tational class APX.

Definition 7 (APX). An NPO problem Π is in the class APX if there exists a
polynomial-time algorithm A for Π with performance ratio bounded by some constant
c.

The class APX-PB consists of all polynomially bounded NPO problems which
can be approximated to within constant factors in polynomial time.

If we let F -APX denote the class of NPO problems that are approximable to
within a factor F , then we obtain a hierarchy of approximation classes. For instance,
poly-APX and log-APX are the classes of NPO problems which have polynomial-time
algorithms with performance ratio bounded polynomially and logarithmically, respec-
tively, in the input length. More precise versions of these definitions are provided in
section 4.

Let us briefly review the definitions of some syntactic classes.
Definition 8 (MAX SNP and MAX NP [23]). MAX SNP is the class of NPO

problems expressible as finding the structure S which maximizes the objective function

V (I, S) = |{~x | Φ(I, S, ~x)}| ,

where I = (U ;P) denotes the input (consisting of a finite universe U and a finite set
of bounded arity predicates P), S is a finite structure, and Φ is a quantifier-free first-
order formula. The class MAX NP is defined analogously, but the objective function
is

V (I, S) = |{~x | ∃~y,Φ(I, S, ~x, ~y)}| .

A natural extension is to associate a weight with every tuple ~x; the modified
objective is to find an S which maximizes V (I, S) =

∑
~x w(~x)Φ(I, S, ~x), where w(~x)

denotes the weight associated with the tuple ~x.

170 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

Example 1 (MAX k-SAT). The MAX k-SAT problem is: given a collection of m
clauses on n boolean variables where each (possibly weighted) clause is a disjunction
of precisely k literals, find a truth assignment satisfying a maximum weight collection
of clauses. For any fixed integer k, MAX k-SAT belongs to the class MAX SNP. The
results of Papadimitriou and Yannakakis [23] can be adapted to show that for k ≥ 2,
MAX k-SAT is complete under E-reductions for the class MAX SNP.

Definition 9 (RMAX(k) [22]). RMAX(k) is the class of NPO problems express-
ible as finding a structure S which maximizes the objective function

V (I, S) =

{ |{~x | S(~x)}| if ∀~y,Φ(I, S, ~y),
0 otherwise,

where S is a single predicate and Φ(I, S, ~y) is a quantifier-free CNF formula in which
S occurs at most k times in each clause and all its occurrences are negative.

The results of Panconesi and Ranjan [22] can be adapted to show that MAX
CLIQUE is complete under E-reductions for the class RMAX(2).

Definition 10 (MIN F+Π2(k) [20]). MIN F+Π2(k) is the class of NPO prob-
lems expressible as finding a structure S which minimizes the objective function

V (I, S) =

{ |{~x : S(~x)}| if ∀~x,∃~y,Φ(I, S, ~x, ~y),
0 otherwise,

where S is a single predicate, Φ(I, S, ~y) is a quantifier-free CNF formula in which S
occurs at most k times in each clause, and all its occurrences are positive.

The results of Kolaitis and Thakur [20] can be adapted to show that SET COVER
is complete under E-reductions for the class MIN F+Π2(1).

3. MAX SNP closure and APX-PB. In this section, we will establish the
following theorem and examine its implications. The proof is based on the results of
Arora et al. [2] on efficient proof verifications.

Theorem 1. MAX SNP = APX-PB.
Remark 5. The seeming weakness that MAX SNP only captures polynomially

bounded APX problems can be removed by using looser forms of approximation-
preserving reduction in defining the closure. In particular, Crescenzi and Trevisan [9]
define the notion of a PTAS-preserving reduction under which APX = APX-PB.
Using their result in conjunction with the above theorem, it is easily seen that
MAX SNP = APX. This weaker reduction is necessary to allow for reductions from
fine-grained optimization problems to coarser (polynomially bounded) optimization
problems (cf. [9]).

The following is a surprising consequence of Theorem 1.
Theorem 2. MAX NP = MAX SNP.
Papadimitriou and Yannakakis [23] (implicitly) introduced both these closure

classes but did not conjecture them to be the same. It would be interesting to see if
this equality can be shown independent of the result of Arora et al. [2]. We also obtain
the following resolution to the problem posed by Papadimitriou and Yannakakis [23]
of finding complete problems for MAX NP.

Theorem 3. MAX SAT is complete for MAX NP.
The following subsections establish that MAX SNP ⊇ APX-PB. The idea is to

first E-reduce any minimization problem in APX-PB to a maximization problem in
APX-PB, and to then E-reduce any maximization problem in APX-PB to a specific
complete problem for MAX SNP, viz., MAX 3-SAT. Since an E-reduction forces the

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 171

optima of the two problems involved to be related by polynomial factors, it is easy to
see that MAX SNP ⊆ APX-PB. Combining these two facts, we obtain Theorem 1.

3.1. Reducing minimization to maximization. Observe that the fact that Π
belongs to APX implies the existence of an approximation algorithm A and a constant
c such that

OPT (I)

c
≤ V (I, A(I)) ≤ c×OPT (I).

Henceforth, we will use a(I) to denote V (I, A(I)). We first reduce any minimization
problem Π ∈ APX-PB to a maximization problem Π′ ∈ APX-PB, where the latter is
obtained by merely modifying the objective function for Π, as follows. Let Π′ have
the objective function

V ′(I, S) = max {1, (c+ 1)a(I)− cV (I, S)}

for all instances I and solutions S for Π. Clearly, V ′(I, S) takes only positive values.
To ensure that V ′(I, S) is integer-valued, we can assume, without loss of generality,
that c is an integer (a real-valued performance ratio can always be rounded up to
the next integer). It can be verified that the optimum value for any instance I of Π′

always lies between a(I) and (c+1)a(I). Thus A is a (c+1)-approximation algorithm
for Π′.

Now, given a solution S′, for instance, I, of Π′ such that it has error δ, we want
to construct a solution S, for instance, I, of Π such that the error is at most βδ for
some β. We will show this for β = (c+ 1).

First consider the case when V ′(I, S′) = 1; i.e., δ = a(I) − 1. In this case, we
simply output the solution S = A(I). If a(I) = 1 then we are trivially done; else we
observe that

E(I, S) ≤ (c− 1) ≤ (c+ 1)(a(I)− 1) ≤ βE ′(I, S′).

On the other hand, if V ′(I, S′) > 1, we may proceed as follows. If S′ is a δ-error
solution to the optimum of Π′, i.e.,

V ′(I, S) ≥ OPT ′(I)

1 + δ
≥ (1− δ)OPT ′(I),

where OPT ′(I) is the optimal value of V ′ for I, we can conclude that

V (I, S) =
(c+ 1)a(I)− V ′(I, S)

c

≤ (c+ 1)a(I)−OPT ′(I) + δ ×OPT ′(I)

c

≤ c×OPT (I) + δ ×OPT ′(I)

c
≤ OPT (I) + (c+ 1)δ OPT (I).

Thus a solution s to Π′ with error δ is a solution to Π with error at most (c + 1)δ,
implying an E-reduction with β = c+ 1.

172 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

3.2. NP languages and MAX 3-SAT. The following theorem, adapted from
a result of Arora et al. [2], is critical to our E-reduction of maximization problems to
MAX 3-SAT.

Theorem 4 (see [2]). Given a language L ∈ NP and an instance x ∈ Σn, one
can compute in polynomial time an instance Fx of MAX 3-SAT, with the following
properties.

1. The formula Fx has m clauses, where m depends only on n.
2. There exists a constant ε > 0, independent of the input x, such that (1− ε)m

clauses of Fx are satisfied by some truth assignment.
3. If x ∈ L, then Fx is (completely) satisfiable.
4. If x 6∈ L, then no truth assignment satisfies more than (1 − ε)m clauses of
Fx.

5. Given a truth assignment which satisfies more than (1 − ε)m clauses of Fx,
a truth assignment which satisfies Fx completely (or, alternatively, a witness
showing x ∈ L) can be constructed in polynomial time.

Some of the properties above may not be immediately obvious from the construc-
tion given by Arora et al. [2]. It is easy to verify that they provide a reduction with
properties 1, 3, and 4. Property 5 is obtained from the fact that all assignments
which satisfy most clauses are actually close (in terms of Hamming distance) to valid
codewords from a linear code, and the uniquely error-corrected codeword obtained
from this “corrupted codeword” will satisfy all the clauses of Fx.

Property 2 requires a bit more care, and we provide a brief sketch of how it may
be ensured. The idea is to revert back to the PCP model and redefine the proof
verification game. Suppose that the original game had the properties that for x ∈ L
there exists a proof such that the verifier accepts with probability 1; and otherwise,
for x 6∈ L, the verifier accepts with probability at most 1/2. We now augment this
game by adding to the proof a zeroth bit which the prover uses as follows: if the bit is
set to 1, then the prover “chooses” to play the old game; else he is effectively “giving
up” on the game. The verifier in turn first looks at the zeroth bit of the proof. If this
is set, then she performs the usual verification; else she tosses an unbiased coin and
accepts if and only if it turns up heads. It is clear that for x ∈ L there exists a proof
on which the verifier always accepts. Also, for x 6∈ L, no proof can cause the verifier
to accept with probability greater than 1/2. Finally, by setting the zeroth bit to 0,
the prover can create a proof which the verifier accepts with probability exactly 1/2.
This proof system can now be transformed into a 3-CNF formula of the desired form.

3.3. Reducing maximization to MAX 3-SAT. We have already established
that, without loss of generality, we only need to worry about maximization problems
Π ∈ APX-PB. Consider such a problem Π, and let A be a polynomial-time algorithm
which delivers a c-approximation for Π, where c is some constant. Given any instance
I of Π, let p = ca(I) be the bound on the optimum value for I obtained by running
A on input I. Note that this may be a stronger bound than the a priori polynomial
bound on the optimum value for any instance of length |I|. An important consequence
is that p ≤ cOPT (I).

We generate a sequence of NP decision problems Li = {I|OPT (I) ≥ i} for
1 ≤ i ≤ p. Given an instance I, we create p formulas Fi, for 1 ≤ i ≤ p, using the
reduction from Theorem 4, where the ith formula is obtained from the NP language
Li.

Consider now the formula F =
∧p
i=1 Fi that has the following features.

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 173

• The number of satisfiable clauses of F is exactly

MAX = (1− ε)mp+ εmOPT (I),

where ε and m are as guaranteed by Theorem 4.
• Given an assignment which satisfies (1 − ε)mp + εmj clauses of F , we can

construct in polynomial time a solution to I of value at least j. To see this,
observe the following: any assignment with so many clauses must satisfy more
than (1 − ε)m clauses in at least j of the formulas Fi. Let i be the largest
index for which this happens; clearly, i ≥ j. Furthermore, by property (5)
of Theorem 4, we can now construct a truth assignment which satisfies Fi
completely. This truth assignment can be used to obtain a solution S such
that V (I, S) ≥ i ≥ j.

In order to complete the proof it remains to be shown that given any truth
assignment with error δ, i.e., which satisfies MAX /(1 + δ) clauses of F , we can find
a solution S for I with error E(I, S) ≤ βδ for some constant β. We show that this
is possible for β = (c2 + cε)/ε. The main idea behind finding such a solution is to
use the second property above to find a “good” solution to I using a “good” truth
assignment for F .

Suppose we are given a solution which satisfies MAX /(1 + δ) clauses. Since
MAX /(1 + δ) ≥ (1 − δ) MAX and MAX = (1 − ε)mp + εmOPT (I), we can use the
second feature from above to construct a solution S1 such that

V (I, S1) ≥ (1− δ) MAX−(1− ε)mp
εm

≥ (1− δ)OPT (I)− δ

ε
p

≥
(

1− δ
(

1 +
c

ε

))
OPT (I).

Suppose δ ≤ (c− 1)ε/(c(c + ε)). Let δ∗ = δ(1 + c/ε) and γ = δ∗/(1− δ∗). Then
it is readily seen that

V (I, S1) ≥ OPT (I)

1 + γ

and that

0 ≤ γ ≤
(
c2 + cε

ε

)
δ.

On the other hand, if δ > (c− 1)ε/(c(c+ ε)), then the error in a solution S2 obtained
by running the c-approximation algorithm for Π is given by

c− 1 ≤
(
c2 + cε

ε

)
δ.

Therefore, choosing β = (c2 + cε)/ε, we immediately obtain that the solution with
larger value, among S1 and S2, has error at most βδ. Thus, this reduction is indeed
an E-reduction.

174 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

4. Generic reductions and an approximation hierarchy. In this section
we describe a generic technique for turning a hardness result into an approximation-
preserving reduction.

We start by listing the kind of constraints imposed on the hardness reduction,
the approximation class, and the optimization problem. We will observe at the end
that these restrictions are obeyed by all known hardness results and the corresponding
approximation classes.

Definition 11 (additive problems). An NPO problem Π is said to be additive if
there exists an operator + and a polynomial-time computable function f such that +
maps a pair of instances I1 and I2 to an instance I1 + I2 such that OPT (I1 + I2) =
OPT (I1) + OPT (I2), and f maps a solution s to I1 + I2 to a pair of solutions s1

and s2 to I1 and I2, respectively, such that V (I1 + I2, s) = V (I1, s1) + V (I2, s2).
Definition 12 (downward closed family). A family of functions F = {f : Z+ →

Z+} is said to be downward closed if for all g ∈ F and for all constants c (and in
particular for all integers c > 1), g′(n) ∈ O(g(nc)) implies that g′ ∈ F . A function
g is said to be hard for the family F if for all g′ ∈ F , there exists a constant c such
that g′(n) ∈ O(g(nc)); the function g is said to be complete for F if g is hard for F
and g ∈ F .

Definition 13 (F -APX). For a downward closed family F , the class F -APX
consists of all polynomially bounded optimization problems approximable to within a
ratio of g(|I|) for some function g ∈ F .

Definition 14 (canonical hardness). An NP maximization problem Π is said to
be canonically hard for the class F -APX if there exists a transformation T mapping
instances of 3-SAT to instances of Π, constants n0 and c, and a gap function G which
is hard for the family F , such that given an instance x of 3-SAT on n ≥ n0 variables
and N ≥ nc, I = T (x,N) is an instance of Π with the following properties.

• If x ∈ 3-SAT, then OPT (I) = N .
• If x 6∈ 3-SAT, then OPT (I) = N/G(N).
• Given a solution S to I with V (I, S) > N/G(N), a truth assignment satis-

fying x can be found in polynomial time.
In the above definition, the transformation T from 3-SAT to Π is somewhat special

in that one can specify the size/optimum of the reduced problem and T can produce
a mapped instance of the desired size. This additional property is easily obtained for
additive problems by using a sufficient number of additions until the optimum of the
reduced problem is close to the target optimum, and then adding a problem of known
optimum value to the reduced problem.

Canonical hardness for NP minimization problems is analogously defined: OPT (I)
= N when the formula is satisfiable, and OPT (I) = NG(N) otherwise. Given any
solution with value less than NG(N), one can construct a satisfying assignment in
polynomial time.

4.1. The reduction.
Theorem 5. If F is a downward closed family of functions, and an additive

NPO problem Ω is canonically hard for the class F -APX-PB, then all problems in
F -APX-PB E-reduce to Ω.

Proof. Let Π be a polynomially bounded optimization problem in F -APX, ap-
proximable to within c(.) by an algorithm A, and let Ω be a problem shown to be
hard to within a factor G(.) where G is hard for F . Let V and V ′ denote the objective
functions of Π and Ω, respectively. We start with the special case where both Π and
Ω are maximization problems. We describe the functions f , g and the constant β as

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 175

required for an E-reduction.
Let I ∈ Π be an instance of size n; pick N so that c(n) is O(G(N)). To describe

our reduction, we need to specify the functions f and g. The function f is defined
as follows. Let m = V (I, A(I)). For each i ∈ {1, . . . ,mc(n)}, let Li denote the
NP-language {I|OPT (I) ≥ i}. Now, for each i, we create an instance φi ∈ Ω of size
N such that if I ∈ Li then OPT (φi) is N , and it is N/G(N) otherwise. We define
f(I) = φ =

∑
i φi.

We now construct the function g. Given an instance I ∈ Π and a solution s′ to
f(I), we compute a solution s to I in the following manner. We first use A to find
a solution s1. We also compute a second solution s2 to I as follows. Let j be the
largest index such that the solution s′ projects down to a solution s′j to the instance
φj such that V ′(φj , s′j) > N/G(N). This in turn implies that we can find a solution
s2 to witness V (I, s2) ≥ j. Our solution s is the one among s1 and s2 that yields the
larger objective function value.

We now show that the reduction is an E-reduction with β = 1+c(n)/(G(N)−1).
Let α = OPT (I)/m. Observe that

OPT (I ′) = Nm

(
α+

c(n)

G(N)
− α

G(N)

)
.

Consider the following two cases.
Case 1 [j ≤ m]: In this case, V (I, s) = m. Since s is a solution to I of error

at most (α − 1), it suffices to argue that the error of s′ as a solution to φ is at least
(α− 1)/β. We start with the following upper bound on V (φ, s′).

V (φ, s′) ≤ Nm
(

1 +
c(n)

G(N)
− 1

G(N)

)
.

Thus the approximation factor achieved by s′ is given by

E(φ, s′) ≥
Nm

(
α+ c(n)

G(N) − α
G(N)

)
Nm

(
1 + c(n)

G(N) − 1
G(N)

)
− 1

= (α− 1)

(
G(N)− 1

G(N) + c(n)− 1

)
=
α− 1

β
.

So in this case s1 (and hence s) is a solution to I with an error of at most βε, if s′ is
a solution to φ with an error of ε.

Case 2 [j ≥ m]: Let j = γm. Note that γ > 1 and that the error of s as a solution
to I is (α− γ)/γ. We bound the value of the solution s′ to φ as

V (φ, s′) ≤ Nm
(
γ +

c(n)

G(N)
− γ

G(N)

)
,

and its error as

E(φ, s′) =

α+ c(n)
G(N) − α

G(N)

γ + c(n)
G(N) − γ

G(N)

− 1

176 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

=

(
α− γ
γ

) 1

1 + c(n)
γ(G(N)−1)

≥
(
α− γ
γ

)
1

β
.

The final inequality follows from the fact that

1 +
c(n)

γ(G(N)− 1)
≤ 1 +

c(n)

(G(N)− 1)
= β.

Thus, in this case also, we find that s (by virtue of s2) is a solution to I of error
at most βε if s′ is a solution to φ of error ε.

We now consider the more general cases where Π and Ω are not both maximization
problems. For the case where both are minimization problems, the above transfor-
mation works with one minor change. When creating φi, the NP language consists of
instances (I, i) such that there exists s with V (I, s) ≤ i.

For the case where Π is a minimization problem and Ω is a maximization problem,
we first E-reduce Π to a maximization problem Π′ and then proceed as before. The
reduction proceeds as follows. Since Π is a polynomially bounded optimization prob-
lem, we can compute an upper bound on the value of any solution s to an instance
I. Let m be such a bound for an instance I. The objective function of Π′ on the
instance I is defined as V ′(I, s) = b2m2/V (I, s)c. To begin with, it is easy to verify
that Π ∈ F -APX implies Π′ ∈ F -APX.

Let s be a solution to instance I of Π of error β. We will show that s as a solution
to instance I of Π′ has an error of at least β/2. Assume, without loss of generality,
that β 6= 0. Then

V (I, s)−OPT (I) = β OPT (I) ≥ 1.

Multiplying by 2m2/(OPT (I)V (I, s)), we get

2m2

OPT (I)
− 2m2

V (I, s) = β
2m2

V (I, s) ≥ 2.

This implies that

2m2

OPT (I)
− 2m2

V (I, s) ≥ 1 +
1

2
× 2m2

OPT (I)
− 2m2

V (I, s)
= 1 +

β

2
× 2m2

V (I, s) .

Upon rearranging,

V ′(I, s) ≤ 1

(1 + β/2)

(
2m2

OPT (I)
− 1

)
≤ 1

(1 + β/2)

⌊
2m2

OPT (I)

⌋
.

Thus the reduction from Π to Π′ is an E-reduction.
Finally, the last remaining case, i.e., Π being a maximization problem and Ω being

a minimization problem, is dealt with similarly: we transform Π into a minimization
problem Π′.

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 177

Remark 6. This theorem appears to merge two different notions of the relative
ease of approximation of optimization problems. One such notion would consider
a problem Π1 easier than Π2 if there exists an approximation-preserving reduction
from Π1 to Π2. A different notion would regard Π1 to be easier than Π2 if one
seems to have a better factor of approximation than the other. The above statement
essentially states that these two comparisons are indeed the same. For instance, the
MAX CLIQUE problem and the CHROMATIC NUMBER problem, which are both
in poly-APX, are interreducible to each other. The above observation motivates the
search for other interesting function classes f , for which the class f -APX may contain
interesting optimization problems.

4.2. Applications. The following is a consequence of Theorem 5.
Theorem 6.
1. RMAX(2) = poly-APX.
2. If SET COVER is canonically hard to approximate to within a factor of

Ω(log n), then log-APX = MIN F+Π2(1).
We briefly sketch the proof of this theorem. The hardness reduction for MAX SAT

and CLIQUE are canonical [2, 11]. The classes APX-PB, poly-APX, log-APX are
expressible as classes F -APX for downward closed function families. The problems
MAX SAT, MAX CLIQUE, and SET COVER are additive. Thus, we can now apply
Theorem 5.

Remark 7. We would like to point out that almost all known instances of hardness
results seem to be shown for problems which are additive. In particular, this is true
for all MAX SNP problems, MAX CLIQUE, CHROMATIC NUMBER, and SET
COVER. Two cases where a hardness result does not seem to directly apply to an
additive problem is that of LONGEST PATH [17] and BIN PACKING. In the former
case, the closely related LONGEST S-T PATH problem is easily seen to be additive,
and the hardness result essentially stems from this problem. As for the case of BIN
PACKING, which does not admit a PTAS, the hardness result is not of a multiplicative
nature, and in fact this problem can be approximated to within arbitrarily small
factors, provided a small additive error term is allowed. This yields a reason why
this problem will not be additive. Lastly, the most interesting optimization problems
which do not seem to be additive are problems related to GRAPH BISECTION or
PARTITION, and these also happen to be notable instances where no hardness of
approximation results have been achieved!

5. Local search and MAX SNP. In this section we present a formal definition
of the paradigm of nonoblivious local search. The idea of nonoblivious local search
has been implicitly present in some well-known techniques such as the interior-point
methods. We will formalize this idea in the context of MAX SNP and illustrate its
application to MAX SNP problems. Given a MAX SNP problem Π, recall that the
goal is to find a structure S which maximizes the objective function: V (I, S) =∑
~x Φ(I, S, ~x). In the subsequent discussion, we view S as a k-dimensional boolean

vector.

5.1. Classical local search. We start by reviewing the standard mechanism
for constructing a local search algorithm. A δ-local algorithm A for Π is based
on a distance function D(S1, S2) which is the Hamming distance between two k-
dimensional vectors. The δ-neighborhood of a structure S is given by N(S, δ) = {S′ ⊆
Un |D(S, S′) ≤ δ}, where U is the universe. A structure S is called δ-optimal if
∀S′ ∈ N(S, δ), we have V (I, S) ≥ V (I, S′). The algorithm computes a δ-optimum

178 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

by performing a series of greedy improvements to an initial structure S0, where each
iteration moves from the current structure Si to some Si+1 ∈ N(Si, δ) of better value
(if any). For constant δ, a δ-local search algorithm for a polynomially bounded NPO
problem runs in polynomial time because:

• each local change is polynomially computable, and
• the number of iterations is polynomially bounded since the value of the ob-

jective function improves monotonically by an integral amount with each
iteration, and the optimum is polynomially bounded.

5.2. Nonoblivious local search. A nonoblivious local search algorithm is based
on a 3-tuple 〈S0,F ,D〉, where S0 is the initial solution structure which must be in-
dependent of the input, F(I, S) is a real-valued function referred to as the weight
function, and D is a real-valued distance function which returns the distance between
two structures in some appropriately chosen metric. The weight function F should
be such that the number of distinct values taken by F(I, S) is polynomially bounded
in the input size. Moreover, the distance function D should be such that given a
structure S and a fixed δ, N(S, δ) can be computed in time polynomial in |S|. Then,
as in classical local search, for constant δ, a nonoblivious δ-local algorithm terminates
in time polynomial in the input size.

The classical local search paradigm, which we call oblivious local search, makes
the natural choice for the function F(I, S) and the distance function D, i.e., it chooses
them to be V (I, S) and the Hamming distance. However, as we show later, this choice
does not always yield a good approximation ratio. We now formalize our notion of
this more general type of local search.

Definition 15 (nonoblivious local search algorithm). A nonoblivious local
search algorithm is a δ-local search algorithm whose weight function is defined to
be

F(I, S) =
∑
~x

r∑
i=1

piΦi(I, S, ~x) ,

where r is a constant, Φi’s are quantifier-free first-order formulas, and the profits
pi are real constants. The distance function D is an arbitrary polynomial-time com-
putable function.

A nonoblivious local search can be implemented in polynomial time in much
the same way as the oblivious local search. Note that the we are only considering
polynomially bounded weight functions and the profits pi are fixed independent of the
input size. In general, the nonoblivious weight functions do not direct the search in
the direction of the actual objective function. In fact, as we will see, this is exactly
the reason why they are more powerful and allow for better approximations.

We now define two classes of NPO problems.
Definition 16 (oblivious GLO). The class of problems Oblivious GLO consists

of all NPO problems which can be approximated within constant factors by an oblivious
δ-local search algorithm for some constant δ.

Definition 17 (nonoblivious GLO). The class of problems Nonoblivious GLO
consists of all NPO problems which can be approximated within constant factors by a
nonoblivious δ-local search algorithm for some constant δ.

Remark 8. It would be perfectly reasonable to allow weight functions that are non-
linear, but we stay with the above definition for the purposes of this paper. Allowing
only a constant number of predicates in the weight functions enables us to prevent

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 179

the encoding of arbitrarily complicated approximation algorithms. The structure S
is a k-dimensional vector, and so a natural metric for the distance function D is the
Hamming distance. In fact, classical local search is indeed based on the Hamming
metric and this is useful in proving negative results for the paradigm. In contrast,
the definition of nonoblivious local search allows for other distance functions, but we
will use only the Hamming metric in proving positive results in the remainder of this
paper. However, we have found that it is sometimes useful to modify this, for example,
by modifying the Hamming distance so that the complement of a vector is considered
to be at distance 1 from it. Finally, it is sometimes convenient to assume that the
local search makes the best possible move in the bounded neighborhood, rather than
an arbitrary move which improves the weight function. We believe that this does not
increase the power of nonoblivious local search.

6. The power of nonoblivious local search. We will show that there exists
a choice of a nonoblivious weight function for MAX k-SAT such that any assignment
which is 1-optimal with respect to this weight function yields a performance ratio of
2k/(2k − 1) with respect to the optimal. But first, we obtain tight bounds on the
performance of oblivious local search for MAX 2-SAT, establishing that its perfor-
mance is significantly weaker than the best-known result even when allowed to search
exponentially large neighborhoods. We use the following notation: for any fixed truth
assignment ~Z, Si is the set of clauses in which exactly i literals are true; and, for a
set of clauses S, W (S) denotes the total weight of the clauses in S.

6.1. Oblivious local search for MAX 2-SAT. We show a strong separation in
the performance of oblivious and nonoblivious local search for MAX 2-SAT. Suppose
we use a δ-local strategy with the weight function F being the total weight of the
clauses satisfied by the assignment, i.e., F = W (S1) +W (S2). The following theorem
shows that for any δ = o(n), an oblivious δ-local strategy cannot deliver a performance
ratio better than 3/2. This is rather surprising given that we are willing to allow near-
exponential time for the oblivious algorithm.

Theorem 7. The asymptotic performance ratio for an oblivious δ-local search
algorithm for MAX 2-SAT is 3/2 for any positive δ = o(n). This ratio is still bounded
by 5/4 when δ may take any value less than n/2.

Proof. We first show the existence of an input instance for MAX 2-SAT which may
elicit a relatively poor performance ratio for any δ-local algorithm provided δ = o(n).
In our construction of such an input instance, we assume that n ≥ 2δ + 1. The input
instance comprises a disjoint union of four sets of clauses, say Γ1,Γ2,Γ3, and Γ4,
defined as below:

Γ1 =
⋃

1≤i<j≤n
(zi + zj),

Γ2 =
⋃

1≤i<j≤n
(zi + zj),

Γ3 =
⋃

0≤i≤δ
ζ2i+1,

Γ4 =
⋃

2δ+2≤i≤n
ζi,

ζi =
⋃

i<j≤n
(zi + zj).

180 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

Clearly, |Γ1| = |Γ2| =
(
n
2

)
and |Γ3| + |Γ4| =

(
n
2

) − nδ + δ(δ + 1). Without loss

of generality, assume that the current input assignment is ~Z = (1, 1, . . . , 1). This
satisfies all clauses in Γ1 and Γ2. But none of the clauses in Γ3 and Γ4, are satisfied.
If we flip the assignment of values to any k ≤ δ variables, it would unsatisfy precisely
k(n− k) clauses in Γ1 + Γ2. This is the number of clauses in Γ1 + Γ2 where a flipped
variable occurs with an unflipped variable.

On the other hand, flipping the assigned values of any k ≤ δ variables can satisfy
at most k(n− k) clauses in Γ3 + Γ4, as we next show.

Let Π(n, δ) denote the set of clauses on n variables given by
⋃

0≤i≤δ ζ2i+1 +⋃
2δ+2≤i≤n ζi, where 2δ + 1 ≤ n. We claim the following.

Lemma 1. Any assignment of values to the n variables such that at most k ≤ δ
variables have been assigned value false, can satisfy at most k(n−k) clauses in Π(n, δ).

Proof. We prove by simultaneous induction on n and δ that the statement is true
for any instance Π(n, δ) where n and δ are nonnegative integers such that 2δ+ 1 ≤ n.
The base case includes n = 1 and n = 2 and is trivially verified to be true for the only
allowable value of δ, namely δ = 0. We now assume that the statement is true for
any instance Π(n′, δ′) such that n′ < n and 2δ′ + 1 ≤ n′. Consider now the instance
Π(n, δ). The statement is trivially true for δ = 0. Now consider any δ > 0 such that
2δ+1 ≤ n. Let {zj1 , zj2 , . . . zjk} be any choice of k ≤ δ variables such that jp < jq for
p < q. Again the assertion is trivially true if k = 0 or k = 1. We assume that k ≥ 2
from now on. If we delete all clauses containing the variables z1 and z2 from Π(n, δ),
we get the instance Π(n− 2, δ − 1). We now consider three cases.

Case 1 [j1 ≥ 3]: In this case, we are reduced to the problem of finding an upper
bound on the maximum number of clauses satisfied by setting any k variables to false
in Π(n− 2, δ− 1). If k ≤ δ− 1, we may use the inductive hypothesis to conclude that
no more than (n− 2− k)(k) clauses will be satisfied. Thus the assertion holds in this
case. However, we may not directly use the inductive hypothesis if k = δ. But in this
case we observe that since by the inductive hypothesis, setting any k − 1 variables in
Π(n− 2, δ− 1) to false satisfies at most (n− 2− (k− 1))(k− 1) clauses, assigning the
value false to any set of k variables can satisfy at most

(n− 2− (k − 1))(k − 1) +
1

k − 1
(n− 2− (k − 1))(k − 1) = (n− k)k − k2

clauses. Hence the assertion holds in this case also.
Case 2 [j1 = 2]: In this case, zj1 satisfies one clause and the remaining k − 1

variables satisfy at most (n− 2− (k − 1))(k − 1) clauses by the inductive hypothesis
on Π(n− 2, δ − 1). Adding up the two terms, we see that the assertion holds.

Case 3 [j1 = 1]: We analyze this case based on whether j2 = 2 or j2 ≥ 3. If
j2 = 2, then z1 and z2 together satisfy precisely n−1 clauses, and the remaining k−2
variables satisfy at most (n−2−(k−2))(k−2) clauses using the inductive hypothesis.
Thus the assertion still holds. Otherwise, z1 satisfies precisely n − 1 clauses and the
remaining k − 1 variables satisfy no more than (n− 1− (k − 1))(k − 1) clauses using
the inductive hypothesis. Summing up the two terms, we get (n − k)k as the upper
bound on the total number of clauses satisfied. Thus the assertion holds in this case
also.

To see that this bound is tight, simply consider the situation when the k variables
set to false are z1, z3, . . . , z2k−1, for any k ≤ δ. The total number of clauses satisfied

is given by
∑k
i=1 |ζ2i−1| = (n− k)k.

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 181

Assuming that each clause has the same weight, Lemma 1 allows us to conclude
that a δ-local algorithm cannot increase the total weight of satisfied clauses with this
starting assignment. An optimal assignment, on the other hand, can satisfy all the
clauses by choosing the vector ~Z = (0, 0, . . . , 0). Thus the performance ratio of a
δ-local algorithm, say Rδ, is bounded as

Rδ =
|Γ1|+ |Γ2|+ |Γ3|+ |Γ4|

|Γ1|+ |Γ2|

≤ 3
(
n
2

)
+ δ(δ + 1)− δn

2
(
n
2

) .

For any δ = o(n), this ratio asymptotically converges to 3/2. We next show that
this bound is tight since a 1-local algorithm achieves it. However, before we do so,
we make another intriguing observation, namely, that for any δ < n/2, the ratio Rδ
is bounded by 5/4.

Now, to see that a 1-local algorithm ensures a performance ratio of 3/2, consider

any 1-optimal assignment ~Z and let αi denote the set of clauses containing the variable
zi such that no literal in any clause of αi is satisfied by ~Z. Similarly, let βi denote the
set of clauses containing the variable zi such that precisely one literal is satisfied in any
clause in βi, and furthermore, it is precisely the literal containing the variable zi. If we
complement the value assigned to the variable zi, it is exactly the set of clauses in αi
which becomes satisfied and the set of clauses in βi which is no longer satisfied. Since
~Z is 1-optimal, it must be the case that W (αi) ≤W (βi). If we sum up this inequality
over all the variables, then we get the inequality

∑n
i=1W (αi) ≤

∑n
i=1W (βi). We

observe that
∑n
i=1W (αi) = 2W (S0) and

∑n
i=1W (βi) = W (S1) because each clause

in S0 gets counted twice while each clause in S1 gets counted exactly once. Thus
the fractional weight of the number of clauses not satisfied by a 1-local assignment is
bounded as

W (S0)

W (S0) +W (S1) +W (S2)
≤ W (S0)

3W (S0) +W (S2)
≤ W (S0)

3W (S0)
=

1

3
.

Hence the performance ratio achieved by a 1-local algorithm is bounded from above
by 3/2. Combining this with the upper bound derived earlier, we conclude that
R1 = 3/2. This concludes the proof of the theorem.

6.2. Nonoblivious local search for MAX 2-SAT. We now illustrate the power
of nonoblivious local search by showing that it achieves a performance ratio of 4/3
for MAX 2-SAT, using 1-local search with a simple nonoblivious weight function.

Theorem 8. Nonoblivious 1-local search achieves a performance ratio of 4/3 for
MAX 2-SAT.

Proof. We use the nonoblivious weight function

F(I, ~Z) =
3

2
W (S1) + 2W (S2).

Consider any assignment ~Z which is 1-optimal with respect to this weight function.
Without loss of generality, we assume that the variables have been renamed such that
each unnegated literal gets assigned the value true. Let Pi,j and Ni,j , respectively,
denote the total weight of clauses in Si containing the literals zj and zj , respectively.

Since ~Z is a 1-optimal assignment, each variable zj must satisfy the following equation.

−1

2
P2,j − 3

2
P1,j +

1

2
N1,j +

3

2
N0,j ≤ 0.

182 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

Summing this inequality over all the variables and using

n∑
j=1

P1,j =
n∑
j=1

N1,j = W (S1),

n∑
j=1

P2,j = 2W (S2),

n∑
j=1

N0,j = 2W (S0),

we obtain the following inequality:

W (S2) +W (S1) ≥ 3W (S0).

This immediately implies that the total weight of the unsatisfied clauses at this local
optimum is no more than 1/4 times the total weight of all the clauses. Thus, this
algorithm ensures a performance ratio of 4/3.

Remark 9. The same result can be achieved by using the oblivious weight function
and instead modifying the distance function so that it corresponds to distances in
a hypercube augmented by edges between nodes whose addresses complement each
other.

6.3. Generalization to MAX k-SAT. We can also design a nonoblivious
weight function for MAX k-SAT such that a 1-local strategy ensures a performance
ratio of 2k/(2k − 1). The weight function F will be of the form F =

∑k
i=0 ciW (Si)

where the coefficients ci’s will be specified later.
Theorem 9. Nonoblivious 1-local search achieves a performance ratio of 2k/(2k−

1) for MAX k-SAT.
Proof. Again, without loss of generality, we will assume that the variables have

been renamed so that each unnegated literal is assigned true under the current truth
assignment. Thus the set Si is the set of clauses with i unnegated literals.

Let ∆i = ci − ci−1 and let ∂F
∂zj

denote the change in the current weight when we

flip the value of zj , that is, set it to 0. It is easy to verify the following equation:

∂F
∂zj

= −∆kPk,j +
2∑
i=k

(∆iNi−1,j −∆i−1Pi−1,j) + ∆1N0,j .(6.1)

Thus when the algorithm terminates, we know that ∂F
∂zj
≤ 0, for 1 ≤ j ≤ n.

Summing over all values of j, and using the fact
∑n
j=1 Pi,j = iW (Si) and

∑n
j=1Ni,j =

(k − i)W (Si) we get the following inequality.

k∆kW (Sk) +
2∑

i=k−1

(i∆i − (k − i)∆i+1)W (Si) ≥ k∆1W (S0).(6.2)

We now determine the values of ∆i’s such that the coefficient of each term on the
left-hand side is unity. It can be verified that

∆i =
1

(k − i+ 1)
(
k
i−1

) k−i∑
j=0

(
k

j

)

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 183

achieves this goal. Thus the coefficient of W (S0) on the right-hand side of equation
(6.2) is 2k − 1. Clearly, the weight of the clauses not satisfied is bounded by 1/2k

times the total weight of all the clauses. It is worthwhile to note that this is regardless
of the value chosen for the coefficient c0.

7. Local search for CSP and MAX SNP. We now introduce a class of
constraint satisfaction problems such that the problems in MAX SNP are exactly
equivalent to the problems in this class. Furthermore, every problem in this class can
be approximated to within a constant factor by a nonoblivious local search algorithm.

7.1. Constraint satisfaction problems. The connection between the syn-
tactic description of optimization problems and their approximability through non-
oblivious local search is made via a problem called MAX k-CSP which captures all
the problems in MAX SNP as a special case.

Definition 18 (k-ary constraint). Let Z = {z1, . . . , zn} be a set of boolean
variables. A k-ary constraint on Z is C = (V ;P), where V is a size k subset of Z,
and P : {T, F}k → {T, F} is a k-ary boolean predicate.

Definition 19 (MAX k-CSP). Given a collection C1, . . ., Cm of weighted k-ary
constraints over the variables Z = {z1, . . . , zn}, the MAX k-CSP problem is to find a
truth assignment satisfying a maximum weight subcollection of the constraints.

The following theorem shows that the MAX k-CSP problem is a “universal”
MAX SNP problem, in that it contains as special cases all problems in MAX SNP.

Theorem 10.
1. For fixed k, MAX k-CSP ∈ MAX SNP.
2. Let Π ∈ MAX SNP. Then, for some constant k, Π is a MAX k-CSP problem.

Moreover, the k-CSP instance corresponding to any instance of this problem
can be computed in polynomial time.

Proof. The proof of part 2 is implicit in Theorem 1 in [23], and so we concentrate
on proving part 1. Our goal is to obtain a representation of the k-CSP problem in
the MAX SNP syntax:

max
S
|{x | Φ(I, S, x)}|.

The input structure is I = (Z ∪{T, F}∪max; {arg,eval}), where Z = {z1, . . . , zn},
max contains the integers [1,max{k, n,m}], the predicate arg encodes the sets Vi,
and the predicate eval encodes the predicates Pi, as described below.

• arg(r, s, zt) is a 3-ary predicate which is true if and only if the rth argument
of Cs is the variable zt, for 1 ≤ r ≤ k, 1 ≤ s ≤ m, and 1 ≤ t ≤ n.
• eval(s, v1, . . . , vk) is a (k + 1)-ary predicate which is true if and only if
Ps(v1, . . . , vk) evaluates to true, for 1 ≤ s ≤ m and all vi ∈ {T, F}.

The structure S is defined as (Z; {true}), where true is a unary predicate which
denotes an assignment of truth values to the variables in Z. The vector x has k + 1
components which will be called x1, . . ., xk and s, for convenience. The intention is
that the xi’s refer to the arguments of the sth constraint.

All that remains is to specify the quantifier-free formula Φ. The basic idea is
that Φ(I, S, x) should evaluate to true if and only if the following two conditions are
satisfied:

• the arguments of the constraint Cs are given by the variables x1, . . ., xk, in
that order, and
• the values given to these variables under the truth assignment specified by S

are such that the constraint is satisfied.

184 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

The formula Φ is given by the following expression, with the two subformulas ensuring
these two conditions.(

k∧
r=1

arg(r, s, xr)

)
∧
 ∨
v1,...,vk∈{T,F}

(
eval(s, v1, . . . , vk) ∧

(
k∧
r=1

vr ⇔ true(xr)

)) .

It is easy to see that the first subformula has the desired effect of checking that the
xr’s correspond to the arguments of Cs. The second subformula considers all possible
truth assignments to these k variables and checks that the particular set of values
assigned by the structure S will make Ps evaluate to true.

For a fixed structure S, there is exactly one choice of x per constraint that could
make Φ evaluate to true, and this happens if and only if that constraint is satisfied.
Thus, the value of the solution given by any particular truth assignment structure S is
exactly the number of constraints that are satisfied. This shows that the MAX SNP
problem always has the same value as intended in the k-CSP problem.

Finally, there are still a few things which need to be checked to ensure that this
is a valid MAX SNP formulation. Notice that all the predicates are of bounded arity
and the structures consist of a bounded number of such predicates, i.e., independent
of the input size which is given by max. Further, although the length of the formula
is exponential in k, it is independent of the input.

7.2. Nonoblivious local search for MAX k-CSP. A suitable generalization
of the nonoblivious local search algorithm for MAX k-SAT yields the following result.

Theorem 11. A nonoblivious 1-local search algorithm has performance ratio 2k

for MAX k-CSP.
Proof. We use an approach similar to the one used in the previous section to

design a nonoblivious weight function F for the weighted version of the MAX k-CSP
problem such that a 1-local algorithm yields a 2k performance ratio to this problem.

We consider only the constraints with at least one satisfying assignment. Each
such constraint can be replaced by a monomial which is the conjunction of some
k literals such that when the monomial evaluates to true the corresponding literal
assignment represents a satisfying assignment for the constraint. Furthermore, each
such monomial has precisely one satisfying assignment. We assign to each monomial
the weight of the constraint it represents. Thus any assignment of variables which
satisfies monomials of total weight W0 also satisfies constraints in the original problem
of total weight W0.

Let Si denote the monomials with i true literals and assume that the weight
function F is of the form

∑k
i=1 ciW (Si). Thus, assuming that the variables have been

renamed so that the current assignment gives value true to each variable, we know
that for any variable zj ,

∂F
∂zj

is given by equation (6.1). As before, using the fact that

for any 1-optimal assignment, ∂F
∂zj
≤ 0 for 1 ≤ j ≤ n, and summing over all values of

j, we can write the following inequality.

k∆1W (S0) +
k−1∑
i=2

((k − i)∆i+1 − i∆i)W (Si) ≤ k∆kW (Sk) .(7.1)

We now determine the values of ∆i’s such that the coefficient of each term on the
left-hand side is unity. It can be verified that

∆i =
1

i
(
k
i

) i−1∑
j=0

(
k

j

)

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 185

achieves this goal. Thus the coefficient of W (Sk) on the right-hand side of equation
(6.1) is 2k − 1. Clearly, the total weight of clauses satisfied is at least 1/2k times the
total weight of all the clauses with at least one satisfiable assignment.

We conclude as in the following theorem.
Theorem 12. Every optimization problem Π ∈ MAX SNP can be approximated

to within some constant factor by a (uniform) nonoblivious 1-local search algorithm,
i.e.,

MAX SNP ⊆ Nonoblivious GLO.

For a problem expressible as k-CSP, the performance ratio is at most 2k.

8. Nonoblivious versus oblivious GLO. In this section, we show that there
exist problems for which no constant-factor approximation can be obtained by any
δ-local search algorithm with oblivious weight function, even when we allow δ to grow
with the input size. However, a simple 1-local search algorithm using an appropriate
nonoblivious weight function can ensure a constant performance ratio.

8.1. MAX 2-CSP. The first problem is an instance of MAX 2-CSP where we are
given a collection of monomials such that each monomial is an “and” of precisely two
literals. The objective is to find an assignment to maximize the number of monomials
satisfied.

We show an instance of this problem such that for every δ = o(n), there exists
an instance one of whose local optima has value that is a vanishingly small fraction
of the global optimum.

The input instance consists of a disjoint union of two sets of monomials, say Γ1

and Γ2, defined as below:

Γ1 =
⋃

1≤i<j≤n
(zi ∧ zj),

Γ2 =
⋃

1≤i≤δ

⋃
i<j≤n

(zi ∧ zj).

Clearly, |Γ1| =
(
n
2

)
and |Γ2| = nδ − (δ+1

2

)
. Consider the truth assignment ~Z =

(1, 1, . . . , 1). It satisfies all monomials in Γ2 but none of the monomials in Γ1. We
claim that this assignment is δ-optimal with respect to the oblivious weight function.
To see this, observe that complementing the value of any p ≤ δ variables will unsatisfy
at least δp/2 monomials in Γ2 for any δ = o(n). On the other hand, this will satisfy
precisely

(
p
2

)
monomials in Γ1. For any p ≤ δ, we have (δp)/2 ≥ (p2), and so Z is a

δ-local optimum.
The optimal assignment, on the other hand, namely ~ZOPT = (0, 0, . . . , 0), satisfies

all monomials in Γ1. Thus, for δ < n/2, the performance ratio achieved by any δ-local
algorithm is no more than

(
n
2

)
/(nδ − (δ+1

2

)
) which asymptotically diverges to infinity

for any δ = o(n). We have already seen in section 7 that a 1-local nonoblivious
algorithm ensures a performance ratio of 4 for this problem. Since this problem is in
MAX SNP, we obtain the following theorem.

Theorem 13. There exist problems in MAX SNP such that for δ = o(n), no
δ-local oblivious algorithm can approximate them to within a constant performance
ratio, i.e.,

MAX SNP 6⊆ Oblivious GLO.

186 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

8.2. Vertex cover. Ausiello and Protasi [4] have shown that VERTEX COVER
does not belong to the class GLO and, hence, there does not exist any constant δ such
that an oblivious δ-local search algorithm can compute a constant factor approxima-
tion. In fact, their example can be used to show that for any δ = o(n), the performance
ratio ensured by δ-local search asymptotically diverges to infinity. However, we show
that there exists a rather simple nonoblivious weight function which ensures a fac-
tor 2 approximation via a 1-local search. In fact, the algorithm simply enforces the
behavior of the standard approximation algorithm which iteratively builds a vertex
cover by simply including both endpoints of any currently uncovered edge.

We assume that the input graph G is given as a structure (V, {E}) where V is
the set of vertices and E ⊆ V × V encodes the edges of the graph. Our solution is
represented by a 2-ary predicate M which is iteratively constructed so as to represent
a maximal matching. Clearly, the endpoints of any maximal matching constitute a
valid vertex cover and such a vertex cover can be at most twice as large as any other
vertex cover in the graph. Thus M is an encoding of the vertex cover computed by
the algorithm.

The algorithm starts with M initialized to the empty relation, and at each iter-
ation, at most one new pair is included in it. The nonoblivious weight function used
is as below:

F(I,M) =
∑

〈x,y,z〉∈V 3

[Φ1(x, y, z)− 2Φ2(x, y, z)− Φ3(x, y, z)],

where

Φ1(x, y, z) = (M(x, y) ∧ E(x, y) ∧ (x = z)),

Φ2(x, y, z) = (M(x, y) ∧M(x, z)),

Φ3(x, y, z) = (M(x, y) ∧ E(x, y)).

Let M encode a valid matching in the graph G. We make the following observa-
tions.

• Any relation M ′ obtained from M by deleting an edge from it, or including
an edge which is incident on an edge of M , or including a nonexistent edge,
has the property that F(I,M ′) ≤ F(I,M). Thus in a 1-local search from M ,
we will never move to a relation M ′ which does not encode a valid matching
of G.
• On the other hand, if a relation M ′ corresponds to the encoding of a matching

in G which is larger than the matching encoded by M , then F(I,M ′) >
F(I,M). Thus if M does not encode a maximal matching in G, there always
exist a relation in its 1-neighborhood of larger weight than itself.

These two observations, combined with the fact that we start with a valid initial
matching (the empty matching), immediately allow us to conclude that any 1-optimal
relation M always encodes a maximal matching in G. We have established the fol-
lowing.

Theorem 14. A 1-local search algorithm using the above nonoblivious weight
function achieves a performance ratio of 2 for the VERTEX COVER problem.

Theorem 15. GLO is a strict subset of Nonoblivious GLO.
As an aside, it can be seen that this algorithm has the same performance starting

with an arbitrary initial solution. This is because for any relation M not encoding a
matching of the input graph, deleting one of the violating members strictly increases
F(I,M).

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 187

9. The traveling salesman problem. The TSP(1,2) problem is the traveling
salesman problem restricted to complete graphs where all edge weights are either 1
or 2; clearly, this satisfies the triangle inequality. Papadimitriou and Yannakakis [24]
showed that this problem is hard for MAX SNP. The natural weight function for
TSP(1,2), that is, the weight of the tour, can be used to show that a 4-local algorithm
yields a 3/2 performance ratio. The algorithm starts with an arbitrary tour, and in
each iteration, it checks if there exist two disjoint edges (a, b) and (c, d) on the tour
such that deleting them and replacing them with the edges (a, c) and (b, d) yields a
tour of lesser cost.

Theorem 16. A 4-local search algorithm using the oblivious weight function
achieves a 3/2 performance ratio for TSP(1,2).

Proof. Let C be a 4-optimal solution and let π be a permutation such that the
vertices in C occur in the order vπ1

, vπ2
, . . . , vπn . Consider any optimal solution O.

With each unit cost edge e in O, we associate a unit cost edge e′ in C as follows. Let
e = (vπi , vπj) where i < j. If j = i + 1 then e′ = e. Otherwise, consider the edges
e1 = (vπi , vπi+1) and e2 = (vπj , vπj+1) on C. We claim that either e1 or e2 must be of
unit cost. Suppose not; then the tour C ′ which is obtained by simply deleting both
e1 and e2 and inserting the edges e and f = (vπi+1

, vπj+1
) has cost at least one less

than C. But C is 4-optimal and thus this is a contradiction.
Let UO denote the set of unit cost edges in O and let UC be the set of unit cost

edges in C which form the image of UO under the above mapping. Since an edge
e′ = (vπi , vπi+1) in UC can only be the image of unit cost edges incident on vπi in
O and since O is a tour, there are at most two edges in UO which map to e′. Thus
|UC | ≥ |UO|/2 and hence

cost(O)

cost(C)
≥ |UO|+ 2(n− |UO|)
|UO|/2 + 2(n− |UO|/2)

≥ 2

3
.

In fact, the above bound can be shown to be tight.

10. Maximum independent sets in bounded-degree graphs. The input
instance to the maximum independent set problem in bounded-degree graphs, denoted
MIS-B, is a graph G such that the degree of any vertex in G is bounded by a constant
∆. We present an algorithm with performance ratio (

√
8∆2 + 4∆ + 1− 2∆ + 1)/2 for

this problem when ∆ ≥ 10.
Our algorithm uses two local search algorithms such that the larger of the two in-

dependent sets computed by these algorithms gives us the above-claimed performance
ratio. We refer to these two algorithms as A1 and A2.

In our framework, the algorithm A1 can be characterized as a 3-local algorithm
with the weight function simply being |I| − 3|(I × I) ∩ E|. Thus if we start with I
initialized to empty set, it is easy to see that at each iteration, I will correspond to an
independent set in G. A convenient way of looking at this algorithm is as follows. We
define an i ↔ j swap to be the process of deleting i vertices from S and including j
vertices from the set V −S to the set S. In each iteration, the algorithm A1 performs
either a 0↔ j swap where 1 ≤ j ≤ 3, or a 1↔ 2 swap. A 0↔ j swap, however, can
be interpreted as j applications of 0↔ 1 swaps. Thus the algorithm may be viewed as
executing a 0↔ 1 swap or a 1↔ 2 swap at each iteration. The algorithm terminates
when neither of these two operations is applicable.

Let I denote the 3-optimal independent set produced by the algorithm A1. Fur-
thermore, let O be any optimal independent set and let X = I ∩ O. We make the
following useful observations.

188 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

• Since for no vertex in I, a 0↔ 1 swap can be performed, it implies that each
vertex in V − I must have at least one incoming edge to I.
• Similarly, since no 1 ↔ 2 swaps can be performed, it implies that at most
|I − X| vertices in O − I can have precisely one edge coming into I. Thus
|O−X| − |I −X| = |O| − |I| vertices in O−X must have at least two edges
entering the set I.

A rather straightforward consequence of these two observations is the following
lemma.

Lemma 2. The algorithm A1 has performance ratio (∆ + 1)/2 for MIS-B.
Proof. The above two observations imply that the minimum number of edges

entering I from the vertices in O−X is |I−X|+ 2(|O|− |I|). On the other hand, the
maximum number of edges coming out of the vertices in I to the vertices in O−X is
bounded by |I −X|∆. Thus we must have

|I −X|∆ ≥ |I −X|+ 2(|O| − |I|) .

Rearranging, we get

|I|
|O| ≥

2

∆ + 1
+
|X|(∆− 1)

|O|(∆ + 1)
,

which yields the desired result.
This nearly matches the approximation ratio of ∆/2 due to Hochbaum [15]. It

should be noted that the above result holds for a broader class of graphs, viz., k-claw
free graphs. A graph is called k-claw free if there does not exist an independent set
of size k or larger such that all the vertices in the independent set are adjacent to the
same vertex. Lemma 2 applies to (∆ + 1)-claw free graphs.

Our next objective is to further improve this ratio by using the algorithm A1 in
combination with the algorithm A2. The following lemma uses a slightly different
counting argument to give an alternative bound on the approximation ratio of the
algorithm A1 when there is a constraint on the size of the optimal solution.

Lemma 3. For any real number c < ∆, the algorithm A1 has performance ratio
(∆− c)/2 for MIS-B when the optimal value itself is no more than

(∆− c)|V |
∆ + c+ 4

.

Proof. As noted earlier, each vertex in V − I must have at least one edge coming
into the set I, and at least |O|− |I| vertices in O must have at least two edges coming
into I. Therefore, the following inequality must be satisfied:

|I|∆ ≥ |V | − |I|+ |O| − |I| .

Thus |I| ≥ (|V |+ |O|)/(∆ + 2). Finally, observe that

|V |+ |O|
∆ + 2

≥ 2

∆− c |O|

whenever |O| ≤ (∆− c)|V |/(∆ + c+ 4).
The above lemma shows that the algorithm A1 yields a better approximation

ratio when the size of the optimal independent set is relatively small.

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 189

The algorithm A2 is simply the classical greedy algorithm. This algorithm can be
conveniently included in our framework if we use directed local search. If we let N(I)
denote the set of neighbors of the vertices in I, then the weight function is simply
|I|(∆ + 1) + |V − (I + N(I))| − |(I × I) ∩ E|(∆ + 1). It is not difficult to see that
starting with an empty independent set, a 1-local algorithm with directed search on
the above weight function simply simulates a greedy algorithm. The greedy algorithm
exploits the situation when the optimal independent set is relatively large in size. It
does so by using the fact that the existence of a large independent set in G ensures a
large subset of vertices in G with relatively small average degree. The following two
lemmas characterize the performance of the greedy algorithm.

Lemma 4. Suppose there exists an independent set X ⊆ V such that the average
degree of vertices in X is bounded by α. Then, for any α ≥ 1, the greedy algorithm
produces an independent set of size at least |X|/(1 + α).

Proof. The greedy algorithm iteratively chooses a vertex of smallest degree in the
remaining graph and then deletes this vertex and all its neighbors from the graph. We
examine the behavior of the greedy algorithm by considering two types of iterations.
First consider the iterations in which it picks a vertex outside X. Suppose that in the
ith such iteration, it picks a vertex in V −X with exactly ki neighbors in the set X
in the remaining graph. Since each one of these ki vertices must also have at least ki
edges incident on them, we lose at least k2

i edges incident on X. Suppose only p such
iterations occur and let

∑p
i=1 ki = x. We observe that

∑p
i=1 k

2
i ≤ α|X|. Second, we

consider the iterations when the greedy algorithm selects a vertex in X. Then we do
not lose any other vertices in X because X is an independent set. Thus the total size
of the independent set constructed by the greedy algorithm is at least p + q where
q = |X| − x.

By the Cauchy–Schwartz inequality,
∑p
i=1 k

2
i ≥ x2/p. Therefore, we have (1 +

α)|X| ≥ x2/p+ x. Rearranging, we obtain that

p ≥ x2

(1 + α)|X| − x ≥
x2

(1 + α)|X| ≥
|X|

1 + α
+

q2

(1 + α)|X| −
2q

1 + α
.

Thus

p+ q ≥ |X|
1 + α

+
q2

(1 + α)|X| −
2q

1 + α
+ q.

But 2q/(1 + α) ≤ q for α ≥ 1, and the result follows.
Lemma 5. For ∆ ≥ 10 and any nonnegative real number c ≤ 3∆−√8∆2 + 4∆ + 1−

1, the algorithm A2 has performance ratio (∆−c)/2 for MIS-B when the optimal value
itself is at least ((∆− c)|V |)/(∆ + c+ 4).

Proof. Observe that the average degree of vertices in O is bounded by
(|V −O|∆/|O|) and thus, using the fact that |O| ≥ (∆− c)|V |/(∆ + c+ 4), we know
that the algorithm A2 computes an independent set of size at least |O|/(1 +α) where
α = (4∆ + 2∆c)/(∆− c), and α ≥ 1 for c ≥ 0. Hence it is sufficient to determine the
range of values c can take such that the following inequality is satisfied:

|O|
1 + α

≥
(

2

∆− c
)
|O|.

Substituting the bound on the value of α and rearranging the terms of the equation
yields the following quadratic equation:

c2 − (6∆− 2)c+ ∆2 − 10∆ ≥ 0 .

190 S. KHANNA, R. MOTWANI, M. SUDAN, AND U. VAZIRANI

Since c must be strictly bounded by ∆, the above quadratic equation is satisfied
for any choice of c ≤ 3∆−√8∆2 + 4∆ + 1− 1 if ∆ ≥ 10.

Combining the results of Lemmas 3 and 5 and choosing the largest allowable value
for c, we get the following result.

Theorem 17. An approximation algorithm which simply outputs the larger of the
two independent sets computed by the algorithms A1 and A2 has performance ratio
(
√

8∆2 + 4∆ + 1− 2∆ + 1)/2 for MIS-B.
The performance ratio claimed above is essentially ∆/2.414. This improves upon

the long-standing approximation ratio of ∆/2 due to Hochbaum [15], when ∆ ≥ 10.
However, very recently, there has been a flurry of new results for this problem. Berman
and Furer [6] have given an algorithm with performance ratio (∆+3)/5+ ε when ∆ is
even, and (∆+3.25)/5+ε for odd ∆, where ε > 0 is a fixed constant. Halldorsson and
Radhakrishnan [14] have shown that algorithm A1, when run on k-clique free graphs,
yields an independent set of size at least 2n/(∆ + k). They combine this algorithm
with a clique-removal-based scheme to achieve a performance ratio of ∆/6(1 + o(1)).

In conclusion, note that Khanna, Motwani and Vishwanathan [19] have recently
shown that a semidefinite programming technique can be used to obtain a
(∆ log log ∆)/(log ∆)-approximation algorithm for this problem.

Acknowledgments. Many thanks to Phokion Kolaitis for his helpful comments
and suggestions and to Giorgio Ausiello and Pierluigi Crescenzi for guiding us through
the intricacies of approximation-preserving reductions and the available literature
on them. Thanks also to the anonymous referees for their detailed comments and
corrections on a previous draft.

REFERENCES

[1] P. Alimonti, New local search approximation techniques for maximum generalized satisfiability
problems, in Proc. 2nd Italian Conference on Algorithms and Complexity, Springer-Verlag,
Berlin, 1994, pp. 40–53.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, in Proc. 33rd Annual IEEE Symposium on Foundations
of Computer Science, 1992, pp. 14–23.

[3] G. Ausiello, P. Crescenzi, and M. Protasi, Approximate solution of NP optimization prob-
lems, Theoret. Comput. Sci., 150 (1995), pp. 1–55.

[4] G. Ausiello and M. Protasi, Local search, reducibility, and approximability of NP optimiza-
tion problems, Inform. Process. Lett., 54 (1995), pp. 73–79.

[5] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically check-
able proofs and applications to approximation, in Proc. 25th Annual ACM Symposium on
Theory of Computing, 1993, pp. 294–304.

[6] P. Berman and M. Furer, Approximating maximum independent set in bounded degree
graphs, in Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, 1993,
pp. 365–371.

[7] D. P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[8] P. Crescenzi and A. Panconesi, Completeness in approximation classes, Inform. and Com-
put., 93 (1991), pp. 241–262.

[9] P. Crescenzi and L. Trevisan, On approximation scheme preserving reducibility and its
applications, in Proc. 14th Conference on Foundations of Software Technology and Theo-
retical Computer Science, Lecture Notes in Computer Science 880, Springer-Verlag, New
York, 1994, pp. 330–341.

[10] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in Complexity
of Computer Computations, Richard Karp, ed., AMS, Providence, RI, 1974.

[11] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating clique is
almost NP-complete, in Proc. 32nd Annual IEEE Symposium on Foundations of Computer
Science, 1991, pp. 2–12.

SYNTACTIC VERSUS COMPUTATIONAL VIEWS 191

[12] M. R. Garey and David S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman, San Francisco, CA, 1979.

[13] M. X. Goemans and D. P. Williamson, .878-approximation algorithms for MAX CUT and
MAX 2SAT, in Proc. 26th ACM Symposium on Theory of Computing, 1994, pp. 422–431.

[14] M. M. Halldorsson and J. Radhakrishnan, Improved approximations of independent sets
in bounded-degree graphs, Nordic J. Comput., 1 (1994), pp. 475–492.

[15] D. S. Hochbaum, Efficient bounds for the stable set, vertex cover, and set packing problems,
Disc. Appl. Math., 6 (1982), pp. 243–254.

[16] V. Kann, On the Approximability of NP-complete Optimization Problems, Ph.D. Thesis, De-
partment of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm, Sweden, 1992.

[17] D. Karger, R. Motwani, and G. D. S. Ramkumar, On approximating the longest path in a
graph, in Proc. 3rd Workshop on Algorithms and Data Structures, Springer-Verlag, Berlin,
1993, pp. 421–432.

[18] S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani, On syntactic versus computa-
tional views of approximability, in Proc. 35th Annual IEEE Symposium on Foundations of
Computer Science, 1994, pp. 819–830.

[19] S. Khanna, R. Motwani, and S. Vishwanathan, Approximating MAX SNP problems via
semi-definite programming, in preparation, 1996.

[20] P. G. Kolaitis and M. N. Thakur, Approximation properties of NP minimization classes, J.
Comput. System Sci., 50 (1995), pp. 391–411.

[21] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
Assoc. Comput. Mach., 41 (1994), pp. 960–981.

[22] A. Panconesi and D. Ranjan, Quantifiers and approximation, Theoret. Comput. Sci., 107
(1993), pp. 145–163.

[23] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity
classes, J. Comput. System Sci., 43 (1991), pp. 425–440.

[24] C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem with distances
one and two, Math. Oper. Res., 18 (1993), pp. 1–11.

[25] M. Yannakakis, The analysis of local search problems and their heuristics, in Proc. 7th Annual
Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, Berlin, 1990,
pp. 298–311.

MAXIMUM k-CHAINS IN PLANAR POINT SETS:
COMBINATORIAL STRUCTURE AND ALGORITHMS∗

STEFAN FELSNER† AND LORENZ WERNISCH†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 192–209

Abstract. A chain of a set P of n points in the plane is a chain of the dominance order on P .
A k-chain is a subset C of P that can be covered by k chains. A k-chain C is a maximum k-chain
if no other k-chain contains more elements than C. This paper deals with the problem of finding a
maximum k-chain of P in the cardinality and in the weighted case.

Using the skeleton S(P) of a point set P introduced by Viennot we describe a fairly simple
algorithm that computes maximum k-chains in time O(kn logn) and linear space. The basic idea
is that the canonical chain partition of a maximum (k − 1)-chain in the skeleton S(P) provides k
regions in the plane such that a maximum k-chain for P can be obtained as the union of a maximal
chain from each of these regions.

By the symmetry between chains and antichains in the dominance order we may use the algorithm
for maximum k-chains to compute maximum k-antichains for planar points in time O(kn logn).
However, for large k one can do better. We describe an algorithm computing maximum k-antichains
(and, by symmetry, k-chains) in time O((n2/k) logn) and linear space. Consequently, a maximum
k-chain can be computed in time O(n3/2 logn) for arbitrary k.

The background for the algorithms is a geometric approach to the Greene–Kleitman theory
for permutations. We include a skeleton-based exposition of this theory and give some hints on
connections with the theory of Young tableaux.

The concept of the skeleton of a planar point set is extended to the case of a weighted point
set. This extension allows to compute maximum weighted k-chains with an algorithm that is similar
to the algorithm for the cardinality case. The time and space requirements of the algorithm for
weighted k-chains are O(2kn log(2kn)) and O(2kn), respectively.

Key words. algorithms, antichains, chains, orders, point sets, skeletons, Young tableaux

AMS subject classifications. 68Q25, 65Y25, 06A07, 05C85

PII. S0097539794266171

1. Introduction. The dominance order on points in the plane is given by the
relations p ≤ q if px ≤ qx and py ≤ qy. Here and throughout the paper px and
py denote the x- and y-coordinates of a point p. The symbol P will always be an
n-element set of points in the plane together with the dominance relation. A subset
C of P is a chain if any two members p, q of C are comparable, i.e., either p ≤ q or
q ≤ p. On the other hand, a set A ⊆ P with no two different points comparable is
an antichain. If a subset C of P can be covered by k chains it is called a k-chain.
If C is a k-chain but not a (k − 1)-chain we call C a strict k-chain. A k-chain C
is maximum if no other k-chain contains more elements than C. This paper deals
with the problem of finding such k-chains in P . Note that the “greedy method” that
repeatedly removes maximum chains may fail in computing a maximum k-chain even
for k = 2 (see, e.g., the point set of Figure 1).

A permutation σ: {1, . . . , n} → {1, . . . , n} may be represented by points (i, σ(i))
in the plane. Chains and antichains of a point set correspond to increasing and

∗Received by the editors April 15, 1994; accepted for publication (in revised form) December 5,
1996; published electronically JUne 15, 1998. A preliminary version of this article appeared in Proc.
25th Ann. ACM Symp. on the Theory of Computing, 1993, pp. 146–153.

http://www.siam.org/journals/sicomp/28-1/26617.html
†Freie Universität Berlin, Fachbereich Mathematik, Institut für Informatik, Takustraße 9,

14195 Berlin, Germany (felsner@inf.fu-berlin.de, wernisch@inf.fu-berlin.de). The work of the first
author was supported by the Deutsche Forschungsgemeinschaft under grant FE 340/2-1. The work
of the second author was supported by a grant from the German-Israeli Binational Science Founda-
tion and by the ESPRIT Basic Research Action Program of the EC under project ALCOM II.

192

MAXIMUM k-CHAINS IN PLANAR POINT SETS 193

Fig. 1. The canonical antichain partition and a maximum chain.

decreasing subsequences of a permutation. Hence, finding maximum k-chains amounts
to computing maximum k increasing subsequences. Fredman [3] shows that finding
a maximum increasing subsequence requires Ω(n log n) comparisons. Of course, this
also gives a lower bound for k-chains, k ≥ 2. On the other hand, an algorithm to
compute a longest increasing subsequence in a permutation in time O(n log n) pertains
to mathematicians folklore. A careful treatment of the algorithm can be found in [3];
older sources are, e.g., [1] or [8].

Interest in k-chains of orders goes back to Greene [6] and Greene and Kleitman [7]
who discovered a rich duality between maximum k-chains and maximum `-antichains.
From this theory we quote a theorem relating maximum k-chains to maximum `-
antichains.

Theorem 1.1. For an order P with n elements there exists a partition α of n
such that the Ferrers diagram Fα of α has the following properties.

(1) The number of squares in the k longest rows of Fα equals the size of a maxi-
mum k-chain for 1 ≤ k ≤ n.

(2) The number of squares in the ` longest columns of Fα equals the size of a
maximum `-antichain for 1 ≤ ` ≤ n.

The history of algorithms for maximum k-chains seems to start in some of the
many alternative proofs for the Greene–Kleitman theorems; we mention two of these
approaches. In [13] Viennot deals with the case of permutations or point sets, respec-
tively, and indicates how to find k-chains in time O((n2/k) log n). For general orders
Frank [2] uses network flows which result in algorithms to compute maximum k-chains
in an arbitrary order in time O(n3). Gavril [4] uses a network designed specifically
for k-chain computations and improves the time bound to O(kn2). Gavril’s approach
was adapted to handle the weighted case within the same complexity by Sarrafzadeh
and Lou [12]. For the case of planar point sets Lou and Sarrafzadeh [9] and Lou,
Sarrafzadeh, and Lee [10] propose algorithms to compute 2- and 3-chains in optimal
time O(n log n). They are motivated to consider k-chains in planar point sets by
problems in VLSI design, e.g., multilayered via minimization for two-sided channels.
Maximum k-chains also turn out to be useful in computational geometry, e.g., for
counting points in triangles (see [11]).

194 STEFAN FELSNER AND LORENZ WERNISCH

We describe a fairly simple method to find maximum k-chains for arbitrary k
in time O(kn log n) and linear space. Our approach is based on the useful concept
of the skeleton of P introduced by Viennot [14] (see also [13]). We use a maximum
(k−1)-chain in the skeleton to partition the plane into k regions. Taking a maximum
chain from each of the regions already yields a maximum k-chain. Our method leads
to a kind of complementary algorithm to the O((n2/k) log n) algorithm of Viennot.

In section 2 the notion of skeletons is introduced. We give an algorithm to com-
pute them and show that a point set P is determined by the skeleton S(P) and two
additional chains of marginal points. The notion of skeletons leads to a geometric
interpretation of the well-known bijective correspondence between permutations and
pairs of Young tableaux (the Robinson–Schensted correspondence, see, e.g., [8]). The
section ends with a brief exposition of this connection.

Section 3 starts with the development of the combinatorial background for the al-
gorithm. The algorithm is described in fairly detailed pseudocode and its correctness
is proved. As a by-product we provide a direct geometric proof for part (1) of Theo-
rem 1.1 for permutations. Section 4 is devoted to a complete presentation of Viennot’s
O((n2/k) log n) algorithm for k-antichains. A by-product of the analysis is the direct
geometric proof for part (2) of Theorem 1.1 for permutations. The constructions from
sections 3 and 4 both imply a result of Greene [5] stating that the shape of the Ferrers
diagram Fα in Theorem 1.1 is just the shape of the Young tableaux corresponding to
the permutation.

In section 5 we extend the concept of skeletons to the case where a real weight
w(p) is associated with each point p in P . The algorithm of section 3 is extended to
work with weighted planar point sets and weighted skeletons. This yields a maximum
weighted k-chain in time O(2kn log(2kn)) and space O(2kn). Of course, this makes
sense only for small values of k. But note that even for constant k no better algo-
rithm than that of Sarrafzadeh and Lou [12] with running time O(kn2) was known.
Unfortunately, it is not obvious how to extend the algorithm of section 4 computing
a maximum k-antichain in a similar way to the weighted case.

2. Skeleton and Young tableaux. Let P be our planar point set with n ele-
ments. We will always assume that the points of P are in general position, i.e., no two
points have the same x- or y-coordinate. Arguments are simpler if we assume this gen-
erality. In the case of duplicate coordinates we can perturb the points such that they
are in general position without changing the comparability relations. Simply change
the values of the x-coordinate of points with the same x-coordinate—by definition
they are comparable—by a small amount such that they get increasing x-coordinates
with increasing y-coordinates. Points with the same y-coordinate are perturbed anal-
ogously. Such perturbations can be made in a single sweep, i.e., in time O(n log n).
As is easily seen, the complexity of all algorithms in this paper remains as claimed
even if we make such a sweep whenever we start working with a new set of points.

The height of a point p ∈ P is the size of a longest chain with p as maximal element.
Of course, two points of the same height cannot be comparable. Hence, collecting
points with the same height in the same set yield a partition A of P into antichains,
the canonical antichain partition. Observe that this partition is also obtained by
a repeated removal of the set of minimal elements. By definition, the number of
antichains in a canonical partition is the height of P , i.e., the size of a largest chain
in P (see Figure 1). Since, obviously, a chain and an antichain can have at most one
point in common, there can be no partition into fewer antichains than there are in A;
i.e., it is a minimal antichain partition.

MAXIMUM k-CHAINS IN PLANAR POINT SETS 195

points of P

points of S(P)

Fig. 2. Point set P , its skeleton, and the shadow of the third layer.

Following Viennot, we define the left shadow of point p as the set of all points
(u, v) dominating p, i.e., with u ≥ px and v ≥ py. For a set E of points, the shadow
of E is the union of the left shadows of the points of E, i.e., the set of all points q
dominating at least one point of E. The right shadow of p is the set of all points (u, v)
with u ≤ px and v ≥ py. The term shadow suggests some light coming from the left
below or from the right below in the case of a right shadow (of course, this should
not be taken literally, since the “shadows” have a form that is scarcely realizable
physically). The right down shadow of p is the set of all points (u, v) with u ≤ px and
v ≤ py. The right and right down shadows of a set E are again defined as the union
of the corresponding shadows of the points of E.

The left jump line or simply jump line, L↗(E) or L(E), of a point set E is the
topological boundary of the left shadow of E. The right jump line L↖(E) and the
right down jump line L↙(E) are the topological boundaries of the right and the right
down shadow of E. Let the unbounded half line of the jump line extending upward
be the top outgoing line, and let the unbounded half line extending to the right be the
right outgoing line. Additionally, we use the term left outgoing line when dealing with
right or right down jump lines. It is easily seen that the jump line L(A) of an antichain
A is a downward staircase with the points of A in its lower corners. Collect the points
in the upper corners of L(A) in the set S↗(A) = S(A); this is the set of skeleton
points or briefly the skeleton of the antichain A. Formally, if (x1, y1), . . . , (xk, yk) are
the points of A ordered by increasing x-coordinate then S(A) consists of the points
(x2, y1), . . . , (xk, yk−1). Hence, L(A) has exactly |A|−1 skeleton points (see Figure 2).

The minimal elements of a point set P form an antichain A such that the rest
of P − A lies completely in the shadow of A. Hence, by removing A and treating
P − A in the same way, we recursively obtain the canonical antichain partition A =
A0, . . . , Aλ−1 with nonintersecting jump lines L(Ai), 0 ≤ i < λ, which will be called
the layers Li(P) of P . The skeleton or left skeleton of P , denoted by S(P) or S↗(P),
is then defined as the union of the skeletons S(Ai), 0 ≤ i < λ. Since, as noted above,
the ith layer Li(P) has |Ai| − 1 skeleton points, the size of S(P) is |P | −λ. A picture
of a point set P , its skeleton S(P), its antichain layer partition, and the shadow of
antichain 2 can be found in Figure 2. Let us state an easy but quite useful observation.

Lemma 2.1. Suppose a point set P is partitioned into k antichains Ai in such a
way that the jump lines L(Ai) are pairwise disjoint. Then A1, . . . , Ak is the canonical
antichain partition of P .

196 STEFAN FELSNER AND LORENZ WERNISCH

SKELETON(P)

insert dummy du in L at height +∞; link(du) ← nil;
k ← 0; S ← ∅;
for each p ∈ P from left to right do

insert a new marker m′ in L with m′y ← py;
point(m′) ← p;
m← next marker below p on L;
link(p) ← point(m);
m← next marker above p on L;
if m = du then

Ak ← {p}; antichain(m) ← Ak; k ← k + 1;
else

add p to antichain(m);
add skeleton point (Lx,my) to S;
remove m from L;

v ← point(m), m uppermost marker on L; C ← {v};
while link(v) 6= nil do

v ← link(v); C ← C ∪ {v};
return S,C,A0, . . . , Ak−1;

Fig. 3. Algorithm SKELETON.

Proof. Suppose the Ai are ordered by increasing x-coordinates of the top outgoing
lines of the L(Ai). Then P − A0 is in the shadow of A0. Hence, by the definition of
the shadow, each point of P − A0 dominates at least one of A0 and no point of A0

dominates any other point in P ; i.e., A0 are just the minimal elements of P . Repeat
the procedure on P −A0.

Let us describe a simple algorithm to compute the skeleton, a maximum chain,
and the canonical antichain partition of a point set P (see Figure 3). Essentially, this
is the well-known algorithm for longest increasing sequences of permutations (for a
geometrically inspired version see [10]). A sweep line L going from left to right halts
at every point of P . It contains an ordered set of markers m. A marker m on L has
a y-coordinate my, and m is said to be above a point p if my > py.

Suppose L halts at some point p and the layers have been constructed for all
points to the left of L. Find the next layer with right outgoing line above p. If there
is no such layer (i.e., the marker found equals the dummy point), open a new one
with p as its (yet) sole point. If there is one, add p to this layer and generate a new
skeleton point. It is easily seen that the jump lines thus constructed cannot intersect
and hence are the layers of a canonical antichain partition, by Lemma 2.1. Finally, a
maximum chain is obtained by extracting a point from each of the antichains along
a chain of properly established links. With L implemented as a dynamic binary tree
we have Theorem 2.2.

Theorem 2.2. Algorithm SKELETON computes the skeleton, a maximum chain,
and the canonical antichain partition of a point set P of size n in time O(n log(n))
and linear space.

For the definition of the right skeleton S↖(P) use the right shadow and the
right jump lines. And for the right down skeleton S↙(P) use right down shadow
and right down jump lines. Of course, with S↖(P) we obtain the canonical chain

MAXIMUM k-CHAINS IN PLANAR POINT SETS 197

points of P

points of S(P)

marginal points M

Fig. 4. P is the right down skeleton of S(P) ∪M(P).

partition instead of the antichain partition. By symmetry, a lemma corresponding to
Lemma 2.1 but dealing with chains instead of antichains is again true. With S↙(P)
we again obtain an antichain partition. A layer of this partition contains all the points
with the same dual height (the dual height of p is the length of a maximum chain
that has p as its minimal element).

It is convenient to conceive the construction of the skeleton as an operator on finite
point sets consisting of points in general position, since the points of the skeleton S(P)
again have pairwise different x- and y-coordinates. Thus, we may apply operators S↗
and S↖ to S(P). As usual, the k-fold iteration of an operator O will be denoted by
Ok; O0 means identity. Sk(P) will be called the kth skeleton of P . An interesting
algebraic property of S↗ and S↖, that they are commutative, is shown in [15].

One of the properties that seems to lie behind the usefulness of skeletons is the
fact that it is possible to reconstruct P from S(P) with a small amount of additional
information. Let xmax be the maximal x-coordinate of points in P , and let ymax

be defined analogously. Then the right marginal points MR(P) of P are the points
(xmax + 1, y1), . . . , (xmax + λ, yλ), where λ is the number of layers of P and y1, . . . , yλ
are the y-coordinates of the right outgoing lines of the layers ordered increasingly (see
Figure 4). Assuming x1, . . . , xλ are the x-coordinates of the top outgoing lines of the
layers in increasing order, the top marginal points MT (P) of P are (x1, ymax + 1),
. . . , (xλ, ymax + λ) (see Figure 4). Note that each of MR(P) and MT (P) is a chain of
length height of P . With M(P) we denote the collection of marginal points of P , i.e.,
M(P) = MR(P) ∪MT (P).

Theorem 2.3. A point set P is the right down skeleton of the skeleton S(P)
together with the marginal points of P , i.e., P = S↙(S(P) ∪M(P)).

Proof. The jump line L(A) of an antichain A nearly coincides with the right
down jump line L1 = L↙(S(A ∪ {s, t})) of the skeleton of A with an arbitrary point
s somewhere on the top outgoing line of L(A) and some point t on the right outgoing
line. More precisely, between s and t the two jump lines are equal. As the marginal
points on the top and right outgoing lines are chosen so that they form chains, we
may bend the original jump lines of P at the marginal points, and the bent lines
remain nonintersecting. Each bent line L is the right down jump line of the points

198 STEFAN FELSNER AND LORENZ WERNISCH

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9
10
11

points of P

points of S(P)

points of S(S(P))

Fig. 5. A point set P with λ0(P) = 5 and λ1(P) = 3.

of S(P) ∪M(P) contained in it. Moreover, the points of S(P) ∪M(P) contained in
each of these lines form an antichain and each point is on one of these lines. Hence,
the right down version of Lemma 2.1 applies and we are done.

A partition of an integer n is a sequence of integers λ0 ≥ λ1 ≥ · · · ≥ λµ−1 > 0 such
that n = λ0 + · · ·λµ−1. Such a partition may be represented graphically by Ferrers
diagram also called the Young shape. This is a shape as that of the two figures in
Figure 6, which consist of µ rows of rectangles or cells with λi cells in row i, when
rows are taken from bottom to top (also called “French notation”). If numbers1 are
put in these cells in increasing order from left to right and from bottom to top we
obtain a Young tableau.

Since we will often refer to the number of layers of P , let us adopt the following
notation. Let µ(P) be minimal with Sµ(P)(P) = ∅. Then λi(P), 0 ≤ i < µ(P),
denotes the number of layers of Si(P) (see Figure 5). It is convenient to assume
λi(P) = 0 for i ≥ µ(P).

Lemma 2.4. Let P be a point set; then λ0(P) ≥ λ1(P) ≥ · · · ≥ λµ(P)−1 > 0, and

|Sk(P)| =∑k≤i<µ λi(P), where µ = µ(P). In particular, λ0(P), λ1(P), . . . , λµ(P)−1 >
0 is a partition of n.

Proof. By Theorem 2.3, the number of antichains in a minimal antichain partition
of S(P) ∪M(P) is the same as λ0(P), the size of the canonical antichain partition
of P . Hence, λ1(P), the size of a minimal antichain partition of S(P), is at most
λ0(P). The same argument shows the other inequalities. The sum over the λi(P) is
computed easily by using |S(P)| = |P | − λ0(P) and induction.

Let P be a planar set of n points. We associate two tableaux P(P) and Q(P)
(the P- and Q-symbol of P) with P in the following way. The kth rows of P(P),
k ≥ 0, are the y-coordinates of the right outgoing lines of Sk(P) in increasing order.
The kth row of Q(P), k ≥ 0, are the x-coordinates of the top outgoing lines of Sk(P)
in increasing order. Compare the 5 and 3 outgoing lines of the first two layers of
Figure 5 with the first two rows of the Young tableaux in Figure 6. According to
Lemma 2.4, P(P) and Q(P) have λi(P) cells in their ith row from below and |P | cells
altogether. Hence, the shape of the tableaux P(P) and Q(P) is a Young shape. We

1In the classical theory these are the numbers 1, . . . , n which give a correspondence between pairs
of Young tableaux and permutations. In the present context it is convenient to allow real entries.

MAXIMUM k-CHAINS IN PLANAR POINT SETS 199

1 3 4 7 8

2 5 9

6 10

11

1 2 6 7 11

3 5 10

4 9

8

Fig. 6. The P- and Q-symbol of point set P of Figure 5.

denote the number of cells in the ith column (from the left) with λ∗i (P). Obviously,
λ∗0(P) ≥ λ∗1(P) ≥ · · · ≥ λ∗`−1(P) and

∑
0≤i<` λ

∗
i (P) = |P |, where ` = λ0(P). The

λ∗i (P) is the conjugate partition of the λi(P) for the integer |P |.
Our first observation about the P- and Q-symbol concerns the inverse P−1 of P ,

which is the point set that is obtained from P by the transposition (x, y) → (y, x),
i.e., by reflection on the diagonal line x = y. Obviously, the corresponding P- and
Q-symbols are simply interchanged.

Theorem 2.5. For the inverse P−1 of a point set P , P(P−1) = Q(P) and
Q(P−1) = P(P).

Theorem 2.6 (Robinson–Schensted). The tableaux P(P) and Q(P) of a point
set P are Young tableaux. Moreover, for any two Young tableaux P and Q with the
same shape there exists a point set P with P = P(P) and Q = Q(P); i.e., there is a
bijection between point sets and pairs of Young tableaux with the same shape.

The reader interested in the proof of this theorem and in a more comprehensive
treatment of geometric approaches to the theory of the Young tableaux is referred to
Viennot [14] and Wernisch [15].

3. Maximum k-chains. Suppose a subset CS of the skeleton S(P) of a planar
point set P is given and let C1, . . . , Ck be the canonical chain partition of CS . The
existence of such a chain partition implies that CS is a k-chain (the converse is false;
a k-chain can have a partition into fewer chains). We define the ith region of CS , for
2 ≤ i ≤ k, to be the intersection of the right shadow of Ci−1 with the complement
of the right shadow of Ci, i.e., the region between the jump lines of Ci−1 and Ci,
containing the jump line of Ci−1 but excluding that of Ci (see Figure 7). The first
region is the complement of the right shadow of C1, and the (k + 1)st region is the
right shadow of Ck. These k + 1 regions partition the whole plane.

A description of the main steps of an algorithm computing k-chains can be given
with this concept of the region (a more detailed description can be found in Figure 9).
The reader may want to visualize the following steps on Figure 7.

1. Compute the skeleton S(P) of a planar point set P .
2. Compute recursively a (k − 1)-chain Ck−1 of S(P).
3. For all regions R defined by Ck−1, extract a maximum chain from P inter-

sected with R. The union of all chains is a maximum k-chain for P .

To demonstrate the correctness of the approach we need another definition. An
antichain A of P and its jump line are said to cross region R well if R ∩ L(A) =
R ∩ L(A ∩ R). That is, A crosses R well exactly if the jump line L(A) enters R
vertically and leaves R horizontally (see Figure 8).

200 STEFAN FELSNER AND LORENZ WERNISCH

C1

C2

R1

R2

R3

Fig. 7. Three regions defined by a maximum 2-chain of the skeleton each containing one chain.

The next lemma expresses the key property of antichains that cross well that
makes them useful for our purposes.

Lemma 3.1. Let R be a region of CS ⊆ S(P) and let A1, . . . , Aλ be the canonical
antichain partition of P . If I is the set of all indices i such that Ai is crossing R
well, then the collection {Ai ∩ R | i ∈ I} is the canonical antichain partition of the
underlying point set

⋃
i∈I Ai ∩R.

Proof. Let R be the `th region and let p = L(Ai) ∩ L↖(C`) and p′ = L(Aj) ∩
L↖(C`) with i < j. Note that any two points on L↖(C`) are comparable. Since L(Aj)
is in the shadow of L(Ai) we cannot have p′ dominated by p; hence p′ dominates p.
Since Ai is crossing R well, the line segment of L(Ai ∩ R) that ends in p is vertical.
The same holds for L(Aj ∩ R) and p′. As the two jump lines are disjoint we obtain
px < p′x. Therefore, we can extend L(Ai ∩ R) and L(Aj ∩ R) by vertical half lines
without introducing an intersection.

A similar argument shows that the y-coordinates of q = L(Ai) ∩ L↖(C`−1) and
q′ = L(Aj) ∩ L↖(C`−1) are related by qy < q′y. Hence, the corresponding right half
lines do not cross. Altogether the jump lines L(Ai ∪ R) are pairwise disjoint and,
by Lemma 2.1, {Ai ∩R | i ∈ I} is the canonical antichain partition of the underlying
set.

Lemma 3.2. Let CS ⊆ S(P) and let A be an antichain of the canonical partition
of P . If m is the number of skeleton points on A that are in CS, then the number of
regions of CS crossed well by A is at least m+ 1.

Proof. Let c be a point of CS on the jump line L of A. Let p and q be the points
of A to the left and below c that define it (see Figure 8). Then it is obvious that L
leaves the region containing p horizontally and enters that of q vertically. Of course,
the top outgoing line of L is vertical and the right outgoing line is horizontal.

Note that if L leaves one region vertically the region of the next point of A to the
right is entered vertically too. Now consider the m+1 sections of L from left to right
before, between, and after its m points in CS (possibly m equals 0). Since in each
such section A enters its first region vertically and leaves its last region horizontally,
there must be some region crossed well by A in between.

Lemma 3.3. Let CS be a (k − 1)-chain in the skeleton S(P) of P and let λ be
the height of P . Taking a maximum chain of P ∩ R in each region R of CS yields a
k-chain of P of size at least |CS |+ λ.

MAXIMUM k-CHAINS IN PLANAR POINT SETS 201

p

q

c

p0

q0

c0

L

R

Fig. 8. L crosses some region R well in the section between c and c′.

Proof. Let A1, . . . , Aλ be the canonical antichain partition of P . Each point of CS

is a skeleton point of exactly one antichain Ai. If mi is the number of skeleton points
of Ai in CS , for 1 ≤ i ≤ λ, then, according to Lemma 3.2, the antichains Ai cross
the regions well in altogether at least

∑
1≤i≤λ(mi + 1) = |CS | + λ sections. On the

other hand, by Lemma 3.1, each such section crossing some region well contributes
one more point to the maximum chain of that region.

Note that Lemma 3.3 does not require the (k− 1)-chain CS to be maximum. We
now show a kind of reverse to Lemma 3.3.

Lemma 3.4. Let C be a k-chain in P . There exists a (k−1)-chain in the skeleton
S(P) with size at least |C| − λ, where λ is the height of P .

Proof. By Theorem 2.3, P is the right down skeleton of S(P)∪M(P). The chains
MR(P) and MT (P) of marginal points both have size λ. Hence, we may reason
similarly as in the proof of Lemma 3.3 after reflection of all points on the diagonal
x = −y, i.e., after the transformation T (x, y) = (−x,−y) of the plane. The right
down skeleton P is thus transformed to a skeleton T (P) of T (S(P) ∪M(P)). The
image T (C) of the k-chain C ⊆ P is a k-chain in the skeleton T (P) defining k + 1
regions. Observe that T (MR) lies in the first region and T (MT) lies in the (k + 1)st
region of T (C) and that both are maximum chains of length λ. We apply Lemma 3.3
and obtain a (k + 2)-chain C ′S in T (S(P) ∪M(P)) with |C ′S | ≥ |C| + λ. According
to the above observation, we may further assume that T (MR) and T (MT) are in CS .
When these two chains are removed from C ′S we obtain a (k−1)-chain CS ⊆ T (S(P))
of size at least |C| − λ and T (CS) ⊆ S(P) is the (k − 1)-chain searched for.

We denote the k-chain in P obtained from a (k − 1)-chain CS in S(P) according
to Lemma 3.3 by σk(CS).

Theorem 3.5. Let C1 be a maximum chain of Sk−1(P) and Ci = σi(Ci−1) for
2 ≤ i ≤ k; then Ck is a maximum k-chain in P .

Proof. By induction, suppose that Ck−1 is a maximum (k − 1)-chain in S(P)
and let λ be the height of P . If there were a k-chain C ⊆ P with more points than
σk(Ck−1) then C would have more than |Ck−1|+ λ points, according to Lemma 3.3.
Hence, by Lemma 3.4, there would be a (k − 1)-chain of size larger than |Ck−1| in
S(P), a contradiction.

Note that the proof of the above theorem also shows that the number of additional

202 STEFAN FELSNER AND LORENZ WERNISCH

MAXMULTICHAIN(P, k)

CS ← ∅; C ← ∅;
if k ≥ 2 then

S ← skeleton(P);
M ← marginal points(P);
dispose P ;
CS ← MAXMULTICHAIN(S, k − 1);
P ← right down skeleton(S ∪M);

R1, . . . , Rl ← regions(CS);
partition P into Pi ← P ∩Ri, 1 ≤ i ≤ l;
for i← 1 to l do

C ← C ∪maximum chain(Pi);
return C;

Fig. 9. Algorithm MAXMULTICHAIN.

points in each application of σ` to a maximum (`− 1)-chain of Sk−`+1(P) is equal to
the height of Sk−`(P) for 2 ≤ ` ≤ k. Hence, we obtain the following corollary that is
part (1) of Greene’s theorem for permutations (see Theorem 1.1).

Corollary 3.6. A maximum k-chain of a point set P has size
∑

0≤i<k λi(P)

where λi(P) is the height of Si(P).
We are now prepared to provide an algorithm MAXMULTICHAIN (see Figure 9)

that, given a point set P and some k, computes a maximum k-chain of P . Some
remarks about this algorithm are in order. To dispose P means to release any memory
space holding the points of P , which is necessary to keep the space requirement small.
Recall that a maximum (k − 1)-chain may consist of fewer than k − 1 chains. This
happens if CS equals S and can be partitioned into less than k − 1 chains. Hence,
there may be fewer than k regions of CS . If CS is empty (e.g., when k = 1), we
assume that R1 is the whole plane.

The partitioning of P according to the regions Ri of CS can be done with a single
sweep from left to right halting at every point of P . The sweep line L contains its
intersection with all the right layers of CS and is initialized to the y-coordinates of the
left outgoing lines of these layers. Now a point p ∈ P is easily assigned to its region.
If the skeleton point immediately above p is in CS , then the height of the intersection
point of the corresponding right layer with the sweep line has to be adapted.

Theorem 3.7. Algorithm MAXMULTICHAIN(P, k) computes a maximum k-
chain for a point set P of size n in time O(kn log n) and linear space.

Proof. According to Theorem 2.2, the skeleton, marginal points, and the canon-
ical chain partition of a point set of size n can be computed in O(n log n) time.
The partitioning of P described above takes the same amount of time. The com-
putation of the maximum chains in each region take, again by Theorem 2.2, time
O(
∑l

i=1 |Pi| log(|Pi|)) which is O(n log n). Since these estimations hold true in each
recursive step, we have an overall time O(kn log n).

As far as the space requirement is concerned, the main problem is the computation
of a new skeleton in each recursive step. But P is disposed and only its skeleton
together with the marginal points is retained. The number of marginal points in the
ith step equals twice the number λi(P) of layers of the ith skeleton Si(P), 0 ≤ i ≤ k.

Thus, the amount of space that is needed for k recursions is O(2
∑k

i=0 λi(P)+|Sk(P)|)

MAXIMUM k-CHAINS IN PLANAR POINT SETS 203

Fig. 10. The ∆-operator.

which, by Lemma 2.4, is O(|P |).
4. Maximum k-antichains. In this section we prove some assertions made by

Viennot [13] leading to an algorithm that efficiently computes k-antichains of a point
set P .

Let AS be a k-antichain in the skeleton S(P) and let AS,1, . . . , AS,k be the
canonical antichain partition of AS . It is easily seen that the intersection of P
with the right down jump line L↙(AS,i) is an antichain in P . Let us denote the

k-antichain
⋃k
i=1 L↙(AS,i) ∩ P of P by ∆(AS) (see Figure 10). On the other hand,

given a k-antichain A with canonical partition A1, . . . , Ak we define the k-antichain
δ(A) =

⋃k
i=1 L(Ai)∩S(P) of S(P). Recall that a strict k-antichain is one that cannot

be covered by less than k antichains.

Lemma 4.1. Let P be a planar point set.

1. If AS is a strict k-antichain of S(P), then ∆(AS) is a k-antichain of P of
size at least |AS |+ k.

2. If A is a strict k-antichain of P , then δ(A) is a k-antichain of S(P) of size
at least |A| − k.

3. If AS is a strict maximum k-antichain, then equality holds in item 1 of this
lemma and ∆(AS) is a strict maximum k-antichain, too.

Proof. Let AS,1, . . . , AS,k be the canonical right down antichain partition of AS .
Each skeleton point s ∈ S(P) has two defining points pL(s), pD(s) ∈ P , one with the
same y-coordinate to the left, the other with the same x-coordinate below. If we walk
along a right down jump line L↙(AS,i) from left to right we find between any two
consecutive skeleton points s1, s2 of AS,i at least one of the defining points pD(s1)
or pL(s2) on the jump line. Otherwise, the defining point pD(s1) would have a y-
coordinate smaller than that of s2, and point pL(s2) would have x-coordinate smaller
than that of s1. But this implies that two layers of the canonical layer structure of P
intersect, which is impossible (see Figure 11). Since the left and down defining point
pL(sL) and pD(sR) of the leftmost and rightmost skeleton points sL and sR of AS,i

are always on the right down jump line, P ∩ L↙(AS,i) contains at least one point
more than AS,i. Summing over all AS,i we get the first inequality of the lemma.

The second inequality is obtained similarly. One may extend P by the two
marginal chains and use the transformation T (x, y) = (−x,−y). By Theorem 2.3,

204 STEFAN FELSNER AND LORENZ WERNISCH

s1

s2

Fig. 11. Intersecting layers.

T (P) is the skeleton of T (S(P) ∪M(P)). Hence, by the above argument, |δ(A)| ≥
|∆(T (A))| − 2k ≥ |T (A)| − k since the two chains T (MT) and T (MR) contribute at
most 2k points to the k-antichain ∆(T (A)) in T (S(P) ∪M(P)).

Suppose AS is a strict maximum k-antichain and let ∆(AS) be a strict k′-antichain
with k′ ≤ k. Then δ(∆(AS)) is a k′-antichain, hence a k-antichain, of size at least
|∆(AS)|−k′ ≥ |AS |+k−k′ in S(P) and k′ = k since AS is maximum. Consequently,
if A′ is a k-antichain of P , |∆(AS)| − k ≥ |AS | ≥ δ(A′) ≥ |A′| − k, which implies that
∆(AS) is a maximum k-antichain.

Theorem 4.2. Let P be a point set and let k ≤ λ0(P). There is an ` with 0 ≤ ` <
µ(P) and λ`+1(P) ≤ k < λ`(P). The `th skeleton S`(P) contains a strict maximum
k-antichain A`, and ∆`(A`) is a maximum k-antichain of P of size |S`+1(P)|+ k` =
∑k

i=0 λ
∗
i (P).

Proof. Since, by Lemma 2.4, the λi(P) are decreasing in i and λµ(P)(P) = 0,

there is an ` such that the inequalities are satisfied. S`+1(P) itself is a strict maximum
λ`+1(P)-antichain and ∆(S`+1(P)) is a strict maximum λ`+1(P)-antichain of S`(P).
The size of ∆(S`+1(P)) is |S`+1(P)| + λ`+1(P) by Lemma 4.1. Take a maximum
chain C in S`(P); it has size λ`(P). Since ∆(S`+1(P)) intersects C in at most
λ`+1(P) points and S`(P) has size |S`+1(P)| + λ`(P), there is no point of S`(P)
outside C ∪ ∆(S`+1(P)) and we may add k − λ`+1(P) arbitrary points of S`(P) to
∆(S`+1(P)) to get a strict maximum k-antichain A` in S`(P) of size |S`+1(P)| + k.
Now induction and application of Lemma 4.1 shows the theorem.

An algorithm computing a maximum k-antichain of P for given P and k is now
easy to provide. For algorithm MAXMULTIANTICHAIN see Figure 12.

Theorem 4.3. Algorithm MAXMULTIANTICHAIN(P, k) computes a maximum
k-antichain for a point set P of size n in time O((n2/k) log n) and linear space.

Proof. Since the algorithm simply mimics the proof of Theorem 4.2, it certainly
computes a maximum k-antichain. The computation of the skeleton, marginal points,
and the number of layers takes time O(n log n). The ∆ operator is implemented
straightforwardly. For a sweep line going from right to left computing the right down
layers of AS may halt at points of P , too, and check whether they lie on a layer
or not. Hence, the time needed for one recursive step is O(n log n). According to
Theorem 4.2, a maximum k-antichain has size |S`+1| + k` ≤ n. Thus, the number
`+ 1 of recursions is bounded by n/k + 1. That the amount of space needed remains
linear is seen as in the proof of Theorem 3.7.

5. Maximum weighted k-chains. Given some weight w:P → R on the points
of a set P , we define the weight of a k-chain as the sum of the weights of its points.
A maximum weighted k-chain has maximum weight among all weights of k-chains
of P . Such maximum weighted k-chains can be found in a similar way as maximum

MAXIMUM k-CHAINS IN PLANAR POINT SETS 205

MAXMULTIANTICHAIN(P, k)

λ← number of layers of (P);
if λ ≤ k then

return (P, λ);
else

S ← skeleton(P);
M ← marginal points(P);
dispose P ;
(AS , λ

′) ← MAXMULTIANTICHAIN(S, k);
P ← right down skeleton(S ∪M);
A← ∆(AS);
if λ′ < k then

add k − λ′ arbitrary points of P to A;
return (A, k);

Fig. 12. Algorithm MAXMULTIANTICHAIN.

k-chains. Unfortunately, the corresponding algorithm is efficient only if k is small.

In the following assume that the weights w are positive integers. With this as-
sumption the weighted case can be simulated by the unweighted one. Although the
algorithms work on the weighted point set itself, the proofs of correctness are based
on the following idea. We expand each point p ∈ P into a tiny chain C(p) of w(p)
points, where tiny means that the chain is contained within a tiny box of sidelength
ε where ε is less than the minimum distance in x- or y-coordinates of the points of
P (recall that we assume all points to have different x- and y-coordinates). Denote
the expanded set of points by P ′. Now consider the skeleton S(P ′) of P ′. Let p, q be
two points of P with px < qx. It is easily seen that if there are any skeleton points in
S(P ′) having their defining points in the tiny chains C(p) and C(q), then all skeleton
points with this property again fit into a box B of sidelength ε. In this case, locate a
weighted skeleton point between p and q (i.e., at (qx, py)) and give it a weight equal
to the number of skeleton points contained in box B. The resulting set of weighted
skeleton points is the weighted skeleton S(P,w).

The weighted skeleton S(P,w) can also be obtained without resorting to set P ′

of multiplied points. We translate the actions of Algorithm SKELETON (see Fig-
ure 3 of section 2) that construct the skeleton S(P ′) of P ′ with sweep line L′ into
actions of an Algorithm SKELETON-WEIGHTED (see Figure 13) that construct the
corresponding weighted skeleton S(P,w) of P with sweep line L. As a by-product
Algorithm SKELETON-WEIGHTED also computes a maximum weighted chain of
P .

If the y-coordinates of a set M of markers on L′ differ by an amount smaller than
ε, then they correspond to a weighted marker m on L with weight W (m) = |M |. The
insertion of a point p ∈ P with weight w(p) in L corresponds to the w(p) insertions
of points from C(p) ⊆ P ′ into L′. Let m be the next marker above p. If |C(p)|
is greater than or equal to the number W (m) of markers on L′ that correspond
to m, then W (m) new skeleton points in S(P ′) are generated. Hence, we have to
generate a new skeleton point in S(P,w) of weight W (m) and remove marker m.
If |C(p)| > W (m) there remain W = |C(p)| − W (m) points of C(p) for insertion.
Hence, the next marker on L is searched and the procedure is repeated until there is

206 STEFAN FELSNER AND LORENZ WERNISCH

SKELETON-WEIGHTED(P,w)

insert dummy du in L with W (du) ← +∞ at height +∞;
link(du) ← nil;
S ← ∅;
for each p ∈ P from left to right do

insert a new marker m′ in L with m′y ← py;
W (m′) ← w(p);
point(m′) ← p;
m← next marker below p on L;
link(p) ← point(m);
m← next marker above p on L;
W ← w(p);
while W ≥W (m) do

add skeleton point (Lx,my) with weight W (m) to S;
W ←W −W (m);
remove m from L;
m← next marker above p on L;

if m 6= du and W > 0 then
add skeleton point (Lx,my) with weight W to S;
W (m) ←W (m)−W ;

v ← point(m), m uppermost marker on L; C ← {v};
while link(v) 6= nil do

v ← link(v); C ← C ∪ {v};
return S,C;

Fig. 13. Algorithm SKELETON-WEIGHTED.

no further marker on L or there is one marker m0 with W (m0) > W . Comparing with
the corresponding situation in P ′ we find the necessary action. A skeleton point of
weight W is generated and the weight of marker m0 is updated to W (m0)−W . With
this kind of consideration it can be verified that Algorithm SKELETON-WEIGHTED
yields the weighted skeleton of (P,w).

For the maximum weighted chain computation observe that either all or none of
the points of C(p), for some p ∈ P , are contained in a maximum chain in P ′. Thus, a
maximum chain in P ′ corresponds to a maximum weighted chain in P and vice versa.
As will be seen later the same holds true of maximum weighted k-chains in P and
maximum k-chains in P ′.

The weighted skeleton thus computed has many points with an equal x- or y-
coordinate, and we want to compute the weighted skeleton of a skeleton repeatedly.
Thus, we perturb them according to the simple procedure mentioned in section 2
before we use them in any further computation. Consequently, we may assume that
all coordinates of points of the input instance are different.

Computing the weighted skeleton S(P,w) with algorithm SKELETON-WEIGHTED
takes time O((|P |+|S(P,w)|) log(|P |+|S(P,w)|)). In contrast to the unweighted case,
the weighted skeleton may contain more points than the original point set. Fortu-
nately, there cannot be many more such points.

Lemma 5.1. The number of weighted skeleton points in S(P,w) is at most twice
the number of points in P .

MAXIMUM k-CHAINS IN PLANAR POINT SETS 207

s

s1

C(p)

p1p2 s2

Fig. 14. This cannot happen—a jump line of CS separating C(p). Gray areas do not contain
points of P ′ or S(P ′).

Proof. If a skeleton point s ∈ S(P,w) has no other skeleton point s′ above, it is
assigned to its defining point p ∈ P below. Otherwise, it is assigned to its defining
point to the left. Note that in the second case skeleton point s was generated under
the condition W ≥ W (m); hence, m was removed and, consequently, there is no
skeleton point s′ to the right of s. A point p ∈ P gets assigned the highest skeleton
point above it or the furthest skeleton point to its right or both. Therefore, no point
p gets assigned more than two skeleton points.

The interesting fact now is that Algorithm MAXMULTICHAIN (see Figure 9
of section 3) may be used nearly without changes to compute a maximum weighted
k-chain. The only problem is that we have not yet defined what the marginal points
of a weighted point set should be. But we can do without marginal points if we resign
to dispose any set of points. This does no harm since the space requirement will be
high anyway.

Theorem 5.2. Let CS be a maximum weighted (k − 1)-chain in S(P,w). Then
taking a maximum weighted chain of points P ∩ R in each of the k regions R of CS

yields a maximum weighted k-chain of P .
Proof. By induction, a maximum weighted (k− 1)-chain CS of S(P) corresponds

to a maximum (k − 1)-chain C ′S of the skeleton S(P ′) of P ′. The selection of a
maximum chain in the point sets P ′ ∩ R for each region R of the k regions of C ′S
would give a maximum k-chain of P ′. This does not immediately yield a maximum
weighted k-chain of P since some points of the chain C(p) ⊆ P ′ replacing a point p of
P might fall in one region and some in another. We claim that this cannot happen.
Since there is no skeleton point in the ε box containing C(p), it is separated either by
a vertical or horizontal segment of a jump line of some chain. It cannot be vertical,
for there is no skeleton point below C(p).

Now suppose that a horizontal segment between two skeleton points s and s1
separates C(p) (see Figure 14). The y-coordinate of s1 equals the y-coordinate of
some point p1 ∈ C(p). Let p2 be the immediate predecessor of p1 in C(p). Since there
is no skeleton point to the left of C(p), the point s has to be dominated by p2 and by
s2, the skeleton point on the outgoing line of p2. Also s2 < s1; hence, CS ∪ {s2} is
a (k − 1)-chain. If s2 is not a member of CS this contradicts the maximality of CS .
On the other hand, s2 cannot be a member of CS , since CS has a decomposition into
(k− 1) noncrossing jump lines, one of them joining s and s1. A jump line containing

208 STEFAN FELSNER AND LORENZ WERNISCH

s2, however, has to leave s2 upward and hence crosses the jump line of s and s1.

We have thus proved that there is a correspondence between the regions R′i of C ′S
and the regions Ri of CS , for 1 ≤ i ≤ k, in such a way that a chain C(p) is completely
contained in R′i iff p is contained in Ri. Applying Theorem 3.5 to the expanded point
set, we obtain that all maximum weighted chains from regions Ri together form a
maximum weighted k-chain.

In analogy to the unweighted case, we set S0
w(P) = P and let Skw(P) = S(Sk−1

w (P),
w) be the kth weighted skeleton of P . We denote the weighted k-chain in P obtained
from a weighted (k − 1)-chain CS in S(P,w) according to Theorem 5.2 by ρk(CS).

Theorem 5.3. Let C1 be a maximum weighted chain of Sk−1
w (P) and C` =

ρ`(C`−1) for 2 ≤ ` ≤ k; then Ck is a maximum weighted k-chain in P .

Theorem 5.4. A maximum weighted k-chain of a weighted point set P can be
obtained in O(2k|P | log(2k|P |)) time and O(2k|P |) space.

Proof. As was already pointed out, to construct the weighted skeleton for a
weighted point set P takes time O(|P | log |P |). The point location of points P in the
regions defined by a (k−1)-chain CS can be done with the help of a sweep line in time
O(|P | log |CS | + |CS |). This amounts to a total running time of O(

∑
1≤i≤k 2i|P | ×

log(2i|P |)), since |Siw| ≤ 2i|P | by Lemma 5.1. The bound on the space is given by
O(
∑

1≤i≤k 2i|P |).
A maximum weighted k-chain of a point set P with rational or real weights can

be computed by the very same algorithm. The proof of correctness then requires some
additional standard rescaling and approximation arguments.

As the algorithm of this section makes sense only for small values of k it would
have been nice to have a complementary method for large k. Unfortunately, we have
not been able to extend the algorithm of section 4 to the weighted case so that the
running time remains independent from the weights.

REFERENCES

[1] S. Even, A. Pnueli, and A. Lempel, Permutation graphs and transitive graphs, J. Assoc.
Comput. Mach., 19 (1972), pp. 400–410.

[2] A. Frank, On chain and antichain families of partially ordered sets, J. Combin. Theory Ser. B,
29 (1980), pp. 176–184.

[3] M. L. Fredman, On computing the length of longest increasing subsequences, Discrete Math.,
11 (1975), pp. 29–35.

[4] F. Gavril, Algorithms for maximum k-colorings and maximum k-coverings of transitive graphs,
Networks, 17 (1987), pp. 465–470.

[5] C. Greene, An extension of Schensted’s theorem, Adv. Math., 14 (1974), pp. 254–265.
[6] C. Greene, Some partitions associated with a partially ordered set, J. Combin. Theory Ser. A,

20 (1976), pp. 69–79.
[7] C. Greene and D. J. Kleitman, The structure of Sperner k-families, J. Combin. Theory

Ser. A, 20 (1976), pp. 41–68.
[8] D. E. Knuth, The Art of Computer Programming III. Sorting and Searching, Vol. 3, Addison–

Wesley, Reading, MA, 1973.
[9] R. D. Lou and M. Sarrafzadeh, An optimal algorithm for the maximum 3-chain problem,

SIAM J. Comput., 22 (1993), pp. 976–993.
[10] R. D. Lou, M. Sarrafzadeh, and D. T. Lee, An optimal algorithm for the maximum two-

chain problem, SIAM J. Discrete. Math., 5 (1992), pp. 285–304.
[11] J. Matoušek and E. Welzl, Good splitters for counting points in triangles, J. Algorithms, 13

(1992), pp. 307–319.
[12] M. Sarrafzadeh and R. D. Lou, Maximum k-covering of weighted transitive graphs with

applications, Algorithmica, 9 (1993), pp. 84–100.

MAXIMUM k-CHAINS IN PLANAR POINT SETS 209

[13] G. Viennot, Une forme géométrique de la correspondance de Robinson-Schensted, in Combi-
natoire et Représentation du Groupe Symétrique, D. Foata, ed., Lecture Notes in Math.
579, Springer, New York, 1977, pp. 29–58.

[14] G. Viennot, Chain and antichain families, grids and young tableaux, in Orders: Description
and Roles, Math. Stud. 99, North–Holland, Amsterdam, 1984, pp. 409–463.

[15] L. Wernisch, Dominance Relation on Point Sets and Aligned Rectangles, Dissertation, Freie
Universität Berlin, 1994.

FAST ALGORITHMS FOR CONSTRUCTING t-SPANNERS AND
PATHS WITH STRETCH t∗

EDITH COHEN†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 210–236

Abstract. The distance between two vertices in a weighted graph is the weight of a minimum-
weight path between them (where the weight of a path is the sum of the weights of the edges in the
path). A path has stretch t if its weight is at most t times the distance between its end points. We
present algorithms that compute paths of stretch 2 ≤ t ≤ logn on undirected graphs G = (V,E)
with nonnegative weights. The stretch t is of the form t = β(2 + ε′), where β is integral and
ε′ > 0 is at least as large as some fixed ε > 0. We present an Õ((m + k)n(2+ε)/t) time randomized
algorithm that finds paths between k specified pairs of vertices and an Õ((m+ns)n2(1+lognm+ε)/t)
deterministic algorithm that finds paths from s specified sources to all other vertices (for any fixed
ε > 0), where n = |V | and m = |E|. This improves significantly over the slower Õ(min{k, n}m)
exact shortest paths algorithms and a previous Õ(mn64/t + kn32/t) time algorithm by Awerbuch et
al. [Proc. 34th IEEE Annual Symposium on Foundations of Computer Science, IEEE, Piscataway,
NJ, 1993, pp. 638–647]. A t-spanner of a graph G is a set of weighted edges on the vertices of G
such that distances in the spanner are not smaller and within a factor of t from the corresponding
distances in G. Previous work was concerned with bounding the size and efficiently constructing
t-spanners. We construct t-spanners of size Õ(n1+(2+ε)/t) in Õ(mn(2+ε)/t) expected time (for any
fixed ε > 0), which constitutes a faster construction (by a factor of n3+2/t/m) of sparser spanners
than was previously attainable. We also provide efficient parallel constructions. Our algorithms are
based on pairwise covers and a novel approach to construct them efficiently.

Key words. shortest paths, graph spanners, parallel algorithms

AMS subject classifications. 68Q20, 68Q22, 68Q25, 05C85, 90C27

PII. S0097539794261295

1. Introduction. The shortest-path problem amounts to finding paths of min-
imum weight between specified pairs of vertices on a weighted input graph. We
consider the relaxed version of computing paths with stretch t, where the ratio be-
tween the weight of the path and the minimum-weight path connecting the same
two vertices is at most t. We provide algorithms that compute paths of stretch t
(typically 2 < t < log n) on weighted undirected graphs much more efficiently than
known previously. A related concept is t-spanners of weighted graphs. A t-spanner is
a weighted graph on the same set of vertices such that the distances between pairs of
vertices in the spanner are not smaller and within a factor of t of the corresponding
distances on the original graph. Numerous recent works focused on bounding the size
of t-spanners, constructing them efficiently, and applying them to other problems (see,
e.g., Peleg and Ullman [12], Peleg and Schäffer [11], Althöfer et al. [1], and Chandra et
al. [4]). We obtain significantly more efficient parallel and sequential constructions of
sparse t-spanners along with improved upper bounds on their size. We note that our
stretch-t paths algorithm essentially computes a sparse t-spanner and produces paths
that consist of spanner edges. Our algorithms are favorable in scenarios where one
needs to find short paths but has severe limitations on resources (e.g., time or number
of processors) that prohibit the use of shortest-paths algorithms or when there is a
flat high cost associated with each edge that is being used for some short path, and,

∗Received by the editors January 10, 1994; accepted for publication (in revised form) December
10, 1996; published electronically June 15, 1998. An extended abstract appeared in Proc. 34th IEEE
Annual Symposium on Foundations of Computer Science, 1993.

http://www.siam.org/journals/sicomp/28-1/26129.html
†AT&T Labs-Research, Florham Park, NJ 07932 (edith@research.att.com).

210

CONSTRUCTING SPANNERS AND STRETCH t PATHS 211

hence, it is desirable to find a set of short paths that utilizes only a small subset of
the edges (note that shortest paths may require the use of all the edges). In addition,
our algorithms are suited to find short paths on line where we allow a small amount
of preprocessing and are supplied on line with query pairs of vertices. Furthermore,
they can be adapted to find short paths on line on dynamic networks, where weighted
edges are inserted or deleted much faster than known shortest-paths algorithms.

We consider undirected graphs G = (V,E) where V is the set of vertices and E the
set of edges. Associated with the edges are positive weights w : E → R+. We denote
n = |V | andm = |E|. The weight of a path is the sum of the weights of the edges on the
path. A shortest path between {u1, u2} ⊂ V is a path of minimum weight among all
paths connecting u1 and u2. The distance between {u1, u2} ⊂ V , denoted dist{u1, u2},
is the weight of the respective shortest path. A path between {u1, u2} ⊂ V has stretch
t if the ratio between the weight of the path and the distance between {u1, u2} is at
most t. We use the Õ asymptotic notation to eliminate polylogarithmic factors in n,
e.g., Õ(f) ≡ O(f polylogn). The parallel algorithms and resource bounds discussed
in this paper are for the EREW PRAM model.

1.1. Our results. We obtain the following results. Consider a weighted graph
G, a set of query pairs Q ⊂ V ×V , and a stretch factor 2 < t = O(log n). The stretch
t is of the form t = β(2+ ε′), where β is integral and ε′ > 0 is at least as large as some
fixed ε > 0. We present bounds for computing for all (v, u) ∈ Q, stretched distances
˜dist{v, u} such that

dist{v, u} ≤ ˜dist{v, u} ≤ tdist{v, u} ,
with the following tradeoffs between the stretch t, the time, and the work performed:

• deterministically,
(1) when Q contains all the pairs consisting of one vertex from a set S of sources

and any other vertex;
by a sequential algorithm for any fixed ε > 0 and t such that t/((2 +
ε)(1+lognm)) is integral, in (see Theorem 6.6) O(n(2+ε)(1+lognm)/t(m log n+
|S|n log n)) time;

• with probability 1 − O(1/poly(n)). These are Las Vegas algorithms. The
randomization is on the expected termination time and not on the correctness.

(2) By a sequential algorithm for any fixed ε > 0 and t such that t/(2 + ε) is
integral in (see section 6) O((m+ |Q|)n(2+ε)/tt log2 n) time.

(3) For a fixed 0 ≤ δ ≤ 1, any fixed ε > 0, and β = O(log n) (see Theorem 2.8)
t = (2β)d1/δe(1 + ε) in O(nδβ2 log n) time using Õ(n1+2/β + (m + |Q|)n1/β)
work.

In an on-line problem, where we perform some preprocessing and the query pairs (or
query sources) are given on line, the algorithm in (1) needsO(n(2+ε)(1+lognm)/tm log n)
preprocessing time and O(n(2+ε)(1+lognm)/tn log n) time per source, and the algorithm
in (2) needs O(mn(2+ε)/tt log2 n) preprocessing time and O(n(2+ε)/tt log2 n) time per
query pair.

Graph spanners. We construct t-spanners of size (number of edges) Õ(n1+(2+ε)/t)
(for any ε > 0 and t such that t/(2+ε) is integral). These spanners can be constructed
by a randomized algorithm that runs in Õ(mn(2+ε)/t) time. We present a deterministic
algorithm that finds t-spanners of size O(n1+(2+ε)(1+lognm)/t) (for any ε > 0 and
t such that t/((2 + ε)(1 + lognm)) is integral) and runs in O(mn(2+ε)(1+lognm)/t)
time. We show that in parallel, t-spanners of size O(n1+(2+ε)/t) (for any ε > 0 and t
such that t/(2 + ε/2) is integral) can be constructed in O(Rβ2 log2 n) expected time

212 EDITH COHEN

using O(n1/βmβ log2 n) work or, alternatively, in O(β log3 n) expected time using
O(n3β log n) work, where R = wmax/wmin and β = t/(2 + ε/2).

1.2. Previous work. Peleg and Schäffer[11] proved the following bounds on the
size of spanners of unweighted graphs. They showed that for infinitely many values of
n there exist n-vertex graphs such that all their t-spanners contain Ω(n1+1/t) edges.
They also gave a polynomial algorithm that computes t-spanners with O(n1+4/t)
edges. For weighted graphs, Althöfer et al. [1] gave a simple greedy algorithm that
constructs t-spanners of size O(n1+2/(t−1)). In a subsequent paper, Chandra et al. [4]
showed that the greedy algorithm of [1] has an O(n3+4/(t−1)) time implementation.
Hence, we tighten the known upper bound on the size of t-spanners and present a sig-
nificantly more efficient sequential and parallel constructions than previously known.
The key to achieving these improvements is the fact that all previous constructions of
t-spanners were based on solving many instances of the exact shortest-paths problem,
where in this paper we avoid that.

The fastest known sequential algorithm for computing exact shortest paths from
a set of sources S to all other vertices requires Õ(|S|m) time using weighted breadth-
first search (BFS). (See, e.g., [8].) Awerbuch, Berger, Cowen, and Peleg [2] presented
a faster algorithm for computing paths of stretch t > 64. They showed that paths
with stretch 64 ≤ t = O(log n) between k pairs of vertices can be obtained in Õ((mt+
nt2)n64/t + ktn32/t) time. Hence, in particular, paths with stretch t from a set of
sources S to all other vertices can be obtained in Õ((mt + nt2)n64/t + |S|tn1+32/t)
time. Note that when t = O(log n) the algorithm produces paths with stretch O(log n)
and runs in time Õ(m+ |S|n).

The best-known parallel shortest path algorithms generally perform significantly
more work (product of time and number of processors) than their sequential counter-
parts. The best-known work bound for an NC algorithm for the (weighted) single-
source shortest-paths problem is Õ(n3) (the algorithm essentially solves the more gen-
eral all-pairs problem). Other algorithms exhibit tradeoffs between work and time.
Spencer [13] presented an algorithm for the single-source problem that runs in Õ(δ)
time using Õ(n3/δ2 + m) work, where the ratio of the largest edge weight to the
smallest edge weight is polynomial in n. The author gave an algorithm that com-
putes shortest paths from |S| sources in Õ(δ) time using O(|S|n2 + n3/δ3) work [6].
The algorithm computes shortest paths if the ratio of the largest edge weight to the
smallest edge weight is polynomial in n and otherwise can be adapted to find paths
whose weights are within a factor of (1+1/poly(n)) from the respective distances. In
addition, the author showed that paths with stretch (1+ε) (for a fixed ε) can be com-
puted in Õ(δ) time using Õ(|S|(n2/δ+m)+n3/δ2) work. Another work-time tradeoff
for the single-source shortest paths problem was given by Klein and Sairam [10] who
presented a randomized algorithm that finds paths with stretch (1 + ε) (for a fixed ε)
in Õ(n0.5) time using Õ(mn0.5) work.

Note that the tradeoffs obtained by our sequential randomized algorithm (see (2))
improve over the algorithm of Awerbuch et al. [2]. The tradeoffs obtained by our
deterministic sequential algorithm (see (1)) improve over the algorithm of Awerbuch
et al. for multisource short-paths problems. The improvements reduce the time bound
significantly and are particularly meaningful in the more interesting range where the
stretch is small. As a concrete example consider computing paths between O(m)
arbitrary pairs of vertices. The best shortest-paths algorithm for this problem runs
in time Õ(mn) (essentially solves the all-pairs problem). Our randomized algorithm
in time Õ(mn0.5) finds paths with stretch 4. The Awerbuch et al. algorithm cannot

CONSTRUCTING SPANNERS AND STRETCH t PATHS 213

guarantee paths of stretch 4 and in time Õ(mn0.5) computes paths with stretch 128.
Implications of our parallel tradeoffs are that for any fixed ε > 0, paths from s sources
to all other vertices with a fixed constant stretch can be computed in O(nε) time using
O((m+sn)nε) work and with a polylogarithmic stretch, in O(nε) time using Õ(m+sn)
work.

1.3. Overview. The main tool that we use to compute spanners and paths of
stretch t are pairwise covers of graphs and efficient novel constructions of these covers.
Pairwise covers are a modification of sparse neighborhood covers (see Awerbuch and
Peleg [3]). Sparse neighborhood covers were employed by Awerbuch et al. [2] to obtain
a sequential algorithm for paths of a specified stretch. Pairwise covers turn out to be
a more correct notion for computing paths of stretch t. Our constructions allow for
significantly improved sequential bounds. In addition, we present parallel algorithms
based on efficient parallel cover constructions. The construction of neighborhood
covers in [2] seems to be inherently sequential.

A pairwise cover of a graph is defined with respect to parameters W and β. It
consists of a collection of subsets of vertices (clusters) with the following properties:
the sum of the sizes of the clusters is Õ(n1+1/β), the maximal distance between any
pair of vertices which are in the same cluster is at most 2βW , and for every pair of
vertices of distance at most W from each other there exists at least one cluster in
the cover that contains both vertices. The value of β determines a tradeoff between
the maximum diameter of a cluster (that we would like to be as small a multiple
of W as possible) and the total size of the cover (that we would like to be as close
to O(n) as possible). For any β ≥ 2 and a fixed ε > 0, a logarithmic number of
pairwise covers for different values of W can be used to compute paths with stretch
t = 2(1 + ε)β. The work performed depends on the size of the cover. To achieve
efficient parallel constructions of pairwise covers, we refine the definition to be with
respect to an additional “path size” parameter `. For a parameter 1 ≤ ` ≤ n, the
`-limited distance between a pair of vertices is the weight of the minimum-weight
path connecting them among paths consisting of at most ` edges (this terminology
is from [10]). In pairwise covers with parameter `, we have a relaxed condition that
pairs of vertices where the `-limited distance between them is at most W must be
both contained in at least one cluster. This relaxed requirement allows us to construct
pairwise covers efficiently in parallel in time Õ(`). The most technical and novel part
of this paper is the construction of pairwise covers. It is also the only place where
randomization is used.

We sketch our t-spanner constructions. For any β ≥ 2 and a fixed ε > 0, we
construct a logarithmic number of pairwise covers for different values of W . We use
W ∈ {(1+ ε)iWmin|i > 0}, where Wmin is the smallest path weight. Our construction
of pairwise covers has the property that for every cluster, the algorithm computes a
shortest-path tree rooted at a vertex of the cluster such that distances from the root
to all other vertices in the cluster are at most β. Hence, distances on the tree between
any two vertices in the cluster are bounded by 2β. Roughly, for t = 2(1 + ε)β, the
algorithm constructs a t-spanner by considering each cluster in each of the covers and
augmenting the spanner with the edges of the respective shortest-paths tree. Our
spanner contains a path of stretch t between every pair of vertices. We can obtain t-
spanners with the additional property of size-2 paths if the property that the spanner
is a subgraph of the original graph is compromised. This can be achieved if for each
cluster, instead of adding the edges of the tree to the spanner, we add edges from the
root to all other vertices in the cluster with appropriate weights. For every pair of

214 EDITH COHEN

vertices, our spanner contains a path of stretch t that uses at most two edges. We
comment that the sparse neighborhood covers constructed by Awerbuch et al. [2] can
similarly be used to obtain spanners, but the resulting spanners have very large size
compared with previous spanner algorithms.

The paper is organized as follows. In section 2 we define pairwise covers, state the
resource bounds for computing them, and employ them to compute stretch-t paths.
In section 3 we discuss the computation of a pairwise cover with respect to parameters
W and `. We reduce the problem to finding a cover with respect to a set of integral
weights and parameters `′ = n and W ′ = O(`). In section 4 we discuss computing
neighborhoods of vertices up to specified distances using work linear in the size of the
neighborhood. Sections 5 and 6 contain the most novel part of the paper. In section 5
we present a parallel algorithm for computing a pairwise cover in integral weighted
graphs. The running time of the algorithm is linearly dependent on W , and the work
performed is roughly the sum over the clusters of the number of edges incident at
cluster vertices. The neighborhoods of section 4 are used in section 5 as the clusters
constituting a cover. In section 6 we discuss sequential stretch-t paths algorithms.
A randomized sequential algorithm is obtained as a simplified version of the parallel
randomized algorithm introduced in previous sections. We note that for the sequential
randomized algorithm Sections 2.3, 2.4, 3, and 4 may be skipped. We also present
a deterministic algorithm that is based on deterministic construction of covers that
is fairly different from the randomized construction used in section 5. Section 7 is
concerned with applications to graph spanners. In section 8 we discuss computing
stretch-t distances on dynamic networks, where edges are inserted and deleted. In
section 9 we discuss issues and open problems that arise from this work.

We remark that although the algorithms presented in this paper compute dis-
tances, a concise representation of paths with corresponding weights can be produced
within the same resource bounds.

Notation. Consider an undirected graph G = (V,E), with positive weights w :
E → R+ associated with the edges. The size of a path is the number of edges
in the path. For ` ∈ N , an `-limited path is a path of size at most `. We use the
terms shortest-path and minimum-weight path interchangeably for a path of minimum
weight. For a subset of edges E′ ⊆ E, we denote w(E′) =

∑
e∈E′ w(e). For a subset

of vertices V ′ ⊆ V , we denote by E(V ′) = {(u1, u2) ∈ E|u1 ∈ V ′ ∧ u2 ∈ V ′} the
edges in the subgraph induced by V ′. For a subset of edges E′ ⊆ E, two vertices
{u1, u2} ⊆ V , an integer 1 ≤ ` ≤ n, and a weight function ŵ : E′ → R+, we denote
by dist`E′,ŵ{u1, u2} the weight, according to ŵ, of the minimum weight path in E′

between u1 and u2 that consists of at most ` edges. (When ` is omitted, presume
` = n, and when E′ is omitted, presume E′ = E. Generally, when the weights ŵ are
clear from the context they are omitted from the subscript.) For a subset V ′ ⊆ V , a
vertex v ∈ V ′, an integer 1 ≤ ` ≤ n, and a scalar W ∈ R+, denote by N `

W (V ′, v) ⊂ V ′

the set of all the vertices u ∈ V ′ such that there exists a path from u to v of size at
most ` and weight at most W in the subgraph induced by V ′. (When V ′ = V , we omit
the first parameter. If ` is omitted, presume ` = n.) When we state that an algorithm
terminates with probability of success 1−O(1/poly(n)), it mean that we can replace
poly(n) by any polynomial by adjusting constant factors in the resource bounds of
the algorithm. Note that if algorithms with probability of success 1− O(1/poly(n))
are called as subroutines a polynomial number of times, then all of them terminate
successfully with probability 1−O(1/poly(n)).

CONSTRUCTING SPANNERS AND STRETCH t PATHS 215

2. Using pairwise covers for stretched distances. In this section we define
pairwise covers and employ them to compute stretch-t paths. We note that in the
context of shortest-path computations, the assumption that the weights are strictly
positive does not limit the generality since (i) edges of zero weight can be contracted
(the contractions can be performed well within the resource bounds of the algorithms
presented here by using a connected components algorithm), and (ii) edges of negative
weight induce negative cycles (by traversing the edge back and forth) that implies that
all the distances between vertices that are in the same connected component as the
negative weight edge are unbounded from below.

Remark 2.1. We make the following assumption throughout the paper and argue
that it does not limit generality. We assume that the ratio of the largest to small-
est edge weight in a graph is O(poly(n)). (That is, maxe∈E w(e)/mine∈E w(e) =
O(poly(n)).) We justify this assumption by using the following reduction of Klein
and Sairam [10] (see also [6]) when the weights are general. Klein and Sairam had
shown how to compute for a weighted input graph G a collection of weighted graphs
with a total number of vertices O(n log n) and total size O(m log n) such that (i) in
each of the graphs in the collection, the ratio of the largest to smallest edge weights is
O(poly(n)) and (ii) a shortest-path problem on the original graph can be translated effi-
ciently to a shortest-path problem on the graphs of the collection. A path in G obtained
this way is guaranteed only to have stretch (1 + 1/poly(n)), but since in this paper
we obtain paths of stretch no better than 2, we can safely allow that. The computa-
tion involved in obtaining this collection amounts to applying a connected components
algorithm and is well within the resource bounds of the algorithms presented here.

This section is arranged as follows. In subsection 2.1 we define pairwise covers.
A pairwise cover of a graph is, roughly, a collection of subsets of vertices (clusters)
defined with respect to a scalar W ∈ R+, an integer ` (the path size of the cover),
and a parameter β. The clusters are such that every pair of vertices with `-limited
distance of at most W must be contained in at least one cluster. The parameter β
determines a tradeoff between the maximum diameter of a cluster and the size of the
cover. In later sections we present algorithms for computing a pairwise cover. We
shall see that the parallel running time depends linearly on the path size `, and hence
we would like to use covers with small path sizes. In subsection 2.2 we present an
algorithm that computes stretched `-limited distances from a set of query vertices to
all other vertices. The algorithm utilizes a logarithmic number of pairwise covers with
path size ` but with different values for the parameter W . Recall that the time bound
of our cover algorithm depends linearly on the path size `, and hence we would like
to avoid using the algorithm for large values of `. Unfortunately, however, `-limited
distances for ` < n may not yield any information about the actual distances in the
graph. To overcome this difficulty we seek a method to replace the current set of edges
E by a set of weighted edges E′ such that for some ` << n, the `-limited distances in
E′ are within some factor of the distances with respect to E. The following definition
formalizes this concept.

Definition 2.2. Consider a graph G = (V,E) with weights w : E → R+, and a
set E′ ⊂ V × V of edges with weights w′ : E′ → R+. We say that the weighted graph
(V,E′) (`, t)-approximates G if for every pair of vertices {u1, u2} ⊂ V , the following
inequalities hold:

distE{u1, u2} ≤ distE′{u1, u2} ≤ dist`E′{u1, u2} ≤ tdistE{u1, u2} .

216 EDITH COHEN

We refer to the parameter ` as the path size of the approximation and to the
parameter t as the stretch. Note that since minimum-weight paths are of size at most
n, any graph (n, 1)-approximates itself. In subsection 2.3 we introduce an algorithm
that for an input graph G produces a graph G′ that (`, t)-approximates G for some
` << n. The algorithm utilizes pairwise covers with typical path size of nµ (for small
µ > 0) and exhibits a tradeoff between the magnitude of µ and the stretch factor.
In subsection 2.4 we combine the algorithms of subsections 2.2 and 2.3 to obtain
stretched distances: initially we apply the algorithm of subsection 2.3 to the graph
G and obtain an approximation G′ of G. Subsequently, we apply the algorithm of
subsection 2.2 to G′.

2.1. pairwise covers. Pairwise covers are a modification of sparse neighborhood
covers that were introduced by Awerbuch and Peleg [3]. Sparse neighborhood covers
were employed by Awerbuch et al. [2] for stretch-t path computations.

Definition 2.3 (pairwise cover). Consider a graph G = (V,E) with weights
w : E → R+, integers 1 ≤ ` ≤ n and β = O(log n), and scalars ρ ∈ R+ and
0 ≤ ε̂ < 1/2. A pairwise (`, β, ρ, ε̂)-cover (for brevity, (`, β, ρ, ε̂)-cover) of G is a
collection of sets of vertices X1, . . . , Xk (clusters) and vertices v1, . . . , vk (where for
1 ≤ i ≤ k, vi ∈ Xi is the center of the cluster Xi) such that

1. ∀{u, v} ⊂ V, such that dist`{u, v} ≤ ρ/(1 + ε̂), ∃i such that {u, v} ⊂ Xi,
2. ∀i, ∀u ∈ Xi, dist{vi, u} ≤ βρ, and
3. ∀v ∈ V , |{i|v ∈ Xi}| = O(n1/ββ log n). (Every vertex belongs to O(n1/ββ log n)

clusters.)

In sections 3–5 we present an algorithm that computes an (`, β, ρ, ε̂)-cover within
the following bounds.

Theorem 2.4. An (`, β, ρ, ε̂)-cover of G can be computed with probability 1 −
O(1/poly(n)) in O(`ε̂−1β2 log n) time using O(n1/βmε̂(log n)/(`β)) processors. If we
allow O(`ε̂−1nαβ2) time (for a fixed α > 0), the cover algorithm uses O(βn1/βm log n)
work.

Remark 2.5. We remark that a simpler sequential version of the algorithm
produces an (n, β, ρ, 0)-cover in O(mn1/ββ log n) time. The sequential version is im-
mediate after presenting the parallel algorithm, and hence it is omitted.

The probabilistic behavior manifests itself either in not terminating within the
stated resource bounds or by producing a set of clusters for which property 3 of
Definition 2.3 does not hold. Note that properties 1 and 2 always hold and property 3
can be easily verified. Hence, we can assume that if the algorithm terminates within
the stated resource bounds it returns a valid cover. The algorithm can be modified to
compute for each cluster a shortest-paths tree rooted at the center vertex. The tree
distances from the center to other vertices in the cluster are at most βρ.

2.2. Obtaining stretched limited distances. The inputs to the following
algorithm are a graph G with weights w : E → R+, integers 1 ≤ ` ≤ n and β ≥ 1, a
scalar 0 ≤ ε̂ ≤ 1/2, and a set of query pairs Q ⊂ V × V . The algorithm computes for
every {v, u} ∈ Q a stretched distance ˜dist{v, u} such that

distE{v, u} ≤ ˜dist{v, u} ≤ 2β(1 + ε̂)2dist`E{v, u} .

We remark that the algorithm employs pairwise covers in a similar manner to the
use of sparse neighborhood covers made by the Awerbuch et al. [2] algorithm.

CONSTRUCTING SPANNERS AND STRETCH t PATHS 217

Algorithm 2.6 (compute distances).
1. wmin ← mine∈E w(e)

wmax ← maxe∈E w(e)
r ← dlog1+ε̂(nwmax/wmin)e
For i = 0, . . . , r: wi ← wmin(1 + ε̂)i

2. For i = 0, . . . , r do (in parallel):
(a) Compute (`, β, wi, ε̂)-cover χi
(b) For each vertex v ∈ V , x(i, v) ← {X ∈ χi|v ∈ X}.

(The sets x(i, v) are sorted lists of indexes of clusters.)
3. For all {v, u} ∈ Q: ˜dist{v, u} ← 2βwi,

where i← min{j|x(j, u) ∩ x(j, v) 6= ∅}.
Correctness. Consider a pair of vertices {v, u} ∈ Q. Let i = min{j|x(j, u) ∩

x(j, v) 6= ∅}. It suffices to show that
1. distE{v, u} ≤ 2βwi = ˜distE{v, u} and
2. ˜distE{v, u}/(2β(1 + ε̂)2) = wi/(1 + ε̂)2 ≤ dist`E{v, u}.

Let X ∈ χi be such that {u, v} ⊂ X. (The existence of such an X is immediate
from the selection of i.) The first inequality follows from property 2 of a cover (see
Definition 2.3). We prove that the second inequality holds. If i = 0, the proof is
immediate since for any two vertices {u1, u2}, dist`E{u1, u2} ≥ distE{u1, u2} ≥ w0. It
follows from property 1 of a cover that if some j is such that dist`E{v, u} ≤ wj/(1+ ε̂),
then there exists X ∈ χj for which {v, u} ⊂ X, and hence, x(j, u) ∩ x(j, v) 6= ∅. For

every j < i, x(j, u) ∩ x(j, v) 6= ∅. Therefore, dist`E{v, u} > wj/(1 + ε̂). Thus, taking

j = i− 1 we get dist`E{v, u} > wi−1/(1 + ε̂) = wi/(1 + ε̂)2.
Complexity. Recall (see Remark 2.1) that we assume wmax/wmin = O(log n) and

therefore r = O(log n/ log(1 + ε̂)) = O(ε̂−1 log n). Consider performing step 2 for one
value 0 ≤ i ≤ r. It follows from Theorem 2.4 that with probability 1−O(1/poly(n)),
the construction of the cover χi can be performed in O(`ε̂−1 log nβ2) time using
O(mn1/β ε̂/(`β)) processors. (Thus, using O(mn1/ββ log n) work.) Hence, with prob-
ability (1 − 1/poly(n))r = 1 − O(1/poly(n)), the computation of all the covers
χ1, . . . , χr terminates within O(`ε̂−1 log nβ2) time and O(ε̂−1mn1/ββ log2 n) work. It
follows from standard PRAM techniques that the construction of the sets x(i, v) (for
all v ∈ V) can be performed in T = Ω(log n) time using O(

∑
X∈χi |X|(log n)/T) =

O(n1+1/ββ log2 n/T) processors or, when allowing Ω(nα) time for a fixed α > 0, using
O(n1+1/ββ log n) work. (Since property 3 of Definition 2.3 implies that

∑
X∈χi |X| =

O(n1+1/ββ log n).) The computation of the stretched distances (step 3) can be per-
formed in T = Ω(r) time using

O

 ∑
{v,u}∈Q

∑
i

(|x(i, u)|+ |x(i, v)|)/T

 = O(ε̂−1|Q|n1/ββ log2 n/T)

processors (since property 3 asserts that for all v ∈ V and 1 ≤ i ≤ r, |x(i, v)| ≤
n1/ββ log n). Hence, Algorithm 2.6 can be implemented to run in O(`ε̂−1 log nβ2)
time using O((m + |Q|)n1/β ε̂−1β log3 n) work and have probability of success 1 −
O(1/poly(n)) (or when allowing Ω(`ε̂−1nαβ2) time using O((m+|Q|)n1/β ε̂−1β log3 n)
work).

2.3. Obtaining approximations with small path size. In this subsection
we present an algorithm that produces approximations (in the sense of Definition 2.2)
with small path sizes for input graphs. The algorithm inputs a weighted graph G =

218 EDITH COHEN

(V,E), with weights w : E → R+, integers 1 ≤ `′ ≤ n and β ≥ 1, and a scalar
0 ≤ ε̂ ≤ 1/2. The algorithm computes a set of edges E′ ⊂ V × V with weights
w′ : E′ → R+ such that

1. |E′| = O(ε̂−1n1+1/ββ log2 n), and
2. for every `′ ≤ ` ≤ n and every pair of vertices {u1, u2} ⊂ V the following

holds:
distE{u1, u2} ≤ distE′{u1, u2}

≤ dist
2d`/`′e
E′ {u1, u2} ≤ 2β(1 + ε̂)2dist`E{u1, u2} .

Hence, the graph (V,E′) is a (2dn/`′e, 2β(1 + ε̂)2)-approximation of G. Furthermore,
if G = (V,E) is an (`, t)-approximation of some graph (V, Ê) for some parameters `
and t, then the graph (V,E′) produced by the algorithm is a (2d`/`′e, 2tβ(1 + ε̂)2)-
approximation of (V, Ê). We first present the algorithm and analyze its resource
bounds. Later on we study and analyze the resource bounds of repeated applications
of the algorithm.

Algorithm 2.7 (approximation with small path size).
1. wmin ← mine∈E w(e)

wmax ← maxe∈E w(e)
r ← dlog1+ε̂(nwmax/wmin)e
For i = 0, . . . , r: wi ← wmin(1 + ε̂)i

E′ ← ∅

2. For i = 0, . . . , r do (in parallel):
(a) Compute (`′, β, wi, ε̂)-cover χi
(b) For each cluster X ∈ χi with center v ∈ X:

add to E′ edges of weight wiβ from v to all other vertices in X:
E′ ← E′⋃

X∈χi{(v, u)|u ∈ X}
∀u ∈ X,w′((v, u)) ← wiβ

Correctness. We first bound the size of E′. Observe that when executing step 2
for some value 0 ≤ i ≤ r, at most

∑
X∈χi |X − 1| edges are produced for E′. Hence,

it follows from property 3 of Definition 2.3 and the assumption that r = O(ε̂−1 log n)
(see subsection 2.2) that when the algorithm terminates |E′| = O(ε̂−1n1+1/ββ log2 n).
It remains to show that distances in (V,E′) comply with the stated inequalities. It fol-
lows from the construction of E′ and property 2 of Definition 2.3 that if e = (u1, u2) ∈
E′ then w′(e) ≥ distE{u1, u2}. Hence, for every pair of vertices {u1, u2} ⊂ V ,
distE{u1, u2} ≤ distE′{u1, u2}. (Thus, the leftmost inequality holds.) We show that
the rightmost inequality holds. Consider a pair of vertices {u1, u2} ⊂ V and let D =

dist`
′
E{u1, u2}. We show that there exists a path p of size at most 2 between u1 and

u2 in E′ such that w′(p) ≤ 2β(1 + ε̂)2D. Let i = min {j|∃X ∈ χj s.t. {u1, u2} ⊂ X}.
We have D > wi/(1 + ε̂)2 (by an argument similar to the one given in the correctness
analysis of Algorithm 2.6). Let X ∈ χi be such that {u1, u2} ⊂ X and let v be
the center of X. We assume (without loss of generality) that if v ∈ {u1, u2} then
v = u2. By definition of E′, the edges e1 = (v, u1) and (if u2 6= v) e2 = (v, u2)
are contained in E′ and are such that w′(e1) = w′(e2) = βwi. Hence (if u2 6= v),
the edges e1 and e2 constitute a path p of size 2 between u1 and u2 in E′ of weight
w′(p) = 2βwi. If u2 = v, then the edge e1 = (u1, u2) ∈ E′ constitutes a path p of size
1 and weight w′(e1) = βwi between u1 and u2. Since D > wi/(1 + ε̂)2, we conclude
that w′(p) ≤ 2β(1 + ε̂)2D.

CONSTRUCTING SPANNERS AND STRETCH t PATHS 219

Consider a path p of size at most ` in E. To conclude the correctness proof, it
suffices to show that there exists a path p′ of size at most 2d`/`′e in E′ such that
w′(p′) ≤ 2β(1 + ε̂)2w(p). Treat p as a list of edges and consider a partition of p to
k ≤ d`/`′e segments p1, . . . , pk, each of size at most `′. By the argument given above,
for each segment pi (1 ≤ i ≤ k) there is a corresponding path p′i in E′ of size at
most 2 between the end vertices of pi such that w′(p′i) ≤ 2β(1 + ε̂)2w(pi). Denote

p′ =
⋃k
i=1 p

′
i. Note that the size of p′ is at most 2k ≤ 2d`/`′e and that

w′(p′) =
k∑
i=1

w′(p′i) ≤ 2β(1 + ε̂)2
k∑
i=1

w(pi) = w(p) .

Complexity. The complexity of the algorithm is dominated by the computation
of the covers at step 2. The algorithm performs step 2 in parallel for r = O(ε̂−1 log n)
values of i. Hence, it follows from Theorem 2.4 that Algorithm 2.7 can be im-
plemented to run with probability of success 1 − O(1/poly(n)) in O(`′ε̂−1 log nβ2)
time using O(ε̂−1mn1/ββ log3 n) work (or, alternatively, in Ω(`′ε̂−1nαβ2) time using
O(ε̂−1mn1/ββ log2 n) work).

Repeated applications of Algorithm 2.7. Algorithm 2.7 can be applied repeatedly
to obtain approximations of smaller path size but larger stretch. In each run, the
algorithm is applied to the set of edges produced by the previous run. Suppose a graph
(V,E) is an (`, t)-approximation of some graph (V, Ê). Consider k (for meaningful
results we always have k = o(log n)) repeated applications of Algorithm 2.7 starting
with (V,E). Denote by Ei the set of edges computed by the ith run of the algorithm
(where E0 ≡ E). The graph (V,Ei) is the input for the i+ 1st run of the algorithm.
Note that for i > 0, |Ei| = O(ε̂−1n1+1/ββ log2 n). Hence, the resulting resource
bounds for k repeated applications of the algorithm are O(k`′ε̂−1 log nβ2) time using
O(ε̂−1mn1/ββ log2 n + kε̂−2n1+2/ββ2 log4 n) work. The set Ek produced by the kth
run of the algorithm is such that (V,Ek) constitutes a (2kd`/(`′)ke, t(1 + ε̂)2k(2β)k)-
approximation of (V, Ê). We typically use the above where ε̂ and k are fixed constants.
We remark that under some conditions we can get further improvements on the above
bounds. Note that the work bound stated above may have an imbalance between the
two terms. If m >> n1+1/β we can “afford” smaller values of β and within the
same resource bounds achieve smaller stretch. Suppose we use for the parameter β
the values β1 and β2 = 1/(lognm − 1) alternatingly in repeated applications of the
algorithm. In the first run, that is applied to the graph (V,E), we use β1. We assume
that k and ε̂ are fixed. It follows that the algorithm runs in O(`′ log n(β2

1 + β2
2)) time

using O(mn1/β1 log4 n) work. The graph (V,Ek) is a (2kd`/(`′)ke, t2kβdk/2e1 β
bk/2c
2 (1+

ε̂)2k)-approximation of (V, Ê).

2.4. Computing stretched distances. Observe that any weighted graph is
an (n, 1)-approximation of itself. We can obtain stretch-t paths in a graph (V,E) by
(i) applying Algorithm 2.7 repeatedly to obtain an approximation (V,E′) of (V,E)
with small path size, and (ii) applying Algorithm 2.6 to (V,E′).

Theorem 2.8. For a weighted graph G = (V,E), a set of query pairs Q ⊂ V ×V ,
a scalar β ≥ 1, and fixed 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, we can obtain paths with stretch

(2β)d1/δe(1 + ε)

between all pairs of vertices in Q in O(nδ log nβ2) time using O(n1+2/ββ2 log4 n +
(m+ |Q|)n1/ββ log2 n) work with probability of success 1−O(1/poly(n)).

220 EDITH COHEN

Proof. We choose k = d1/δe−1 and ε̂ < (1+ ε)(−2d1/δe)−1. We apply k repeated
application of Algorithm 2.7 to (V,E) with `′ = 2nδ. Denote by (V,E′) the resulting
graph (obtained with probability 1 − O(1/poly(n)). It follows (see subsection 2.3)
that (V,E′) constitutes an approximation of (V,E) with path size dnδe and stretch

(2β(1 + ε̂)2)k.

The graph (V,E′) is obtained in O(nδ log nβ2) time using

O(n1+2/ββ2 log4 n+mn1/ββ log2 n)

work. We apply Algorithm 2.6 to (V,E′) with parameter ` = dnδe and query set Q.
We return the stretched distances found by Algorithm 2.6. It is easy to verify that
these distances are within a factor of

(2β(1 + ε̂)2)d1/δe ≤ (2β)d1/δe(1 + ε)

of the corresponding shortest distances in G. The resource bounds of the applica-
tion of Algorithm 2.6 are O(nδ log nβ2) time using O((|E′|+ |Q|)n1/ββ log2 n) work.
By combining the above we obtain the stretch and resource bounds claimed in the
statement of the theorem.

It follows that for any fixed ε > 0, by choosing δ < ε and β > 2/ε, paths with
constant stretch can be obtained in O(nε) time using O(nε(|Q|+ n)) work. In [6] the
author presented an algorithm that for an input graph G = (V,E) and parameter
µ ≥ 0.5 produces a graph that is a (6n1−µ log3 n, 1 + 1/poly(n))-approximation of G.
The graph obtained hasO(m+n1+µ log n) edges and the algorithm usesO(n1+2µ log n)
work and runs in Ω(log2 n log∗ n) time, We utilize this to improve on the tradeoffs
stated in Theorem 2.8. We obtain the following theorem.

Theorem 2.9. For 0.5 ≤ µ ≤ 1 and fixed constants 0 ≤ δ ≤ 1 and ε > 0, we can
obtain (with probability 1−O(1/poly(n))) paths with stretch

(2β)d(1−µ)/δe(1 + ε)

between all pairs of vertices in a given set Q ⊂ V × V in O(nδ log nβ2) time using

O(n1+2µ log n+ n1+2/ββ2 log4 n+ (m+ n1+µ log n+ |Q|)n1/ββ log2 n)

work.
Proof. We use a simple modification of the proof of Theorem 2.8 where we start

with the graph G obtained by applying the algorithm of [6] with parameter µ.

3. Computing an (`, β, ρ, ε̂)-cover. In this section we reduce the problem of
finding an (`, β, ρ, ε̂)-cover in a graph G = (V,E) with weights w : E → R+ to a
problem of finding a (β, 2`ε̂−1)-cover in (V,E) with respect to some integral weights
w̄ : E → N . We define (β,W)-cover of a weighted graph to be an (n, β,W, 0)-cover of
the graph (see Definition 2.3). The weights w̄ are obtained by scaling and rounding
up the weights w. The reduction is based on a technique and ideas from Klein and
Sairam [10]. The weights w̄ are computed as follows.

Algorithm 3.1 (generate integral weights w̄).
1. π ← 2`ε̂−1/ρ
2. For all e ∈ E, let w̄(e) ← dπw(e)e (e ∈ E)

CONSTRUCTING SPANNERS AND STRETCH t PATHS 221

Complexity. Using standard PRAM techniques, Algorithm 3.1 can be performed
in O(log n) time using O(m) work.

The weights w̄ : E → N have the following properties.

Proposition 3.2. For every pair of vertices, {u1, u2} ⊂ V ,

1. πdist`E,w{u1, u2} ≥ distE,w̄{u1, u2} − ` and
2. πdistE,w{u1, u2} ≤ distE,w̄{u1, u2}.

Proof. Observe that for every path p of size k = |p|,

w̄(p)− k ≤ πw(p) ≤ w̄(p) .

Part 2 is immediate from the right inequality. We apply the left inequality to prove
part 1. Let p̂ be the path that minimizes w(p̂) among all paths of size at most `
between u1 and u2. We have

πdist`E,w{u1, u2} = πw(p̂) ≥ w̄(p̂)− |p| ≥ distE,w̄{u1, u2} − ` .

Definition 3.3 ((β,W)-covers of graphs). For a given graph G = (V,E) with in-
tegral weights w : E → N , a scalar W ≥ 1 and an integer β = O(log n), a (β,W)-cover
of G is a collection of sets of vertices X1, . . . , Xk (clusters) and vertices v1, . . . , vk
where vi ∈ Xi (centers) such that

1. ∀{u, v} ⊂ V such that dist{u, v} ≤W , ∃i such that {u, v} ⊂ Xi,
2. ∀i for all u ∈ Xi, dist{vi, u} ≤ βW , and
3. for every v ∈ V , |{i|v ∈ Xi}| = O(n1/ββ log n).

In section 5 we present a randomized algorithm that computes a (β,W)-cover of
an input graph G with integral edge weights. The algorithm runs in O(Wβ2 log n)
time using O(n1/βm/(Wβ)) processors and computes a cover with probability 1 −
O(1/poly(n)).

We discuss computing an (`, β, ρ, ε̂)-cover in a graph G = (V,E) with weights
w : E → R+. Consider applying Algorithm 3.1 to obtain the weights w̄ : E → N .
Define W = πρ = 2`ε̂−1. Let X1, . . . , Xk with corresponding centers v1, . . . , vk be a
(β,W)-cover of (V,E) with respect to the weights w̄.

Proposition 3.4. The sets X1, . . . , Xk with corresponding centers v1, . . . , vk
constitute an (`, β, ρ, ε̂)-cover of G.

Proof. We prove that condition 1 of Definition 2.3 holds for X1, . . . , Xk. Consider
a pair of vertices {u1, u2} ⊂ V such that dist`E,w{u1, u2} ≤ ρ/(1 + ε̂). It follows from
Proposition 3.2 that

distE,w̄{u1, u2} ≤ πdist`E,w{u1, u2}+ ` ≤W (1/(1 + ε̂) + ε̂/2) ≤W .

Hence, from condition 1 of Definition 3.3, for some i, {u1, u2} ⊂ Xi. We show that
condition 2 of Definition 2.3 holds. Consider 1 ≤ i ≤ k and u ∈ Xi. It follows
from Proposition 3.2 that πdistE,w{vi, u} ≤ distE,w̄{vi, u}. Condition 2 of Defini-
tion 3.3 asserts that distE,w̄{vi, u} ≤ βW ≤ πβρ. Hence, distE,w{vi, u} ≤ βρ and
thus condition 2 holds. The validity of condition 3 is immediate from condition 3 of
Definition 3.3.

Proposition 3.4 asserts that an (`, β, ρ, ε̂)-cover of G with weights w can be com-
puted within the same resource bounds as a (β, 2`ε̂−1)-cover of G with weights w̄. The
proof of Theorem 2.4 follows using the bounds for computing a (β,W)-cover stated
above.

222 EDITH COHEN

4. Computing neighborhoods. In this section we present a parallel algorithm
for computing neighborhoods of vertices in a graph G = (V,E) with integral weights
w : E → N . The k-neighborhood of a vertex v, Nk(v) is the set of vertices of distance
at most k from v. The time depends linearly on k (the radius of the neighborhood)
and the work performed is linear in E(Nk(v)), the number of edges between vertices
in the neighborhood.

We assume that the input is such that at each vertex, the incident edges are
sorted into a list of “buckets” according to increasing weights. (Note that this can be
achieved in O(log2 n) time and either O(m log n) work using comparison-based sorting
or O(m) work, since weights are integral and for the purposes of this paper it suffices
to consider weights that are of size at most W = O(ε̂−1n).) We prove the following.

Proposition 4.1. For a set of integers k1, . . . , kr, and a set of vertices s1, . . . , sr,
the computation of Nki(si) for i = 1. . . . , r can be performed using p processors in time

O

(
(max

i
ki log n) +

r∑
i=1

|E(Nki(si))|(log n)/p

)
.

Or, alternatively, for any fixed α > 0, in

time Ω(max
i

kin
α) and work O

(
r∑

i=1

|E(Nki(si))|
)

.

The algorithm essentially amounts to performing, in parallel for si (1 ≤ i ≤ r) a
weighted parallel BFS computation from si while considering only paths of weight at
most ki.

We present a weighted parallel BFS algorithm from a vertex s inG. The algorithm
is a straightforward generalization of a parallelization of the standard sequential BFS
algorithm used by Ullman and Yannakakis [14]. A weighted version of the parallel
BFS algorithm was also used by Klein and Sairam [10].

The algorithm consists of iterations where in the ith iteration (i ≥ 0) the algo-
rithm computes the set leveli(s) ⊂ V of all vertices of distance i from s. The algorithm
terminates when a stopping condition is met.

Algorithm 4.2 (weighted Parallel BFS from s).
1. level0(s) ← {s}

F = {s}
i← 0

2. Repeat:
i← i+ 1
leveli(s) ← {v ∈ V \ F |∃j < i∃u ∈ levelj(s) s.t. (v, u) ∈ E ∧ w(v, u) = i− j}
F = F ∪ leveli(s)
Until: stopping condition is satisfied

Correctness. It is easy to verify that after the ith iteration,

leveli(s) = {u ∈ V |distE{s, u} = i} .

Complexity. We outline an EREW PRAM implementation of the algorithm and
analyze the resulting resource bounds.

We assume that at each vertex u ∈ V there is a list of “buckets” containing a
partition of the vertices adjacent to u. The partitioning of adjacent vertices to buckets
is done by sorting the edges incident at u. Adjacent vertices are placed in buckets

CONSTRUCTING SPANNERS AND STRETCH t PATHS 223

according to the weight of the edge to the vertex u. The buckets are maintained in
a list, according to increasing weights, such that each bucket has a pointer to the
nonempty bucket of next larger weight. For a vertex u and integer j, we denote by
B(u, j) the bucket of adjacent vertices to u through edges of weight j. The algorithm
also maintains a partition of the vertices in F as a list of sets Aj (j > 0). The partition
is modified in the course of the algorithm. At the termination of iteration i, a vertex
u ∈ levelj(s) (for j < i) is placed in the set Acu+j , where cu is the smallest weight
of an edge incident at u such that cu + j > i. Note that at iteration i it suffices to
examine vertices in Ai+1 to determine the i+ 1st level.

We specify the actions of the algorithm in the ith iteration. The algorithm
examines (in parallel) the vertices in Ai. For each u ∈ Ai ∩ levelj(s), the algo-
rithm scans the vertices in B(u, i − j). For each u′ ∈ B(u, i − j) the algorithm
does as follows. If u′ 6∈ F , it is placed in leveli(s). The vertex u′ is placed in a
set Ai′ , where i′ = i + min{j′|B(u′, j′) 6= ∅}. The vertex u is replaced in a dif-
ferent set Ai′′ (i′′ > i), according to the weight of the next nonempty bucket on
its bucket list i′′ = i + min{j′ > i − j|B(u, j′) 6= ∅}. It follows from standard
EREW PRAM techniques that the ith iteration can be performed in O(log n) time
using

∑
j<i

∑
u∈levelj(s) |B(u, i− j)| log n work or, alternatively, in Ω(nα) time using∑

j<i

∑
u∈levelj(s) |B(u, i− j)| work.

Consider performing instances of the above computation in parallel for a set of
sources s1, . . . , sr, where the computation for a source si is done for up to ki ≤ `
(1 ≤ i ≤ r) iterations. The ith iterations (for 0 ≤ i ≤ `) of all instances are performed
in parallel. Hence, with p available processors, the ith iterations of all instances can
be performed in

O

log n+

r∑
h=1

∑
j<i

∑
u∈levelj(sh)

|B(u, i− j)|(log n)/p

time or alternatively in

O

nα +

r∑
h=1

∑
j<i

∑
u∈levelj(sh)

|B(u, i− j)|/p

time. For 1 ≤ j ≤ r, denote by Fj the set F generated by the instance of the algorithm
for the source sj . Note that for all 1 ≤ h ≤ r,∑

i≤r

∑
j<i

∑
u∈levelj(sh)

|B(u, i− j)| = 2|E(Fh)| .

It follows that the ` iteration of Algorithm 4.2 can be performed in time

O

(
` log n+

∑
s∈S

|E(Fs)|(log n)/p

)

(or, alternatively, in time O(`nα) and work O(
∑

s∈S |E(Fs)|/p)). This concludes the
proof of Proposition 4.1.

Remark 4.3 (computing neighborhoods sequentially). Consider a graph with
weights w : E → R+, a scalar ρ, and a vertex s. The goal is to compute Nkρ(s) where

224 EDITH COHEN

k is the first j such that Njρ(s) satisfies some desired easy-to-check property. Assume
that G is represented in a way that the edges incident at each vertex can be accessed
in order according to increasing weight. A simple modification of the sequential BFS
algorithm can compute Nkρ(s) in |E(Nkiρ(si))| time. The algorithm uses O(k + n)
additional storage for maintaining a partition of the vertices into sets Aj(1 ≤ j ≤ k).
The latter partition is used in a similar fashion to the partition maintained by the
parallel algorithm stated above.

5. Computing a (β,W)-cover. In this section we present and analyze an
algorithm that computes a (β,W)-cover χ for an input graph G = (V,E) with integral
weights w : E → N .

Definition 5.1. For V ′ ⊂ V , v ∈ V ′, and an integer k ≥ 0, define
1. core(v, k, V ′) = NkW (V ′, v) and
2. cluster(v, k, V ′) = N(k+1)W (V ′, v).

The following proposition states some easy-to-verify properties.
Proposition 5.2.
1. For V ′ ⊂ V , k ∈ N , and {v1, v2} ⊂ V ′: v1 ∈ core(v2, k, V

′) if and only
if v2 ∈ core(v1, k, V

′). Similarly, v1 ∈ cluster(v2, k, V
′) if and only if v2 ∈

cluster(v1, k, V
′).

2. For V ′ ⊂ V , k ∈ N , and u ∈ cluster(v, k, V ′), distE{v, u} ≤ distE(V ′){v, u} ≤
(k + 1)W .

3. For integers k2 < k1, subsets V2 ⊆ V1 ⊆ V , and v ∈ V2:

core(v, k2, V2) ⊆ cluster(v, k2, V2) ⊆ core(v, k1, V1) ⊆ cluster(v, k1, V1) .

Algorithm 5.3 (compute a (β,W)-cover χ).
1. V1 ← V , χ← ∅
2. For i = 1, . . . , β:

(a) Choose uniformly at random a set Si ⊂ Vi of size dCni/β |Vi|(log n)/ne
(C ≥ 1 is some constant, where the value of C determines the probability
that the algorithm terminates correctly.)
If |Vi| < dCni/β |Vi|(log n)/ne choose Si ← Vi
Let ki ← β − i

(b) Perform, in parallel for v ∈ Si, a computation of core(v, ki, Vi), cluster(v,
ki, Vi).
(Use the algorithm of section 4.)

(c) χ← χ ∪ {cluster(v, ki, Vi)|v ∈ Si}
(d) Vi+1 ← Vi \

⋃
v∈Si core(v, ki, Vi)

If Vi+1 = ∅, stop.
Figure 1 illustrates the clusters produced by the algorithm. In the first iteration,

we select a small number of neighborhoods with a large radius. In following iterations,
we select larger number of neighborhoods with smaller radiuses. The algorithm is such
that with high probability these neighborhoods do not contain many vertices.

Note that the condition |Vi| < dCni/β |Vi|(log n)/ne must occur for some i. When
|Vi| < dCni/β |Vi|(log n)/ne, the current iteration is last. Since Si = Vi, for all v ∈ Vi,
v ∈ core(v, ki, Vi) and hence Vi+1 = ∅. Therefore, we have V ≡ V1 ⊃ V2 ⊃ · · · ⊃ Vt =
∅, where i = t− 1 in the last iteration.

In the remaining part of this section we prove the following theorem.
Theorem 5.4. With probability 1−O(1/poly(n)), Algorithm 5.3 is
1. correct, that is, χ constitutes a (β,W)-cover of G; and

CONSTRUCTING SPANNERS AND STRETCH t PATHS 225

Iteration 4

Iteration 3

Iteration 2

Iteration 1

r=0
R=W

r=W

R=2W

r=2W
R=3W

r=3W

R=4W

R

r R

r R

Fig. 1. Clusters produced by the algorithm with β = 4.

2. can be implemented to run in O(Wβ2 log n) time using O(n1/βm/(Wβ)) pro-
cessors; hence, performing O(n1/βmβ log n) work.

Proposition 5.5. For every pair of vertices {u1, u2} ⊂ V , if distE{u1, u2} ≤W ,
then ∃X ∈ χ such that {u1, u2} ⊂ X.

Proof. Let {u1, u2} ⊂ V be such that distE{u1, u2} ≤ W and let p be a path in
(V,E) of weight at most W between u1 and u2. During this proof we interchangeably
refer to p as the path as a whole or as the set of vertices of p. Since {u1, u2} ⊂ p, it
suffices to show that p ⊂ X for some X ∈ χ. Let j be such that p ⊂ Vj but p 6⊂ Vj+1.
Note that j is well defined since the sets Vi (i ≥ 1) are monotonically decreasing and
include the set of all vertices and the empty set. Denote by χj the assignment of χ
at the end of the jth iteration. We show that ∃X ∈ χj such that p ⊂ X. Let u ∈ p
be such that u 6∈ Vj+1. It follows from the algorithm that u ∈ core(s, kj , Vj) for some
s ∈ Sj . Hence, from the definition, NW (Vj , u) ⊂ cluster(s, kj , Vj). Since p is of weight
at most W and p ⊂ Vj , it follows that p ⊂ NW (Vj , u). Hence,

{u1, u2} ⊂ p ⊂ NW (Vj , u) ⊂ cluster(s, kj , Vj) ∈ χ .

Proposition 5.6. For every v ∈ V and 1 ≤ i ≤ β,

core(v, ki+1, Vi+1) ⊆ cluster(v, ki+1, Vi+1) ⊆ core(v, ki, Vi) ⊆ cluster(v, ki, Vi) .

Proof. The proof is immediate from part 3 of Proposition 5.2.
Proposition 5.7. With probability 1−O(1/poly(n)), for j > i

∀v ∈ Vj , |cluster(v, kj , Vj)| < n1−i/β .

Proof. If i is the last iteration, Vi+1 = ∅ and the proposition follows. Otherwise,
|Si| = Ω(ni/β |Vi|(log n)/n). Since cluster(v, kj , Vj) ⊂ core(v, ki, Vi) (see Proposi-
tion 5.6) and Vj ⊂ Vi,

{v ∈ Vj | |cluster(v, kj , Vj)| ≥ n1−i/β} ⊂ {v ∈ Vi| |core(v, ki, Vi)| ≥ n1−i/β} .

226 EDITH COHEN

It is therefore sufficient to prove that with probability 1−O(1/poly(n)),

{v ∈ Vi| |core(v, ki, Vi)| ≥ n1−i/β} ∩ Vi+1 = ∅ .

Consider a vertex v ∈ Vi such that |core(v, ki, Vi)| ≥ n1−i/β . We prove that with
probability 1 − O(1/poly(n)), v ∈ ⋃s∈Si core(s, ki, Vi) (and, hence, using part 1 of
Proposition 5.2, v 6∈ Vi+1). Since the elements of Si are chosen uniformly at random,
for s ∈ Si we have

Prob{v ∈ core(s, ki, Vi)} = |core(v, ki, Vi)|/|Vi| ≥ n1−i/β/|Vi| .

Hence, since the elements of Si are chosen independently,

Prob{v ∈ Vi+1} = Prob
{
v 6∈ ⋃s∈Si core(s, ki, Vi)

} ≤ (1− n1−i/β/|Vi|)|Si|
= (1− n1−i/β/|Vi|)Ω(|Vi|ni/β−1 logn) = O(1/poly(n)) .

To conclude the proof note that

Prob
{{v ∈ Vi| |core(v, ki, Vi)| ≥ n1−i/β} ∩ Vi+1 6= ∅}

≤∑v∈Vi Prob{|core(v, ki, Vi)| ≥ n1−i/β ∧ v ∈ Vi+1} ≤ |Vi|/poly(n) ≤ O(1/poly(n)) .

Proposition 5.8. With probability 1 − O(1/poly(n)), for all e ∈ E and all
v ∈ V ,

|{X ∈ χ|e ∈ E(X)}| = O(n1/ββ log n) and

|{X ∈ χ|v ∈ X}| = O(n1/ββ log n) .

Proof. The claim for edges follows from the claim for vertices. Consider the
ith iteration and a vertex v. It follows from Proposition 5.7 that with probability
1−O(1/poly(n)),

for all u ∈ Vi, |cluster(u, ki, Vi)| ≤ n1−(i−1)/β .

Using part 1 of Proposition 5.2 we have that for u ∈ Vi, v ∈ cluster(u, ki, Vi) if and
only if u ∈ cluster(v, ki, Vi). Hence, for any u ∈ Vi chosen uniformly at random

Prob{v ∈ cluster(u, ki, Vi)} ≤ |cluster(v, ki, Vi)|/|Vi| ≤ n1−(i−1)/β/|Vi| .

Therefore, the expected number of vertices s ∈ Si for which v ∈ cluster(s, ki, Vi) is
bounded by |Si|n1−(i−1)/β/|Vi| = O(n1/β log n). From Chernoff bound [5] we obtain

Prob{|{s ∈ Si|v ∈ cluster(s, ki, Vi)}| = O(n1/β log n)} ≥ 1−O(1/poly(n)) .

Since β = O(log n) = O(polyn), it follows that for all v ∈ V ,

Prob

{
β∑
i=1

|{s ∈ Si|v ∈ cluster(s, ki, Vi)}| = O(βn1/β log n)

}
≥ 1−O(1/poly(n)) .

Since |V | = O(n), we can deduce that with probability 1−O(1/poly(n)),

∀v ∈ V,
∑
i

|{s ∈ Si|v ∈ cluster(s, ki, Vi)}| = O(n1/ββ log n) .

CONSTRUCTING SPANNERS AND STRETCH t PATHS 227

Corollary 5.9. With probability 1−O(1/poly(n)),

∑
X∈χ

|E(X)| = O(n1/βmβ log n) and

∑
X∈χ

|X| = O(n1+1/ββ log n) .

Proof. Note that

∑
X∈χ

|E(X)| =
∑
e∈E

|{X ∈ χ|e ∈ X}| and
∑
X∈χ

|X| =
∑
v∈V

|{X ∈ χ|v ∈ X}| .

The proof follows using Proposition 5.8.

We conclude the proof of Theorem 5.4. To prove the correctness of Algorithm 5.3
we verify that with probability 1−O(1/poly(n)), χ constitutes a (β,W)-cover of G.
We show that χ satisfies properties 1 and 2 of Definition 3.3, and with probability
1−O(1/poly(n)), χ satisfies property 3 of the definition. Proposition 5.5 establishes
that property 1 holds for χ. The validity of property 2 follows from the fact that for
all i, ki ≤ β − 1. Proposition 5.8 asserts that χ satisfies property 3 (with probability
1−O(1/poly(n))).

We furnish resource bounds for Algorithm 5.3. The computation of clusters in
step 2b assumes that the graph is represented in a certain format (see section 4).
This representation allowed us to compute clusters with work proportional to the
combined size of the clusters computed (instead of having to look at all the edges in
the graph). We remark that this representation can be easily generated and revised
(for the subgraphs induced by Vi where i > 0) within the resource bounds of the
algorithm. Consider a single iteration of Algorithm 5.3. The computation in step 2b
dominates the complexity. It follows from Proposition 4.1 that the computation of
step 2b in the ith iteration can be performed in

O

(
Wβ log n+

∑
s∈Si

|E(cluster(s, ki, Vi))|(log n)/p

)

time using p processors (and in O(
∑

s∈Si |E(cluster(s, ki, Vi))|) work, when allowing
O(Wβnα) time). Hence, since there are at most β iterations, the algorithm can be
performed in

O

(
Wβ2 log n+

∑
x∈χ

|E(X)|(log n)/p

)

time using p processors. By substituting the bound from Corollary 5.9 we deduce that
with probability 1−O(1/poly(n)), the algorithm can be performed in O(Wβ2 log n)
time using p = O(n1/βm(log n)/(Wβ)) processors. The work performed by the algo-
rithm is O(n1/βmβ log2 n). When allowing O(Wβ2nα) time (for fixed α), the work is
reduced to O(n1/βmβ log n).

228 EDITH COHEN

6. Sequential algorithms. This section is concerned with sequential stretch-t
paths algorithms. We first discuss a sequential version of the randomized algorithm
presented in previous sections. In the main part of this section we present a deter-
ministic algorithm. Our sequential algorithms are both simpler than the previous
Awerbuch et al. [2] algorithm and significantly improve the tradeoffs between the
stretch and the running time.

6.1. A randomized sequential algorithm. In subsection 2.2 we presented a
parallel algorithm (Algorithm 2.6) that computes stretched `-limited distances, where
1 ≤ ` ≤ n. Hence, when ` = n, the algorithm produces stretch-t paths. The resulting
algorithm inputs a graph G, with weights w : E → R+, integer β ≥ 1, a scalar
0 ≤ ε̂ ≤ 1/2, and a set of query pairs Q ⊂ V × V . The algorithm runs in time
O((m + |Q|)n1/ββ log2 n) and with probability 1 − O(1/poly(n)) computes for all
{v, u} ∈ Q, stretched distance ˜dist{v, u} such that

distE{v, u} ≤ ˜dist{v, u} ≤ 2β(1 + ε̂)2distE{v, u} .

A simplified sequential algorithm with slightly worse time bounds and slightly better
stretch can be obtained by avoiding the reduction to small integral weights performed
in section 3. Small integral weights are necessary for efficient parallel computation of
neighborhoods but are not crucial in the sequential version. The simplified algorithm
applies a sequential version of Algorithm 2.6 and uses (n, β, wi, 0)-covers instead of
(`, β, wi, ε̂)-covers (for i = 1, . . . , r). (n, β, wi, 0)-covers can be computed directly by
Algorithm 5.3. In the implementation of Algorithm 5.3 we disregard the assumption
that the weights are integral and utilize a slightly modified version of Dijkstra’s al-
gorithm to compute neighborhoods. If edges are initially sorted according to their
weight at the vertices, we can compute a neighborhood with V ′ vertices in time
O(|E(V ′)|+ |V ′| log |V ′|) (using Fibonnaci heaps). The simplified algorithm inputs a
graph G, with weights w : E → R+, integer β ≥ 1, a scalar 0 ≤ ε̂ ≤ 1/2, and a set of
query pairs Q ⊂ V ×V . The algorithm runs in time O((m+n log n+ |Q|)n1/ββ log2 n)
and with probability 1−O(1/poly(n)) computes for all {v, u} ∈ Q, stretched distance
˜dist{v, u} such that

distE{v, u} ≤ ˜dist{v, u} ≤ 2β(1 + ε̂)distE{v, u} .

6.2. The deterministic algorithm. We present a deterministic stretch-t paths
algorithm. For a weighted graph G = (V,E) and a set of sources S ⊂ V , the algorithm
computes stretched distances for all pairs of vertices in S × V . For an integer β
and any fixed ε > 0, the algorithm obtains stretched distances to within a factor
of 2(1 + lognm)β(1 + ε) using Õ(n1/β(m + n|S|)) time. For the all-pairs problem
(when |S| = n), the running time is Õ(n2+1/β). A modification of the algorithm
achieves stretch 4β(1 + ε) using Õ(n2+1/β) time. For dense graphs lognm ≈ 2, and
hence the modification yields improved stretch (by a factor of 2/3) within comparable
time bounds. In contrast, the Awerbuch et al. [2] algorithm obtains stretch 32β
using Õ(n2/βm+ n1+1/β |S|) time. We remark, however, that the Awerbuch et al. [2]
algorithm is more general since stretched distances between any k specified pairs of
vertices can be obtained in Õ(n2/βm+ n1/βk) time.

We use the following definition for pairwise covers. Note that it differs from
Definition 2.3 that was used for the randomized algorithm.

Definition 6.1. Consider a graph G = (V,E) with weights w : E → R+, an
integer β = O(log n), and a scalar ρ ∈ R+. A pairwise (β, ρ)-cover of G is a collection

CONSTRUCTING SPANNERS AND STRETCH t PATHS 229

C
luster

C
ore

Fig. 2. Example of a cluster and respective core for n1/β < 2.

of sets of vertices X1, . . . , Xk (clusters) and vertices v1, . . . , vk, where vi ∈ Xi is the
center of Xi, such that

1. ∀{u, v} ⊂ V such that dist{u, v} ≤ ρ ∃i such that {u, v} ⊂ Xi,
2. ∀i, ∀u ∈ Xi, dist{vi, u} ≤ (1 + lognm)βρ, and

3.
∑k

i=1 |Xi| = O(n1+1/β).

We claim that a (β, ρ)-cover of G can be computed in O(mn1/β) time. We first
discuss the structure of the clusters we choose to constitute the cover.

6.3. Structure of clusters. We consider a graph G = (V,E) with weights
w : E → R+ and parameters β and ρ ∈ R+. We discuss the structure and properties
of subsets of vertices we call clusters. We use carefully chosen clusters as the building
blocks of a (β, ρ)-cover.

A cluster is a subset of vertices that is defined with respect to two parameters:
a subset of vertices V ′ ⊂ V and a vertex v ∈ V ′ (the center of the cluster). The
cluster comprises a neighborhood of the center v in the graph (V ′, E(V ′)) up to a
certain distance (that is an integral multiple of ρ). The core of a cluster is the subset
of cluster vertices whose neighborhoods up to distance ρ in (V ′, E(V ′)) are contained
in the cluster. For the parameters (v, V ′), we define core(v, V ′) and cluster(v, V ′) to
be the sets obtained by performing the following computation.

1. cluster(v) ← {v}
2. i← 1
3. Repeat:

(a) core(v) ← cluster(v)
(b) cluster(v) ← {u ∈ V ′|distE(V ′){v, u} ≤ iρ}
(c) i← i+ 1

4. Until: |cluster(v)| ≤ n1/β(|core(v)|+ 1) ∧
|E(cluster(v))| ≤ n1/β(|E(core(v))|+ 1)

Figure 2 illustrates a cluster. The shells correspond to neighborhoods of the center
that are integral multiples of ρ. In the example, n1/β < 2. Hence the cluster stops
growing when annexing the next shell does not double the number of vertices. The
external shell defines the cluster, and the previous shell defines the core.

Proposition 6.2. At termination, i ≤ (1 + lognm)β − 1.

Proof. Note that the size of at least one of cluster(v) or E(cluster(v)) increases
by more than a factor of n1/β in every iteration except for the last one. Observe that
|cluster(v)| ≤ |V ′| ≤ n and |E(core)| ≤ m. Thus, |cluster(v)| can increase by a factor
of more than n1/β at most β − 1 times and |E(cluster(v))| can increase by a factor

230 EDITH COHEN

of more than n1/β at most β lognm− 1 times. Hence, the stopping condition occurs
within (1 + lognm)β − 1 iterations.

Consider a subset V ′ ⊂ V and v ∈ V ′.
Corollary 6.3. For all u ∈ cluster(v, V ′),

distE{u, v} ≤ distE(V ′){u, v} ≤ (1 + lognm)βρ .

The following proposition is immediate.
Proposition 6.4.
1. For all u ∈ core(v, V ′), NW (V ′, u) ⊂ cluster(v, V ′).
2. |cluster(v, V ′)| ≤ n1/β(|core(v, V ′)|+ 1).
3. |E(cluster(v, V ′))| ≤ n1/β(|E(core(v, V ′))|+ 1).

We discuss the construction of clusters. We assume that the edges incident at
each vertex are initially sorted according to their weight. Remark 4.3 asserts that a
simple modification of the standard BFS algorithm yields the following bound: for
all V ′ ⊂ V and v ∈ V ′, the sets cluster(v, V ′) and core(v, V ′) can be computed in
O(|E(cluster(v, V ′))|) time.

6.4. The cover algorithm. The following algorithm produces a pairwise cover.
Algorithm 6.5 (compute a (β, ρ)-cover).
1. V ′ ← V , χ← ∅
• Main Loop:
2. Choose v ∈ V ′

Compute cluster(v, V ′) and core(v, V ′).
χ← χ ∪ {cluster(v, V ′)}
V ′ ← V ′ \ core(v, V ′)
If V ′ 6= ∅, go to step 2

We show that χ is indeed a (β, ρ)-cover as in Definition 6.1. Property 2 is imme-
diate from Corollary 6.3. Property 3 follows from Proposition 6.4 and the fact that
the cores of the clusters in χ are disjoint. In order to prove that property 1 holds,
consider a pair of vertices {v1, v2} ⊂ V such that distE{v1, v2} ≤ ρ. Let p be a set
of vertices constituting a path between v1 and v2 of weight at most ρ. Consider the
first iteration where p ∩ core(v, V ′) 6= ∅ (V ′ and v denote the respective assignments
of values to V ′ and v during this iteration). It follows that p ⊂ V ′. By definition,
cluster(v, V ′) contains all vertices of distance at most ρ from core(v, V ′) in E(V ′).
Hence, since E(p) ⊂ E(V ′) and p∩ core(v, V ′) 6= ∅, we have p ⊂ cluster(v, V ′). There-
fore, {v1, v2} ⊂ p ⊂ cluster(v, V ′). The running time of the algorithm is dominated
by the construction of the clusters. We assume that at each vertex the incident edges
are sorted according to weight. We argued above that the computation of a cluster
X ∈ χ can be performed in O(|E(X)|) time. Hence, using property 3 of Definition 6.1,
we obtain the following bound on the running time

O

∑
X∈χ

|E(X)|

 = O(n1/βm) .

6.5. Computing stretched distances. A cover as in Definition 6.1 can be
used in a similar manner to Algorithm 2.6 of subsection 2.2 to compute stretched
distances from a set of sources S ⊂ V to all other vertices.

Theorem 6.6. For a weighted graph G, an integer β ≥ 1, a fixed ε ≥ 0, and a
set of query sources S ⊂ V , the following algorithm computes for all v ∈ S and for

CONSTRUCTING SPANNERS AND STRETCH t PATHS 231

all u ∈ V , stretched distance ˜dist(v, u) such that

distE(v, u) ≤ ˜dist(v, u) ≤ 2β(1 + lognm)(1 + ε)distE(v, u)

in O(n1/βm log n+ |S|n1+1/β log n) time.
Algorithm 6.7 (compute distances).
1. wmin ← mine∈E w(e)

wmax ← maxe∈E w(e)
r ← dlog1+ε̂(nwmax/wmin)e
For i = 0, . . . , r: wi ← wmin(1 + ε̂)i

2. For i = 0, . . . , r do (in parallel):
(a) Compute (β,wi)-cover χi
(b) For each vertex v ∈ S, x(i, v) ← ⋃{X ∈ χi|v ∈ X}.

3. For all v ∈ S:
For all u ∈ V :
˜dist(v, u) ← 2(1 + lognm)βwi, where i← min{j|u ∈ x(j, v)}.

The correctness follows from arguments similar to the ones given in subsection 2.2.
The computation amounts to first computing r = O(ε−1 log n) covers for different
values of ρ and, second, for every source v ∈ S computing x(j, v) for 1 ≤ j ≤ r.
The computation per source can be performed in time linear in the sum of the sizes
of the covers. Recall that the computation of covers using Algorithm 6.5 assumes
that the edges are sorted according to weight at vertices. Hence, the running time is
O(m log n) for the sorting of edges, O(ε−1n1/βm log n) for computing the covers, and
O(n1+1/βε−1 log n) time per source.

Remark 6.8. Consider relaxing the termination conditions in the definition of
clusters and not requiring that |E(cluster(v))| ≤ n1/β(|E(core(v))| + 1). We obtain
improved stretch (the diameter of cluster is shorter by a factor of (1+ lognm) but has
worse time bounds). The tradeoffs for stretched all-pairs distances in dense graphs im-
prove. We obtain an O(n2+2/β log n) time algorithm for computing stretched distances
to within a factor of 2β between all pairs of vertices.

7. Applications to graph spanners. Consider a weighted graph G = (V,E).
A t-spanner of G is a weighted graph (V,E′) such that for all pairs {u1, u2} ⊂ V we
have

distE{u1, u2} ≤ distE′{u1, u2} ≤ tdistE{u1, u2} .
We utilize our constructions of pairwise covers to obtain t-spanners for weighted

graphs. We present a randomized construction of spanners of size (number of edges)
O(n1+(2+ε)/t) in time O(mn(2+ε)/t) (for any ε > 0 and t such that t/(2+ε) is integral).
We give a deterministic algorithm that finds t-spanners of size O(n1+(2+ε)(1+lognm)/t)
and runs in O(mn(2+ε)(1+lognm)/t) time (for any ε > 0 and t such that t/((1 +
lognm)(2 + ε)) is integral). In addition, we discuss parallel constructions of span-
ners.

7.1. Computing spanners sequentially. We show how to obtain sparse (small
size) spanners. Our spanners are constructed from a collection of pairwise covers
(see Definitions 3.3 and 6.1). Let R = wmax/wmin. Using considerations similar to
Remark 2.1, we may assume that R = O(poly(n)). Let r = dlog1+εRe. It follows
that r = O(ε−1 log n). Let β = t/(2 + ε/2) if the randomized construction of covers
is used (see Definition 3.3) and let β = t/((1 + lognm)(2 + ε/2)) if the deterministic
construction is used (see Definition 6.1). For each 0 ≤ i ≤ r, let χi be a (β,wi)-cover of

232 EDITH COHEN

G , where wi = wmin(1+ε)i. The t-spanner S ⊂ E is constructed as follows. For each
0 ≤ i ≤ r and each cluster X ∈ χi, add to S the edges of the partial BFS tree used to
construct X. It follows immediately from the properties of our construction of covers
that for every edge e ∈ E there is a path in S of weight at most tw(e) connecting the
end points of e. Hence, for every path p ⊂ E, there is a path in S of weight at most
tw(p). Therefore, S indeed comprises a t-spanner. To bound the size of the spanner
S, note that the number of edges in S is bounded by

∑r
i=0

∑
X∈χi(|X|−1). Hence, it

follows from the properties of covers that |S| = O(rn1+1/ββ log n). To obtain a time
bound for the spanner algorithm, note that it amounts to computing r covers. The
time bounds for computing a single cover are O(mn1/β) time for the deterministic
cover algorithm and O(mn1/β log n) time for the randomized cover algorithm.

Additional properties of our spanners. The spanner S consists of a collection
of subtrees T of the graph G. The following stronger statement holds: for any two
vertices {u1, u2} ⊂ V , the minimum over all the trees T ∈ T such that {u1, u2} ⊂ T of
the distance between u1 and u2 in T , is within a factor t of distE{u1, u2}. Furthermore,
if the covers produced by the randomized construction are used, then every vertex is
contained in at most O(rn1/ββ log n) subtrees in T . Consider a variant where we do
not require the spanner S to consist of edges from E, but we want limited distances
on the spanner (using small size paths) to be within a small factor of distances on
the graph. Construct a spanner S′ as follows. Take R = nwmax/wmin and r =
dlog1+εRe = O(ε−1 log n). For each 0 ≤ i ≤ r, let χi be a (β,wi)-cover of G, where
wi = wmin(1 + ε)i. For each 0 ≤ i ≤ r, each cluster X ∈ χi with respective center
u(X), and each v ∈ X, include in S′ an edge (u(X), v) of weight equal to the distance
from u(X) to v in X. The spanner S′ has a stronger property that the 2-limited
distances in S′ are within a factor t of the respective distances in G.

7.2. Computing spanners in parallel. We provide three methods for com-
puting spanners in parallel. In this subsection we assume that β = t/(2 + ε/2) and
use Definition 3.3 for covers.

Straightforward parallel implementation. We describe a parallel implementation of
the sequential algorithm above that has the same work bound and runs in time linearly
dependent onR = wmax/wmin. Hence, this implementation is of interest whenR is suf-
ficiently small. In particular, the algorithm is in NC for unweighted graphs. Note that
for the covers computed by the spanner algorithm we have wmin ≤ wi ≤ (1 + ε)wmax

(0 ≤ i ≤ r). By definition, for any cluster X ∈ χi, the distance from the center of X to
any vertex v ∈ X is at most βwi, and, hence, the partial BFS tree generated while com-
putingX has path size ofO(Rβ). Consider an application of Algorithm 5.3 to compute
χi, where in step 2b we compute clusters by a weighted parallel BFS algorithm (see
section 4). It follows that the cover algorithm runs in expected time O(Rβ2 log n)
and performs O(n1/βmβ log n) work. Hence, t-spanners of size O(n1+(2+ε)/t) can be
obtained in O(Rβ2 log2 n) expected time using O(n1/βmβ log2 n) work.

Using (exact) all-pairs shortest paths. We showed above that computing a spanner
amounts to concurrently computing r = O(log n) covers. Consider a single application
of Algorithm 5.3 to compute a cover. The complexity of the algorithm is dominated
by step 2b. Note that step 2b can be performed (with worse work bounds) as follows.
First compute all-pairs distances on the graph induced by the vertices Vi. The sets
core(v, ki, Vi) and cluster(v, ki, Vi) for v ∈ Si can be easily generated using the all-pairs
distances table. The parallel all-pairs shortest-paths computation can be performed
in O(log2 n) time with O(n3) work on an EREW PRAM. The generation of the sets
core(v, ki, Vi) and cluster(v, ki, Vi) for v ∈ Si can be performed within the same time

CONSTRUCTING SPANNERS AND STRETCH t PATHS 233

bounds using work proportional to the sum of the sizes of these sets. Note that
the resource bounds of the all-pairs shortest paths computation dominate all other
steps. A shortest-paths computation is performed in each one of the β iterations
of Algorithm 5.3. It follows that a pairwise cover can be computed in O(β log2 n)
time using O(βn3) work. Hence, t-spanners of size O(n1+(2+ε)/t) can be obtained
in O(β log3 n) expected time using O(n3β log n) work. We remark that although the
work bound is worse than the sequential time bound achieved above, it is better than
even the sequential time bounds of previous algorithms.

Tradeoffs between time and stretch. This method is based on the same technique
used to obtain a fast parallel stretch-t paths algorithm (see subsection 2.3). We
sketch the algorithm. Consider some parameter `′ < R, and let k = dlog`′/2Re. We
repeatedly apply k times a version of Algorithm 2.7, with parameter `′, where in
step 1 we use r ← dlog1+ε̂Re. The above guarantees that if distE{u1, u2} ≤ wmax

then for all `′ ≤ `,

dist
2d`/`′e
E′ {u1, u2} ≤ 2β(1 + ε̂)2dist`E{u1, u2} ,

where E′ is the set of edges obtained by applying the algorithm to (V,E). Note
that the running time is Õ(k`′). We consider the BFS trees obtained by the covers
computed at the last repetition of the algorithm and “expand” them back to consist
of original edges. The resulting spanners are tk-spanners, but their size and the work
performed is the same as for the sequential t-spanner algorithm.

8. Stretch t paths on dynamic networks. The dynamic shortest-paths prob-
lem amounts to resolving on-line distance queries between pairs of vertices when
weighted edges (and possibly new vertices) are inserted to or deleted from the graph.
Unfortunately, even when only insertions are permitted, the currently best-known so-
lution amounts to the brute force method of applying Dijkstra’s O(m+ n log n) time
algorithm to resolve each distance query. The pairwise covers and stretch-t paths
algorithms introduced here enable us to obtain more efficient algorithms for dynamic
stretch-t distances. We consider a dynamic stretch-t paths problem where we are
allowed to insert edges (while possibly introducing new vertices), delete recently in-
serted edges, and perform stretch-t distance queries. Another relevant setting is when
some large graph is fixed, but we allow insertions to and deletions from a small set of
new edges. The distance queries are performed with respect to the augmented graph.

Consider the sequential version of Algorithm 2.6 (see subsection 6.1). In the first
part of the algorithm, it produces a set of pairwise covers as to be able to answer
on-line distance queries. The first part takes Õ(mn(2+ε)/t) time. Consequently, in the
second part of the algorithm, each distance query takes Õ(n(2+ε)/t) time. Our dynamic
algorithms utilize Algorithm 2.6. Note that since Algorithm 2.6 is randomized, the
time bounds mentioned below are for the expected running time.

We first consider the following problem: the graph G is fixed, and there is a
dynamic set of new weighted edges I. Some of the edges in I may introduce new
vertices. We denote by V (I) the vertices in I. The operations allowed are to insert
edges to I, delete edges from I, and ask stretch-t distance queries between vertices in
V ∪V (I), with respect to the graph (V ∪V (I), E∪I). We sketch an algorithm for this
problem and analyze its performance. The initialization step is to apply the first part
of Algorithm 2.6 to the fixed graph G and generate a collection of pairwise covers. The
algorithm dynamically maintains a graph GI = (VI , EI) as follows. VI = V (I) ∪ C,
where C is a collection of all centers of clusters that contain vertices from V (I). The
set EI contains I and for each occurrence of a vertex v ∈ V (I) in a cluster X with

234 EDITH COHEN

center c ∈ C, EI contains the edge (v, c) weighted by the radius of X. Recall (see
Definition 2.3) that each vertex v ∈ V belongs to Õ(n(2+ε)/t) clusters. Hence, |C| =
Õ(|V (I)|n(2+ε)/t), and EI \ I = Õ(|V (I)|n(2+ε)/t). It is easy to see that an insertion
or deletion of an edge takes O(1) time, if V (I) is not modified, and Õ(n(2+ε)/t) time
otherwise. To perform a stretch-t distance query for a pair {u1, u2} ⊂ V ∪ V (I),
we proceed as follows. We utilize the second part of Algorithm 2.6, applied to the
set of pairwise covers produced earlier, to compute stretch-t distances on G from u1

and from u2 to every vertex in V (I) ∩ V . We perform a single-source shortest-paths
computation, rooted at u1, on GI augmented as follows: by the vertices {u1, u2} and
edges between {u1, u2} and V (I)∩V , weighted by the stretch-t G-distances computed
above. The answer to the query is the distance between u1 and u2 in the augmented
GI . It is easy to verify that the distance between u1 and u2 in the augmented GI is
within a factor of t of the distance in (V ∪V (I), E∪I). We bound the time required for
performing a query. The stretch-t distances computations in G can be performed in
time Õ(|V (I) ∩ V |n(2+ε)/t). The single-source shortest-paths computation take time
Õ(|V (I)|+ |EI ||) = Õ(|I|+ |V (I)|n(2+ε)/t) (using, e.g., Dijkstra’s algorithm). Hence,
the total query time is Õ(|I|n(2+ε)/t). We remark that the time is improved when
|V (I)| � |I|.

Consider now the following problem. Let k be a parameter. The weighted edges
are maintained in a list M . The allowed operations are to insert edges to the head
of M , to delete edges that are of distance at most k from the head of M , and to ask
t-stretch distance queries. We sketch an algorithm that operates in stages. Each stage
amounts to an instance of the problem discussed in the previous paragraph. In the
beginning of each stage, we consider a suffix of M denoted by M ′ that contains all
edges in M except the initial 2k edges. The set M ′ constitutes the fixed graph, and we
initialize I = M \M ′. Within a stage, the insertions, deletions, and distance queries
are handles as sketched in the previous paragraph. The current stage terminates
(and a new stage begins) when there is a request to delete an edge in M ′ or when
|M \M ′| ≥ 4k. It is easy to see that each stage consists of at least k deletions or
insertions. Using standard dynamic algorithms methods, we can amortize the cost
of the operations such that insertions or deletions take Õ((k + m/k)n(2+ε)/t) time
and queries take Õ(kn(2+ε)/t) time. Note that when k = m0.5, each operation takes
Õ(m0.5n(2+ε)/t) time. In general, k can be determined according to the ratio of edge
insertions/deletions and queries.

9. Concluding remarks. We discuss some issues and open problems that arise
from this work.

We remark that stretch-n paths can be obtained using a minimum spanning tree
(MST). For a pair of vertices, consider the MST path p between them and the
heaviest edge e on this path. It is easy to see that the distance between the vertices
is bounded from below by w(e) and bounded from above by w(p) ≤ nw(e). An MST
can be computed sequentially in O(m log n) time and in parallel in NC using Õ(m)
work.

The techniques used in this paper and in the previous work of Awerbuch et al. [2]
do not seem to generalize to directed graphs. A natural question regards obtaining
comparable work-stretch tradeoffs for directed graphs. We conjecture that for directed
graphs, obtaining stretch-t paths where t is constant or polylogarithmic is nearly as
hard as finding shortest paths.

CONSTRUCTING SPANNERS AND STRETCH t PATHS 235

A result due to Karger, Koller, and Phillips [9] provides some indication that
for directed graphs, either comparable time-stretch tradeoffs are not obtainable or
stretch-t paths are indeed strictly easier to find than shortest paths. Karger, Koller,
and Phillips proved a lower bound of Ω(mn) on the amount of work required by path-
comparison-based algorithm for all-pairs shortest-paths computations. Note, however,
that this lower bound is applicable for a restricted class of algorithms (that does not
include the algorithms presented in this paper) and is applicable only to the all-pairs
problem. Karger conjectured that the lower bound is likely to hold for undirected
graphs as well [15].

We point out some additional properties of the pairwise covers constructed in this
paper that were not needed for the applications used here. The first property of a
(β,w)-cover stated that if two vertices {u1, u2} ⊂ V have distance at most w, then at
least one cluster in the cover contains all the vertices on some path of weight w between
u1 and u2. It is easy to prove the stronger property that at least one cluster must
contain all paths of weight at most w between u1 and u2. Moreover, the (β,w)-covers
introduced here actually constitute neighborhood covers: for every vertex u ∈ V ,
the w/2 neighborhood of u must be contained in at least one cluster. Recall that
pairwise covers were introduced here as a more correct (in the context of short paths
computations) and constructible in parallel alternative for the neighborhood covers
of Awerbuch and Peleg [3]. This indicates that our constructions may have other
applications.

We presented efficient algorithms to produce sparse spanners. Some of the previ-
ous work on spanners (see Chandra et al. [4]) is concerned with finding spanners that
are not only sparse but in addition have small weight (that is, within a small factor
of the weight of the MST). It is likely that our methods can be extended to efficiently
generate sparse spanners with small weight.

We presented parallel algorithms that compute stretch-t paths, where t is a con-
stant or polylogarithmic, while performing significantly less work than exact shortest-
paths algorithms. This is notable because, typically, parallel shortest-paths algo-
rithms perform much more work than their sequential counterparts. A particu-
lar example is the single-source shortest-paths problem on graphs with nonnega-
tive weights. It is solved sequentially in Õ(m) time, but the currently best-known
work bound of a polylog time algorithm is O(n3). We remark that the author, in a
later work [7], that employs our parallel pairwise cover constructions, presented an
Õ(mnε0 +s(m+n1+ε0)) work polylog-time randomized algorithm that computes paths
within (1 + O(1/polylogn)) of shortest path from s source nodes to all other nodes
in weighted undirected networks (for any fixed ε0 > 0). Another implication of the
work in [7] is efficiently parallelizing the randomized t-spanners, stretch-t paths, and
pairwise covers algorithms presented in the current paper. Namely, obtaining poly-
logarithmic time parallel algorithms that perform work comparable to the respective
sequential running times presented here and an additional additive term of O(mnε0)
(where ε0 > 0 is any fixed constant).

Acknowledgments. The author would like to thank Lenore Cowen for present-
ing the Awerbuch et al. [2] work at Bell Labs and discussing it and the current work
with the author, to thank Lenore Cowen, David Johnson, Alex Wang, Uri Zwick,
and the anonymous referee for suggestions that improved the write up, and Andrew
Goldberg, Monika Rauch, and Peter Shor for useful discussions and bibliographic
pointers.

236 EDITH COHEN

REFERENCES

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted
graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[2] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg, Near-linear cost sequential and dis-
tributed constructions of sparse neighborhood covers, in Proc. 34th IEEE Annual Sympo-
sium on Foundations of Computer Science, IEEE, Piscataway, NJ, 1993, pp. 638–647.

[3] B. Awerbuch and D. Peleg, Sparse partitions, in Proc. 31st IEEE Annual Symposium on
Foundations of Computer Science, IEEE, Piscataway, NJ, 1990, pp. 503–513.

[4] B. Chandra, G. Das, G. Narasinhan, and J. Soares, New sparseness results on graph
spanners, in Proc. 8th Annual ACM Symposium on Computational Geometry, Association
for Computing Machinery, New York, 1992, pp. 192–201.

[5] H. Chernoff, A measure of the asymptotic efficiency for test of a hypothesis based on the sum
of observations, Ann. Math. Statist., 23 (1952), pp. 493–509.

[6] E. Cohen,Using selective path-doubling for parallel shortest-path computations, in Proc. of the
2nd Israeli Symposium on the Theory of Computing and Systems, IEEE, Piscataway, NJ,
1993, pp. 78–87.

[7] E. Cohen, Polylog-time and near-linear work approximation scheme for undirected shortest-
paths, in Proc. 26th Annual ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1994, pp. 16–26.

[8] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw–Hill, New
York, 1990.

[9] D. R. Karger, D. Koller, and S. Phillips, Finding the hidden path: Time bounds for all-
pairs shortest paths, in Proc. 32nd IEEE Annual Symposium on Foundations of Computer
Science, IEEE, Piscataway, NJ, 1991, pp. 560–568.

[10] P. N. Klein and S. Sairam, A parallel randomized approximation scheme for shortest paths, in
Proc. 24th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1992, pp. 750–758.

[11] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[12] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput.,

18 (1989), pp. 740–747.
[13] T. H. Spencer, More time-work tradeoffs for parallel graph algorithms, in Proc. 3rd Annual

ACM Symposium on Parallel Algorithms and Architectures, Association for Computing
Machinery, New York, 1991, pp. 81–93.

[14] J. D. Ullman and M. Yannakakis, High-probability parallel transitive closure algorithms,
SIAM J. Comput., 20 (1991), pp. 100–125.

[15] D. R. Karger, personal communication, 1993.

SMART SMART BOUNDS FOR WEIGHTED RESPONSE TIME
SCHEDULING∗

UWE SCHWIEGELSHOHN† , WALTER LUDWIG‡ , JOEL L. WOLF§ , JOHN TUREK§ , AND

PHILIP S. YU§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 237–253

Abstract. Consider a system of independent tasks to be scheduled without preemption on a
parallel computer. For each task the number of processors required, the execution time, and a weight
are known. The problem is to find a schedule with minimum weighted average response time. We
present an algorithm called SMART (which stands for scheduling to minimize average response time)
for this problem that produces solutions that are within a factor of 8.53 of optimal. To our knowledge
this is the first polynomial-time algorithm for the minimum weighted average response time problem
that achieves a constant bound. In addition, for the unweighted case (that is, where all the weights
are unity) we describe a variant of SMART that produces solutions that are within a factor of 8 of
optimal, improving upon the best known bound of 32 for this special case.

Key words. scheduling, parallel computing, approximate algorithms

AMS subject classifications. 68Q22, 68Q25

PII. S0097539795286831

1. Introduction. Consider a parallel computer composed of P processors, on
which a system τ consisting of M independent tasks is to be scheduled. Suppose that
any given task i ∈ {1, . . . ,M} requires wi ≤ P processors for hi units of time. All
of the processors allotted to a task are required to execute that task in unison and
without preemption. That is, wi processors are all required to start task i at the same
starting time ti. They will then complete task i at completion time ti + hi. (One can
therefore think of the execution of task i as taking place within a rectangle whose
height hi stretches along a time axis and whose width wi stretches along a processor
axis.) A schedule will consist of a starting time ti for each task i and must be legal in
the sense that for any time t the number of active processors does not exceed the total
number of processors. In other words,

∑
{i|ti≤t<ti+hi} wi ≤ P for all t. The classic

problem of finding a schedule with minimum makespan, defined by max1≤i≤M{ti+hi},
has been studied extensively in the literature. (The makespan corresponds to the last
completion time and thus represents the length of the entire schedule.) The minimum
makespan problem is NP-hard in the strong sense [5], and efforts have accordingly
focused on finding polynomial-time algorithms whose solution in the worst case is
within a fixed multiplicative constant of the optimal solution [4, 1, 3, 9].

In this paper we consider the corresponding problem, also NP-hard in the strong
sense [2], where the goal is to minimize the average response time instead. The average

response time can be written as 1
M

∑M
i=1(ti + hi) and is an important and standard

measure in computer performance. Note that all completion times count, not just the
last completion time. Modulo the factor 1

M (which can be removed without affecting
the solution to the problem), we are attempting to minimize the sum of the completion

times, namely,
∑M

i=1(ti + hi).

∗ Received by the editors May 30, 1995; accepted for publication (in revised form) December 21,
1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/28683.html
† University of Dortmund, Dortmund, Germany (uwe@carla.e-technik.uni-dortmund.de).
‡ Computer Science Department, University of Wisconsin, Madison, WI.
§ IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 (jlw@watson.ibm.com, jjt@

watson.ibm.com, psyu@watson.ibm.com).

237

238 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

Our approach is analogous to that of the minimum makespan problem literature:
we give an algorithm that takes polynomial time and produces schedules whose com-
pletion time sums are within a multiplicative constant of optimal. At this time, the
best known constant is achieved by an algorithm called SMART [12]. Unfortunately,
this constant (32) is not nearly as close to 1 as the best known constant (2) for the
minimum makespan problem [4].

In this paper we devise a variant of the original SMART algorithm with an im-
proved bound of 8. (It should be noted that the results of this paper can also be used
to improve the bound of the original algorithm to 9.)

We also tackle the more general minimum weighted response time problem. That
is, we assume that each task i is given a weight ui, and that the objective is to minimize
the weighted average response time 1

C

∑M
i=1 ui(ti + hi), where C =

∑M
i=1 ui. (Again

the factor of 1
C can be removed without affecting the solution, so we speak instead

of minimizing the weighted sum of the completion times, given by
∑M

i=1 ui(ti + hi).)
When all weights are unity this problem reduces to the unweighted minimum response
time special case described above.

We present a generalization of the original SMART algorithm for the minimum
weighted response time problem. We show that this algorithm achieves a bound of
8.53. To our knowledge this is the first polynomial-time algorithm for the weighted
problem that achieves a constant bound.

In section 2 we recall the original SMART algorithm and deal with the unweighted
case. Section 3 deals with the weighted case. In section 4 we give examples to show
that the bounds are within less than a factor of 2 of being tight. Section 5 contains
conclusions.

2. The unweighted case. We begin by briefly reminding the reader of the
original SMART algorithm; then we will present the variant that gives the better
bound. SMART belongs to the category of so-called shelf -based algorithms.

Shelf solutions can be characterized by the following simple properties, illustrated
in the left-hand side of Figure 1: the tasks are assigned to shelves, with all tasks on
any given shelf having the same starting time. The sum of the required processors for
all tasks on a given shelf must not exceed the total number of processors. The first
shelf is placed at time zero. The height of a shelf is the largest task execution time
of any task assigned to that shelf, and the next shelf is placed this height above the
previous shelf. (If we think of the tasks as rectangles, the physical analogy becomes
clear: rectangles are packed onto shelves, they must fit on the shelves, the first shelf
sits on the floor, and each new shelf rests on the highest rectangle of the shelf before
it.) If τ = {(hi, wi)|i = 1, . . . ,M} is a task system, we can think of a shelf assignment
as a surjective function S : {1, . . . ,M} → {1, . . . , S} such that

∑
S(i)=k wi ≤ P for all

k = 1, . . . , S. Let Mk = card{S−1(k)} denote the number of tasks on shelf k, so that∑S
k=1Mk = M . Let Hk = maxS(i)=k hi denote the height of shelf k. Observe that

the total area in the right-hand side of Figure 1, viewed as an integral, represents the
sum of the completion times. Specifically, there is one “column” of unit width for
each task. The unshaded portion of a given column has height equal to the execution
time of the appropriate task. The shaded portion of the column has height equal to
the waiting time of the task, which is the time until the task starts. This waiting
time is simply the sum of the heights of the earlier shelves. Thus the entire column
has height equal to the completion time of the task.

Consider a task system τ = {(hi, wi)|i = 1, . . . ,M}. By normalization we will
assume, without loss of generality, that the minimum task execution time min1≤i≤M hi

SMART SMART BOUNDS 239

TASK

SHELF 1

SHELF S

1 M

Fig. 1. Shelf solution and its completion time sum.

is equal to 1. Let ĥ = max1≤i≤M 2dlog hie. We partition τ into (at most) 1 + log ĥ

components by assigning task i to the component j ∈ {0, . . . , log ĥ} that satisfies
2j−1 < hi ≤ 2j . Now we assign tasks in each component j to shelves according to the
NFIW (for next fit increasing width) bin packing algorithm [6, 7]: In other words, we
reindex the tasks within component j in order of increasing width and assign them
in sequence to shelves, which we regard as bins of size P . Each task is assigned to
the current shelf, which is initialized to be shelf number one and incremented by one
whenever a task does not fit. Now in order to obtain the SMART solution it remains
to combine all the shelves in the various partitions into an overall ordering.

Note that for any shelf assignment S, we can view the pair (τ,S) as a set of shelves.
But these shelves can be permuted arbitrarily, resulting in solutions of varying quality.
(In contrast, the ordering of shelves is irrelevant when employing a makespan objective
function, since the makespan is simply the sum of the heights of the shelves.) The
SMART algorithm arranges its shelves in the best way possible, according to the
dictates of the following lemma.

Lemma 2.1. For any set of shelves (τ,S), an ordering of these shelves is optimal
among all possible such shelf orderings if and only if H1

M1
≤ · · · ≤ HS

MS
.

We will state and prove a generalization of this lemma in section 3. (See Lemma
3.1.)

Let σ(τ,S) be the schedule that results from ordering the shelves (τ,S) as specified
by Lemma 2.1, and let c(τ,S) be its completion time sum.

Let sτ and oτ denote the objective function values for the SMART and optimal
solutions for τ , respectively. In [12] it was shown that the SMART algorithm has
time complexity O(M logM) and satisfies sτ

oτ
≤ 32. (This term is sometimes called an

approximation factor.) In fact, using the techniques in section 3 we can now show that
sτ
oτ
≤ 9, a significant improvement. To obtain a further improvement, we now consider

a variant of the original algorithm. Specifically, instead of assigning tasks to shelves

240 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

via NFIW, we employ FFIA (first fit increasing area) [6, 7]: in other words, we reindex
the tasks within component j in order of increasing area and assign them in sequence
to shelves, which we again regard as bins of size P . Each task is assigned to the
first shelf on which it fits, and the number of shelves is incremented by one whenever
a task does not fit on any preceding shelf. (The rest of the algorithm, including
the partitioning and combining, remains intact.) We regard this new algorithm as
being in the same family of algorithms as the original one, and we use subscripts
to differentiate the two algorithms when necessary: we denote the original and new
algorithms by SMARTNFIW and SMARTFFIA, respectively.

We illustrate the distinction between NFIW and FFIA with a simple example:
suppose P = 8, and consider a task system in which there are four tasks. Specifically,
there are two narrow tasks of width 3 and height 2, and two wide tasks of width 5
and height just greater than 1. These tasks might thus correspond to the first height
component in a larger task system. NFIW would place the two narrow tasks on one
shelf, followed by two shelves with a single wide task each. The areas of the wide
tasks, however, are smaller than the areas of the narrow tasks. So FFIA would place
the two wide tasks on separate shelves and then add one narrow task to each shelf.

The main new result in this section is the following theorem.
Theorem 2.1. For any task system τ = {(hi, wi)|i = 1, . . . ,M}, the SMARTFFIA

algorithm has time complexity O(M logM) and satisfies sτ
oτ
≤ 8.

The time complexity remains unchanged from that of SMARTNFIW. To prove
the bound, we will make use of two more lemmas from [12] (Lemmas 2.2 and 2.5 —
part of this lemma is from [8]), as well as a number of entirely new results.

To get an upper bound on sτ
oτ

, we will make use of lower bounds on oτ . We now
remind the reader of three such lower bounds.

Lemma 2.2. Let τ = {(hi, wi)|i = 1, . . . ,M} denote a task system indexed by

increasing area ai = hiwi. If Aτ = 1
P

∑M
i=1 ai(M − i+ 1), Hτ =

∑M
i=1 hi, and

Wτ = 1
P

∑M
i=1 ai, then the optimal average response time solution oτ satisfies Aτ ≤ oτ ,

Hτ ≤ oτ , and Aτ + 1
2Hτ − 1

2Wτ ≤ oτ .
Corollary 2.1. If a solution to the minimum average response time problem

for task system τ has completion time sum v, where v ≤ β1[Aτ + 1
2Hτ − 1

2Wτ]+β2Hτ ,
then v

oτ
≤ β1 + β2.

Once again, we delay the proof of Lemma 2.2 until section 3, when we will state
and prove a more general result. (See Lemma 3.2.)

We will refer to Aτ and Hτ as the squashed area and height bounds, respectively.
We will refer to the third bound as the combined bound. Note that the combined
bound is tighter than the squashed area bound, since Wτ ≤ Hτ . The height bound can
be viewed as the area of the unshaded region in the right-hand side of Figure 1. The
squashed area bound and Wτ are illustrated in Figure 2. The term Wτ is given by the
area of the right-most of the M columns, while the squashed area bound is given by the
total area of all the columns. The definition corresponds to vertical integration. But
note that [12] gives an alternative expression corresponding to horizontal integration,

namely, Aτ = 1
P

∑M
j=1

∑j
i=1 ai. This leads to the following expression for the squashed

area bound, which is useful in situations where the tasks are not necessarily arranged
in order of increasing area.

Lemma 2.3. Let τ = {(hi, wi)|i = 1, . . . ,M} denote a task system, indexed

arbitrarily. Then Aτ = 1
P

∑M
j=1

∑j
i=1 min(ai, aj).

Proof. Observe that
∑M

j=1

∑j
i=1 min(ai, aj) =

∑
i≤j min(ai, aj) is the sum over

all pairs of elements of the minimum of each pair. This sum is independent of the way

SMART SMART BOUNDS 241

a1/P

aM/P

TASK

1 M

Fig. 2. The squashed area bound.

the elements are indexed. Suppose, then, that they are indexed in increasing order,
a1 ≤ a2 ≤ · · · ≤ aM . Then 1

P

∑M
j=1

∑j
i=1 min(ai, aj) = 1

P

∑M
j=1

∑j
i=1 ai = Aτ .

In addition to lower bounds on oτ , we will also need an upper bound on sτ . To
get this bound, we will partition the task system τ into two subsets and also adjust
the task heights to facilitate the analysis. We will then consider schedules for the two
subsets separately, proving bounds for each. Finally, we will consider the result of
combining the two schedules to obtain a schedule for τ .

Consider the shelf assignment that results from applying SMARTFFIA to the task
system τ . We partition the tasks in τ into two subsets as follows. The first subset τ1
will contain the tasks on the first shelf (if any) of each height component — that is,
in each height component, the first shelf created by the FFIA packing. The second
subset τ2 will contain the tasks on all remaining shelves. (This partitioning is, in a
sense, orthogonal to the original partitioning into components based on height. To
avoid confusion we shall consistently use the term component when referring to the
first partitioning, and the term subset when referring to the second partitioning. Also
note that a similar partitioning into three subsets was given in [12].)

We now create a new task system τ̂ , called the double height construction, whose
tasks are in natural one-to-one correspondence with the tasks in τ . The number of
processors required for each task in τ̂ will be identical to that of its counterpart in τ ,
while the task execution times will be at least as large but less than doubled, according
to the following rule. Observe that the new task system τ̂ = {(ĥi, wi)|i = 1, . . . ,M}
will also partition into two subsets τ̂1 and τ̂2 corresponding task for task to τ1 and
τ2. The height ĥi of a task in the subset τ̂1 will be 2dlog hie. The height ĥi of a
task in the subset τ̂2 will be the height max{j|S(j)=S(i)} hj of the shelf containing the
corresponding task i in τ . (This is similar to the double construction in [12], although
here only the heights are modified, not the widths.)

Observe that all tasks in τ̂ on any given shelf have identical heights. Also note
that by construction we have Hτ ≤ Hτ̂ ≤ 2Hτ . Corresponding statements hold for
the two subsets τ1 and τ2.

242 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

Let Sτ denote the shelf assignment that results from applying SMARTFFIA to the
task system τ . (Then sτ = c(τ,Sτ).) To get a bound on sτ , we will bound c(τ̂ ,Sτ).
First we establish a relationship between these two quantities.

Lemma 2.4. Any task system τ satisfies c(τ,Sτ) ≤ c(τ̂ ,Sτ) +Hτ −Hτ̂ .

Proof. Note that the sets of shelves (τ,Sτ) and (τ̂ ,Sτ) are identical except for
the task heights, with each shelf in (τ̂ ,Sτ) being at least as tall as its counterpart in
(τ,Sτ). Let vτ denote the sum of the completion times of the schedule that results
from starting each shelf of (τ,Sτ) at the time the corresponding shelf starts in σ(τ̂ ,Sτ).
Since the shelves are potentially reordered and gaps potentially introduced, we have
c(τ,Sτ) ≤ vτ . But c(τ̂ ,Sτ) − Hτ̂ = vτ − Hτ represents the sum of the starting
times of the tasks in σ(τ̂ ,Sτ) and the new schedule for (τ,Sτ), respectively. The result
follows.

The next step is to bound the quantities c(τ̂1,Sτ) and c(τ̂2,Sτ).
Lemma 2.5. The partition τ̂1 satisfies c(τ̂1,Sτ) ≤ 2Hτ̂1 .

We will state and prove a generalization of this lemma in section 3. (See Lemma 3.4.)

Lemma 2.6. The partition τ̂2 satisfies c(τ̂2,Sτ) ≤ 2Aτ − 2Aτ1 .

The proof of this lemma is fairly elaborate, and we delay it until the end of this
section. It is worth noting that Lemma 2.6 is the reason for using FFIA rather than
NFIW. We can form analogues of all the other lemmas using SMARTNFIW, but we
cannot prove an analogue to Lemma 2.6.

The final step is to get a bound on c(τ̂ ,Sτ) in terms of c(τ̂1,Sτ) and c(τ̂2,Sτ).
Lemma 2.7. For any task system τ and any δ > 0, the double height construction

τ̂ satisfies c(τ̂ ,Sτ) ≤ (δ + 1) · c(τ̂1,Sτ) + (1
δ + 1) · c(τ̂2,Sτ).

Proof. Let yk denote the completion time of shelf k in its respective schedule,
either σ(τ̂1,Sτ) or σ(τ̂2,Sτ). (Recall that all the tasks on each shelf in these schedules
complete at the same time.) For each shelf k in (τ̂1,Sτ), let y′k = δyk, and for each
shelf k in (τ̂2,Sτ), let y′k = yk. Then construct a schedule of all the shelves in (τ̂ ,Sτ)
by arranging them in order of ascending y′k. Call this schedule Z, and let zk denote
the completion time of shelf k in Z.

Now consider a shelf k in (τ̂1,Sτ). Let l be the last shelf in (τ̂2,Sτ) that is
completed before shelf k in Z. Since l comes before k, we have yl = y′l ≤ y′k = δyk.
Then zk = yk +yl ≤ (1+ δ)yk. Therefore, the completion time of each task in (τ̂1,Sτ)
in the schedule Z is not more than δ + 1 times its completion time in the schedule
σ(τ̂1,Sτ).

Next consider a shelf k in (τ̂2,Sτ). Let l be the last shelf in (τ̂1,Sτ) that is
completed before shelf k in Z. Since l comes before k, we have δyl = y′l ≤ y′k = yk.
Then zk = yk+yl ≤ (1+ 1

δ)yk. Therefore, the completion time of each task in (τ̂2,Sτ)
in the schedule Z is not more than 1

δ + 1 times its completion time in the schedule
σ(τ̂2,Sτ).

Now the result follows from the fact that reordering the shelves according to
Lemma 2.1 will not increase the sum of the completion times.

Lemma 2.7 is a generalization of Lemma 3.5 in [12]. When δ = 1, notice that both
coefficients on the right-hand side become 2, as in the original lemma. Choosing a
value of δ different from 1 will ultimately result in reducing the bound in Theorem 2.1
from 9 to 8, as will be seen.

Now we apply the above lemmas and observations together with some bookkeep-

SMART SMART BOUNDS 243

ing to get the following string of inequalities:

sτ ≤ c(τ̂ ,Sτ) +Hτ −Hτ̂

≤ (δ + 1) · c(τ̂1,Sτ) +

(
1

δ
+ 1

)
· c(τ̂2,Sτ) +Hτ −Hτ̂

≤ 2

(
1

δ
+ 1

)
Aτ − 2

(
1

δ
+ 1

)
Aτ1 +Hτ + 2(δ + 1)Hτ̂1 −Hτ̂

≤ 2

(
1

δ
+ 1

)
Aτ +Hτ + (2δ + 1)Hτ̂ − 2(δ + 1)Hτ̂2 − 2

(
1

δ
+ 1

)
Wτ1

≤ 2

(
1

δ
+ 1

)
Aτ + (4δ + 3)Hτ − 2(δ + 1)Hτ2 − 2

(
1

δ
+ 1

)
Wτ1

≤ 2

(
1

δ
+ 1

)
Aτ + (4δ + 3)Hτ − 2(δ + 1)Wτ2 − 2

(
1

δ
+ 1

)
Wτ1

≤ 2

(
1

δ
+ 1

)
Aτ + (4δ + 3)Hτ − 2 min

(
δ + 1,

1

δ
+ 1

)
Wτ .(1)

Now choosing δ = 1
2 , we get

sτ ≤ 6Aτ + 5Hτ − 3Wτ = 6

(
Aτ +

1

2
Hτ − 1

2
Wτ

)
+ 2Hτ ≤ 8oτ .(2)

This completes the proof of Theorem 2.1. (Note that choosing δ = 1 yields instead
a slightly poorer bound of 9.) We now return to the proofs that we omitted.

Proof of Lemma 2.6. Consider the following schedule of the shelves in (τ̂2,Sτ).
Instead of arranging them in the order dictated by Lemma 2.1, arrange them in the
following way. Let ψ(k) = minSτ (i)=k{ai} be the area of the smallest-area task in τ on
shelf k. Note that the area in question is the task’s original area, not its area in the
double height construction. Then reindex the shelves in (τ̂ ,Sτ) so that ψ(j) ≤ ψ(j+1)
for all j. That is, we are ordering the shelves by increasing area of the least-area task.
Take the shelves of (τ̂2,Sτ) in the order they are indexed, and call this schedule D.

Let gi denote the completion time of task i ∈ τ̂2 in the schedule D. Reordering
the shelves according to Lemma 2.1 cannot increase the sum of the completion times,
and therefore c(τ̂2,Sτ) ≤

∑
i∈τ̂2 gi.

Reindex the tasks so that Sτ (i) < Sτ (j) ⇒ i < j. That is, tasks that appear on

lower shelves have lower indices. Then define αi =
∑i

j=1 min{ai, aj}. By Lemma 2.3,

Aτ = 1
P

∑M
i=1 αi.

Our goal is to show that gi ≤ 2
P αi for all i ∈ τ̂2. From this we can conclude that

c(τ̂2,Sτ) ≤
∑
i∈τ̂2

gi ≤ 2

P

∑
i∈τ̂2

αi = 2

(
Aτ − 1

P

∑
i∈τ1

αi

)
≤ 2(Aτ −Aτ1).(3)

For the analysis, we wish to treat each height component separately, and to this
end we introduce the following notation. For any two tasks i and j, we write i ∼ j if
they are in the same height component, i.e., dlog2 hie = dlog2 hje. For a given task
i, consider the schedule consisting only of the shelves in D that contain tasks which
are in the same height component as i, with the shelves ordered as they are in D.
Note that this is the order in which the shelves are created when the tasks are being
packed onto shelves. Call this schedule D(i). For i ∈ τ̂2, let g̃i denote the completion

244 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

time of task i in D(i). Also let α̃i =
∑

j≤i∧j∼i min{ai, aj}. The following lemma
demonstrates a relationship between g̃i and α̃i.

Lemma 2.8. g̃i ≤ 2
P α̃i for all i ∈ τ̂2.

We delay the proof of Lemma 2.8 until the completion of the proof of Lemma 2.6.

Now we are ready to show that gi ≤ 2
P αi for all i ∈ τ̂2. Pick any task i0 ∈ τ̂2.

Suppose that there are r height components, other than the component containing
the task i0 itself, that contain a shelf which comes before i0 in the schedule D. For
each such component l ∈ {1, . . . , r}, let il be the least-area task on the last shelf of
the component l that comes before the shelf containing i0. Note that the indexing of
the shelves and the indexing of the tasks guarantee that il < i0 for all l ∈ {1, . . . , r}.
Also note that ail ≤ ai0 for all l ∈ {1, . . . , r}. Now we have

gi0 =

r∑
l=0

g̃il ≤
2

P

r∑
l=0

α̃il =
2

P

r∑
l=0

∑
j≤il∧j∼il

min{ail , aj}

≤ 2

P

r∑
l=0

∑
j≤i0∧j∼il

min{ai0 , aj} =
2

P

i0∑
j=1

min{ai0 , aj} =
2

P
αi0 .(4)

Proof of Lemma 2.8. Pick some task i0 ∈ τ̂2. We will show that g̃i0 ≤ 2
P α̃i0 .

Let S−1
τ (k) denote the set of tasks on shelf k. Let Ti0 = {j ∈ τ̂ : j ∼ i0} denote the

height component containing task i0, and let K = {k : k < Sτ (i0) and S−1
τ (k) ⊆ Ti0}

be the set of shelves containing tasks in the same height component as i0 that are
indexed lower than the shelf containing i0. These are the shelves that precede the task
i0 in the schedule D(i0), plus the single shelf containing tasks from Ti0 ∩ τ̂1. We will
examine the shelves in K and determine the contribution of each to g̃i0 and to α̃i0 .
For this purpose, we will partition K into three subsets. Some additional notation is
required first.

Define the gap of shelf k with respect to task i0 to be dk = P−∑{i∈S−1
τ (k):ai≤ai0} wi.

Then dk is “how much room” is left on shelf k at the time when task i0 is assigned
to a shelf. (If there are tasks on shelf k with the same area as i0, then dk may be less
than the amount of room that is left on shelf k when i0 is assigned to a shelf.) Note
that dk < wi0 for all k ∈ K due to the use of first fit. Also note that there is at most
one shelf k ∈ K such that dk ≥ P

2 . Let v denote this shelf if it exists; otherwise, let
v = ∞. Let k0 = min{k ∈ K} be the lowest-indexed shelf in Ti0 . Then the tasks on
the shelf k0 are in τ̂1, not in τ̂2, and so k0 is not in D or D(i0). Let K− = K \ {k0}.

Now we are ready to partition K into three subsets. Let K1 = {k ∈ K− : ∃i ∈
S−1
τ (k) such that ai > ai0} be the set of shelves containing a task larger than i0 but

not including the shelf k0. Let K2 = {k ∈ K− \K1 : k > v} be the set of shelves that
do not contain any tasks larger than i0 and that are scheduled after the shelf with
dv ≥ P

2 . Finally, let K3 = {k ∈ K− \K1 : k ≤ v} ∪ {k0} be the remaining shelves —
the shelf k0 along with all shelves that do not contain any tasks larger than i0 and
that are scheduled not later than the shelf with dv ≥ P

2 .

Let h = ĥi0 = 2dlog2hi0e, and let the height of shelf k be given by h
2 + xk, where

0 < xk ≤ h
2 . Then the completion time of task i0 in D(i0) does not exceed h plus the

sum of the heights of the shelves that precede it in D(i0). That is,

g̃i0 ≤
∑
k∈K−

(
xk +

h

2

)
+ h.(5)

SMART SMART BOUNDS 245

We also have

α̃i0 =
∑

j≤i0∧j∼i0
min{ai0 , aj} ≥

∑
k∈K

∑
j∈S−1

τ (k)

min{ai0 , aj}+ ai0 .(6)

Now for k ∈ K−, let

λk =
2

P

∑
j∈S−1

τ (k)

min{ai0 , aj} −
(
xk +

h

2

)
.(7)

Then from (5), (6), and (7) we have

2

P
α̃i0 − g̃i0 ≥

∑
k∈K−

λk +
2

P

∑
j∈S−1

τ (k0)

min{ai0 , aj}+
2

P
ai0 − h.(8)

Now our goal is to show that the quantity in (8) is positive, and, to this end, we
consider each of K1, K2, and K3 in turn. Suppose that k ∈ K1. Then there is at
least one task on shelf k with area greater than ai0 , so∑

j∈S−1
τ (k)

min{ai0 , aj} ≥ ai0 +
∑

{j∈S−1
τ (k):aj≤ai0}

aj

≥ ai0 +
h

2

 ∑
{j∈S−1

τ (k):aj≤ai0}
wj

= ai0 +
h

2
(P − dk).(9)

It follows from (7) and (9) that

λk ≥ 2ai0
P

+ h− hdk
P

−
(
xk +

h

2

)
> 0,(10)

because ai0 = hi0wi0 >
h
2dk, and h ≥ xk + h

2 .
Next consider k ∈ K2. Suppose q ∈ S−1

τ (k). By the definition of K2, we have
Sτ (q) > v and aq ≤ ai0 , and so wq > dv ≥ P

2 . Therefore, shelf k contains only one
task q. We conclude that

λk =
2

P
aq − hq =

2

P
hqwq − hq > 0,(11)

because wq >
P
2 .

Finally, consider the shelves in K3. Let k0 < k1 < · · · < kr denote all the shelves
in K3. For q ≥ 1, we have

∑
j∈S−1

τ (kq)

min{ai0 , aj} =
∑

j∈S−1
τ (kq)

aj ≥ h

2
(P − dkq) + xkqdkq−1 .(12)

This is because all tasks j ∈ S−1
τ (kq) have hj > h

2 and wj > dkq−1 . The latter is

important only for the tallest task on shelf kq, which has height h
2 + xkq .

246 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

For q = 0, we have

∑
j∈S−1

τ (k0)

min{ai0 , aj} ≥
∑

{j∈S−1
τ (k0):aj≤ai0}

aj ≥ h

2

∑
{j∈S−1

τ (k0):aj≤ai0}
wj =

h

2
(P − dk0

).

(13)
Then from (7), (12), and (13), we have

∑
k∈K3\{k0}

λk +
2

P

∑
j∈S−1

τ (k0)

min{ai0 , aj}+
2

P
ai0 − h

≥
r∑

q=1

(
h− hdkq

P
+

2xkqdkq−1

P
− xkq −

h

2

)
+ h− hdk0

P
+

2ai0
P

− h

=

r∑
q=1

(
h

2
− xkq −

hdkq
P

+
2xkqdkq−1

P

)
− hdk0

P
+

2ai0
P

=

r∑
q=1

(
h

2
− xkq −

hdkq−1

P
+

2xkqdkq−1

P

)
− hdkr

P
+

2ai0
P

=
r∑

q=1

(
h

2
− xkq

)(
1− 2dkq−1

P

)
− hdkr

P
+

2ai0
P

> 0.(14)

The last inequality holds because q−1 < r ≤ u, and so dkq−1 <
P
2 for all q ∈ {1, . . . , r},

and because ai0 = hi0wi0 >
h
2dkr .

Now from (7), (8), (10), (11), and (14), we conclude that g̃i0 ≤ 2
P α̃i0 .

3. The weighted case. Consider a task system τ = {(hi, wi)|i = 1, . . . ,M},
and suppose now that each task i has weight ui. In this section our goal is to minimize
the weighted sum of the completion times given by

∑M
i=1 ui(ti+hi). Our algorithm for

this problem is a generalization in two ways of the original SMARTNFIW algorithm.
We now describe each of these.

Recall that the original algorithm partitions tasks by height based on powers
of 2. More generally, we can base the partitions on any power γ > 1. In other
words, partition τ into components by assigning task i to the component j that
satisfies γj−1 < hi ≤ γj . If the rest of the algorithms SMARTNFIW and SMARTFFIA

are unchanged, we obtain parametrized versions γ-SMARTNFIW and γ-SMARTFFIA

of these algorithms, with the original algorithms corresponding to the special case
γ = 2. We will employ γ-SMARTNFIW here. (While we could have introduced this
generalization in the previous section, we chose not to do so because it turns out not
to improve the bound there.)

The second generalization allows us to effectively handle weighted tasks. Specif-
ically, we now compute for each task i a ratio wi

ui
of width to weight, and we assign

tasks in each component to shelves according to a next fit increasing width to weight
bin packing algorithm. Let Uk be the total weight of the tasks on shelf k. (Note that
if all the weights are unity, then Uk = Mk.) The shelves are combined in the order
dictated by the following lemma.

Lemma 3.1. For any set of shelves (τ,S), an ordering of these shelves is optimal
among all possible such shelf orderings if and only if H1

U1
≤ · · · ≤ HS

US .

SMART SMART BOUNDS 247

As in section 2, let σ(τ,S) be the schedule that results from ordering the shelves
(τ,S) as specified by Lemma 3.1, and let c(τ,S) be the weighted sum of the com-
pletion times. This method of ordering the shelves amounts to Smith’s ratio rule
for scheduling tasks of width 1 on a single processor [10] and has the same proof of
optimality.

Proof. Suppose that the shelves are not in order of nondecreasing Hk

Uk . Then

there is a shelf k such that Hk

Uk > Hk+1

Uk+1
. If the two shelves are interchanged, then the

completion times of the tasks on shelf k will increase by Hk+1 and the completion
times of the tasks on shelf k + 1 will decrease by Hk. Therefore, interchanging the
shelves decreases the weighted sum of the completion times by Uk+1Hk − UkHk+1 =

UkUk+1(
Hk

Uk −
Hk+1

Uk+1
) > 0.

The algorithm for weighted tasks is a straightforward generalization of its un-
weighted counterpart γ-SMARTNFIW, and we will refer to it by the same name. We
will also retain the notation sτ and oτ to denote the weighted completion time sum
for the γ-SMARTNFIW and optimal solutions for τ , respectively.

Theorem 3.1. For any weighted task system τ = {(hi, wi, ui)|i = 1, . . . ,M},
the 1.65-SMARTNFIW algorithm has time complexity O(M logM) and satisfies sτ

oτ
≤

8.53.

As in section 2, we will begin with lower bounds on oτ and then move on to upper
bounds on sτ . In order to obtain lower bounds on the total weighted response time,
we extend the definitions of Hτ , Aτ , and Wτ . Specifically, we let Hτ =

∑M
i=1 uihi be

the weighted sum of the task heights. Suppose that the tasks are ordered such that
ai
ui
≤ ai+1

ui+1
for all tasks i ∈ {1, . . . ,M −1}. Then we define Aτ = 1

P

∑M
i=1 ui(

∑i
j=1 aj).

Note that we are now ordering the tasks according to Smith’s ratio rule [10]. Finally,

let Wτ = 1
P

∑M
i=1 uiai. Then Lemma 2.2 and Corollary 2.1 can be extended to

weighted tasks.

Lemma 3.2. The optimal solution oτ satisfies Aτ ≤ oτ , Hτ ≤ oτ , and Aτ +
1
2Hτ − 1

2Wτ ≤ oτ .

Proof. Given a schedule for the task system τ , let fτ =
∑M

i=1 ui(ti + hi) be its

weighted completion time sum. Then Hτ =
∑M

i=1 uihi ≤
∑M

i=1 ui(ti + hi) = fτ . This
holds for any schedule of τ , and therefore Hτ ≤ oτ .

Next we will show that Aτ + 1
2Hτ − 1

2Wτ ≤ oτ , and from this it also follows that
Aτ ≤ oτ , since Hτ ≥Wτ . Given a schedule for the task system τ , let ri(t) denote the
fraction of task i that is not yet completed at time t. That is, let

ri(t) =

1 if t ≤ ti,
1− t−ti

hi
if ti < t ≤ ti + hi,

0 if ti + hi < t.
(15)

Now let r(t) =
∑M

i=1 uiri(t) be the weighted number of tasks remaining at time t,
including fractional tasks. Then

∫ ∞

0

r(t)dt =
M∑
i=1

ui

∫ ∞

0

ri(t)dt

=

M∑
i=1

ui

[∫ ti+hi

0

dt−
∫ ti+hi

ti

t− ti
hi

dt

]

248 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

=
M∑
i=1

ui

[
(ti + hi)− hi

2

]

= fτ − 1

2
Hτ .(16)

Now we seek a lower bound on r(t). Define a “squashed” task set τ̇ corresponding
to τ in the following way. For each task i ∈ τ , there is a corresponding task in τ̇ with
width P , height ai

P , and weight ui. Then the squashed task has the same area and
weight as the original task. Consider the schedule in which the tasks in τ̇ are ordered
by increasing ratio of area to weight. Let r∗(t) denote the function r(t) for this
schedule.

Lemma 3.3. For any schedule of τ , the corresponding function r(t) satisfies
r(t) ≥ r∗(t) for all t.

We delay the proof of Lemma 3.3 until the completion of the proof of Lemma 3.2.
Let f∗τ̇ be the weighted completion time sum of the squashed schedule. Then

from (16) we have ∫ ∞

0

r∗(t)dt = f∗τ̇ −
1

2
Hτ̇ .(17)

Now observe that f∗τ̇ = Aτ and Hτ̇ = Wτ . Then we have

fτ − 1

2
Hτ =

∫ ∞

0

r(t)dt ≥
∫ ∞

0

r∗(t)dt = f∗τ̇ −
1

2
Hτ̇ = Aτ − 1

2
Wτ .(18)

We conclude that oτ ≥ Aτ + 1
2Hτ − 1

2Wτ .
Proof of Lemma 3.3. Consider the more general P processor parallel scheduling

problem in which task i requires ai units of processor time to complete, but there are
no other restrictions. In other words, preemption without penalty is allowed, and the
task execution need not take place within a rectangle of a given height and width.
Given an arbitrary solution for this scheduling problem, let Xi(t) denote the units
of processor time completed for task i at time t. Then the fraction of task i that is
not yet completed at time t can be written as ri(t) = 1 −Xi(t)/ai, a generalization

of (15). We minimize r(t) =
∑M

i=1 uiri(t) over all possible schedules for τ , including
those which are legal for our original rectangle packing scheduling problem. Formally,
we wish to minimize

∑M
i=1 ui(1 −Xi(t)/ai) subject to the constraints Xi(t) ≤ ai for

each i, and
∑M

i=1 Xi(t) ≤ Pt. Removing the constant
∑M

i=1 ui, we wish equivalently

to maximize
∑M

i=1 (ui/ai)Xi. This trivial linear program can be solved exactly via a
greedy algorithm. The solution corresponds precisely to ordering the squashed tasks
by decreasing ratio of weight to area and processing as many of them sequentially as
can be accomplished by time t. The resulting cost is r∗(t).

We now obtain an upper bound on sτ in the same manner as in section 2. We
partition the task system τ in the same way and prove bounds for schedules for the
two subsets separately. Then we consider the result of combining the two schedules.
However, we make use of a slightly different “double height” construction. In par-
ticular, we use the height ĥi = γdlogγ hie for every task i, not just those in the first
subset τ̂1. Then with the exception of Lemma 2.6, the relevant results from section 2
(Lemmas 2.4, 2.5, and 2.7) carry over directly to the modified algorithm and double
height construction.

As before, we will let Sτ denote the shelf assignment that results from applying
SMARTNFIW to the task system τ .

SMART SMART BOUNDS 249

We now present a generalization of Lemma 2.5 incorporating γ.
Lemma 3.4. The partition τ̂1 satisfies c(τ̂1,Sτ) ≤ γ

γ−1Hτ̂1 .
Proof. Consider a schedule in which the shelves in τ̂1 are arranged in order of

increasing height. Recall that the shelf heights are powers of γ, and that there is
at most one shelf of each height. Therefore, if a given shelf has height h, then its
completion time in this schedule is at most h+ 1

γh+ 1
γ2h+ · · · ≤ 1

1− 1
γ

h = γ
γ−1h. Every

task on a given shelf has the same height, and so the height of a task is the same
as the height of its shelf. It follows that the completion time of a task i ∈ τ̂1 does
not exceed γ

γ−1 ĥi. Now observe that reordering the shelves according to Lemma 3.1
can only reduce the weighted completion time sum of the schedule, and the result
follows.

In place of Lemma 2.6, we have the following pair of lemmas.
Lemma 3.5. For any task system τ , the double height construction τ̂ satisfies

Aτ̂ ≤ γAτ and Hτ̂ ≤ γHτ .
Proof. First observe that ĥi = γdlogγ hie < γlogγ hi+1 = γhi. It follows directly

that Hτ̂ < γHτ . Suppose that the tasks are ordered by nondecreasing ratio of area
to weight, i.e., a1

u1
≤ a2

u2
≤ · · · ≤ aM

uM
. Note that altering the task heights may put

the tasks out of order with respect to the ratio of area to weight, but still we have
Aτ̂ ≤ 1

P

∑M
i=1(

∑i
k=1 âk)ui ≤ γAτ .

Lemma 3.6. The partition τ̂2 satisfies c(τ̂2, Sτ) ≤ Aτ̂ +Aτ̂2 −Aτ̂1 .
Proof. Consider the following schedule of the tasks in τ̂2. Assign the tasks

to shelves as in SMARTNFIW, but then do not arrange the shelves according to
Lemma 3.1. Instead, arrange them according to the area to weight ratio of the task
on each shelf with the smallest ratio, so that the shelves are in increasing order ac-
cording to that ratio. Call this schedule D. Let gi denote the completion time of
task i ∈ τ̂2 in the schedule D. Reordering the shelves according to Lemma 3.1 can-
not increase the sum of the completion times, and, therefore, c(τ̂2,Sτ) ≤

∑
i∈τ̂2 uigi.

Suppose that the tasks in τ̂ are ordered by increasing ratio of area to weight, i.e.,
âi
ui
≤ âi+1

ui+1
for all i ∈ {1, . . . ,M−1}. Let αi =

∑i
k=1 âk and βi =

∑
k≤i∧k∈τ̂2 âk. Then

Aτ̂ = 1
P

∑M
i=1 uiαi and Aτ̂2 = 1

P

∑M
i=1 uiβi. Our goal is to show that gi ≤ αi+βi

P for
all i ∈ τ̂2. From this we can conclude that

c(τ̂2,Sτ) ≤
∑
i∈τ̂2

uigi ≤ 1

P

∑
i∈τ̂2

ui(αi + βi) = Aτ̂ − 1

P

∑
i∈τ̂1

uiαi +Aτ̂2(19)

≤ Aτ̂ −Aτ̂1 +Aτ̂2 .

For the analysis, we wish to treat each height component separately, and to this
end we recall the following notation. For any two tasks i and j, we write i ∼ j if
they are in the same height component, i.e., dlogγ hie = dlogγ hje. For a given task
i, consider the schedule consisting only of the shelves in D that contain tasks which
are in the same height component as i, with the shelves ordered as they are in D.
Note that this is the order in which the shelves are created when the tasks are being
packed onto shelves. Call this schedule D(i). For i ∈ τ̂2, let g̃i denote the completion
time of task i in D(i). Also let α̃i =

∑
j≤i∧j∼i âj and β̃i =

∑
j≤i∧j∼i∧j∈τ̂2 âj .

Lemma 3.7. g̃i ≤ α̃i+β̃i
P for all i ∈ τ̂2.

We delay the proof of Lemma 3.7 until the completion of the proof of Lemma 3.6.
Now we are ready to show that gi ≤ αi+βi

P for all i ∈ τ̂2. Pick any task i0 ∈ τ̂2.
Suppose that there are r height components, other than the component containing
the task i0 itself, that contain a shelf which comes before i0 in the schedule D. For

250 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

each such component l ∈ {1, . . . , r}, let il be the task with the least area to weight
ratio on the last shelf of the component l that comes before the shelf containing i0.
Note that the ordering of the shelves guarantees that il < i0 for all l ∈ {1, . . . , r}.
Now we have

gi0 =
r∑
l=0

g̃il

≤ 1

P

r∑
l=0

(α̃il + β̃il)

=
1

P

r∑
l=0

 ∑
j≤il∧j∼il

âj +
∑

j≤il∧j∼il∧j∈τ̂2
âj

≤ 1

P

r∑
l=0

 ∑
j≤i0∧j∼il

âj +
∑

j≤i0∧j∼il∧j∈τ̂2
âj

=
1

P

 i0∑

j=1

âj +

i0∑
j=1∧j∈τ̂2

âj

=
αi0 + βi0

P
.(20)

Proof of Lemma 3.7. Let i0 be any task in τ̂2. Let Ti0 = {i ∈ τ̂ : i ∼ i0} be the

height component containing task i0. Let h = ĥi0 = γdlogγ hi0e be the height of each
task in Ti0 . Let the shelves in Ti0 be numbered consecutively according to the order
in which they were created. Then shelf 1 is in τ̂1 and shelf 2 is the first shelf in D(i0).

Let us define φ(k) to be the first task i ∈ Ti0 assigned to shelf k. Observe that
φ(k) for k > 1 is too wide to fit on shelf k − 1, and so the total width of any shelf
k plus the width of φ(k + 1) is greater than P . Since every task in Ti0 has height
h, it follows that the total area of any shelf k plus the area of φ(k + 1) is greater
than hP . It also follows that ordering the tasks by increasing width to weight ratio is
the same as ordering the tasks by increasing area to weight ratio. Thus, if task i0 is
assigned to shelf k, then the total area of all tasks in T up to and including i0 satisfies
α̃i0 ≥ (k− 1)hP −∑k

j=2 âφ(j) ≥ (k− 1)hP − β̃i0 . On the other hand, the completion
time of task i0 in D(i0) is g̃i0 = (k − 1)h.

Putting all of these lemmas together we get

sτ ≤ c(τ̂ , Sτ) +Hτ −Hτ̂

≤ (δ + 1)c(τ̂1, Sτ) +

(
1

δ
+ 1

)
c(τ̂2, Sτ) +Hτ −Hτ̂

≤
(

1

δ
+ 1

)
Aτ̂ +

(
1

δ
+ 1

)
Aτ̂2 −

(
1

δ
+ 1

)
Aτ̂1

+
γ

γ − 1
(δ + 1)Hτ̂1 +Hτ −Hτ̂

=

(
1

δ
+ 1

)
Aτ̂ +

(
1

δ
+ 1

)
Aτ̂2 −

(
1

δ
+ 1

)
Aτ̂1

+

(
1

δ
+ 1

)
Hτ̂1 +

[
γ

γ − 1
(δ + 1)− 1

δ
− 2

]
Hτ̂

SMART SMART BOUNDS 251

−
[

γ

γ − 1
(δ + 1)− 1

δ
− 1

]
Hτ̂2 +Hτ

≤ γ

(
1

δ
+ 1

)
Aτ + γ

(
1

δ
+ 1

)
Aτ2 −

(
1

δ
+ 1

)
Aτ1

+ γ

(
1

δ
+ 1

)
Hτ1 +

[
γ2

γ − 1
(δ + 1)− γ

δ
− 2γ + 1

]
Hτ

−
[

γ

γ − 1
(δ + 1)− 1

δ
− 1

]
Hτ2

≤ γ

(
1

δ
+ 1

)
oτ + γ

(
1

δ
+ 1

)
Aτ

+

[
γ2

γ − 1
(δ + 1)− γ

δ
− 2γ + 1

]
Hτ

− min

{
1

δ
+ 1,

[
γ

γ − 1
(δ + 1)− 1

δ
− 1

]}
Wτ .(21)

The next-to-last inequality is actually only guaranteed to hold if the term γ
γ−1 (δ+

1) − 1
δ − 2 is nonnegative. In any case, the optimal values γ = 1.65 and δ = 0.72

satisfy this condition, and yield sτ
oτ
≤ 8.53.

Note from (21) that choosing γ = 2 and δ = 1 yields sτ
oτ
≤ 9, and thus the original

algorithm of [12] for the unweighted problem is 9-approximate.

4. Examples. We first present a family of task systems for the unweighted min-
imum response time problem with the property that SMARTFFIA produces a ratio sτ

oτ
approaching 4.5 asymptotically. There are two groups of tasks, a height group and
an area group.

The tasks in the height group fit onto n − 1 shelves of heights 4, 8, 16, . . . , 2n,
with the number of tasks on each shelf being equal to the height of that shelf. On
each such shelf k with 2 ≤ k ≤ n there is one task of full height 2k. All other tasks
on that shelf are of height slightly larger than 2k−1. The width of each task in the
height group is 1, and P is chosen large enough so that the total number of tasks in
the height group is less than or equal to P

4 − 3. SMARTFFIA will produce a schedule
with cost 22n+1− 7 · 2n + 6, while in the optimal case all tasks start concurrently and
produce overall costs of 1

3 (22n+1 + 3 · 2n − 14).

The area group consists of q tasks of width P
2 +1 and height 1+ 4

P and q tasks of

width P
4 + 2

P +1.5 and height 2. Note that all tasks in this group have the same area.
Therefore, we may assume that SMARTFFIA will produce a schedule with q shelves
such that each shelf contains a wide and a narrow task. Assuming P → ∞ the cost
of this schedule is 2q2 + q. On the other hand, if q is a multiple of 6 the optimal
schedule is achieved by placing all q wide tasks on top of each other side by side with
a stack of q

2 of the narrow tasks. The remaining narrow tasks are divided into three
equal stacks of q

6 tasks each and started after the completion of the wide and narrow

stacks. (Three narrow tasks fit side by side.) The cost of this schedule is 4q2

3 + 3q
2 .

(For values of q which are not multiples of 6 this is a close approximation.)

Note that all shelves k in both groups have Hk

Mk
= 1, so that the ordering of them

is immaterial. It can therefore be assumed that SMARTFFIA puts all shelves of the
height group on top of the shelves of the area group, thus producing an additional cost

252 SCHWIEGELSHOHN, LUDWIG, WOLF, TUREK, AND YU

of (2n+1 − 4)2q. However, the optimal schedule is obtained by placing the optimal
schedules for both the height and the area group side by side. For q ≈ 2n−1, the ratio
sτ
oτ

then approaches 4.5 asymptotically as q →∞.

For the weighted minimum response time problem, there is a similar family of task
systems for which γ-SMARTNFIW produces a ratio sτ

oτ
approaching approximately 6.75

asymptotically for the value of γ specified in section 3. Once again, there is a height
group and an area group.

The tasks in the height group fit onto n− 1 shelves of heights γ2, γ3, . . . , γn, and
there are two tasks of width 1 on each shelf. On shelf k, where 2 ≤ k ≤ n, there is one
task of height γk and weight ε, where ε is small. The other task is of height slightly
greater than γk−1 and weight γk−ε. Note that the total number of tasks in the height
group is 2n − 2. For large values of n, the γ-SMARTNFIW produces a schedule with

one shelf per height group and cost γ2n γ(2γ−1)
(γ2−1)(γ−1) . The optimal schedule places all

tasks of the height group side by side and has cost γ2n γ
γ2−1 .

The area group consists of q tasks of width P−2n+2
2 , height slightly greater than

1, and weight γ(P−2n+2)
P+2n , and q tasks of width 2n− 1, height γ, and weight 2γ(2n−1)

P+2n .
Note that all tasks have the same width to weight ratio. Therefore, assuming P � n,
γ-SMARTNFIW may produce a schedule with one task of each type per shelf. For

large values of q, the cost of this schedule is q2 γ
2

2 . The optimal schedule consists of
two stacks of wide tasks placed side by side, with the narrow tasks placed on top.
The cost of this schedule is q2 γ

4 .

Once again, all shelves k in both groups have Hk

Uk = 1, so that the ordering of
these shelves is immaterial. Combining both shelf schedules thus produces a further

cost of q · γn γ2

γ−1 . For P � qn, the combined optimal schedule consists of the optimal
schedules of both the height and area groups placed side by side. For q ≈ 1.47 · γn
the ratio sτ

oτ
approaches approximately 6.75 asymptotically.

5. Conclusions. In this paper we have

1. developed a variant SMARTFFIA of the original SMART algorithm for the
(unweighted) minimum average response time problem and shown that this
new algorithm has an approximation factor of 8;

2. developed a generalization γ-SMARTNFIW of the original SMART algorithm
and shown that this new algorithm handles the weighted minimum average
response time problem with an approximation factor of 8.53;

3. shown that the original SMART algorithm has an approximation factor of 9
when applied to the unweighted problem;

4. given examples that show that the bounds for the new algorithms are tight
to within a factor of less than 2.

We should point out that in the unweighted case these algorithms generalize as before
to the so-called malleable [13, 14] versions of the problems, yielding the same bounds
while retaining polynomial-time complexity. (Malleability here means that a task can
be run on an arbitrary number of processors with an execution time that depends
on the number of processors assigned. Thus the number of processors each task will
use becomes a decision variable rather than an input parameter.) Malleable response
time algorithms with significantly improved bounds can be achieved under certain
reasonable special conditions. See [11, 8] for details.

SMART SMART BOUNDS 253

REFERENCES

[1] B. Baker, E. Coffman, and R. Rivest, Orthogonal packings in two dimensions, SIAM J.
Comput., 9 (1980), pp. 846–855.

[2] J. Blazewicz, J. Lenstra, and A. R. Kan, Scheduling subject to resource constraints: Clas-
sification and complexity, Discrete Appl. Math., 5 (1983), pp. 11–24.

[3] E. Coffman, M. Garey, D. Johnson, and R. Tarjan, Performance bounds for level-oriented
two-dimensional packing algorithms, SIAM J. Comput., 9 (1980), pp. 808–826.

[4] M. Garey and R. Graham, Bounds for multiprocessor scheduling with resource constraints,
SIAM J. Comput., 4 (1975), pp. 187–200.

[5] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, San Francisco, CA, 1979.

[6] D. Johnson, Near-Optimal Bin-Packing Algorithms, Tech. Report MAC TR-109, MIT, Cam-
bridge, MA, June 1973.

[7] D. Johnson, Fast algorithms for bin packing, J. Comput. System Sci., 8 (1974), pp. 272–314.
[8] W. Ludwig and P. Tiwari, The Power of Choice in Scheduling Parallel Tasks, Technical

Report 1190, Computer Sciences Department, University of Wisconsin–Madison, November
1993.

[9] D. Sleator, A 2.5 times optimal algorithm for packing in two dimensions, Inform. Process.
Lett., 10 (1980), pp. 37–40.

[10] W. Smith, Various optimizers for single-stage production, Naval Research Logistics Quarterly,
3 (1956), pp. 59–66.

[11] J. Turek, W. Ludwig, J. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn,
and P. Yu, Scheduling parallelizable tasks to minimize average response time, in Proceed-
ings of the 6th Annual Symposium on Parallel Algorithms and Architectures, Cape May,
NJ, June 1994, pp. 200–209.

[12] J. Turek, U. Schwiegelshohn, J. Wolf, and P. Yu, Scheduling parallel tasks to minimize
average response times, in Proceedings of the SIAM Symposium on Discrete Algorithms,
Arlington, VA, January 1994, pp. 112–121.

[13] J. Turek, J. Wolf, K. Pattipati, and P. Yu, Scheduling parallelizable tasks: Putting it all
on the shelf, in Proceedings of the ACM Sigmetrics Conference, Newport, RI, June 1992,
pp. 225–236.

[14] J. Turek, J. Wolf, and P. Yu, Approximate algorithms for scheduling parallelizable tasks, in
Proceedings of the 4th Annual Symposium on Parallel Algorithms and Architectures, San
Diego, CA, June 1992, pp. 323–332.

NEW APPROXIMATION GUARANTEES FOR MINIMUM-WEIGHT
k -TREES AND PRIZE-COLLECTING SALESMEN∗

BARUCH AWERBUCH† , YOSSI AZAR‡ , AVRIM BLUM§ , AND SANTOSH VEMPALA§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 254–262

Abstract. We consider a formalization of the following problem. A salesperson must sell some
quota of brushes in order to win a trip to Hawaii. This salesperson has a map (a weighted graph)
in which each city has an attached demand specifying the number of brushes that can be sold in
that city. What is the best route to take to sell the quota while traveling the least distance possible?
Notice that unlike the standard traveling salesman problem, not only do we need to figure out the
order in which to visit the cities, but we must decide the more fundamental question: which cities
do we want to visit?

In this paper we give the first approximation algorithm having a polylogarithmic performance
guarantee for this problem, as well as for the slightly more general “prize-collecting traveling sales-
man problem” (PCTSP) of Balas, and a variation we call the “bank robber problem” (also called the
“orienteering problem” by Golden, Levi, and Vohra). We do this by providing an O(log2 k) approx-
imation to the somewhat cleaner k-MST problem which is defined as follows. Given an undirected
graph on n nodes with nonnegative edge weights and an integer k ≤ n, find the tree of least weight
that spans k vertices. (If desired, one may specify in the problem a “root vertex” that must be in

the tree as well.) Our result improves on the previous best bound of O(
√
k) of Ravi et al.

Key words. approximation algorithm, prize-collecting traveling salesman problem, k-MST

AMS subject classifications. 68Q20, 68Q25, 90C27, 90B06, 05C85

PII. S009753979528826X

1. Introduction.

1.1. The problem. Consider a salesperson who must sell some quota of R
brushes in order to win a trip to Hawaii. This salesperson has a map (a weighted
graph) of n cities in which each city has an attached demand specifying the number
of brushes that can be sold in that city. What is the best route to take to sell the
quota while traveling the least distance possible? Notice that unlike the standard
traveling salesman problem (TSP), not only do we need to figure out the order in
which to visit the cities, but we must decide the more fundamental question: which
cities do we want to visit?

R. Ravi et al. [17] considered the cleanest case of the above problem, called the
minimum-weight k-tree, or k-MST problem. In this problem, one is given a graph
on n vertices with nonnegative distances on the edges, and a number k ≤ n, and
the goal is to find a tree of least total cost that spans k vertices. For k = n this is
the (easy) minimum spanning tree problem. For general k, however, the problem is

∗Received by the editors June 26, 1995; accepted for publication (in revised form) December 23,
1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/28826.html
†Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218

(baruch@blaze.cs.jhu.edu) and MIT Lab. for Computer Science, Cambridge, MA, 02139. The work
of this author was supported by Air Force contract TNDGAFOSR-86-0078, ARPA/Army contract
DABT63-93-C-0038, ARO contract DAAL03-86-K-0171, NSF contract 9114440-CCR, DARPA con-
tract N00014-J-92-1799, and a special grant from IBM.

‡Department of Computer Science, Tel Aviv University, Tel Aviv, Israel (azar@math.tau.ac.il).
The work of this author was supported in part by an Allon Fellowship and by the Israel Science
Foundation administered by the Israel Academy of Sciences.

§School of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213-3891
(avrim@cs.cmu.edu, svempala@cs.cmu.edu). The work of these authors was supported in part by
NSF National Young Investigator grant CCR-9357793 and a Sloan Foundation Research Fellowship.

254

APPROXIMATION GUARANTEES FOR THE k-MST AND PCTSP 255

NP-complete and has the same main difficulty faced by the above salesperson: which
points to include and which to ignore? In fact, the k-MST problem nicely focuses on
just that issue since once the set is determined, the least weight tree on that set is
easy to find.

Cheung and Kumar [8] call this problem the “quorum-cast” problem; its applica-
tions are in the domain of communication networks.

The bank robber problem is the following: given the map of a city including the
amounts of money in each bank, and a car with bounded gas tank, the robber has
to rob the maximum amount of money without refueling after the first robbery (thus
avoiding being reported to the police). This problem is also called the “orienteering
problem” by Golden, Levi, and Vohra [13].

1.2. Prior work. Ravi et al. [17] provide an algorithm that achieves an ap-
proximation ratio of O(

√
k) for the k-MST problem on general graphs (i.e., the tree

found is at most O(
√
k) times heavier than the optimal tree) and ratio O(k1/4) for the

special case of points in two-dimensional Euclidean space. Garg and Hochbaum [10]
improved the ratio for the latter case to O(log k), which was then improved to a con-
stant factor by Blum, Chalasani, and Vempala [6]. Heuristics for problems described
above have been given by Balas [4] and by Cheung and Kumar [8].

1.3. Results of this paper. In this paper, we describe an algorithm that
achieves an approximation ratio O(log2 k) for the k-MST problem on general graphs,
improving the previous bound of O(

√
k) [17]. Our results hold for both the rooted

and unrooted versions of the problem. (In the rooted version there is a specified
root vertex that must be in the tree produced.) This result immediately implies an
O(log2 R) approximation for the quota-driven salesperson described above (R is the
quota): namely, just treat a vertex with “demand” d as a cluster of d vertices, find the
R-MST, and then tour the tree in the standard way. In fact, our algorithm actually
achieves the somewhat better bound of O(log2(min(R,n))) for this problem, and does
not require the demands to be polynomial in n.

Our algorithm also extends easily to an O(log2(min(R,n))) bound for the prize-
collecting traveling salesman problem (PCTSP) due to Balas [4] on undirected graphs.
The PCTSP problem is just like the quota TSP problem above, but in addition, there
are nonnegative penalties attached to each city and the salesperson’s cost is the sum of
the distance traveled plus the penalties on cities not visited. Thus, the quota problem
can be thought of as the special case in which penalties are 0. The O(log2(min(R,n)))
bound for the PCTSP follows immediately by concatenating the tour found by our
algorithm (which ignores the penalties) to a tour found by an algorithm of Goemans
and Williamson [12] that provides a factor-of-2 approximation to a relaxed version of
the PCTSP in which the quota requirement is removed. (In the original PCTSP there
is also a restriction that each city not be visited more than once; if this is desired and
if the graph is a metric space, then we can achieve the same bound in the usual way.)

We also derive an approximation algorithm with similar bounds for the bank
robber problem.

It is worthwhile to point out that our algorithms are easily implementable in a
distributed environment, since they operate on the basis of local information.

1.4. Subsequent results. Since the initial (conference) publication of this pa-
per [2], several results have appeared that build and improve upon those here. Ra-
jagopalan and Vazirani [16] describe an algorithm that can be viewed as a somewhat
“smoothed” version of the algorithm of this paper and prove that it achieves an

256 B. AWERBUCH, Y. AZAR, A. BLUM, AND S. VEMPALA

O(log k) approximation to the k-MST. In a further improvement, Blum, Ravi, and
Vempala [7] prove that a version of the Goemans–Williamson [12] algorithm achieves
a constant-factor approximation. Most recently, Garg [9] has improved this constant
factor to 3. Also very recently, for the case of points in the plane with the Euclidean
distance metric, Arora [1] and Mitchell [15] (see also [14]) have independently de-
veloped a polynomial-time approximation scheme (PTAS) for the k-MST problem,
that is, an algorithm that for any fixed ε > 0 can achieve a (1 + ε) approximation
in polynomial time. Their result applies to a variety of related problems such as the
TSP and the minimum Steiner tree problem.

2. The k-MST problem. We begin by presenting an algorithm for the k-MST
problem that achieves an approximation ratio of O(log3 k). We then describe an im-
provement that removes one of the logarithmic factors to achieve the ratio of O(log2 k).
Before presenting the algorithm, however, let us point out that the “rooted” and “un-
rooted” versions of the problem are essentially equivalent from the point of view of
approximation for the following reason.

Given an algorithm for the rooted problem, to solve the unrooted case one can
simply try all possible start vertices and then choose the smallest tree found. Given
an algorithm for the unrooted version, to solve the rooted case when the weight ` of
the optimal tree is known, just throw out all vertices of distance greater than ` from
the root, solve the unrooted problem, and then connect the tree to the root for an
added cost of at most `. Note that the approximation factor may increase by 1. If the
optimal cost ` is not known, simply sort the distances from the root to each of the
n points in increasing order, run the algorithm n times throwing out the i farthest
points in the ith iteration, and pick the best result.

In the rest of this section we will use OPT to denote the optimal k-tree and ` to
denote its total weight.

Our algorithm and analysis contain two main ideas. The first is a measure used for
grouping points into components in a Kruskal’s-algorithm-like manner. The second
is a bucketing technique that allows one to prove this measure to be useful. The
measure we use is the following: given two components Ci, Cj , we examine the ratio:
d(Ci, Cj)/min(|Ci|, |Cj |), where d(·, ·) is the distance according to the shortest-path
metric and | · | is the size in terms of number of points. The general step of the
algorithm will be joining together (using the shortest path) the two components for
which this ratio is smallest.

The bulk of the argument will be for proving correctness of an algorithm for the
following slight relaxation of our goal, which is similar to the “maximal dense” tree
concept in [3]. Given k, we will find a tree on at least k/4 points whose weight is
at most O(log2 k) times the weight of the minimum k-tree. With this algorithm in
place, it will be easy to remove the relaxation and solve our original problem. The
Kruskal-like algorithm for this relaxed problem is as follows.

Algorithm Merge-Cluster.
1. Begin with n components, one for each point.
2. Join (using the shortest path) the two components such that the ratio of the

distance between the components to the number of points in the smaller one
is least. That is, join the pair Ci, Cj that minimize d(Ci, Cj)/min(|Ci|, |Cj |).

3. Repeat step 2 until some component has size at least k/4.

Theorem 1. The weight of the largest component produced by Algorithm Merge-
Cluster is at most 4(log2 k)

2 times the weight of the optimal k-tree.
The proof of Theorem 1 follows immediately from Lemmas 1 and 2 below.

APPROXIMATION GUARANTEES FOR THE k-MST AND PCTSP 257

Lemma 1. If at any time the largest ratio used by Algorithm Merge-Cluster so
far is r, then any component of p points will have total weight at most rp log2 p.

Lemma 2. Algorithm Merge-Cluster never uses a ratio larger than 8` log2 k
k where

` is the weight of the optimal k-tree.
To prove Theorem 1 from these lemmas, just note that the only way in which the

largest component produced could have size greater than k/2 is for the additional ver-
tices to be included “for free” in the shortest path that makes up the final connection.
Thus combining the bounds of the two lemmas yields the theorem.

We begin with a proof of the simpler lemma.
Proof of Lemma 1. Consider a joining of two components. Since the length of the

connection used is at most r times the number of points in the smaller component,
we can “pay for” the connection by charging a cost of at most r to each of the points
in the smaller component. Any time a point is charged, the size of the component
it belongs to at least doubles. So, any point in a component of p points has been
charged a total cost at most r log2 p. Since the weight of a component is at most the
total charge to points inside it, this proves the lemma.

Proof of Lemma 2. In contradiction, suppose that at some time all components
produced by the algorithm have size less than k/4 and the distance between any
two is greater than r = (8` log2 k)/k times the number of points in the smaller.
Group the components into buckets based on size, where the ith bucket contains
those components with between k/2i and k/2i+1 points (i = 2, 3, . . .). Now, throw
out all components that do not intersect the optimal k-tree. Clearly, the optimal
k-tree can have at most k/4+ k/8+ · · · < k/2 points inside buckets that contain only
one component. So, there is some bucket containing at least two components such
that OPT has at least k/(2 log2 k) points inside that bucket. Say all components in
this bucket have size between s and 2s. This means that the balls of radius rs/2
about each component do not touch each other, and OPT must intersect at least
k/(4s log2 k) components. Therefore OPT must have a connection cost greater than
rk/(8 log2 k) = `, a contradiction.

Algorithm Merge-Cluster immediately gives us a simple O(log3 k) approximation
algorithm for the k-MST problem as follows. For simplicity, we consider the rooted
version. Also, for the moment, suppose that we know the weight ` of the optimal
k-tree. In the procedure below, we view Algorithm Merge-Cluster as taking “k” as
an argument.

Algorithm Connect-Clusters.
1. Mark as “to be ignored” all vertices of distance greater than ` from the root.
2. While k > 0 do the following:

(a) Run Algorithm Merge-Cluster on the unmarked vertices. (By this we
mean that the distance between two components is still the shortest-path
distance in the original graph, but only unmarked vertices are considered
in computing a component’s size.)

(b) Let s be the size of the component that was found and mark its vertices
as “to be ignored.”

(c) Set k = k − s (number of vertices we still need).
3. Connect together all the components found in Step 2.

Theorem 2. Algorithm Connect-Clusters finds a tree of at least k points whose
weight is at most O(log3 k) times the optimal.

Proof. Suppose that in the invocations of Algorithm Merge-Cluster so far we have
found components with k′ points total. Then, the optimal k-tree contains at least

258 B. AWERBUCH, Y. AZAR, A. BLUM, AND S. VEMPALA

k − k′ points in the graph remaining, and all these are within distance ` from the
root. Thus, the next invocation of the algorithm will find a tree on at least (k− k′)/4
points, at cost at most O(` log2 k). So, the algorithm will be run at most O(log k)
times and the sum total cost of all components found is at most O(` log3 k). The cost
to connect them together is a low-order O(` log k).

We can remove the knowledge of the optimal cost ` from the above algorithm
in the same manner as was done for converting the rooted version of the k-MST
problem to the unrooted version. For improved efficiency, note that the true ` satisfies
λ ≤ ` ≤ kλ, where λ is the distance of the kth farthest vertex from the root. So we
can begin with a guess of ` = λ and then double our guess if the numbers and sizes
of the components found do not satisfy the guaranteed bounds, for a total of O(log k)
iterations maximum.

We now show how to modify Algorithm Connect-Clusters to achieve an O(log2k)
approximation. To do this, we use the following corollary to a result by Goemans
and Williamson [12]. In [5] this is called a (3, 6)-TSP approximator. (Goemans and
Kleinberg [11] have recently improved this to a (2, 3)-TSP approximator.)

Fact 1. Given a weighted graph on n points and an ε > 0, let Lε be the length of
the shortest tour that visits at least (1 − ε)n points. One can find in polynomial time
a path of length at most 6Lε that visits at least (1− 3ε)n points.

For simplicity, we describe the modified algorithm as either finding a tree of k
points with cost at most O(` log2 k) or else finding a tree on at least k/4 points with
cost O(`). It is not hard to see that this suffices because the latter case removes an
O(log2 k) factor from the bounds of Theorem 1 (which is even better). Let us also
assume for simplicity that the algorithm is given the value of `; this assumption can
be removed, as was done for Algorithm Connect-Clusters above. The new algorithm
works as follows.

Algorithm Improved-Connect. Run Algorithm Connect-Clusters until com-
ponents totaling at least 15

16k points have been found. This requires only a constant
number of applications of Algorithm Merge-Cluster. For simplicity, if the number of
points found exceeds 15

16k, then discard points until we have only 15
16k left. Call this

set of points S.
Now, apply the algorithm of Fact 1 with ε = 3

15 to the graph induced by the set
S. Notice that if the optimal k-tree intersects at least a (1 − 3

15) fraction of S, then
this algorithm is guaranteed to find a path of length at most 6` that visits at least
(1− 9

15) 15
16k = 3

8k points. If the algorithm produces such a path, then halt: the MST
on these points is a tree of cost O(`) on more than k/4 points as desired.

On the other hand, if the algorithm of Fact 1 returns a path that either is longer
than 6` or else visits insufficiently many points, then we know that the optimal k-
tree intersects less than a (1 − 3

15) fraction of S (and so contains at least k/4 new
points). We now apply Merge-Cluster, with argument k/4, on the remaining graph
to find a new component with at least k/16 points. Connecting this component to
the components in S results in a tree of k points of cost O(` log2 k), and we are done.

We thus have the following theorem.
Theorem 3. Algorithm Improved-Connect provides an O(log2 k) approximation

for the k-MST problem and runs in polynomial time.

3. Extensions of the basic k-MST algorithm. We now describe how the
algorithms of the previous section can be used to give guaranteed approximations to
the other problems mentioned in the introduction, such as

• the quota TSP problem,

APPROXIMATION GUARANTEES FOR THE k-MST AND PCTSP 259

• the PCTSP, and
• the bank robber (orienteering) problem.

3.1. Algorithms for quota-driven salesmen. In the quota TSP problem each
vertex in the graph has some attached integral value wi ≥ 0 and the salesman has a
target quota R. The goal is to find a route as short as possible that visits vertices
whose sum total value is at least R. The salesman may visit a city several times, but
if he does so he only receives its value once.

First, it is immediate that we can approximate the quota TSP to a factor of
O(log2 R). Simply replace each vertex of value w by w vertices all at the same location,
find the approximate R-MST, and then traverse it at most twice. Notice that this
bound might not be so good if R is much larger than n. Also, this approach naively
requires R to be only polynomially large; however, since the first step of the k-MST
approximation algorithm is to reconnect vertices at the same location into a cluster,
we can view the replacement described above as just a thought experiment. We show
now that the algorithm in fact achieves the better bound of O(log2(min(R,n))).

It will be simplest to view Algorithm Merge-Cluster as acting directly on the
weighted vertices, merging the two components Ci, Cj that minimize

d(Ci, Cj)/min(wt(Ci), wt(Cj))

where wt(C) is the sum of the values of the vertices contained in C. Let us call this
algorithm Merge-Weighted-Cluster even though it is really exactly the same algorithm,
except for running time, as the thought experiment described above. For the analysis
corresponding to Lemma 1, however, when two components are merged we will “pay
for” the cost by charging to the smaller one in number, not in weight. This still means
that for a connection of ratio r a vertex of weight w will be charged at most rw, if
we charge vertices proportionally to their weight. But, now it is clear that a vertex
will be charged at most log(p) times if it is in a component of p vertices, as opposed
to a component having weight p. Thus we have the following lemma. (We also give a
more formal proof below.)

Lemma 3. If at any time, the largest ratio used by the algorithm Merge-Weighted-
Cluster so far is r, then any component of p points and total vertex weight w will have
total edge weight (cost) at most rw log2 p.

Proof. We prove the lemma by induction. It is true initially since the cost begins
at 0. When merging two clusters Ci and Cj into C we note that

cost(C) = cost(Ci) + cost(Cj) + d(Ci, Cj)

≤ r · wt(Ci) · log(|Ci|) + r · wt(Cj)

· log(|Cj |) + r ·min{wt(Ci), wt(Cj)}
≤ r · (wt(Ci) + wt(Cj)) · log(|Ci|+ |Cj |)
≤ r · wt(C) · log(|C|).

We can similarly improve Lemma 2 as follows.
Lemma 4. Algorithm Merge-Weighted-Cluster never uses a ratio larger than

O(`(log2 n)/R) where ` is the (edge) weight of the optimal tree having vertex weight
R.

Proof. Following the proof of Lemma 2 we have buckets containing the compo-
nents of vertex weight R/4 to R/8, R/8 to R/16, etc. We stop, however, at weight
R/(10n) and put all components of that weight or less into one single bucket. Now

260 B. AWERBUCH, Y. AZAR, A. BLUM, AND S. VEMPALA

there are only O(log n) buckets instead of O(logR) and the final small bucket inter-
sects the optimal tree in at most R/10 total weight, and so can be “thrown out” in
the analysis. The rest of the proof of Lemma 2 then can be followed directly.

The above two lemmas imply that Algorithm Improved-Connect of Theorem 3
in fact achieves a ratio of O(log2 n) as well as O(log2 R), which gives us our desired
bound.

One technical point: the algorithm of Fact 1, which is just the PCTSP algorithm of
Goemans and Williamson [12] with an appropriate setting of the prize values, works
also for the vertex-weighted case. Therefore, Algorithm Improved-Connect runs in
polynomial time even if R is large.

3.2. Algorithms for prize-collecting salesmen. As mentioned in the intro-
duction, an approximation algorithm to the quota TSP problem can be transformed
into an approximation algorithm to the PCTSP problem of [4]. The PCTSP is the
following. You are given an undirected edge-weighted graph in which each vertex has
a prize value and a penalty value. You are also given a quota R. The goal is to find
a tour of minimum “cost” such that the sum of the prizes on the vertices visited is
at least R, where cost is defined to be the length of the tour plus the sum of the
penalties on vertices not visited. In other words, the PCTSP is the same as the quota
TSP problem, but with the additional complication of vertices having penalties for
not being on the tour.

The Goemans–Williamson algorithm [12] provides a 2-approximation to a version
of the PCTSP in which the quota requirement R is removed. That is, the goal is
simply to minimize the cost of the tour as defined above. To approximate the PCTSP
problem of Balas, simply concatenate the tour found by the quota TSP approximator
to a (rooted) tour found by the Goemans–Williamson algorithm. The tour found
by the quota TSP approximator is guaranteed to meet the quota requirement and
have length at most O(log2(min(R,n))) times the cost of the optimum solution. The
second tour guarantees that the final result incurs a penalty totaling at most twice the
cost of the optimum solution, while introducing only a small increase in the length.
(Removing the quota restriction only decreases the cost of the optimum solution.)
Thus we have the following theorem.

Theorem 4. There is a polynomial-time algorithm that approximates the
PCTSP problem of Balas [4] on n-vertex undirected weighted graphs with a ratio
O(log2(min(R,n))), where R is the required vertex weight to be visited.

3.3. The bank robber (orienteering) algorithm. The bank robber (orien-
teering) problem [13] is much like the problem faced by our quota-driven salesperson,
except that the distance d that may be traveled is fixed and the goal is to maximize
the total value R of points visited. If we do not require a specified starting point,
then we can approximate this problem to the same ratio as the quota-TSP problem
as follows. We “guess” the value R, we run the quota TSP-approximator to find a
path of length O(d log2(min(n,R))) visiting vertex weight R, we break the path found
into segments of length d/2, and then we choose the segment that contains the most
vertex value inside. Notice, however, that this does not approximate the orienteering
problem with a specified start vertex (root) since there is no guarantee the “good”
segment found will intersect the root.

4. A hard example for our algorithm. Our basic algorithm, Merge-Cluster,
finds a tree on at least k/4 points with cost at most O(` log2 k), where ` is the cost
of the optimal k-tree. In fact, there exist examples that force the algorithm to pay

APPROXIMATION GUARANTEES FOR THE k-MST AND PCTSP 261

Ω(` log2 k), and we describe one such example here.
Define a 1-block to be a single point, a 2-block to be two points separated by

distance 1, a 4-block to be two 2-blocks separated by distance 2, and more generally
a 2t-block to be two 2t−1-blocks separated by distance 2t−1. Note that a 2t-block has
2t points. Also, notice that all the points in such a block would be connected together
by Merge-Cluster using connections of ratio 1.

Suppose we have a cluster of A points (by a cluster, we just mean that all the
points are at the same location) separated by some distance from a cluster of B points.
Let us define a “filling in” of the region between the two clusters as follows. First, if
A = 1 or B = 1 then we do nothing. Otherwise, let C = bmin(A/2, B/2)c and place
a cluster of C points halfway between the A-point cluster and the B-point cluster.
Then recursively fill in the region between the A-point and C-point clusters and the
region between the C-point and B-point clusters.

A hard example for the algorithm can now be described as follows. The graph
consists of two sets of points separated by a large distance. The first set of points is
a k-block. The second set of points is constructed by placing two clusters of 4k/ log k
points at a distance of 8k/ log k from each other, and then “filling in” the region
between the clusters as described above. Given such a graph, there exists a tree on
at least k points with total length 8k/ log k. In particular, just connect all the points
in the second set. However, the algorithm will instead connect together points in
the first set, since the ratios are better there (1 versus 2), and pay a total cost of
Ω(k log k).

5. Open questions. The obvious open question is whether there are polynomial-
time algorithms with better approximation ratios, i.e. logarithmic, or even constant,
for the problems considered in this paper. As noted above, this question has been
answered in the affirmative by subsequent work.

Another interesting open question is finding a polynomial-time polylogarithmic
approximation for the rooted version of the bank robber (orienteering) problem. This
problem appears to be much more difficult than the unrooted version. Intuitively, the
difficulty with approximating the rooted problem is that many of the points on the
optimal tour might be in a clump at distance just about d/2 from the root. Thus,
a strategy that opportunistically visits nearer vertices on its way to that clump may
find that it cannot reach those vertices and return in the given distance d.

Acknowledgments. We thank Noga Alon and Prasad Chalasani for helpful
discussions, and the anonymous referees for their suggestions for improving the pre-
sentation of this paper.

REFERENCES

[1] S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric
problems, in Proc. 37th Annual IEEE Symposium on Foundations of Computer Science,
1996, pp. 2–11.

[2] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, Improved approximation guarantees
for minimum-weight k-trees and prize-collecting salesmen, in Proc. 27th Annual ACM
Symposium on Theory of Computing, 1995, pp. 277–283.

[3] B. Awerbuch, Y. Azar, and R. Gawlick, Dense trees and competitive selective multicast,
unpublished manuscript, December 1993.

[4] E. Balas, The prize collecting traveling salesman problem, Networks, 19 (1989), pp. 621–636.
[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan,

The minimum latency problem, in Proc. 26th Annual ACM Symposium on Theory of
Computing, 1994, pp. 163–171.

262 B. AWERBUCH, Y. AZAR, A. BLUM, AND S. VEMPALA

[6] A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation for the k-MST
problem in the plane, in Proc. 27th Annual ACM Symposium on Theory of Computing,
1995, pp. 294–302.

[7] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for the k-
MST problem, in Proc. 28th Annual ACM Symposium on Theory of Computing, 1996,
pp. 442–448.

[8] S. Cheung and A. Kumar, Efficient quorumcast routing algorithms, in Proc. INFOCOM ’94,
Vol. 2, Toronto, 1994, pp. 840–855.

[9] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in Proc. 37th Annual
IEEE Symposium on Foundations of Computer Science, 1996, pp. 302–309.

[10] N. Garg and D. Hochbaum, An O(log k) approximation algorithm for the k minimum span-
ning tree problem in the plane, in Proc. 26th Annual ACM Symposium on Theory of
Computing, 1994, pp. 432–438.

[11] M. Goemans and J. Kleinberg, An improved approximation ratio for the minimum latency
problem, in Proc. 7th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 1996, pp. 152–158.

[12] M. Goemans and D. Williamson, A general approximation technique for constrained forest
problems, in Proc. 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 1992, pp. 307–315.

[13] B. Golden, L. Levy, and R. Vohra, The orienteering problem, Naval Research Logistics, 34
(1987), pp. 307–318.

[14] J. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple new method
for the geometric k-MST problem, in Proc. 7th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1996, pp. 402–408.

[15] J. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: Part II - a simple
polynomial-time approximation scheme for geometric k-MST, TSP, and related problems,
SIAM J. Comput., to appear.

[16] S. Rajagopalan and V. Vazirani, Logarithmic approximation of minimum weight k trees,
unpublished manuscript, 1995.

[17] R. Ravi, R. Sundaram, M. Marathe, D. Rosenkrantz, and S. Ravi, Spanning trees short
and small, in Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, 1994, pp. 546–555.

NEAR-LINEAR TIME CONSTRUCTION OF SPARSE
NEIGHBORHOOD COVERS∗

BARUCH AWERBUCH† , BONNIE BERGER‡ , LENORE COWEN§ , AND DAVID PELEG¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 263–277

Abstract. This paper introduces a near-linear time sequential algorithm for constructing a
sparse neighborhood cover. This implies analogous improvements (from quadratic to near-linear
time) for any problem whose solution relies on network decompositions, including small edge cuts in
planar graphs, approximate shortest paths, and weight- and distance-preserving graph spanners. In
particular, an O(logn) approximation to the k-shortest paths problem on an n-vertex, E-edge graph
is obtained that runs in Õ (n+ E + k) time.

Key words. neighborhood covers, network decompositions, approximate shortest paths, span-
ners

AMS subject classifications. 05C85, 68R10, 05C65, 05C70

PII. S0097539794271898

1. Introduction.

1.1. Background. An r-neighborhood of a vertex in an undirected weighted
graph is the set of vertices within distance r away from it in the graph. An r-
neighborhood cover is a set of overlapping sets of vertices in the graph (called clusters)
with the property that every vertex has its entire r-neighborhood contained in one of
these clusters. An r-neighborhood cover efficiently represents the local neighborhoods
in a graph when all clusters in the cover have low diameter and the overlap among
clusters (measured by the maximum number of clusters that intersect at a vertex) is
minimized.

There is an inherent tradeoff between achieving low diameter and low overlap. If
the clusters are chosen to be all r-neighborhoods (namely, the balls of radius r around
every vertex), then all clusters have diameter r, but each vertex can be in as many as
n clusters, where n is the number of vertices in the network. On the other hand, the
entire network can be considered a single cluster, in which case each vertex is in just
one cluster, but the diameter of this cluster can be as large as n.

Sparse neighborhood covers were first introduced in [9] in the context of dis-
tributed computing. A general r-neighborhood cover construction with O(r log n)
cluster diameter and O(log n) cluster overlap is presented in [9]. It is also shown

∗Received by the editors July 15, 1994; accepted for publication (in revised form) March 2, 1997;
published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/27189.html
†Laboratory for Computer Science, MIT, Cambridge, MA 02139. Current address: The Johns

Hopkins University, Baltimore, MD 21218 (baruch@blaze.cs.jhu.edu). This work was supported
by Air Force contract AFOSR F49620-92-J-0125, NSF contract 9114440-CCR, DARPA contracts
N00014-91-J-1698 and N00014-J-92-1799, and a special grant from IBM.

‡Department of Mathematics and Laboratory for Computer Science, MIT, Cambridge, MA 02139
(bab@theory.lcs.mit.edu). This research was supported in part by an NSF Postdoctoral Research
Fellowship and an ONR grant provided to the Radcliffe Bunting Institute.

§Department of Mathematical Sciences and Department of Computer Science, The Johns Hopkins
University, Baltimore, MD 21218. This research was supported in part by an NSF postdoctoral
fellowship.

¶Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot
76100, Israel (peleg@wisdom.weizmann.ac.il). This research was supported in part by an Allon
Fellowship, a Bantrell Fellowship, a Minerva Fellowship, and a Walter and Elise Haas Career Devel-
opment Award.

263

264 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

therein how to achieve an essentially optimal tradeoff between the diameter and over-
lap parameters. However, the construction of [9] takes O(nE) time and space, where
E is the number of edges of the graph.

1.2. Summary of results. In this paper, we present a new efficient construction
method that achieves the optimal tradeoff in near-linear time. More specifically, the
main result of this paper is a deterministic sequential algorithm for the construction
of a sparse r-neighborhood cover with O(r log n) cluster diameter and O(log n) cluster
overlap with running time and space O(E log n+n log2 n). The algorithm can also be
applied for constructing an r-neighborhood cover with O(βr) diameter and O(βn1/β)
overlap, in time and space O((Eβ + nβ2)n2/β), where β is given an input to the
algorithm, representing the desired tradeoff between diameter and overlap.

To achieve this, we refine the “set coarsening” method of [9] and show how to
construct the cover by only producing breadth-first search (BFS) trees from carefully
selected vertices. The novel aspect of our approach is that a BFS tree is carved out
in such a way that one can bound the overlap with other BFS trees. It turns out
that for r > 1, bounding the overlap between BFS trees poses significant difficulties.
In order to derive good complexity bounds, we need to charge the work performed in
overlapping regions against the work performed in disjoint regions. Also, we need to
lower-bound the fraction of r-neighborhoods that have “escaped carving” in a given
iteration.

While most previous applications of neighborhood covers were in the distributed
domain, the new algorithm makes the r-neighborhood cover a viable data structure
for speeding up certain sequential algorithms. In particular, the results in this paper
automatically imply analogous improvements (i.e., from quadratic to near-linear time)
to many of the results in the literature that rely on neighborhood covers as a “black
box.” These include finding small edge cuts in planar graphs in Õ (E) time and
space1 (as a consequence of using the algorithm of this paper in conjunction with
the algorithm in [24], thus improving the O(n2) time and space complexity obtained
by using the construction method of [9] in [24]), and weight- and distance-preserving
graph spanners with Õ (E) running time and space (see [5, 12], down from O(nE)
time using [11] or a combination of [5] and [9]).

Another application that is derived explicitly in the sequel is a sequential algo-
rithm for approximating k-pairs shortest paths. We describe this application next.

1.3. Approximating k-pairs shortest paths. The k-pairs shortest paths prob-
lem, as discussed in the sequel, is defined as follows. Given an undirected graph
G(V, E) (where |V | = n and |E| = E), nonnegative edge weights, and k pairs of
vertices, find the length of the shortest path between each of these pairs.

Another version, henceforth referred to as the explicit shortest paths (ESP) prob-
lem, requires the algorithm to actually produce the paths. Clearly, the time com-
plexity of the ESP version is lower-bounded by the length of the output, which is
proportional to the total length of the requested paths.

The best known bounds for exact solution of the k-pairs shortest paths problem
are based on one of two approaches: implementations of Dijkstra’s algorithm and
solutions based on matrix multiplication.

The first approach involves running Dijkstra’s algorithm with a binary heap im-
plementation of the priority queue, yielding time O(kE log n) [13], or with a Fibonacci
heap implementation, yielding time O(kn log n + kE) [14]. For the all-pairs shortest

1We use the Õ (R) notation to denote O(R logO(1) R), for cleaner statement of bounds.

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 265

paths problem, the time bounds become O(n2 log n + nE) and O(nE log n), respec-
tively [13, 14].

There have been other improvements on the running time for the all-pairs shortest
paths problem for some special case graphs [2, 10, 15, 16, 17, 18, 19, 22, 26], but they
all have worst-case time O(nE). Karger, Koller, and Phillips [19] show that Ω(nE) is a
lower bound for directed graphs on the running time of any algorithm which is “path-
comparison based,” which is evidence that it is hard to improve exact algorithms with
this approach.

The second approach is based on computing (exact) all-pairs shortest paths rely-
ing on matrix multiplication. Alon, Galil, and Margalit [3] describe an O((nW)2.688)
time algorithm for the case of integer edge weights whose absolute value is less than
W . This result has been improved to give an algorithm for the unweighted case which
runs in time O(M(n) log n), where M(n) is the time for matrix multiplication (cur-
rently known to be o(n2.376)) [25]. Subsequently, this result has been further improved
in [4], solving exact all-pairs shortest paths in the case of integer edge weights between
0 and W in O(W 2M(n) log n) time. Notice that the algorithm presented in this paper
runs faster than these recent algorithms in both the unweighted and weighted cases.

Hence the bottlenecks in the running time of the exact algorithms stem either
from repeated application of Dijkstra’s single-source shortest paths algorithm or from
matrix multiplication. We bypass these bottlenecks at the cost of producing an ap-
proximate solution.

There has also been recent work on approximation algorithms for shortest paths
in the domain of parallel computation. Klein [20] extended the work of Ullman and
Yannakakis [27] to the weighted case, obtaining a randomized PRAM algorithm that
can (1 + ε)-approximate shortest paths between k pairs of vertices in O(

√
nε−2 log n ·

log∗ n) time using (kE log n)ε2 processors (where ε is constant). When this algorithm
is run sequentially, the time is not as good as known sequential algorithms for the
exact problem. Hence, Klein’s approximation algorithm is strictly of interest for
parallel computation.

As a corollary of our near-linear cost construction of sparse neighborhood cov-
ers, we obtain an O(log n)-approximation algorithm for this problem that runs in
Õ (E + k) time. Our improvement in running time is achieved through our ability to
construct a data structure of δ = dlog Diam(G)e sparse neighborhood covers (where
Diam(G) is the diameter of the graph) in time O((E log n+ n log2 n)δ), thereby allow-
ing us to then quickly retrieve short paths. (The previous construction of [9] has been
insufficient to produce any improvement over existing algorithms for the shortest paths
application.) Once the data structure is in place, we show how to query it for the ap-
proximate distance between two vertices in O(log n log δ) time. (For ESP, the explicit
version of the problem, the cost increases (inherently) by the length of the path.) Thus
we approximate k-pairs shortest paths in time O((E log n+ n log2 n)δ+k(log n log δ))
(plus the total length of the k paths, for the ESP version).

More generally, a tradeoff can be achieved between the quality of the approxima-
tion and the running time; for example, a 32β approximation takesO((Eβ + nβ2)n2/βδ
+ kβn1/β log δ) time, for any β ≥ 1. Note that we can achieve a better running time
than known exact algorithms even for paths that are only a constant factor times the
length of the shortest path. Further work in this direction is reported by Cohen [12].

We remark that there are no algorithms known for the single-pair shortest path
problem that run asymptotically faster than the best single-source algorithms in the
worst case [13]. Consequently, classical algorithms for k-pairs shortest paths have

266 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

done just as well using single-source shortest paths algorithms repeatedly.

1.4. Structure of this paper. The remainder of the paper is organized as
follows. In section 2, we provide the graph-theoretic definition of neighborhood covers
[9]. Section 3 presents an overview of the sparse neighborhood covers construction
algorithm, followed by a formal presentation of the algorithm. The analysis of the
algorithm is given in section 4. Finally, section 5 presents the application of the new
algorithm to near-shortest path computation.

2. Network covers. Let dist(u, v) denote the minimum distance between u and
v in the graph G. For a cluster of vertices Si ⊆ V , let distSi(u, v) denote the minimum
distance from u to v in the subgraph induced by Si. The diameter of the cluster is
defined as Diam(Si) = maxu,v∈Si(distSi(u, v)).

The r-neighborhood of a vertex v is defined as Nr(v) = {u | dist (u, v) ≤ r}.
A sparse neighborhood cover is defined as follows. A (β, r)-neighborhood cover

is a collection of sets (also called clusters) of vertices S1, . . . , Sl, with the following
properties.

1. For every vertex v there exists some 1 ≤ i ≤ l s.t. Nr(v) ⊆ Si.
2. For every i, Diam(Si) ≤ O(βr).

The overlap of the cover is the maximum number of clusters a vertex belongs to.
A (β, r)-neighborhood cover is said to be sparse if its overlap is at most βn1/β .

For the applications, β can be used to control the tradeoffs between complexity
and the quality of the approximation, and we typically set β = log n. Then a sparse
(log n, r)-neighborhood cover is a collection of sets that contain all r-neighborhoods
such that the diameter of the sets is bounded by O(r log n), and each vertex is con-
tained in at most O(log n) sets.

We remark that the diameter/sparsity tradeoff in this definition is tight to within
a constant factor. In particular, for β = log n, there exist graphs for which any
(log n, r)-neighborhood cover places some vertex in at least Ω(log n) sets [21].

A sparse neighborhood covers data structure is a family of sparse neighborhood
covers for a fixed β and different values of r. Applications typically require the
construction of sparse r-neighborhood covers for O(log Diam(G)) successively doubled
values of r (namely, r = 1, 2, 4, 8, . . .).

3. The cover construction algorithm.

3.1. Overview. Let us start with an overview of the algorithm. The algorithm
builds the cover X in phases. Each phase produces a new subcollection Y of sets to be
added to the cover. All sets added to the cover have low diameter, and each vertex will
appear in at most one set per phase. In addition, an Ω(n−1/β) fraction of the vertices
whose r-neighborhoods have so far remained uncovered by any set already in the
cover, will have their r-neighborhoods placed in some set constructed in the current
phase. Hence, in βn1/β phases the algorithm finishes covering the r-neighborhood of
all vertices in the graph. Since each vertex appears in at most one set per phase, each
vertex will appear in at most βn1/β sets in the output cover.

Fix a phase of the algorithm, and let U be the collection of vertices whose r-
neighborhood remains uncovered. Let Y denote the subcollection of sets we will place
in the cover in the current phase.

We now sketch how to construct the sets Y, in near-linear time. Low diameter
sets Y are constructed one at a time, in a breadth-first manner, and added to Y. The
key element is a new “guarded” BFS technique, which carefully controls how new
sets are grown around existing sets in Y. In particular, a two-layer “shield” is grown

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 267

Fig. 1. The layers of a grown cluster. The sets Y , Ψ(Z), and Z all grow in successive bands
of width r around Ψ(Y).

around each set Y . The shield serves a dual purpose: it keeps different sets in Y from
overlapping, and it also insures that several sets do not duplicate work by performing
BFS forays again and again into the same area of the graph.

Section 3.2 describes how the algorithm constructs a single set Y in the cover, and
section 3.3 shows how a new nonoverlapping set Y grows around existing sets Y in
the collection Y. The details of the algorithm, including the code for the procedures,
are presented in section 3.4. A formal correctness proof and complexity analysis of
the algorithm appear in section 4.

3.2. Growth of a single set. We show how to grow a single set Y for the
cover. Procedure Cluster grows Y iteratively, in layers, and outer layers form a shield
around Y . We keep track of four layers around an “internal kernel” called Ψ(Y). The
set Ψ(Y) consists of those vertices whose r-neighborhood is fully subsumed in the
set Y ; Z is the 2r-neighborhood of Y ; and Ψ(Z) consists of those vertices whose
r-neighborhood is subsumed by Z (see Figure 1). Note that

Ψ(Y) ⊂ Y ⊂ Z and Ψ(Y) ⊂ Ψ(Z) ⊂ Z.

We will sometimes refer to the set Z as the set Y ’s associated cluster.
The set Y starts growing as follows. Initially Ψ(Y) is just the single vertex v,

and Y is its r-neighborhood. The sets Y , Ψ(Z), and Z all grow in successive bands
of width r around Ψ(Y). Specifically, if the stopping condition of Procedure Cluster

is not met, then at the next growth iteration, Y grows to include the whole of the old
Z, Ψ(Y) grows to the old Ψ(Z), the algorithm grows the BFS to construct a new Z
which contains the entire 2r-neighborhood of the new Y , and the new Ψ(Z) consists
of those vertices whose r-neighborhood lies in the new Z. Note that Y , Ψ(Z), and
Z in this picture are entire balls, not just rings; i.e., they contain all vertices within
their borders. However, also note that it is not necessarily the case that Y ⊂ Ψ(Z)
(see section 3.3).

The stopping condition of Procedure Cluster is actually the conjunction of three
separate conditions. The first stopping condition says that the number of still uncov-
ered vertices in Y must be an appropriately large (specifically, Ω(n−1/β)) fraction of
those in Z. The second condition says that the number of still uncovered vertices in
Ψ(Y), i.e., the interior of the set Y , must be a sufficiently large fraction of those in

268 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

Ψ(Z). These two conditions help guarantee that the cover is sparse, as will be argued
below. A third stopping condition makes sure that the BFS exploration of the outer Z
layer does not involve too much computation. Define λ(v) to be the degree of vertex
v in the graph G. For a set of vertices W , let λ(W) =

∑
v∈W λ(v). The final stopping

condition says that λ(Y) is a sufficiently large fraction times λ(Z). We argue below
that all three stopping conditions are guaranteed to be met simultaneously within
O(β) iterations of Procedure Cluster. Thus, the diameter of a Y will be at most
O(rβ).

3.3. A subcollection of sets. In this section, we show how a set Y and its
cluster grow around previously built nonoverlapping sets Y from the same subcollec-
tion Y in the cover X . A new cluster is always grown starting from a vertex v which
lies outside the shielding ball Ψ(Z) of any previous Y . Notice that this insures that
the entire r-neighborhood of v lies outside any previous Y .

When a new cluster then grows into territory already occupied by a previous
cluster, its BFS growth is curtailed by the previous cluster’s layers. Each of the
successive shields around an existing cluster permit a different degree of penetration.

• No cluster is allowed to grow into a previous cluster’s Y . This ensures that
the sets put in Y are disjoint. (See Figure 2.)

• A cluster’s layer Ψ(Z) does not grow into previous sets Ψ(Z).
• The Z level is entirely permeable. (We control the cost of repeated BFS

forays into previous Z instead by a stopping condition on the growth of a
single cluster.)

We point out, to aid comprehension, that the relation Y ⊆ Ψ(Z) may not hold
for clusters grown after the first cluster (see Figure 3), since Ψ(Z) is restricted to
include new vertices if they have not already been placed in some previous cluster’s
associated set Ψ(Z).

Figures 2–4 give snapshots of how new clusters grow. Figure 2 depicts how a
new cluster begins growing, with Ψ(Y) selected to be any single vertex outside the
previous sets Ψ(Z). Notice that this ensures that Y , the r-neighborhood of Ψ(Y),
will not overlap with previous Y ’s. Hence previous Y ’s form an impenetrable barrier
(bold line) that nothing else can enter. In addition, the new cluster’s Ψ(Z)\Y (striped
region) does not enter previous sets Ψ(Z).

Figure 3 illustrates the formation of the second layer of the new cluster (when the
stopping condition was not met in the first iteration). Notice that the new Ψ(Y) does
not contain all of Y from the previous iteration, since Ψ(Y) is the old Ψ(Z), which
does not extend through previous clusters’ Ψ(Z) sets. Even though Y and Z do not
extend into the territory of previous clusters’ Y sets, Y contains the r-neighborhood
of Ψ(Y), and Z contains the r-neighborhood of Ψ(Z).

Finally, Figure 4 illustrates how a third cluster begins to grow. As before, the
kernels Ψ(Y) are shaded, the sets Y are marked with a bold line, the Ψ(Z) is striped,
and Z is within the outside ring. Excepting the participation of vertices in the outer
Z ring, every vertex participates in the BFSs at most twice: a vertex can lie in at
most one set Y , and prior to being placed in Y , it could lie in at most one Ψ(Z). The
BFS performed in the Z layer can be charged to the Y cluster for which it was grown.
When subcollection Y is complete, every vertex appears in a Ψ(Z), for some cluster
Z, and the stopping conditions ensure that a sufficiently large fraction of the vertices
appear in Ψ(Y) for some Y . Thus every vertex appears in at most one Y , and the
same fraction of the vertices have their r-neighborhoods contained in Y as well.

We stop growing clusters in the subcollection Y when every vertex is in Ψ(Z) for

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 269

Fig. 2. A new cluster begins growing around a single-vertex set Ψ(Y) outside the previous sets
Ψ(Z).

Fig. 3. Formation of the second layer of the new cluster.

some cluster Z.

3.4. Details of the algorithm. This subsection introduces Algorithm All Cover

that, given β and r, constructs a sparse (β, r)-neighborhood cover. The algorithm is
built from two intermediate subprocedures: Procedure Cluster (see Figure 5), which
grows a single set to be placed in the cover, and Procedure Cover, which calls Cluster
to produce a subcollection Y of the sets in the cover X (see Figure 6). Procedure
Cover produces what was earlier called a single phase, in the overview section.

The input to the algorithm is a graph G = (V, E) (where |V | = n and |E| = E) and
integers r, β ≥ 1. The output collection of cover clusters, X , is initially empty. The
algorithm maintains the set of “remaining” vertices R. These are the vertices whose
neighborhoods are not yet subsumed by the constructed cover. Initially, R = V , and
the algorithm terminates once R = ∅. The code for Algorithm All Cover appears in
Figure 7.

The algorithm operates in (at most βn1/β) phases. Each phase consists of the
activation of Procedure Cover(R), which adds a subcollection of output clusters Y to
X and removes the set of vertices Ψ(R) whose r-neighborhood appears in some Y ∈ Y
from R.

The collection of clusters Y returned by Procedure Cover are placed in the sparse
neighborhood cover built by Algorithm All Cover. The collection of clusters Z re-
turned by Procedure Cover themselves form an average degree cover (see section 6).

270 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

Fig. 4. The growth of a third cluster. As before, the kernels Ψ(Y) are shaded, the sets Y are
marked with a bold line, Ψ(Z) is striped, and Z is the outside ring.

Ψ(Z) ← {v}
Z ← {Nr(v)}
repeat

Ψ(Y) ← Ψ(Z)
Y ← Z
Perform a multiorigin BFS w.r.t. Y

to depth 2r in G(V \⋃Y)
Add all vertices encountered to Z
Ψ(Z) ← {v | v ∈ U ∩ Z, dist(v, Y) ≤ r}

until |Z| ≤ n1/β · |Y |
and |Ψ(Z)| ≤ |R|1/β · |Ψ(Y)|
and λ(Z) ≤ n1/β · λ(Y)

return (Ψ(Y), Y,Ψ(Z), Z)

Fig. 5. Procedure Cluster(R,U, v,Y).

4. Analysis. In this section, we first analyze the properties of the procedures
in section 3.4 and prove that Algorithm All Cover constructs a sparse neighborhood
cover. The complexity analysis then follows in section 4.2.

4.1. Correctness of the algorithm.
Lemma 4.1. A set Y produced by Procedure Cluster has diameter at most

O(βr).
Proof. Recall the three stopping conditions on the growth of a cluster. If the first

stopping condition fails to be met, this means that |Z| ≥ n1/β · |Y |. Since each time
the stopping condition fails we increase Y by a factor of n1/β , this stopping condition
can fail at most β times.

If the second stopping condition fails to be met, this means that |Ψ(Z)| ≥ |R|1/β ·
|Ψ(Y)|. Note that whenever Procedure Cluster is invoked within Procedure Cover,
we have U ⊆ R. Since each time the second stopping condition fails we increase Ψ(Y)
by a factor of |R|1/β , and Ψ(Y) is restricted to U , this stopping condition can again
fail at most β times.

The third stopping condition says that λ(Z) is less than or equal to n1/β times

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 271

U ← R
Ψ(R) ← ∅.
Y,Z ← ∅.
while U 6= ∅ do

Select an arbitrary vertex v ∈ U
(Ψ(Y), Y,Ψ(Z), Z) ← Cluster(R,U, v,Y)
Ψ(R) ← Ψ(R) ∪Ψ(Y)
U ← U \Ψ(Z)
Y ← Y ∪ {Y }
Z ← Z ∪ {Z}

end-while
return (Ψ(R),Y,Z)

Fig. 6. Procedure Cover(R).

R← V
X ← ∅
repeat

(Ψ(R),Y,Z) ← Cover(R)
X ← X ∪ Y
R← R \Ψ(R)

until R = ∅
return X

Fig. 7. Algorithm All Cover.

λ(Y), and since the sum of the degrees of the entire graph is at most E ≤ n2, the
third stopping condition can successively fail at most 2β times.

Therefore, the number of iterations of the growth process for which any of the
stopping conditions fail is at worst 4β, and so, for one of the first 4β + 1 iterations,
all three stopping conditions will hold, and the cluster will stop growing. Since each
time we grow Y , we add an additional distance r to the radius, the diameter of the
sets is bounded by O(βr).

Lemma 4.2. The r-neighborhood of any vertex in a cluster’s set Y is contained
in Ψ(Z) for that cluster or some previous cluster’s set Ψ(Z).

Proof. Let v be a vertex in the r-neighborhood of Y . Then v is certainly in the
2r-neighborhood of Y , so Procedure Cluster places v ∈ Z for that cluster. Procedure
Cluster then makes Ψ(Z) = {v | v ∈ U ∩ Z, dist(v, Y) ≤ r}, so if v is not placed
in Ψ(Z), it means v is not in U . Now we examine the set U as it is modified over
each invocation of Procedure Cover. The set U initially contains the entire graph G,
and Procedure Cover only deletes those vertices from U which lie in some previous
cluster’s set Ψ(Z).

Lemma 4.3. For every w ∈ G, each invocation of Procedure Cover places w into
at most one set Y .

Proof. The proof is by contradiction. Suppose w was placed in Y1 and Y2, and
without loss of generality, let Y1 be constructed by Cover before Y2. Note that since
w ∈ Y1, then w ∈ Ψ(Z) for Y1. When Cover constructs Y2, it picks some center
vertex v and invokes Procedure Cluster. We consider three cases: either w is v, or

272 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

w is in the r-neighborhood of v, or w is not in the r-neighborhood of v. First, w
cannot be v, since w is in Ψ(Y) for Y1, Ψ(Y) ⊆ Ψ(Z), and thus Procedure Cover has
removed w from the set U of vertices from which it chooses centers v. In fact, since v
is outside Ψ(Z) for all previous Y , its entire r-neighborhood cannot contain anything
in a previous Y , by Lemma 4.2. Thus w is not in the r-neighborhood of v, and so
it will not be placed into Y when Cluster is initialized. As Cluster grows cluster
Y2, by construction, it will only place vertices w into Y2 that it first places in the Z
layer. However, members of previous Y are barred from entering into any subsequent
Z layer, by construction.

Lemma 4.4. An Ω(|R|−1/β) fraction of the vertices whose r-neighborhood still
remains to be covered (i.e., vertices in R) have their r-neighborhoods covered each
time Algorithm All Cover calls Procedure Cover. Thus Procedure Cover is invoked
O(βn1/β) times.

Proof. The vertices that lie in Ψ(Y) for some cluster Y are the vertices that
have their r-neighborhoods covered. The stopping condition guarantees that for each
cluster, an Ω(|R|−1/β) fraction of the vertices in Ψ(Z) (in R) lie in Ψ(Y). Since every
vertex in R is in some Ψ(Z) (by the termination condition for Procedure Cover),
and since the Y sets, and hence the Ψ(Y) sets, are all disjoint (by Lemma 4.3),
summing over all clusters produced in one invocation of Cover gives the result (as
|R| ≤ n). Hence, after O(βn1/β) iterations of Procedure Cover, all vertices have their
r-neighborhoods covered, and Algorithm All Cover returns the desired cover.

We can now complete the correctness proof.
Theorem 4.5. Given a graph G = (V, E) (where |V | = n, |E| = E) and integer

parameters β, r ≥ 1, Algorithm All Cover constructs a sparse neighborhood cover.
Proof. By Lemma 4.4, Algorithm All Cover succeeds in covering all r-neighbor-

hoods after O(βn1/β) iterations of Procedure Cover. All clusters in the cover are
constructed by Procedure Cluster, and hence have low diameter, by Lemma 4.1.
Finally, by Lemma 4.3, each vertex appears in at most one set for each invoca-
tion of Procedure Cover, and by Lemma 4.4, Procedure Cover is invoked at most
O(βn1/β) times. Thus each vertex is in at most O(βn1/β) sets, and hence the cover is
sparse.

4.2. Complexity analysis. We compute the cost of checking the stopping con-
ditions and then performing the appropriate BFS explorations to construct Y. The
stopping conditions need to be checked at most O(β) times for each cluster, since the
conditions will be met within O(β) iterations. To check the stopping conditions, we
count vertices in Z, for all Z ∈ Z. Recall that one of the stopping conditions insures
that for all Z the number of vertices in Z is less than O(n1/β) times the number of
vertices in Y . Therefore, O(

∑
Z∈Z |Z|) = O(n1/β

∑
Y ∈Y |Y |) = O(n1+1/β), since the

sets Y are disjoint. Thus, the cost of checking the stopping conditions to construct Y
is O(βn1+1/β).

Now we turn to estimating the cost of performing the BFSs. Ignore for the
moment the cost of the BFS exploration of the final layer Z \Ψ(Z) for each cluster.
Then for the construction of Y, each vertex participates at most twice in BFSs: each
edge is placed in at most one set Y , and prior to being placed in Y , it could lie in
at most one Ψ(Z). Thus, without the Z layer, each edge has been examined at most
twice in the construction of Y.

Now consider the complexity of examining edges in Z. Notice that when r = 1,
this is trivial, since every edge in Z \Ψ(Z) has an endpoint in Ψ(Z), and every vertex
is in a unique Ψ(Z). For r > 1, bounding the amount of work done in Z is controlled

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 273

by means of the third stopping condition on the growth of individual clusters. In
particular, if we have done too much work on exploring the layer Z \ Y , we are then
obligated to grow Y to contain Z.

Recall that the final stopping condition on clusters ensures λ(Z) is less than or
equal to O(n1/β) times λ(Y). Let ZY denote the set Z associated with cluster Y .
Then this gives

∑

Y ∈Y
|ZY | ≤

∑

Y ∈Y
O(n1/β)λ(Y) ≤ O(n1/β)λ(G) ≤ O(n1/βE).

Constructing βn1/β subcollections Y to complete the cover X , we thus obtain the
following theorem.

Theorem 4.6. Algorithm All Cover produces a sparse (β, r)-neighborhood cover
in time O((Eβ + nβ2)n2/β).

Setting β = log n, we obtain the following corollary.
Corollary 4.7. Algorithm All Cover produces a sparse (log n, r)-neighborhood

cover in time O(E log n+ n log2 n).

5. Application: Approximating k-pairs shortest paths. In this section
we present an approximation algorithm for the k-pairs shortest paths problem on
undirected graphs with nonnegative edge weights. We exhibit a tradeoff between
the quality of the approximation and running time. Specifically, we obtain a 32β
approximation to the k-pairs shortest paths problem in time O((Eβ + nβ2)n2/βδ +
kβn1/β log log n), for integer β ≥ 1. This means that we can achieve a better running
time than known exact algorithms even for paths that are only a constant factor times
the length of the shortest path. Further work in this direction is reported in [12].

For β = log n we get an O(log n) times optimal approximation algorithm for the
problem that runs in Õ (E + k) time. Finding approximate shortest paths for all pairs
will take Õ

(
E + n2

)
= Õ

(
n2
)

time.

5.1. Sparse tree covers. The explanation of the algorithm is made simpler
through the notion of sparse tree covers. We give these definitions here for unit edge
weights; the extension to nonnegative edge weights is straightforward, as explained
later.

Definition 5.1. For an undirected graph G(V, E) and integers β, r ≥ 1, a (β, r)-
tree cover is a collection Fβ,r of trees in G, that satisfies the following properties.

1. Every tree F ∈ Fβ,r has depth 8βr or less.
2. For every two vertices u, v ∈ V whose distance in G is r or less, there exists

a common tree F ∈ Fβ,r, containing both.
A (β, r)-tree cover is said to be sparse, if each vertex is in at most βn1/β sets.

Note that it is easy to modify Algorithm All Cover so that it produces a sparse
tree cover, not just a sparse neighborhood cover. In fact, Procedure Cluster actually
constructs a BFS spanning tree for each cluster it builds, so the main change necessary
is to include these trees in the output. The resulting (β, r)-tree cover will have the
property that each tree in it is a BFS spanning tree of a set in the corresponding
(β, r)-neighborhood cover. The time complexity remains O((Eβ + nβ2)n2/β), which
is O(E log n+ n log2 n) when we set β = log n.

5.2. The algorithm. We first give our algorithm for approximating k-pairs
shortest paths with unit edge weights, and later explain how to extend this to the
case when the edge weights are nonnegative.

274 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

Preprocessing. Let δ = dlog Diam(G)e. For every level 1 ≤ i ≤ δ, construct a
sparse tree cover Fβ,2i for G, and number the trees in the cover. For every vertex v,
and for every level i, store (in order of increasing tree ID) a list of all trees F ∈ Fβ,2i

that contain v.
Query response. For any given pair of vertices u, v, for which a shortest path

is sought, do the following.
Perform a binary search over the levels 1 ≤ i ≤ δ: for a given level i, if there

exists a tree F ∈ Fβ,2i that contains both u and v, then restrict the search to lower
values of i; otherwise, restrict the search to higher values of i.

The binary search will produce a level J such that 2J−1 ≤ d(u, v) ≤ 2J16β, and
a tree F ∈ Fβ,2J that contains both u and v.

Return the value 16β2J as the approximate distance between u and v. (For the
ESP version of the problem, also return the unique path connecting a pair u, v in the
common tree F as the approximate shortest path between u and v.)

The weighted case. The algorithms for sparse neighborhood covers presented
in section 3 can easily be modified to produce a weighted tree cover by forming shortest
path trees rather than BFS trees. The algorithm presented in this section can in turn
be trivially modified to handle weights. As we will see below, the running time of our
algorithms remains asymptotically unchanged.

5.3. Analysis. First we wish to prove that our algorithm is anO(β)-approximation
algorithm for the shortest paths problem.

Lemma 5.2. For each of the k pairs of vertices given, our algorithm returns a
path length between them within 32β times the length of the shortest path.

Proof. We will argue this for a given pair u, v. Note that by Definition 5.1, if
dist(u, v) ≤ 2i, then the tree cover of level i has a tree containing both u and v. Since
J is the minimum level i for which this is so, it must be that 2J−1 < dist(u, v) ≤ 2J .
Also by Definition 5.1, the common tree has depth at most 8β · 2J < 16β· dist(u, v).
That is, our algorithm returns the maximum length of the unique path connecting u
and v in the common tree: 16β · 2J < 32β· dist(u, v).

Now we address the running time of our algorithm.
Lemma 5.3. Our algorithm for approximating k-pairs shortest paths takes

O((Eβ + nβ2)n2/βδ + k(βn1/β · log δ))

time. For the ESP version, the complexity increases (inherently) by the total length
of the paths.

Proof. We have already noted that the algorithm for sparse neighborhood covers
in this paper can produce the tree cover as it goes along at no additional payment in
time. As we actually set up a data structure consisting of δ different tree covers, one
for each level, the time bound for setting up the data structure is O((Eβ + nβ2)n2/βδ)
by Theorem 4.6.

As for the bound on a single query, the binary search for finding the right level
requires checking O(log δ) levels, and for a given level i, a common tree F can be
found in βn1/β time by searching the ordered lists of tree IDs to which the two
vertices belong. (Recall that by the sparsity property, every vertex belongs to at
most βn1/β different trees in the ith-level tree cover Fβ,2i .)

For the ESP version, retrieving the unique path connecting a pair u, v in the
common tree F takes time proportional to the length of that path.

Lemmas 5.2 and 5.3 yield the following theorem.

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 275

Theorem 5.4. Our algorithm for approximating k-pairs shortest paths takes
O((Eβ + nβ2)n2/βδ + k(βn1/β · log δ)) time, and returns a solution that is within
O(β) of the exact one.

Setting β = log n, we get the following corollary.
Corollary 5.5. Our algorithm provides an O(log n) approximation to the k-

pairs shortest paths problem in O((E log n+ n log2 n)δ + k(log n · log δ)) time.
For the all-pairs shortest paths problem we get the following corollary.
Corollary 5.6. Our algorithm for approximating all-pairs shortest paths takes

O((Eβ + nβ2)n2/βδ + n2(βn1/β · log δ)) time, and returns a solution that is within
O(β) of the exact one.

And again, setting β = log n, we have the following corollary.
Corollary 5.7. Our algorithm provides an O(log n) approximation to the all-

pairs shortest paths problem in O((E log n+ n log2 n)δ + n2(log n · log δ)) time.

6. Discussion. We close the paper by discussing two final points. First, the con-
struction algorithm described in this paper can be adapted to work in a (synchronous
or asynchronous) distributed network. The asynchronous implementation requires
additional techniques in order to guarantee maintaining a bound of Õ (1) messages
per edge on the message complexity. Roughly speaking, a synchronous distributed
variant of the cover construction algorithm needs to be bootstrapped concurrently
with the synchronizer protocol of [8] in a mutually recursive fashion. This distributed
implementation will be described in full elsewhere; concise description of the essential
details can be found in [8, 7, 6]. Let us comment that this distributed algorithm
implies similar improvements in message complexity to a variety of distributed ap-
plications that make use of sparse covers, including adaptive routing schemes and a
distributed from-scratch BFS and network synchronizer construction.

Second, it is worth mentioning that there exists a somewhat weaker notion of
neighborhood covers: a small average degree cover [23, 9], where the average cluster
overlaps over all vertices is small. In contrast, our neighborhood cover algorithm
produces a cover with small maximum cluster that overlaps over all vertices. The
average degree cover problem is known to be significantly easier [23, 9]; in fact, the
maximum degree cover algorithm in this paper can be thought of as constructed
through a logarithmic number of iterations, each producing an average degree cover
in the “remaining graph.”

Average degree covers are not sufficient for an efficient solution to the k-pairs
shortest paths problem, because the “imbalance” (of high and low overlaps) cannot be
amortized over many queries. (Unlike the algorithms in this paper, other constructions
of average degree covers [23, 12] cannot be run for multiple iterations to produce a
small maximum degree cover.)

However, as pointed out in [1, 12], in the special case of the all-pairs shortest
paths application, an average degree cover suffices and leads to a better tradeoff
between running time and approximation; namely, the constant of approximation
can be improved. Specifically, the approximation constant of 32β derived earlier can
be improved in this case to 4β by running our sparse neighborhood cover algorithm
and taking the 2r-neighborhoods of the sets constructed in one iteration, thereby
producing a sparse average degree cover, and by eliminating two of the stopping
conditions of the algorithm. Cohen [12] observed that the extra stopping condition can
be removed in this case, and she also introduced a randomized parallel algorithm for
approximate all-pairs shortest paths. The randomized algorithm constructs pairwise
covers along the lines of [21]. Pairwise covers satisfy the weaker condition that any

276 B. AWERBUCH, B. BERGER, L. COWEN, AND D. PELEG

pair of points at distance ≤ r lie together in the same cluster (but 3 points in the
same r-neighborhood may not all appear together in any one cluster).

Acknowledgments. We thank Yehuda Afek, Edith Cohen, Tom Leighton, and
Moti Ricklin for stimulating discussions.

REFERENCES

[1] Y. Afek and M. Ricklin, Sparser: A paradigm for running distributed algorithms, in Proc.
6th Workshop on Distributed Algorithms, Springer-Verlag, New York, 1992, pp. 1–10.

[2] R. K. Ahuja, K. Melhourn, J. B. Orlin, and R. E. Tarjan, Faster Algorithms for the
Shortest Path Problem, Technical Report 193, MIT Operations Research Center, Cam-
bridge, MA, 1988.

[3] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all-pairs shortest path problem,
in Proc. 32nd IEEE Symp. on Foundations of Computer Science, IEEE, Piscataway, NJ,
1991.

[4] N. Alon, Z. Galil, O. Margalit, and M. Naor, Witnesses for boolean matrix multiplication
and for shortest paths, In Proc. 33rd IEEE Symp. on Foundations of Computer Science,
IEEE, Piscataway, NJ, 1992.

[5] B. Awerbuch, A. Baratz, and D. Peleg, Efficient Broadcast and Light-Weight Spanners,
Unpublished manuscript, 1991.

[6] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Saks, Adapting to asynchronous dynamic
networks with polylogarithmic overhead, in Proc. 24th ACM Symp. on Theory of Comput-
ing, ACM, New York, 1992, pp. 557–570.

[7] B. Awerbuch and D. Peleg, Efficient Distributed Construction of Sparse Covers, Technical
Report CS90-17, The Weizmann Institute, Rehovot, Israel, 1990.

[8] B. Awerbuch and D. Peleg, Network synchronization with polylogarithmic overhead, in 31st
IEEE Symp. on Foundations of Computer Science, IEEE, Piscataway, NJ, 1990, pp. 514–
522.

[9] B. Awerbuch and D. Peleg, Sparse partitions, in 31st IEEE Symp. on Foundations of Com-
puter Science, IEEE, Piscataway, NJ, 1990, pp. 503–513.

[10] P. A. Bloniarz, A Shortest Path Algorithm with Expected Time o(n2 logn log∗ n), Technical
Report 80-3, Dept. of Computer Science, State University of Albany, New York, 1980.

[11] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph
spanners, in Proc. 8th ACM Symp. on Computational Geometry, ACM, New York, 1992.

[12] E. Cohen, Fast algorithms for constructing t-spanners and paths with stretch t, in Proc. 34th
IEEE Symp. on Foundations of Computer Science, IEEE, Piscataway, NJ, 1993, pp. 648–
658.

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT
Press/McGraw-Hill, New York, 1990.

[14] M. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network opti-
mization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596–615.

[15] A. M. Frieze and G. R. Grimmet, The shortest-path problem for graphs with random arc-
lengths, Disc. Appl. Math., 10 (1985), pp. 57–77.

[16] H. Gabow, Scaling algorithms for network problems, J. Comput. System Sci., 31 (1985),
pp. 148–168.

[17] H. Jakobsson, Mixed-approach algorithms for transitive closure, in Proc. 10th ACM Symp. on
Principles of Database Systems, ACM, New York, 1991.

[18] D. Johnson, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput.
Mach., 24 (1977), pp. 1–13.

[19] D. R. Karger, D. Koller, and S. J. Phillips, Finding the hidden path: Time bounds for
all-pairs shortest paths, in Proc. 32nd IEEE Symp. on Foundations of Computer Science,
IEEE, Piscataway, NJ, 1991.

[20] P. N. Klein, A Parallel Randomized Approximation Scheme for Shortest Paths, Technical
Report CS-91-56, Brown University, Providence, RI, 1991.

[21] N. Linial and M. Saks, Decomposing graphs into regions of small diameter, in Proc. 2nd
ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 1991, pp. 320–330.

[22] C. C. McGeoch, A New All-Pairs Shortest-Path Algorithm, Technical Report 91-30, DIMACS,
New Brunswick, NJ, 1991.

[23] D. Peleg, Sparse Graph Partitions, Technical Report CS89-01, The Weizmann Institute, Re-
hovot, Israel, 1989.

FAST CONSTRUCTION OF SPARSE NEIGHBORHOOD COVERS 277

[24] S. Rao, Finding small edge cuts in planar graphs, in Proc. 24th ACM Symp. on Theory of
Computing, ACM, New York, 1992, pp. 229–240.

[25] R. Seidel, On the all-pairs-shortest-path problem, in Proc. 24th ACM Symp. on Theory of
Computing, ACM, New York, 1992, pp. 745–749.

[26] P. M. Spira, A new algorithm for finding all shortest paths in a graph of positive arcs in
average time O(n2 log2 n), SIAM J. Comput., 2 (1973), pp. 28–32.

[27] J. D. Ullman and M. Yannakakis, High-probability parallel transitive closure algorithms,
SIAM J. Comput., 20 (1991), pp. 100–125.

UNORIENTED Θ-MAXIMA IN THE PLANE:
COMPLEXITY AND ALGORITHMS∗

DAVID AVIS† , BRYAN BERESFORD-SMITH‡ , LUC DEVROYE† , HOSSAM ELGINDY‡ ,
ERIC GUÉVREMONT§ , FERRAN HURTADO¶, AND BINHAI ZHU‖

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 278–296

Abstract. We introduce the unoriented Θ-maximum as a new criterion for describing the shape
of a set of planar points. We present efficient algorithms for computing the unoriented Θ-maximum
of a set of planar points. We also propose a simple linear expected time algorithm for computing the
unoriented Θ-maximum of a set of planar points when Θ = π/2.

Key words. maxima, plane sweep, lower bound, probabilistic analysis, expected complexity

AMS subject classifications. 68Q25, 60D05, 60C05

PII. S0097539794277871

1. Introduction. The development of image processing has motivated the in-
vestigation of properties of point sets for the purpose of image classification and/or
understanding. Connectivity graphs and various enclosing boundary sets have been
used to characterize the shape of point sets. The minimum spanning tree, the Gabriel
graph, and the Delaunay triangulation are important connectivity graphs. Convex,
maximal, and α-hulls [KLP75, EKS83] are instances of boundary sets. The kth iter-
ated hull [Ch85] and the related concept of k-hull [CSY87] have also been proposed.

In this paper we introduce unoriented Θ-maxima as a generalization of extreme
and maximal vectors. These are useful as boundary descriptors, and remain invariant
under rotation.

Let S be a set of n planar points. A ray from a point p ∈ S is the collection of
all points {p+ λ(v − p) : λ > 0}, where v is a fixed point in the plane not equal to p.
A ray from a point p ∈ S is called a maximal ray if it passes through another point
q ∈ S. A cone is defined by a point p and two rays A and B emanating from it: it is
the convex set {λu+ (1− λ)v : u ∈ A, v ∈ B, λ ∈ [0, 1]}. A point p ∈ S is said to be a
maximum (or maximal) with respect to S if there exist two rays, A and B, emanating
from p such that A and B are parallel to the +x- and +y-axes, respectively (thus,
v = p+ (1, 0) and v = p+ (0, 1) in the definition of A and B), and the points of S lie
outside the (π/2-angle) cone defined by p, A, and B. A point p ∈ S is an unoriented
Θ-maximum with respect to S if and only if there exist two maximal rays, A and B,
emanating from p with an angle at least Θ between them so that the points of S lie
outside the (Θ-angle) cone defined by p, A, and B (see Figure 1). We let SΘ denote
the subset of S whose elements are unoriented Θ-maxima. For the remainder of this

∗Received by the editors December 1, 1994; accepted for publication (in revised form) December
30, 1996; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/27787.html
†School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada (avis@cs.

mcgill.ca, luc@cs.mcgill.ca).
‡Dept. of Computer Science, The University of Newcastle, NSW, Australia (bbs@cs.newcastle.

edu.au, hossam@cs.newcastle.edu.au).
§School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
¶Dept. de Mathemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain (hur-

tado@ma2.upc.es).
‖Los Alamos National Laboratory, Group C-3, Los Alamos, NM 87545 and Dept. of Computer

Science, City University of Hong Kong, Kowloon, Hong Kong (bhz@cs.cityu.edu.hk).

278

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 279

p2 pl

Fig. 1. Point p1 is an unoriented π/2-maximum whereas p2 is not.

paper, we only consider the problem of computing Sπ/2. The algorithms apply to
other values of Θ > π/2. The additional technique for handling values of Θ < π/2 is
discussed in the appendix.

For each p ∈ Sπ/2, our algorithms report two witnesses in the form of two maximal
rays with an included angle, denoted by αp ≥ π/2. Each of these maximal rays
intersects the same edge of the convex hull of S and contains a ray parallel to either
the x- or the y-axis in the cone between the two maximal rays. The above properties
lead to two different approaches for computing Sπ/2, which we outline in the following
paragraphs.

1.1. Convex hull approach. The following geometric properties of Sπ/2 (to
be proven later) form the pillars of this approach and allow for a reduction of the
problem into simpler tasks equal in number to the convex hull of S.

1. For each point p ∈ Sπ/2, there exist two maximal rays emanating from p which
intersect the same edge of the convex hull of S and such that the points of S
lie outside the π/2-cone between the two rays.

2. For each point p ∈ Sπ/2 there exist no more than three pairs of maximal rays
which satisfy the previous property.

3. A pair of maximal rays which satisfies the first property includes the perpen-
dicular from p to the corresponding convex hull edge in the π/2-cone between
them.

The first task involves reporting unoriented maxima whose corresponding maximal
rays intersect the same convex hull edge of S, and the other two properties facilitate
the use of efficient computational geometry tools to develop an optimal running time
algorithm. A detailed description of this approach is given in section 2.

1.2. Restricted unoriented maximum approach. This approach is based
on the following simple property: for each point p ∈ Sπ/2 there exist two maximal
rays emanating from p which contain the +x-, the −x-, the +y-, or the −y-axis in
the π/2-angle cone between them.

The problem is thus reduced to reporting for each of the four (directed) axes
the unoriented maxima whose corresponding maximal rays contain it. For each axis,
e.g., the +y-axis, we first sort points of the set in the direction perpendicular to the
selected axis. We then perform two more linear passes. In the first pass, we scan the
points of S from left to right constructing the convex hull of the visited points. Before
p ∈ S is processed, we compute the empty angle between the tangent from p to the
convex hull and the selected axis, and call it θ. Perform a similar pass from right to
left, storing the angle at p in ξ. A simple geometric argument shows that with respect

280 AVIS ET AL.

to the selected axis a point p ∈ Sπ/2 if and only if θ + ξ ≥ π/2.

It is natural to observe the similarity between the two approaches. However,
the restricted unoriented maxima (rum) approach is more suitable for handling the
discrete versions of the problem, namely, answering unoriented maximum queries,
and identifying unoriented maxima of a set in parallel models of computation. This
follows from the fact that focusing on a particular direction allows for the use of the
divide-and-conquer technique with an efficient merging process. Moreover, the rum
approach is more suitable for probabilistic analysis. A detailed description and the
probabilistic analysis of this approach is given in section 4.

The rest of the paper is organized as follows. Section 2 is dedicated to the details
of computing unoriented π/2-maxima for a given set of planar points. In section 3 a
lower bound for the algebraic computation tree model is developed, which implies that
our algorithm is optimal. Finally, in section 4 the expected number of unoriented π/2-
maxima is analyzed (and used) to obtain a linear expected running time algorithm.
In conclusion, we discuss an approach for handling arbitrary values of Θ and some
related results and unsolved problems.

2. Computing unoriented π/2-maxima. Let S = {X1, X2, . . . , Xn} denote
a set of n planar points in general position (no three points are collinear). Its convex
hull CH(S) is the pair (V (S), E(S)), where V (S) is the set of vertices and E(S) is
the set of edges. We denote the size of the convex hull by h (h = |V (S)| = |E(S)|). A
point p ∈ S − V (S) is called a candidate for an edge e ∈ E(S) if there exist two rays
emanating from p with a π/2-angle cone between them which intersect the edge e.
Clearly, a point which is an unoriented maximum must be a candidate for some edge
of the convex hull, and all convex hull points are candidates. From now on, we pay
attention to candidate points that are not on the convex hull. To report the elements
of the set Sπ/2, based on the convex hull approach, we first identify the candidates
for each edge of E(S); then we consider each subset separately and check whether a
candidate is a true unoriented π/2-maximum (i.e., whether the π/2-cone defined by
the candidate is empty or not). The following geometric properties of candidates are
critical to the efficiency of our algorithm.

Lemma 1. Each point p ∈ S − V (S) may be a candidate for at most three edges
of E(S).

Proof. The circular angle around p is 2π and, moreover, the points are in general
position. Therefore, if p is the candidate for more than three edges, then one of the
cones must have angle less than π/2.

Lemma 2. If point p is a candidate for the edge e ∈ E(S), then p lies in the
semicircle of diameter e which has a nonempty intersection with the interior of the
polygon defined by E(S).

Proof. The proof is elementary and omitted.

Therefore, we have h semicircles with the constraint that no point in S − V (S)
belongs to more than three semicircles. In the following subsection, we establish a
linear bound on the number of intersections of such curves. Algorithms for identifying
candidates for each edge and for reporting unoriented maxima are then presented in
sections 2.2 and 2.3, respectively.

2.1. A combinatorial property of constrained circles. Let C(h) = {C1, . . . ,
Ch} be a set of h planar circles with the constraint that no point in the plane belongs
to more than k circles (k ≤ h). Let xi and ri denote, respectively, the center and the
radius of the ith circle Ci.

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 281

C C
C

C 1
1

C

C

i

i

y = d(x , x)1 i

x1

x i
r = x

r = x

z
z

x1

x i
i

i

y = d(x , x)i1

the case x<y the case x>y

Fig. 2. Finding a bound on θ.

Without loss of generality, we assume that C1 is the circle of C(h) with the smallest
radius and that r1 = min1≤i≤h{ri} = 1.

Lemma 3. At most k − 1 circles can have their centers inside C1.
Proof. C1 is the circle with smallest radius. Therefore, any circle Ci having xi

inside C1 must contain x1. Since x1 cannot belong to more than k circles, the lemma
follows.

Let C be the circle concentric to C1 with radius
√

3, let Di be the disc consisting
of circle Ci with its interior, and let the arc Ai be the intersection of Di and the
boundary of C if it exists. It is easy to see that any circle in C(h)−C1 that intersects
C1 and has a center outside C1 must intersect C. The following lemma is based on
Avis and Horton [AH81].

Lemma 4. If Ci intersects C1 and xi lies outside of C1, then Ai subtends an
angle of at least π/3 radians.

Proof. Refer to Figure 2 for illustration. Let x, y and θ = 6 xix1z be as shown in
Figure 2. Since Ci intersects C1 and xi lies outside of C1, y = d(x1, xi) ≤ r1 + ri =
1+x. Therefore, we have 1 ≤ x, y ≤ 1+x and cos θ = (3+y2−x2)/(2

√
3y); elementary

geometry shows that cos θ ≤ √
3/2. Therefore, θ ≥ π/6 radians, and thus the lemma

follows.
Theorem 1. At most 7k circles can intersect C1.
Proof. No point of the plane can belong to more than k circles. Therefore, Lemma

4 implies that no more than 6k circles can intersect C1 and have their center outside
C1. Also, Lemma 3 implies that no more than k circles can intersect C1 and have
their center inside C1.

Corollary 1. C(h) induces at most 14kh intersection points.
Proof. Theorem 1 implies that C1 can have at most 14k intersection points. By

an inductive argument (removing C1 from C(h) to obtain C(h−1)), we can conclude
that C(h) induces at most 14kh intersection points.

It is clear that Corollary 1 holds for semicircles too.
Corollary 2. In the arrangement of semicircles that was introduced in Lemma

2, there are at most 42h intersection points.
Proof. The proof follows from Corollary 1 and Lemma 1.

282 AVIS ET AL.

s
1

2
s

2
s

s
1

s
1
 does not intersect s

2
s

1
 intersects s

2

Fig. 3. An example illustrating the idea of plane sweep.

In this subsection, we showed that there are only a linear number of intersections
among all the semicircles. We show in the next subsection how to apply this result
to report candidates with respect to each hull edge.

2.2. Reporting candidates for each hull edge. In this section we will de-
scribe a procedure for reporting the candidates for E(S). The procedure is based on
the plane sweep technique of Bentley and Ottmann [BO79]. The idea of plane sweep
can be described with the following simple example. Assume that we have two seg-
ments s1, s2, and without loss of generality, assume that the x-coordinates of the left
(right) endpoints of s1, s2 are the same. The problem is to decide whether s1 intersects
s2. We can see that s1 intersects s2 if and only if the order from top to bottom of the
y-coordinates of the right endpoints of s1, s2 differs from the top-to-bottom order of
the y-coordinates of the left endpoints of s1, s2. In general, the plane sweep method
maintains a total order of some geometric objects (e.g., O(n) segments) at a given
stage. To check certain properties of two valid objects (e.g., whether s1 intersects
s2), it simply checks whether the top-to-bottom order of these two objects switches
at a later stage. Usually a dynamic balanced binary search tree is sufficient for the
plane sweep method (to maintain the total order) [BO79]. In Figure 3 we illustrate
an example for plane sweep for some xy-monotone (i.e., monotone in both the x- and
y-directions) circular segments.

First we give a description of the procedure and then explain the essential details
and analyze its correctness and performance.

Procedure Candidates

Input: A set S of n planar points.

Output: The list of edges of E(S) together with a list of candidate points for each
edge.

Method:

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 283

1. Compute the convex hull of S and store the edges of CH(S), E(S) in a doubly
linked list.

2. Compute the semicircles having as diameters the edges of E(S).
3. Partition each semicircle into at most three parts such that every (circular)

segment produced is xy-monotone. Let H be the set of segments obtained
(note that |H| ∈ O(n)).

4. Apply the Bentley and Ottmann [BO79] plane sweep algorithm on H ∪ (S −
V (S)) to report the intersection points of the monotone segments in H. When
a point p ∈ S−V (S) is met by the sweep line, an O(log n) search in a balanced
search data structure T may be used to identify those edges of CH(S) for
which p is a candidate. At the end of this step, all candidates of S − V (S)
are known.

5. Produce the list of candidates for each edge of E(S) using the output of
step 4.

End of Procedure

Correctness of Procedure Candidates in computing the intersection points of the
elements in H∪(S−V (S)) follows directly from correctness of the sweep line algorithm
in [BO79]. Computing such intersections is essential to maintaining a total vertical
ordering of the segments in a search structure T where the following four operations
can be implemented in O(log n) time.

1. INSERT(s, T) inserts the segment s into the total order maintained by T .
2. DELETE(s, T) deletes segment s from T .
3. ABOVE(s, T) returns the name of the segment immediately above s in T .
4. BELOW(s, T) returns the name of the segment immediately below s in T .

These operations are listed in [SH76] and referred to by [BO79]. They can be imple-
mented using a balanced binary search tree.

For a given vertical sweep line L, T contains the total ordering of the monotone
segments (of semicircles) intersecting L. They define vertical intervals on L, each of
which corresponds to a unique intersection region. We modify the balanced search tree
by keeping for each vertical interval (uniquely determined by two adjacent elements
of H) the list of semicircles containing that segment. By Lemma 1, at most three
such semicircles may exist. Therefore, the space complexity of the data structure is
still linear. When a new semicircle is encountered (and two monotone segments are
to be inserted), we use the information in its neighbor vertical intervals to establish
its linked list. A deletion of a semicircle can be handled similarly. Finally, when
an intersection point of two segments of semicircles is encountered, the appropriate
linked list can be updated in constant time. Handling point p ∈ S − V (S) requires
performing a search of the structure T which returns the vertical interval that contains
p. We can then determine the semicircles that contain p in constant time, and update
the list of candidates for each of the corresponding convex hull edges in E(S).

Step 1 can be done in O(n log n) time, and steps 2, 3, and 5 can be accomplished
in O(n) time. The Bentley and Ottmann [BO79] algorithm has an O(n log n+k log n)
running time, where k is the number of intersection points to be reported. Since
we have O(n) intersection points by Corollary 2, the execution time of step 4 is
O(n log n). Therefore, Procedure Candidates reports the set of candidates for the
convex hull edges in O(n log n) time and O(n) space.

2.3. Computing unoriented maxima among candidates. Given the output
of Procedure Candidates (i.e., a set of candidates for each edge of E(S)), we now

284 AVIS ET AL.

p

R
p,e

i

CH

CH

L,p

R,p

e
i

L
p

R
p

Fig. 4. Computing unoriented maxima from candidates.

develop a procedure to identify for each convex hull edge the unoriented maxima
among its list of candidates.

Let Ci denote the set of candidates for the ith edge ei of E(S), and let ki denote
its size. If p ∈ Ci, then the ray emanating from p and perpendicular to the edge ei,
denoted by Rp,ei , properly intersects ei since p lies inside the semicircle of diameter
ei. Let wedge(p, ei) be the largest angle at p which does not contain points of S and
is bounded by two maximal rays, Lp and Rp, that emanate from p and intersect ei
(Figure 4).

Lemma 5. If point p is an unoriented maximum with respect to edge ei, then
Rp,ei must belong to the cone defined by p and the maximal rays Lp and Rp.

Proof. IfRp,ei does not lie between the maximal rays Lp andRp, then wedge(p, ei) <
π/2, a contradiction.

Lemma 6. If the convex hulls of points in Ci − {p} to the left and to the right
of Rp,ei , denoted by CHL,p and CHR,p respectively, are known, then we can compute
wedge(p, ei) in O(log n) time.

Proof. Refer to Figure 4. Our problem is to compute the rightmost and leftmost
(maximal) rays, Rp and Lp, emanating from p, intersecting ei, and containing Rp,ei in
the cone (p, Lp, Rp). Rp (Lp) can be computed by finding the ray from p tangent to
the convex hull to the right (left) of Rp,ei , which can be done in O(log n) time [PS85].
If the angle between Rp and Lp (defined by the cone containing Rp,ei) is ≥ π/2, then
p is an unoriented maximum.

Procedure Unoriented Maxima

Input: A list of candidates for the ith edge of E(S).

Output: The unoriented maximal points and the rays defining their widest angles.

Method:
1. Sort the ki points of Ci along ei. Note that the sorted points define a simple

polygonal chain.
2. Compute Lp for all points p ∈ Ci as follows:

• CHL ← endpoint of ei
• Going from left to right using the order of the points of step 1:

– Compute Lp using CHL (as explained in Lemma 6).

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 285

– Insert p in CHL using the rules of the convex hull algorithm of Avis,
ElGindy, and Seidel [AES85].

3. Compute Rp for all points p ∈ Ci in a similar fashion to step 2, by scanning
them from right to left.

4. For each p ∈ Ci, compute angle wedge(p, ei) between Lp and Rp, and if αp ≥
π/2, output (p,Lp,Rp).

5. Output V (S).

End of Procedure

Correctness of the above procedure follows from the correctness of the on-line
convex hull algorithm in [AES85] and from Lemma 6.

Step 1 is performed in O(ki log ki) time. Since the algorithm in [AES85] updates
the convex hull of ki points by insertion in O(log ki) time, and since searching for Lp
and Rp requires O(log ki) time at most as explained in Lemma 6, then steps 2 and 3
require O(ki log ki) time. Step 4 is clearly performed in O(ki) time, hence O(ki log ki)

total time is spent for edge ei. Lemma 1 implies that
∑h

i=1 ki log ki ≤ log n
∑h

i=1 ki ≤
3n log n ∈ O(n log n). Therefore, we can state the final result of this section as follows.

Theorem 2. All unoriented maximal points of S can be computed in O(n log n)
time and O(n) space.

In the next section, we establish an Ω(n log n) lower bound for computing unori-
ented maxima in the plane, thus proving that our algorithm is optimal.

3. Lower bound for the algebraic computation tree model. In this section
we establish an Ω(n log n) lower bound for computing unoriented Θ-maxima in the
plane. This Ω(n log n) lower bound for computing the unoriented maxima SΘ ⊆ S
in the plane, for π/2 ≤ Θ ≤ π, is achieved by a reduction from the integer element
uniqueness problem. Note that when Θ ≥ π, the unoriented maxima SΘ ⊆ S are
exactly the convex hull (extreme) points, and it is well known that computing the
extreme points of a set of n points has a lower bound of Ω(n log n) under the algebraic
computation tree model [PS85]. Our result is as follows.

Theorem 3. The problem of computing SΘ ⊆ S for π/2 ≤ Θ ≤ π is Ω(n log n)
under the algebraic computation tree model, where |S| = n.

Proof. We use a reduction from integer element uniqueness. In Yao [Ya89] this
problem is shown to have a lower bound of Ω(n log n) under the algebraic computation
tree model.

We are given a set of integers M = {x1, . . . , xn}, input to the integer element
uniqueness problem. For each xi, produce the following six points: (i + ε, (nxi)

2),
(i+ε, (nxi)

2+ε), (i+ε, (nxi)
2−ε), (i−ε, (nxi)2), (i−ε, (nxi)2+ε), and (i−ε, (nxi)2−ε).

The value of ε = 1/4 is used for our proof. Let S be the set containing all of these
points.

If xi = xj then at least two out of the twelve induced points cannot be unoriented
maxima (Figure 5). On the other hand, if xi is unique in M , then the six points
created for xi are all unoriented maxima. Hence all xi’s in M are distinct if and
only if there are exactly 6n unoriented maxima in S. We have thus reduced integer
element uniqueness to computing the unoriented maxima in linear time. Since the in-
teger element uniqueness problem has a lower bound of Ω(n log n) under the algebraic
computation tree model, the theorem follows.

We have thus obtained an optimal algorithm for computing unoriented Θ-maxima
in the plane. In the next section we present the rum algorithm which will beat the
Ω(n log n) lower bound when the points are drawn from a common distribution. This
is obtained via a careful probabilistic analysis of the expected number of unoriented

286 AVIS ET AL.

i j

nxnx
i
2

j
2

Fig. 5. Lower bound proof: the case when xi = xj . The marked points cannot be unoriented
maxima.

maxima, together with a simple divide-and-conquer algorithm.

4. Expected number of unoriented maxima. In this section, we analyze the
expected number of unoriented maxima when elements of the set S are independently
drawn from a common distribution. Since n points on the perimeter of a convex set
are all unoriented maxima, it is only natural to exclude such pathological cases. This
is done by assuming that the distribution of the prototype data point is absolutely
continuous; i.e., it has a density f . This has the added benefit that with probability
one, no two points have the same coordinates. We also assume that f has compact
support. Without loss of generality, we can then assume that f vanishes off [0, 1]2. We
will show that under a mild condition on f , which is satisfied for most distributions
that appear in probabilistic models, the expected number of unoriented maxima is
O(
√
n). In section 4.4, we describe a divide-and-conquer algorithm that runs in linear

expected time for this class of distributions.
The notion of unoriented maximum generalizes that of a maximal vector, for

which algorithms can be found in [BS78, BKST78, De80, De85, GBT84, BCL90,
Go94, KS85, KLP75]. The expected time was considered in all but the last two of
these papers. For additional analysis, see [Dw90, Bu89]. All linear expected time
algorithms described in these papers have conditions on the distribution that are
more restrictive than the ones used in this paper.

4.1. Preliminaries. We define a cone Cθ(x, η) for x ∈ IR2, θ ∈ [0, 2π), and
η ∈ [0, 2π) as the collection of all points y ∈ IR2 with polar coordinate representation
y = x + reiφ for some r > 0 and φ ∈ (θ − η/2, θ + η/2). Thus, x is the top of the
cone, and θ is the direction of the bisector, while η is the opening angle. Given a set
of vectors Xn = {X1, . . . , Xn} in IR2, we say that Xj is an unoriented maximum
if there exists a θ such that Cθ(Xj , π/2) ∩ Xn = ∅. Thus, every maximal vector and
every point on the convex hull of Xn is an unoriented maximum of Xn.

It is helpful to cut the problem into manageable subproblems. To do so, we
introduce the notion of a restricted unoriented maximum or rum. Fix a direction
ζ ∈ [0, 2π). Call Xj a rum of Xn if there exists a direction θ such that

Cθ(Xj , π/2) ∩ Xn = ∅

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 287

and

Cθ(Xj , π/2) ⊇ Cζ(Xj , π/3) .

Call this collection of directional unoriented maxima Sζ . Obviously, if S is the collec-
tion of all unoriented maxima, we have

S = ∪ζ∈[0,2π)Sζ = ∪11
j=0Sjπ/6 .

This property allows us to focus on rums. In what follows, we fix ζ = π/2 and
abbreviate the restricted unoriented maxima with respect to this ζ to rums. The set
of all rums among X1, . . . , Xn is denoted by Sn. We list three structural properties
of Sn.

1. The Lipschitz property. If Xi ∈ Sn, Xj ∈ Sn, then the line segment joining
Xi and Xj has an angle with the x-axis within π/3 of 0 or π. Suppose that
the segment forms an angle of ξ degrees, with π/2 ≥ ξ > π/3. Then either

Xj ∈ Cθ(Xi, π/2) ⊇ Cζ(Xi, π/3)

for some θ, or vice versa,

Xi ∈ Cθ(Xj , π/2) ⊇ Cζ(Xj , π/3) .

In the former case, Xi is not a rum, and in the latter case, Xj is not a rum. If
we sort all the rums from left to right and join them by straight line segments,
we obtain a piecewise linear curve that is Lipschitz of constant not more than
π/3. (A function f is Lipschitz of constant C if |f(x)− f(y)| ≤ C|x− y|.)

2. The monotonicity property.

rum(X1, . . . , Xn+1) ⊆ rum(X1, . . . , Xn) ∪ {Xn+1} .
3. The transitive property.

rum(X1, . . . , Xn+m) = rum(rum(X1, . . . , Xn),rum(Xn+1, . . . , Xn+m)) .

We will need the following elementary lemma.
Lemma 7. If N is a binomial (n, p) random variable, then P{N > enp} ≤ e−np.
Proof. By Chernoff’s bounding method [Ch52], for t > 0 and λ > 0,

P{N > t} ≤ E
{
eλN−t

}
≤ (eλp+ 1− p

)n
e−λt

≤ exp
(
(eλ − 1)np− λt

)
= exp

(
t− np− t log

(
t

np

))
(take λ = log(t/(np)))

so that

P {N > enp} ≤ e−np .

Theorem 4 deals with distributions having a bounded density: for such distribu-
tions, there is limited dependence between the components of the random vector X.
In a later section, we will obtain analogous results for unbounded densities. In the

288 AVIS ET AL.

bounds presented in this paper, the dependence upon f is measured through ‖f‖∞
or
∫
fα.
Theorem 4. Let X be a random vector on [0, 1]2 whose density is bounded by

‖f‖∞. For an i.i.d. sample X1, . . . , Xn drawn from X, let Sn be the collection of
rums. Then

lim
n→∞P{|Sn| > C

√
n} = 0,

where C = e
√

2(1 + 2/
√

3)‖f‖∞ log 4. Also,

lim sup
n→∞

E{|Sn|}
C
√
n

≤ 1 .

Proof. As described in the caption of Figure 6, the unit square is covered by
a circumscribed rhombus with angles 120, 60, 120, and 60 degrees. From top to
bottom, it measures 2a = 1 +

√
3, and from left to right 2b = 1 + 1/

√
3. The area of

the rhombus is 1+2
√

3. Partition the rhombus into m×m equal rhombi as shown in
the figure. This is achieved by taking m slabs Ai and m slabs Bj , and defining rhombi
by the intersections Ai ∩ Bj . There are m2 small rhombi that can be addressed by
index pairs (i, j), 1 ≤ i, j ≤ m. A chain of cells is an ordered collection of such pairs,
beginning with (1, 1) and ending with (m,m), satisfying the successor rule: (i, j) must
be followed by either (i, j+1) or (i+1, j). See the lightly shaded collection in Figure
6. Thus, the chain contains precisely 2m−1 cells, and by a simple counting argument,
it is easy to see that there are exactly(

2m− 2

m− 1

)

possible chains. Let us mark each cell that contains at least one rum (dark in Figure
6). We claim that the marked cells are contained in a chain. This, of course, follows
from the Lipschitz curve property we established above and our choice of angles when
defining the partition. We let N(C) denote the number of data points in the chain C.
Thus,

|Sn| ≤ max
all chains C

N(C).

By the inclusion–exclusion inequality, we have

P {|Sn| > t} ≤ P

{
max

all chains C
N(C) > t

}

≤
∑

all chains C
P {N(C) > t}

≤
(

2m− 2

m− 1

)
sup

all chains C
P {N(C) > t} .

Next, observe that the probability of a cell is given by∫
Ai∩Bj

f(x, y) dx dy ≤ ‖f‖∞
∫
Ai∩Bj∩[0,1]2

dx dy ≤ ‖f‖∞(1 + 2/
√

3)

m2
.

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 289

A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

A7

B7

A8

B8

A9

B9

A10

B10

a

b

120o

Fig. 6. The unit square [0, 1]2 is shown in dark lines. Consider the rhombus of angle 120
degrees that circumscribes the square. Partition the rhombus into a grid of m × m similar small
rhombi. A chain (in lightest shading) is any collection of small rhombi where the first and last
rhombus are the leftmost and rightmost rhombi, respectively, and intermediate rhombi share one
side. The rhombi in a chain must have increasing x-coordinate values of their centers. The dark
shaded rhombi are those that contain at least one restricted unoriented maximum. Observe that
these cells always belong to a chain.

290 AVIS ET AL.

Thus, for a chain of 2m− 1 cells C, N(C) is binomial with parameters n and

∫
C
f ≤ ‖f‖∞(1 + 2/

√
3)(2m− 1)

m2
≤ 2‖f‖∞(1 + 2/

√
3)

m

def
= q .

Hence, P{N(C) > t} ≤ P{Binomial(n, q) > t}. Therefore, by Lemma 7, if m→∞ as
n→∞,

P {|Sn| > enq} ≤
(

2m− 2

m− 1

)
sup

all chains C
P {N(C) > enq}

∼ 22m−2

√
πm

sup
all chains C

P {N(C) > t}

≤ 22m−2

√
πm

P {Binomial(n, q) > enq}

≤ 22m−2e−nq√
πm

.

Define q′ = mq. First, take

m =

⌈√
nq′

log 4

⌉
.

Then

P {|Sn| > enq} ≤ (1 + o(1))
exp(m log 4− nq′/m)

4
√
πm

≤ 4 + o(1)√
πm

→ 0 .

This proves the first part of Theorem 4. For the second part, choose ε > 0 very small
and set

m =

⌊
(1− ε)

√
nq′

log 4

⌋
.

We verify quickly that

P {|Sn| > enq} ≤ e−c
√
n

for some constant c > 0 depending upon ε. Then,

E|Sn| ≤ enq + nP{|Sn| > enq} = enq + o(1) ∼ e
√
nq′ log 4/(1− ε) .

Theorem 4 now follows since ε was arbitrary.

4.2. Lower bounds. The number of unoriented maxima is larger than the
number of maximal vectors, i.e., the number of data points Xi for which one of
Cπ/4(Xi, π/2), C3π/4(Xi, π/2), C5π/4(Xi, π/2), and C7π/4(Xi, π/2) has a nonempty
intersection with X1, . . . , Xn. We denote the set of maximal vectors for X1, . . . , Xn

by Mn. Thus, |Sn| ≥ |Mn|. This can be used to show that the bound of Theorem 4
cannot be improved for many simple distributions. To clarify this, just take the uni-
form distribution on the trapezoid T formed by intersecting [0, 1]2 with {(x, y) : y <

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 291

x < y + c}, with 0 < c ≤ 1. The area of the trapezoid is 1/2(1− (1− c)2) = c− c2/2.
Hence,

f(x, y) =
1

c− c2/2
IT (x, y) .

Thus, ‖f‖∞ = 1/(c − c2/2). We take an integer m large enough such that 1/m < c.
Then partition the unit square into a rectangular grid of m by m with sides equal to
1/m. Mark the m grid cells that straddle the diagonal of the square. Let E1, . . . , Em

be the indicators of the events that the marked grid cells contain at least one data
point, with E1 referring to the cell with the largest y-values, and so on down. A
simple geometric argument shows that

|Mn| ≥
m∑
i=1

Ei .

Hence, if the marked grid cells intersected with our trapezoid T yield the triangles
S1, . . . , Sm,

E|Mn| ≥ mEE1

= m (1− (1− ‖f‖∞ area(S1))
n)

= m
(
1− (1− ‖f‖∞/(2m2))n

)
≥ m

(
1− exp(−‖f‖∞n/(2m2))

)
≥ m/2

≥
√
‖f‖∞n/4 log 4− 1

if we choose m = b√‖f‖∞n/ log 4c. Recall that n has to be large enough to insure
that 1/m < c. Thus, we have

E|Mn| ≥
√
‖f‖∞n/4 log 4− 1 .

The upper bound in Theorem 4 cannot be improved upon in terms of ‖f‖∞ and n
unless the class of distributions is further restricted.

4.3. Random vectors with very dependent coordinates. If f is unbounded,
Theorem 4 becomes useless. It is possible, however, that

∫
fα < ∞ for some α > 1.

This fact can be used to obtain a different collection of upper bounds.
Theorem 5. Let X be a random vector on [0, 1]2 whose density satisfies

∫
fα <

∞ for some α > 1. For an i.i.d. sample X1, . . . , Xn drawn from X, let Sn be the
collection of rums. Then

lim
n→∞P{|Sn| > Cnα/(2α−1)} = 0,

where

C = e

((∫
fα
)1/α (

2(1 + 2/
√

3)
)1−1/α

)α/(2α−1)

(log 4)(2α−1)/(α−1) .

Also,

lim sup
n→∞

E{|Sn|}
Cnα/(2α−1)

≤ 1 .

292 AVIS ET AL.

Proof. We follow the proof of Theorem 4. Note that N(C) is binomial with
parameters n and p, with p given by

∫
C
f(x, y) dx dy ≤

(∫
fα
)1/α

(∫
C∩[0,1]2

dx dy

)1−1/α

≤
(∫

fα
)1/α

(
2(1 + 2/

√
3)

m

)1−1/α

def
= q

def
= q′/m1−1/α .

Here we used Hölder’s inequality and an inequality from the proof of Theorem 4.
Therefore, N(C) is binomial with parameters n and p where p ≤ q, and P{N(C) >
t} ≤ P{ Binomial(n, q) > t}. As in the proof of Theorem 4, when m→∞ as n→∞,

P {|Sn| > enq} ≤ (1 + o(1))22m−2e−nq√
πm

.

With

m =

⌈(
nq′

log 4

)α/(2α−1)
⌉
,

we obtain

P {|Sn| > enq} ≤ (1 + o(1))
exp(m log 4− nq′/m1−1/α)

4
√
πm

≤ 4 + o(1)√
πm

→ 0 .

This proves the first part of Theorem 5. The second part follows from the first part
by using arguments analogous to those of Theorem 4.

Remark 1. We note that the condition
∫
fα < ∞ imposes a condition on the

peakedness of the density f . For bounded densities, we clearly have
∫
fα < ∞.

Theorem 4 is obtained as a limit of Theorem 5 when we let α→∞.
Remark 2. If ψ is a positive convex strictly increasing function, then for the chain

C in the proof, we have by Jensen’s inequality,∫
C
f ≤

∫
C∩[0,1]2

dx dy × ψinv

(
A/

∫
C∩[0,1]2

dx dy

)
,

where A =
∫
ψ(f). Using this instead of Hölder’s inequality, with ψ(u) = u loga(1+u)

for a > 0, we see that

E|Sn| = O

(
n

loga n

)

whenever
∫
f loga(1 + f) <∞. Observe also that this condition is satisfied whenever∫

f b <∞ for some b > 1.
Remark 3. Theorems 4 and 5 remain valid with different constants for cones

Cθ(x, η), η ∈ (0, π].

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 293

4.4. Divide-and-conquer algorithms for unoriented maxima. At least
five strategically different algorithms can be used for finding the outer layer Mn

of X1, . . . , Xn in the plane. Let Ln = |Mn| denote the number of points on the outer
layer.

1. The naive algorithm. For each Xi, determine in linear time whether a
point is a maximal vector. The time taken by this algorithm is Θ(n2), while
the space is Θ(n).

2. One sort and one elimination pass. Sort the data points according to
their y-coordinates, and eliminate unwanted points in a second stage by pass-
ing through the sorted array and keeping partial extrema in the x-direction.
This may be implemented in O(n log n) worst-case time.

3. Divide-and-conquer [BS78]. Start with n singleton outer layers, marry
(merge) all outer layers pairwise, and repeat these pairwise marriages until
one outer layer is left. Noting that outer layers of sizes k and m can be married
in O(k + m) time, and that about log2 n rounds of merging are needed, it
is easy to see that the time taken by this algorithm is O(n log n). However,
since many points are thrown away at early stages, there is reasonable hope
of obtaining linear expected time ET . The following is known: ET = O(n)
when the components of X1 are independent [BS78, De83]. In the general
case, ET = O(n) if and only if

∑
n ELn/n

2 < ∞ by a general theorem
on the expected time analysis of divide-and-conquer algorithms [De83]. An
important class of problems is that in which f is bounded, in which case we
see that ELn = O(

√
n) and thus ET = O(n) [De85].

4. Bucketing methods. Partition [0, 1] into a grid of size about
√
n × √

n,
assign all points to grid locations, and mark in all columns (rows) the topmost
(leftmost) and bottommost (rightmost) occupied grid cells, together with
their inner neighbors. Finally, use the naive algorithm (1) to obtain the outer
layer among the points in all the marked cells [De86]. This too yields linear
expected time for bounded densities, but it uses a different computational
model because truncation is assumed to be available at unit time cost. [Ma84]
use another grid in which in each cell, the outer layer is found, and the overall
outer layer is found in a second step.

5. Output-sensitive algorithms based on lazy sorting. In [KS85], al-
gorithms are presented that take worst-case time bounded by O(n logLn).
The expected time therefore is bounded by a constant times En logLn ≤
n log ELn.

In this section, using the results of the previous sections, we offer a linear expected
time divide-and-conquer algorithm for finding the set Sn of all rums that runs under
conditions weaker than any condition mentioned above for linear expected time for
outer layers. A similarly adapted divide-and-conquer algorithm for outer layers would
yield linear expected time under the same general conditions.

Procedure Restricted Unoriented Maxima

Input: A set of n planar points X1, . . . , Xn.

Output: The set Sn of all rums of X1, . . . , Xn.

Method:

1. Put all data points Xi in singleton sets Si.
2. Put all sets Si in a queue Q.

294 AVIS ET AL.

3. While |Q| > 1 do
• Dequeue sets S and T from Q.
• Compute V = rum(S ∪ T).
• Enqueue Q with V .

End of Procedure

Theorem 6. If the divide-and-conquer algorithm is used on data that are i.i.d.
and have a density of compact support such that

∫
f loga(1 + f) <∞ for some a > 1,

and if the merging of two sets of rums is supported in linear time, then the overall
expected time is O(n). The running time is O(n log n) in the worst case.

Proof. The expected time analysis of general divide-and-conquer algorithms given
in [De83] shows that linear expected time is obtained if the data constitute an i.i.d.
sequence, the merge step takes linear time in the size |S|+ |T |, and

∞∑
n=1

E|Sn|
n2

<∞ .

By Remark 2,

E|Sn| = O

(
n

loga n

)

when f has compact support and
∫
f loga(1+f) <∞. Theorem 6 follows when a > 1.

Remark 4. The condition mentioned in the proof above was rediscovered later in
the context of randomized incremental algorithms by Clarkson and Shor [CS88, CS89].
For a slightly different approach with conditions deduced from recursions, see [BS78].

Remark 5. One can push things further and get linear expected time if f has
compact support and if for some a > 1,

∫
f log(1 + f) loga log(1 + f) <∞.

Remark 6: On merging sets of rums. Performing the merge step in linear time
requires keeping track of the sets of rums according to increasing x-coordinates. First,
we merge the sorted sets S and T into a set W , sorted by x-coordinate. We then
perform two more linear passes. In the first pass, we construct the convex hull in
clockwise fashion from left to right as we visit points of W (in fact, this only gives the
upper part of the convex hull; the lower part is not needed). This is done by Graham’s
incremental algorithm [Gr72]. As Xi is processed, we note the angle between the
convex hull edge leading to Xi, and the y-axis, and call it θi. Repeat a similar pass
in counterclockwise manner from right to left, storing the angles in ξi. A simple
geometric argument shows that Xi ∈ rum(W) if and only if θi + ξi ≤ π/2. The entire
procedure takes linear time.

Remark 7: Lazy merging of rums. If we find rum(W) in time O(|W | log |W |),
results from [De83] guarantee overall linear expected time if

∞∑
n=1

E|Sn| log |Sn|
n2

<∞ .

Since log |Sn| ≤ log n, it suffices to verify that

∞∑
n=1

E|Sn| log n

n2
<∞ .

By Theorem 5, this is satisfied if for some α > 1,
∫
fα < ∞. By Remark 2, it also

suffices that
∫
f loga(1 + f) <∞ for some a > 2.

UNORIENTED Θ-MAXIMA: COMPLEXITY AND ALGORITHMS 295

5. Concluding remarks. We introduced unoriented Θ-maximal points and de-
scribed an optimal O(n log n) algorithm for identifying them when Θ ≥ π/2. The
case Θ < π/2 is handled in the Appendix. We also showed that if the points are
random and have a common density (satisfying mild regularity conditions), then we
can compute the unoriented π/2-maxima in O(n) expected time.

6. Appendix. For values of Θ < π/2, the geometric properties of Lemmas 2
and 5 become useless. However, we are able to modify them slightly as shown below
to obtain efficient algorithms for this case.

Lemma 8. If point p is a candidate for the edge e ∈ E(S), then p lies in the
part of the circle which has e as a chord, and p makes an angle Θ with e which has a
nonempty intersection with the interior of CH(S).

Lemma 9. If point p is an unoriented Θ-maximum with respect to edge ei, then
the angle between the rays Lp and Rp must contain either Rp,ei or one of π/Θ − 2
directions which are separated from Rp,ei by integer multiples of Θ.

A point p ∈ S − V (S) may be a candidate for at most 2π/Θ edges of CH(S).
Therefore, Corollary 1 implies that the circles defined in Lemma 8 cannot have more
than 14(2π/Θ)h (∈ O(n/Θ)) intersections, which changes the running time of Pro-
cedure Candidates to O((n/Θ) logn). In addition, the procedure of section 2.3 for
computing unoriented Θ-maxima among candidates needs to be executed (π/Θ) − 1
times for each convex hull edge. As a result, we can compute the set SΘ, for Θ < π/2,
in O((n/Θ) logn) running time. The algorithm is clearly optimal for fixed values of
Θ. However, no matching lower bound is known when Θ is part of the input.

REFERENCES

[AES85] D. Avis, H. ElGindy, and R. Seidel, Simple on-line algorithms for convex polygons,
in Computational Geometry, G.T. Toussaint, ed., North-Holland, Amsterdam,
1985, pp. 23–42.

[AH81] D. Avis and J. Horton, Remarks on the sphere of influence graph, Ann. New York
Acad. Sci., 1981, pp. 323–327.

[BCL90] J. L. Bentley, K. L. Clarkson, and D. B. Levine, Fast linear expected-time algo-
rithms for computing maxima and convex hulls, in Proc. 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, SIAM, Philadelphia, 1990, pp. 179–187.

[BKST78] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson, On the aver-
age number of maxima in a set of vectors, J. Assoc. Comput. Mach., 25 (1978),
pp. 536–543.

[BO79] J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric
intersections, IEEE Trans. Comput., C-28 (1979), pp. 643–647.

[BS78] J. L. Bentley and M. I. Shamos, Divide and conquer for linear expected time, Inform.
Process. Lett., 7 (1978), pp. 87–91.

[Bu89] C. Buchta, On the average number of maxima in a set of vectors, Inform. Process.
Lett., 33 (1989), pp. 63–65.

[Ch52] H. Chernoff, A measure of asymptotic efficiency of tests of a hypothesis based on the
sum of observations, Ann. Math. Stat., 23 (1952), pp. 493–507.

[Ch85] B. Chazelle, On the convex layers of a convex set, IEEE Trans. Inform. Theory,
IT-31 (1985), pp. 509–517.

[CS88] K. L. Clarkson and P. W. Shor, Algorithms for diametrical pairs and convex hulls
that are optimal, randomized, and incremental, in Proc. 4th Symposium on Com-
putational Geometry, ACM, New York, 1988, pp. 12–17.

[CS89] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational
geometry II, Disc. Comput. Geom., 4 (1989), pp. 387–422.

[CSY87] R. Cole, M. Sharir, and C. K. Yap, On K-hulls and related problems, SIAM J.
Comput., 16 (1987), pp. 61–77.

[De80] L. Devroye, A note on finding convex hulls via maximal vectors, Inform. Process.
Lett., 11 (1980), pp. 53–56.

296 AVIS ET AL.

[De83] L. Devroye, Moment inequalities for random variables in computational geometry,
Computing, 30 (1983), pp. 111–119.

[De85] L. Devroye, On the expected time required to construct the outer layer, Inform. Pro-
cess. Lett., 20 (1985), pp. 255–257.

[De86] L. Devroye, Lecture Notes on Bucket Algorithms, Birkhäuser-Verlag, Boston, 1986.
[Dw90] R. A. Dwyer, Kinder, gentler average-case analysis for convex hulls and maximal

vectors, SIGACT News, 21 (1990), pp. 64–71.
[EKS83] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, On the shape of a set of

points in the plane, IEEE Trans. Inform. Theory, IT-29 (1983), pp. 551–559.
[GBT84] H. N. Gabow, J. L. Bentley, and R. E. Tarjan, Scaling and related techniques

for geometry problems, in Proc. 16th Annual ACM Symposium on the Theory of
Computing, 1984, pp. 135–143.

[Go94] M. J. Golin, A provably fast linear-expected-time maxima-finding algorithm finite
planar set, Algorithmica, 11 (1994), pp. 501–524.

[Gr72] R. Graham, An efficient algorithm for determining the convex hull of a finite planar
set, Inform. Process. Lett., 1 (1972), pp. 132–133.

[KLP75] H. T. Kung, F. Luccio, and F. P. Preparata, On finding the maxima of a set of
vectors, J. Assoc. Comput. Mach., 22 (1975), pp. 469–476.

[KS85] D. G. Kirkpatrick and R. Seidel, Output-sensitive algorithms for finding maximal
vectors, in Proc. 2nd Annual Symposium on Computational Geometry, ACM, New
York, 1985, pp. 89–96.

[Ma84] M. Machii and Y. Igarashi, A Hashing Method of Finding the Maxima of a Set
of Vectors, Technical Report CS-84-2, Department of Computer Science, Gunma
University, Gunma, Japan, 1984.

[PS85] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

[SH76] M. I. Shamos and D. Hoey, Geometric intersection problems, in Proc. 17th Annual
IEEE Symposium on Foundations of Computer Science, 1976, pp. 208–215.

[Ya89] A. C. C. Yao, Lower bounds for algebraic computation trees with integer inputs, in
Proc. 30th Annual IEEE Symposium on Foundations of Computer Science, 1989,
pp. 308–313.

A SPECTRAL ALGORITHM FOR SERIATION AND THE
CONSECUTIVE ONES PROBLEM∗

JONATHAN E. ATKINS† , ERIK G. BOMAN‡ , AND BRUCE HENDRICKSON§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 297–310

Abstract. In applications ranging from DNA sequencing through archeological dating to sparse
matrix reordering, a recurrent problem is the sequencing of elements in such a way that highly
correlated pairs of elements are near each other. That is, given a correlation function f reflecting
the desire for each pair of elements to be near each other, find all permutations π with the property
that if π(i) < π(j) < π(k) then f(i, j) ≥ f(i, k) and f(j, k) ≥ f(i, k). This seriation problem
is a generalization of the well-studied consecutive ones problem. We present a spectral algorithm
for this problem that has a number of interesting features. Whereas most previous applications of
spectral techniques provide only bounds or heuristics, our result is an algorithm that correctly solves
a nontrivial combinatorial problem. In addition, spectral methods are being successfully applied
as heuristics to a variety of sequencing problems, and our result helps explain and justify these
applications.

Key words. seriation, consecutive ones property, eigenvector, Fiedler vector, analysis of algo-
rithms

AMS subject classifications. 05C15, 15A18, 15A48, 68E15

PII. S0097539795285771

1. Introduction. Many applied computational problems involve ordering a set
so that closely coupled elements are placed near each other. This is the underlying
problem in such diverse applications as genomic sequencing, sparse matrix envelope
reduction, and graph linear arrangement as well as less familiar settings such as arche-
ological dating. In this paper we present a spectral algorithm for this class of problems.
Unlike traditional combinatorial methods, our approach uses an eigenvector of a ma-
trix to order the elements. Our main result is that this approach correctly solves an
important ordering problem we call the seriation problem which includes the well-
known consecutive ones problem (C1P) [5] as a special case.

More formally, we are given a set of n elements to sequence; that is, we wish to
bijectively map the elements to the integers 1, . . . , n. We also have a symmetric, real
valued correlation function (sometimes called a similarity function) that reflects the
desire for elements i and j to be near each other in the sequence. We now wish to
find all ways to sequence the elements so that the correlations are consistent; that is,
if π is our permutation of elements and π(i) < π(j) < π(k) then f(i, j) ≥ f(i, k) and
f(j, k) ≥ f(i, k). Although there may be an exponential number of such orderings,
they can all be described in a compact data structure known as a PQ-tree [5], which
we review in the next section. Not all correlation functions allow for a consistent
sequencing. If a consistent ordering is possible we will say the problem is well posed.

∗ Received by the editors May 8, 1995; accepted for publication (in revised form) January 8, 1997;
published electronically June 15, 1998. This work was supported by the Mathematical, Information,
and Computational Sciences Division of the U.S. DOE, Office of Energy Research, and was performed
at Sandia National Laboratories, operated for the U.S. DOE under contract DE-AL04-94AL8500.

http://www.siam.org/journals/sicomp/28-1/28577.html
† Infinity Financial Technology, Mountain View, CA 94043 (atkins@infinity.com).
‡ Scientific Computing & Computational Mathematics, Gates Bldg. 2B, Stanford University,

Stanford, CA 94305-9025 (boman@sccm.stanford.edu).
§ Applied & Numerical Mathematics Department, Sandia National Laboratories, Albuquerque,

NM 87185-1110 (bah@cs.sandia.gov).

297

298 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

Determining an ordering from a correlation function is what we will call the seriation
problem, reflecting its origins in archeology [29, 33].

C1P is a closely related ordering problem. A (0, 1)-matrix C has the consecutive
ones property if there exists a permutation matrix Π such that for each column in
ΠC, all the ones form a consecutive sequence. If a matrix has the consecutive ones
property, then the C1P is to find all such permutations. As shown by Kendall [19]
and reviewed in section 6, C1P is a special case of the seriation problem.

Our algorithm orders elements using their value in an eigenvector of a Laplacian
matrix which we formally define in section 2. Eigenvectors related to graphs have
been studied since the 1950s (see, for example, the survey books by Cvetković et
al. [8, 7]). Most of the early work involved eigenvectors of adjacency matrices. Lapla-
cian eigenvectors were first studied by Fiedler [10, 11] and independently by Donath
and Hoffman [9]. More recently, there have been a number of attempts to apply spec-
tral graph theory to problems in combinatorial optimization. For example, spectral
algorithms have been developed for graph coloring [3], graph partitioning [9, 28], and
envelope reduction [4], and more examples can be found in the survey papers of Mo-
har [23, 24]. However, in most previous applications, these techniques have been used
to provide bounds, heuristics, or in a few cases, approximation algorithms [2, 6, 14]
for NP-hard problems. There are only a small number of previous results in which
eigenvector techniques have been used to exactly solve combinatorial problems includ-
ing finding the number of connected components of a graph [10], coloring k-partite
graphs [3], and finding stable sets (independent sets) in perfect graphs [16]. This
paper describes another such application.

Spectral methods are closely related to the more general method of semidefinite
programming, which has been applied successfully to many combinatorial problems
(e.g., MAX-CUT and MAX-2SAT [14] and graph coloring [18]). See Alizadeh [1] for a
survey of semidefinite programming with applications to combinatorial optimization.

Our result is important for several reasons. First, it provides new insight into the
well-studied C1P. Second, some important practical problems like envelope reduction
for matrices and genomic reconstruction can be thought of as variations on seriation.
For example, if biological experiments were error-free, the genomic reconstruction
problem would be precisely C1P. Unfortunately, real experimental data always contain
errors, and attempts to generalize the consecutive ones concept to data with errors
seems to invariably lead to NP-complete problems [31, 15]. A spectral heuristic based
upon our approach has recently been applied to such problems and found to be highly
successful in practice [15]. Our result helps explain this empirical success by revealing
that in the error-free case the technique will correctly solve the problem. This places
the spectral method on a stronger theoretical footing as a cross between a heuristic and
an exact algorithm. Similar comments apply to envelope reduction. Matrices with
dense envelopes are closely related to matrices with the consecutive ones property.
Recent work has shown spectral techniques to be better in practice than any existing
combinatorial approaches at reducing envelopes [4]. Our result sheds some light on
this success.

Another way to interpret our result is that we provide an algorithm for C1P
that generalizes to become an attractive heuristic in the presence of errors. Designed
as decision algorithms for the consecutive ones property, existing combinatorial ap-
proaches for C1P break down if there are errors and fail to provide useful approximate
orderings. However, our goal here is not to analyze the approach as an approximation
algorithm, but rather to prove that it correctly solves error-free problem instances.

SPECTRAL ALGORITHM FOR SERIATION 299

This paper is organized in the following way. In the next section we introduce the
mathematical notation and the results from matrix theory that we will need later. We
also describe a spectral heuristic for ordering problems which motivates the remainder
of the paper. The theorem that underpins our algorithm is proved in section 3, the
proof of which requires the use of a classical theorem from matrix analysis. Several
additional results in section 4 lead us to an algorithm and its analysis in section 5.
We review the connection to C1P in section 6.

2. Mathematical background.

2.1. Notation and definitions. Matrix concepts are useful because the cor-
relation function defined above can be considered as a real, symmetric matrix. A
permutation of the elements corresponds to a symmetric permutation of this matrix,
a permutation of the matrix elements formed by permuting the rows and the columns
in the same fashion. The question of whether or not the ordering problem is well
posed can also be asked as a property of this matrix. Specifically, suppose the ma-
trix has been permuted to reflect a consistent solution to the ordering problem. The
off-diagonal matrix entries must now be nonincreasing as we move away from the
diagonal. More formally, we will say a matrix A is an R-matrix 1 if and only if A is
symmetric and

ai,j ≤ ai,k for j < k < i,

ai,j ≥ ai,k for i < j < k.

The diagonal entries of an R-matrix are unspecified. If A can be symmetrically
permuted to become an R-matrix, then we say that A is pre-R. Note that pre-R
matrices correspond precisely to well-posed ordering problems. Also, the R-matrix
property is preserved if we add a constant to all off-diagonal entries, so we can assume
without loss of generality that all off-diagonal values are nonnegative.

When π is a permutation of the natural numbers {1, . . . , n} and x is a column
vector, i.e. x = [x1, . . . , xn]T , we will denote by xπ the permutation of x by π, i.e.,
xπi = xπ(i). Similarly, Aπ is the symmetric permutation of A by π, i.e., aπi,j = aπ(i),π(j).
We denote by e the vector whose entries are all 1, by ei the vector consisting of zeros
except for a 1 in position i, and by I the identity matrix. A symmetric matrix A is
reducible if there exists a permutation π such that

Aπ =

[
B 0
0 C

]
,

where B and C are nonempty square matrices. If no such permutation exists then
A is irreducible. If B and C are themselves irreducible, then we refer to them as the
irreducible blocks of A.

We say that λ is an eigenvalue of A if Ax = λx for some vector x 6= 0. A
corresponding vector x is an eigenvector. An n × n real, symmetric matrix has n
eigenvectors that can be constructed to be pairwise orthogonal, and its eigenvalues
are all real. We will assume that the eigenvalues are sorted by increasing value, and
refer to them as λi, i = 1, . . . , n. The (algebraic) multiplicity of an eigenvalue λ is
defined as the number of times λ occurs as a root in the characteristic polynomial

1 This class of matrices is named after W. S. Robinson who first defined this property in his work
on seriation methods in archaeology [29].

300 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

p(z) = det(A − zI). A value that occurs only once is called simple; the eigenvector
of a simple eigenvalue is unique (up to normalization). We write A ≥ 0 and say A
is nonnegative if all its elements ai,j are nonnegative. A real vector x is monotone if
xi ≤ xi+1 for all 1 ≤ i < n or if xi ≥ xi+1 for all 1 ≤ i < n.

We define the Laplacian of a symmetric matrix A to be LA = DA − A, where
DA is a diagonal matrix with di,i =

∑n
j=1 ai,j . The minimum eigenvalue with an

eigenvector orthogonal to e (the vector of all ones) is called the Fiedler value, and a
corresponding eigenvector is called a Fiedler vector.2 Alternatively, the Fiedler value
is given by

min
xT e=0,xT x=1

xTLAx,

and a Fiedler vector is any vector x that achieves this minimum while satisfying these
constraints. When A ≥ 0 and irreducible, it is not hard to show that the Fiedler
value is the smallest nonzero eigenvalue and a Fiedler vector is any corresponding
eigenvector. We will be notationally cavalier and refer to the Fiedler value and vector
of A when we really mean those of LA.

2.2. PQ-trees. A PQ-tree is a data structure introduced by Booth and Lueker
to efficiently encode a set of related permutations [5]. A PQ-tree over a set U =
{u1, u2, . . . , un} is a rooted, ordered tree whose leaves are elements of U and whose
internal nodes are distinguished as either P-nodes or Q-nodes. A PQ-tree is proper
when the following three conditions hold.

1. Every element ui ∈ U appears precisely once as a leaf.
2. Every P-node has at least two children.
3. Every Q-node has at least three children.

Two PQ-trees are said to be equivalent if one can be transformed into the other by
applying a sequence of the following two equivalence transformations.

1. Arbitrarily permute the children of a P-node.
2. Reverse the children of a Q-node.

Conveniently, the equivalence class represented by a PQ-tree corresponds precisely to
the set of permutations consistent with an instance of a seriation problem. In section
5 we describe an algorithm which uses Laplacian eigenvectors to construct a PQ-tree
for an instance of the seriation problem.

2.3. Motivation for spectral methods. With the above definitions we can
describe a simple heuristic for the seriation problem that will motivate the remainder
of the paper. This heuristic is at the heart of the more complex algorithms we will de-
vise, and underlies many previous applications of spectral algorithms [17]. We begin
by constructing a simple penalty function g whose value will be small when closely
correlated elements are close to each other. We define g(π) =

∑
(i,j) f(i, j)(πi − πj)

2.
Unfortunately, minimizing g is NP-hard due to the discrete nature of the permu-
tation [13]. Instead we approximate it by a function h of continuous variables xi
that we can minimize and that maintains much of the structure of g. We define
h(x) =

∑
(i,j) f(i, j)(xi − xj)

2. Note that h does not have a unique minimizer, since
its value does not change if we add a constant to each x component. To avoid this

2 This is in recognition of the work of Miroslav Fiedler [10, 11].

SPECTRAL ALGORITHM FOR SERIATION 301

ambiguity, we need to add a constraint like
∑

i xi = 0. We still have a trivial solu-
tion when all the xi’s are zero, so we need a second constraint like

∑
i x

2
i = 1. The

resulting minimization problem is now well defined.

Minimize h(x) =
∑
(i,j)

f(i, j)(xi − xj)
2(1)

subject to
∑
i

xi = 0, and
∑
i

x2
i = 1.

The solution to this continuous problem can be used as a heuristic for sequencing.
Merely construct the solution vector x, sort the elements xi, and sequence based upon
their sorted order. One reason this heuristic is attractive is that the minimization
problem has an elegant solution. We can rewrite h(x) as xTLFx where F = {fij} is the
correlation matrix. The constraints require that x be a unit vector orthogonal to e, and
since LA is symmetric, all other eigenvectors satisfy the constraints. Consequently, a
solution to the constrained minimization problem is just a Fiedler vector.

Even if the problem is not well posed, sorting the entries of the Fiedler vector
generates an ordering that tries to keep highly correlated elements near each other. As
mentioned above, this technique is being used for a variety of sequencing problems [4,
15, 17]. The algorithm we describe in the remainder of the paper is based upon this
idea. However, when we encounter ties in entries of the Fiedler vector, we need to
recurse on the subproblem encompassing the tied values. In this way, we are able to
find all permutations which make a pre-R-matrix into an R-matrix.

3. The key theorem. Our main result is that a modification of the simple
heuristic presented in section 2.3 is actually an algorithm for well-posed instances of
the seriation problem. Completely proving this will require us to deal with the special
cases of multiple Fiedler vectors and ties within the Fiedler vector. The cornerstone
of our analysis is a classical result in matrix theory due to Perron and Frobenius [27].
The particular formulation below can be found on p. 46 of [30].

Theorem 3.1 (Perron–Frobenius). Let M be a real, nonnegative matrix. If we
define ρ(M) = maxi |λi(M)|, then

1. ρ(M) is an eigenvalue of M , and
2. there is a vector x ≥ 0 such that Mx = ρ(M)x.

We are now ready to state and prove our main theorem.

Theorem 3.2. If A is an R-matrix then it has a monotone Fiedler vector.

Proof. Our proof uses the Perron–Frobenius Theorem 3.1. The nonnegative vector
in that theorem will consist of differences between neighboring entries in the Fiedler
vector of the Laplacian of A.

First define the matrix S ∈ R
(n−1)×n as

S =

−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1

 .

Note that for any vector x, Sx = (x2 − x1, . . . , xn − xn−1)
T
. Define T ∈ R

n×(n−1) by

302 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

T =

0 0 · · · 0
1 0 0

1 1
. . .

...
...

...
. . . 0

1 1 · · · 1

.

It is easy to verify that ST = In−1, and that TS = In − eeT1 . We define MA =
SLAT = {mi,j} and let LA = {li,j}. We now show that Sx is an eigenvector of MA

if and only if x is an eigenvector of LA and x 6= αe.

LAx = λx, x 6= αe⇐⇒
SLAx = λSx, x 6= αe⇐⇒

SLA(I − eeT1)x = λSx, x 6= αe⇐⇒
SLATSx = λSx, x 6= αe⇐⇒

MAy = λy, where y = Sx 6= 0.

The transformation from the second to the third lines follows from LAe = 0. Equiv-
alence holds between all the above equations, so λ is an eigenvalue for both LA and
MA for eigenvectors of LA other than e. Hence the eigenvalues of MA are the same as
the eigenvalues of LA with the zero eigenvalue removed, and the eigenvectors of MA

are differences between neighboring entries of the corresponding eigenvectors of LA.
It is easily seen that (SLA)i,k = −li,k + li+1,k for all i, k, so

mi,j =
n∑

k=1

(SLA)i,kTk,j =
n∑

k=j+1

(−li,k + li+1,k) =
n∑

k=j+1

(ai,k − ai+1,k).

Since, by assumption, A is an R-matrix, ai,k ≤ ai+1,k for i < k + 1, and therefore
mi,j ≤ 0 for i < j. For i > j we can use the fact that

∑n
k=1 li,k = 0 to obtain

mi,j =
n∑

k=j+1

(−li,k + li+1,k) =

j∑
k=1

(li,k − li+1,k) =

j∑
k=1

(−ai,k + ai+1,k).

Again, from the R-matrix property we conclude that mij ≤ 0 for i > j. Consequently,
all the off-diagonal elements in MA are nonpositive.

Now let β be a value greater than maxi{λi,mii}, where λi are the eigenvalues of
MA. Then M̃A = βI−MA is nonnegative with eigenvalues λ̃i = β−λi. Also, M̃A and
MA share the same set of eigenvectors. By Theorem 3.1, there exists a nonnegative
eigenvector y of M̃A corresponding to the largest eigenvalue of M̃A. But y is also an
eigenvector of MA corresponding to MA’s smallest eigenvalue. And this is just Sx,
where x is a Fiedler vector of LA. Since y = Sx is nonnegative, the corresponding
Fiedler vector of LA is nondecreasing and the theorem follows. (Note that since the
sign of an eigenvector is unspecified, the Fiedler vector could also be nonincreasing.)

Theorem 3.3. Let A be a pre-R-matrix with a simple Fiedler value and a Fiedler
vector with no repeated values. Let π1 (respectively, π2) be the permutation induced
by sorting the values in the Fiedler vector in increasing (decreasing) order. Then Aπ1

and Aπ2 are R-matrices, and no other permutations of A produce R-matrices.

SPECTRAL ALGORITHM FOR SERIATION 303

Proof. First note that since the Fiedler value is simple, the Fiedler vector is
unique up to a multiplicative constant. Next observe that if x is the Fiedler vector
of A, then xπ is the Fiedler vector of Aπ. So applying a permutation to A merely
changes the order of the entries in the Fiedler vector. Now let π∗ be a permutation
such that Aπ∗ is an R-matrix. By Theorem 3.2, xπ∗ is monotone since x is the only
Fiedler vector. Since x has no repeated values, π∗ must be either π1 or π2.

Theorem 3.3 provides the essence of our algorithm for the seriation problem, but
it is too restrictive, as the Fiedler value must be simple and contain no repeated
values. We will show how to remove these limitations in the next section.

4. Removing the restrictions. Several observations about the seriation prob-
lem will simplify our analysis. First note that if we add a constant to all the correlation
values the set of solutions is unchanged. Consequently, we can assume without loss
of generality that the smallest value of the correlation function is zero. Note that
subtracting the smallest value from all correlation values does not change whether or
not the matrix is pre-R. In our algebraic formulation this translates into the following.

Lemma 4.1. Let A be a symmetric matrix and let Ā = A − αeeT for some real
α. A vector x is a Fiedler vector of A if and only if x is a Fiedler vector of Ā. So
without loss of generality we can assume that the smallest off-diagonal entry of A is
zero.

Proof. By the definition of a Laplacian it follows that LĀ = LA + αeeT − αnI,
where n is the dimension of A. Then LĀe = 0, but for any other eigenvector x of LA,
LĀx = LAx+ 0− αnx. That is, the eigenvalues are simply shifted down by αn while
the eigenvectors are preserved.

This will justify the first step of our algorithm, which subtracts the value of the
smallest correlation from every correlation. Accordingly, we now make the assumption
that our pre-R-matrix has smallest off-diagonal entry of zero. Next observe that if A is
reducible, then the seriation problem can be decoupled. The irreducible blocks of the
matrix correspond to connected components in the graph of the nonzero values of the
correlation function. We can solve the subproblems induced by each of these connected
components and link the pieces together in an arbitrary order. More formally, we have
the following lemma.

Lemma 4.2. Let Ai, i = 1, . . . , k, be the irreducible blocks of a pre-R-matrix A,
and let πi be a permutation of block Ai such that the submatrix Aπi

i is an R-matrix.
Then any permutation formed by concatenating the πi’s will make A become an R-
matrix. In terms of a PQ-tree, the πi permutations are children of a single P-node.

Proof. By Lemma 4.1, we can assume all entries in the irreducible blocks are non-
negative. Consequently, the correlation between elements within a block will always
be at least as strong as the correlation between elements in different blocks. Also, by
the definition of irreducibility, each element within a block must have some positive
correlation with another element in that block. Hence, any ordering that makes Ai

an R-matrix must not interleave elements between different irreducible blocks. As
long as the blocks themselves are ordered to be R-matrices, any ordering of blocks
will make A an R-matrix since correlations across blocks are all identical.

With these preliminaries, we will now assume that the smallest off-diagonal value
is zero and that the matrix is irreducible. As the following three lemmas and theorem
show, this is sufficient to ensure that the Fiedler vector is unique up to a multiplicative
constant.

Lemma 4.3. Let A be an n × n R-matrix with a monotone Fiedler vector x.
If J = [r, s] is a maximal interval such that xr = xs, then for any k /∈ J , ar,k =

304 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

ar+1,k = · · · = as,k.
Proof. We can without loss of generality assume x is nondecreasing since −x is

also a Fiedler vector. We will show that ar,k = as,k for all k /∈ J , and since A is an
R-matrix then all elements between ar,k and as,k must also be equal. Consider rows
r and s in the equation LAx = λx:

n∑
k=1

(ls,k − lr,k)xk = λ(xs − xr) = 0.

Since LA is a Laplacian, we know that
∑n

k=1 li,k = 0 for all i. We get

0 =

n∑
k=1

(lsk − lrk)(xr − xk)

=

r−1∑
k=1

(ls,k − lr,k)︸ ︷︷ ︸
≥0

(xr − xk)︸ ︷︷ ︸
>0

+
n∑

k=s+1

(ls,k − lr,k)︸ ︷︷ ︸
≤0

(xr − xk)︸ ︷︷ ︸
<0

where we have used the fact that x is nondecreasing. Because all terms in the sum
are nonnegative, all terms must be exactly zero. By assumption, xk 6= xr for k /∈ J
and consequently lr,k = ls,k for k /∈ J and the result follows.

The following lemma is essentially a converse of this. Its proof requires detailed
algebra, but it is not fundamental to what follows. Consequently, the proof is relegated
to the end of this section.

Lemma 4.4. Let A be an irreducible n×n R-matrix with an,1 = 0. If J = [r, s] 6=
[1, n] is an interval such that ar,k = as,k for all k /∈ J , then xr = xr+1 = · · · = xs for
any Fiedler vector x.

Lemma 4.5. Let A be an irreducible R-matrix with an,1 = 0, and x, a monotone
Fiedler vector of A. If J = [r, s] is an interval such that xr = xr+1 = · · · = xs, then
for any Fiedler vector y, yr = yr+1 = · · · = ys.

Proof. First apply Lemma 4.3 to conclude that for any k /∈ J , ar,k = ar+1,k =
· · · = as,k. Since xT e = 0, it follows that J 6= [1, n]. Now use this in conjunction
with Lemma 4.4 to obtain the result.

Theorem 4.6. If A is an irreducible R-matrix with an,1 = 0, then the Fiedler
value λ2 is a simple eigenvalue.

Proof. We will assume that λ2 is a repeated eigenvalue and produce a contradic-
tion. Let x and y be two linearly independent Fiedler vectors with x nondecreasing.
Define z(θ) = cos(θ)x + sin(θ)y, with 0 ≤ θ ≤ π. Let θ∗ be the smallest value of θ
that makes zk = zk+1 for some k where xk 6= xk+1. Such a θ∗ must exist since x and
y are linearly independent.

By Lemma 4.5 the indices of any repeated values in x are indices of repeated
values in y and z(θ). Coupled with the monotonicity of x, this implies that z(θ∗)
is monotone. By Lemma 4.5 the indices of any repeated values in z(θ∗) must be
repeated in x, which gives the desired contradiction.

All that remains is to handle the situation where the Fiedler vector has repeated
values. As the following theorem shows, repeated values decouple the problem into
pieces that can be solved recursively.

Theorem 4.7. Let A be a pre-R-matrix with a simple Fiedler value and Fiedler
vector x. Suppose there is some repeated value β in x and define I, J , and K to be
the indices for which

SPECTRAL ALGORITHM FOR SERIATION 305

1. xi < β for all i ∈ I,
2. xi = β for all i ∈ J ,
3. xi > β for all i ∈ K.

Then π is an R-matrix ordering for A if and only if π or its reversal can be expressed
as (πi, πj , πk), where πj is an R-matrix ordering for the submatrix A(J ,J) of A
induced by J , and πi and πk are the restrictions of some R-matrix ordering for A to
I and K, respectively.

Proof. From Theorem 3.2 we know that for any R-matrix ordering Aπ, xπ is
monotone, so elements in I must appear before (after) elements from J and elements
from K must appear after (before) elements from J . By Lemma 4.3, we have aik = ajk
for all i, j ∈ J and k /∈ J . Hence the orderings of elements inside J must be indifferent
to the ordering outside of J and vice versa. Consequently, the R-matrix ordering of
elements in J depends only on A(J ,J).

Algorithmically, this theorem means that we can break ties in the Fiedler vector
by recursing on the submatrix A(J ,J) where J corresponds to the set of repeated
values. The distinct values in the Fiedler vector of A constrain R-matrix orderings,
but repeated values need to be handled recursively. In the language of PQ-trees,
the distinct values are combined via a Q-node, and the components (subtrees) of the
Q-node must then be expanded recursively.

Proof of Lemma 4.4. First we recall that the Fiedler value is the value obtained
by

min
xT e=0,xT x=1

xTLAx = min
xT e=0,xT x=1

∑
i>j

ai,j(xi − xj)
2,(2)

and a Fiedler vector is a vector that achieves this minimum. We note that if we
replace A by a matrix that is at least as large on an elementwise comparison, then
xTLAx cannot decrease for any vector x.

We consider A(J ,J), the diagonal block of A indexed by J . By the definition
of an R-matrix, all values in A(J ,J) must be at least as large as ar,s. However, ar,s
must be greater than zero. Otherwise, by the R-matrix property, ai,j = 0 for all i ≥ r
and j < s and for all j ≥ r and i < s. But then, by the statement of the theorem,
ai,j = 0 for all i ≥ s and j < s and all j ≥ r and j < s, which would make the matrix
reducible.

The remainder of the proof will proceed in two stages. First we will force all the
off-diagonal values in A(J ,J) to be ar,s and show the result for this modified matrix.
We will then extend the result to our original matrix.

Stage 1. We define the matrix B to be identical to A outside of B(J ,J), but
all off-diagonal values of B within B(J ,J) are set to α = ar,s. It follows from the
hypotheses that B is an R-matrix. We define δ = li,i for i ∈ J and note that, by the
R-matrix property, δ ≤ (n− 1)α.

We now define L̃B = LB − (δ + α)I and consider the eigenvalue equation L̃Bx =
λ̃2x. This matrix has the same eigenvectors as LB with eigenvalues shifted by δ + α.
Since l̃ii = δ− (δ+α) = α for i ∈ J , all rows of L̃B in J are identical. Consequently,
either all elements of x in J are equal, or λ̃2 = 0 (which is equivalent to λ2 = δ +α).
We will show that irreducibility and an1 = 0 implies λ2 6= δ + α, which will complete
the proof of Stage 1.

We assume λ2 = δ + α and look for a contradiction. We introduce a new matrix

306 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

B̂ as follows:

b̂i,j =

bi,j if i < r and j < r,
bi,j if i > s and j > s,
α otherwise.

Since B is an R-matrix, B̂ is at least as large as B elementwise, so λ2(B̂) ≥ λ2(B).
We define the vector ŷ by

ŷi =

−(n− s), if i < r,
0, if r ≤ i ≤ s,
r − 1, if i > s,

and x̂ to be the unit vector in the direction of ŷ. We note that x̂T e = 0, and that
x̂TLB̂x̂ = nα. We have the following chain of inequalities:

λ2 = min
xT e=0,xT x=1

xTLBx ≤ x̂TLBx̂ < x̂TLB̂x̂ = nα.(3)

The last inequality is strict since b̂n,1 = α while bn,1 = 0 and (x̂n − x̂1)
2 > 0.

If λ2 = δ + α, then we can combine an inequality due to Fiedler [10],

λ2 ≤ n

n− 1
min
i

lii,

with the observation that mini li,i ≤ δ to obtain λ2 ≤ n
n−1δ ≤ δ + α = λ2. This can

only be true if equality holds throughout, implying that δ = (n − 1)α and λ2 = nα.
But this contradicts (3), so λ2 6= δ + α and the proof of Stage 1 is complete.

Stage 2. We will now show that A and B have the same Fiedler vectors. Since A
is elementwise at least as large as B, for any vector z, zTLAz ≥ zTLBz. From Stage
1 we know that any Fiedler vector of B satisfies xr = xr+1 = · · · = xs. In this vector,
(xi−xj) = 0 for i, j ∈ J , so the contribution to the sum in (2) from B(J ,J) is zero.
But this contribution will also be zero when applied to A(J ,J). Since A and B are
identical outside of A(J ,J) and B(J ,J), we now have that a Fiedler vector of B
gives an upper bound for the Fiedler value of A; that is, λ2(A) ≤ λ2(B). It follows
that the Fiedler vectors of B are also Fiedler vectors of A and vice versa.

5. A spectral algorithm for the seriation problem. We can now bring all
the preceding results together to produce an algorithm for well-posed instances of
the seriation problem. Specifically, given a well-posed correlation function we will
generate all consistent orderings. Given a pre-R-matrix, our algorithm constructs a
PQ-tree for the set of permutations that produce an R-matrix.

Our Spectral-Sort algorithm is presented in Fig. 1. It begins by translating all the
correlations so that the smallest is 0. It then separates the irreducible blocks (if there
are more than one) into the children of a P-node and recurses. If there is only one
such block, it sorts the elements into the children of a Q-node based on their values
in a Fielder vector. If there are ties in the entries of the Fiedler vector, the algorithm
is invoked recursively.

We now prove that the algorithm is correct. Step (1) is justified by Lemma 4.1,
and requires time proportional to the number of nonzeros in the matrix. The iden-
tification of irreducible blocks in step (2) can be performed with a breadth-first or
depth-first search algorithm, also requiring time proportional to the number of nonze-
ros. Combining the permutations of the resulting blocks with a P-node is correct by
Lemma 4.2.

SPECTRAL ALGORITHM FOR SERIATION 307

Input: A, an n× n pre-R-matrix
U , a set of indices for the rows/columns of A

Output: T , a PQ-tree that encodes the set of all permutations π
such that Aπ is an R-matrix

begin
(1) α := mini 6=j ai,j
(1) A := A− αeeT

(2) {A1, . . . , Ak} := the irreducible blocks of A
(2) {U1, . . . , Uk} := the corresponding index sets
(2) if k > 1
(2) for j := 1 : k
(2) Tj := Spectral-Sort(Aj , Uj)
(2) end
(2) T := P-node(T1, T2, . . . , Tk)

else
(3) if (n = 1)
(3) T := u1

(3) else if (n = 2)
(3) T := P-node(u1, u2)

else
(4) x := Fiedler vector for LA
(4) Sort x
(5) t := number of distinct values in x
(5) for j := 1 : t
(5) Vj := indices of elements in x with jth value
(5) Tj := Spectral-Sort(A(Vj , Vj), Vj)
(5) end

T := Q-node(T1, . . . , TT)
end

end
end

Fig. 1. Algorithm Spectral-Sort.

Step (3) handles the boundary conditions of the recursion, while in step (4) the
Fiedler vector is computed and sorted. If there are no repeated elements in the Fiedler
vector then the Q-node for the permutation is correct by Theorem 3.3. Steps (3) and
(4) are the dominant computational steps and we will discuss their run time below.
The recursion in step (5) is justified by Theorem 4.7.

Note that this algorithm produces a tree whether A is pre-R or not. To determine
whether A is pre-R, simply apply one of the generated permutations. If the result is
an R-matrix, then all permutations in the PQ-tree will solve the seriation problem;
otherwise the problem is not well posed.

The most expensive steps in algorithm Spectral-Sort are the generation and sort-
ing of the eigenvector. Since the algorithm can invoke itself recursively, these op-
erations can occur on problems of size n, n − 1, . . .,1. So if the time for an eigen-
calculation on a matrix of size n is T (n), the run time of algorithm Spectral-Sort is
O(n(T (n) + n log n)).

A formal analysis of the complexity of the eigenvector calculation can be simpli-

308 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

fied by noting that for a pre-R-matrix, all that matters is the dominance relationships
between matrix entries. So, without loss of generality, we can assume that all entries
are integers less than n2. With this observation, it is possible to compute the com-
ponents of the Fiedler vector to a sufficient precision such that the components can
be correctly sorted in polynomial time. We now sketch one way this can be done,
although we don’t recommend this procedure in a real-world implementation.

Let λ denote a specific eigenvalue of L, in our case the Fiedler value. This can
be computed in polynomial time as discussed in [25]. Then we can compute the
corresponding eigenvector x symbolically by solving

(L− zI)x = 0 mod p(z),

where p(z) is the characteristic polynomial of L. Gaussian elimination over a field is
in P [21], so if p(z) is irreducible we obtain a solution x where each component xi is
given by a polynomial in z with bounded integer coefficients. We note that letting
z be any eigenvalue will force x to be a true eigenvector. If p(z) is reducible, we
try the above. If we fail to solve the equation, we will instead find a factorization
of p(z) and proceed by replacing p(z) with the factor containing λ as a root. This
yields a polynomial formula for each xi, and we can identify equal elements by, e.g.,
the method in [22]. To decide the order of the remaining components, we evaluate
the root λ to a sufficient precision and then compute the xi’s numerically and sort.
Since λ is algebraic, the xi’s cannot be arbitrarily close [22] and polynomial precision
is sufficient.

In practice, eigencalculations are a mainstay of the numerical analysis community.
To calculate eigenvectors corresponding to the few highest or lowest eigenvalues (like
the Fiedler vector), the method of choice is known as the Lanczos algorithm. This is
an iterative algorithm in which the dominant cost in each iteration is a matrix-vector
multiplication which requires O(m) time. The algorithm generally converges in many
fewer than n iterations, often only O(

√
n) [26]. However, a careful analysis reveals a

dependence on the difference between the distinct eigenvalues.

6. C1P. Ordering an R-matrix is closely related to C1P. As mentioned in section
1, a (0, 1)-matrix C has the consecutive ones property if there exists a permutation
matrix Π such that for each column in ΠC, all the ones form a consecutive sequence.3

A matrix that has this property without any rearrangement (i.e., Π = I) is in Petrie
form4 and is called a P-matrix. Analogous to R-matrices, we say a matrix with the
consecutive ones property is pre-P. C1P can be restated as: given a pre-P-matrix C,
find a permutation matrix Π such that ΠC is a P-matrix.

There is a close relationship between P-matrices and R-matrices. The following
results are due to D.G. Kendall and are proved in [19] and [33].

Lemma 6.1. If C is a P-matrix, then A = CCT is an R-matrix.
Lemma 6.2. If C is pre-P and A = CCT is an R-matrix, then C is a P-matrix.
Theorem 6.3. Let C be a pre-P matrix, let A = CCT , and let Π be a permutation

matrix. Then ΠC is a P-matrix if and only if ΠAΠT is an R-matrix.
This theorem allows us to use algorithm Spectral-Sort to solve C1P. First con-

struct A = CCT , and then apply our algorithm to A (note that the elements of A
are small nonnegative integers). Now apply one of the permutations generated by the

3 Some authors define this property in terms of rows instead of columns.
4 Sir William M. F. Petrie was an archeologist who studied mathematical methods for seriation

in the 1890s.

SPECTRAL ALGORITHM FOR SERIATION 309

algorithm to C. If the result is a P-matrix then all the permutations produce C1P
orderings. If not, then C has no C1P orderings.

The run time for this technique is not competitive with the linear time algorithm
for this problem due to Booth and Lueker [5]. However, unlike their approach, our
Spectral-Sort algorithm does not break down in the presence of errors and can instead
serve as a heuristic.

Several other combinatorial problems have been shown to be equivalent to C1P.
Among these are recognizing interval graphs [5, 12] and finding dense envelope order-
ings of matrices [5].

One generalization of P-matrices is to matrices with unimodal columns (a uni-
modal sequence is a sequence that is nondecreasing until it reaches its maximum,
then nonincreasing). These matrices are called unimodal matrices [32]. Kendall [20]
showed that the results of Lemmas 6.1 and 6.2 and Theorem 6.3 are also valid for uni-
modal matrices if the regular matrix product is replaced by the matrix circle product
defined by

(A ◦B)ij =
∑
k

min(aik, bkj).

Note that P-matrices are just a special case of unimodal matrices, and that the circle
product is equivalent to the matrix product for (0, 1)-matrices. Kendall’s result implies
that our spectral algorithm will correctly identify and order unimodal matrices.

Acknowledgments. We are indebted to Robert Leland for innumerable discus-
sions about spectral techniques and to Sorin Istrail for his insights into the consecutive
ones problem and his constructive feedback on an earlier version of this paper. We
are further indebted to David Greenberg for his experimental testing of our approach
on simulated genomic data and to Nabil Kahale for showing us how to simplify the
proof of Theorem 3.2. We also appreciate the highly constructive feedback provided
by an anonymous referee.

REFERENCES

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combi-
natorial optimization, SIAM J. Optim., 5 (1995), pp. 13–51.

[2] N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, in Proc.
26th Annual Symposium on Theory of Computing, ACM, New York, 1994, pp. 346–355.

[3] B. Aspvall and J. R. Gilbert, Graph coloring using eigenvalue decomposition, SIAM J. Alg.
Disc. Meth., 5 (1984), pp. 526–538.

[4] S. T. Barnard, A. Pothen, and H. D. Simon, A spectral algorithm for envelope reduction of
sparse matrices, in Proc. Supercomputing ’93, IEEE, Piscataway, NJ, 1993, pp. 493–502.

[5] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 333–379.

[6] F. R. K. Chung and S.-T. Yau, A near optimal algorithm for edge seperators (preliminary
version), in Proc. 26th Annual Symposium on Theory of Computing, ACM, New York,
1994, pp. 1–8.

[7] D. M. Cvetković, M. Doob, I. Gutman, and A. Torgasev, Recent Results in the Theory of
Graph Spectra, Annals of Discrete Mathematics 36, North-Holland, Amsterdam, 1988.

[8] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs: Theory and Application,
Academic Press, New York, 1980.

[9] W. E. Donath and A. J. Hoffman, Lower bounds for the partitioning of graphs, IBM J. Res.
Develop., 17 (1973), pp. 420–425.

[10] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. Journal, 23 (1973), pp. 298–305.
[11] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application

to graph theory, Czech. Math. Journal, 25 (1975), pp. 619–633.

310 J. E. ATKINS, E. G. BOMAN, AND B. HENDRICKSON

[12] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math.,
3 (1965), pp. 835–855.

[13] A. George and A. Pothen, An analysis of spectral envelope-reduction via quadratic assign-
ment problems, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 706–732.

[14] M. X. Goemans and D. P. Williamson, .878-approximation algorithms for MAX CUT and
MAX 2SAT, in Proc. 26th Annual Symposium on Theory of Computing, ACM, New York,
1994, pp. 422–431.

[15] D. S. Greenberg and S. C. Istrail, Physical mapping by STS hybridization: Algorithmic
strategies and the challenge of software evaluation, J. Comput. Biology, 2 (1995), pp. 219–
274.

[16] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[17] M. Juvan and B. Mohar, Optimal linear labelings and eigenvalues of graphs, Disc. Appl.
Math., 36 (1992), pp. 153–168.

[18] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite pro-
gramming, in Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1994, pp. 2–13.

[19] D. G. Kendall, Incidence matrices, interval graphs and seriation in archaeology, Pacific J.
Math., 28 (1969), pp. 565–570.

[20] D. G. Kendall, Abundance matrices and seriation in archaeology, Zeitschrift für Wahrschein-
lichkeitstheorie, 17 (1971), pp. 104–112.

[21] D. C. Kozen, The Design and Analysis of Algorithms, Springer-Verlag, New York, 1992.
[22] M. Mignotte, Identification of algebraic numbers, J. Algorithms, 3 (1982), pp. 197–204.
[23] B. Mohar, The Laplacian spectrum of graphs, in Graph Theory, Combinatorics and Applica-

tions, Y. Alavi, G. Chartrand, O. Oellermann, and A. Schwenk, eds., Wiley, New York,
1991, pp. 871–898.

[24] B. Mohar, Laplace eigenvalues of graphs – a survey, Disc. Math., 109 (1992), pp. 171–183.
[25] V. Pan, Algebraic complexity of computing polynomial zeros, Comput. Math. Appl., 14 (1987),

pp. 285–304.
[26] B. Parlett and D. Scott, The Lanczos algorithm with selective orthogonalization, Math.

Comp., 33 (1979), pp. 217–238.
[27] O. Perron, Zur Theorie der Matrizen, Math. Ann., 1907, pp. 248–263.
[28] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of

graphs, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 430–452.
[29] W. S. Robinson, A method for chronologically ordering archaeological deposits, American

Antiquity, 16 (1951), pp. 293–301.
[30] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[31] M. Veldhorst, Approximation of the consecutive ones matrix augmentation problem, SIAM

J. Comput., 14 (1985), pp. 709–729.
[32] E. M. Wilkinson, Mathematics in the archaeological and historical sciences, in Archaeolog-

ical Seriation and the Travelling Salesman Problem, University Press, Edinburgh, 1971,
pp. 276–284.

[33] E. M. Wilkinson, Techniques of data analysis and seriation theory, in Technische und Natur-
wissenschaftliche Beiträge Zur Feldarchäologie, Rheinland-Verlag, Cologne, Germany, 1974,
pp. 1–142.

NEW COLLAPSE CONSEQUENCES OF NP HAVING SMALL
CIRCUITS∗

JOHANNES KÖBLER† AND OSAMU WATANABE‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 311–324

Abstract. We show that if a self-reducible set has polynomial-size circuits, then it is low for
the probabilistic class ZPP(NP). As a consequence we get a deeper collapse of the polynomial-time
hierarchy PH to ZPP(NP) under the assumption that NP has polynomial-size circuits. This improves
on the well-known result in Karp and Lipton [Proceedings of the 12th ACM Symposium on Theory
of Computing, ACM Press, New York, 1980, pp. 302–309] stating a collapse of PH to its second
level ΣP

2 under the same assumption. Furthermore, we derive new collapse consequences under the
assumption that complexity classes like UP, FewP, and C=P have polynomial-size circuits.

Finally, we investigate the circuit-size complexity of several language classes. In particular, we
show that for every fixed polynomial s, there is a set in ZPP(NP) which does not have O(s(n))-size
circuits.

Key words. polynomial-size circuits, advice classes, lowness, randomized computation

AMS subject classifications. 03D10, 03D15, 68Q10, 68Q15

PII. S0097539795296206

1. Introduction. The question of whether intractable sets can be efficiently
decided by nonuniform models of computation has motivated much work in structural
complexity theory. In research from the early 1980s to the present, a variety of
results has been obtained showing that this is impossible under plausible assumptions
(see, e.g., the survey [18]). A typical model for nonuniform computations are circuit
families. In the notation of Karp and Lipton [22], sets decidable by polynomial-size
circuits are precisely the sets in P/poly; i.e., they are decidable in polynomial time
with the help of a polynomial length bounded advice function [32].

Karp and Lipton (together with Sipser) [22] proved that no NP-complete set
has polynomial size circuits (in symbols NP 6⊆ P/poly) unless the polynomial-time
hierarchy collapses to its second level. The proof given in [22] exploits a certain kind
of self-reducibility of the well-known NP-complete problem SAT. More generally, it is
shown in [8, 7] that every (Turing) self-reducible set in P/poly is low for the second
level ΣP

2 of the polynomial time hierarchy. Intuitively speaking, a set is low for a
relativizable complexity class if it gives no additional power when used as an oracle
for that class.

In this paper, we show that every self-reducible set in P/poly is even low for the
probabilistic class ZPP(NP), meaning that ZPP(NP(A)) = ZPP(NP). Since for every
oracle A, ΣP

2 (A) = ∃ · ZPP(NP(A)), lowness for ZPP(NP) implies lowness for ΣP
2 . As

a consequence of our lowness result we get a deeper collapse of the polynomial-time
hierarchy to ZPP(NP) under the assumption that NP has polynomial-size circuits. At
least in some relativized world, the new collapse level is quite close to optimal: there

∗Received by the editors December 6, 1995; accepted for publication (in revised form) January
27, 1997; published electronically June 15, 1998. A preliminary version of this work appeared in
Lecture Notes in Comput. Sci. 944, Springer-Verlag, New York, 1995, pp. 196–207.

http://www.siam.org/journals/sicomp/28-1/29620.html
†Abteilung für Theoretische Informatik, Universität Ulm, Oberer Eselsberg, D-89069 Ulm, Ger-

many (koebler@informatik.uni-ulm.de).
‡Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

(watanabe@cs.titech.ac.jp). Part of this work has been done while visiting the University of Ulm.
This research was supported in part by the guest scientific program of the University of Ulm.

311

312 JOHANNES KÖBLER AND OSAMU WATANABE

is an oracle relative to which NP is contained in P/poly, but PH does not collapse to
P(NP) [17, 39].

We also derive new collapse consequences from the assumption that complexity
classes like UP, FewP, and C=P have polynomial-size circuits. Furthermore, our
lowness result implies new relativizable collapses for the case that ModmP, PSPACE,
or EXP have polynomial-size circuits. As a final application, we derive new circuit-
size lower bounds. In particular, it is shown (by relativizing proof techniques) that for
every fixed polynomial s, there is a set in ZPP(NP) which does not have O(s(n))-size
circuits. This improves on the result of Kannan [21] that for every polynomial s, the
class ΣP

2 ∩ ΠP
2 contains such a set. It further follows that in every relativized world,

there exist sets in the class ZPEXP(NP) that do not have polynomial-size circuits.
It should be noted that there is a nonrelativizing proof for a stronger result. As a
corollary to the result in [4], which is proved by a nonrelativizing technique, it is
provable that MAexp ∩ co-MAexp (a subclass of ZPEXP(NP)) contains non-P/poly
sets [12, 36].

Some explanation of how our work builds on prior techniques is in order. The
proof of our lowness result heavily uses the universal hashing technique [13, 34] and
builds on ideas from [2, 14, 24]. For the design of a zero error probabilistic algorithm
which, with the help of an NP oracle, simulates a given ZPP(NP(A)) computation
(where A is a self-reducible set in P/poly) we further make use of the newly defined
concept of half-collisions. More precisely, we show how to compute on input 0n in
expected polynomial time a hash family H that can be used to decide all instances
of A of length up to n by a strong NP computation. The way H is used to decide
(non)membership to A is by checking whether H leads to a half-collision on certain
sets. Very recently, Bshouty, Cleve, Gavaldà, Kannan, and Tamon [11] building on
a result from [19] have shown that the class of all circuits is exactly learnable in
(randomized) expected polynomial time with equivalence queries and the aid of an
NP oracle. This immediately implies that for every set A in P/poly an advice function
can be computed in FZPP(NP(A)), i.e., by a probabilistic oracle transducer T in
expected polynomial time under an oracle in NP(A). More precisely, since the circuit
produced by the probabilistic learning algorithm of [11] depends on the outcome of
the coin flips, T computes a multivalued advice function; i.e., on input 0n, T accepts
with probability at least 1/2, and on every accepting path, T outputs some circuit
that correctly decides all instances of length n w.r.t. A. Using the technique in [11] we
are able to show that every self-reducible set A in P/poly even has an advice function
in FZPP(NP). Although this provides a different way to deduce the ZPP(NP) lowness
of all self-reducible sets in P/poly, we prefer to give a self-contained proof using the
“half-collision technique” that does not rely on the mentioned results in [11, 19].

The paper is organized as follows: section 2 introduces notation and defines the
self-reducibility that we use. In section 3 we prove the ZPP(NP) lowness of all self-
reducible sets in P/poly. In section 4 we state the collapse consequences, and the new
circuit-size lower bounds are derived in section 5.

2. Preliminaries and notation. All languages are over the binary alphabet
Σ = {0, 1}. As usual, we denote the lexicographic order on Σ∗ by ≤. The length
of a string x ∈ Σ∗ is denoted by |x|. Σ≤n (Σ<n) is the set of all strings of length
at most n (resp., of length smaller than n). For a language A, A=n = A ∩ Σn and
A≤n = A∩Σ≤n. The cardinality of a finite set A is denoted by |A|. The characteristic
function of A is defined as A(x) = 1 if x ∈ A, and A(x) = 0 otherwise. For a class
C of sets, co-C denotes the class {Σ∗ − A | A ∈ C}. To encode pairs (or tuples) of

NEW COLLAPSE CONSEQUENCES 313

strings we use a standard polynomial-time computable pairing function denoted by
〈·, ·〉 whose inverses are also computable in polynomial time. Where intent is clear
we write f(x1, . . . , xk) in place of f(〈x1, . . . , xk〉). N denotes the set of nonnegative
integers. Throughout the paper, the base of log is 2.

The textbooks [9, 10, 25, 31, 33] can be consulted for the standard notation used
in the paper and for basic results in complexity theory. For definitions of probabilistic
complexity classes like ZPP, see also [15].

An NP machine M is a polynomial-time nondeterministic Turing machine. We
assume that each computation path of M on a given input x either accepts, rejects, or
outputs “?”. M accepts on input x, if M performs at least one accepting computation,
otherwise M rejects x. M strongly accepts (strongly rejects) x [26] if

• there is at least one accepting (resp., rejecting) computation path and
• there are no rejecting (resp., accepting) computation paths.

If M strongly accepts or strongly rejects x, M is said to perform a strong computation
on input x. An NP machine that on every input performs a strong computation is
called a strong NP machine. It is well known that exactly the sets in NP ∩ co-NP are
accepted by strong NP machines [26].

Next we define the kind of self-reducibility that we use in this paper.

Definition 2.1. Let � be an irreflexive and transitive order relation on Σ∗. A
sequence x0, x1, . . . , xk of strings is called a �-chain (of length k) from x0 to xk if
x0 � x1 � · · · � xk. Relation � is called length checkable if there is a polynomial q
such that

1. for all x, y ∈ Σ∗, x � y implies |y| ≤ q(|x|),
2. the language {〈x, y, k〉 | there is a �-chain of length k from x to y} is in NP.

Definition 2.2. A set A is self-reducible if there is a polynomial-time oracle
machine Mself and a length checkable order relation � such that A = L(Mself , A) and
on any input x, Mself queries the oracle only about strings y ≺ x.

It is straightforward to check that the polynomially related self-reducible sets in-
troduced by Ko [23] as well as the length-decreasing and word-decreasing self-reducible
sets of Balcázar [6] are self-reducible in our sense. Furthermore, it is well-known (see,
for example, [9, 6, 29]) that complexity classes like NP, ΣP

k , ΠP
k , PP, C=P, ModmP,

PSPACE, and EXP have many-one complete self-reducible sets.

Karp and Lipton [22] introduced the notion of advice functions in order to charac-
terize nonuniform complexity classes. A function h : N → Σ∗ is called a polynomial-
length function if for some polynomial p and for all n ≥ 0, |h(n)| = p(n). For a class
C of sets, let C/poly be the class of sets A such that there are a set I ∈ C and a
polynomial-length function h such that for all n and for all x ∈ Σ≤n,

x ∈ A ⇔ 〈x, h(n)〉 ∈ I.

Function h is called an advice function for A, whereas I is the corresponding inter-
preter set.

In this paper we will heavily make use of the “hashing technique” which has been
very fruitful in complexity theory. Here we review some notations and facts about
hash families. We also extend the notion of “collision” by introducing the concept of
a “half-collision” which is central to our proof technique.

Sipser [34] used universal hashing, originally invented by Carter and Wegman
[13], to decide (probabilistically) whether a finite set X is large or small. A linear
hash function h from Σm to Σk is given by a Boolean (k,m)-matrix (aij) and maps

314 JOHANNES KÖBLER AND OSAMU WATANABE

any string x = x1 . . . xm to a string y = y1 . . . yk, where yi is the inner product
ai · x =

∑m
j=1 aijxj (mod 2) of the ith row ai and x.

Let x ∈ Σm, Y ⊆ Σm, and let h be a linear hash function from Σm to Σk. Then
we say that x has a collision on Y w.r.t. h if there exists a string y ∈ Y , different
from x, such that h(x) = h(y). More generally, if X is a subset of Σm and H is a
family1 (h1, . . . , hl) of linear hash functions from Σm to Σk, then we say that X has
a collision on Y w.r.t. H (Collision(X,Y,H) for short) if there is some x ∈ X that
has a collision on Y w.r.t. every hi in H. That is,

Collision(X,Y,H) ⇔ ∃x ∈ X ∃ y1, . . . , yl ∈ Y : x 6∈ {y1, . . . yl}
and for all i = 1, . . . , l : hi(x) = hi(yi).

If X has a collision on itself w.r.t. H, we simply say that X has a collision w.r.t.
H. Next we extend the notion of “collision” in the following way. For any X and Y
⊆ Σm, and any family H = (h1, . . . , hl) of linear hash functions, we say that X has a
half-collision on Y w.r.t. H (Half-Collision(X,Y,H) for short) if there is some x ∈ X
that has a collision on Y w.r.t. at least dl/2e many of the hash functions hi in H.
That is,

Half-Collision(X,Y,H) ⇔ ∃x ∈ X ∃ y1, . . . , yl ∈ Y : x 6∈ {y1, . . . yl}
and |{i | 1 ≤ i ≤ l, hi(x) = hi(yi)}| ≥ dl/2e.

An important relationship between collisions and half-collisions is the following one:
if X has a collision w.r.t. H on Y = Y1 ∪ Y2, then X must have a half-collision w.r.t.
H either on Y1 or on Y2.

Note that the predicate Collision(X,Y,H) can be decided in NP provided that
membership in X and Y can be tested in NP. More precisely, the language {〈v,H〉 |
Collision(Xv, Yv, H)} (as well as the set {〈v,H〉 | Half-Collision(Xv, Yv, H)}) belongs
to NP if the sets Xv and Yv are succinctly represented in such a way that the languages
{〈x, v〉 | x ∈ Xv} and {〈y, v〉 | y ∈ Yv} are in NP.

We denote the set of all families H = (h1, . . . , hl) of l linear hash functions from
Σm to Σk by H(l,m, k). The following theorem is proved by a pigeon-hole argument.
It says that every sufficiently large set must have a collision w.r.t. any hash family.

Theorem 2.3 (see [34]). For any hash family H ∈ H(l,m, k) and any set X ⊆
Σm of cardinality |X| > l · 2k, X must have a collision w.r.t. H.

On the other hand, we get from the next theorem (called the coding lemma in
[34]) an upper bound on the collision probability for sufficiently small sets.

Theorem 2.4 (see [34]). Let X ⊆ Σm be a set of cardinality at most 2k−1. If
we choose a hash family H uniformly at random from H(k,m, k), then the probability
that X has a collision w.r.t. H is at most 1/2.

We will also make use of the following extension of Theorem 2.4 which can be
proved along the same lines.

Theorem 2.5. Let X ⊆ Σm be a set of cardinality at most 2k−s. If we choose a
hash family H uniformly at random from H(l,m, k), then the probability that X has
a collision w.r.t. H is at most 2k−s(l+1).

Gavaldà [14] extended Sipser’s coding lemma (Theorem 2.4) to the case of a
collection C of exponentially many sets. The following theorem has a similar flavor.

Theorem 2.6. Let C be a collection of at most 2n subsets of Σm, each of which
has cardinality at most 2k−s. If we choose a hash family H uniformly at random from

1More precisely, sequence.

NEW COLLAPSE CONSEQUENCES 315

H(l,m, k), then the probability that some X ∈ C has a collision w.r.t. H is at most
2n+k−s(l+1).

Proof. By Theorem 2.5, we have that for every fixed X ∈ C, the probability
that it has a collision w.r.t. a randomly chosen hash family H ∈ H(l,m, k) is at
most 2k−s(l+1). Hence, the probability that there exists such a set X ∈ C is at most
2n+k−s(l+1).

In this paper we make use of a corresponding result for the case of half-collisions.
Theorem 2.7. Let X ⊆ Σm and let C be a collection of at most 2n subsets of

Σm, each of which has cardinality at most 2k−s−2. If we choose a hash family H
uniformly at random from H(l,m, k), then the probability that X has a half-collision
on some Y ∈ C w.r.t. H is at most |X| · 2n−sl/2.

Proof. For every fixed Y ∈ C and every fixed x ∈ X, the probability that x has
a collision on Y w.r.t. a randomly chosen h is at most 2−s−2. Hence, the probability
that x has a collision on Y w.r.t. at least half of the functions in a randomly chosen
hash family H ∈ H(l,m, k) is at most

l∑
i=dl/2e

(
l

i

)
(2−s−2)i(1− 2−s−2)l−i ≤ 2−(s+2)l/2

l∑
i=dl/2e

(
l

i

)
≤ 2l−(s+2)l/2 = 2−sl/2.

That is, the probability that x has a half-collision on Y w.r.t. a randomly chosen hash
family H is bounded by 2−sl/2. Hence, the probability that there exists a Y ∈ C and
an x ∈ X such that x has a half-collision on Y w.r.t. H is at most |X| · 2n−sl/2.

3. Lowness of self-reducible sets in P/poly. In this section, we show that ev-
ery self-reducible set A in (NP ∩ co-NP)/poly is low for ZPP(NP). Let I ∈ NP ∩ co-NP
be an interpreter set and h be an advice function for A. We construct a probabilistic
algorithm T and an NP oracle O having the following two properties:

(a) The expected running time of T is polynomially bounded.
(b) On every computation path on input 0n, T with oracle O outputs some

information that can be used to determine the membership to A of any x
up to length n by some strong NP computation (in the sense of [26]).

Using these properties, we can prove the lowness of A for ZPP(NP) as follows: in
order to simulate any NP(A) computation, we first precompute the above-mentioned
information for A (up to some length) by TO, and then by using this information,
we can simulate the NP(A) computation by some NP(NP ∩ co-NP) computation.
Note that the precomputation (performed by TO) can be done in ZPP(NP), and
since NP(NP ∩ co-NP) = NP, the remaining computation can be done in NP. Hence,
NP(A) ⊆ ZPP(NP), which implies further that ZPP(NP(A)) ⊆ ZPP(ZPP(NP)) (=
ZPP(NP) [41]).

We will now make the term “information” precise. For this, we need some ad-
ditional notation. Let the self-reducibility of A be witnessed by a polynomial-time
oracle machine Mself , a length checkable order relation �, and a polynomial q. We
assume that |h(q(n))| = p(n) for some fixed polynomial p > 0. In the following, we
fix n and consider instances of length up to q(n) as well as advice strings of length
exactly p(n).

• A sample is a sequence 〈x1, b1〉# · · ·#〈xk, bk〉 of pairs, where the xi’s are
instances of length up to q(n) and bi = A(xi) for i = 1, . . . , k.

• For any sample S = 〈x1, b1〉# · · ·#〈xk, bk〉, let Consistent(S) be the set of all
advice strings w that are consistent with S, i.e.,

Consistent(S) = {w ∈ Σp(n) | ∀i (1 ≤ i ≤ k) : I(xi, w) = bi}.

316 JOHANNES KÖBLER AND OSAMU WATANABE

The cardinality of Consistent(S) is denoted by c(S).
• For any sample S and any instance x, let Accept(x, S) (resp., Reject(x, S)) be

the set of all consistent advice strings that accept x (resp., reject x):

Accept(x, S) = {w ∈ Consistent(S) | I(x,w) = 1}

and

Reject(x, S) = {w ∈ Consistent(S) | I(x,w) = 0}.

• Let Correct(x, S) be the set {w ∈ Consistent(S) | I(x,w) = A(x)} of con-
sistent advice strings that decide x correctly, and let Incorrect(x, S) be the
complementary set {w ∈ Consistent(S) | I(x,w) 6= A(x)}.

Note that the sets Accept(x, S) and Reject(x, S) (as well as Correct(x, S) and
Incorrect(x, S)) form a partition of the set Consistent(S), and that

x ∈ A ⇒ Correct(x, S) = Accept(x, S) and Incorrect(x, S) = Reject(x, S),
x 6∈ A ⇒ Correct(x, S) = Reject(x, S) and Incorrect(x, S) = Accept(x, S).

The above condition (b) can now be precisely stated as follows.

(b) On every computation path on input 0n, TO outputs a pair 〈S,H〉 consisting
of a sample S and a linear hash family H such that for all x up to length
n, Consistent(S) has a half-collision w.r.t. H on Correct(x, S) but not on
Incorrect(x, S).

Once we have a pair 〈S,H〉 satisfying condition (b), we can determine whether an
instance x of length up to n is in A by simply checking whether Consistent(x, S)
has a half-collision w.r.t. H on Accept(x, S) or on Reject(x, S). Since condition (b)
guarantees that the half-collision can always be found, this checking can be done by
a strong NP computation. Let us now prove our main lemma.

Lemma 3.1. For any self-reducible set A in (NP ∩ co-NP)/poly, there exist a
probabilistic transducer T and an oracle O in NP satisfying the above two conditions.

Proof. We use the notation introduced so far. Recall that q(n) is a length bound
on the queries occurring in the self-reduction tree produced by Mself on any instance
of length n and that p(n) is the advice length for the set of all instances of length up to
q(n). Let l be the polynomial defined as l(n) = 2(q(n)+p(n)+1). Further, we denote
by Σ�n the set {y | ∃x ∈ Σ≤n, y � x}. Then it is clear that Σ≤n ⊆ Σ�n ⊆ Σ≤q(n). A
description of T is given below.

input 0n

S := ∅
loop

for k = 1, . . . , p(n), choose Hk randomly from H(l(n), p(n), k),
kmax := max{k | Consistent(S) has a collision w.r.t. Hk}
if there exists an x ∈ Σ�n such that Consistent(S) has

a half-collision on Incorrect(x, S) w.r.t. Hkmax

then
use oracle O to find such a string x and to determine A(x)
S := S#〈x,A(x)〉

else exit(loop) end
end loop
output 〈S,Hkmax

〉

NEW COLLAPSE CONSEQUENCES 317

Starting with the empty sample, T enters the main loop. During each exe-
cution of the loop, T first randomly guesses a series of p(n) many hash families
Hk ∈ H(l(n), p(n), k), 1 ≤ k ≤ p(n). Then T computes the integer kmax as the maxi-
mum k ∈ {1, . . . , p(n)} such that Consistent(S) has a collision w.r.t. Hk. Notice that
by a padding trick we can assume that c(S) is always larger than 2l(n), implying that
Consistent(S) must have a collision w.r.t. H1. Since, in particular, Consistent(S) has
a collision w.r.t. Hkmax

, it follows that for every instance x ∈ Σ�n, Consistent(S) has
a half-collision w.r.t. Hkmax

on either Correct(x, S) or Incorrect(x, S). If there exists
a string x ∈ Σ�n such that Consistent(S) has a half-collision on Incorrect(x, S) w.r.t.
Hkmax , then this string is added to the sample S, and T continues executing the loop.
(We will describe below how T uses the NP oracle O to find x in this case.) Otherwise,
the pair 〈S,Hkmax

〉 fulfills the properties stated in condition (b) and T halts.

We now show that the expected running time of T is polynomially bounded. Since
the initial size of Consistent(S) is 2p(n), and since Consistent(S) never becomes empty,
it suffices to prove that for some polynomial r, T eliminates in each single execution
of the main loop with probability at least 1/r(n) at least a 1/r(n)-fraction of the
circuits in Consistent(S). In fact, we will show that each single extension of S by a
pair 〈x,A(x)〉 reduces the size of Consistent(S) with probability at least 1−2−l(n) by a
factor smaller than 1−1/27l(n). Since T can only perform more than 27l(n)p(n) loop
iterations if during some iteration of the main loop T extends S by a pair 〈x,A(x)〉
which does not shrink the size of Consistent(S) by a factor smaller than 1− 1/27l(n),
the probability for this event is bounded by 27l(n)p(n) · 2−l(n) = o(1).

Let S be a sample and let kmax be the corresponding integer as determined by T
during some specific execution of the loop. We first derive a lower bound for kmax .
Let k0 be the smallest integer k ≥ 1 such that c(S) ≤ l(n)2k+1. Since either kmax =
p(n) or Consistent(S) does not have a collision w.r.t. the hash family Hkmax+1 ∈
H(l(n), p(n), kmax + 1), we have (using Theorem 2.3) that c(S) ≤ l(n)2kmax+1. Hence,
kmax ≥ k0.

Since T expands S only by strings x ∈ Σ�n such that Consistent(S) has a
half-collision on Incorrect(x, S) w.r.t. Hkmax , and since Consistent(S#〈x,A(x)〉) =
Consistent(S) − Incorrect(x, S), the probability that the size of Consistent(S) does
not decrease by a factor smaller than 1−1/27l(n) is bounded by the probability that,
w.r.t. Hkmax

, Consistent(S) has a half-collision on some set Incorrect(x, S) of size at
most c(S)/27l(n). Let

C = {Incorrect(x, S) | x ∈ Σ�n, |Incorrect(x, S)| ≤ c(S)/27l(n)}.

Since |C| < 2q(n)+1 and since c(S)/27l(n) ≤ 2k0−6 = 2k0+k−(k+4)−2, it follows from
Theorem 2.7 that the probability of Consistent(S) having a half-collision on some
Y ∈ C w.r.t. a uniformly at random chosen hash family H ∈ H(l(n), p(n), k0 + k) is
at most

c(S) · 2q(n)+1−(k+4)l(n) ≤ 2p(n)+q(n)+1−(k+4)l(n)/2

= 2−(k+3)l(n)/2.

Thus the probability that for some k ≥ 0, Consistent(S) has a half-collision w.r.t.
Hk0+k on some set Incorrect(x, S) which is of size at most c(S)/27l(n) is bounded by∑

k≥0 2−(k+3)l(n)/2 ≤ 2−l(n).

We finally show how T determines an instance x ∈ Σ�n (if it exists) such that
Consistent(S) has a half-collision on Incorrect(x, S) w.r.t. Hkmax

. Intuitively, we use

318 JOHANNES KÖBLER AND OSAMU WATANABE

the self-reducibility of A to test the “correctness” w.r.t. A of the “program” 〈S,Hkmax
〉,

where we say that
• a pair 〈S,H〉 accepts an instance x if Consistent(S) has a half-collision on

Accept(x, S) w.r.t. H, and
• 〈S,H〉 rejects x if Consistent(S) has a half-collision on Reject(x, S) w.r.t. H.

Notice that an (incorrect) program might accept and at the same time reject an
instance. The main idea to find out whether 〈S,Hkmax

〉 is incorrect on some in-
stance x ∈ Σ�n (meaning that w.r.t. Hkmax

Consistent(S) has a half-collision on
Incorrect(x, S)) is to test whether the program 〈S,Hkmax

〉 is in accordance with the
output of Mself when the oracle queries of Mself are answered according to the pro-
gram 〈S,Hkmax 〉. To be more precise, consider the NP set

B = {〈z, S,H〉 | there is a computation path π of Mself on input z fulfilling
the following properties:
- if a query q is answered “yes,” then 〈S,H〉 accepts q,
- if a query q is answered “no,” then 〈S,H〉 rejects q,
- if π is accepting, then 〈S,H〉 rejects z, and
- if π is rejecting, then 〈S,H〉 accepts z }.

Then, as shown by the next claim, the correctness of 〈S,Hkmax 〉 on an instance z can
be decided by asking whether 〈z, S,Hkmax

〉 belongs to B, provided that 〈S,Hkmax
〉 is

correct on all potential queries of Mself on input z.
Claim. Assume that 〈S,Hkmax 〉 is correct on all y ≺ z. Then 〈S,Hkmax 〉 is

incorrect on z if and only if 〈z, S,Hkmax 〉 belongs to B.
Proof. Using the fact that for every instance x ∈ Σ�n, Consistent(S) has a half-

collision w.r.t. Hkmax on either Correct(x, S) or Incorrect(x, S), it is easy to see that if
〈S,Hkmax 〉 is incorrect on z, then the computation path π followed by Mself (z) under
oracle A witnesses 〈z, S,Hkmax

〉 ∈ B. For the converse, assume that 〈z, S,Hkmax
〉

belongs to B and let π be a computation path witnessing this fact. Note that all
queries q on π are answered correctly w.r.t. A, since otherwise 〈S,Hkmax

〉 were incorrect
on q ≺ z. Hence, π is the path followed by Mself (z) under oracle A and therefore
decides z correctly. On the other hand, since π witnesses 〈z, S,Hkmax 〉 ∈ B, 〈S,Hkmax 〉
indeed is incorrect on z.

Now we can define the oracle set O as C ⊕D, where

C = {〈0n, x, k, S,H〉 | there is a �-chain of length (at least) k from some
string y ∈ Σ≤n to some string z ≤ x such that 〈z, S,H〉 ∈ B }

and

D = {〈x, S,H〉 | there is an accepting computation path π of Mself on
input x such that any query q is only answered “yes” (“no”) if
Consistent(S) has a half-collision on Accept(q, S) (resp., Reject(q, S))
w.r.t. H }.

Note that the proof of the claim above also shows that for any z ∈ Σ�n such that
〈S,Hkmax

〉 is correct on all y ≺ z, z ∈ A if and only if 〈z, S,Hkmax
〉 belongs to

D. Now we can complete the description of T . T first asks whether the string
〈0n, 1q(n), 0, S,Hkmax

〉 belongs to C. It is clear that a negative answer implies that
〈S,Hkmax 〉 is correct on Σ�n. Otherwise, by asking queries of the form 〈0n, 1q(n), i, S,
Hkmax 〉, T computes by binary search imax as the maximum value i ≤ 2q(n)+1 such that

NEW COLLAPSE CONSEQUENCES 319

input 0n

S := ∅
loop

for k = 1, . . . , p(n), choose Hk randomly from H(l(n), p(n), k),
kmax := max{k | Consistent(S) has a collision w.r.t. Hk}
if 〈0n, 1q(n), 0, S,Hkmax 〉 ∈ C then
imax := max{i | 〈0n, 1q(n), i, S,Hkmax

〉 ∈ C}
xmin := min{x | 〈0n, x, imax, S,Hkmax

〉 ∈ C}
S := S#〈x,D(xmin, S,Hkmax

)〉
else exit(loop) end

end loop
output 〈S,Hkmax

〉

〈0n, 1q(n), i, S,Hkmax
〉 belongs to C (a similar idea is used in [27]). Knowing imax, T

then determines the lexicographically smallest string xmin such that 〈0n, xmin, imax,
S,Hkmax

〉 is in C. Since 〈q, S,Hkmax
〉 6∈ B holds for all instances q ≺ xmin, it follows in-

ductively from the claim that 〈S,Hkmax
〉 is correct on all q ≺ xmin. Hence, 〈S,Hkmax

〉
must be incorrect on xmin, and, furthermore, T can determine the membership of
xmin to A by asking whether the string 〈xmin, S,Hkmax 〉 belongs to D.

Theorem 3.2. Every self-reducible set A in the class (NP ∩ co-NP)/poly is low
for ZPP(NP).

Proof. We first show that NP(A) ⊆ ZPP(NP). Let L be a set in NP(A), and let
M be a deterministic polynomial-time oracle machine such that for some polynomial
t,

L = {x | ∃y ∈ Σt(|x|) : 〈x, y〉 ∈ L(M,A)}.
Let s(n) be a polynomial bounding the length of all oracle queries of M on some
input 〈x, y〉 where x is of length n. Then L can be accepted by a probabilistic oracle
machine N using the following NP oracle

O′ = {〈x, S,H〉 | there is a y ∈ Σt(|x|) such that M on input 〈x, y〉 has an
accepting path π on which each query q is answered “yes” (“no”) only
if Consistent(S) has a half-collision on Accept(q, S) (resp., Reject(q, S))
w.r.t. H }.

Here is how N accepts L. On input x, N first simulates T on input 0s(|x|) to compute
a pair 〈S,Hkmax

〉 as described above (T asks questions to some NP oracle O). Then
N asks the query 〈x, S,Hkmax 〉 to O′ to find out whether x is in L.

This proves that NP(A) ⊆ ZPP(NP). Since ZPP(ZPP) = ZPP [41] via a proof
that relativizes, it follows that ZPP(NP(A)) is also contained in ZPP(NP), showing
that A is low for ZPP(NP).

4. Collapse consequences. As a direct consequence of Theorem 3.2 we get an
improvement of Karp, Lipton, and Sipser’s result in [22] that NP is not contained in
P/poly unless the polynomial-time hierarchy collapses to ΣP

2 .
Corollary 4.1. If NP is contained in (NP ∩ co-NP)/poly then the polynomial-

time hierarchy collapses to ZPP(NP).
Proof. Since the NP-complete set SAT is self-reducible, the assumption that NP

is contained in (NP ∩ co-NP)/poly implies that SAT is low for ZPP(NP), and hence
the polynomial-time hierarchy collapses to ZPP(NP).

320 JOHANNES KÖBLER AND OSAMU WATANABE

The collapse of the polynomial-time hierarchy deduced in Corollary 4.1 is quite
close to optimal, at least in some relativized world [17, 39]: there is an oracle relative
to which NP is contained in P/poly, but the polynomial-time hierarchy does not
collapse to P(NP).

In the rest of this section we report some other interesting collapses which can be
easily derived using (by now) standard techniques, and which have also been pointed
out to the second author independently by several researchers. First, it is straightfor-
ward to check that Theorem 3.2 relativizes: for any oracle B, if A is a self-reducible
set in the class (NP(B) ∩ co-NP(B))/poly, then NP(A) is contained in ZPP(NP(B)).
Consequently, Theorem 3.2 generalizes to the following result.

Theorem 4.2. If A is a self-reducible set in the class (ΣP
k ∩ΠP

k)/poly, then
NP(A) ⊆ ZPP(ΣP

k).
As a direct consequence of Theorem 4.2 we get an improvement of results in

[1, 20] stating (for k = 1) that ΣP
k is not contained in (ΣP

k ∩ΠP
k)/poly unless the

polynomial-time hierarchy collapses to ΣP
k+1.

Corollary 4.3. Let k ≥ 1. If ΣP
k is contained in (ΣP

k ∩ΠP
k)/poly, then the

polynomial-time hierarchy collapses to ZPP(ΣP
k).

Proof. Since ΣP
k contains complete self-reducible languages, the assumption that

ΣP
k is contained in (ΣP

k ∩ΠP
k)/poly implies that ΣP

k+1 = NP(ΣP
k) ⊆ ZPP(ΣP

k).

Yap [40] proved that ΠP
k is not contained in ΣP

k /poly unless the polynomial-time
hierarchy collapses to ΣP

k+2. As a further consequence of Theorem 4.2 we get the
following improvement of Yap’s result.

Corollary 4.4. For k ≥ 1, if ΠP
k ⊆ ΣP

k /poly, then PH = ZPP(ΣP
k+1).

Proof. The assumption that ΠP
k is contained in ΣP

k /poly implies that ΣP
k+1

is contained in ΣP
k /poly ⊆ (ΣP

k+1 ∩ΠP
k+1)/poly. Hence we can apply Corollary

4.3.
As corollaries to Theorem 4.2, we also have similar collapse results for many other

complexity classes. What follows are some typical examples.
Corollary 4.5. For K ∈ {UP,FewP}, if K ⊆ (NP ∩ co-NP)/poly then K is low

for ZPP(NP).
Proof. It is well known that for every set A in UP (FewP), the left set of A [30] is

word-decreasing self-reducible and in UP (resp., FewP). Thus, under the assumption
that UP ⊆ (NP ∩ co-NP)/poly (resp., FewP ⊆ (NP ∩ co-NP)/poly) it follows by
Theorem 3.2 that the left set of A (and since A is polynomial-time many-one reducible
to its left set, also A) is low for ZPP(NP).

Corollary 4.6. For every k ≥ 1, if C=P ⊆ (ΣP
k ∩ΠP

k)/poly then CH =
ZPP(ΣP

k).
Proof. First, since C=P has complete word-decreasing self-reducible languages

[29], C=P ⊆ (ΣP
k ∩ΠP

k)/poly implies C=P ⊆ ZPP(ΣP
k) ⊆ PH. Second, since PH ⊆

BPP(C=P) [37, 35], C=P ⊆ (ΣP
k ∩ΠP

k)/poly implies PH ⊆ (ΣP
k ∩ΠP

k)/poly and there-
fore PH collapses to ZPP(ΣP

k) by Corollary 4.3. Finally, since C=P(PH) ⊆ BPP(C=P)
[37], it follows that C=P(PH) ⊆ PH, and since CH = C=P ∪ C=P(C=P) ∪ . . . (see
[38]), we get inductively that CH ⊆ PH (⊆ ZPP(ΣP

k)).
Corollary 4.7. Let K ∈ {EXP,PSPACE,ModmP}, m ≥ 2. If for some k ≥ 1,

K ⊆ (ΣP
k ∩ΠP

k)/poly, then K ⊆ PH and PH collapses to ZPP(ΣP
k).

Proof. The proof for K ∈ {EXP,PSPACE} is immediate from Theorem 4.2 since
PSPACE has complete (length-decreasing) self-reducible languages and since EXP
has complete (word-decreasing) self-reducible languages [6].

The proof for K ∈ {ModmP | m ≥ 2} is analogous to the one of Corollary 4.6

NEW COLLAPSE CONSEQUENCES 321

using the fact that ModmP has complete word-decreasing self-reducible languages
[29], and that PH ⊆ BPP(ModmP) [37, 35].

Since our proof technique is relativizable, the above results hold for every rela-
tivized world. On the other hand, it is known that for some classes stronger collapse
consequences can be obtained by using nonrelativizable arguments.

Theorem 4.8 (see [28, 4, 3]). For K ∈ {PP,ModmP,PSPACE,EXP}, if K ⊆
P/poly then K ⊆ MA.

Harry Buhrman pointed out to us that Corollary 4.7 can also be derived from
Theorem 4.8.

5. Circuit complexity. Kannan [21] proved that for every fixed polynomial s,
there is a set in ΣP

2 ∩ ΠP
2 which cannot be decided by circuits of size s(n). Using a

padding argument, he obtained the existence of sets in NEXP(NP) ∩ co-NEXP(NP)
not having polynomial-size circuits.

Theorem 5.1 (see [21]).

1. For every polynomial s, there is a set in ΣP
2 ∩ΠP

2 that does not have circuits
of size s(n).

2. For every increasing time-constructible super-polynomial function f(n), there
is a set in NTIME[f(n)](NP)∩co-NTIME[f(n)](NP) that does not have poly-
nomial size circuits.

As an application of our results in section 3, we can improve Kannan’s results
in every relativized world from the class ΣP

2 ∩ ΠP
2 to ZPP(NP) and from the class

NTIME[f(n)](NP)∩co-NTIME[f(n)](NP) to ZPTIME[f(n)](NP), respectively. Here
ZPTIME[f(n)](NP) denotes the class of all sets that are accepted by some zero error
probabilistic machine in expected running time O(f(n)) relative to some NP oracle.

Note that for all sets in the class P/poly we may fix the interpreter set to some
appropriate one in P. Let Iuniv denote such a fixed interpreter set. Furthermore,
P/poly remains the same class if we relax the notion of an advice function h (w.r.t.
Iuniv) as follows: for every x, A(x) = Iuniv (x, h(|x|)); i.e., h(n) has to decide correctly
only A=n (instead of A≤n).

A sequence of circuits Cn, n ≥ 0, is called a circuit family for A if for every n ≥ 0,
Cn has n input gates, and for all n-bit strings x1 · · ·xn, Cn(x1, . . . , xn) = A(x1 · · ·xn).
It is well known (see, e.g., [9]) that Iuniv can be chosen in such a way that advice
length and circuit size (i.e., number of gates) are polynomially related to each other.
More precisely, we can assume that there is a polynomial p such that the following
holds for every set A.

• If h is an advice function for A w.r.t. Iuniv , then there exists a circuit family
Cn, n ≥ 0, for A of size |Cn| ≤ p(n+ |h(n)|).

• If Cn, n ≥ 0, is a circuit family for A, then there exists an advice function h
for A w.r.t. Iuniv of length |h(n)| ≤ p(|Cn|).

Moreover, we can assume that for every polynomial-time interpreter set I there is a
constant cI such that if h is an advice function for A w.r.t. I, then there exists an
advice function h′ for A w.r.t. Iuniv of length |h′(n)| ≤ |h(n)|+ cI for all n.

The following lemma is obtained by a direct diagonalization (cf. the corresponding
result in [21]). A set S is called PC-printable (see [16]) if there is a polynomial-time
oracle transducer T and an oracle set A ∈ C such that on any input 0n, TA outputs
a list of all strings in S≤n.

Lemma 5.2. For every fixed polynomial s, there is a ∆P
3 -printable set A such that

every advice function h for A is of length |h(n)| ≥ s(n) for almost all n.

322 JOHANNES KÖBLER AND OSAMU WATANABE

Proof. For a given n, let x1, x2, . . . , x2n be the sequence of strings of length n,
enumerated in lexicographic order. Consider the two sets Have-Advice and Find -A
defined as follows:

〈n, a1 · · · as(n)〉 ∈ Have-Advice ⇔
∃w ∈ Σ<s(n), ∀ i, 1 ≤ i ≤ min(s(n), 2n) : ai = Iuniv (xi, w),

〈n, a1 · · · aj10s(n)−j〉 ∈ Find -A ⇔
∃ aj+1 · · · as(n) : 〈n, a1 · · · ajaj+1 · · · as(n)〉 6∈ Have-Advice.

Since there are only 2s(n) − 1 advice strings w in Σ<s(n), at least one pair of the
form 〈n, a1 · · · as(n)〉 is not contained in Have-Advice (provided that s(n) ≤ 2n). Let
αn denote the lexicographically smallest such pair 〈n, a1 · · · as(n)〉; i.e., there is no
advice of length smaller than s(n) that accepts the strings x1, . . . , xs(n) according to
a1, . . . , as(n).

Define A as the set of all strings xi (|xi| = n) such that 1 ≤ i ≤ s(n) ≤ 2n and the
ith bit of αn (i.e., ai) is 1. By a binary search using oracle Find -A, αn is computable
in polynomial time. Since Have-Advice is in NP and thus Find -A is in NP(NP), it
follows that A is P(NP(NP))-printable. Since, furthermore, for almost all n, A=n has
no advice of length smaller than s(n), the lemma follows.

Corollary 5.3. For every fixed polynomial s, there is a set A in ZPP(NP) that
does not have circuits of size s(n).

Proof. If NP does not have polynomial-size circuits, then we can take A = SAT.
Otherwise, PH = ZPP(NP) by Corollary 4.1, and thus the theorem easily follows from
Lemma 5.2.

Corollary 5.4. Let f be an increasing, time-constructible, super-polynomial
function. Then ZPTIME[f(n)](NP) contains a set A that does not have polynomial-
size circuits.

Proof. If NP does not have polynomial-size circuits, then we can take A = SAT.
Otherwise, PH = ZPP(NP) by Corollary 4.1, and thus it follows from Lemma 5.2
that there is a set B in ZPTIME[nk](NP) such that every advice function h for B
is of length |h(n)| ≥ n for almost all n. By the proof technique of Lemma 5.2, we
can assume that in all length n strings of B, 1’s only occur at the O(log n) rightmost
positions. Now consider the following set (where n denotes |x|)

A = {x | 0bf(n)1/kc−nx ∈ B}
and the interpreter set

I = {〈0bf(n)1/kc−nx,w〉 | 〈x,w〉 ∈ Iuniv}.
Clearly, A belongs to ZPTIME[f(n)](NP) and I belongs to P. Furthermore, if h is

an advice function for A, then we have for every y of the form 0bf(n)1/kc−nx, |x| = n,
that

y ∈ B ⇔ 〈y, h(n)〉 ∈ I
⇔ 〈y, h′(n)〉 ∈ Iuniv ,

where h′(n) is a suitable advice function of length |h′(n)| ≤ |h(n)| + cI . Thus, it
follows for almost all n that

|h(n)| ≥ |h′(n)| − cI ≥ |y| − cI = bf(n)1/kc − cI .

NEW COLLAPSE CONSEQUENCES 323

This shows that the length of h is super-polynomial.
Corollary 5.5. In every relativized world, ZPEXP(NP) contains sets that do

not have polynomial-size circuits.
We remark that the above results are proved by relativizable arguments. On the

other hand, Harry Buhrman [12] and independently Thomas Thierauf [36] pointed out
to us that Theorem 4.8 (which is proved by a nonrelativizable proof technique) can be
used to show that MAexp ∩ co-MAexp contains non P/poly sets. Here, MAexp denotes

the exponential-time version of Babai’s class MA [5]. That is, MAexp = MA[2n
O(1)

],
where a language L is in MA[f(n)] if there exists a set B ∈ DTIME[O(n)] such that
for all x of length n,

x ∈ L ⇒ ∃y, |y| = f(n) : Pr[〈x, y, z〉 ∈ B] > 2/3,
x 6∈ L ⇒ ∀y, |y| = f(n) : Pr[〈x, y, z〉 ∈ B] < 1/3,

where z is chosen uniformly at random from Σf(n).
Corollary 5.6 (see [12, 36]). MAexp∩ co-MAexp contains sets that do not have

polynomial-size circuits.
Since there exist recursive oracles relative to which all sets in EXP(NP) have

polynomial-size circuits [39, 17], it is not possible to extend Corollary 5.5 by relativiz-
ing techniques to the class EXP(NP).

6. Concluding remarks. An interesting question concerning complexity classes
C that are known to be not contained in P/poly but are not known to have complete
sets is whether the existence of sets in C − P/poly can be constructively shown. For
example, by Corollary 5.5 we know that the class ZPEXP(NP) contains sets that
do not have polynomial-size circuits. But we were not able to give a constructive
proof of this fact. To the best of our knowledge, no explicit set is known even in
NEXP(NP) ∩ co-NEXP(NP)− P/poly.

Acknowledgments. We thank the referees for several remarks that improved
this paper. For helpful discussions and suggestions regarding this work we are very
grateful to H. Buhrman, R. Gavaldà, L. Hemaspaandra, M. Ogihara, U. Schöning,
R. Schuler, and T. Thierauf. We like to thank H. Buhrman, L. Hemaspaandra, and
M. Ogihara for permitting us to include their observations in the paper.

REFERENCES

[1] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle, J. Comput.
System Sci., 39 (1989), pp. 21–30.

[2] D. Angluin, Queries and concept learning, Mach. Learning, 2 (1988), pp. 319–342.
[3] L. Babai and L. Fortnow, Arithmetization: A new method in structural complexity, Comput.

Complexity, 1 (1991), pp. 41–66.
[4] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover

interactive protocols, Comput. Complexity, 1 (1991), pp. 1–40.
[5] L. Babai and S. Moran, Arthur-merlin games: A randomized proof system and a hierarchy

of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.
[6] J. Balcázar, Self-reducibility, J. Comput. System Sci., 41 (1990), pp. 367–388.
[7] J. Balcázar, R. Book, and U. Schöning, The polynomial-time hierarchy and sparse oracles,

J. Assoc. Comput. Mach., 33 (1986), pp. 603–617.
[8] J. Balcázar, R. Book, and U. Schöning, Sparse sets, lowness and highness, SIAM J. Com-

put., 23 (1986), pp. 679–688.
[9] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, 2nd ed., Springer-Verlag,

Berlin, New York, 1995.
[10] D. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, Prentice-Hall, Engle-

wood Cliffs, NJ, 1994.

324 JOHANNES KÖBLER AND OSAMU WATANABE

[11] N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon, Oracles and queries that
are sufficient for exact learning, J. Comput. System Sci., 52 (1996), pp. 421–433.

[12] H. Buhrman, Personal communication, 1994.
[13] J. L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput. System

Sci., 18 (1979), pp. 143–154.
[14] R. Gavaldà, Bounding the complexity of advice functions, J. Comput. System Sci., 50 (1995),

pp. 468–475.
[15] J. Gill, Computational complexity of probabilistic complexity classes, SIAM J. Comput., 6

(1977), pp. 675–695.
[16] J. Hartmanis and Y. Yesha, Computation times of NP sets of different densities, Theoret.

Comput. Sci., 34 (1984), pp. 17–32.
[17] H. Heller, On relativized exponential and probabilistic complexity classes, Inform. and Control,

71 (1986), pp. 231–243.
[18] L. A. Hemachandra, M. Ogiwara, and O. Watanabe, How hard are sparse sets?, in Pro-

ceedings of the 7th Structure in Complexity Theory Conference, IEEE Computer Society
Press, Piscataway, NJ, 1992, pp. 222–238.

[19] M. Jerrum, L. Valiant, and V. Vazirani, Random generation of combinatorial structures
from a uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169–188.

[20] J. Kämper, Non-uniform proof systems: A new framework to describe non-uniform and prob-
abilistic complexity classes, Theoret. Comput. Sci., 85 (1991), pp. 305–331.

[21] R. Kannan, Circuit-size lower bounds and non-reducibility to sparse sets, Inform. and Control,
55 (1982), pp. 40–56.

[22] R. M. Karp and R. J. Lipton, Some connections between nonuniform and uniform complexity
classes, in Proceedings of the 12th ACM Symposium on Theory of Computing, ACM Press,
New York, 1980, pp. 302–309.

[23] K. Ko, On self-reducibility and weak p-selectivity, J. Comput. System Sci., 26 (1983), pp. 209–
221.

[24] J. Köbler, Locating P/poly optimally in the extended low hierarchy, Theoret. Comput. Sci.,
134 (1994), pp. 263–285.

[25] J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem: Its Structural
Complexity, Birkhäuser, Boston, 1993.

[26] T. Long, Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci., 21
(1982), pp. 1–25.

[27] A. Lozano and J. Torán, Self-reducible sets of small density, Math. Systems Theory, 24
(1991), pp. 83–100.

[28] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof
systems, J. Assoc. Comput. Mach., 39 (1992), pp. 859–868.

[29] M. Ogiwara and A. Lozano, On sparse hard sets for counting classes, Theoret. Comput. Sci.,
112 (1993), pp. 255–275.

[30] M. Ogiwara and O. Watanabe, On polynomial-time bounded truth-table reducibility of NP
sets to sparse sets, SIAM J. Comput., 20 (1991), pp. 471–483.

[31] C. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994.
[32] N. Pippenger, On simultaneous resource bounds, in Proceedings of the 20th IEEE Symposium

on the Foundations of Computer Science, IEEE Computer Society Press, Piscataway, NJ,
1979, pp. 307–311.

[33] U. Schöning, Complexity and Structure, Lecture Notes in Computer Science 211, Springer-
Verlag, New York, 1986.

[34] M. Sipser, A complexity theoretic approach to randomness, in Proceedings of the 15th ACM
Symposium on Theory of Computing, ACM Press, New York, 1983, pp. 330–335.

[35] J. Tarui, Probabilistic polynomials, AC0 functions, and the polynomial time hierarchy, Theo-
ret. Comput. Sci., 113 (1993), pp. 167–183.

[36] T. Thierauf, Personal communication, 1994.
[37] S. Toda and M. Ogiwara, Counting classes are at least as hard as the polynomial-time

hierarchy, SIAM J. Comput., 21 (1992), pp. 316–328.
[38] J. Torán, Complexity classes defined by counting quantifiers, J. Assoc. Comput. Mach., 38

(1991), pp. 753–774.
[39] C. Wilson, Relativized circuit complexity, J. Comput. System Sci., 31 (1985), pp. 169–181.
[40] C. Yap, Some consequences of non-uniform conditions on uniform classes, Theoret. Comput.

Sci., 26 (1983), pp. 287–300.
[41] S. Zachos, Robustness of probabilistic computational complexity classes under definitional

perturbations, Inform. and Control, 54 (1982), pp. 143–154.

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS∗

VILIAM GEFFERT† , CARLO MEREGHETTI‡ , AND GIOVANNI PIGHIZZINI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 325–340

Abstract. The complexity measure under consideration is SPACE×REVERSALS for Turing
machines that are able to branch both existentially and universally. We show that, for any function
h(n) between log log n and logn, Π1SPACE×REVERSALS(h(n)) is separated from Σ1SPACE×
REVERSALS(h(n)) as well as from coΣ1SPACE×REVERSALS(h(n)), for middle, accept, and weak
modes of this complexity measure. This also separates determinism from the higher levels of the
alternating hierarchy. For “well-behaved” functions h(n) between log log n and logn, almost all of
the above separations can be obtained by using unary witness languages.

In addition, the construction of separating languages contributes to the research on minimal
resource requirements for computational devices capable of recognizing nonregular languages. For
any (arbitrarily slow growing) unbounded monotone recursive function f(n), a nonregular unary
language is presented that can be accepted by a middle Π1 alternating Turing machine in s(n) space
and i(n) input head reversals, with s(n) · i(n) ∈ O(log logn · f(n)). Thus, there is no exponential
gap for the optimal lower bound on the product s(n) · i(n) between unary and general nonregular
language acceptance—in sharp contrast with the one-way case.

Key words. alternation, computational complexity, computational lower bounds, formal lan-
guages

AMS subject classifications. 68Q05, 68Q15, 68Q68

PII. S0097539796301306

1. Introduction. In the last few years, some exciting results have been obtained
in the field of space bounded computations. First of all, we have a surprisingly short
proof that nondeterministic space is closed under complementation [12, 21]. Among
others, this result has a fundamental consequence on alternation, namely, the collapse
of the alternating space hierarchy to the Σ1 level.

It is worth noticing that these results were obtained for strong space complexity
classes with s(n) ∈ Ω(log n). (A Turing machine M works in strong space s(n) if
no reachable configuration, on any input of length n, uses space above s(n).) The
closure under complementation does not hold for weak space complexity classes above
log n [23]. (weak space s(n): for any accepted input of length n, there exists at least
one accepting computation not using more space than s(n).) Below log n, moreover,
the above alternating hierarchy is infinite [2, 6, 15]. For the sublogarithmic world,
many other results, almost self-evident in the superlogarithmic case, either do not
hold or the proofs are quite different and are often highly involved.

In this paper, we continue in this line of research toward the simplest possible
nonregular complexity classes by investigating Turing machines having sublogarithmic
bounds on the product of space—in its different definitions—by the number of input
head reversals. Turing machines working even within such limited resources can still

∗Received by the editors March 29, 1996; accepted for publication (in revised form) by J. Hart-
manis February 18, 1997; published electronically June 15, 1998.

http://www.siam.org/journals/sicomp/28-1/30130.html
†Katedra Matematickej Informatiky, Univerzita P.J. Šafárika, Jesenná 5, 04154 Košice, Slovakia

(geffert@kosice.upjs.sk). This research was supported by the Slovak Grant Agency for Science
(VEGA), under contract “Combinational Structures and Complexity of Algorithms.”

‡Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, via Comelico 39,
20135 Milano, Italy (mereghc@dsi.unimi.it, pighizzi@dsi.unimi.it). This research was partially sup-
ported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MURST).

325

326 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

recognize nonregular languages [3, 4], while the corresponding bound on the product
of space by work head reversals must be at least linear [9].

Besides strong and weak space, mentioned above, some intermediate measures
have also been proposed. (accept space s(n): all accepting computations obey the
space bound, middle space s(n): all computations obey the space bound for each ac-
cepted input of length n. For more precise definitions, see section 2.) Such differences
are irrelevant for fully space constructible bounds above logn, but several results (see,
e.g., [23, 4, 7]) witness that one must pay special attention to the actual definition
when dealing with such limited resources as is sublogarithmic space.

For the product of space by input head reversals, we are able to show several
separation results that are still unknown if sublogarithmic bounds on space only are
considered. Namely, for each of the modes c ∈ {middle, accept ,weak} and any func-
tion h(n) between log log n and logn, c-Π1SPACE×REVERSALS(h(n)) is separated
from c-Σ1SPACE×REVERSALS(h(n)) and, somewhat more surprisingly, also from
co-c-Σ1SPACE×REVERSALS(h(n)). (Here c-XSPACE×REVERSALS(h(n)) denotes
the class of languages accepted by X ∈ {Σk,Πk}machines of type c ∈ {strong ,middle,
accept ,weak} in s(n) space and i(n) input head reversals, satisfying s(n) · i(n) ∈
O(h(n)). We add prefix “co-” for complements of such languages, and we use X = D
for deterministic Turing machines, i.e., for Σ0 = Π0.)

In other words, for middle, accept, or weak space×input head reversals bounded
Turing machines, the class of languages accepted by machines making only universal
decisions does not coincide with the class of complements of languages recognizable
by machines making only existential decisions. Further, we get that weak -DSPACE×
REVERSALS(h(n)) is properly included in weak -Π1-, co-weak -Π1-, weak -Σ1-, and
in co-weak -Σ1SPACE×REVERSALS(h(n)), for each h(n) between log log n and logn.

The input head motion for machines accepting nonregular languages has been
studied in [3, 4]. It turns out that the minimal resource requirements for machines
accepting unary1 languages become important: a recognizer, already having too little
space to remember an input head position, must also cope with the lack of any struc-
ture on the input tape. So the problem arises of whether these results hold even if the
corresponding language classes are restricted to unary languages. Using an additional
assumption that the function h(n) is “well behaved,” we are able to show that the
above separations hold even in the case of unary languages, except for the separation of
weak -Π1SPACE×REVERSALS(h(n)) from co-weak -Σ1SPACE×REVERSALS(h(n)),
which we leave as an open problem.

Here “well behaved” means h(n) ∈ o(log n) with h(n)
log log n unbounded and mono-

tone increasing. We only require h(n) to be recursive but do not claim any kind of
space constructibility.

The above separations are obtained by exhibiting, for any (arbitrarily slow grow-
ing) unbounded monotone recursive function f(n), a nonregular unary language Lf
that can be accepted by a middle s(n) space and i(n) input head reversals bounded
Π1 machine with s(n) · i(n) ∈ O(log log n · f(n)). On the other hand, using mainly
number theoretical and pumping arguments, we show that, for every h(n) ∈ o(log n),
Lf does not belong to weak -Σ1SPACE×REVERSALS(h(n)).

The complexity of recognizing Lf also gives meaningful insights into the study
of minimal resource requirements for computational devices recognizing nonregular
languages, an important research area dating back to works by J. Hartmanis, P. Lewis,

1That is, built over a single letter alphabet.

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 327

and R. Stearns in 1965. In [14, 19, 10], the authors settled the problem of determining
the minimal strong space requirement for one–way and two–way, deterministic and
nondeterministic Turing machines that accept nonregular languages. Subsequently,
the same problem has been widely studied for other and more general paradigms of
computation and space notions (for strong alternation in [20], for middle machines
in [22], for accept machines in [4], and for weak machines in [1, 13]). The analysis of
computational lower bounds for nonregular languages is tightly related to the world
of sublogarithmic space (see, e.g., [23, 7]) and, more particularly, plays an important
role in revealing sharp differences among various space definitions [4].

In this regard, we shall concentrate on the problem of determining the optimal
lower bound on the product space×input head reversals for middle alternating Turing
machines that accept unary nonregular languages. The reason why we focus on the
middle mode of acceptance is that one-way middle alternating Turing machines exhibit
a very interesting behavior having no analogue in any of the other space bounded
computational models considered, e.g., in [23, 4]. On the one hand, we have an
optimal log logn space lower bound for nonregular languages built on binary alphabets
(hence, on general alphabets as well) [22]. On the other hand, a tight logn space lower
bound is proved in [16] whenever we restrict our machines to accept unary nonregular
languages (see also Table 1.1).

A problem left open in [4] asks whether the same gap situation holds for the
lower bound on s(n) · i(n) for middle space×input head reversals bounded alternating
machines accepting nonregular languages. For such machines, a tight log logn lower
bound on s(n) · i(n) for general nonregular languages is observed in [4]. Should we
expect a corresponding exponential gap when accepting unary nonregular languages,
as in the one-way case?

Here we provide a negative answer to this open question since, as stated before,
for any unbounded monotone recursive function f(n), we have a unary nonregular lan-
guage Lf , recognizable by a middle space×input head reversals bounded alternating
Turing machine satisfying s(n) · i(n) ∈ O(log log n ·f(n)). With f(n) being arbitrarily
slow growing, we can approach the optimal log logn lower bound for binary languages
as much as we like.

Though this does not completely prove the optimality of the lower bound s(n) ·
i(n) 6∈ o(log log n) for middle alternating Turing machines recognizing unary nonregu-
lar languages, it shows that such a lower bound cannot be raised to any “well-behaved”

function g(n) above log logn, i.e., to any g(n) that is recursive with g(n)
log log n unbounded

and monotone increasing. This definitively rules out the possibility of an exponen-
tial gap observed on the corresponding one-way devices between the general and the
unary cases.

Table 1.1 briefly summarizes the lower bounds for middle space×input head re-
versals bounded Turing machines recognizing nonregular languages (see Theorem 3.1
and [4, 16]).

This paper is organized as follows: section 2 contains basic definitions, in partic-
ular, the basic notions of space complexity and the SPACE×REVERSALS resource
measure. In section 3, we state our main result: we exhibit, for any (arbitrarily
slow growing) unbounded monotone recursive function f(n), a unary nonregular lan-
guage Lf , mentioned above, and analyze the complexity of recognizing Lf . As a
consequence, section 4 proves the above-claimed separation results for the unary case.
Finally, in section 5, we improve these separations for the case of general alphabets.

328 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Table 1.1
Best lower bounds obtained for s(n) · i(n) on middle alternating and nondeterministic (Σ1)

Turing machines accepting nonregular languages (i(n) = 1 for one-way machines). These bounds
are known to be optimal [4, 16] except the bound for two-way alternating Turing machines on unary
inputs which is “quasi” optimal (see Theorem 3.1).

One-way alternating
One-way nondeterministic (Σ1)
Two-way alternating

Two-way nondeterministic (Σ1)

Unary languages General languages

logn log logn
logn logn
lower: log logn log logn
upper: log logn · f(n)
logn logn

2. Preliminaries. In this section, we briefly recall some very basic definitions
concerning space bounded models of computation. For more details, we refer to [4, 23].
Furthermore, we consider machines having simultaneous bounds on both working
space and number of input head reversals, and we introduce SPACE×REVERSALS
complexity classes.

Let Σ∗ be the set of all strings over an alphabet Σ. Given any language L ⊆ Σ∗,
Lc = Σ∗ \ L denotes the complement of L. L is said to be unary (or tally) whenever
it is built on an alphabet consisting of exactly one symbol (usually “1”).

The Turing machine model we shall deal with has been presented in [14, 19] to
study sublinear space bounded computations. It consists of a finite state control, a
two-way read-only input tape (with input enclosed between two end markers), and a
separate semi-infinite two-way read-write work tape (initially empty, containing only
blank symbols). A memory state of a Turing machine is an ordered triple m = (q, u, j),
where q is a control state, u is a string of work tape symbols (the nonblank content
of the work tape), and j is an integer satisfying 1 ≤ j ≤ |u| + 1 (the position of the
work tape head). A configuration is an ordered pair c = (m, i), where m is a memory
state and i is an integer denoting the position of the input head.

The reader is assumed to be familiar with the notion of alternating Turing ma-
chine, introduced in [5], which is, at the same time, a generalization of nondetermin-
ism and parallelism. A Σk (Πk) machine is an alternating Turing machine beginning
its computation in an existential (universal, respectively) state, and making at most
k − 1 switches between existential and universal states along each computation path
on any input. It can be easily seen that Σ1 machines are actually nondeterministic
machines. It is stipulated that Σ0 and Π0 machines are deterministic machines.

Let us now review notions of space complexity in the literature. In what fol-
lows, the space used by a computation of an alternating machine is, by definition,
the maximal number of work tape cells used by any configuration in the tree cor-
responding to that computation. (For deterministic and nondeterministic machines,
the computation reduces to a single computation path.) Let M be a deterministic,
nondeterministic, or alternating Turing machine. Then the following hold.

• M works in strong s(n) space if and only if, for each input of length n, no
reachable configuration uses more space than s(n) [14, 19, 10].

• M works in middle s(n) space if and only if, for each accepted input of
length n, no reachable configuration uses more space than s(n) [22].

• M works in accept2 s(n) space if and only if, for each accepted input of
length n, each accepting computation uses at most space s(n) [11, 4, 18].

2The designation “accept” has been adopted first in [4].

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 329

• M works in weak s(n) space if and only if, for each accepted input of length
n, there exists an accepting computation using at most space s(n) [17, 1, 13].

The above definitions are given in increasing order of generality, as one may
easily verify. We remark that, although several differences have been emphasized
in the literature [23, 4, 7], the above space notions turn out to be equivalent when
considering fully space constructible3 bounds, e.g., “normal” functions above logn:
once the space limit s(n) can be computed in advance, each computation consuming
too much space may be aborted. Also notice that, for Π1 machines, middle, accept,
and weak notions coincide for arbitrary space complexities.

With a slight abuse of terminology, we will often say, for instance, “a middle
alternating Turing machine” instead of “an alternating Turing machine working in
middle space.”

The other computational resource we are interested in is the number of input head
reversals. In general, we say that a Turing machine M is one-way if it can never move
its input head toward the left; otherwise M is a two-way device. To emphasize the
role of input head motion, we introduce a bound i(n) on the number of input head
reversals. We always compute i(n) by considering those computations by which the
space is defined. Thus, for instance, we say that a middle alternating Turing machine
works simultaneously in s(n) space and i(n) input head reversals if, for each accepted
input of length n, no reachable configuration uses more than s(n) work tape cells, nor
can it be accessed by a path that reverses the input head direction more than i(n)
times. For technical reasons, we stipulate i(n) = 1 for one-way machines.

Throughout the rest of the paper, we use the following notation for complexity
classes. Let c ∈ {strong ,middle, accept ,weak} and X ∈ {Σk,Πk}. Then, we define

c-XSPACE×REVERSALS(h(n))

to be the class of the languages accepted by X machines of type c in s(n) space
and i(n) input head reversals satisfying s(n) · i(n) ∈ O(h(n)). In particular, we let
X = D for Σ0 = Π0, i.e., for deterministic Turing machines. By co-c-XSPACE×
REVERSALS(h(n)), we denote the class of the languages Lc such that L ∈ c-
XSPACE×REVERSALS(h(n)). Finally, the restriction of these classes to unary

languages will be denoted by c-XSPACE × REVERSALS1∗(h(n)) or by co-c-

XSPACE×REVERSALS1∗(h(n)).

3. A family of nonregular unary languages. In this section, we introduce,
for each unbounded (arbitrarily slow growing) monotone increasing recursive function
f(n), a nonregular unary language Lf that can be accepted by an alternating Turing
machine in middle s(n) space with i(n) input head reversals satisfying s(n) · i(n) ∈
O(log log n · f(n)). Hence, the optimal log logn lower bound on s(n) · i(n) for general
nonregular languages acceptance can be arbitrarily approached by unary languages.
Subsequently, we prove that Lf cannot be accepted by any nondeterministic Turing
machine working in weak s(n) space and i(n) input head reversals such that s(n)·i(n) ∈
o(log n). This implies the nonregularity of Lf and will later be used to separate several
SPACE×REVERSALS complexity classes.

In what follows, pi denotes the ith prime. Furthermore, f : N → N is assumed to
be any (effectively given) unbounded monotone increasing recursive function. That
is, we have a deterministic Turing machine A which, for any binary input x, prints

3A function s(n) is said to be fully space constructible whenever there exists a deterministic
Turing machine which, on any input of length n, uses exactly space s(n).

330 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

out a binary representation of f(x). (Alternatively, we can avoid any ambiguity by
using, in any standard enumeration A1, A2, . . . of Turing machines, the first machine
computing f . It will be seen later that the upper and lower bounds proved in this
section hold for any choice of A.)

We are now ready for the definition of Lf . For each n ∈ N, we first define the
following statements.

(i) Let pi be the first prime not dividing n.
(ii) Let x be the smallest integer satisfying x ≥ 2pi and f(x) ≥ pi.
(iii) Let y = max{x, 2s1 , 2s2 , . . . , 2sx}, where si denotes the amount of work tape

space used by machine A when computing the value of f(i).

Then 1n ∈ Lf if and only if the following holds:

(iv) for all prime powers pj
k ≤ y, with pj ≤ √

y, j 6= i, and k ≥ 1, we have that
pj

k divides n.

In other words, item (iv) states that 1n ∈ Lf if and only if all the prime powers
pj

k ≤ y, with pj ≤ √
y, j 6= i, and k ≥ 1, divide n, log y denoting the amount of space

claimed by A to compute any of the values f(1), f(2), . . . , f(x) or to represent the
integer x (see item (iii)), and x ≥ 2pi being the smallest integer satisfying f(x) ≥ pi
as required in (ii). Note that such x must exist: take the first x such that f(x) >
max{pi−1, f(1), f(2), . . . , f(2pi−1)}, using the fact that f(x) is unbounded.

The proof of nonregularity of Lf will be given later as a consequence of Theo-
rem 3.2. Now we shall study the complexity of Lf on alternating machines.

Theorem 3.1. Let Lf be a unary language defined as above. Then Lf can be
accepted by a middle alternating Turing machine within s(n) space and i(n) input
head reversals satisfying

s(n) · i(n) ∈ O (log log n · f(n)) .

Proof. First, we shall determine possible values of n so that the string 1n belongs
to Lf . Let pi, x, and y be defined as stated in items (i) – (iii). Item (iv) in the definition
of Lf requires that possible factorizations of n must be of the following form:

n = p1
α1+β1 · p2

α2+β2 · . . . · pi−1
αi−1+βi−1 · pi+1

αi+1+βi+1 · . . . · psαs+βs · ν ,(3.1)

where ps represents the largest prime less than or equal to
√
y. The prime pi does not

appear in (3.1) since it does not divide n. Numbers αj , with j ∈ {1, 2, . . . , s} \ {i},
are the maximal exponents which the corresponding primes pj can be raised to in
order to have pj

αj ≤ y. It is easy to see that αj = blogpj yc and βj ≥ 0, where, for
any given number z, bzc denotes the greatest integer less than or equal to z. Finally,
ν contains the (possibly empty) part of the factorization consisting of powers of those
primes greater than

√
y.

By (3.1), we are able to obtain a relation between n and y. In fact, we observe
that

n ≥
∏

p≤√y, p 6=pi

pblogp yc ,(3.2)

where the product is taken over all primes not exceeding
√
y and different from pi.

By noticing that logp y ≥ 2 for p ≤ √
y, we get the following limitation:

√
y = p

1
2 ·logp y < pblogp yc ,

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 331

which, together with (3.2), yields

n >
∏

p≤√y, p 6=pi

√
y = y

1
2 ·(π(

√
y)−1) .(3.3)

Here π(z) denotes the number of primes not exceeding bzc. A well-known theorem
due to P. Čebyšev (see [8, Thm. 7]) states that

c1 · z

log z
≤ π(z) ≤ c2 · z

log z

for some positive constants c1 and c2. We can use this in (3.3) and obtain

n > y
1
2 ·
(
c1·

√
y

log
√
y
−1
)

= 2
log y

2 ·
(

2c1
√
y

log y −1
)
> d

√
y(3.4)

for a suitable constant d > 1.
With these results in our hands, we are now ready to estimate the amount of

space and input head reversals sufficient for a middle alternating Turing machine M
to accept Lf . On input 1n, M runs a two-phase algorithm. First, it computes the
smallest prime pi not dividing n. Then, it checks the truth of predicate in item (iv).

Phase 1. M deterministically computes pi by means of the following routine:
/∗ input is 1n ∗/
p := 2
while n mod p = 0 do

begin
p := p + 1
while p not a prime do p := p + 1

end
/∗ now p contains pi ∗/

The amount s1(n) of space used in this phase equals the number of bits needed
to represent pi in binary notation, i.e., s1(n) ∈ O(log pi). Furthermore, it is easy to
see that, for each value of p, the test “n mod p = 0” can be accomplished by scanning
the input only once. Therefore, the number i1(n) of input head reversals equals the
number of primes not exceeding pi. By Čebyšev’s theorem, we obtain i1(n) ∈ O(pi

log pi
).

Phase 2. M deterministically computes the smallest integer x ≥ 2pi such that
f(x) ≥ pi (pi being already stored on the work tape during the former phase). To
this purpose, M simply loops as follows:
x := 1
while x < 2pi or f(x) < pi do

x := x + 1
Note that M computes each of the values f(1), f(2), . . . , f(x) by simulating A;

therefore, it marks off exactly max{log x, s1, s2, . . . , sx} = log y space on the work
tape. Recall that si denotes the amount of space used by A when computing f(i).

Subsequently, M universally generates all the prime powers whose binary repre-
sentation takes at most log y bits and checks whether each pj

k ≤ y, with pj ≤ √
y,

j 6= i, and k ≥ 1, divides n. Clearly, the space requirement in this phase is bounded
by s2(n) ∈ O(log y).

For input head reversals, we observe that the computations of f(1), f(2), . . . , f(x)
are performed deterministically with the input head parked at one end marker, and
that the divisibility of n by each pj

k is tested universally in parallel by one input scan,
whence i2(n) = 1.

332 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Let us now evaluate s(n) · i(n) in case 1n belongs to Lf . The algorithm uses a
total amount of space and input head reversals along each computation path of M to
be estimated as

s(n) = s1(n) + s2(n) ∈ O(log pi + log y) = O(log y) ,

i(n) = i1(n) + i2(n) ∈ O
(

pi
log pi

)
,

using pi ≤ log x ≤ log y by (ii) and (iii) in the definition of Lf . This gives

s(n) · i(n) ∈ O
(

log y · pi
log pi

)
.

Items (ii) and (iii) in the definition of Lf require that pi ≤ f(x) and x ≤ y. Further,
t

log t is monotone increasing. Hence, f(x)
log f(x) is also monotone increasing whenever

f(x) is monotone increasing. Therefore, in case of 1n ∈ Lf , we are able to obtain the
following bounds:

log y · pi
log pi

≤ log y · f(x)

log f(x)
≤ log y · f(y)

log f(y)
.

Moreover, inequality (3.4) states that n > d
√
y, i.e., y ≤ k ·log2 n for a suitable positive

constant k. Hence, for sufficiently large n, we get

log y · f(y)

log f(y)
≤ log(k · log2 n) · f(k · log2 n)

log f(k · log2 n)

≤ log(k · log2 n) · f(n)

log f(n)
∈ O (log logn · f(n)) ,

which completes the proof.
As a consequence of Theorem 3.1, it turns out that, using unary languages, we

can arbitrarily approach the optimal log logn lower bound on s(n) · i(n) holding
for general nonregular language acceptance by middle space×input head reversals
bounded alternating Turing machines (see Table 1.1). Take, for instance, f(x) =

log∗ x = min{k ∈ N | log(k) x ≤ 1}, with log(0) x = x and, for each k ≥ 1, log(k) x =

log(k−1) log x.
We now show that the language Lf is nonregular. Actually, we prove a stronger

result that, together with Theorem 3.1, will also allow us to obtain some separations
in the case of weakly bounded computations.

Theorem 3.2. Let Lf be a unary language defined as above. Then for any

h(n) ∈ o(log n), Lf is not in weak-Σ1SPACE×REVERSALS1∗(h(n)).
Proof. Suppose, by contradiction, that Lf can be accepted by a weak nondeter-

ministic machine M in s(n) space and i(n) input head reversals, with s(n) · i(n) =
h(n) ∈ o(log n). The number of different memory states of M not using more space
than s(n) on the work tape can be bounded by cs(n), where c is a constant de-
pendent on the number of work tape symbols and finite-control states of M . Since

limn→∞
s(n)·i(n)

logn = 0, there exists n0 ∈ N such that

cs(n)·i(n) <
√
n for each n ≥ n0 .(3.5)

Now, consider the string 1n
′
, where n′ is defined in the following way:

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 333

(i) First, let pi ≥ 5 be a sufficiently large prime such that there is another prime
p̃ between n0 and pi, i.e., pi > p̃ > n0.

(ii) Let x be the smallest integer satisfying x ≥ 2pi and f(x) ≥ pi.
(iii) Now, let y = max{x, 2s1 , 2s2 , . . . , 2sx}, where si denotes the space used by

the machine A to compute f(i).
(iv) Finally, define

n′ =
∏

p≤√y, p 6=pi

pblogp yc ,

where the product is taken over all primes not exceeding
√
y and different

from pi.
We want to show that 1n

′ ∈ Lf . First, we prove that pi is the first prime that
does not divide n′. Clearly, pi does not divide n′. For primes p < pi, we obtain

pblogp yc+1 > y ≥ √
y ≥ log y ≥ log x ≥ pi > p = p1 ,

using (iii) and (ii) in the definition of n′. (The inequality
√
y ≥ log y follows from

log y ≥ pi ≥ 5 by (i).) Thus, blogp yc > 0 and p <
√
y; i.e., n′ is divisible by p for

each prime p < pi.
At this point, to conclude that 1n

′ ∈ Lf , it is enough to prove that each prime
power pj

k ≤ y, with pj ≤ √
y, j 6= i, and k ≥ 1, divides n′. This can be immediately

shown by observing that k ≤ logpj y and k ∈ N; hence,

k = bkc ≤ blogpj yc .

This gives that 1n
′ ∈ Lf .

As a consequence, there must exist an accepting computation path C of M on
the input 1n

′
, using at most s(n′) space and i(n′) input head reversals. By (i) in the

definition of n′, we have a prime p̃ satisfying pi > p̃ > n0. Since pi is the first prime
not dividing n′, p̃ divides n′, and hence n′ ≥ p̃ > n0. Therefore, by (3.5), the bounds
s(n′) and i(n′) must satisfy

cs(n
′) ≤ cs(n

′)·i(n′) <
√
n′ ≤ n′ .(3.6)

Along the path C, we can consider r1, r2, . . . , rA, the sequence of all configurations in
which the input head scans either of the end markers. Let b1, e1, b2, e2, . . . , bB , eB be
the subsequence of r1, r2, . . . , rA such that, for each j = 1, 2, . . . , B, machine M begins
with the input head positioned at the left or right end marker in bj , traverses across

the entire input 1n
′
, and ends in ej positioned at the opposite end marker, without

visiting either of the end markers in the meantime. The segments of computation
between ej and bj+1 always return the input head back to the same end marker (or,
possibly, ej = bj+1).

Since, by (3.6), the number of different memory states is bounded by cs(n
′) < n′,

the machine must enter a loop when traversing the entire input 1n
′
from bj to ej ; i.e.,

it enters some memory state twice in some configurations (qj , dj) and (qj , dj+`j) for
`j 6= 0. To avoid any ambiguity, we take the first loop the machine gets into, i.e., the
first pair of configurations having the same memory state, along each input traversal.
Observe that

`j ≤ cs(n
′) for each j = 1, 2, . . . , B ,

B ≤ i(n′) ,
(3.7)

334 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

since M is simultaneously s(n) space and i(n) input head reversals bounded.
Now, define

` =

B∏
j=1

`j .(3.8)

It is not too hard to see that the machine M must also accept the inputs 1n
′+µ·` for

each µ ∈ N. In fact, we can replace the accepting computation path C for the input
1n

′
by a new computation path Cµ that visits the end markers in the same sequence

of configurations r1, r2, . . . , rA. The path Cµ is obtained from C by iterating, µ·`
`j

more

times, the loop of length `j in the segment of computation connecting bj and ej , for
each j = 1, 2, . . . , B. Note that ` is a common multiple of `1, `2, . . . , `B and hence
µ·`
`j

∈ N; i.e., the new segments of computation traverse exactly n′ + µ·`
`j
· `j = n′ + µ·`

positions, beginning and ending in the same configurations bj and ej , respectively, for
each j = 1, 2, . . . , B. The segments between ej and bj+1 (always returning back to the
same end marker) are left unchanged. Hence, for each µ ∈ N, Cµ is a valid accepting

computation path on the input 1n
′+µ·`.

To complete the proof, we are now going to show that 1n
′+µ′·` 6∈ Lf , where µ′ is

defined by

µ′ =
∏
p≤pi

p ,(3.9)

which is a contradiction. The product is taken over all primes not exceeding pi; hence,
(n′ + µ′ ·`) mod p = n′ mod p for each prime p ≤ pi. This gives that n′ and n′ + µ′ ·`
share the same “least prime nondivisor” pi. Therefore, to show that 1n

′+µ′·` 6∈ Lf ,
there only remains to exhibit a prime power pj

k ≤ y, with pj ≤ √
y, j 6= i, and k ≥ 1,

such that pj
k does not divide n′ + µ′ ·`.

Since we have shown that 1n
′ ∈ Lf , each such prime power divides n′, and hence

(n′ + µ′ ·`) mod pj
k = (µ′ · `) mod pj

k .(3.10)

Therefore, the problem reduces to exhibit pj
k not dividing µ′ · `.

To this aim, observe that `, as defined by (3.8), is bounded by

` =

B∏
j=1

`j ≤
B∏
j=1

cs(n
′) =

(
cs(n

′)
)B

≤ cs(n
′)·i(n′) <

√
n′ ,(3.11)

using (3.7) and (3.6). On the other hand, the factorization of ` must be of the form

` = ν ·
∏

p≤√y, p 6=pi

pαp ,(3.12)

where the product is taken over all primes not exceeding
√
y and different from pi,

while ν contains the (possibly empty) part of the factorization consisting of powers
of those primes p greater than

√
y or p = pi.

Let us now show that there exists a prime p′ ≤ √
y, p′ 6= pi, such that αp′ <

blogp′ yc−1. Suppose, by contradiction, that αp ≥ blogp yc−1 for each prime p ≤ √
y,

p 6= pi. Then logp y ≥ 2 and hence

blogp yc − 1 ≥ 1

2
· blogp yc .

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 335

This gives

` = ν ·
∏

p≤√y, p 6=pi

pαp ≥
∏

p≤√y, p 6=pi

pblogp yc−1 ≥
∏

p≤√y, p 6=pi

p
1
2 ·blogp yc =

√
n′ ,

i.e., ` ≥ √
n′, which contradicts (3.11). Hence, there exists a prime p′ ≤ √

y, p′ 6= pi
such that αp′ < blogp′ yc − 1.

By (3.12), this implies that ` is not an integer multiple of p′blogp′ yc−1
and there-

fore, by (3.9), µ′ · ` is not an integer multiple of p′blogp′ yc. But then, we have a prime

power p′blogp′ yc ≤ y, with p′ ≤ √
y and p′ 6= pi, that does not divide n′ + µ′ ·`, us-

ing (3.10). Therefore, 1n
′+µ′·` 6∈ Lf , which is a contradiction and completes the proof

of the theorem.

4. Separation results in the unary case. We now draw some important
structural consequences from the previous results. Note that the alternating algorithm
provided for Lf in Theorem 3.1 consists of a deterministic phase followed by a single
universal branching. Hence, it can be run on a Π1 machine. Moreover, a middle
space×input head reversals bounded machine can be viewed as an accept device, which
in turn is a special case of a weak machine. Thus we have the following corollary.

Corollary 4.1. Let Lf be a unary language defined as above for any un-
bounded monotone increasing recursive function f(n). Then Lf ∈ middle-Π1SPACE×
REVERSALS1∗(log log n · f(n)). Hence, for c ∈ {middle, accept ,weak}, Lf ∈ c-

Π1SPACE×REVERSALS1∗(log log n · f(n)).
On the other hand, from Theorem 3.2 we get Corollary 4.2.
Corollary 4.2. Let Lf be a unary language defined as above. Then Lf 6∈

weak-Σ1SPACE×REVERSALS(h(n)) for any h(n) ∈ o(log n). Hence, for c ∈
{middle, accept , weak} and any h(n) ∈ o(log n), Lf 6∈ c-Σ1SPACE×REVERSALS
(h(n)).

Combining the above two corollaries, we have the first separation for “well-
behaved” functions h(n) between log log n and logn in Theorem 4.3.

Theorem 4.3. Let h(n) ∈ o(log n) be any recursive function such that h(n)
log log n is

unbounded and monotone increasing. Then, for c ∈ {middle, accept ,weak},
c-Π1SPACE×REVERSALS1∗(h(n)) 6= c-Σ1SPACE×REVERSALS1∗(h(n)) .

Proof. Clearly, if h(n) is recursive, then so is f(n) = h(n)
log log n . Then, by Corol-

lary 4.1, Lf belongs to c-Π1SPACE×REVERSALS1∗(h(n)) for each c ∈ {middle,
accept ,weak}. On the other hand, by Corollary 4.2, Lf is not in c-Σ1SPACE×
REVERSALS1∗(h(n)), since h(n) ∈ o(log n).

For further separations we need the fact that the class of regular languages is
closed under complementation and that regular languages are accepted by one-way
Turing machines working in constant space. Hence, from Theorem 3.2, we get Corol-
lary 4.4.

Corollary 4.4. Let Lf be a unary language defined as above. Then neither Lf
nor Lf c are regular.

As recalled in the Introduction, apart from middle alternation, for any other
combination of determinism, nondeterminism, or alternation with the space notions
defined in section 2, computational lower bounds for nonregular unary and general
languages coincide and are optimal [4]. Thus, for accept alternating machines, Ta-
ble 1.1 can be shrunk as shown in Table 4.1.

336 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Table 4.1
Optimal lower bounds on s(n) · i(n) for accept alternating and nondeterministic (Σ1) Turing

machines recognizing nonregular languages [4].

One-way alternating
One-way nondeterministic (Σ1)
Two-way alternating
Two-way nondeterministic (Σ1)

Unary and general languages

log logn
logn
log logn
logn

Now, from Table 4.1 (for proof, see [4, Thm. 6]), we get the following corollary.
Corollary 4.5. Let L be a nonregular language. Then L 6∈ accept-Σ1SPACE×

REVERSALS(h(n)) for any h(n) ∈ o(log n). Hence, for c ∈ {middle, accept} and
any h(n) ∈ o(log n), L 6∈ c-Σ1SPACE×REVERSALS(h(n)).

This allows us to present some further separations for middle and accept complex-
ity classes.

Theorem 4.6. Let h(n) ∈ o(log n) be any recursive function such that h(n)
log log n is

unbounded and monotone increasing. Then, for c ∈ {middle, accept},

c-Π1SPACE×REVERSALS1∗(h(n)) 6= co-c-Σ1SPACE×REVERSALS1∗(h(n)) ,

co-c-Π1SPACE×REVERSALS1∗(h(n)) 6= c-Σ1SPACE×REVERSALS1∗(h(n)) .

Proof. Note that, by Corollary 4.5, the classes c-Σ1SPACE×REVERSALS1∗(h(n))

and co-c-Σ1SPACE×REVERSALS1∗(h(n)) coincide with the class of regular lan-

guages. On the other hand, for f(n) = h(n)
log log n , neither Lf nor Lf c are regular, by

Corollary 4.4, and they belong, respectively, to c-Π1SPACE×REVERSALS1∗(h(n))

and to co-c-Π1SPACE×REVERSALS1∗(h(n)), by Corollary 4.1.
Theorem 4.6 shows, for middle or accept SPACE×REVERSALS complexity mea-

sure, that the class of the languages accepted by machines making only universal
decisions does not coincide with the class of the complements of languages recogniz-
able by machines making only existential decisions.

At this point, it is quite natural to investigate whether or not this separation can
be extended even to the weak case. The argument of Theorem 4.6 cannot be applied
here, since weak -Σ1SPACE×REVERSALS(log logn) does contain unary nonregular
languages [4]. We conjecture that even Lf c does not belong to weak -Σ1SPACE×
REVERSALS1∗(h(n)) for a suitable function h(n) ∈ o(log n). Nevertheless, the
“pumping” argument used to prove Theorem 3.2 does not work in the case of Lf c.

So, we leave the separation of weak -Π1SPACE×REVERSALS1∗(h(n)) from co-weak -

Σ1SPACE×REVERSALS1∗(h(n)) as an open problem. However, in the next section,
we will show how to solve this problem by using witness languages defined over a
binary alphabet.

Finally, the separation of the higher levels of the alternating hierarchy from de-
terminism can be obtained by recalling the following result in [4, Thm. 6].

Theorem 4.7. Let M be a weak deterministic (or nondeterministic) Turing
machine recognizing a nonregular language within s(n) space and i(n) input head
reversals. Then s(n) · i(n) 6∈ o(log n) (or s(n) · i(n) 6∈ o(log log n), respectively). These
bounds are optimal for both the unary and general cases.

Using this result, we can easily get Theorem 4.8.
Theorem 4.8. Let h(n) be a function satisfying h(n) ∈ o(log n) ∩ Ω(log log n).

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 337

Then
weak-DSPACE×REVERSALS1∗(h(n)) is properly included in

weak-Σ1SPACE×REVERSALS1∗(h(n)) and in

co-weak-Σ1SPACE×REVERSALS1∗(h(n)).

If, moreover, h(n) is recursive, with h(n)
log log n unbounded and monotone increasing, then

weak-DSPACE×REVERSALS1∗(h(n)) is properly included even in

weak-Π1SPACE×REVERSALS1∗(h(n)) and in

co-weak-Π1SPACE×REVERSALS1∗(h(n)).
Proof. Just note that, by Theorem 4.7, weak -DSPACE×REVERSALS(h(n))

coincides with the class of regular languages for each h(n) ∈ o(log n). On the other

hand, again by Theorem 4.7, weak -Σ1SPACE×REVERSALS1∗(log log n) contains
a nonregular unary language. Moreover, by Corollary 4.1, even weak -Π1SPACE×
REVERSALS1∗(h(n)) contains unary nonregular languages whenever h(n) satisfies
the conditions of the theorem.

The remaining proper inclusions follow by observing that the class of nonregular
languages is closed under complement.

5. Separation results for general languages. In this section, we study sep-
arations in the case of languages defined over alphabets of at least two symbols. In
particular, we show that all separations in section 4, proved in the unary case for
“well-behaved” h(n) between log log n and logn, hold in the general case for any
function h(n) ∈ o(log n) ∩ Ω(log log n) and in particular for log logn.

Further, we get that, for general languages, weak -Π1SPACE×REVERSALS(h(n))
is separated from co-weak -Σ1SPACE×REVERSALS(h(n)). Symmetrically, we have
weak -Σ1SPACE×REVERSALS(h(n)) 6= co-weak -Π1SPACE×REVERSALS(h(n)) for
any function h(n) ∈ o(log n) ∩ Ω(log log n).

In order to state these results, we consider the language L1 defined by

L1 = {akbk+m : m > 0 is a common multiple of all r ≤ k} .

Theorem 5.1. Let L1 be the language defined as above. Then L1 can be accepted
by a one-way Π1 machine in middle O(log log n) space.

Proof. The proof is similar to that of Theorem 3.2 in [22]. On input x = akbt

of length n = t + k, the Π1 machine M accepting L1 first counts, on the work tape,
the number k of a’s at the beginning of the input. Next, it moves the input head k
positions to the right, rejecting if the right end marker is reached, i.e., if t ≤ k. Finally,
M universally generates all integers r less than or equal to k, and, by counting the
length of the remaining part of the input modulo r, it checks whether each r divides
t− k.

Clearly, M is a one-way machine. The space used by M on the input x = akbt

is proportional to the space needed to represent k in binary notation, i.e., O(log k).
Moreover, if x ∈ L1, then t − k is a common multiple of all r ≤ k. Since the least
common multiple of {1, 2, . . . , k} is bounded from below by dk, for some constant
d > 1 (for proof, see [23, Lem. 4.1.2]), we get k ≤ logd(t− k) ≤ logd(t + k) = logd n.
Hence, s(n) ∈ O(log log n).

Corollary 5.2. L1 ∈ c-Π1SPACE×REVERSALS(log logn) for c ∈ {middle,
accept ,weak}.

We now state a lower bound on the product space×input head reversals for weak
nondeterministic Turing machines accepting L1.

338 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Theorem 5.3. Let L1 be the language defined as above. Then, for any h(n) ∈
o(log n), L1 is not in weak-Σ1SPACE×REVERSALS(h(n)).

Proof. Suppose, by contradiction, that L1 can be accepted by some nondetermin-
istic machine in weak s(n) space and i(n) reversals, with s(n) · i(n) = h(n) ∈ o(log n).
Then L1 can even be accepted by a one-way nondeterministic machine M in weak
h(n) space. (The simulating machine nondeterministically guesses, at each input
tape position, the crossing sequence of memory states that corresponds to an ac-
cepting computation path and checks the compatibility of the neighboring crossing
sequences. Since the original weak machine is simultaneously s(n) space and i(n)
input head reversals bounded, then weak O(s(n) · i(n)) space suffices for processing
the input from left to right. For details, see [4, Lem. 5].)

The number of different memory states of M using no more than h(n) work tape
cells can be bounded by ch(n) for a suitable constant c > 1. Since h(n) ∈ o(log n),
there exists n0 ∈ N (cf. (3.5) in Theorem 3.2), such that

ch(n) <
√
n for each n ≥ n0 .(5.1)

Now, consider an input x = akbk+m of length n = 2k + m ≥ n0, such that m is
the least common multiple of all r ≤ k. Clearly, the string x = akbk+m belongs to L1.
In addition, we choose k > 0 sufficiently large, so that 2k ≤ dk ≤ m. Here d > 1 is the
constant used in the proof of Theorem 5.1; i.e., dk is a lower bound for m, the least
common multiple of {1, 2, . . . , k}. Hence, bm is a “dominant” portion of the input;
i.e., we have

m ≥ n

2
>
√
n .

On input x = akbk+m, M must have an accepting computation path C that uses
at most h(n) space. Since m >

√
n and, by (5.1), the number of different memory

states is bounded by
√
n, M must enter some memory state twice while traversing the

segment bm on the input. That is, C enters some configurations (q, d) and (q, d+`),
with 2k ≤ d < d+` ≤ n.

But then M must also accept the input akbk+m−` by means of the accepting
computation path C′ obtained from C by “skipping” the segment between the con-
figurations (q, d) and (q, d+`). Since m is the least common multiple of all r ≤ k
and ` > 0, it turns out that m − ` is not a multiple of all r ≤ k. Hence, M accepts
akbk+m−` 6∈ L1, which is a contradiction.

Note that, as a consequence of Theorem 5.3, the language L1 is not regular. Using
Corollary 5.2 and Theorem 5.3, we are now able to rewrite Theorem 4.3 for languages
defined over general alphabets.

Corollary 5.4. For each h(n) ∈ o(log n)∩Ω(log log n) and c ∈ {middle, accept ,
weak},

c-Π1SPACE×REVERSALS(h(n)) 6= c-Σ1SPACE×REVERSALS(h(n)) .

Even Theorem 4.8 can easily be rewritten in the case of general alphabets as
follows.

Corollary 5.5. Let h(n) be a function satisfying h(n) ∈ o(log n)∩Ω(log log n).
Then weak-DSPACE×REVERSALS(h(n)) is properly included in the following classes:

weak-Σ1SPACE×REVERSALS(h(n)),
co-weak-Σ1SPACE×REVERSALS(h(n)),

SUBLOGARITHMIC BOUNDS ON SPACE AND REVERSALS 339

weak-Π1SPACE×REVERSALS(h(n)),
co-weak-Π1SPACE×REVERSALS(h(n)).
Let us now compare the classes defined by machines making universal decisions

with the classes of complements of languages accepted by machines making existential
decisions. For sublogarithmic bounds in the unary case, these classes have been
separated for the middle and accept modes (Theorem 4.6), while the separation is an
open problem for the weak mode.

Here we prove this separation using witness languages defined over alphabets
containing at least two symbols. To this purpose, we extend the lower bound of
Theorem 5.3 to the language L1

c. First, consider the following language:

L2 = {akbt : t ≤ k or ∃r ≤ k which does not divide t− k} .
Note that L2 = L1

c ∩ {a}∗{b}∗.
Theorem 5.6. Let L2 be the language defined as above. Then, for any h(n) ∈

o(log n), L2 is not in weak-Σ1SPACE×REVERSALS(h(n)).
Proof. As in Theorem 5.3, suppose, by contradiction, that L2 can be accepted

by some nondeterministic machine in weak s(n) space and i(n) input head reversals,
with s(n) · i(n) = h(n) ∈ o(log n). Then L2 can even be accepted by a one-way
nondeterministic machine M in weak h(n) space [4, Lem. 5]. The number of different
memory states of M using at most h(n) work tape cells is bounded by ch(n) for a
suitable constant c > 1. Since h(n) ∈ o(log n), there exists n0 ∈ N, such that

ch(n) <
n

2
for each n ≥ n0 .(5.2)

Now, for some even n ≥ n0, consider the string x = a
n
2 b

n
2 , easily seen to be in L2.

Hence, M must have an accepting computation path on the input x, consisting of
memory states that use at most space h(n). Since, by (5.2), the number of different
memory states is bounded by n

2 , this computation path enters a loop while traversing
the suffix b

n
2 . More precisely, M enters some memory state twice, in some configura-

tions (q, d) and (q, d+`), with d > n
2 and ` > 0. Thus, it is not hard to see that M

must also accept the strings of the form

a
n
2 b

n
2 +µ·` ∈ L2 for each µ ∈ N .(5.3)

Now, let µ′ =
(
n
2

)
!. It is easy to see that µ′ · ` > 0 and that each integer

r ≤ n
2 divides µ′ · `. That is, the string a

n
2 b

n
2 +µ′·` does not belong to L2, which

contradicts (5.3).
Using Theorem 5.6, we are now able to show Corollary 5.7.
Corollary 5.7. Let L1 be the language defined as above. Then the complement

of L1 is not in weak-Σ1SPACE×REVERSALS(h(n)) for any h(n) ∈ o(log n).
Proof. Should L1

c be in weak -Σ1SPACE×REVERSALS(h(n)), for some h(n) ∈
o(log n), then so would L2 = L1

c ∩ {a}∗{b}∗, which contradicts Theorem 5.6.
Finally, by combining Corollaries 5.2 and 5.7, we get Theorem 5.8.
Theorem 5.8. Let h(n) be a function satisfying h(n) ∈ o(log n) ∩ Ω(log log n).

Then, for c ∈ {middle, accept ,weak},
c-Π1SPACE×REVERSALS(h(n)) 6= co-c-Σ1SPACE×REVERSALS(h(n)) ,

c-Σ1SPACE×REVERSALS(h(n)) 6= co-c-Π1SPACE×REVERSALS(h(n)) .

340 V. GEFFERT, C. MEREGHETTI, AND G. PIGHIZZINI

Acknowledgments. The authors wish to thank an anonymous referee for helpful
comments and remarks.

REFERENCES

[1] M. Alberts, Space complexity of alternating Turing machines, in Fundamentals of Computa-
tion Theory, Proceedings, Lecture Notes in Computer Science 199, Springer-Verlag, Berlin,
New York, 1985, pp. 1–7.

[2] B. von Braunmühl, R. Gengler, and R. Rettinger. The alternation hierarchy for machines
with sublogarithmic space is infinite, in Symposium on Theoretical Aspects of Computer
Science 1994, Proceedings, Lecture Notes in Computer Science 775, Springer-Verlag, Berlin,
New York, 1994, pp. 85–96.

[3] A. Bertoni, C. Mereghetti, and G. Pighizzini, An optimal lower bound for nonregular
languages, Inform. Process. Lett., 50 (1994), pp. 289–292; Corrigendum, 52 (1994), p. 339.

[4] A. Bertoni, C. Mereghetti, and G. Pighizzini, Strong optimal lower bounds for Turing
machines that accept nonregular languages, in Mathematical Foundations of Computer
Science 1995, Proceedings, Lecture Notes in Computer Science 969, Springer-Verlag, Berlin,
New York, 1995, pp. 309–318.

[5] A. Chandra, D. Kozen, and L. Stockmeyer, Alternation, J. Assoc. Comput. Mach., 28
(1981), pp. 114–133.

[6] V. Geffert, A hierarchy that does not collapse: Alternations in low level space, RAIRO
Inform. Théor. Appl., 28 (1994), pp. 465–512.

[7] V. Geffert, Bridging across the log(n) space frontier, in Mathematical Foundations of Com-
puter Science 1995, Proceedings, Lecture Notes in Computer Science 969, Springer-Verlag,
Berlin, New York, 1995, pp. 50–65.

[8] G. Hardy and E. Wright. An Introduction to the Theory of Numbers, 5th ed., Oxford Uni-
versity Press, 1979.

[9] J.-W. Hong, A tradeoff theorem for space and reversal, Theoret. Comput. Sci., 32 (1984),
pp. 221–224.

[10] J. Hopcroft and J. Ullman, Some results on tape–bounded Turing machines, J. Assoc. Com-
put. Mach., 16 (1969), pp. 168–177.

[11] J. Hromkovič, B. Rovan, and A. Slobodová, Deterministic versus nondeterministic space in
terms of synchronized alternating machines, Theoret. Comput. Sci., 132 (1994), pp. 319–
336.

[12] N. Immerman, Nondeterministic space is closed under complement, SIAM J. Comput., 17
(1988), pp. 935–938.

[13] K. Iwama, ASPACE(o(log logn)) is regular, SIAM J. Comput., 22 (1993), pp. 136–146.
[14] P. Lewis, R. Stearns, and J. Hartmanis, Memory bounds for the recognition of context free

and context sensitive languages, in IEEE Conference Record on Switching Circuit Theory
and Logical Design, 1965, pp. 191–202.

[15] M. Lískiewicz and R. Reischuk, The sublogarithmic alternating space world, SIAM J. Com-
put., 25 (1996), pp. 828–861.

[16] C. Mereghetti and G. Pighizzini, A remark on middle space bounded alternating Turing
machines, Inform. Process. Lett., 56 (1995), pp. 229–232.

[17] W. Savitch, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. System Sci., 4 (1970), pp. 177–192.

[18] A. Slobodová, On the power of one–way globally deterministic synchronized alternating Tur-
ing machines and multihead automata, Internat. J. Found. Comput. Sci., 6 (1995), pp. 431–
446,

[19] R. Stearns, J. Hartmanis, and P. Lewis, Hierarchies of memory limited computations, in
IEEE Conference Record on Switching Circuit Theory and Logical Design, 1965, pp. 179–
190.

[20] I. Sudborough, Efficient algorithms for path system problems and applications to alternating
and time–space complexity classes, in 21st IEEE Symposium on Foundations of Computer
Science, Proceedings, 1980, pp. 62–73.

[21] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta
Inform., 26 (1988), pp. 279–284.

[22] A. Szepietowski, Remarks on languages acceptable in log logn space, Inform. Process. Lett.,
27 (1988), pp. 201–203.

[23] A. Szepietowski, Turing Machines with Sublogarithmic Space, Lecture Notes in Computer
Science 843, Springer-Verlag, Berlin, New York, 1994.

SEPARATOR-BASED SPARSIFICATION II:
EDGE AND VERTEX CONNECTIVITY∗

DAVID EPPSTEIN† , ZVI GALIL‡ , GIUSEPPE F. ITALIANO§ , AND THOMAS H.

SPENCER¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 1, pp. 341–381

Abstract. We consider the problem of maintaining a dynamic planar graph subject to edge
insertions and edge deletions that preserve planarity but that can change the embedding. We describe
algorithms and data structures for maintaining information about 2- and 3-vertex-connectivity, and
3- and 4-edge-connectivity in a planar graph in O(n1/2) amortized time per insertion, deletion, or
connectivity query. All of the data structures handle insertions that keep the graph planar without
regard to any particular embedding of the graph. Our algorithms are based on a new type of
sparsification combined with several properties of separators in planar graphs.

Key words. analysis of algorithms, dynamic data structures, edge connectivity, vertex connec-
tivity, planar graphs

AMS subject classifications. 68P05, 68Q20, 68R10

PII. S0097539794269072

1. Introduction. Sparse certificates, small graphs that retain some property of
a larger graph, appear often in graph theory, especially in problems of edge and vertex
connectivity [2, 13, 31, 35]. The main motivation for studying sparse certificates lies
in the fact that they are effective tools for speeding up many graph algorithms. To
check whether a graph G has a given property P, one can first compute a sparse
certificate C for property P and then run an algorithm for P on the certificate rather
than on G itself. This is favorable whenever computing certificates is faster than
checking property P. This method has led to improved algorithms for testing k-edge-
and k-vertex-connectivity sequentially [16, 31, 35] and in parallel [2], for finding three
independent spanning trees [1], and for reliability in distributed networks [26]. With
the sparsification technique [8], sparse certificates additionally became an important
tool for speeding up dynamic graph algorithms, in which edges may be inserted into
and deleted from a graph while some graph property must be maintained throughout
the sequence of modifications.

∗Received by the editors June 6, 1994; accepted for publication (in revised form) October 30, 1996;
published electronically June 15, 1998. Portions of this paper were presented at the 25th Annual
ACM Symp. on Theory of Computing, San Diego, CA, 1993 [10].

http://www.siam.org/journals/sicomp/28-1/26907.html
†Department of Information and Computer Science, University of California, Irvine, CA 92697-

3425 (eppstein@ics.uci.edu, http://www.ics.uci.edu/∼eppstein/). The research of this author was
supported in part by NSF grant CCR-9258355 and by matching funds from Xerox Corp.

‡Computer Science Department, Columbia University, New York, NY 10027
(galil@cs.columbia.edu) and Computer Science Department, Tel-Aviv University, Tel-Aviv, Is-
rael. The research of this author was supported in part by NSF grant CCR-90-14605 and CISE
Institutional Infrastructure grant CCR-90-24735.

§Dipartimento di Matematica Applicata e Informatica, Università “Ca’ Foscari,” Venice, Italy
(italiano@dsi.unive.it, http://www.dsi.unive.it/∼italiano/). The research of this author was sup-
ported in part by EU ESPRIT Long Term Research Project ALCOM-IT under contract no. 20244,
by a Research Grant from University “Ca’ Foscari” of Venice, and by the Italian MURST Project
“Efficienza di Algoritmi e Progetto di Strutture Informative.”

¶Department of Computer Science, University of Nebraska at Omaha, Omaha, NB 68182-0243
(spencer@unocss.unomaha.edu). Current address: 5740 S. 100th Plaza #2A, Omaha, NB 68127.
This research was partially supported by the University Committee on Research, University of Ne-
braska at Omaha and by NSF grant CCR-9319772.

341

342 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

While sparsification has many applications in algorithms for general graphs, it
seemed unlikely that it could be used to speed up algorithms for special families of
graphs that are already sparse, such as planar graphs. However, algorithms for planar
graphs are especially important, as these graphs arise frequently in applications. In
the companion paper [11] we developed a new, general technique for dynamic planar
graph problems, based upon the notion of compressed certificates, which have both
fewer edges and fewer vertices than the original graph. We expanded the notion of
certificate to a definition for graphs in which a subset of the vertices is denoted as
interesting; these compressed certificates may reduce the size of the graph by removing
uninteresting vertices. Note that this is a generalization of the previous certificates,
as compressed certificates reduce to sparse certificates in the special case where all
the vertices are interesting. Using the notion of compressed certificates, we defined
a type of separator-based sparsification based on separators, small sets of vertices
the removal of which splits the graph into roughly equal-size components. We then
applied separator-based sparsification to maintain information about the minimum
spanning forest, connectivity, and 2-edge-connectivity of a planar graph. We further
showed how to maintain a graph subject to arbitrary edge insertions and deletions,
with queries that test whether the graph is currently planar or whether a potential
new edge would violate planarity.

In this paper we extend these ideas in several ways. Our first constribution is
to adapt separator-based sparsification from the companion paper [11] to work on
more general certificates and properties. Namely, we extend the notion of compressed
certificates to properties that can be defined with respect to a particular pair of
vertices rather than on the whole graph. We refer to these as local certificates as
opposed to global certificates. The most general notion of certificate is a full certificate,
which is at the same time a local and global certificate.

Our second contribution is to prove a number of structural properties of cer-
tificates for edge connectivity in general graphs. Among these properties, we give
necessary and sufficient conditions for a graph to be a local or global certificate of k-
edge-connectivity for any k. This characterization is not only a powerful algorithmic
tool, as we show in this paper, but also contributes a new insight into the struc-
tural properties of edge connectivity and improves our understanding of certificates.
We believe that these structural properties may be of independent interest and find
applications to other graph-theoretical areas.

Thirdly, as a first application of our compressed certificates, we use them to
develop dynamic planar graph algorithms. We maintain information about 3- and
4-edge-, and 2- and 3-vertex-connectivity in a planar graph during an intermixed se-
quence of edge deletions, edge insertions that keep the graph planar, and connectivity
queries in O(n1/2) amortized time per operation. All our algorithms improve previous
bounds: for 2- and 3-vertex- and 3-edge-connectivity, the best previous time bound
was O(n2/3) amortized [8, 19, 21], while for 4-edge-connectivity nothing better than
testing the graph from scratch after each update was known. These bounds apply
to problems in which insertions need not respect a fixed embedding of the graph; a
number of other papers have worked on dynamic graph problems such as minimum
spanning forests, connectivity, and planarity testing for graphs with a fixed planar
embedding [12, 14, 15, 18, 19, 22, 21, 24, 32, 33].

Finally, our methods apply to static as well as dynamic graph problems. A
general certificate construction method from our companion paper, together with the
certificates defined here, gives a unified method of testing 3- and 4-edge-, and 2- and

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 343

3-vertex-connectivity in planar graphs, in linear time. In recent work, Eppstein [7]
has shown how to compute k-edge- or k-vertex-connectivity in planar graphs in linear
time for any constant k.

The remainder of this paper consists of the following sections. Section 2 contains
basic definitions. In section 3 we recall some properties of separator-based sparsi-
fication and compressed certificates from reference [11]. In section 4 we prove the
properties and describe the tools we will be using for our certificates for edge connec-
tivity. In section 5 compressed certificates for edge connectivity are developed, and
our bounds for 3- and 4-edge-connectivity are proved. In section 6 sparsification is
applied to fully dynamic 2- and 3-vertex-connectivity by using compressed certificates
already available in the literature. Finally, in section 7 we list some open problems
and concluding remarks.

2. Preliminaries. In this section we introduce the notions of vertex and edge
connectivity of a graph. Next, we review a generalized tree, due to Dinitz, Karzanov,
and Lomonosov [4], that describes an elegant decomposition of a graph using its
connectivity edge-cuts.

2.1. Edge and vertex connectivity. Let G = (V,E) be an undirected graph,
possibly with parallel edges. Throughout the paper, we denote by m the number
of edges and by n the number of vertices in G. Given an integer k ≥ 2, a pair of
vertices 〈u, v〉 is said to be k-edge-connected in G if the removal of any (k − 1) edges
in G leaves u and v connected. It is well known that u and v are k-edge-connected
if and only if there are k edge-disjoint paths between u and v. k-edge-connectivity is
an equivalence relationship, and we denote it by ≡k; i.e., if a pair of vertices 〈x, y〉
is k-edge-connected, we write x ≡k y. The vertices of a graph G are partitioned by
this relationship into equivalence classes that we call k-edge-connected classes. Note
that according to this definition a k-edge-connected class of G is a subset of vertices
of G. G is said to be k-edge-connected if the removal of any (k − 1) edges leaves
G connected. As a result of these definitions, G is k-edge-connected if and only if
any two vertices of G are k-edge-connected. An edge set E′ ⊆ E is an edge-cut
for vertices x and y if the removal of all the edges in E′ disconnects G into two
graphs, one containing x and the other containing y. An edge-set E′ ⊆ E is an
edge-cut for G if the removal of all the edges in E′ disconnects G into two graphs.
An edge-cut E′ for G (for x and y, respectively) is minimal if removing any edge
from E′ and re-inserting it back into G reconnects G (x and y, respectively). The
cardinality of an edge-cut E′, denoted by |E′|, is equal to the number of edges in E′.
An edge-cut E′ for G (for x and y, respectively) is said to be a minimum edge-cut or a
connectivity edge-cut, if there is no other edge-cut E′′ for G (for x and y, respectively)
such that |E′′| < |E′|. A connectivity edge-cut of cardinality 1 is called a bridge.
The graphs left after deleting all the bridges of G are called the 2-edge-connected
components of G. Note the difference between 2-edge-connected classes and 2-edge-
connected components: a 2-edge-connected class is a subset of vertices of G, while a
2-edge-connected component is a subgraph of G. However, 2-edge-connected classes
and 2-edge-connected components are strictly related: indeed, a 2-edge-connected
component is a subgraph of G induced by a 2-edge-connected class.

We now list some well-known properties that are an immediate consequence of
the previous definitions and that will be used throughout this paper. First, any
connectivity edge-cut must be minimal and must disconnectG exactly into two graphs.
Furthermore, all the connectivity edge-cuts for G must have the same cardinality.
Thus, the notion of cardinality of the connectivity edge-cuts for G is well defined: it

344 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

gives exactly the minimum number of edges whose deletion disconnects G. Similarly,
given any two vertices x and y in G, all the connectivity edge-cuts for x and y have
the same cardinality, and we speak about the cardinality of the connectivity edge-cuts
for x and y. Given a graph G, the edge connectivity of G is defined as the cardinality
of the connectivity edge-cuts for G, i.e., the minimum number of edges whose deletion
disconnects G. We denote the edge connectivity of G by λ(G): note that G is k-edge-
connected if and only if k ≤ λ(G). Similarly, given any two vertices x and y in G, the
edge connectivity between x and y in G is defined as the cardinality of the connectivity
edge-cuts for x and y, i.e., the minimum number of edges whose deletion disconnects
x and y in G. We denote the edge connectivity between x and y in G by λx,y(G). As
a consequence of this definition, x ≡k y if and only if k ≤ λx,y(G).

Analogous definitions can be given for the case of vertex connectivity. A vertex
set V ′ ⊂ V (respectively, V ′ ⊆ V − {x, y}) is a vertex-cut for G (respectively, for
vertices x and y) if the removal of all the vertices in V ′ disconnects G (respectively,
x and y). The cardinality of a vertex-cut V ′, denoted by |V ′|, is given by the number
of vertices in V ′. A vertex-cut V ′ for G (for x and y, respectively) is said to be a
minimum vertex-cut or a connectivity vertex-cut if there is no other vertex-cut V ′′ for
G (x and y, respectively) such that |V ′′| < |V ′|. Two vertices x and y are k-vertex-
connected if and only if a minimum vertex-cut for x and y contains at least k vertices.
G is said to be k-vertex-connected if all its pairs of vertices are k-vertex-connected;
equivalently, the minimum vertex-cut of G has cardinality k or more. A minimum
vertex-cut of cardinality 1 is called an articulation point. Again, two vertices x and
y in G are k-vertex-connected if and only if there are at least k vertex-disjoint paths
between x and y.

2.2. The cactus tree. We now describe a tree-like decomposition of a k-edge-
connected graph G into its (k + 1)-edge-connected classes, which can be found in
the beautiful work of Dinitz, Karzanov, and Lomonosov [4], and which we will be
using throughout this paper. The generalized tree that describes this decomposition
is called the cactus tree: note that it need not be a standard tree. We do not give
many details here, referring the interested reader to references [4, 28]. The heart
of this decomposition is the Crossing Lemma of [4], which can be informally stated
as follows. Let G be a graph of edge connectivity λ: if any two λ-edge-cuts of G
divide V (G) into four (nonempty) parts, then shrinking these four parts produces a
super-cycle having four super-nodes and exactly λ/2 parallel edges between any two
neighbor super-nodes.

We mention some consequences of the Crossing Lemma, referring to [4, 28] for
the full details and explanations. First of all, for λ odd, λ/2 is not an integer. Thus,
according to the Crossing Lemma, for λ odd two different λ-edge-cuts of G cannot
divide V (G) into four nonempty parts. The Crossing Lemma also implies that there
can be only O(n) connectivity edge-cuts if λ is odd, and O(n2) of them if λ is even [4].
The set of all the connectivity edge-cuts of G can be compactly represented by a “tree-
like” graph with weights on the edges, called the cactus tree of G and denoted by T (G),
which can be constructed in O(m + λ2n log n) time [17]. Each vertex in G maps to
exactly one node in T (G), so that any node of T (G) corresponds to a (possibly empty)
subset of vertices from G. An edge-cut (A, Ā) in T (G) corresponds to an edge-cut
(A, Ā) of G, where A consists of all the vertices of G that are mapped into nodes of A.
A λ-cut of T (G) is an edge-cut of T (G) of total weight λ. Each minimal edge-cut of
T (G) (i.e., an edge-cut from which no edge can be removed) is also a λ-cut in T (G),
and it corresponds to a connectivity edge-cut in G. Each connectivity edge-cut in G

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 345

corresponds to one or more λ-cuts in T (G). Thus, the minimal edge-cuts of T (G)
compactly represent all the connectivity edge-cuts of G.

For λ odd, the cactus tree is particularly simple: it is actually a tree, all its edges
are of weight λ, and any minimal edge-cut of T (G) is obtained by removing one of its
edges. For λ even, we can have crossing connectivity edge-cuts, and T (G) is a tree
of cycles. Namely, T (G) consists of cycles, such that any two cycles have at most
one single node in common; thus, no edge of T (G) can be in more than one cycle.
Every edge in a cycle is called a cycle-edge and has weight λ/2. Note that there can
be cycles consisting only of two edges: we refer to these cycles as 2-cycles. Minimal
edge-cuts of T (G) are obtained by removing any pair of cycle-edges that lies on the
same cycle. Hence, a 2-cycle defines only one minimal edge-cut of T (G), while a cycle
with p ≥ 3 edges defines exactly p(p− 1)/2 distinct minimal edge-cuts of T (G). The
cactus tree of a graph is basically unique, up to the following convention: if λ is even,
either three nodes can be in a triangle of cycle-edges, or they can all be joined to
another new node with 2-cycles.

We now describe in more detail the cactus trees we will be using, namely, the
cases λ = 1, 2, 3. The interested reader can find further details on cactus trees in
references [4, 28]. If G has edge connectivity λ = 1, the cactus tree is actually a
tree, called the bridge-block tree of G: its nodes correspond to the 2-edge-connected
classes (and thus components) of G, and its edges to the bridges of G. For λ = 2, the
cactus tree is a tree of cycles: indeed, if we shrink the 3-edge-connected classes of a 2-
edge-connected graph, each biconnected component of the shrunken graph is a simple
cycle. Even though the shrunken graph is not a tree, it can easily be represented as
such (see Figure 1).

For λ = 3 the cactus tree is actually a tree having one node for each 4-edge-
connected class and one edge for each 3-edge-cut. There might also be nodes in the
cactus that correspond to no 4-edge-connected classes of G, as shown in Figure 2.
We refer the interested reader to [4, 28] for a more detailed explanation about these
nodes and only mention here that they are needed to keep the correspondence between
minimal cuts of T (G) and connectivity edge-cuts of G.

3. Separator-based sparsification. Sparsification was introduced in [8] as a
technique for designing fully dynamic graph algorithms, in which edges may be in-
serted into and deleted from a graph while some graph property must be maintained.
This technique is based upon a suitable combination of graph decomposition and edge
elimination and can be described as follows. Let G be a graph with m edges and n
vertices: we partition the edges of G into a collection of sparse subgraphs (i.e., sub-
graphs with O(n) edges) and summarize the relevant information for each subgraph
in an even sparser certificate. Intuitively, a certificate for a given property is a smaller
graph that retains the same property (we will give a more precise definition later).
We merge certificates in pairs, producing larger subgraphs which we make sparse by
again applying the certificate reduction. The result is a balanced binary tree in which
each node is represented by a sparse certificate. Each edge insertion or deletion causes
changes in log(m/n) tree nodes, but each such change occurs in a subgraph with O(n)
edges, reduced from the m edges in the original graph. This reduces a time bound of
T (m,n) to O(T (O(n), n) log(m/n)). Using a more sophisticated approach (described
in [9]), we can eliminate the logarithmic factor from this bound. This reduces the
time bounds for many dynamic graph problems, including vertex and edge connec-
tivity and minimum spanning forests, to exactly match the bounds known for sparse
graphs.

346 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

Fig. 1. (a) A 2-edge-connected graph G; (b) the cactus tree of G; (c) the tree obtained by
replacing each cycle of the cactus tree with a new vertex.

In the companion paper [11], we developed a new, general technique for dy-
namic planar graph problems. In all these problems, we deal with either arbitrary
or planarity-preserving insertions and therefore allow changes of the embedding. The
new ideas behind this technique are the following. We expand the notion of a cer-
tificate to a definition for graphs in which a subset of the vertices is denoted as
interesting; these compressed certificates may reduce the size of the graph by remov-

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 347

(a)

(b)

Fig. 2. A 3-edge-connected graph G and its cactus tree. The 3-edge-cuts of G are shown as
dashed lines. Nodes of the cactus not corresponding to 4-edge-connected classes of G are shown in
white.

ing uninteresting vertices. Using this notion of compressed certificates, we define a
type of sparsification based on separators, small sets of vertices the removal of which
splits the graph into roughly equal-size components. Recursively finding separators
in these components gives a separator tree which we also use as our sparsification tree;
the interesting vertices in each certificate will be those vertices used in separators at
higher levels of the tree. We introduce the notion of a balanced separator tree, which
also partitions the interesting vertices evenly in the tree. In [11], we show how to
compute such a tree in linear time and how to maintain it dynamically. We call this
technique separator-based sparsification.

Separator-based sparsification, as described in [11], applies to properties of the
entire graph (such as planarity). However, there are some other properties that can
be described either as a global graph property or in terms of pairs of vertices. More
generally, let P a property of graphs: we say that P is local if it can be defined with
respect to a particular pair (x, y) of vertices in the graph. A query related to property
P is referred to as global if P is meant for the entire graph and is referred to as local
if P is meant for a particular pair (x, y). Examples of local properties are edge and
vertex connectivity, which are defined both for the entire graph (global property) and
for any pair of vertices in the graph (local property). While maintaining a graph
under edge insertions and deletions, at any time we might ask queries on whether the
entire graph is k-vertex- (edge-) connected (global k-connectivity query), or rather,
we might want to ask queries on whether any two given vertices are k-vertex- (edge-)
connected (local k-connectivity query).

348 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

In this paper, we extend separator-based sparsification to work also on local
properties. We first need the notion of certificate from [11], for which we adopt
the new terminology of global certificate,

Definition 3.1. Let graph property P be fixed and let G be a graph with a set
X ⊆ V (G). A global certificate for X in G is a graph C, with X ⊆ V (C), such that
for any H with V (G) ∩ V (H) ⊆ X, V (C) ∩ V (H) ⊆ X, G ∪H has property P if and
only if C ∪H has the property.

The set X in Definition 3.1 represents the interesting vertices of G. According
to this definition, a global certificate C captures the behavior of the entire graph G
with respect to additions that only touch the interesting vertices. For instance, let
P be k-edge-connectivity and let C be a global certificate for X in G: then, for any
H such that V (H) ∩ V (G) ⊆ X, C ∪ H is k-edge-connected if and only if G ∪ H
is k-edge-connected. Note that when X = V (G), this definition reduces to the one
in [8].

For local properties, we need a slightly different notion of certificate, which we
call a local certificate.

Definition 3.2. Let P be a local property of graphs and let G be a graph with
a set X ⊆ V (G). A graph C is a local certificate of P for X in G if and only if for
any H with V (H) ∩ V (G) ⊆ X, V (C) ∩ V (H) ⊆ X, and any x and y in V (H), P is
true for (x, y) in G ∪H if and only if it is true for (x, y) in C ∪H.

Note that a local certificate C has to preserve the behavior of the property not
only with respect to the interesting vertices in G, but also with respect to all vertices
in H. For instance, let P be k-edge-connectivity, and let C be a local certificate for
X in G: then, for any H such that V (H) ∩ V (G) ⊆ X, and any x, y ∈ V (H), x ≡k y
in C ∪H if and only if x ≡k y in G ∪H.

The two notions of global and local certificate can be combined together to yield
a stronger notion of certificate.

Definition 3.3. Let graph property P be fixed and let G be a given graph with
X ⊆ V (G). A full certificate for X in G is graph C, which is both a global and a local
certificate for X in G.

For instance, let P be k-edge-connectivity and let C be a full certificate for X in
G: then, for any H such that V (H) ∩ V (G) ⊆ X, we have that

(i) C ∪H is k-edge-connected if and only if G ∪H is k-edge-connected; and
(ii) for any x, y ∈ V (H), x ≡k y in C ∪H if and only if x ≡k y in G ∪H.

Note that both conditions are needed, since neither (i) implies (ii), nor (ii) implies (i).
As an example of full certificate, let P be connectivity. We partition the vertices of X
into their connected components in G and replace each connected component by any
spanning tree. We claim that this yields a full certificate for connectivity. Indeed, if
two vertices in G ∪H are connected by a path, then at each point the path switches
between edges of G and edges of H, it will pass through a vertex x ∈ X, and the
portion of the path in G can be replaced by a path through the spanning forest of the
partition set containing x. Thus vertices are connected in G ∪H if and only if they
are connected in C ∪H (i.e., C is a local certificate) and G ∪H is connected if and
only if C ∪H is connected (i.e., C is a global certificate). This shows that C is indeed
a full certificate.

We will use the term certificates to refer in general to certificates of all types (full,
global, or local). We will use explicitly the terms full certificates, global certificates,
and local certificates when we refer to these kinds of certificates only. Our method
hinges upon the notion of compressed certificate.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 349

Definition 3.4. Let graph property P be fixed and let G be a given graph with
X ⊆ V (G). A compressed certificate for X in G is a certificate C for X in G, such
that |C| = O(|X|).

Some basic lemmas about global certificates were proved in the companion pa-
per [11]. They can be easily extended to local and full certificates as well.

Lemma 3.1 (see [11]). Let C be a certificate for some set X in a given graph G
and let C ′ be a certificate for X in C. Then C ′ is also a certificate for X in G.

Lemma 3.2 (see [11]). Let C ′ be a certificate for X ′ in G′ and let C ′′ be a
certificate for X ′′ in G′′, with V (G′)∩V (G′′) ⊆ X ′∩X ′′. Then C ′∪C ′′ is a certificate
for X ′ ∪X ′′ in G′ ∪G′′.

The following lemma is an immediate consequence of the definition of certificate.

Lemma 3.3. Let C be a certificate for some set X in a given graph G. Then C
is also a certificate for any set X ′ ⊂ X in G.

Proof. Fix any X ′ ⊂ X. Let H be given, with V (H)∩V (G) ⊆ X ′. Since X ′ ⊂ X,
we have that V (H) ∩ V (G) ⊂ X. We claim that this is enough to prove the lemma.
Indeed, let P be the property for which C is a certificate. If C is a global certificate
for X in G, it follows that C ∪H has property P if and only if G ∪H has property
P. Thus, C is a global certificate for X ′ in G. If C is a local certificate for X in G,
it follows that, given any two vertices x, y ∈ V (H), P is true for x and y in C ∪ H
if and only if P is true for x and y in G ∪H. Thus, C is a local certificate for X ′ in
G too. If C is both a local and a global certificate for X in G, then by the previous
argument, C will be both a local and a global certificate for X ′ in G.

We showed in [11] that, under certain weak assumptions, the existence of com-
pressed certificates for all G and X is sufficient to prove the existence of a linear-time
algorithm for computing such certificates. We require our certificates to satisfy the
following additional property.

Definition 3.5. Given a graph G and a set of interesting vertices X, we say that
a certificate C for X in G preserves planarity if, for any H such that V (H)∩V (G) ⊆
X, if G ∪H is planar, C ∪H will also be planar.

According to Definition 3.5, C ∪H may be planar even when G ∪H is not. As
examples of planarity-preserving certificates, C may itself be a certificate for planarity;
alternately, C may be a subgraph or minor of G.

The following lemma is proved in the companion paper [11] for global certificates
and the proof can be easily extended to local and full certificates.

Lemma 3.4 (see [11]). Let P be a property for which there exist compressed
certificates that preserve planarity. Then in linear time we can compute a compressed
certificate for P.

We now describe an abstract version of our sparsification technique. We first
consider global certificates (used to maintain global graph properties) and then show
how the same technique can be made to work with local certificates, used to maintain
local properties.

Let P be a property of planar graphs for which we can find compressed global
certificates in time T (n) = Ω(n) and such that we can construct a data structure for
testing property P in time P (n) which can answer queries in time Q(n). Then we
wish to use these global certificates to maintain P quickly.

We construct a separator tree for the graph, by finding a set of cn1/2 vertices
(for some constant c) which splits the remaining graph into two components of less
than 2n/3 vertices each, and repeatedly split each component until there are O(n1/2)
components of size O(n1/2) each; we call these the leaf components. This can all

350 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

be done in O(n) time [23]. The resulting tree has height O(log n). When an edge
connects two separator vertices, we arbitrarily choose which component to include it
in, so each edge is included in a unique leaf component. Each time we insert a new
edge, we will include its two endpoints in the separator for the node in the tree (if one
exists) for which the two vertices are in the two separate components. After O(n1/2)
insertions, we reconstruct the separator tree, in amortized time O(n1/2) per insertion.

At each node in the tree, the interesting vertices are those that are used either in
the separator for that node or for separators at higher levels in the tree. Note that
there will initially be at most

cn
1
2

dlogne∑
i=0

(
2

3

) i
2

= O
(
n

1
2

)

interesting vertices per tree node, and at most O(n1/2) interesting vertices can be
added by insertions before we reconstruct the tree. By the construction above, leaf
components can share only interesting vertices. Furthermore, a vertex that is not
interesting (in any leaf component) belongs to exactly one leaf component.

Each tree node corresponds to a subgraph which will be represented by a com-
pressed global certificate for its interesting vertices. We form this global certificate by
taking the union of the two compressed global certificates for the two daughter nodes
(which by Lemma 3.2 is a global certificate for the graph at the node itself), and then
computing a compressed global certificate of this union (which by Lemma 3.1 is also a
global certificate for the node). We construct the data structure for testing property
P using the global certificate at the tree root. This allows us to test property P in
Q(O(n1/2)) time.

When we reconstruct the separator tree, we must also reconstruct the global
certificates, in T (O(n1/2)) time per tree node. There are O(n1/2) tree nodes, and
we reconstruct after every O(n1/2) insertions, so the amortized time per insertion is
T (O(n1/2)).

When we perform an insertion of an edge (x, y) that does not reconstruct the
separator tree, we may move the two vertices x and y into the separator of a tree node
N ; then in all nodes descending from N and containing either of the two vertices, x
and y may become newly interesting, and we must recompute the global certificates.
However, this can happen only if either x or y was not interesting already. In other
words, only the global certificates in the path between N and at most two leaves need
to be updated. Furthermore, we must also recompute certificates for all tree nodes
containing the newly inserted edge: these are exactly the nodes between N and the
root of the separator tree. In either case, O(log n) tree nodes need recomputation, and
the time to recompute certificates in each node is T (O(n1/2)). Finally, we reconstruct
the data structure for testing property P in the global certificate at the tree root in
P (O(n1/2)) time. The implementation of deletion is similar; here, too, we recompute
global certificates in O(log n) nodes, in the same time bound.

Thus there is a fully dynamic algorithm for maintaining P, which takes P (O(n1/2))
+ T (O(n1/2))O(log n) amortized time per edge insertion or deletion, and Q(O(n1/2))
time per query. The amortized bound can be made worst-case by standard techniques
of keeping two copies of the data structure, one of which can be gradually rebuilt while
the other is being used.

In the companion paper [11], we develop a more complicated variant of this tech-
nique that allows us to save an O(log n) factor in the time bound above. The basic

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 351

idea is to use a separator tree which also partitions the interesting vertices evenly in
the tree. In this way the nodes at lower levels of the separator tree will be able to have
certificates smaller than O(n1/2). In order to maintain this property of the separator
tree we must then recompute lower-level separators after smaller numbers of updates.

Definition 3.6. Let G be a planar graph. A balanced separator tree for G is
a separator tree such that a node at level i, i ≥ 0, has at most abin1/2 interesting
vertices, for some constants a > 0 and 0 < b < 1.

The proofs of the following two theorems are in [11].
Theorem 3.1 (see [11]). A balanced separator tree can be constructed in linear

time.
Theorem 3.2 (see [11]). Let P be a graph property for which we can find com-

pressed global certificates in time T (n) = Ω(n) and such that we can construct, in
P (n) time, a data structure that tests property P in Q(n) time. Then there is a fully
dynamic algorithm for maintaining P in a planar graph subject to insertions and dele-
tions preserving planarity, which takes P (O(n1/2)) + T (O(n1/2)) amortized time per
edge insertion or deletion and Q(O(n1/2)) time per global query.

We next describe how sparsification may apply to local properties such as vertex
and edge connectivity.

Theorem 3.3. Let P be a local graph property for which we can find compressed
local certificates in time T (n) = Ω(n) and such that we can construct a data structure
for testing property P in time Q(n). Then there is a fully dynamic algorithm for
maintaining P in a planar graph, which takes amortized time T (O(n1/2)) per edge
insertion or deletion, and worst-case time Q(O(n1/2)) + T (O(n1/2)) per local query.

Proof. We use the balanced separator tree of Theorem 3.1, but this time we store
at its nodes local certificates rather than global certificates. The amortized bound
for updates follow now from Theorem 3.2. To test the local property P for two given
vertices x and y, we first make x and y interesting vertices in the local certificate at the
tree root. Once x and y are interesting, it is then easily verified that a local certificate
for local property P is a global certificate for the simple property P(x, y). To make x
and y interesting, we reconstruct the local certificates of all nodes containing either
one of them. We do not reconstruct the separator tree even if the operation should
normally do so. As in the proof of Theorem 3.2, this involves recomputing local
certificates in O(log n) nodes in the separator tree of sizes increasing in a geometric
series, and therefore can be done in T (O(n1/2)) time. To answer a query regarding
property P for vertices x and y, we construct the data structure for testing property
P in the local certificate at the tree root in P (O(n1/2)) time. Finally, we undo all the
changes we made.

Theorems 3.2 and 3.3 can be combined as follows.
Theorem 3.4. Let P be a local graph property for which we can find compressed

full certificates in time T (n) = Ω(n) and such that we can construct a data structure
for testing property P in time Q(n). Then there is a fully dynamic algorithm for
maintaining P in a planar graph, which takes amortized time T (O(n1/2)) per edge
insertion or deletion, and worst-case time Q(O(n1/2)) + T (O(n1/2)) per either global
or local query.

4. Properties of certificates for edge connectivity. Let G be an undirected
graph, with interesting vertices X ⊆ V (G). In this section we give necessary and
sufficient conditions for a graph C to be a full certificate of k-edge-connectivity for X
inG. Namely, we will show that it is crucial to keep information about the connectivity
edge-cuts that involve only the interesting vertices in X. This will be exploited in the

352 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

next sections in order to build our full certificates for edge connectivity.

Let V1 and V2 be any two nonempty disjoint subsets of vertices in G. We say that
a set of edges E′ ⊆ E(G) disconnects V1 and V2 if removing all the edges in E′ from
G leaves no path between vertices in V1 and vertices in V2. We denote by λV1,V2(G)
the minimum number of edges of G whose removal disconnects V1 and V2. Note that
λV1,V2

(G) = λV2,V1
(G). When V1 = {u} and V2 = {v}, we obtain the definition of

edge connectivity between vertices u and v. The edge connectivity λ(G) of G satisfies
the equality

λ(G) = min
u,v∈V (G)

{λu,v(G)} = min
∅⊂V1,V2⊂V (G)

V1∩V2=∅

{λV1,V2(G)}.

Let ∅ ⊂ R ⊂ X; then we denote by λR(G) the quantity λR,X−R(G). If R = ∅ or
R = X, we instead let λR(G) denote the minimum number of edges that must be
removed from G in order to disconnect X from at least one other vertex in [V (G)−X].

We can use this notation to characterize full certificates of edge connectivity.
Before doing this, we need a technical lemma. Often the easiest way to show that
a graph C is a certificate of edge connectivity is to show that appropriate edge-cuts
exist. These edge-cuts are edge-cuts of a graph that is the union of two other graphs.
The following lemma gives sufficient conditions for constructing an edge-cut of G∪H
from an edge-cut of G and an edge-cut of H.

Lemma 4.1. Let G and H be graphs such that V (G)∩ V (H) ⊆ X. Furthermore,
let γG and γH be edge-cuts of G and H, respectively. Suppose that γG divides G into
G1 and G2 and that γH divides H into H1 and H2. Then, if (V (G1) ∩ V (H2)) ∪
(V (G2) ∩ V (H1)) = ∅, then γ = γG ∪ γH is an edge-cut of G ∪H that divides it into
G1 ∪H1 and G2 ∪H2.

Proof. No edge outside γG ∪ γH can cross from G1 ∪ H1 to G2 ∪ H2. For if
such an edge belonged to G, it would have to cross from (G1 ∪ H1) ∩ G = G1 to
(G2 ∪H2)∩G = G2 and would therefore belong to γG, and symmetrically, if such an
edge belonged to H, it would belong to γH .

Suppose that we are interested in k-edge-connectivity for k ≤ K. Then, for C to
be a certificate of k-edge-connectivity for X in G, the edge-cuts with k or fewer edges
in G should correspond to edge-cuts of the same size in C. Making this formal, we
have the following.

Lemma 4.2. If C is a full certificate of k-edge-connectivity for X in G, for every
k ≤ K, then, for any subset ∅ ⊆ R ⊆ X of interesting vertices,

min{λR(G),K} = min{λR(C),K}.(4.1)

Proof. Suppose that for some ∅ ⊆ R ⊆ X, min{λR(G),K} 6= min{λR(C),K}. We
want to find a graph H that shows that C is not a full certificate of k-edge-connectivity
for X in G. Note that either λR(C) < K or λR(G) < K.

If R = ∅ or R = X, let H have vertices X ∪ {z} and K edges between z and
each vertex in X. Any minimal edge-cut of G∪H that contains any edges in H must
then contain all K of the edges between z and some vertex x ∈ X. Any edge-cut
that does not contain any edges from H must separate X from some other vertex in
G. Thus, if λ(G ∪ H) < K, then λ(G ∪ H) = λ∅(G) = λR(G). Similarly, the edge
connectivity λ(C ∪H) is λ∅(C) = λR(C) unless λ∅(C) > K, in which case the edge
connectivity is at least K. Therefore, since λ∅(C) < K or λ∅(G) < K, we have that

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 353

λ(G∪H) 6= λ(C ∪H), so C is not a global certificate of k-edge-connectivity for some
k ≤ K.

Alternately, it may be the case that ∅ ⊂ R ⊂ X. In this case, construct H with
vertices X∪{z1, z2}, K edges from z1 to each vertex in R, and K edges from z2 to each
vertex in X −R. Again, no minimal edge-cut separating z1 and z2 in G∪H contains
an edge of H unless it contains all K of the edges between two vertices in H. Thus,
any edge-cut separating z1 and z2 and containing no edges of H must separate R and
X−R. This implies that if λz1,z2(G∪H) < K, then λz1,z2(G∪H) = λR(G). Similarly,
the edge-connectivity between z1 and z2 in C∪H is λR(C) unless λR(C) > K, in which
case the edge-connectivity is at least K. Therefore, since λR(C) < K or λR(G) < K,
we have that λz1,z2(G ∪H) 6= λz1,z2(C ∪H), so C is not a local certificate of k-edge-
connectivity for some k ≤ K.

Not only is (4.1) a necessary condition for C to be a full certificate, it is also
sufficient. First, let us see that it is a sufficient condition for C to be a local certificate.

Lemma 4.3. Let K be a given integer. Let G be a given graph, with interesting
vertices X ⊆ V (G). If for any proper subset R of interesting vertices, ∅ ⊂ R ⊂ X:

min{λR(G),K} = min{λR(C),K},
then C is a local certificate of k-edge-connectivity for X in G, for every k ≤ K.

Proof. This is equivalent to showing that, for any graph H such that V (H) ∩
V (G) ⊆ X, V (H) ∩ V (C) ⊆ X, and for any two vertices x, y ∈ H, the following is
true:

1. if λx,y(G ∪H) < K, then λx,y(C ∪H) ≤ λx,y(G ∪H), and
2. if λx,y(C ∪H) < K, then λx,y(G ∪H) ≤ λx,y(C ∪H).

Now we would like to see that 1 holds. Let γ be a minimum edge-cut that
disconnects x from y in G ∪ H. Since it is a minimal edge-cut, it separates G ∪ H
into exactly two pieces S1 and S2. Without loss of generality, assume that x ∈ S1 and
y ∈ S2. Let X1 = S1 ∩X, X2 = S2 ∩X, G1 = S1 ∩ G, G2 = S2 ∩ G, H1 = S1 ∩H,
and H2 = S2 ∩H. Note that x ∈ H1 and y ∈ H2. Further, let γG = γ ∩ E(G) and
γH = γ ∩ E(H).

If X2 = ∅, then X = X1, G2 = ∅, and G = G1. So, γG = ∅ and γ = γH . In this
case, γ = γH disconnects G∪H into G∪H1 and H2, with x ∈ H1 and y ∈ H2. Since
V (C) ∩ V (H) ⊆ X = X1, replacing G with C yields that γ = γH disconnects C ∪H
into C ∪H1 and H2, with x ∈ (G ∪H1) and y ∈ H2. Hence, the very same edge-cut
γ disconnects x and y in C ∪H. Similarly, we can assume that X1 6= ∅.

If |γ| ≥ K, there is nothing to prove. Otherwise, we need to construct γ′ as an
edge-cut of C ∪H that disconnects x from y and such that |γ′| ≤ |γ|. Note that γG
disconnects X1 from X2 in G, so |γG| ≥ λX1,X2(G). Since X = X1∪X2, λX1,X2(G) =
λX1

(G). Moreover, since |γG| ≤ |γ| < K, λX1
(G) = λX1

(C) = λX1,X2
(C). This means

that there is an edge-cut γC of C that disconnects X1 from X2 such that |γC | ≤ |γG|.
Thus, if γ′ = γH ∪ γC , then |γ′| ≤ |γ|.

Now we would like to see that γ′ disconnects x from y in H ∪ C. Define C1

and C2 so that γC divides C into C1 and C2. Note that γC and γH both partition
X in the same way, so we can assume that X1 ⊆ V (C1) and X2 ⊆ V (C2). Since
V (C) ∩ V (H) ⊆ X, this means that (V (C1) ∪ V (H1)) ∩ (V (C2) ∪ V (H2)) = ∅, so
Lemma 4.1 says that γ′ is an edge-cut of C ∪H that disconnects x from y.

To prove that 2 holds, we use exactly the same proof with the roles of G and C
switched. Therefore, C is a local certificate of k-edge-connectivity for X in G.

If the condition also holds when R = ∅ or R = X, then C is also a global
certificate.

354 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

Lemma 4.4. Let K be a given integer. Let G be a given graph, with interesting
vertices X ⊆ V (G). If for any subset R of interesting vertices, ∅ ⊆ R ⊆ X:

min{λR(G),K} = min{λR(C),K},
then C is a global certificate of k-edge-connectivity for X in G, for every k ≤ K.

Proof. Let H be any graph such that V (H) ∩ V (G) ⊆ X. Suppose that γ is a
minimum k-edge-cut of G∪H that divides the graph into S1 and S2, and that k < K.
If both S1 and S2 contain vertices in H, then the fact that C is a local certificate of
k-edge-connectivity for X in G shows that there is a k-edge-cut of C∪H. Alternately,
if S1 (say) contains no vertices from H, then γ contains only edges from G, since every
edge in a minimal edge-cut connects a vertex in S1 to a vertex in S2. This means that
λ∅(G) ≤ k. Since k < K, λ∅(G) = λ∅(C) ≤ k, so C ∪H has a k-edge-cut as well.

Conversely, suppose that γ′ is a minimum k-edge-cut of C ∪H that divides the
graph into S1 and S2, and that k < K. If both S1 and S2 contain vertices in H,
then the fact that C is a local certificate of k-edge-connectivity for X in G shows
that there is a k-edge-cut of G∪H. Alternately, if S1 (say) contains no vertices from
H, then γ′ contains only edges from C. This means that λ∅(C) ≤ k. Since k < K,
λ∅(C) = λ∅(G) ≤ k, so G ∪H has a k-edge-cut as well. Therefore, C is a global, as
well as local, certificate of k-edge-connectivity provided that k ≤ K.

Putting these three lemmas together, we have Theorem 4.1.
Theorem 4.1. Let K be a given integer. Let G be a given graph, with interesting

vertices X ⊆ V (G). C is a full certificate of k-edge-connectivity for X in G, for every
k ≤ K, if and only if for any subset R of interesting vertices, ∅ ⊆ R ⊆ X:

min{λR(G),K} = min{λR(C),K}.

4.1. Split graphs and certificates. We now prove some properties about split-
ting 2-edge-connected graphs and computing their certificates for edge connectivity.
Let G be a 2-edge-connected graph, and let {e1, e2} be a 2-edge-cut in G. Let G1

and G2 be the two graphs obtained from G after the deletion of {e1, e2}, and let
e1 = (u1, u2) and e2 = (v1, v2) be such that u1, v1 are in G1 and u2, v2 are in G2.
We call this a split and call G1 ∪ {(u1, v1)} and G2 ∪ {(u2, v2)} the two split graphs
of G with respect to the 2-edge-cut {e1, e2}. Note that {(u1, v1)} and {(u2, v2)} are
not originally edges of G: they are called the virtual edges associated with the split.
The operation inverse to a split is called a merge: it takes two split graphs with re-
spect to the same 2-edge-cut and merges them back together, yielding the original
graph. We observe that splits and merges preserve planarity. Indeed, the split graphs
G1∪{(u1, v1)} and G2∪{(u2, v2)} can be obtained from G by means of edge contrac-
tions (for instance, G1 ∪ {(u1, v1)} can be obtained after contracting e1 and all the
edges in G2). Hence, if G is planar, the split graphs G1∪{(u1, v1)} and G2∪{(u2, v2)}
obtained after a split are planar. Conversely, if the split graphs are planar, the graph
obtained after a merge will be planar. Figure 3 illustrates splits and merges.

Lemma 4.5. Let G be a 2-edge-connected graph, and let k ≥ 2 be an integer.
Let {e1, e2} be any 2-edge-cut of G. For i = 1, 2 let us denote by Gi ∪ {(ui, vi)}
the split graphs of G with respect to the 2-edge-cut {e1, e2}. Let x and y be any two
vertices in the same split graph Gi ∪{(ui, vi)}. Then x and y are k-edge-connected in
Gi ∪ {(ui, vi)} if and only if they are k-edge-connected in G.

Proof. Without loss of generality, let x and y be any two vertices of G1∪{(u1, v1)}.
Since G is 2-edge-connected, any two edges of G are contained in a cycle. In particular,

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 355

(a) (b)

u u
1 2

v v1 2

G G
1 2

merge

split

G
1

G
2

u
1 u

2

v
1

v
2

Fig. 3. Splitting and merging a 2-edge-connected graph and its split graphs. Virtual edges are
dashed.

there is a cycle in G containing edges e1 and e2. This implies that there exists a path
π1 between vertices u1 and v1 that is entirely contained in G1, and a path π2 between
u2 and v2 that is entirely contained in G2.

Assume x and y are k-edge-connected in G1 ∪ {(u1, v1)}. Then there are k edge-
disjoint paths in G1∪{(u1, v1)} between x and y, and at most one of them can use the
edge (u1, v1). If none of these paths use (u1, v1), there will be k edge-disjoint paths
between x and y in G. If one of these paths use (u1, v1), then the path in G containing
e1, π2, and e2 in place of (u1, v1) is a path between x and y that is edge-disjoint from
the other (k − 1) paths in G1. In both cases, x and y are k-edge-connected in G.

Conversely, assume that x and y are k-edge-connected in G. Again, at most one
of the k edge-disjoint paths between x and y can go through G2. If all the k-edge-
disjoint paths between x and y are contained in G1, x and y are k-edge-connected in
G1 ∪{(u1, v1)} too. If one of these paths go through G2, replacing this portion of the
path with the edge (u1, v1) gives a path in G1 ∪{(u1, v1)} which is edge-disjoint from
the other (k − 1) paths.

The following corollary is an easy consequence of Lemma 4.5.
Corollary 4.1. Let G be a 2-edge-connected graph, and let {e1, e2} be any

2-edge-cut of G. The split graphs of G with respect to {e1, e2} are 2-edge-connected.
Since the split graphs of G are 2-edge-connected, the same splitting can be applied

recursively to the split graphs of G, and to their split graphs, and so on. When no
further splits are possible, each split graph left is 3-edge-connected and corresponds
to exactly one 3-edge-connected class of the original graph. This gives another way of
defining the cactus tree of a graph with edge connectivity 2. We call these final split
graphs the 3-edge-connected components of G. We point out here a difference between
2-edge-connectivity and 3-edge-connectivity. For 2-edge-connectivity, the subgraph
induced by a 2-edge-connected class is 2-edge-connected and coincides with a 2-edge-
connected component. On the contrary, the subgraph induced by a 3-edge-connected
class may differ from a 3-edge-connected component. Indeed, the subgraph induced
by a 3-edge-connected class is not necessarily even connected, while the addition of
the virtual edges makes a 3-edge-connected component 3-edge-connected. We remark
that this decomposition of a 2-edge-connected graph is similar to the decomposition
of a biconnected graph into its triconnected components [25], and it is implicit in the
work of Dinitz [5].

Let G be a 2-edge-connected graph, and consider the following operation: split G
and compute a full certificate of k-edge-connectivity, k ≥ 2, for one of its split graphs;
then merge this certificate with the other split graph. We will prove that by doing

356 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

so we obtain a full certificate of k-edge-connectivity, k ≥ 2, for the original graph G.
This property will be useful later on. We now summarize the notation used.

— G: a 2-edge-connected graph;
— X ⊆ V (G): the interesting vertices of G;
— {e1, e2}: a 2-edge-cut in G, with e1 = (u1, u2) and e2 = (v1, v2);

— Ĝ1 = G1∪{(u1, v1)}, Ĝ2 = G2∪{(u2, v2)}: the split graphs of G with respect
to {e1, e2}; u1, v1 ∈ V (G1) and u2, v2 ∈ V (G2);

— X1 = (X ∩ V (G1)) ∪ {u1, v1}: the interesting vertices in G1 augmented with
u1 and v1;

— Ĉ1 = C1 ∪ {(u1, v1)}: a full certificate of k-edge-connectivity for X1 in Ĝ1

(note that this certificate keeps the virtual edge (u1, v1) of Ĝ1);
— H: any graph such that V (H) ∩ V (G) ⊆ X;
— F = G2 ∪H ∪ {e1, e2}. Namely, the vertices of F are u1, v1 plus the vertices

of G2 and H; the edges of F are e1, e2 plus the edges of G2 and H.
Note that G = G1 ∪ {e1, e2} ∪ G2. We further define C = C1 ∪ {e1, e2} ∪ G2. The
point of all of this is that C is a full certificate of k-edge-connectivity for X in G. To
prove this, we first prove that it is a local certificate and then prove that it is a global
certificate.

Lemma 4.6. Let K be a given integer. Let Ĉ1 = C1 ∪ {(u1, v1)} be a local

certificate of k-edge-connectivity for X1 in Ĝ1 = G1 ∪ {(u1, v1)} for every k ≤ K.
Then C = C1 ∪ {e1, e2} ∪ G2 is a local certificate of k-edge-connectivity for X in G
for every k ≤ K.

Proof. Again, the idea behind the proof is to show that the appropriate edge-cuts
exist. Specifically, we need to show that for any H such that V (G) ∩ V (H) ⊆ X,
V (C) ∩ V (H) ⊆ X, and for any x, y ∈ V (H):

1. if λx,y(G ∪H) < K then λx,y(C ∪H) ≤ λx,y(G ∪H), and
2. if λx,y(C ∪H) < K then λx,y(G ∪H) ≤ λx,y(C ∪H).

Suppose that γ is a minimum edge-cut that disconnects x from y in G ∪H and
that |γ| < K. Since γ is a minimum edge-cut, it separates G ∪ H into two pieces

S(x) and S(y), with x ∈ S(x) and y ∈ S(y). Let G
(x)
1 = G1 ∩ S(x), G

(y)
1 = G1 ∩ S(y),

F (x) = F ∩S(x), F (y) = F ∩S(y), X
(x)
1 = X1 ∩S(x), and X

(y)
1 = X1 ∩S(y). Note that

G1 = G
(x)
1 ∪G(y)

1 , X1 = X
(x)
1 ∪X(y)

1 , and F = F (x) ∪ F (y). Since x ∈ (S(x) ∩H) and
y ∈ (S(y) ∩H), we must have x ∈ F (x) and y ∈ F (y). Also let γG1

= γ ∩G1 and let

γF = γ − γG1
. Note that γF disconnects X

(x)
1 ∩ V (F) from X

(y)
1 ∩ V (F) in F .

If γG1 is empty, then γF = γ. G1 is connected by the assumption that G is

biconnected, so one of G
(x)
1 or G

(y)
1 is empty and the other one contains all of G1.

Without loss of generality G
(x)
1 = ∅. C1 is not reachable from x in C ∪H − γ, since

any path connecting x to C1 in C ∪H would connect x to G1 in G∪H, and so must
be cut by γ. Then x is separated from y in C ∪H − γ, since no path from x can go
through C1, and since any path avoiding C1 would also exist in G ∪H − γ.

Alternately, assume that γG1 is not empty. We claim that in this case neither X
(x)
1

nor X
(y)
1 can be empty. Indeed, if either X

(x)
1 or X

(y)
1 were empty, then the removal

of all the edges of γ from G ∪ H would leave all the vertices of X1 still connected.
Since V (H)∩V (G1) ⊆ X1, any path of G∪H between x ∈ V (H) and y ∈ V (H) that
contains an edge of G1 must also contain a vertex of X1 (recall that, by definition,
u1, v1 ∈ X1). Thus, in this case, γF would be an edge-cut of G∪H that disconnects x
from y. Since γ is by assumption a minimum edge-cut, this implies by contradiction

that neither X
(x)
1 nor X

(y)
1 can be empty.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 357

Without loss of generality, assume that u1 ∈ G
(x)
1 . We have two cases depending

on whether v1 ∈ G
(x)
1 or v1 ∈ G

(y)
1 . Suppose first that v1 ∈ G

(x)
1 . In this case, γG1

is

an edge-cut of Ĝ1 that disconnects X
(x)
1 from X

(y)
1 . Consequently, λ

X
(x)
1

(Ĝ1) ≤ |γG1
|.

Since Ĉ1 is a local certificate of k-edge-connectivity for X1 in Ĝ1, and |γG1
| ≤ |γ| < K,

by Theorem 4.1 we have that λ
X

(x)
1

(Ĉ1) = λ
X

(x)
1

(Ĝ1) ≤ |γG1
|. This is equivalent to

saying that there is an edge-cut γ
Ĉ1

of Ĉ1 that disconnects X
(x)
1 from X

(y)
1 and such

that |γ
Ĉ1
| = λ

X
(x)
1

(Ĉ1) ≤ |γG1
|. Since we can take γ

Ĉ1
to be a minimal edge-cut, it

does not contain the edge (u1, v1), so it is an edge-cut of C1. Thus γ′ = γ
Ĉ1

∪ γF

is a set of edges of C ∪ H with |γ′| ≤ |γ|. Moreover, γ
Ĉ1

divides C1 into C
(x)
1 and

C
(y)
1 . Since X

(x)
1 ⊆ V (C

(x)
1) and X

(y)
1 ⊆ V (C

(y)
1), we have that C

(x)
1 ∩ F (y) = ∅

and C
(y)
1 ∩ F (x) = ∅, so Lemma 4.1 shows that γ′ = γ

Ĉ1
∪ γF is an edge-cut of

C1 ∪ F = C ∪H that disconnects x from y.

Alternately, it could be the case that v1 ∈ G
(y)
1 . In this case, γG1

is not an edge-

cut of Ĝ1, but γG1
∪{(u1, v1)} is such an edge-cut. Again, Theorem 4.1 says that there

is an edge-cut γ̂
Ĉ1

that disconnects X
(x)
1 from X

(y)
1 in Ĉ1 such that |γ̂

Ĉ1
| ≤ |γ

Ĉ1
|+ 1.

Moreover, since u1 ∈ X
(x)
1 and v1 ∈ X

(y)
1 , the edge-cut γ̂

Ĉ1
contains the edge (u1, v1).

Let γ
Ĉ1

= γ̂
Ĉ1

− {(u1, v1)}. Then γ′ = γ
Ĉ1

∪ γF is a set of edges in C ∪ H with

|γ′| ≤ |γ|. Moreover, γ
Ĉ1

disconnects X
(x)
1 from X

(y)
1 , so again, by Lemma 4.1, γ′ is

an edge-cut that disconnects x from y in C ∪H.
Therefore, in either case, γ′ is the desired edge-cut, and the first property holds.

Since Ĉ1 is a certificate of k-edge-connectivity for X1 in Ĝ1, it is the case that Ĝ1 is
a certificate for k-edge-connectivity of X1 in Ĉ1. Therefore, the same proof can be
used to prove property 2, and C is a global certificate of k-edge-connectivity for X in
G.

To prove that C is a full certificate, we also need to prove that it is a global
certificate. The proof of this fact is annoyingly similar to the proof that C is a local
certificate, but there seems to be no clear way to combine the proofs.

Lemma 4.7. Let K be a given integer. Let Ĉ1 = C1∪{(u1, v1)} be a full certificate

of k-edge-connectivity for X1 in Ĝ1 = G1 ∪ {(u1, v1)} for every k ≤ K. Then C =
C1 ∪ {e1, e2} ∪ G2 is a global certificate of k-edge-connectivity for X in G for every
k ≤ K.

Proof. Again it suffices to show that for any H with V (H) ∩ V (G) ⊆ X, the
following two properties hold:

1. if λ(C ∪H) ≤ K then λ(G ∪H) ≤ λ(C ∪H), and
2. if λ(G ∪H) ≤ K then λ(C ∪H) ≤ λ(G ∪H).

To prove property 1, let γ be a minimum edge-cut of C ∪H that divides C ∪H
into S∗ and S∗∗. Since γ is a minimum edge-cut in C ∪H, it must be of cardinality
λ(C ∪ H): assume that λ(C ∪ H) ≤ K. To prove that λ(G ∪ H) ≤ λ(C ∪ H), we
distinguish several cases according to S∗, S∗∗, and H.

Assume first that both S∗ and S∗∗ contain vertices of H: thus, there exist two
vertices, say x and y, in V (H) that are separated by γ. By Lemma 4.6, we know that
C is a local certificate of k-edge-connectivity for X in G, for every k ≤ K. Then, if
λ(C∪H) ≤ K, by Definition 3.2 there is an edge-cut γ′ separating x and y in G∪H of
cardinality exactly λ(C ∪H). As a result, the minimum edge-cut of G∪H must have
cardinality less than or equal to the cardinality of γ′ and hence λ(G∪H) ≤ λ(C∪H).

358 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

Alternately, it may be the case that V (H) ⊆ V (S∗). In this case, γ contains only
edges in C. There are three subcases, depending on how many of the vertices v1 and
u1 are in V (S∗∗). If neither vertex is in V (S∗∗), then either γ ⊆ G2 ∪ {e1, e2}, in
which case γ is also an edge-cut of G ∪H, or γ ⊆ C1. In the latter case, γ is also an
edge-cut of Ĉ1, so there is an edge-cut γ′ of Ĝ1 that is also an edge-cut of G∪H such
that |γ′| ≤ |γ|, since Ĉ1 is a global certificate of k-edge-connectivity for X1 in Ĝ1.

Another possibility is that both u1 and v1 are in S∗∗. Here γ contains edges from
both C1 and G2, since it is minimal. Let γC1 = γ ∩ C1 and γF = γ − γC1 . Then γC1

disconnects {u1, v1} from the rest of X1 in Ĉ1. By Theorem 4.1, there is an edge-cut

γG1
that disconnects {u1, v1} from the rest of X1 in Ĝ1. Moreover, |γG1

| ≤ |γC1
|, so

if γ′ = γG1
∪ γF , then |γ′| ≤ |γ|. Moreover, since γF disconnects {u1, v1} from X2 in

F , Lemma 4.1 says that γ′ is an edge-cut of G ∪H.

The final possibility is that one vertex is in S∗ and the other is in S∗∗. Without
loss of generality, assume that u1 ∈ S∗∗ but v1 ∈ S∗. Again let γC1

= γ ∩ C1 and
γF = γ−γC1

. Here, let γ̂C1
= γc1 ∪{(u1, v1)}. Then γ̂C1

disconnects u1 from the rest

of X1 in Ĉ1. Therefore, by Theorem 4.1, there is an edge-cut γ̂G1
that disconnects u1

from the rest of X1 in Ĝ1 such that |γ̂G1 | ≤ |γ̂C1 |. Moreover, since γ̂G1 disconnects
u1 from v1, (u1, v1) ∈ γ̂G1

, so let γG1
= γ̂G1

− {(u1, v1)}. Since (u1, v1) 6∈ G1, the
edge-cut γG1

disconnects u1 from the rest of X1 in G1. Moreover, γF disconnects u1

from X2 in F , so, by applying Lemma 4.1 yet again, we discover that γ′ = γG1
∪ γF

is an edge-cut of G ∪H. It is also the case that |γ′| ≤ |γ|. Therefore, we have seen
that in all cases λ(G ∪H) ≤ λ(C ∪H), and property 1 holds.

Since Ĉ1 is a certificate of k-edge-connectivity for X1 in Ĝ1, it is the case that
Ĝ1 is a certificate for k-edge-connectivity of X1 in Ĉ1. Therefore, the same proof can
be used to prove property 2, and C is a global certificate of k-edge-connectivity for
X in G.

Theorem 4.2. Let K be a given integer, let X ⊆ V (G) be the interesting vertices
of G, and let X1 = (X ∩ V (G1)) ∪ {u1, v1}: the interesting vertices in G1 augmented

with u1 and v1. Let Ĉ1 = C1 ∪ {(u1, v1)} be a full certificate of k-edge-connectivity

for X1 in Ĝ1 = G1 ∪ {(u1, v1)} for every k ≤ K. Then C = C1 ∪ {e1, e2} ∪ G2 is a
full certificate of k-edge-connectivity for X in G for every k ≤ K.

5. Edge connectivity. In this section we present compressed full certificates for
3- and 4-edge-connectivity. Using these certificates in Theorem 3.4 yields fast, fully
dynamic algorithms for maintaining information about 3- and 4-edge-connectivity in
a planar graph. Our certificates for edge connectivity will be constructed using the
linear time algorithm of Lemma 3.4, so they will be required to preserve planarity
as well as edge connectivity. To use this construction, we merely need to show that
such certificates exist, by describing an algorithm for finding them. However, we need
not analyze the time bounds of this algorithm, since Lemma 3.4 will then provide an
alternate algorithm with linear complexity.

Let X be the set of interesting vertices in G. Our certificates are based upon
a repeated compression of G during different phases. In the first phase we shrink
some edges of G so as to reduce the number of 2-edge-connected classes (and thus
components) to O(|X|). After this phase we could easily get compressed full certifi-
cates for 2-edge-connectivity; however, as we mentioned earlier, these certificates for
2-edge-connectivity would yield time bounds that are worse than the polylogarithmic
bounds we obtain in the companion paper [11], and so we will not describe them. In
the second phase, we compress each 2-edge-connected component left so as to reduce

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 359

the total number of 3-edge-connected classes (and thus components) to O(|X|): com-
pressed full certificates for 3-edge-connectivity can be computed after this phase. In
the third phase, we similarly reduce the number of 4-edge-connected classes. Finally,
we compress each 4-edge-connected class left so as to reduce the overall size of the
graph to O(|X|).

To carry out these compressions, we use the decomposition of a k-edge-connected
graph into its (k + 1)-edge-connected classes described by the cactus tree (see sec-
tion 2). In each phase we use a compression that follows many of the same ideas used
in the companion paper [11] to compute the minimum spanning forest certificates
of size O(|X|). We recall here that for the minimum spanning forest certificate we
started with a tree T and then repeatedly applied the following two rules until no
more rule could be applied.

(1) If v ∈ T −X touches a single edge (u, v) in T , remove both v and edge (u, v).
(2) If v ∈ T −X touches two edges (u, v) and (v, w) in T , remove v and replace

the two edges by a single edge (u,w).

Rule (1) cuts uninteresting branches (parts of the graph not containing interesting
vertices) and rule (2) shortcuts uninteresting paths (paths not containing interesting
vertices). If neither rule can be applied, the resulting tree has size O(|X|).

A high-level description of our computation of certificates for 3- and 4-edge-
connectivity follows. We proceed one level at the time, and at each level we compress
the cactus tree. Namely, at level k, 1 ≤ k ≤ 3, we have a tree or something like a tree
describing the k-edge-cuts and (k+ 1)-edge-connected classes. To reduce the number
of k-edge-cuts and (k+1)-edge-connected classes, we compress this tree by using rules
which are the analog of rules (1) and (2) above. That is, we will cut uninteresting
branches (parts of the graph not containing interesting vertices and separated by a
k-edge-cut) and shortcut uninteresting paths (parts not containing interesting vertices
and separated by two k-edge-cuts). There are only O(1) ways a branch or path may
be used to connect the rest of the graph, so we will replace each branch or path by
the smallest possible graph having the same edge connectivity properties, and that
graph will have size O(1). Then we go on to the next level.

Our description of these compressions will be given in a top-down fashion. We
will first abstract three different compression problems that we need to solve. Next,
we will show how to solve these problems. Finally, we will combine the solutions to
these problems to achieve our certificates. The three different problems we solve are
the following.

Problem 5.1. Given a planar connected graph G0 and a set X1 ⊆ V (G0) of
vertices in G0, find a graph G1 that satisfies the following properties:

(a) X1 ⊆ V (G1);
(b) G1 has O(|X1|) 2-edge-connected components;
(c) For every k ≥ 2, G1 is a full certificate of k-edge-connectivity for X1 in G0;
(d) G1 preserves planarity and is connected.

Problem 5.2. Given a planar 2-edge-connected graph G0 and a set X2 ⊆ V (G0)
of vertices in G0, find a graph G2 that satisfies the following properties:

(a) X2 ⊆ V (G2);
(b) G2 has O(|X2|) 3-edge-connected components;
(c) For every k ≥ 2, G2 is a full certificate of k-edge-connectivity for X2 in G0;
(d) G2 preserves planarity and is 2-edge-connected.

Problem 5.3. Given a planar 3-edge-connected graph G0, a set X3 ⊆ V (G0)
of vertices, and a set Y3 ⊆ E(G0) of edges in G0, denote by Z3 ⊆ V (G0) the set of

360 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

endpoints of edges in Y3. Find a graph G3 that satisfies the following properties:

(a) X3 ⊆ V (G3) and Y3 ⊆ E(G3);
(b) G3 is a compressed full certificate of 3- and 4-edge-connectivity for (X3 ∪Z3)

in G0;
(c) G3 preserves planarity and is 3-edge-connected.

Note that Problems 5.1, 5.2, and 5.3 admit the trivial solutions G1 = G0, G2 =
G0, G3 = G0 whenever, respectively, X1 = V (G0), X2 = V (G0), X3 ∪ Z3 = V (G0).
Hence, we look for nontrivial solutions whenX1 ⊂ V (G0), X2 ⊂ V (G0), andX3∪Z3 ⊂
V (G0).

Let G be a graph and let X be a set of interesting vertices. We now give a very
high-level description of our algorithm that computes a compressed full certificate for
3- and 4-edge-connectivity of X in G. We will first solve Problem 5.1 with G = G0

and X = X1. This will give us a graph G1 that has only O(|X|) 2-edge-connected
components and bridges but is still a planarity-preserving full certificate for X in G.
Next, we will solve Problem 5.2 for each 2-edge-connected component of G1, so as to
reduce the overall number of 3-edge-connected components to O(|X|). Finally, we will
obtain our planarity-preserving compressed full certificates by solving Problem 5.3 for
each 3-edge-connected component left in the graph at this point.

In the next sections, we will fill in the low-level details of our approach. In
section 5.1 we show how to solve Problem 5.1, in section 5.2 we deal with Problem 5.2,
and in section 5.3 with Problem 5.3. The solutions to these three problems will then
be combined in section 5.4, yielding our compressed full certificates for 3- and 4-edge-
connectivity.

5.1. Compressing a connected graph. In this section we present our solution
to Problem 5.1. Let G0 be a planar connected graph, and let X1 ⊆ V (G0). We start
by computing the 2-edge-connected components of G0 [34]. As said before, the 2-
edge-connected components of a graph have a tree-like structure: indeed, shrinking
each 2-edge-connected class of G0 into a super-vertex yields a tree whose edges are
all and only the bridges of G0. This is called the bridge-block tree of G0. To compute
the graph G1 we work on the bridge-block tree of G0: namely, we will apply to the
bridge-block tree rules (1) and (2) of section 5. This will reduce the total number of
vertices and edges in the bridge-block tree to O(|X1|). In what follows, we will often
interchange the term 2-edge-connected component of G0 with the corresponding 2-
edge-connected class and with the corresponding node of its bridge-block tree, and
the term bridge of G0 with the corresponding edge of its bridge-block tree.

We now give the details of the compression and prove that it yields a solution to
Problem 5.1. Let (S, T) be a minimum edge-cut separating X1 in G0: without loss of
generality, assume that X1 ⊆ S, and pick arbitrarily a vertex t1 ∈ T . Color red the
vertices of X1 ∪ {t1}. Note that the total number of red vertices of G0 is |X1| + 1.
Define a 2-edge-connected component to be red if it contains at least one red vertex,
and define it to be black otherwise. Clearly, there are O(|X1|) red 2-edge-connected
components. Define the degree of a 2-edge-connected component to be the number
of bridges incident to it (i.e., the degree of its corresponding node in the bridge-block
tree). Black 2-edge-connected components of degree one are uninteresting leaves in
the bridge-block tree, and adjacent black 2-edge-connected components of degree two
yield uninteresting chains in the bridge-block tree. We compress the black leaves and
black chains of the bridge-block tree by applying the following two rules (analogs of
rules (1) and (2)).

(B1) Let B be a black 2-edge-connected component of degree one, and let e = (u, v)

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 361

be the bridge incident to B. Contract e. This corresponds to deleting a black
leaf from the bridge-block tree.

(B2) Let B1 and B2 be two adjacent black 2-edge-connected components of degree
two. Let e1 = (u1, v1) and e2 = (u2, v2) be the two bridges incident to B1,
and let e2 and e3 = (u3, v3) be the two bridges adjacent to B2. Contract e2
identifying u2 and v2. This corresponds to merging two adjacent black nodes
of degree two in the bridge-block tree.

Note that both rules (B1) and (B2) delete one bridge and keep the graph con-
nected. After rule (B2) is applied, the subgraph B1 ∪ B2 from the contraction of
bridge e2 is 2-edge-connected. Similarly, let B′ be the 2-edge-connected component
adjacent to B in rule (B1): after contracting e, B ∪B′ is 2-edge-connected.

Let G1 be the graph obtained from G0 after all the rules (B1) and (B2) have been
applied. Let H be any graph with V (H) ∩ V (G0) ⊆ X1: since G1 ∪ H is obtained
from G0 ∪ H by means of edge contractions, G1 ∪ H is planar whenever G0 ∪ H is
planar. Thus, G1 preserves planarity according to Definition 3.5. Furthermore, red
vertices of G are never contracted by (B1) or (B2), and therefore X1 ∪{t1} ⊆ V (G1).
Consider the bridge-block tree of G1: because of (B1) there are no black leaves, and
because of (B2) there are no two adjacent degree-two black nodes. This implies that
there are at most O(|X1|) nodes in the bridge-block tree of G1, and therefore O(|X1|)
2-edge-connected components and O(|X1|) bridges in G1. This shows that G1 satisfies
properties (a), (b), and (d) of Problem 5.1. The following two lemmas show also that
property (c) is satisfied, and therefore G1 is a solution to Problem 5.1.

Lemma 5.1. Let Ĝ be obtained from G0 by applying either rule (B1) or rule
(B2). Let H be given with V (G0) ∩ V (H) ⊆ X1, and let x and y be any two vertices

of X1 ∪ {t1} ∪ V (H). For every k ≥ 2, x and y are k-edge-connected in Ĝ∪H if and
only if they are k-edge-connected in G0 ∪H.

Proof. We observe that neither (B1) nor (B2) can contract edges incident to
vertices of X1∪{t1}. Since V (G0)∩ (V (H)∪X1∪{t1}) ⊆ X1∪{t1}, this implies that

Ĝ ∪H is obtained from G0 ∪H by contracting an edge that is not incident to either
x or y. So if x and y are k-edge-connected in G0 ∪H, they are k-edge-connected in
Ĝ ∪H. Assume now that x and y are k-edge-connected in Ĝ ∪H. Then there are k
edge-disjoint paths between x and y in Ĝ ∪H.

If (B1) was applied, e = (u, v) is a bridge and B is a black 2-edge-connected
component of degree one. Since B is black, it contains no vertex of X1 ∪ {t1}. Fur-
thermore, since V (G0)∩ V (H) ⊆ X1, no edge of H is incident to a vertex in B. This
implies that neither x nor y is in B. After applying rule (B1), e is contracted, identi-
fying vertices u and v into a new vertex w. Conversely, G0 ∪H can be obtained from
Ĝ ∪H by the inverse operation of splitting vertex w so as to reconstruct e = (u, v).
Since e is a bridge of G0 separating B from the rest of the graph, and no edge of H
is incident to B, e is a bridge of G0 ∪H too. This implies that after contracting edge
e, w will be an articulation point of Ĝ ∪H, again separating B from the rest of the
graph. Since neither x nor y is in B, there are k edge-disjoint simple paths in Ĝ ∪H
that do not contain edges of B. Thus, after splitting vertex w, the same k paths are
edge-disjoint in G0 ∪H, and therefore x and y are k-edge-connected in G0 ∪H too.

If (B2) was applied, B1 and B2 are black 2-edge-connected components of degree
two in G0. Since they are black, neither B1 nor B2 contains vertices of X1 ∪ {t1}.
Furthermore, since V (G0)∩V (H) ⊆ X1, no edge of H is incident to a vertex in either
B1 or B2. This implies that x and y are outside both B1 and B2. After applying
rule (B2), e2 is contracted and u2 and v2 are identified into a new vertex, say w2.

362 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

Conversely, G0 ∪H can be obtained from Ĝ∪H by the inverse operation of splitting
vertex w2 into vertices u2 and v2 joined by edge e2. Since no edge of H is incident to
either B1 or B2, {e1, e3} is a 2-edge-cut in Ĝ∪H. Since neither x nor y is in B1∪B2,

at most one of the k edge-disjoint paths in Ĝ∪H contains e1 and e3 and goes through
B1 and B2. If w is split into vertices u2 and v2 joined by edge e2, there is a new path
containing edges e1, e2, and e3 and going through B1 and B2 that is still edge-disjoint
from the other k − 1 paths: there are still k edge-disjoint paths between x and y in
G0 ∪H, and therefore x and y are k-edge-connected.

The following corollary follows from Lemma 5.1.

Corollary 5.1. Let Ĝ be obtained from G0 by applying either rule (B1) or rule

(B2). For every k ≥ 2, Ĝ is a local certificate of k-edge-connectivity for X1 in G0.

Lemma 5.2. Let Ĝ be obtained from G0 by applying either rule (B1) or rule (B2).

Then for every k ≥ 2, Ĝ is a global certificate of k-edge-connectivity for X1 in G0.

Proof. Let H be given with V (G0) ∩ V (H) ⊆ X1. Rules (B1) and (B2) can only

increase the edge connectivity of G0 ∪H, and thus λ(Ĝ ∪H) ≥ λ(G0 ∪H). To prove

the lemma, it remains to show that if there is a k-edge-cut in G0 ∪H, then in Ĝ∪H
there must be an edge-cut of cardinality k′ ≤ k.

Let (S, T) be a k-edge-cut in G0 ∪H. If both S and T contain vertices of V (H)∪
X1 ∪ {t1}, a k-edge-cut in Ĝ ∪H exists by Lemma 5.1. Otherwise, assume without
loss of generality that V (H)∪X1 ∪{t1} ⊆ S. This implies that T contains only black
vertices of G0 and that all the edges of (S, T) are in G0: thus, (S, T) is an edge-cut
separating X1 in G0. Let (S′, T ′) be a minimum edge-cut separating X1 from t1 in
G0, with X1 ⊆ S′ and t1 ∈ T ′, and let k′ denote the cardinality of (S′, T ′). Recall that
by the definition of t1, (S′, T ′) has the smallest cardinality among all of the edge-cuts
separating X1 in G0: thus k′ ≤ k. Since V (G0) ∩ V (H) ⊆ X1 ⊆ S′, (S′ ∪ V (H), T ′)
is itself a k′-edge-cut in G0 ∪H. Since t1 was colored red, a k′-edge-cut, k′ ≤ k, must
exist in Ĝ ∪H because of Lemma 5.1.

It is clear from the proof of Lemma 5.2 why we needed to choose vertex t1. Indeed,
if G0 has a bridge that leaves all the vertices of X1 on one side, then λ(G0 ∪H) = 1
for every H such that V (H) ∩ V (G0) ⊆ X1. Picking vertex t1 and coloring it red
guarantees that there will be a bridge that leaves all the vertices of X1 on one side in
Ĝ ∪H too.

Corollary 5.1 and Lemma 5.2 imply that G1 is a full certificate for G. However,
we remark that G1 is not necessarily a compressed certificate, since it can have more
than O(|X1|) vertices and edges: indeed, each 2-edge-connected component of G1

might contain many vertices and edges. In the next section we show how to compress
a 2-edge-connected graph, solving Problem 5.2.

5.2. Compressing a 2-edge-connected graph. We now turn to Problem 5.2.
Let G0 be a 2-edge-connected graph, and let X2 ⊆ V (G0) be a set of vertices of G0.
As said before, if each 3-edge-connected class of G0 is shrunk into one super-vertex,
the resulting graph consists of a collection of simple cycles such that no two cycles
share more than one super-vertex. This graph is the cactus tree of G0: each node
in the cactus tree corresponds to a 3-edge-connected class (and thus component) of
G. Let p be the number of 3-edge-connected classes of G0: the cactus tree has the
property of having only O(p) edges, and the edges in the cactus tree define all the
possible 2-edge-cuts of G0. Indeed, any two edges in the same cycle of the cactus tree
define a 2-edge-cut of G0. Consequently, even though the number of 2-edge-cuts can
be Ω(p2) (for instance, if G0 is a simple cycle of p edges), the cactus tree of G0 always

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 363

has size O(p).

Let (S, T) be a minimum edge-cut separating X2 in G0, and without loss of
generality, assume that X2 ⊆ S. Pick arbitrarily one vertex t2 ∈ T and color red all
the vertices of X2 ∪{t2}: note that the total number of red vertices of G0 is |X2|+ 1.
Define a 3-edge-connected class of G0 to be red if it contains at least one red vertex,
and define it to be black otherwise. Clearly, there are O(|X2|) red 3-edge-connected
classes. Our compression follows many of the same ideas used in section 5.1, but
this time applies rules that are the analogs of rules (1) and (2) to the cactus tree of
a 2-edge-connected graph rather than to the bridge-block tree of a connected graph.
However, there are more technicalities involved, since the cactus tree here is not really
a tree, but rather a tree of cycles.

Define the degree of a 3-edge-connected class to be the number of 2-edge-cuts
incident to it (i.e., the number of cycles in the cactus tree that the corresponding
node belongs to). If C is a 3-edge-connected class of G0, there is a node in the cactus
tree corresponding to C. Since there is no danger of ambiguity, we call this cactus
tree node C also, and we color it with the same color we used for the 3-edge-connected
class C.

Given a set S of vertices in G0, define the graph ΓG(S) having as vertices S and
all neighbors of S, and having as edges all edges in G0 with one or both endpoints in
S.

To compress “uninteresting leaves” of the cactus tree, we delete black nodes that
appear in only one cycle. To compress “uninteresting chains,” we take a chain of
black nodes of the cactus tree that appear in the same 2-cycle and merge them into
a smaller certificate for that chain. The two rules (analogs of rules (1) and (2)) that
we use are the following.

(T1) Let C be a black 3-edge-connected class of degree one, and let {e1, e2} be the
2-edge-cut incident to C. Let e1 = (u1, v1) and e2 = (u2, v2), with u1 and u2

in C. Replace e1, e2, and C with an edge e = (v1, v2).
(T2) Let C1, C2, . . . , C` be a set of one or more black 3-edge-connected classes of

degree two, such that each adjacent pair Ci, Ci+1 shares an edge-cut {ei, e′i}.
Let {e0, e′0} and {e`, e′`} be the two 2-edge-cuts separating

⋃
Ci from the rest

of the graph, and let Y = {v0, v′0, v`, v′`} be the endpoints of these cut edges
in the rest of the graph. Let B = ΓG(C1∪C2∪· · ·∪C`); i.e., B consists of the
edges induced by each Ci together with all cut edges ei, e

′
i, 0 ≤ i ≤ `. Then

replace B by the minimum size planarity-preserving certificate B′ of k-edge-
connectivity (for all k) for B with the vertices of Y denoted as interesting.

The definition of rule (T2) may seem circular, as we are invoking the existence of
certificates in the definition of an algorithm we are trying to use to prove that certifi-
cates exist. However, we know that there will always exist some planarity-preserving
certificate: B itself is such a graph. Therefore, (T2) is well defined, although it may
not be clear how to implement it efficiently. The reason for stating (T2) in this form
is threefold: it is very general, and applies equally well to other forms of connectivity
in other cactus trees; it motivates the seemingly more complicated rule (T2′) below,
and it is immediately apparent that the result is a certificate. A general argument
based on the possible connectivity requirements through vertices in Y , and on the
different ways these vertices can be placed in an embedding of B, shows that only
O(1) different replacement certificates are needed in rule (T2), and hence B′ has size
O(1). We do not elaborate, as this argument does not give good bounds on |B′|.
Instead, we replace (T2) by rule (T2′) below. With rule (T2′), the size of B′ is clearly

364 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

O(1), but it is less clear that the resulting graph is a certificate. We prove this by
showing that (T2) and (T2′) are equivalent.

Our description is based on flows in G. If we assign orientations and nonnegative
flow amounts to the edges of G, the excess at any vertex is the sum of the flow amounts
on incoming edges minus the sum of flow amounts on outgoing edges. A flow is an
assignment of orientations and flow amounts such that, except at certain designated
terminals, the excess at each vertex is zero. We will assume integer flows and unit
capacity edges; i.e., all flow amounts should be zero or one. A flow requirement is
the designation of values on certain terminal vertices; we say that a flow requirement
is satisfied if there exists a flow such that, at each terminal, the excess equals the
designated value. The total flow is the sum of positive flow requirement values; we
call a flow with total flow k a k-unit flow. Any k-unit flow can be partitioned into k
single-unit flows; a single-unit flow is just a path connecting its two terminals, possibly
together with some cycles. This partitioning of a flow into paths forms one-half of the
max-flow min-cut theorem [3], that x and y are k-connected if and only if there exists
a flow (with integer edge capacities, and which can be restricted to an integer flow
without loss of generality) with x and y as terminals having designated values −k and
k; for a proof of this connection between flows and connectivity, see any graph theory
text.

First, we define the following term. Suppose that ` = 1, so that B consists of the
subgraph induced by a single black 3-edge-connected class C1 together with the four
vertices Y and the edges connecting Y to C1. We say that B is well connected if, for
any way of partitioning Y into two pairs of vertices, there is a two-unit flow in B with
the first pair as the two sources and the second pair as the two sinks. For instance, if
B consists of a star K1,4, it is well connected. We are now ready to define rule (T2′).

(T2′) Let C1, C2, . . ., C` be a set of one or more black 3-edge-connected classes of
degree two, such that each adjacent pair Ci, Ci+1 shares an edge-cut {ei, e′i}.
Let {e0, e′0} and {e`, e′`} be the two 2-edge-cuts separating

⋃
Ci from the rest

of the graph, and let Y = {v0, v′0, v`, v′`} be the endpoints of these cut edges
in the rest of the graph. Let B = ΓG(C1 ∪ C2 ∪ · · · ∪ C`).
(i) If ` > 1, form B′ from B by contracting C1 ∪ C2 ∪ · · · ∪ C` to a single

vertex.
(ii) If ` = 1, and C1 is well connected, form B′ from B by contracting C1 to

a single vertex.
(iii) If ` = 1, and C1 is not well connected, let T be a spanning tree of B.

(We show below that B is connected, so T exists.) Contract any edge
in T adjacent to a vertex in C1 of degree one or two, until no more
contractions are possible; let B′ be the resulting contracted tree.

In all cases replace B by B′.
Lemma 5.3. The graph B specified in rules (T2) and (T2′) is connected; more-

over, the subgraph induced by each 3-edge-connected class Ci is connected.

Proof. The connectedness of the subgraph induced by Ci follows because each
pair of vertices in Ci is connected by three edge-disjoint paths, and only two such
paths can pass through the four edges separating Ci from the rest of G. For each
pair of classes Ci, Ci+1 there is an edge connecting that pair, from which the overall
connectedness of B follows.

Lemma 5.4. Rule (T2′) preserves planarity.

Proof. In all three cases of rule (T2′), the resulting graph B′ is a minor of B and
hence preserves planarity.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 365

We next show that the graph B′ resulting from rule (T2′) is a certificate of k-
edge-connectivity for B. A pair of vertices is k-edge-connected if and only if there
is a k-unit flow with one vertex as source and the other as sink. If we consider
the orientations and flow amounts of this flow, restricted to the edges of B, we can
think of the excesses at each vertex of Y as giving flow requirements satisfied by this
flow. (The excesses at vertices of B − Y must be zero since all incident edges of such
vertices are in B.) Replacing this flow on B by any other flow satisfying the same
requirements will produce a k-unit flow in B, so it is enough to show that, whenever
a flow requirement F with terminals in Y can be satisfied in B, it can also be satisfied
in B′.

Note that we need only consider flow requirements of at most one unit at each
vertex of Y , since each vertex of Y is adjacent to a single edge in B. Thus larger flow
requirements could not be satisfied in B. So, overall, there are at most two single-unit
sources and two single-unit sinks. If there is one source or sink only, the satisfiability
of the flow requirements follows from the connectedness of B (Lemma 5.3) and from
the connectedness of B′ (obvious from the definition of rule (T2′)).

Let the remaining two-unit flow requirements be denoted F1, having sources
{v0, v′0} and sinks {v`, v′`}; F2, having sources {v0, v`} and sinks {v′0, v′`}; and F3,
having sources {v0, v′`} and sinks {v′0, v`}. (Any other collection of two sources and
two sinks can be found by switching sources and sinks in some Fi.)

Lemma 5.5. Flow requirement F1 is satisfiable in B.

Proof. By assumption, G is 2-edge-connected, so there exists a pair of edge-
disjoint paths in G from v0 to v`. Each path must cross B, and the union of these
two paths intersected with B forms a two-unit flow satisfying F1.

Lemma 5.6. At least one of F2 or F3 is satisfiable in B.

Proof. Let F1 be satisfied by a 2-unit flow. Then the flow can be partitioned into
two edge-disjoint paths, each connecting a source with a sink. If the paths connect
v0 with v` and v′0 with v′`, then F3 is also satisfiable. If the paths connect v0 with v′`
and v′0 with v`, then F2 is also satisfiable.

Lemma 5.7. If some flow requirement Fi is not satisfiable by a flow in B, then
B consists of the subgraph induced by a single class C1.

Proof. By Lemma 5.6, we can without loss of generality let the unsatisfiable flow
requirement be F2. If ` > 1, this flow requirement would be satisfied by finding one
path in the subgraph induced by C1 connecting v0 and v′0, and a path in the subgraph
induced by C` connecting v` and v′`, both of which exist by Lemma 5.3.

Lemma 5.8. When part (iii) of rule (T2′) is applied to a graph B in which the
flow requirement F2 is not satisfiable by any flow, the resulting graph B′ consists of
Y together with two vertices u and u′, with edges v0u, uv1, uu

′, v′0u
′, and u′v′1.

Proof. Since B′ is a contraction of a tree, it is itself a tree. Since F2 is unsatisfiable,
B contains a bridge edge e between {v0, v1} and {v′0, v′1} by the max-flow min-cut
theorem [3]. This edge e must be in T . Construct a tree T ′ by contracting out all
degree-one black vertices in T . Then B′ remains a contraction of T ′. Since e is on
a path between two vertices of Y , it is not contracted in forming T ′. On either side
of e, T ′ consists of paths connecting v0 with v1, and v′0 with v′1. Further, note
that all vertices in Y must be leaves in T ′ since they have degree one in B and their
degree does not increase in forming T ′. The only compressed tree possible with four
leaves and a bridge separating the two pairs of leaves is the one described in the
lemma.

Lemma 5.9. The graph B′ resulting from rule (T2′) is a certificate of k-edge-

366 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

connectivity for B.

Proof. We show that for every flow requirement F on terminals in Y , F is sat-
isfiable by a flow in B if and only if it is satisfiable in B′. Requirements with more
than two units of flow are never satisfiable in either graph. One-unit requirements
are satisfiable in B by Lemma 5.3, and in B′ since B′ is clearly connected. Thus we
need only worry about requirements F1, F2, and F3.

If all three of the requirements Fi are satisfiable by flows in B, then either ` > 1
or B consists of a single well-connected component C1. In either case parts (i) or (ii)
of rule (T2′) contract B to a star K1,4 in which all three collections remain satisfiable.

If only two of the three requirements are satisfiable, then by Lemma 5.7, B consists
of the subgraph induced by the single component C1 which must not be well connected.
By Lemma 5.6, we can assume without loss of generality that requirement F2 is not
satisfiable by a flow in B. Then by Lemma 5.8, B′ consists of a tree with four leaves
and a bridge, containing edge-disjoint paths from v0 to v1 and v′0 to v′1; in this graph
as in B, F1 and F3 are satisfiable and F2 is not satisfiable.

Lemma 5.10. Rule (T2) is equivalent to rule (T2′).
Proof. The fact that B′ is a certificate is shown in Lemma 5.9. It can be shown

that it is the minimum certificate for B by noting that any certificate must contain a
spanning tree with at least as many vertices as are in B′; we omit the details, as they
are not necessary for the overall correctness of our connectivity algorithm.

Next, we analyze the size of the cactus tree for G′ and show that the graph
obtained at the end of this compression is a solution to Problem 5.2. Recall that
the meaning of our rules in the cactus tree is the following. Rule (T1) takes as
input a black node that is contained in only one cycle and deletes it, while rule (T2)
compresses a chain of black nodes in the cactus tree. The following lemmas show that
the graph obtained at the end of this compression is a solution to Problem 5.2.

Lemma 5.11. Let G2 be the graph obtained from a 2-edge-connected graph G0 by
repeated applications of rules (T1) and (T2), until no further rule can be applied. Then
there are O(|X2|) 3-edge-connected components in G2, and its cactus tree contains
O(|X2|) nodes and edges.

Proof. Since rules (T1) and (T2) can be described in terms of the cactus tree,
and each node of the cactus tree corresponds to a 3-edge-connected class (and thus
component), we refer to nodes of the cactus tree as components, and show that when
no rule can be applied any more, we are left with a cactus tree that contains O(|X2|)
nodes and edges.

We observe that the cactus tree can be represented by a tree. We form a black or
red node for every component in the cactus tree, and a blue node for every cycle in
the cactus tree. A node representing a component is adjacent to a node representing
a cycle if and only if the cycle contains that component.

Because of rule (T1), a black component must be shared by more than one cycle
in the cactus tree. Therefore, all leaves of the tree are red, and there are at most
|X2|+ 1 leaves.

Next, we examine the degree-two nodes in the tree. Form maximal chains of black
and blue degree-two nodes. Each such chain is terminated either by a high-degree
node or by a red node; therefore, as in any tree, there can be at most 2|X2|−1 chains.
Each chain can consist of at most one black node and two blue nodes by rule (T2),
so there are at most 2|X2| − 1 black nodes of degree two and at most 4|X2| − 2 blue
nodes of degree two.

Finally, as in any tree, there are at most two fewer nodes of degrees higher than

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 367

two than there are leaves, so there are at most |X2| − 1 such nodes.

In total we find at most 3|X2| − 2 black nodes representing black components of
the cactus tree, and at most 5|X2| − 3 blue nodes representing cycles in the cactus
tree. Any cactus tree with k components has at most 2k − 2 edges, so there are at
most 8|X2| − 4 edges in the cactus tree.

Lemma 5.12. Let Ĝ be obtained from G0 by repeatedly applying rules (T1) and
(T2). Let H be given with V (G0)∩V (H) ⊆ X2. Any two vertices of X2∪V (H)∪{t2}
are k-edge-connected in Ĝ ∪ H if and only if they are k-edge-connected in G0 ∪ H,
k ≥ 2.

Proof. By transitivity of certificates, we need only show that each step produces
a certificate for the previous graph. Steps involving rule (T1) yield a split graph
with respect to the 2-edge-cut {e1, e2}, and Lemma 4.5 shows that this produces
a certificate of k-edge-connectivity. Steps involving rule (T2) yield a certificate by
definition.

Lemma 5.12 implies the following corollary.

Corollary 5.2. Let Ĝ be obtained from G0 by repeatedly applying rules (T1)

and (T2). For every k ≥ 2, Ĝ is a local certificate of k-edge-connectivity for X2 in
G0.

Lemma 5.13. Let Ĝ be obtained from G0 by applying rule (T1) or (T2). Then Ĝ
is a global certificate of k-edge-connectivity for X2 in G0, k ≥ 2.

Proof. Let H be given with V (G0) ∩ V (H) ⊆ X2. Rules (T1) and (T2) can only

increase the connectivity of G0 ∪ H, and thus λ(Ĝ ∪ H) ≥ λ(G0 ∪ H). Hence, it
remains to show that any k-edge-cut (S, T) in G0 ∪H corresponds to an edge-cut in

Ĝ ∪H of cardinality at most k.

If both S and T contain vertices in V (H) ∪X2 ∪ {t2}, a corresponding edge-cut
can be found by Lemma 5.12. Otherwise assume without loss of generality that T
contains only black vertices of G0. Then all edges of cut (S, T) are in G0. Let (S′, T ′)
be the minimum edge-cut separating X2 from t2 in G0. Then (S′ ∪ V (H), T ′) has
edge cardinality at most that of (S, T), and since t2 was colored red, a corresponding

edge-cut exists in Ĝ ∪H by Lemma 5.12.

5.3. Compressing a 3-edge-connected graph. In this section we describe
our solution to Problem 5.3. Since it relies heavily on the notion of cactus tree, we
first list some properties of a cactus tree of a 3-edge-connected graph, referring the
interested reader to [4, 28] for the full details. It might be helpful to refer to Figure 2
while we discuss these properties.

Let G0 be a 3-edge-connected graph, and let T (G0) denote its cactus tree. Since
3 is odd, T (G0) is an actual tree (and not a tree of edges and cycles). Edges of T (G0)
correspond to 3-edge-cuts of G0. Each 4-edge-connected class of G0 corresponds to a
node in T (G0), while the converse is not necessarily true. Indeed, there can be nodes
that do not correspond to any 4-edge-connected class: the reason for having these
nodes is to represent the tree structure of the 3-edge-cuts (see Figure 2). We call
these nodes empty since they do not contain any vertex of G0. In what follows, since
there is no danger of ambiguity, we will use interchangeably the terms 3-edge-cut of G0

and edge of T (G0), and the terms 4-edge-connected class of G0 and nonempty node of
T (G0). Note that an edge e = (u, v) of G0 might take part in different 3-edge-cuts of
G0. However, all these 3-edge-cuts must form a path in T (G0): endpoints of this path
are the two nodes corresponding to the 4-edge-connected classes containing u and v.
We label each cactus edge with the three edges of the corresponding 3-edge-cut.

368 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

We now describe our solution to Problem 5.3. Let G0 be a 3-edge-connected
graph, and let X3 ⊆ V (G0) and Y3 ⊆ E(G0). Let Z3 be the set of endpoints of edges
in Y3. We color red the vertices of X3 ∪ Z3 and the edges of Y3. Note that both
the endpoints of a red edge are colored red. We define a 3-edge-cut of G0 to be an
inter 3-edge-cut if it separates two different red vertices of G0, and define it to be
an extra 3-edge-cut otherwise. If G0 has at least one extra 3-edge-cut, we pick one
such 3-edge-cut and we choose arbitrarily one vertex that is separated from all the
red vertices by this 3-edge-cut. We call this vertex the chosen extra vertex, and we
call the 3-edge-cut the chosen extra 3-edge-cut. We color the chosen extra vertex red:
the total number of red vertices of G0 is therefore (|X3 ∪ Z3|+ 1). Our computation
of a solution for Problem 5.3 consists of the following three phases.

Phase 1: Compute the cactus tree T (G0) of G0 (see Figure 4(b)).

Phase 2: Compute a new cactus tree T ′ by compressing T (G0), so that T ′ will
have size linear in the number of red vertices (see Figure 4(c)).

Phase 3: Compute G3 from T ′.
We now give the low-level details of these phases. Phase 1 is simply accomplished

by computing the cactus tree of G0. Let R be the set of red vertices in G0, and let
R1 and R2 be any two nonempty sets of red vertices in G0, R1 ∩R2 = ∅. We say that
an edge of T (G0) separates R1 and R2 if it corresponds to a 3-edge-cut separating
R1 and R2 in G0. The following lemma is an immediate consequence of the notion of
cactus tree [4].

Lemma 5.14. Let R1 and R2 be any two nonempty sets of red vertices in G0,
R1 ∩R2 = ∅. The 3-edge-cut {e1, e2, e3} of G0 separates R1 and R2 if and only if the
edge (α, β) labeled with {e1, e2, e3} in T (G0) separates R1 and R2.

In Phase 2 we use a compression similar to the one used for the MSF (minimum
spanning forest) certificate. Given the graph G0 and its cactus tree T (G0), we define
the degree of a 4-edge-connected class of G0 to be the tree degree of the corresponding
(nonempty) node in T (G0). Intuitively, the degree of a 4-edge-connected class denotes
the number of different 3-edge-cuts that are “incident” to the class. Again, we define
a 4-edge-connected class to be red if it contains at least one red vertex, and define it to
be black otherwise. We color red the (nonempty) nodes of T (G0) that correspond to
red 4-edge-connected classes of G0 (see Figure 4(b)). Black 4-edge-connected classes
of degree one are uninteresting leaves in the cactus tree, and adjacent black nodes of
degree two give rise to uninteresting chains in the cactus tree. Our rules to compress
T (G0) are the following.

(Q1) Let Q be a black cactus node of degree 1. Delete Q and its incident edge
from the cactus tree.

(Q2) Let Q be a black cactus node of degree 2. Let e1 and e2 be the cactus edges
incident to Q, and let Q1 and Q2 be the cactus nodes adjacent to Q. Delete
Q and replace e1 and e2 with an edge e between Q1 and Q2. Edge e gets the
same label as e1.

We call T ′ the cactus tree obtained after all the rules (Q1) and (Q2) have been
applied. Note that T ′ contains all the red nodes of T (G0) and may contain some
black nodes of T (G0). However, because of (Q1) and (Q2), the total size of T ′ is
linear in the number of red nodes. Note that edges of T ′ are also edges of T (G0),
and therefore correspond to 3-edge-cuts of G0. Again, given two nonempty disjoint
sets of red vertices R1 and R2, we say that an edge of T ′ separates R1 and R2 if it
corresponds to a 3-edge-cut separating R1 and R2 in G0. As the following lemma
shows, T ′ has the property of preserving 3-edge-cuts separating any two sets of red

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 369

(a)

(b)

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20 21

22

23

24

25

26

(c)

Fig. 4. Compressing a 3-edge-connected graph G0. (a) The original graph G0: red vertices
({3, 4, 5, 7, 8, 9, 19, 20}) and red edges ({(5, 7), (5, 8), (7, 8), (19, 20)}) are shown in bold, 3-edge-cuts
are dashed. (b) The cactus tree T (G0): red 4-edge-connected classes are shown in bold. (c) The
compressed cactus tree T ′ obtained from T (G0).

vertices in G0.
Lemma 5.15. Let R1 and R2 be any two nonempty sets of red vertices in G0,

R1 ∩ R2 6= ∅. There is an edge (α, β) in T (G0) separating R1 and R2 if and only if
there is an edge (α′, β′) in T ′ separating R1 and R2.

Proof. To prove the lemma, we show that rules (Q1) and (Q2) maintain the
following invariant. There is an edge (α, β) separating R1 and R2 before the rule is

370 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

applied if and only if there is an edge (α′, β′) separating R1 and R2 after the rule is
applied.

If rule (Q1) is applied, Q is a black node. Since the edge incident to Q cannot
separate red vertices, the invariant must hold. If rule (Q2) is applied, Q is a black
node. Consequently, e1 and e2 separate exactly the same set of red vertices. But then
the edge e inserted by rule (Q2) still separates the same set of red vertices previously
separated by e1 and e2. Hence, the invariant still holds.

Now, we describe our implementation of Phase 3, namely, how to compute from
T ′ the graph G3 that is a solution to Problem 5.3. By Lemmas 5.14 and 5.15, we know
that, given any two sets R1 and R2 in G0, they can be separated by a 3-edge-cut of
G0 if and only if they can be separated by an edge of T ′. In Phase 3, we build a graph
G3 that contains the red vertices and red edges of G0, and has all the 3-edge-cuts
corresponding to edges of T ′. We will use this property to prove that any two sets of
red vertices R1 and R2 can be separated by a 3-edge-cut in G0 if and only if they can
be separated by a 3-edge-cut in G3.

We show how to obtain G3. For each edge (α′, β′) of T ′, we do the following.
Let {e1, e2, e3} be the label of (α′, β′) (corresponding to the 3-edge-cut {e1, e2, e3} of
G0): we mark the edges e1, e2, and e3 and their endpoints in G0. In other words, all
the edges that are in a 3-edge-cut corresponding to an edge of T ′ are marked. Next,
we delete all the marked edges from G0, and denote by G1

0, G
2
0, . . ., G

p
0, p ≥ 1, the

connected components left (see Figure 5(a)). The edges of Gi
0, 1 ≤ i ≤ p, are referred

to as unmarked.

Our graph G3 will keep all the marked edges and replace each Gi
0 with a smaller

graph that preserves 3- and 4-edge-connectivity between the red vertices. We compute
this smaller graph as follows. We denote the red and marked vertices of Gi

0 interesting.
We force 4-edge-connectedness between any two interesting vertices in Gi

0 by replacing
Gi

0 with a smaller graph that contains all the interesting vertices and the red edges
originally inGi

0 and that is 4-edge-connected. We call this graph C(Gi
0). Note that this

might change the edge connectivity inside Gi
0, since it may change the number of edge-

disjoint paths inside Gi
0. Namely, two vertices x and y of Gi

0 may be `-edge-connected,
` ≥ 4 in G0, and `′-edge-connected, `′ ≥ 4, `′ 6= `, in the new graph obtained after
replacing Gi

0 with C(Gi
0). However, as we will show, this is not a problem, since we

are interested in certificates for 3- and 4-edge-connectivity only, and not for higher
edge connectivity. We make all the interesting vertices of Gi

0 4-edge-connected in
the new graph by compressing the unmarked edges as follows. We first compute the
minimal subgraph Si0 of Gi

0 that is connected and contains all the red edges and the
interesting vertices in Gi

0 (see Figure 5(b)). Note that Si0 is not necessarily a tree,
since it might contain cycles: however, because of the minimality of Si0, the possible
cycles of Si0 can have only red edges. We collapse each red cycle in a single node, and
then compress the tree obtained, using as interesting vertices the collapsed cycles, the
red vertices and the marked vertices. The compression of the unmarked edges left in
Si0 is the same as used in the MSF algorithm: we compress uninteresting branches and
uninteresting chains of degree-two vertices (see Figure 5(c)). Next, we expand the red
cycles back, and finally, we quadruplicate each unmarked edge left in the compressed
graph, to force 4-edge-connectivity. We call the graph obtained C(Gi

0), and we call
G3 the graph obtained after replacing Gi

0 with C(Gi
0), 1 ≤ i ≤ p (see Figure 5(d)).

Note that G3 is obtained from G0 by means of a suitable sequence of the following
operations:

(1) delete unmarked edges inside a component Gi
0; and

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 371

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20 21

22

23

24

25

26

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20 21

22

23

24

25

26

1

2

3 4

9

10

12

15

18 19

20

21

(a)

(b) (c)

1

2

3

4

7

8

9

10

12

15

18 19

20

21

(d)

5

14

14

Fig. 5. Compressing G0; 3-edge-cuts corresponding to edges of T ′ are always shown dashed.
(a) The connected components Gi

0, 1 ≤ i ≤ p, obtained after the removal of 3-edge-cuts in T ′.
Marked (non-red) vertices are shown dashed. (b) The minimal subgraphs Si

0, 1 ≤ i ≤ p. (c) The
graphs obtained after compressing Si

0, 1 ≤ i ≤ p: the red cycle containing vertices 5, 7, and 8 has
been collapsed into a single node. (d) The graph G3 obtained from G0 by replacing Gi

0 with C(Gi
0),

1 ≤ i ≤ p. The red cycle has been expanded.

(2) contract unmarked edges; and
(3) quadruplicate unmarked edges.

Conversely, G0 can be recomputed from G3 by means of a suitable sequence of the
following operations:

(4) delete multiple unmarked edges;
(5) expand unmarked edges;

372 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

(6) insert new unmarked edges inside a component C(Gi
0).

We now prove that G3 is a solution to Problem 5.3.

Lemma 5.16. G3 is 3-edge-connected, and X3 ⊆ V (G3) and Y3 ⊆ E(G3).

Proof. We first prove that G3 is 3-edge-connected. Assume by contradiction that
the minimum edge-cut γ of G3 is of cardinality `, ` ≤ 2. Recall that G3 consists
of marked edges and unmarked edges. Since each unmarked edge is quadruplicated
in G3, its endpoints are 4-edge-connected. This implies that no unmarked edge can
be in γ, and therefore, γ consists of marked edges only. Due to the minimality of
γ, deleting the edges of γ disconnects G3 into two graphs: say G′

3 and G′′
3 . Since γ

contains only marked edges, and each C(Gi
0) is connected, each C(Gi

0) is contained in
either G′

3 or G′′
3 . Recall that G0 can be obtained from G3 by means of operations

of type (4), (5), and (6) above. Each such operation modifies only the graphs C(Gi
0)

by deleting multiple edges, expanding unmarked edges, and inserting new unmarked
edges. Marked edges will be unaffected by these operations. This implies that all
these operations will be local to the graphs C(Gi

0), and therefore will still keep the
vertices in G′

3 and in G′′
3 disconnected. As a result, γ is an `-edge-cut in G0. This is

clearly a contradiction, since ` ≤ 2 and G0 is 3-edge-connected. Thus, there cannot
be an `-edge-cut, ` ≤ 2, in G3, and therefore G3 must be 3-edge-connected.

We now prove that G3 contains all the red vertices and edges of G0. Since red
vertices are kept in each C(Gi

0), we have that X3 ⊆ V (G3). As for red edges, recall
that the edges of G0 are partitioned into marked and unmarked. Each C(Gi

0) preserves
all the red edges in Gi

0: this shows that all the unmarked red edges are in G3. Since
G3 preserves all the marked edges, it will preserve also the marked red edges. This
shows that Y3 ⊆ E(G3).

Before proving the other properties that make G3 a solution to Problem 5.3, we
need some technical lemmas.

Lemma 5.17. Let R1 and R2 be any two nonempty sets of red vertices in G0,
R1 ∩ R2 = ∅. There is a 3-edge-cut in G0 separating R1 and R2 if and only if there
is a 3-edge-cut in G3 separating R1 and R2.

Proof. Assume that there is a 3-edge-cut {e1, e2, e3} separating R1 and R2 in G0.
By Lemmas 5.14 and 5.15 there must be an edge (α′, β′) in T ′ separating R1 and
R2. Let {e′1, e′2, e′3} be the label of (α′, β′). We claim that {e′1, e′2, e′3} is a 3-edge-cut
of G3 separating R1 and R2. Note that, as a consequence of our computation of T ′,
{e′1, e′2, e′3} must have been the label of one edge of T (G0). By definition of cactus tree,
this implies that {e′1, e′2, e′3} is a 3-edge-cut of G0. Note that it is not necessarily the
case that {e1, e2, e3} = {e′1, e′2, e′3}. Both {e1, e2, e3} and {e′1, e′2, e′3} are 3-edge-cuts
separating R1 and R2 in G0, and {e′1, e′2, e′3} is kept in T ′ (and therefore in G3).

Denote by G′
0 and G′′

0 the graphs obtained from G0 after removing e′1, e
′
2, and e′3,

and without loss of generality, assume that R1 ⊆ V (G′
0) and R2 ⊆ V (G′′

0). Note that
{e′1, e′2, e′3} is a 3-edge-cut corresponding to an edge of T ′. As a result, the edges e′1,
e′2, and e′3 are marked edges, and each Gi

0 is contained in either G′
0 or G′′

0 . Recall that
G3 is obtained from G0 by means of operations (1)–(3) above, which are local to the
graphs Gi

0 and therefore will still keep G′
0 and G′′

0 disconnected. Since R1 ⊆ V (G′
0)

and R2 ⊆ V (G′′
0), this implies that {e′1, e′2, e′3} is a 3-edge-cut separating R1 and R2

in G3.

Assume now that there is a 3-edge-cut {e1, e2, e3} separating R1 and R2 in G3.
Note that no unmarked edge can be in a 3-edge-cut, since each unmarked edge left
after the compression of Si0 is quadruplicated, therefore making its endpoints 4-edge-
connected. As a result, e1, e2, and e3 must all be marked edges. This implies that

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 373

e1, e2 and e3 are all edges of G0.
Since by Lemma 5.16 G3 is 3-edge-connected, {e1, e2, e3} is a minimum edge-cut

in G3, and therefore the removal of e1, e2, and e3 splits G3 into two graphs, say G′
3

and G′′
3 . Without loss of generality assume that R1 ⊆ V (G′

3) and R2 ⊆ V (G′′
3). Recall

that G0 can be obtained from G3 by means of operations (4)–(6) above, which still
keep G′

3 and G′′
3 disconnected. Since R1 ⊆ V (G′

3) and R2 ⊆ V (G′′
3), this implies that

{e1, e2, e3} is a 3-edge-cut separating R1 and R2 in G0.
Lemma 5.18. Let γ be a 3-edge-cut of G3, separating V ′ and V ′′, with V ′, V ′′ ⊆

V (G3). Then γ is a 3-edge-cut of G0, separating V ′ and V ′′ in G0.
Proof. Let G′

3 and G′′
3 be the two graphs obtained after the deletion of γ from

G3, with V ′ = V (G′
3) and V ′′ = V (G′′

3). Recall that G0 can be obtained from G3

by means of operations of types (4), (5), and (6). None of these operations adds
a path between V ′ and V ′′, and therefore γ is a 3-edge-cut of G0, separating V ′

and V ′′.
Lemma 5.19. G3 has O(|X3 ∪ Z3|) vertices and edges.
Proof. As said before, there are exactly (|X3 ∪Z3|+ 1) red vertices in G0. Recall

that a 4-edge-connected class Qj of G0 is red if it contains at least one red vertex.
Let rj ≥ 1 be the number of red vertices contained in a red 4-edge-connected class
Qj , and let ρ be the total number of red 4-edge-connected classes of G0. Since any
two 4-edge-connected classes are disjoint, we have

ρ∑
j=1

rj = |X3 ∪ Z3|+ 1

and

ρ ≤ |X3 ∪ Z3|+ 1.

Let T (G0) be the cactus tree ofG0. We color red a node of T (G0) only if it corresponds
to a red 4-edge-connected class of G0. Hence, there are exactly ρ red nodes in T (G0).
Let T ′ be the compressed cactus tree. Because of rules (Q1) and (Q2), T ′ has no
black leaves and no black chains of degree-two nodes. Consequently, T ′ has O(ρ)
nodes and edges. Since there are at most three marked edges in G0 for each edge in
T ′, the total number of marked edges and vertices in G0 will be O(ρ). For 1 ≤ i ≤ p,
let ρi be the total number of marked vertices in Gi

0, and let σi be the total number
of red vertices in Gi

0. Note that

p∑
i=1

(ρi + σi) = O(ρ+ |X3 ∪ Z3|) = O(|X3 ∪ Z3|).

Since each C(Gi) has size O(ρi + σi), and there are O(ρ) marked edges in G3, the
lemma follows.

Lemma 5.20. Let H be a graph such that V (H)∩V (G0) ⊆ X3∪Z3. If λ(G0∪H) =
`, ` ≤ 3, then λ(G3 ∪H) ≤ `.

Proof. Assume that λ(G0 ∪ H) = ` ≤ 3, and let γ be a minimum edge-cut of
G0 ∪ H, with |γ| = `. Let γG0 = γ ∩ E(G0) and γH = γ ∩ E(H) be, respectively,
the edges of γ in G0 and in H. Due to the minimality of γ, if γG0

6= ∅, γG0
must

be an edge-cut in G0. Similarly, if γH 6= ∅, γH must be an edge-cut in H. In other
words, denote by G′

0 ∪H ′ and G′′
0 ∪H ′′ the two graphs obtained from G0 ∪H after

deleting the edges of γ, with G′
0, G

′′
0 ⊆ G0, and H ′, H ′′ ⊆ H: γG0 splits G0 into G′

0

374 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

and G′′
0 , while γH splits H into H ′ and H ′′. If γG0

= ∅, then γ uses no edges of
G0, and therefore it does not split G0: in this case we assume that G′

0 = G0 and
G′′

0 = ∅. Since γG0
is an edge-cut of G0, and G0 is 3-edge-connected, either γG0 = ∅

or |γG0 | ≥ 3. Since |γ| ≤ 3, we are left with only two possibilities: either

(a) γG0
= ∅ (and therefore γ = γH), or

(b) |γG0
| = 3 and γH = ∅ (and therefore γ = γG0

and ` = 3).

In case (a), since γG0
= ∅, G0 = G′

0. Since γ = γH , no path between H ′ and H ′′ can
go through G0. Since G0 is 3-edge-connected, and therefore connected, this implies
that either H ′ or H ′′ is not connected to G0: without loss of generality, assume that
V (H ′) ∩ V (G0) = ∅. Then γ = γH splits G0 ∪ H into G0 ∪ H ′′ and H ′. Since
V (H)∩V (G0) = V (H)∩V (G3), we also have that V (H ′)∩V (G3) = ∅, and therefore
γ = γH splits G3 ∪H into G3 ∪H ′′ and H ′. Thus, λ(G3 ∪H) ≤ `, and the lemma
holds in case (a).

Assume now that we are in case (b) and γ = γG0 is a 3-edge-cut in G0∪H. Since
` = 3, we have to prove that λ(G3 ∪H) ≤ 3. To do this, we distinguish two subcases.

(b1) γG0
is separating two nonempty sets of red vertices, say R1 and R2, in G0, or

(b2) no two red vertices are separated by γG0
.

Assume we are in case (b1). Since γH = ∅, and γG0
is a 3-edge-cut of G0 ∪ H

separating R1 and R2, there is no path in H between R1 and R2. As a consequence of
R1, R2 6= ∅, by Lemma 5.17 there is a 3-edge-cut γ′ separating R1 and R2 in G3. Since
γ′ separates R1 and R2 in G3, with R1, R2 6= ∅, and there is no path in H between R1

and R2, γ
′ is a 3-edge-cut of G3∪H. If we are in case (b2), γ = γG0 is a 3-edge-cut of

G0 that does not separate red vertices. Since all the vertices in X3 ∪ Z3 are red, this
implies that γ is an extra 3-edge-cut. But then there is a chosen extra 3-edge-cut γ̂
in G0. Let v0 be the chosen extra vertex: γ̂ separates R̂1 = X3 ∪Z3 from R̂2 = {v0},
and v0 is colored red. By Lemma 5.17, there is a 3-edge-cut γ̂′ separating X3 ∪ Z3

and {v0} in G3. Since V (H) ∩ V (G0) ⊆ X3 ∪ Z3, and v0 6∈ (X3 ∪ Z3), there cannot

be a path in H between R̂1 = X3 ∪Z3 and R̂2 = {v0}. This implies that γ̂′ separates
X3 ∪ Z3 and v0 in G3 ∪H, and therefore γ̂′ is a 3-edge-cut of G3 ∪H. In summary,
in both cases (b1) and (b2), there is a 3-edge-cut in G3 ∪H. Then, λ(G3 ∪H) ≤ 3,
and the lemma also holds in case (b), since ` = 3.

Lemma 5.21. Let H be a graph such that V (H)∩V (G0) ⊆ X3∪Z3. If λ(G3∪H) =
` ≤ 3, then λ(G0 ∪H) ≤ `.

Proof. We use an argument similar to the one used in the proof of Lemma 5.20.
Assume that λ(G3 ∪H) = ` ≤ 3, and let δ be a minimum edge-cut of G3 ∪H, with
|δ| = `. Let δG3

= δ ∩ E(G3) and δH = δ ∩ E(H) be the edges of δ in G3 and in H.
Due to the minimality of δ, if δG3

6= ∅, δG3
must be an edge-cut in G3. Similarly, if

δH 6= ∅, δH must be an edge-cut in H. Since by Lemma 5.16, G3 is 3-edge-connected,
either δG3 = ∅ or |δG3 | ≥ 3. As in the proof of Lemma 5.20, |δ| ≤ 3 leaves only two
possibilities: either (a) δG3 = ∅ or (b) |δG3 | = 3, δH = ∅, and ` = 3. In case (a),
the same proof previously used for case (a) of Lemma 5.20 shows that δ = δH is an
`-edge-cut in G0 ∪ H too. If we are in case (b), δH = ∅, and δ = δG3

. Let V1 and
V2 be the two sets of vertices separated by δ in G3. Because of Lemma 5.18, δ is a
3-edge-cut separating V1 and V2 in G0, which implies that all the paths between V1

and V2 in G0 go through δ. Since δH = ∅, there is no path in H between V1 and V2.
The latter two statements imply that all the paths between V1 and V2 in G0 ∪H go
through δ. Thus, δ is a 3-edge-cut of G0 ∪H too.

Lemma 5.22. For 2 ≤ k ≤ 4, G3 is a compressed global certificate of k-edge-
connectivity for (X3 ∪ Z3) in G0.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 375

Proof. Let H be any graph with V (H) ∩ V (G0) ⊆ X3 ∪ Z3. By Lemmas 5.20
and 5.21, λ(G0 ∪ H) = ` ≤ 3 if and only if λ(G3 ∪ H) = ` ≤ 3. This implies that
λ(G0 ∪ H) > 3 if and only if λ(G3 ∪ H) > 3. Hence, G3 is a global certificate of
k-edge-connectivity for (X3 ∪ Z3) in G0, 2 ≤ k ≤ 4. This certificate is compressed
because of Lemma 5.19.

Lemma 5.23. Let H be given with V (G0) ∩ V (H) ⊆ X3 ∪ Z3, and let u ∈
X3 ∪Z3 ∪ V (H). For any vertex v ∈ V (G0), all the paths between u and v in G0 ∪H
must contain at least one red vertex. Similarly, for any vertex w ∈ V (G3), all the
paths between u and w in G3 ∪H must contain at least one red vertex.

Proof. Recall that all the vertices in X3 ∪ Z3 are colored red. If u ∈ X3 ∪ Z3,
u is itself a red vertex, and therefore the lemma is trivially true. Assume now that
u ∈ (V (H) − (X3 ∪ Z3)). Since V (G0) ∩ V (H) ⊆ X3 ∪ Z3, G0 and H share only
red vertices, and therefore each path between a vertex in H and a vertex in G0 must
contain at least one red vertex. The same argument applies to G3.

Lemma 5.24. For 2 ≤ k ≤ 4, G3 is a local certificate of k-edge-connectivity for
X3 ∪ Z3 in G0.

Proof. Let H be given with V (G0)∩V (H) ⊆ X3∪Z3, and let x and y be any two
vertices of X3 ∪ Z3 ∪ V (H). To prove the lemma, we basically follow the same ideas
used for proving Lemma 5.22, but this time we consider edge-cuts that separate x and
y instead. Note that since x, y ∈ X3 ∪ Z3 ∪ V (H), x and y are in both G0 ∪H and
G3∪H. We prove the following two properties, which are the analogs of Lemmas 5.20
and 5.21.

(i) If λx,y(G0 ∪H) = ` ≤ 3, then λx,y(G3 ∪H) ≤ `.
(ii) If λx,y(G3 ∪H) = ` ≤ 3, then λx,y(G0 ∪H) ≤ `.

Properties (i) and (ii) imply that λx,y(G0∪H) = ` ≤ 3 if and only if λx,y(G3∪H) =
` ≤ 3. Note that any two vertices whose edge connectivity is not `, ` ≤ 3, are at least
4-edge-connected. Hence, the lemma will follow from (i) and (ii).

We first prove (i). If λx,y(G0 ∪ H) = ` ≤ 3, then there is a minimum edge-
cut γ(x, y) separating x and y in G0 ∪ H such that |γ(x, y)| = ` ≤ 3. Denote by
G′

0 ∪H ′ and G′′
0 ∪H ′′ the two graphs obtained from G0 ∪H after deleting the edges

of γ(x, y), with G′
0, G

′′
0 ⊆ G0, and H ′, H ′′ ⊆ H. Without loss of generality, assume

that x is in G′
0 ∪ H ′ and y is in G′′

0 ∪ H ′′. Let γG0(x, y) = γ(x, y) ∩ E(G0) and
γH(x, y) = γ(x, y) ∩E(H) be, respectively, the edges of γ(x, y) in G0 and in H. Due
to the minimality of γ(x, y), if γG0

(x, y) 6= ∅, γG0
(x, y) must be an edge-cut of G0

(separating G′
0 and G′′

0). If γG0
(x, y) = ∅, then γ(x, y) uses no edges of G0, and

therefore it does not split G0: in this case we assume that G′
0 = G0 and G′′

0 = ∅.
Similarly, if γH 6= ∅, γH(x, y) must be an edge-cut of H (separating H ′ and H ′′).

Since γG0
(x, y) is an edge-cut ofG0, andG0 is 3-edge-connected, either γG0

(x, y) =
∅ or |γG0

(x, y)| ≥ 3. Since |γ(x, y)| ≤ 3, we are left with only two possibilities:

(a) γG0(x, y) = ∅ (and therefore γ(x, y) = γH(x, y));
(b) |γG0(x, y)| = 3 and γH(x, y) = ∅ (and therefore γ(x, y) = γG0(x, y)).

Assume we are in case (a). Since γG0
(x, y) = ∅, G0 = G′

0 and γH(x, y) splits
G0 ∪H into G0 ∪H ′′ and H ′. Due to the fact that γH(x, y) separates x and y, one of
these vertices must be in H ′, and the other must be in G0∪H ′′. Since V (G3) ⊆ V (G0),
we have that V (H ′)∩V (G3) = ∅. Thus, γH(x, y) splits G3 ∪H into G3 ∪H ′′ and H ′,
and therefore it separates x and y in G3 ∪H too. This yields (i) for this case.

Assume now that we are in case (b). Since γ(x, y) = γG0(x, y) is a 3-edge-cut
separating x and y in G0 ∪ H, it splits G0 into G′

0 and G′′
0 , which are both non-

empty. Assume that x is in the same side as G′
0 and y is in the same side as G′′

0 .

376 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

Let R′ and R′′ be the sets of red vertices, respectively, in G′
0 and in G′′

0 . Recall
that V (H) ∩ V (G3) ⊆ X3 ∪ Z3, and vertices of X3 ∪ Z3 are colored red. Because of
Lemma 5.23, there is a red vertex (of R′) in each path between x and a vertex in
G′

0, and there is a red vertex (of R′′) in each path between y and a vertex in G′′
0 .

This shows that R′, R′′ 6= ∅, and therefore by Lemma 5.17, there is a 3-edge-cut γ̂
separating R′ and R′′ in G3. Again, because of Lemma 5.23, any path between x
and y that goes through G3 must contain at least one vertex in R′ and one vertex in
R′′. Since R′ and R′′ are separated by γ̂ in G3, any such path between x and y must
contain at least one edge of γ̂. As a consequence of γH(x, y) = ∅, no path between
x and y can go through H. Then, every path between x and y in G3 ∪ H must go
through γ̂, thus giving (i).

We now turn to (ii). Assume that the minimum edge-cut δ(x, y) separating x and
y in G3 ∪ H is of cardinality |δ(x, y)| = ` ≤ 3. Let δG3(x, y) = δ(x, y) ∩ E(G3) and
δH(x, y) = δ(x, y)∩E(H) be the edges of δ(x, y) in G3 and in H. Due to the minimal-
ity of δ(x, y), if δG3

(x, y) 6= ∅, δG3
(x, y) must be an edge-cut in G3(x, y). Similarly, if

δH(x, y) 6= ∅, δH(x, y) must be an edge-cut in H. Since G3 is 3-edge-connected, either
δG3(x, y) = ∅ or |δG3(x, y)| ≥ 3. Once again, we have two possibilities: either (a)
δG3(x, y) = ∅ or (b) |δG3(x, y)| = 3 and δH(x, y) = ∅. In case (a), the same argument
used for case (a) of (i) shows that δ(x, y) = δH(x, y) is an `-edge-cut separating x
and y in G0 ∪ H too, and therefore (ii) holds. If we are in case (b), δH(x, y) = ∅,
and δ(x, y) = δG3

(x, y), |δG3
(x, y)| = 3. Let R′ and R′′ be the red vertices separated

by δ(x, y) in G3. Exactly as in (i), any path between x and y that goes through G3

must contain at least one (red) vertex in R′ and one (red) vertex in R′′. As before,

this implies two things. First, by Lemma 5.17, there is a 3-edge-cut δ̂ separating R′

and R′′ in G0. Second, any path between x and y in G0 must contain at least one
edge of δ̂. As a consequence of γH(x, y) = ∅, no path between x and y can go

through H. Then, every path between x and y in G0 ∪ H must go through δ̂.
Thus, δ̂ is a 3-edge-cut separating x and y in G0 ∪ H. Since ` = 3 in case (b), this
proves (ii).

Lemma 5.25. G3 preserves planarity.
Proof. Let H be any graph such that V (H) ∩ V (G0) ⊆ X3 ∪ Z3. G3 ∪ H can

be obtained from G0 ∪H by means of operations (1), (2), and (3), which consist of
deletion of edges, contraction of edges, and insertion of parallel edges. Since all these
operations preserve planarity, if G0 ∪H is planar, then G3 ∪H is planar. Thus, G3

preserves planarity according to Definition 3.5.
Lemmas 5.16, 5.22, 5.24, and 5.25 prove that G3 is a solution to Problem 5.3.

5.4. Compressed certificates for 3- and 4-edge-connectivity. In this sec-
tion, we combine the results obtained in sections 5.1, 5.2, and 5.3 to derive com-
pressed full certificates for 3- and 4-edge-connectivity. Let G = (V,E) be a planar
connected graph, and let X be a set of interesting vertices in G. Let H be given, with
V (G) ∩ V (H) ⊆ X. Our algorithm for finding compressed full certificates consists of
the following steps.

Step 1 (decreasing the number of 2-edge-connected components). Set X1 = X,
G0 = G, and compute a solution G1 to Problem 5.1 as shown in section 5.1.

Step 2 (decreasing the number of 3-edge-connected components). Let N1 be the
set of endpoints of bridges left in G1 at the end of Step 1. Because of the previous
step, there are O(|X|) bridges in G1 and therefore |N1| = O(|X|). For each 2-edge-
connected component B left in G1 do the following: set X2(B) = (X1 ∪N1) ∩ V (B),
G0(B) = B, and compute a solution G2(B) to Problem 5.2 as shown in section 5.2.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 377

Let X2 =
∑

B X2(B). Note that |X2| =
∑

B |X2(B)| = |X1 ∪ N1| = O(|X|), so
this compression uses O(|X|) interesting vertices overall. Denote by G2 the graph
obtained fromG1 by replacing each 2-edge-connected component B withG2(B). Since
each G2(B) is a solution to Problem 5.2, G2(B) has O(|X2(B)|) 3-edge-connected
components. Hence, the overall number of 3-edge-connected components left in G2

will be
∑

B O(|X2(B)|) = O(|X|).
Step 3 (final compression). Let N2 be the set of endpoints of 2-edge-cuts left in G2

at the end of Step 2. Since the total number of endpoints of 2-edge-cuts is linear in the
number of 3-edge-connected components, because of the previous step, |N2| = O(|X|).
Let T be a 3-edge-connected component of G2: recall that T is obtained by means
of splits (as defined in section 4.1), and it contains virtual edges corresponding to
2-edge-cuts. Let M2(T) be the set of virtual edges in T . For each 3-edge-connected
component T left in G2 do the following: set X3(T) = (X2 ∪N2)∩V (T), G0(T) = T ,
Y3(T) = M2(T), and compute a solution G3(T) to Problem 5.3 as shown in section 5.3.
Let X3 =

∑
T X3(T) and M2 =

∑
T M2(T) be, respectively, the total number of

red vertices and red edges. Note that |X3| =
∑

T |X3(T)| = |X2 ∪ N2| = O(|X|)
and |M2| =

∑
T |M2(T)| ≤ ∑T |N2 ∩ V (T)| ≤ ∑T |X3(T)| = O(|X|), so again the

compression uses O(|X|) interesting vertices overall. Then merge back the compressed
3-edge-connected components along their original 2-edge-cuts. This is well defined,
since all the virtual edges, and hence the endpoints of the original 2-edge-cuts, are
colored red and therefore preserved in the graphs G3(T). Denote by G3 the graph
obtained from G2 in this way.

We now prove that G3 is a planarity-preserving compressed full certificate of 3-
and 4-edge-connectivity for X in G.

Lemma 5.26. Let G = (V,E) be an undirected planar graph with a set X ⊆
V (G). Let G3 be the graph defined at the end of Step 3 above. Then G3 is a
planarity-preserving compressed full certificate for X in G with respect to 3- and 4-
edge-connectivity.

Proof. Let G1 be the graph obtained after Step 1. Since G1 is a solution to
Problem 5.1, then for every k ≥ 2, G1 is a planarity-preserving full certificate of
k-edge-connectivity for X in G and has O(|X|) 2-edge-connected components.

Let G2 be the graph obtained from G1 by replacing each 2-edge-connected com-
ponent B with G2(B), where each G2(B) is a solution to Problem 5.2 with interesting
verticesX2(B) as described in Step 2. We claim that for every k ≥ 2, G2 is a planarity-
preserving compressed full certificate for k-edge-connectivity of X in G. Since each
G2(B) is planarity-preserving, as shown in section 5.2, and G2 is obtained by only
adding bridges between the graphs G2(B), G2 will be planarity-preserving too. The
fact that G2 is compressed follows easily from repeated applications of Lemma 5.11.
It remains to show that G2 is indeed a certificate for X in G. To prove this, fix a par-
ticular 2-edge-connected component B of G1. Let X2(B) be the interesting vertices

of B as defined in Step 2, and let G
(1)
2 be the graph obtained after replacing B with

G2(B). By Lemma 5.13 and Corollary 5.2, for every k ≥ 2, G2(B) is a full certificate
for k-edge-connectivity of X2(B) in B. By Lemma 3.2 applied with C ′ = G2(B),
X ′ = X2(B), G′ = B, C ′′ = G′′ = G1 − B, and X ′′ = V (G1 − B), we have that for

every k ≥ 2, G
(1)
2 is a full certificate for k-edge-connectivity of X2(B)∪V (G1 −B) in

G1. Since X ∪X2(B) ⊆ X2(B) ∪ V (G1 − B), by Lemma 3.3 we have that for every

k ≥ 2, G
(1)
2 is a full certificate for k-edge-connectivity of X ∪X2(B) in G1. Repeating

this argument for each 2-edge-connected component B of G1 yields that for every
k ≥ 2, G2 is a full certificate for k-edge-connectivity of X2 in G1. Since G1 is a full

378 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

certificate of k-edge-connectivity for X in G, and X ⊆ X2, by Lemma 3.1 we have
that G2 is a full certificate of k-edge-connectivity for X in G.

LetG3 be the graph obtained at the end of Step 3. We claim thatG3 is a planarity-
preserving compressed full certificate for 3- and 4-edge-connectivity of X in G. By
Lemma 5.25, each G3(T), which is a solution to Problem 5.3, is planar. Recall that
G3 is obtained by splitting G2, replacing each 3-edge-connected component T with
G3(T), and by merging back the compressed 3-edge-connected components G3(T).
Since splits and merges preserve planarity, G3 will be planarity-preserving. The fact
that G3 is compressed follows from repeated applications of Lemma 5.19. To show
that G3 is a certificate of 3- and 4-edge-connectivity for X in G, we proceed as follows.
Fix a particular 3-edge-connected component T of G2, and let B(T) be the 2-edge-
connected component containing T , whose interesting vertices (defined in step 2) are
in X2(B). Let X3(T) be the interesting vertices of T as defined in Step 3, and let

G
(1)
3 be the graph obtained from G2 after replacing T with G3(T). By Lemmas 5.22

and 5.24, for 2 ≤ k ≤ 4, G3(T) is a full certificate for k-edge-connectivity of X3(T) in

T . Let B(T)(1) be the 2-edge-component of G
(1)
3 containing G3(T). By Theorem 4.2

applied to the 2-edge-connected graph B(T), we have that for 2 ≤ k ≤ 4, B(T)(1) is
a full certificate for k-edge-connectivity of X2(B) in B(T). Applying Lemma 3.2 as

before yields that for 2 ≤ k ≤ 4, G
(1)
3 is a full certificate for k-edge-connectivity of

X2(B) ∪ V (G2 − B(T)) in G2. Again, by Lemma 3.3, we have that for 2 ≤ k ≤ 4,

G
(1)
3 is a full certificate for k-edge-connectivity of X ∪X2(B) in G2. Repeating this

argument for each 3-edge-connected component T of G2 yields that for 2 ≤ k ≤ 4, G3

is a full certificate for k-edge-connectivity of X in G2. Since we have already proved
that, for any k ≥ 2, G2 is a full certificate of k-edge-connectivity for X in G, by
Lemma 3.1 we have that G3 is a full certificate of k-edge-connectivity for X in G,
2 ≤ k ≤ 4.

Theorem 5.1. We can maintain a planar graph subject to insertions and dele-
tions that preserve planarity, and allow testing the 3- and 4-edge-connectivity of the
graph in O(n1/2) time per update, or test whether two vertices are 3- or 4-edge-
connected, in O(n1/2) time per update or query.

Proof. Lemma 5.26 shows that planarity-preserving compressed full certificates
exist, so we can use Lemma 3.4 to find such certificates in linear time. We then apply
Theorem 3.4 with T (n) = Q(n) = O(n).

6. Vertex connectivity. As another application of our basic sparsification tech-
nique, we describe an algorithm for 2- and 3-vertex-connectivity.

Theorem 6.1. We can maintain a planar graph, subject to insertions and dele-
tions that preserve planarity, and allow queries that test the 2- or 3-vertex-connectivity
of the graph, or test whether two vertices belong to the same 2- or 3-vertex-connected
component, in O(n1/2) amortized time per update or query.

Proof. Galil, Italiano, and Sarnak [21] show that compressed certificates for 2-
and 3-vertex-connectivity can be found in linear time. It can be verified that their
certificates comply with our Definition 3.3. Using their compressed certificates in our
separator tree gives O(n1/2) amortized time per update by Theorem 3.2.

We remark that the same O(n1/2) bound can be achieved for the problem of
maintaining minimum spanning forests and for local connectivity. This does not
improve the O(n1/2) bounds that can be achieved using the algorithms for general
graphs [9], however. In the companion paper [11], we achieve better O(log2 n) bounds
for these problems.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 379

7. Conclusions and open problems. We have introduced a new and general
technique for designing dynamic planar graph algorithms. This technique is based
upon sparsification, compressed certificates, and balanced separator trees, and im-
proves many known bounds. In the companion paper [11], we have showed how
this technique produces fast, fully dynamic algorithms for minimum spanning forests,
for 2-edge-connectivity on planar graphs, and for dynamic planarity testing. In this
paper we have applied this technique to 2-vertex-, 3-vertex-, 3-edge-, and 4-edge-
connectivity. For edge connectivity, we have developed certificates which may be
interesting on their own. There are a number of related and perhaps interesting
questions.

The algorithms described in [11] exploit a stability property in their certificates
to support polylogarithmic time updates in planar graphs. For the problems tackled
in this paper, we have not been able to apply stable sparsification, and our bounds
are O(n1/2). Is it possible to exploit stability and to achieve polylogarithmic bounds
for these problems too?

Furthermore, are there compressed certificates for other problems? For higher
edge connectivity, for instance, the cactus tree gets more complicated (see, for in-
stance, [6]) and makes our way of computing compressed certificates for edge connec-
tivity difficult to generalize. Are there compressed certificates for edge connectivity
which are not based on cactus trees?

Finally, can we exploit known partially dynamic algorithms to speed up the in-
sertion times in our bounds? This would be particularly appealing, since there are
very fast, partially dynamic algorithms already available in the literature for edge and
vertex connectivity [6, 20, 27, 29, 30, 36].

Acknowledgments. We are deeply indebted to the anonymous referees, whose
thorough reading of the paper lead to a substantial improvement in its presentation.

REFERENCES

[1] J. Cheriyan and S. N. Maheshwari, Finding nonseparating induced cycles and independent
spanning trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507–537.

[2] J. Cheriyan, M. Y. Kao, and R. Thurimella, Scan-first search and sparse certificates:
An improved parallel algorithm for k-vertex connectivity, SIAM J. Comput., 22 (1993),
pp. 157–174.

[3] G. B. Dantzig and D. R. Fulkerson, On the max-flow min-cut theorem of networks, in
Linear Inequalities and Related Systems, Ann. Math. Study 38, Princeton University Press,
Princeton, NJ, 1956, pp. 215–221.

[4] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov, A structure of the system of all
minimal cuts of a graph, in Studies in Discrete Optimization, A. A. Fridman, ed., Nauka,
Moscow, 1976, pp. 290–306. (In Russian.)

[5] E. A. Dinitz, The 3-edge-components and a structural description of all 3-edge-cuts in a graph,
in Proc. 18th Int. Workshop on Graph-Theoretic Concepts in Computer Science, Lecture
Notes in Computer Science 657, Springer-Verlag, New York, 1992, pp. 145–157.

[6] E. A. Dinitz, Maintaining the 4-edge-connected components of a graph on-line, in Proc. 2nd
Israel Symp. on Theory of Computing and Systems, Nethania, Israel, IEEE Computer
Society Press, Piscataway, NJ, 1993, pp. 88–97.

[7] D. Eppstein, Subgraph isomorphism for planar graphs and related problems, in Proc. 6th ACM-
SIAM Symp. on Discrete Algorithms, 1995, pp. 189–196; J. Graph Algorithms Appl., to
appear.

[8] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification—A technique
for speeding up dynamic graph algorithms, in Proc. 33rd IEEE Symp. on Foundations of
Computer Science, 1992, pp. 60–69.

380 D. EPPSTEIN, Z. GALIL, G. ITALIANO, AND T. SPENCER

[9] D. Eppstein, Z. Galil, and G. F. Italiano, Improved Sparsification, Tech. Report 93-20,
Department of Information and Computer Science, University of California, Irvine, 1993.

[10] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer, Separator based sparsification
for dynamic planar graph algorithms, in Proc. 25th Annual ACM Symp. on Theory of
Computing, 1993, pp. 208–217.

[11] D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer, Separator based sparsification I:
Planarity testing and minimum spanning trees, J. Comput. System Sci., Special issue on
STOC 93, 52 (1996), pp. 3–27.

[12] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung,
Maintenance of a minimum spanning forest in a dynamic plane graph, J. Algorithms, 13
(1992), pp. 33–54.

[13] A. Frank, T. Ibaraki, and H. Nagamochi, On sparse subgraphs preserving connectivity
properties, J. Graph Theory, 17 (1993), pp. 275–281.

[14] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, with
applications, SIAM J. Comput., 14 (1985), pp. 781–798.

[15] G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k small-
est spanning trees, in Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991,
pp. 632–641.

[16] H. N. Gabow, A matroid approach to finding edge connectivity and packing arborescences, in
Proc. 23rd ACM Symp. on Theory of Computing, 1991, pp. 112–122.

[17] H. N. Gabow, Applications of a poset representation to edge connectivity and graph rigidity,
in Proc. 32nd IEEE Symp. on Foundations of Computer Science, 1991, pp. 812–821.

[18] H. N. Gabow and M. Stallman, Efficient algorithms for graphic matroid intersection and
parity, in Proc. 12th Int. Coll. Automata, Languages, and Programming, Lecture Notes in
Computer Science 194, Springer-Verlag, New York, 1985, pp. 210–220.

[19] Z. Galil and G. F. Italiano, Maintaining biconnected components of dynamic planar graphs,
in Proc. 18th Int. Colloq. Automata, Languages, and Programming, Lecture Notes in
Computer Science 510, Springer-Verlag, New York, 1991, pp. 339–350.

[20] Z. Galil and G. F. Italiano, Maintaining the 3-edge-connected components of a graph on-line,
SIAM J. Comput., 22 (1993), pp. 11–28.

[21] Z. Galil, G. F. Italiano, and N. Sarnak, Fully dynamic planarity testing, in Proc. 24th
ACM Symp. on Theory of Computing, 1992, pp. 495–506.

[22] D. Giammarresi and G. F. Italiano, Decremental 2- and 3-connectivity on planar graphs,
Algorithmica, 16 (1996), pp. 263–287.

[23] M. T. Goodrich, Planar separators and parallel polygon triangulation, in Proc. 24th ACM
Symp. on Theory of Computing, 1992, pp. 507–516.

[24] J. Hershberger, M. Rauch, and S. Suri, Data structures for two-edge connectivity on planar
graphs, Theoret. Comput. Sci., 130 (1994), pp. 139–161.

[25] J. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components, SIAM J.
Comput., 2 (1973), pp. 135–158.

[26] A. Itai and M. Rodeh, The multi-tree approach to reliability in distributed networks, Inform.
and Comput., 79 (1988), pp. 3–59.

[27] A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen, On-line maintenance of the four-
connected components of a graph, in Proc. 32nd IEEE Symp. on Foundations of Computer
Science, 1991, pp. 793–801.

[28] A. V. Karzanov and E. A. Timofeev, Efficient algorithm for finding all minimal edge-cuts of
a nonoriented graph, Cybernetics, 1986, pp. 156–162. (Trans. from Kibernetica, 2(1986),
pp. 8–12.)

[29] J. A. La Poutré, Dynamic Graph Algorithms and Data Structures, Ph.D. Thesis, Utrecht
University, the Netherlands, September 1991.

[30] J. A. La Poutré, Maintenance of triconnected components of graphs, in Proc. 19th Int.
Coll. Automata, Languages, and Programming, Lecture Notes in Computer Science 623,
Springer-Verlag, New York, 1992, pp. 354–365.

[31] H. Nagamochi and T. Ibaraki, A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph, Algorithmica, 7 (1992), pp. 583–596.

[32] M. Rauch, Fully dynamic biconnectivity in graphs, in Proc. 33rd IEEE Symp. on Foundations
of Computer Science, 1992, pp. 50–59.

[33] R. Tamassia, A dynamic data structure for planar graph embedding, in Proc. 15th Int. Col-
loq. Automata, Languages, and Programming, Lecture Notes in Computer Science 317,
Springer-Verlag, New York, 1988, pp. 576–590.

[34] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146–160.

SPARSIFICATION II: EDGE AND VERTEX CONNECTIVITY 381

[35] R. Thurimella, Techniques for the Design of Parallel Graph Algorithms, Ph.D. Thesis, Univ.
of Texas, Austin, 1989.

[36] J. Westbrook and R. E. Tarjan, Maintaining bridge-connected and biconnected components
on-line, Algorithmica, 7 (1992), pp. 433–464.

A DOWNWARD COLLAPSE WITHIN THE POLYNOMIAL
HIERARCHY∗

EDITH HEMASPAANDRA† , LANE A. HEMASPAANDRA‡ , AND HARALD HEMPEL§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 383–393

Abstract. Downward collapse (also known as upward separation) refers to cases where the
equality of two larger classes implies the equality of two smaller classes. We provide an unqualified
downward collapse result completely within the polynomial hierarchy. In particular, we prove that,

for k > 2, if PΣ
p
k

[1] = PΣ
p
k

[2] then Σpk = Πpk = PH. We extend this to obtain a more general
downward collapse result.

Key words. computational complexity theory, easy-hard arguments, downward collapse, poly-
nomial hierarchy

AMS subject classifications. 68Q15, 68Q10, 03D15, 03D10

PII. S0097539796306474

1. Introduction. The theory of NP-completeness does not resolve the issue of
whether P and NP are equal. However, it does unify the issues of whether thousands
of natural problems—the NP-complete problems—have deterministic polynomial-time
algorithms. The study of downward collapse is similar in spirit. By proving downward
collapses, we seek to tie together central open issues regarding the computing power
of complexity classes. For example, the main result of this paper shows that (for
k > 2) the issue of whether the kth level of the polynomial hierarchy is closed under
complementation is identical to the issue of whether two queries to this level give
more power than one query to this level.

Informally, downward collapse (equivalent terms are “downward translation of
equality” and “upward separation”) refers to cases in which the collapse of larger
classes implies the collapse of smaller classes (for background, see, e.g., [All91, AW90]).
For example, NPNP = coNPNP ⇒ NP = coNP would be a (shocking and inherently
nonrelativizing [Ko89]) downward collapse, the “downward” part referring to the well-
known fact that NP ∪ coNP ⊆ NPNP ∩ coNPNP.

Downward collapse results are extremely rare, but there are some results in the
literature that do have the general flavor of downward collapse. Cases where the
collapse of larger classes forces sparse sets (but perhaps not nonsparse sets) to fall
out of smaller classes were found by Hartmanis, Immerman, and Sewelson ([HIS85],
see also [Boo74]) and by others (e.g., Rao, Rothe, and Watanabe [RRW94], but in
contrast see also [HJ95]). Existential cases have long been implicitly known (i.e.,
theorems such as “if PH = PSPACE then (∃k) [PH = Σpk]”—note that here one
can prove nothing about what value k might have). Regarding probabilistic classes,
Ko [Ko82] proved that “if NP ⊆ BPP then NP = R,” and Babai, Fortnow, Nisan, and
Wigderson [BFNW93] proved the striking result that “if EH = E then P = BPP.”

∗ Received by the editors July 2, 1996; accepted for publication (in revised form) January 24,
1997; published electronically July 7, 1998. This research was supported in part by grants NSF-INT-
9513368/DAAD-315-PRO-fo-ab and NSF-CCR-9322513.

http://www.siam.org/journals/sicomp/28-2/30647.html
† Department of Mathematics, Le Moyne College, Syracuse, NY 13214 (edith@bamboo.lemoyne.

edu). This work was done in part while visiting Friedrich-Schiller-Universität Jena.
‡ Department of Computer Science, University of Rochester, Rochester, NY 14627 (lane@cs.

rochester.edu). This work was done in part while visiting Friedrich-Schiller-Universität Jena.
§ Institut für Informatik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany (hempel@

informatik.uni-jena.de). This work was done in part while visiting Le Moyne College.

383

384 E. HEMASPAANDRA, L. A. HEMASPAANDRA, and H. HEMPEL

Hemaspaandra, Rothe, and Wechsung have given an example involving degenerate
certificate schemes [HRW], and examples due to Allender [All86, section 5] and Hart-
manis and Yesha [HY84, section 4] are known regarding circuit-related classes.1

We provide an unqualified downward collapse result that is not restricted to sparse
or tally sets, whose conclusion does not contain a variable that is not specified in its
hypothesis, and that deals with classes whose ex ante containments2 are clear (and
plausibly strict). Namely, as is standard, let PC[j] denote the class of languages
computable by P machines making at most j queries to some set from C. We prove
that, for each k > 2, it holds that

PΣp
k
[1] = PΣp

k
[2] ⇒ Σpk = Πp

k = PH.

(As just mentioned in footnote 2, the classes in the hypothesis clearly have the prop-
erty that they contain both Σpk and Πp

k.) The best previously known results from

the assumption PΣp
k
[1] = PΣp

k
[2] collapse the polynomial hierarchy only to a level that

contains Σpk+1 and Πp
k+1 [CK96, BCO93].

Our proof actually establishes a Σpk = Πp
k collapse from a hypothesis that is even

weaker than PΣp
k
[1] = PΣp

k
[2]. Namely, we prove that, for i < j < k and i < k−2, if one

query each (in parallel) to the ith and kth levels of the polynomial hierarchy equals
one query each (in parallel) to the jth and kth levels of the polynomial hierarchy,
then Σpk = Πp

k = PH.

In the final section of the paper, we generalize from 1-versus-2 queries to m-versus-
(m+1) queries. In particular, we show that our main result is in fact a reflection of an
even more general downward collapse: if the truth-table hierarchy over Σpk collapses
to its mth level, then the boolean hierarchy over Σpk collapses one level further than
one would expect.

2. Simple case. Our proof works by extracting advice internally and algorith-
mically, while holding down the number of quantifiers needed, within the frame-
work of a so-called “easy-hard” argument. Easy-hard arguments were introduced by
Kadin [Kad88] and were further used by Chang and Kadin ([CK96]; see also [Cha91])
and Beigel, Chang, and Ogiwara [BCO93] (we follow the approach of Beigel, Chang,
and Ogiwara).

Theorem 2.1. For each k > 2 it holds that

PΣp
k
[1] = PΣp

k
[2] ⇒ Σpk = Πp

k = PH.

Theorem 2.1 follows immediately3 from Theorem 2.4 below, which states that, for
i < j < k and i < k− 2, if one query each to the ith and kth levels of the polynomial

1 Note that we are not claiming that all the above examples from the literature are totally un-
qualified downward collapse results, but rather we are merely stating that they have the general
flavor of downward collapse. In some cases, the results mentioned above do not fully witness what
one might hope for from the notion of “downward.” Ideally, downward collapse results would be
truly “downward” in the sense that they would be of the form “if A = B then C = D,” where the
classes are such that (a) A∩B ⊇ C ∪D is a well-known result and (b) it is not currently known that
A∩B = C ∪D. The downward collapses proven in this paper do have this strong “downward” form.

2 For example, in the case of Theorem 2.1, Σpk ∪ Πpk ⊆ PΣ
p
k

[1] ∩ PΣ
p
k

[2] is well known to be true
(and most researchers suspect that the inclusion is strict).

3 In particular, taking i = 0 and j = k − 1 in Theorem 2.4 yields a statement that itself clearly
implies Theorem 2.1.

A DOWNWARD COLLAPSE WITHIN THE POLYNOMIAL HIERARCHY 385

hierarchy equals one query each to the jth and kth levels of the polynomial hierarchy,
then Σpk = Πp

k = PH.
DPTM will refer to deterministic polynomial-time oracle Turing machines, whose

polynomial time upper bounds are clearly clocked and are independent of their oracles.
We will also use the following definitions.

Definition 2.2.
1. Let M (A,B) denote DPTM M making, simultaneously (i.e., in a truth-table

fashion), at most one query to oracle A and at most one query to oracle B,
and let

P(C,D) = {L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃DPTM M)[L = L(M (C,D))]}.
2. A∆̃B = {〈x, y〉 | x ∈ A⇔ y 6∈ B} (see [BCO93]).

Lemma 2.3. Let 0 ≤ i < k, let L
P

Σ
p
i

[1] be any set ≤p
m -complete for PΣp

i
[1], and

let LΣp
k

be any language ≤p
m -complete for Σpk. Then L

P
Σ
p
i

[1]∆̃LΣp
k

is ≤p
m -complete

for P(Σp
i
,Σp
k
).

Proof. Clearly L
P

Σ
p
i

[1]∆̃LΣp
k

is in P(Σp
i
,Σp
k
). Regarding ≤p

m -hardness for P(Σp
i
,Σp
k
),

let L ∈ P(Σp
i
,Σp
k
) via transducer M , Σpi set A, and Σpk set B. Without loss of generality,

on each input x, M asks exactly one question ax to A and one question bx to B. Define
sets D and E as follows:

D = {x | M (A,B) accepts x if ax is answered correctly and bx is answered
“no”}.
E = {x | bx ∈ B and the (one-variable) truth-table with respect to bx of
M (A,B) on input x induced by the correct answer to ax is neither “always
accept” nor “always reject”}.

Note that D ∈ PΣp
i
[1], and that E ∈ Σpk, since i < k. But L≤p

mD∆̃E via the reduction

f(x) = 〈x, x〉. So clearly L≤p
m L

P
Σ
p
i

[1]∆̃LΣp
k
, via the reduction f̂(x) = 〈f ′(x), f ′′(x)〉,

where f ′ and f ′′ are, respectively, reductions from D to L
P

Σ
p
i

[1] and from E to

LΣp
k
.
Theorem 2.4 contains the following two technical advances. First, it internally

extracts information in a way that saves a quantifier. (In contrast, the earliest easy-
hard arguments in the literature merely ensure that Σpk ⊆ Πp

k/poly and from that infer
a weak polynomial hierarchy collapse. Even the interesting recent strengthenings of
the argument [BCO93] still, under the hypothesis of Theorem 2.4, conclude only a
collapse of the polynomial hierarchy to a level a bit worse than Σpk+1.) The second
advance is that previous easy-hard arguments seek to determine whether there exists
a hard string for a length or not. Then they use the fact that if there is not a hard
string, all strings (at the length) are easy. In contrast, we never search for a hard
string; rather, we use the fact that the input itself (which we do not have to search
for as, after all, it is our input) is either easy or hard. So we check whether the input
is easy, and if so we can use it as an easy string, and if not, it must be a hard string
so we can use it that way. This innovation is important in that it allows Theorem 2.1
to apply for all k > 2—as opposed to merely applying for all k > 3, which is what
we would get without this innovation. (Following a referee’s suggestion, we mention
that during a first traversal the reader may wish to consider just the i = 0 and j = 1
special case of Theorem 2.4 and its proof, as this provides a restricted version that is
easier to read.)

Theorem 2.4. Let 0 ≤ i < j < k and i < k − 2. If P(Σp
i
,Σp
k
) = P(Σp

j
,Σp
k
) then

Σpk = Πp
k = PH.

386 E. HEMASPAANDRA, L. A. HEMASPAANDRA, and H. HEMPEL

Proof. Suppose P(Σp
i
,Σp
k
) = P(Σp

j
,Σp
k
). Let L

P
Σ
p
i

[1] , L
P

Σ
p
i+1

[1] , and LΣp
k

be ≤p
m -

complete for PΣp
i
[1], PΣp

i+1
[1], and Σpk, respectively; such sets exist. From Lemma 2.3 it

follows that L
P

Σ
p
i

[1]∆̃LΣp
k

is ≤p
m -complete for P(Σp

i
,Σp
k
). Since (as i < j) L

P
Σ
p
i+1

[1]∆̃LΣp
k

∈ P(Σp
j
,Σp
k
), and by assumption P(Σp

j
,Σp
k
) = P(Σp

i
,Σp
k
), there exists a polynomial-time

many-one reduction h from L
P

Σ
p
i+1

[1]∆̃LΣp
k

to L
P

Σ
p
i

[1]∆̃LΣp
k
. So, for all x1, x2 ∈ Σ∗: if

h(〈x1, x2〉) = 〈y1, y2〉, then (x1 ∈ L
P

Σ
p
i+1

[1] ⇔ x2 6∈ LΣp
k
) if and only if (y1 ∈ L

P
Σ
p
i

[1] ⇔
y2 6∈ LΣp

k
). Equivalently, for all x1, x2 ∈ Σ∗, the following fact holds.

Fact 1.
If h(〈x1, x2〉) = 〈y1, y2〉,
then

(x1 ∈ L
P

Σ
p
i+1

[1] ⇔ x2 ∈ LΣp
k
) if and only if (y1 ∈ L

P
Σ
p
i

[1] ⇔ y2 ∈ LΣp
k
).

We can use h to recognize some of LΣp
k

by a Σpk algorithm. The definitions
of easy and hard used in this paper follow the easy and hard concepts used by
Kadin [Kad88], Chang and Kadin ([CK96]; see also [Cha91]), and Beigel, Chang,
and Ogiwara [BCO93], modified as needed for our goals. In particular, we say that
a string x is easy for length n if there exists a string x1 such that |x1| ≤ n and
(x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 6∈ L
P

Σ
p
i

[1]), where h(〈x1, x〉) = 〈y1, y2〉.
Let p be a fixed polynomial, which will be exactly specified later in the proof.

We have the following Σpk algorithm to test whether x ∈ LΣp
k

in the case that (our

input) x is an easy string for p(|x|). On input x, guess x1 with |x1| ≤ p(|x|), let
h(〈x1, x〉) = 〈y1, y2〉, and accept if and only if (x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 6∈ L
P

Σ
p
i

[1]) and

y2 ∈ LΣp
k
. In light of Fact 1 above, it is clear that this is correct.

We say that x is hard for length n if |x| ≤ n and x is not easy for length n, i.e., if
|x| ≤ n and for all x1 with |x1| ≤ n it holds that x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 ∈ L
P

Σ
p
i

[1] , where

h(〈x1, x〉) = 〈y1, y2〉.
If x is a hard string for length n, then x induces a many-one reduction from

(L
P

Σ
p
i+1

[1])
≤n

to L
P

Σ
p
i

[1] ; namely, f(x1) = y1, where h(〈x1, x〉) = 〈y1, y2〉. Note that f

is computable in time polynomial in max(n, |x1|).
We can use hard strings to obtain a Σpk algorithm for LΣp

k
. Let M be a Πp

k−i−1

machine such that M with oracle L
P

Σ
p
i+1

[1] recognizes LΣp
k
. Let the run-time of M be

bounded by polynomial p, which without loss of generality satisfies (∀m̂ ≥ 0)[p(m̂ +
1) > p(m̂) > 0] (as promised above, we have now specified p). Then

(
LΣp

k

)=n

= (L

M
(
L

P
Σ
p
i+1

[1]

)≤p(n)
)=n.

If there exists a hard string for length p(n), then this hard string induces a reduction

from (L
P

Σ
p
i+1

[1])
≤p(n)

to L
P

Σ
p
i

[1] . Thus, with any hard string for length p(n) in hand,

call it wn, M̂ with oracle L
P

Σ
p
i

[1] recognizes LΣp
k

for strings of length n, where M̂

is the machine that simulates M but replaces each query q by the first component
of h(〈q, wn〉). It follows that if there exists a hard string for length p(n), then this
string induces a Πp

k−1 algorithm for (LΣp
k
)
=n

and therefore certainly a Σpk algorithm

for (LΣp
k
)
=n

.

A DOWNWARD COLLAPSE WITHIN THE POLYNOMIAL HIERARCHY 387

However, now we have an NPΣp
k−1 = Σpk algorithm for LΣp

k
: on input x, the NP

base machine of NPΣp
k−1 executes the following algorithm.

1. Using its Σpk−1 oracle, it deterministically determines whether the input x is
an easy string for length p(|x|). This can be done, as checking whether the
input is an easy string for length p(|x|) can be done by one query to Σpi+2,
and i+ 2 ≤ k − 1 by our i < k − 2 hypothesis.

2. If the previous step determined that the input is not an easy string, then the
input must be a hard string for length p(|x|). So simulate the Σpk algorithm
induced by this hard string (i.e., the input x itself) on input x (via our NP
machine itself simulating the base level of the Σpk algorithm and using the NP
machine’s oracle to simulate the oracle queries made by the base level NP
machine of the Σpk algorithm being simulated).

3. If the first step determined that the input x is easy for length p(|x|), then our
NP machine simulates (using itself and its oracle) the Σpk algorithm for easy
strings on input x.

We need one brief technical comment. The Σpk−1 oracle in the above algorithm is
being used for a number of different sets. However, as Σpk−1 is closed under disjoint
union, this presents no problem as we can use the disjoint union of the sets, while
modifying the queries so they address the appropriate part of the disjoint union.

Since LΣp
k

is complete for Πp
k, it follows that Σpk = Πp

k = PH.

We conclude this section with three remarks. First, if one is fond of the truth-table
version of bounded query hierarchies, one can certainly replace the hypothesis of Theo-

rem 2.1 with P
Σp
k

1-tt = P
Σp
k

2-tt (both as this is an equivalent hypothesis and as it in any case
clearly follows from Theorem 2.4). Indeed, one can equally well replace the hypoth-
esis of Theorem 2.1 with the even weaker-looking hypothesis4 PΣp

k
[1] = DIFF2(Σpk)

(as this hypothesis is also in fact equivalent to the hypothesis of Theorem 2.1—just
note that if PΣp

k
[1] = DIFF2(Σpk) then DIFF2(Σpk) is closed under complementation

and thus equals the boolean hierarchy over Σpk, see [CGH+88], and so in particular

we then have PΣp
k
[1] = DIFF2(Σpk) = PΣp

k
[2]).

Of course, the two equivalences just mentioned—PΣp
k
[1] = PΣp

k
[2] ⇔ P

Σp
k

1-tt =

P
Σp
k

2-tt ⇔ PΣp
k
[1] = DIFF2(Σpk)—are well known. However, Theorem 2.4 is sufficiently

strong that it creates an equivalence that is quite new and somewhat surprising. We
state it below as Corollary 2.6.

Theorem 2.5. For each k > 2 it holds that

PΣp
k
[1] = DIFF2(Σpk) ∩ coDIFF2(Σpk)⇒ Σpk = Πp

k = PH.

Proof. Let A4B =def (A−B) ∪ (B −A). Recalling that k > 2, it is not hard to
see that P(NP,Σp

k
) ⊆ DIFF2(Σpk). In particular, this holds due to Lemma 2.3, in light

of the facts that (i) DIFF2(Σpk) = {L | (∃L1 ∈ Σpk)(∃L2 ∈ Σpk)[L = L14L2]} (due to
Köbler, Schöning, and Wagner [KSW87]—see the discussion just before Theorem 3.7)
and (ii) A∆̃B = {〈x, y〉 | x ∈ A} 4 {〈x, y〉 | y ∈ B}. So, since P(NP,Σp

k
) is closed under

complementation, we have PΣp
k
[1] ⊆ P(NP,Σp

k
) ⊆ DIFF2(Σpk)∩ coDIFF2(Σpk). However,

this says, under the hypothesis of the theorem, that PΣp
k
[1] = P(NP,Σp

k
), which itself,

by Theorem 2.4, implies that Σpk = Πp
k = PH.

4 Where DIFF2(C) =def {L | (∃L1 ∈ C)(∃L2 ∈ C)[L = L1 − L2]}, and coC =def {L | L ∈ C} (see
Definition 3.1 for background).

388 E. HEMASPAANDRA, L. A. HEMASPAANDRA, and H. HEMPEL

Corollary 2.6. For each k > 2 it holds that

PΣp
k
[1] = DIFF2(Σpk) ∩ coDIFF2(Σpk)⇔ PΣp

k
[1] = DIFF2(Σpk).

Our second remark is that Theorem 2.1 implies that, for k > 2, if the bounded
query hierarchy over Σpk collapses to its PΣp

k
[1] level, then the bounded query hierarchy

over Σpk equals the polynomial hierarchy (this provides a partial affirmative answer
to the issue of whether, when a bounded query hierarchy collapses, the polynomial
hierarchy necessarily collapses to it; see [HRZ95, Problem 4]).

Third, in Lemma 2.3 and Theorem 2.4 we speak of classes of the form P(Σp
i
,Σp
j
),

i 6= j. It would be very natural to reason as follows: “P(Σp
i
,Σp
j
), i 6= j, must

equal P
Σp

max(i,j)
[1]

, as Σpmax(i,j) can easily solve any Σpmin(i,j) query ‘strongly’ using

the Σpmax(i,j)−1 oracle of its base NP machine and thus the hypothesis of Theorem 2.4

is trivially satisfied and so you in fact are claiming to prove, unconditionally, that
PH = Σp3.” This reasoning, though tempting, is wrong for the following somewhat

subtle reason. Though it is true that, for example, NPΣpq can solve any Σpq query

and then can tackle any Σpq+1 query, it does not follow that P(Σp
q+1

,Σpq) = PΣp
q+1

[1].
The problem is that the answer to the Σpq query may change the truth-table the P
transducer uses to evaluate the answer of the Σpq+1 query.

We mention that Buhrman and Fortnow [BF96], building on and extending our
proof technique, have very recently obtained the k = 2 analogue of Theorem 2.1.
They also prove that there are relativized worlds in which the k = 1 analogue of
Theorem 2.1 fails. On the other hand, if one changes Theorem 2.1’s left-hand-side
classes to function classes, then the k = 1 analogue of the resulting claim does hold
due to Krentel (see [Kre88, Theorem 4.2]): FPNP[1] = FPNP[2] ⇒ P = PH. Also,
very recent work of Hemaspaandra, Hemaspaandra, and Hempel [HHH97], building
on and extending the techniques of the present paper and those of Buhrman and
Fortnow [BF96], has established the k = 2 analogue of Theorem 3.2.

3. General case. We now generalize the results of section 2 to the case of m-
truth-table reductions. Though the results of this section are stronger than those of
section 2, the proofs are somewhat more involved, and thus we suggest the reader first
read section 2.

For clarity, we now describe the two key differences between the proofs in this
section and those of section 2. (1) The completeness claims of section 2 were simpler.
Here, we now need Lemma 3.5, which extends [BCO93, Lemma 8] with the trick of
splitting a truth-table along a simple query’s dimension in such a way that the induced
one-dimension-lower truth-tables cause no problems. (2) The proof of Theorem 3.6 is
quite analogous to the proof of Theorem 2.4, except (i) it is a bit harder to understand
as one continuously has to parse the deeply nested set differences caused by the fact
that we are now working in the difference hierarchy and (ii) the “input is an easy
string” simulation is changed to account for a new problem, namely, that in the
boolean hierarchy one models each language by a collection of machines (mimicking
the nested difference structure of boolean hierarchy languages) and thus it is hard to
ensure that these machines, when guessing an object, necessarily guess the same object
(we solve this coordination problem by forcing them to each guess a lexicographically
extreme object, and we argue that this can be accomplished within the computational
power available).

The difference hierarchy was introduced by Cai et al. [CGH+88, CGH+89] and is
defined below. Cai et al. studied the case C = NP, but a number of other cases have
since been studied [BJY90, BCO93, HR97].

A DOWNWARD COLLAPSE WITHIN THE POLYNOMIAL HIERARCHY 389

Definition 3.1. Let C be any complexity class.
1. DIFF1(C) = C.
2. For any k ≥ 1, DIFFk+1(C) = {L | (∃L1 ∈ C)(∃L2 ∈ DIFFk(C))[L = L1 −
L2]}.

3. For any k ≥ 1, coDIFFk(C) = {L | L ∈ DIFFk(C)}.
Note in particular that

DIFFm(Σpk) ∪ coDIFFm(Σpk) ⊆ P
Σp
k

m-tt ⊆ DIFFm+1(Σpk) ∩ coDIFFm+1(Σpk).

Theorem 3.2. For each m > 0 and each k > 2 it holds that

P
Σp
k

m-tt = P
Σp
k

m+1-tt ⇒ DIFFm(Σpk) = coDIFFm(Σpk).

Theorem 2.1 is the m = 1 case of Theorem 3.2 (except the former is stated in
terms of Turing access). Theorem 3.2 follows immediately from Theorem 3.6 below,
which states that, for i < j < k and i < k−2, if one query to the ith and m queries to
the kth levels of the polynomial hierarchy equals one query to the jth and m queries to
the kth levels of the polynomial hierarchy, then DIFFm(Σpk) = coDIFFm(Σpk). Note,
of course, that the conclusion of Theorem 3.2 implies a collapse of the polynomial
hierarchy. In particular, via [BCO93, Theorem 10], Theorem 3.2 implies that, for

each m ≥ 0 and each k > 2, it holds that if P
Σp
k

m-tt = P
Σp
k

m+1-tt then the polynomial
hierarchy can be solved by a P machine that makes m−1 truth-table queries to Σpk+1

and that in addition is allowed unbounded queries to Σpk. This polynomial hierarchy
collapse is about one level lower in the difference hierarchy over Σpk+1 than one could
conclude from previous papers, in particular, from Beigel, Chang, and Ogiwara. That
is, in light of Theorem 3.2, we have the following corollary, given here in a form that
corrects a misstatement in an earlier version of this paper. (In fact, one can claim a
slightly stronger collapse; see [HHH] for full details.)

Corollary 3.3. For each m ≥ 0 and each k > 2 it holds that P
Σp
k

m-tt = P
Σp
k

m+1-tt ⇒
PH = P

(∆p
k+1

,Σp
k+1

)

1,m−1-tt .
The following definition will be useful.

Definition 3.4. Let M
(A,B)
a,b-tt denote DPTM M making, simultaneously (i.e., all

a+ b queries are made at the same time, in the standard truth-table fashion), at most
a queries to oracle A and at most b queries to oracle B, and let

P
(C,D)
a,b-tt = {L ⊆ Σ∗ | (∃C ∈ C)(∃D ∈ D)(∃DPTM M)[L = L(M

(C,D)
a,b-tt)]}.

Lemma 3.5. Let m > 0, let 0 ≤ i < k, let L
P

Σ
p
i

[1] be any set ≤p
m -complete

for PΣp
i
[1], and let LDIFFm(Σp

k
) be any language ≤p

m -complete for DIFFm(Σpk). Then

L
P

Σ
p
i

[1]∆̃LDIFFm(Σp
k
) is ≤p

m -complete for P
(Σp
i
,Σp
k
)

1,m-tt .

Lemma 3.5 does not require proof, as it is a use of the standard mind-change
technique, and is analogous to [BCO93, Lemma 8], with one key twist that we now

discuss. Assume, without loss of generality, that we focus on P
(Σp
i
,Σp
k
)

1,m-tt machines that
always make exactly m + 1 queries. Regarding any such machine accepting a set

complete for the class P
(Σp
i
,Σp
k
)

1,m-tt of Lemma 3.5, we have on each input a truth-table
with m + 1 variables. Note that if one knows the answer to the one Σpi query, then
this induces a truth-table on m variables; however, note also that the two m-variable
truth-tables (one corresponding to a “yes” answer to the Σpi query and the other to

390 E. HEMASPAANDRA, L. A. HEMASPAANDRA, and H. HEMPEL

a “no” answer) may differ sharply. Regarding L
P

Σ
p
i

[1]∆̃LDIFFm(Σp
k
), we use L

P
Σ
p
i

[1]

to determine whether the m-variable truth-table induced by the true answer to the
one Σpi query accepts or not when all the Σpk queries get the answer no. This use is
analogous to [BCO93, Lemma 8]. The new twist is the action of the LDIFFm(Σp

k
) part

of L
P

Σ
p
i

[1]∆̃LDIFFm(Σp
k
). We use this, just as in [BCO93, Lemma 8], to find whether

or not we are in an odd mind-change region but now with respect to the m-variable
truth-table induced by the true answer to the one Σpi query. Crucially, this still is
a DIFFm(Σpk) issue as, since i < k, a Σpk machine can first on its own (by its base
NP machine making one deterministic query to its Σpk−1 oracle) determine the true
answer to the one Σpi query, and thus the machine can easily determine which of
the two m-variable truth-table cases it is in, and thus it plays its standard part in
determining if the mind-change region of the m true answers to the Σpk queries falls
in an odd mind-change region with respect to the correct m-variable truth-table.

Theorem 3.6. Let m > 0, 0 ≤ i < j < k, and i < k − 2. If P
(Σp
i
,Σp
k
)

1,m-tt = P
(Σp
j
,Σp
k
)

1,m-tt

then DIFFm(Σpk) = coDIFFm(Σpk).

Proof. Suppose P
(Σp
i
,Σp
k
)

1,m-tt = P
(Σp
j
,Σp
k
)

1,m-tt . Let L
P

Σ
p
i

[1] , L
P

Σ
p
i+1

[1] , and LDIFFm(Σp
k
)

be ≤p
m -complete for PΣp

i
[1], PΣp

i+1
[1], and DIFFm(Σpk), respectively; such languages

exist, e.g., via the standard canonical complete set constructions using enumerations
of clocked machines. From Lemma 3.5 it follows that L

P
Σ
p
i

[1]∆̃LDIFFm(Σp
k
) is ≤p

m -

complete for P
(Σp
i
,Σp
k
)

1,m-tt . Since (as i < j) L
P

Σ
p
i+1

[1]∆̃LDIFFm(Σp
k
) ∈ P

(Σp
j
,Σp
k
)

1,m-tt , and by

assumption P
(Σp
j
,Σp
k
)

1,m-tt = P
(Σp
i
,Σp
k
)

1,m-tt , there exists a polynomial-time many-one reduction

h from L
P

Σ
p
i+1

[1]∆̃LDIFFm(Σp
k
) to L

P
Σ
p
i

[1]∆̃LDIFFm(Σp
k
). So, for all x1, x2 ∈ Σ∗,

if h(〈x1, x2〉) = 〈y1, y2〉,
then

(x1 ∈ L
P

Σ
p
i+1

[1] ⇔ x2 ∈ LDIFFm(Σp
k
)) if and only if (y1 ∈ L

P
Σ
p
i

[1] ⇔ y2 ∈ LDIFFm(Σp
k
)).

We can use h to recognize some of LDIFFm(Σp
k
) by a DIFFm(Σpk) algorithm. In

particular, we say that a string x is easy for length n if there exists a string x1 such
that |x1| ≤ n and (x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 6∈ L
P

Σ
p
i

[1]), where h(〈x1, x〉) = 〈y1, y2〉.
Let p be a fixed polynomial, which will be exactly specified later in the proof.

We have the following algorithm to test whether x ∈ LDIFFm(Σp
k
) in the case that

(our input) x is an easy string for p(|x|). On input x, guess x1 with |x1| ≤ p(|x|), let
h(〈x1, x〉) = 〈y1, y2〉, and accept if and only if (x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 6∈ L
P

Σ
p
i

[1]) and

y2 ∈ LDIFFm(Σp
k
). This algorithm is not necessarily a DIFFm(Σpk) algorithm, but it

does inspire the following DIFFm(Σpk) algorithm to test whether x ∈ LDIFFm(Σp
k
) in

the case that x is an easy string for p(|x|). Let L1, L2, . . . , Lm be languages in Σpk such
that LDIFFm(Σp

k
) = L1−(L2−(L3−· · · (Lm−1−Lm) · · ·)). Then x ∈ LDIFFm(Σp

k
) if and

only if x ∈ L′1 − (L′2 − (L′3 − · · · (L′m−1 − L′m) · · ·)), where L′r is computed as follows:
on input x, guess x1 with |x1| ≤ p(|x|), let h(〈x1, x〉) = 〈y1, y2〉, and accept if and only
if (a) (x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 6∈ L
P

Σ
p
i

[1]), (b) (∀z <lex x1)[z ∈ L
P

Σ
p
i+1

[1] ⇔ w1 ∈ L
P

Σ
p
i

[1]],

where h(〈z, x〉) = 〈w1, w2〉, and (c) y2 ∈ Lr.
Since i + 2 < k, L′r ∈ Σpk, and thus our algorithm is in DIFFm(Σpk). Note that

condition (b) has no analogue in the proof of Theorem 2.4. We need this extra
condition here as otherwise the different L′r might latch onto different strings x1 and
this would cause unpredictable behavior (as different x1’s would create different y2’s).

A DOWNWARD COLLAPSE WITHIN THE POLYNOMIAL HIERARCHY 391

We say that x is hard for length n if |x| ≤ n and x is not easy for length n, i.e., if
|x| ≤ n and for all x1 with |x1| ≤ n it holds that x1 ∈ L

P
Σ
p
i+1

[1] ⇔ y1 ∈ L
P

Σ
p
i

[1] , where

h(〈x1, x〉) = 〈y1, y2〉.
If x is a hard string for length n, then x induces a many-one reduction from

(L
P

Σ
p
i+1

[1])
≤n

to L
P

Σ
p
i

[1] , namely, f(x1) = y1, where h(〈x1, x〉) = 〈y1, y2〉. Note that f

is computable in time polynomial in max(n, |x1|).
We can use hard strings to obtain a DIFFm(Σpk−1) algorithm for LDIFFm(Σp

k
) and

thus (since DIFFm(Σpk−1) ⊆ PΣp
k−1 ⊆ Σpk ∩Πp

k) certainly a DIFFm(Σpk) algorithm for

LDIFFm(Σp
k
). Again, let L1, L2, . . . , Lm be languages in Σpk such that LDIFFm(Σp

k
) =

L1−(L2−(L3−· · · (Lm−1−Lm) · · ·)). For all 1 ≤ r ≤ m, let Mr be a Σpk−i−1 machine

such that Lr = L(MY
r), where Y = L

P
Σ
p
i+1

[1] . Let the run-time of all Mr’s be bounded

by polynomial p, which without loss of generality satisfies (∀m̂ ≥ 0)[p(m̂+1) > p(m̂) >
0] (as promised above, we have now specified p). Then for all 1 ≤ r ≤ m,

(Lr)
=n

= (L(M
(Y ≤p(n))
r))=n,

where Y = L
P

Σ
p
i+1

[1] . If there exists a hard string for length p(n), then this hard string

induces a reduction from (L
P

Σ
p
i+1

[1])
≤p(n)

to L
P

Σ
p
i

[1] . Thus, with any hard string for

length p(n) in hand, call it wn, M̂r with oracle L
P

Σ
p
i

[1] recognizes Lr for strings of

length n, where M̂r is the machine that simulates Mr but replaces each query q by
the first component of h(〈q, wn〉). It follows that if there exists a hard string for
length p(n), then this string induces a DIFFm(Σpk−1) algorithm for (LDIFFm(Σp

k
))

=n
,

and therefore certainly a DIFFm(Σpk) algorithm for (LDIFFm(Σp
k
))

=n
. It follows that

there exist m Σpk sets, say, L̂r for 1 ≤ r ≤ m, such that the following holds: for all x,
if x (functioning as w|x| above) is a hard string for length p(|x|), then x ∈ LDIFFm(Σp

k
)

if and only if x ∈ L̂1 − (L̂2 − (L̂3 − · · · (L̂m−1 − L̂m) · · ·)).
However, now we have an outright DIFFm(Σpk) algorithm for LDIFFm(Σp

k
): for

1 ≤ r ≤ m define an NPΣp
k−1 machine Nr as follows: on input x, the NP base machine

of Nr executes the following algorithm.

1. Using its Σpk−1 oracle, it deterministically determines whether the input x is
an easy string for length p(|x|). This can be done, as checking whether the
input is an easy string for length p(|x|) can be done by one query to Σpi+2,
and i+ 2 ≤ k − 1 by our i < k − 2 hypothesis.

2. If the previous step determined that the input is not an easy string, then the
input must be a hard string for length p(|x|). So simulate the Σpk algorithm

for L̂r induced by this hard string (i.e., the input x itself) on input x (via our
NP machine itself simulating the base level of the Σpk algorithm and using the
NP machine’s oracle to simulate the oracle queries made by the base level NP
machine of the Σpk algorithm being simulated).

3. If the first step determined that the input x is easy for length p(|x|), then
our NP machine simulates (using itself and its oracle) the Σpk algorithm for
L′r on input x.

It follows that for all x, x ∈ LDIFFm(Σp
k
) if and only if x ∈ L(N1)− (L(N2)− (L(N3)−

· · · (L(Nm−1) − L(Nm)) · · ·)). Since LDIFFm(Σp
k
) is complete for coDIFFm(Σpk), it

follows that DIFFm(Σpk) = coDIFFm(Σpk).

392 E. HEMASPAANDRA, L. A. HEMASPAANDRA, and H. HEMPEL

Finally, we note that we have analogues of Theorem 2.5 and Corollary 2.6. The

proof is analogous to that of Theorem 2.5; one just uses P
(NP,Σp

k
)

1,m-tt in the way P(NP,Σp
k
)

was used in that proof and again invokes the relation between the difference and
symmetric difference hierarchies (namely, that DIFFj(Σ

p
k) is exactly the class of sets

L that for some L1, . . . , Lj ∈ Σpk satisfy L = L14 · · · 4Lj ; this well-known equality
is due to [KSW87, section 3] in light of the standard equalities regarding boolean
hierarchies (see [CGH+88, section 2.1]); although both [KSW87] and [CGH+88] focus
mostly on the k = 1 case, it is standard [Wec85, BBJ+89] that the equalities in fact
hold for any class closed under union and intersection and containing ∅ and Σ∗).

Theorem 3.7. Let m ≥ 0 and k > 2. If P
Σp
k

m-tt = DIFFm+1(Σpk)∩coDIFFm+1(Σpk)
then DIFFm(Σpk) = coDIFFm(Σpk).

Corollary 3.8. For each k > 2 and m ≥ 0, it holds that

P
Σp
k

m-tt = DIFFm+1(Σpk) ∩ coDIFFm+1(Σpk)⇔ P
Σp
k

m-tt = DIFFm+1(Σpk).

Acknowledgments. The first two authors thank Gerd Wechsung’s research
group for its very kind hospitality during the visit when this research was performed.
The authors are grateful to two anonymous referees, Lance Fortnow, and Jörg Rothe
for helpful comments and suggestions.

REFERENCES

[All86] E. Allender, The complexity of sparse sets in P, in Proc. 1st Structure in Complex-
ity Theory Conference, Lecture Notes in Computer Science 223, Springer-Verlag,
Berlin, 1986, pp. 1–11.

[All91] E. Allender, Limitations of the upward separation technique, Math. Systems Theory,
24 (1991), pp. 53–67.

[AW90] E. Allender and C. Wilson, Downward translations of equality, Theoret. Comput.
Sci., 75 (1990), pp. 335–346.

[BBJ+89] A. Bertoni, D. Bruschi, D. Joseph, M. Sitharam, and P. Young, Generalized
boolean hierarchies and boolean hierarchies over RP, in Proc. 7th Conference on
Fundamentals of Computation Theory, Lecture Notes in Computer Science 380,
Springer-Verlag, Berlin, 1989, pp. 35–46.

[BCO93] R. Beigel, R. Chang, and M. Ogiwara, A relationship between difference hierarchies
and relativized polynomial hierarchies, Math. Systems Theory, 26 (1993), pp. 293–
310.

[BF96] H. Buhrman and L. Fortnow, Two Queries, Technical Report 96-20, Department of
Computer Science, University of Chicago, Chicago, IL, September 1996.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential
time simulations unless EXPTIME has publishable proofs, Comput. Complexity,
3 (1993), pp. 307–318.

[BJY90] D. Bruschi, D. Joseph, and P. Young, Strong separations for the boolean hierarchy
over RP, Internat. J. Found. Comput. Sci., 1 (1990), pp. 201–218.

[Boo74] R. Book, Tally languages and complexity classes, Inform. and Control, 26 (1974),
pp. 186–193.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung, The boolean hierarchy I: Structural properties, SIAM J.
Comput., 17 (1988), pp. 1232–1252.

[CGH+89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung, The boolean hierarchy II: Applications, SIAM J. Com-
put., 18 (1989), pp. 95–111.

[Cha91] R. Chang, On the Structure of NP Computations under Boolean Operators, Ph.D.
thesis, Cornell University, Ithaca, NY, 1991.

[CK96] R. Chang and J. Kadin, The boolean hierarchy and the polynomial hierarchy: A
closer connection, SIAM J. Comput., 25 (1996), pp. 340–354.

A DOWNWARD COLLAPSE WITHIN THE POLYNOMIAL HIERARCHY 393

[HHH] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, What’s Up with Downward
Collapse: Using the Easy-Hard Technique to Link Boolean and Polynomial Hier-
archy Collapses, manuscript, 1997.

[HHH97] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, Translating Equality Down-
wards, Technical Report TR-657, Department of Computer Science, University of
Rochester, Rochester, NY, April 1997.

[HIS85] J. Hartmanis, N. Immerman, and V. Sewelson, Sparse sets in NP−P: EXPTIME
versus NEXPTIME, Inform. and Control, 65 (1985), pp. 159–181.

[HJ95] L. Hemaspaandra and S. Jha, Defying upward and downward separation, Inform.
and Comput., 121 (1995), pp. 1–13.

[HR97] L. Hemaspaandra and J. Rothe, Unambiguous computation: Boolean hierarchies
and sparse Turing-complete sets, SIAM J. Comput., 26 (1997), pp. 634–653.

[HRW] L. Hemaspaandra, J. Rothe, and G. Wechsung, Easy sets and hard certificate
schemes, Acta Informatica, to appear.

[HRZ95] L. Hemaspaandra, A. Ramachandran, and M. Zimand, Worlds to die for, SIGACT
News, 26 (1995), pp. 5–15.

[HY84] J. Hartmanis and Y. Yesha, Computation times of NP sets of different densities,
Theoret. Comput. Sci., 34 (1984), pp. 17–32.

[Kad88] J. Kadin, The polynomial time hierarchy collapses if the boolean hierarchy collapses,
SIAM J. Comput., 17 (1988), pp. 1263–1282; Erratum, 20(1991), p. 404.

[Ko82] K. Ko, Some observations on probabilistic algorithms and NP-hard problems, Inform.
Process. Lett., 14 (1982), pp. 39–43.

[Ko89] K. Ko, Relativized polynomial time hierarchies having exactly k levels, SIAM J. Com-
put., 18 (1989), pp. 392–408.

[Kre88] M. Krentel, The complexity of optimization problems, J. Comput. System Sci., 36
(1988), pp. 490–509.

[KSW87] J. Köbler, U. Schöning, and K. Wagner, The difference and truth-table hierarchies
for NP, RAIRO Theoretical Informatics and Applications, 21 (1987), pp. 419–435.

[RRW94] R. Rao, J. Rothe, and O. Watanabe, Upward separation for FewP and related
classes, Inform. Process. Lett., 52 (1994), pp. 175–180.

[Wec85] G. Wechsung, On the boolean closure of NP, in Proc. 5th Conference on Fundamentals
of Computation Theory, Lecture Notes in Computer Science 199, Springer-Verlag,
Berlin, 1985, pp. 485–493. (An unpublished precursor of this paper was coauthored
by K. Wagner.)

GENERICITY, RANDOMNESS, AND POLYNOMIAL-TIME
APPROXIMATIONS∗

YONGGE WANG†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 394–408

Abstract. Polynomial-time safe and unsafe approximations for intractable sets were introduced
by Meyer and Paterson [Technical Report TM-126, Laboratory for Computer Science, MIT, Cam-
bridge, MA, 1979] and Yesha [SIAM J. Comput., 12 (1983), pp. 411–425], respectively. The question
of which sets have optimal safe and unsafe approximations has been investigated extensively. Duris
and Rolim [Lecture Notes in Comput. Sci. 841, Springer-Verlag, Berlin, New York, 1994, pp. 38–51]
and Ambos-Spies [Proc. 22nd ICALP, Springer-Verlag, Berlin, New York, 1995, pp. 384–392] showed
that the existence of optimal polynomial-time approximations for the safe and unsafe cases is inde-
pendent. Using the law of the iterated logarithm for p-random sequences (which has been recently
proven in [Proc. 11th Conf. Computational Complexity, IEEE Computer Society Press, Piscataway,
NJ, 1996, pp. 180–189]), we extend this observation by showing that both the class of polynomial-time
∆-levelable sets and the class of sets which have optimal polynomial-time unsafe approximations have
p-measure 0. Hence typical sets in E (in the sense of p-measure) do not have optimal polynomial-time
unsafe approximations. We will also establish the relationship between resource bounded genericity
concepts and the polynomial-time safe and unsafe approximation concepts.

Key words. computational complexity, resource bounded genericity, resource bounded ran-
domness, approximation

AMS subject classifications. 68Q05, 68Q25, 68Q30, 03D15, 60F99

PII. S009753979630235X

1. Introduction. The notion of polynomial-time safe approximations was intro-
duced by Meyer and Paterson in [13] (see also [8]). A safe approximation algorithm
for a set A is a polynomial-time algorithm M that on each input x outputs either
1 (accept), 0 (reject), or ? (I do not know) such that all inputs accepted by M are
members of A and no member of A is rejected by M . An approximation algorithm is
optimal if no other polynomial-time algorithm correctly decides infinitely many more
inputs, that is to say, outputs infinitely many more correct 1s or 0s. In Orponen,
Russo, and Schöning [14], the existence of optimal approximations was phrased in
terms of P-levelability: a recursive set A is P-levelable if for any deterministic Tur-
ing machine M accepting A and for any polynomial p there is another machine M ′

accepting A and a polynomial p′ such that for infinitely many elements x of A, M
does not accept x within p(|x|) steps while M ′ accepts x within p′(|x|) steps. It is
easy to show that A has an optimal polynomial-time safe approximation if and only
if neither A nor Ā is P-levelable.

The notion of polynomial-time unsafe approximations was introduced by Yesha
in [19]: an unsafe approximation algorithm for a set A is just a standard polynomial-
time bounded deterministic Turing machine M with outputs 1 and 0. Note that,
different from the polynomial-time safe approximations, here we are allowed to make
errors, and we study the amount of inputs on which M are correct. Duris and Rolim
[6] further investigated unsafe approximations and introduced a levelability concept,
∆-levelability, which implies the nonexistence of optimal polynomial-time unsafe ap-
proximations. They showed that complete sets for E are ∆-levelable and there exists

∗ Received by the editors April 22, 1996; accepted for publication (in revised form) March 4, 1997;
published electronically July 7, 1998.

http://www.siam.org/journals/sicomp/28-2/30235.html
† Department of Computer Science, The University of Auckland, Private Bag 92019, Auckland,

New Zealand (wang@cs.auckland.ac.nz).

394

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 395

an intractable set in E which has an optimal safe approximation but no optimal unsafe
approximation. But they did not succeed in producing an intractable set with opti-
mal unsafe approximations. Ambos-Spies [1] defined a concept of weak ∆-levelability
and showed that there exists an intractable set in E which is not weakly ∆-levelable
(hence it has an optimal unsafe approximation).

Like resource-bounded randomness concepts, different kinds of resource-bounded
genericity concepts were introduced by Ambos-Spies [2], Ambos-Spies, Fleischhack,
and Huwig [3], Fenner [7], and Lutz [9]. It has been proved that resource-bounded
generic sets are useful in providing a coherent picture of complexity classes. These
sets embody the method of diagonalization construction; that is, requirements which
can always be satisfied by finite extensions are automatically satisfied by generic sets.

It was shown in Ambos-Spies, Neis, and Terwijn [4] that the generic sets of Ambos-
Spies are P-immune, and that the class of sets which have optimal safe approximations
is large in the sense of resource-bounded Ambos-Spies category. Mayordomo [11]
has shown that the class of P-immune sets is neither meager nor comeager both in
the sense of resource-bounded Lutz category and in the sense of resource-bounded
Fenner category. We extend this result by showing that the class of sets which have
optimal safe approximations is neither meager nor comeager both in the sense of
resource-bounded Lutz category and in the sense of resource-bounded Fenner category.
Moreover, we will show the following relations between unsafe approximations and
resource-bounded categories.

1. The class of weakly ∆-levelable sets is neither meager nor comeager in the
sense of resource-bounded Ambos-Spies category [4].

2. The class of weakly ∆-levelable sets is comeager (is therefore large) in the
sense of resource-bounded general Ambos-Spies [2], Fenner [7], and Lutz [9]
categories.

3. The class of ∆-levelable sets is neither meager nor comeager in the sense of
resource-bounded general Ambos-Spies [2], Fenner [7], and Lutz [9] categories.

In the last section, we will show the relationship between polynomial-time approx-
imations and p-measure. Mayordomo [12] has shown that the class of P-bi-immune
sets has p-measure 1. It follows that the class of sets which have optimal polynomial-
time safe approximations has p-measure 1. Using the law of the iterated logarithm
for p-random sequences which we have proved in Wang [16, 17], we will show that the
following hold.

1. The class of ∆-levelable sets has p-measure 0.
2. The class of sets which have optimal polynomial-time unsafe approximations

have p-measure 0. That is, the class of weakly ∆-levelable sets has p-measure
1.

3. p-Random sets are weakly ∆-levelable but not ∆-levelable.

Hence typical sets in the sense of resource-bounded measure do not have optimal
polynomial-time unsafe approximations.

It should be noted that the above results show that the class of weakly ∆-levelable
sets is large both in the sense of the different notions of resource-bounded category
and in the sense of resource-bounded measure. That is to say, typical sets in E2 (in
the sense of resource-bounded category or in the sense of resource-bounded measure)
are weakly ∆-levelable.

In contrast to the results in this paper, we have recently shown (in [18]) the
following results.

1. There is a p-stochastic set A ∈ E2 which is ∆-levelable.

396 YONGGE WANG

2. There is a p-stochastic set A ∈ E2 which has an optimal unsafe approxima-
tion.

2. Definitions. N and Q(Q+) are the set of natural numbers and the set of
(nonnegative) rational numbers, respectively. Σ = {0, 1} is the binary alphabet, Σ∗

is the set of (finite) binary strings, Σn is the set of binary strings of length n, and Σ∞

is the set of infinite binary sequences. The length of a string x is denoted by |x|. <
is the length-lexicographical ordering on Σ∗, and zn (n ≥ 0) is the nth string under
this ordering. λ is the empty string. For strings x, y ∈ Σ∗, xy is the concatenation of
x and y, x v y denotes that x is an initial segment of y. For a sequence x ∈ Σ∗ ∪Σ∞

and an integer number n ≥ −1, x[0..n] denotes the initial segment of length n+1 of x
(x[0..n] = x if |x| ≤ n+ 1) and x[i] denotes the ith bit of x, i.e., x[0..n] = x[0] · · ·x[n].
Lowercase letters . . . , k, l,m, n, . . . , x, y, z from the middle and the end of the alphabet
will denote numbers and strings, respectively. The letter b is reserved for elements of
Σ, and lowercase Greek letters ξ, η, . . . denote infinite sequences from Σ∞.

A subset of Σ∗ is called a language, a problem, or simply a set. Capital letters
are used to denote subsets of Σ∗ and boldface capital letters are used to denote
subsets of Σ∞. The cardinality of a language A is denoted by ‖A‖. We identify a
language A with its characteristic function, i.e., x ∈ A if and only if A(x) = 1. The
characteristic sequence of a language A is the infinite sequence A(z0)A(z1)A(z2) · · ·.
We freely identify a language with its characteristic sequence and the class of all
languages with the set Σ∞. For a language A ⊆ Σ∗ and a string zn ∈ Σ∗, A |̀ zn =
A(z0) · · ·A(zn−1) ∈ Σ∗. For languages A and B, Ā = Σ∗ − A is the complement of
A, A∆B = (A−B) ∪ (B −A) is the symmetric difference of A and B; A ⊆ B (resp.,
A ⊂ B) denotes that A is a subset of B (resp., A ⊆ B and B 6⊆ A). For a number n,
A=n = {x ∈ A : |x| = n} and A≤n = {x ∈ A : |x| ≤ n}.

We fix a standard polynomial-time computable and invertible pairing function
λx, y〈x, y〉 on Σ∗ such that, for every string x, there is a real α(x) > 0 satisfying

‖Σ[x] ∩ Σn‖ ≥ α(x) · 2n for almost all n,

where Σ[x] = {〈x, y〉 : y ∈ Σ∗} and Σ[≤x] = {〈x′, y〉 : x′ ≤ x & y ∈ Σ∗}. We will use
P, E, and E2 to denote the complexity classes DTIME(poly), DTIME(2linear), and
DTIME(2poly), respectively. Finally, we fix a recursive enumeration {Pe : e ≥ 0} of
P such that Pe(x) can be computed in O(2|x|+e) steps (uniformly in e and x).

We define a finite function to be a partial function from Σ∗ to Σ whose domain
is finite. For a finite function σ and a string x ∈ Σ∗, we write σ(x) ↓ if x ∈ dom(σ),
and σ(x) ↑ otherwise. For two finite functions σ, τ , we say σ and τ are compatible if
σ(x) = τ(x) for all x ∈ dom(σ)∩dom(τ). The concatenation στ of two finite functions
σ and τ is defined as στ = σ ∪ {(znσ+i+1, b) : zi ∈ dom(τ) & τ(zi) = b}, where
nσ = max{n : zn ∈ dom(σ)} and nσ = −1 for σ = λ. For a set A and a string x, we
identify the characteristic string A |̀x with the finite function {(y,A(y)) : y < x}. For
a finite function σ and a set A, σ is extended by A if for all x ∈ dom(σ), σ(x) = A(x).

3. Genericity versus polynomial-time safe approximations. In this sec-
tion, we summarize some known results on the relationship between the different
notions of resource-bounded genericity and the notion of polynomial-time safe ap-
proximations.

We first introduce some concepts of resource-bounded genericity.
Definition 3.1. A partial function f from Σ∗ to {σ : σ is a finite function } is

dense along a set A if there are infinitely many strings x such that f(A |̀x) is defined.

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 397

A set A meets f if, for some x, the finite function (A |̀x)f(A |̀x) is extended by A.
Otherwise, A avoids f .

Definition 3.2. A class C of sets is nowhere dense via f if f is dense along all
sets in C and for every set A ∈ C, A avoids f .

Definition 3.3. Let F be a class of (partial) functions from Σ∗ to {σ : σ is a
finite function}. A class C of sets is F-meager if there exists a function f ∈ F such
that C= ∪i∈NCi and Ci is nowhere dense via fi(x) = f(〈i, x〉). A class C of sets is
F-comeager if C̄ is F-meager.

Definition 3.4. A set G is F-generic if G is an element of all F-comeager
classes.

Lemma 3.5 (see [2, 7, 9]). A set G is F-generic if and only if G meets all functions
f ∈ F which are dense along G.

For a class F of functions, each function f ∈ F can be considered as a finitary
property P of sets. If f(A |̀x) is defined, then all sets extending (A |̀x)f(A |̀x) have
the property P. So a set A has the property P if and only if A meets f . f is dense
along A if and only if in a construction of A along the ordering <, where at stage
s of the construction we decide whether or not the string zs belongs to A, there are
infinitely many stages s such that by appropriately defining A(zs) we can ensure that
A has the property P (that is to say, for some string x, (A |̀x)f(A |̀x) is extended by
A).

For different function classes F, we have different notions of F-genericity. In
this paper, we will concentrate on the following four kinds of function classes which
have been investigated by Ambos-Spies [2], Amos-Spies, Neis, and Terwijn [4], Fenner
[7], and Lutz [9], respectively. F1 is the class of polynomial-time computable par-
tial functions from Σ∗ to Σ; F2 is the class of polynomial-time computable partial
functions from Σ∗ to {σ : σ is a finite function}; F3 is the class of polynomial-time
computable total functions from Σ∗ to {σ : σ is a finite function}; and F4 is the class
of polynomial-time computable total functions from Σ∗ to Σ∗.

Definition 3.6.

1. (See Ambos-Spies, Neis, and Terwijn [4].) A set G is A-generic if G is F1-
generic.

2. (See Ambos-Spies [2].) A set G is general A-generic if G is F2-generic.
3. (See Fenner [7].) A set G is F-generic if G is F3-generic.
4. (See Lutz [9].) A set G is L-generic if G is F4-generic.

Obviously, we have the following implications.

Theorem 3.7.

1. If a set G is general A-generic, then G is A-generic, F-generic, and L-generic.
2. If a set G is F-generic, then G is L-generic.

Proof. The proof is straightforward.

In this paper, we will also study the following nk-time (k > 1) bounded genericity
concepts. A set G is Ambos-Spies nk-generic (resp., general Ambos-Spies nk-generic,
Fenner nk-generic, Lutz nk-generic) if and only if G meets all nk-time computable
functions f ∈ F1 (resp., F2, F3, F4) which are dense along G.

Theorem 3.8 (see Ambos-Spies [2]). A class C of sets is meager in the sense
of Ambos-Spies category (resp., general Ambos-Spies category, Fenner category, Lutz
Category) if and only if there exists a number k ∈ N such that there is no Ambos-
Spies nk-generic (resp., general Ambos-Spies nk-generic, Lutz nk-generic, Fenner
nk-generic) set in C.

As an example, we show that Ambos-Spies n-generic sets are P-immune.

398 YONGGE WANG

Theorem 3.9 (see Ambos-Spies, Neis, Terwijn [4]). Let G be an Ambos-Spies
n-generic set. Then G is P-immune.

Proof. For a contradiction assume that A ∈ P is an infinite subset of G. Then
the function f : Σ∗ → Σ defined by

f(x) =

{
0 z|x| ∈ A,
↑ z|x| /∈ A

is computable in time n and is dense along G. So, by the Ambos-Spies n-genericity
of G, G meets f . By the definition of f , this implies that there exists some string
zi ∈ A such that zi /∈ G, a contradiction.

It has been shown (see Mayordomo [12]) that neither F-genericity nor L-genericity
implies P-immunity or non-P-immunity.

A partial set A is defined by a partial characteristic function f : Σ∗ → Σ. A partial
set A is polynomial-time computable if dom(A) ∈ P and its partial characteristic
function is computable in polynomial time.

Definition 3.10 (see Meyer and Paterson [13]). A polynomial-time safe ap-
proximation of a set A is a polynomial-time computable partial set Q which is con-
sistent with A, that is to say, for every string x ∈ dom(Q), A(x) = Q(x). The
approximation Q is optimal if, for every polynomial-time safe approximation Q′ of A,
dom(Q′)− dom(Q) is finite.

Definition 3.11 (see Orponen, Russo, and Schöning [14]). A set A is P-levelable
if, for any subset B ∈ P of A, there is another subset B′ ∈ P of A such that ‖B′−B‖ =
∞.

Lemma 3.12 (see Orponen, Russo, and Schöning [14]). A set A possesses an
optimal polynomial-time safe approximation if and only if neither A nor Ā is P-
levelable.

Proof. The proof is straightforward.
Lemma 3.13. If a set A is P-immune, then A is not P-levelable.
Proof. The proof is straightforward.
Theorem 3.14 (see Ambos-Spies [2]). Let G be an Ambos-Spies n-generic set.

Then neither G nor Ḡ is P-levelable. That is to say, G has an optimal polynomial-
time safe approximation.

Proof. This follows from Theorem 3.9.
Theorem 3.14 shows that the class of P-levelable sets is “small” in the sense of

resource-bounded (general) Ambos-Spies category.
Corollary 3.15. The class of P-levelable sets is meager in the sense of resource-

bounded (general) Ambos-Spies category.
Now we show that the class of P-levelable sets is neither meager nor comeager in

the sense of resource-bounded Fenner category and Lutz category.
Theorem 3.16.
1. There exists a set G in E2 which is both F-generic and P-levelable.
2. There exists a set G in E2 which is F-generic but not P-levelable.

Proof. 1. Let δ(0) = 0, δ(n+1) = 22δ(n)

, I1 = {x : δ(2n) ≤ |x| < δ(2n+1), n ∈ N},
I2 = Σ∗ − I1, and {fi : i ∈ N} be an enumeration of F3 such that fi(x) can be

computed uniformly in time 2logk(|x|+i) for some k ∈ N .
In the following, we construct a set G in stages which is both F-generic and

P-levelable. In the construction we will ensure that

G ∩ Σ[e] ∩ I1 =∗ Σ[e] ∩ I1

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 399

for e ≥ 0. Hence G∩Σ[e] ∩ I1 ∈ P for e ≥ 0. In order to ensure that G is P-levelable,
it suffices to satisfy for all e ≥ 0 the following requirements:

Le : Pe ⊆ G ∩ I1 ⇒ Pe ⊆∗ Σ[≤e] ∩ I1.
To show that the requirements Le(e ≥ 0) ensure that G is P-levelable (fix a subset

C ∈ P of G) we have to define a subset C ′ ∈ P of G such that C ′ −C is infinite. Fix
e such that Pe = C ∩ I1. Then, by the requirement Le, C ∩ I1 ⊆∗ Σ[≤e] ∩ I1. So, for
C ′ = G∩Σ[e+1] ∩ I1, C ′ ∈ P and C ′ is infinite. Since C ′ ∩C = ∅, C ′ has the required
property.

The strategy for meeting a requirement Le is as follows: if there is a string
x ∈ (I1∩Pe)−Σ[≤e], then we let G(x) = 0 to refute the hypothesis of the requirement
Le (so Le is trivially met). To ensure that G is F-generic, it suffices to meet for all
e ≥ 0 the following requirements:

Ge: There exists a string x such that G extends (G |̀x)fe(G |̀x).

Because the set I1 is used to satisfy Le, we will use I2 to satisfy Ge. The strategy
for meeting a requirement Ge is as follows: for some string x ∈ I2, let G extend
(G |̀x)fe(G |̀x).

Define a priority ordering of the requirements by letting R2n = Gn and R2n+1 =
Ln. Now we give the construction of G formally.

Stage s.

If G(zs) has been defined before stage s, then go to stage s+ 1.

A requirement Le requires attention if

1. e < s.
2. zs ∈ Pe ∩ Σ[>e] ∩ I1.
3. For all y < zs, if y ∈ Pe then y ∈ G ∩ I1.

A requirement Ge requires attention if e < s, Ge has not received attention yet,
and x ∈ I2 for all zs ≤ x ≤ zt where zt is the greatest element in dom((G |̀ zs)fe(G |̀ zs)).

Fix the minimal n such that Rn requires attention. If there is no such n, then
let G(zs) = 1. Otherwise, we say that Rn receives attention. Moreover, if Rn = Le
then let G(zs) = 0. If Rn = Ge then let G |̀ zt+1 = fill1((G |̀ zs)fe(G |̀ zs), t), where
zt is the greatest element in dom((G |̀ zs)fe(G |̀ zs)) and for a finite function σ and a
number k, fill1(σ, k) = σ ∪ {(x, 1) : x ≤ zk & x /∈ dom(σ)}.

This completes the construction of G.

It is easy to verify that the set G constructed above is both P-levelable and
F-generic; the details are omitted here.

2. For a general A-generic set G, by Theorem 3.9, G is P-immune. By Theorem
3.7, G is F-generic. Hence, G is F-generic but not P-levelable.

Corollary 3.17. The class of P-levelable sets is neither meager nor comeager
in the sense of resource-bounded Fenner category and Lutz category.

Proof. This follows from Theorem 3.16.

4. Genericity versus polynomial-time unsafe approximations.

Definition 4.1 (see Duris and Rolim [6] and Yesha [19]). A polynomial-time
unsafe approximation of a set A is a set B ∈ P. The set A∆B is called the error set
of the approximation. Let f be an unbounded function on the natural numbers. A set
A is ∆-levelable with density f if, for any set B ∈ P, there is another set B′ ∈ P
such that

‖(A∆B) |̀ zn‖ − ‖(A∆B′) |̀ zn‖ ≥ f(n)

400 YONGGE WANG

for almost all n ∈ N . A set A is ∆-levelable if A is ∆-levelable with density f such
that limn→∞ f(n) =∞.

Note that, in Definition 4.1, the density function f is independent of the choice
of B ∈ P.

Definition 4.2 (see Ambos-Spies [1]). A polynomial-time unsafe approximation
B of a set A is optimal if, for any approximation B′ ∈ P of A,

∃k ∈ N ∀n ∈ N (‖(A∆B) |̀ zn‖ < ‖(A∆B′) |̀ zn‖+ k).

A set A is weakly ∆-levelable if, for any polynomial-time unsafe approximation B of
A, there is another polynomial-time unsafe approximation B′ of A such that

∀k ∈ N ∃n ∈ N (‖(A∆B) |̀ zn‖ > ‖(A∆B′) |̀ zn‖+ k).

It should be noted that our above definitions are a little different from the original
definitions of Ambos-Spies [1], Duris and Rolim [6], and Yesha [19]. In the original def-
initions, they considered the errors on strings up to certain length (i.e., ‖(A∆B)≤n‖)
instead of errors on strings up to zn (i.e., ‖(A∆B) |̀ zn‖). But it is easy to check that
all our results except Theorem 5.14 in this paper hold for the original definitions also.

Lemma 4.3 (see Ambos-Spies [1]).
1. A set A is weakly ∆-levelable if and only if A does not have an optimal

polynomial time unsafe approximation.
2. If a set A is ∆-levelable then it is weakly ∆-levelable.

Lemma 4.4. Let A,B be two sets such that A is ∆-levelable with linear density
and A∆B is sparse. Then B is ∆-levelable with linear density.

Proof. Let p be the polynomial such that, for all n, ‖(A∆B)≤n‖ ≤ p(n), and
assume that A is ∆-levelable with density αn (α > 0). Then there is a real number
β > 0 such that, for large enough n, αn− 2p(1 + [logn]) > βn. We will show that B
is ∆-levelable with density βn.

Now, given any set C ∈ P, by ∆-levelability of A, choose D ∈ P such that

‖(A∆C) |̀ zn‖ > ‖(A∆D) |̀ zn‖+ αn

for almost all n. Then

‖(B∆C) |̀ zn‖ ≥ ‖(A∆C) |̀ zn‖ − p(1 + [logn])

> ‖(A∆D) |̀ zn‖+ αn− p(1 + [logn])

≥ ‖(B∆D) |̀ zn‖+ αn− 2p(1 + [logn])

> ‖(B∆D) |̀ zn‖+ βn

for almost all n. Hence, B is ∆-levelable with density βn.
Theorem 4.5.
1. There exists a set G in E2 which is both A-generic and ∆-levelable.
2. There exists a set G in E2 which is A-generic but not weakly ∆-levelable.

Proof. 1. Duris and Rolim [6] constructed a set A in E which is ∆-levelable with
linear density and, in [4], Ambos-Spies, Neis, and Terwijn showed that, for any set
B ∈ E, there is an A-generic set B′ in E2 such that B∆B′ is sparse. So, for any set A
which is ∆-levelable with linear density, there is an A-generic set G in E2 such that
A∆G is sparse. It follows from Lemma 4.4 that G is ∆-levelable with linear density.

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 401

2. Ambos-Spies [1, Theorem 3.3] constructed a P-bi-immune set in E which is
not weakly ∆-levelable. In his proof, he used the requirements

BI2e : Pe ⊆ G⇒ Pe is finite,

BI2e+1 : Pe ⊆ Ḡ⇒ Pe is finite,

to ensure that the constructed set G is P-bi-immune. In order to guarantee that G is
not weakly ∆-levelable, he used the requirements

R : ∀e ∈ N ∀n ∈ N (‖(G∆B) |̀ zn‖ ≤ ‖(G∆Pe) |̀ zn‖+ e+ 1)

to ensure that B = ∪i≥0Σ[2i] will be an optimal unsafe approximation of G. If we
change the requirements BI2e and BI2e+1 to the requirements

Re : if fe ∈ F1 is dense along G, then G meets fe,

then a routine modification of the finite injury argument in the proof of Ambos-Spies
[1, Theorem 3.3] can be used to construct an A-generic set G in E2 which is not
weakly ∆-levelable. The details are omitted here.

Corollary 4.6. The class of (weakly) ∆-levelable sets is neither meager nor
comeager in the sense of resource-bounded Ambos-Spies category.

Corollary 4.6 shows that the class of weakly ∆-levelable sets is neither large nor
small in the sense of resource-bounded Ambos-Spies category. However, as we will
show next, it is large in the sense of resource-bounded general Ambos-Spies category,
resource-bounded Fenner category, and resource-bounded Lutz category.

Theorem 4.7. Let G be a Lutz n3-generic set. Then G is weakly ∆-levelable.
Proof. Let B ∈ P. We show that B̄ witnesses that the unsafe approximation B

of G is not optimal. For any string x, define f(x) = y, where |y| = |x|2 and y[j] = 0
if and only if z|x|+j ∈ B. Obviously, f is computable in time n3. Since G is Lutz
n3-generic, G meets f infinitely often. Hence, for any k and n0, there exists n > n0

such that n2 − 2n > k and, for all strings x with zn ≤ x < zn2 , x ∈ G if and only if
x ∈ B̄. Hence

‖(G∆B) |̀ zn2‖ ≥ n2 − n

> n+ k

≥ ‖(G∆B̄) |̀ zn2‖+ k,

which implies that G is weakly ∆-levelable.
Corollary 4.8. The class of weakly ∆-levelable sets is comeager in the sense

of resource-bounded Lutz, Fenner, and general Ambos-Spies categories.
Proof. This follows from Theorems 3.7, 3.8, and 4.7.
Now we show that the class of ∆-levelable sets is neither meager nor comeager in

the sense of all these resource-bounded categories we have discussed above.
Theorem 4.9. There exists a set G in E2 which is both general A-generic and

∆-levelable.
Proof. Let δ(0) = 0, δ(n + 1) = 22δ(n)

. For each set Pe ∈ P, let Pg(e) be defined
in such a way that

Pg(e)(x) =

{
1− Pe(x) if x = 0δ(<e,n>) for some n ∈ N,
Pe(x) otherwise.

In the following we construct a general A-generic set G which is ∆-levelable by
keeping Pg(e) to witness that the unsafe approximation Pe of G is not optimal. Let

402 YONGGE WANG

{fi : i ∈ N} be an enumeration of all functions in F2 such that fi(x) can be computed

uniformly in time 2logk(|x|+i) for some k ∈ N .
The set G is constructed in stages. To ensure that G is general A-generic, it

suffices to meet for all e ∈ N the following requirements:

Ge : if fe is dense along G, then G meets fe.

To ensure that G is ∆-levelable, it suffices to meet for all e, k ∈ N the following
requirements, as shown at the end of the proof:

L〈e,k〉 : ∃n1 ∈ N ∀n > n1 (‖(G∆Pe) |̀ zn‖ > ‖(G∆Pg(e)) |̀ zn‖+ k).

The strategy for meeting a requirement Ge is as follows: at stage s, if Ge has
not been satisfied yet and fe(G |̀ zs) is defined, then let G extend (G |̀ zs)fe(G |̀ zs).
But this action may injure the satisfaction of some requirements L〈i,k〉 and Gm. The
conflict is solved by delaying the action until it will not injure the satisfaction of the
requirements L〈i,k〉 and Gm which have higher priority than Ge.

The strategy for meeting a requirement L〈e,k〉 is as follows: at stage s, if L〈e,k〉
has not been satisfied yet and Pe(zs) 6= Pg(e)(zs), then let G(zs) = Pg(e)(zs). When
a requirement Ge becomes satisfied at some stage, it is satisfied forever, so L〈e,k〉
can only be injured finitely often and then it will have a chance to become satisfied
forever.

Stage s.
In this stage, we define the value of G(zs).
A requirement Gn requires attention if
1. n < s.
2. Gn has not been satisfied yet.
3. There exists t ≤ s such that

A. fn(G |̀ zt) is defined.
B. G |̀ zs is consistent with (G |̀ zt)fn(G |̀ zt).
C. For all e, k ∈ N such that 〈e, k〉 < n, there is at most one 〈e,m〉 ∈ N

such that 0δ(〈e,m〉) ∈ dom((G |̀ zt)fn(G |̀ zt)).
D. For all e, k ∈ N such that 〈e, k〉 < n,

‖(G∆Pe) |̀ zs‖ − ‖(G∆Pg(e)) |̀ zs‖ > k + n.(1)

Fix the minimal m such that Gm requires attention, and fix the minimal t in the
above item 3 corresponding to the requirement Gm. If there is no such m, then let
G(zs) = 1 − Pe(zs) if zs = 0δ(〈e,n〉) for some e, n ∈ N , and let G(zs) = 0 otherwise.
Otherwise we say that Gm receives attention. Moreover, let

G(zs) =

((G |̀ zt)fm(G |̀ zt))(zs) if zs ∈ dom((G |̀ zt)fm(G |̀ zt)),
1− Pe(zs) if zs /∈ dom((G |̀ zt)fm(G |̀ zt)) & zs = 0δ(〈e,n〉)

for some e, n,
0 otherwise.

This completes the construction.
We show that all requirements are met by proving a sequence of claims.
Claim 1. Every requirement Gn requires attention at most finitely often.
Proof. The proof is by induction. Fix n and assume that the claim is correct for

all numbers less than n. Then there is a stage s0 such that no requirement Gm with
m < n requires attention after stage s0. So Gn receives attention at any stage s > s0

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 403

at which it requires attention. Hence it is immediate from the construction that Gn
requires attention at most finitely often.

Claim 2. Given n0 ∈ N , if no requirement Gn(n < n0) requires attention after
stage s0 and Gn0 requires attention at stage s0, then for all 〈e, k〉 < n0 and s > s0,

‖(G∆Pe) |̀ zs‖ − ‖(G∆Pg(e)) |̀ zs‖ > k + n0 − 1.

Proof. The proof is straightforward from the construction.
Claim 3. Every requirement Gn is met.
Proof. For a contradiction, fix the minimal n such that Gn is not met. Then fn

is dense along G. We have to show that Gn requires attention infinitely often which
is contrary to Claim 1. Since ‖Pe∆Pg(e)‖ = ∞ for all e ∈ N , by the construction
and Claim 2, there will be a stage s0 such that at all stages s > s0, (1) holds for all
e, k ∈ N such that 〈e, k〉 < n. Hence Gn requires attention at each stage s > s0 at
which fn(G |̀ zs) is defined.

Claim 4. Every requirement L〈e,k〉 is met.
Proof. This follows from Claims 2 and 3.
Now we show that G is both A-generic and ∆-levelable. G is A-generic since all

requirements Gn are met. For 〈e, k〉 ∈ N , let n〈e,k〉 be the least number s0 such that
for all s > s0,

‖(G∆Pe) |̀ zs‖ > ‖(G∆Pg(e)) |̀ zs‖+ k

and let f(n) be the biggest k such that

∀e ≤ k (n ≥ n〈e,k〉).
Then limn→∞ f(n) =∞ and, for all e ∈ N ,

‖(G∆Pe) |̀ zn‖ ≥ ‖(G∆Pg(e)) |̀ zn‖+ f(n) a.e.

That is to say, G is ∆-levelable with density f .
Theorem 4.10. There exists a set G in E2 which is general A-generic but not

∆-levelable.
Proof. As in the previous proof, a set G is constructed in stages. To ensure that

G is general A-generic, it suffices to meet for all e ∈ N the following requirements:

Ge : if fe is dense along G, then G meets fe.

Fix a set B ∈ P. Then the requirements

NL〈e,k〉 : Pe∆B infinite ⇒ ∃n (‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ ≥ k)

will ensure that B witnesses the failure of ∆-levelability of G.
To meet the requirements Ge, we use the strategy in Theorem 4.9. The strategy

for meeting a requirement NL〈e,k〉 is as follows: at stage s such that Pe(zs) 6= B(zs)
and ‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ < k for all n < s, let G(zs) = B(zs). If Pe 6=∗ B,
this action can be repeated over and over again. Hence ‖G∆Pe‖ is growing more
quickly than ‖G∆B‖, and eventually the requirement NL〈e,k〉 is met at some suffi-
ciently large stage.

Define a priority ordering of the requirements by lettingR2n = Gn andR2〈e,k〉+1 =
NL〈e,k〉. We now describe the construction of G formally.

Stage s.
In this stage, we define the value of G(zs).
A requirement NL〈e,k〉 requires attention if 〈e, k〉 < s and

404 YONGGE WANG

1. Pe(zs) 6= B(zs).
2. ‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖ < k for all n < s.

A requirement Gn requires attention if
1. n < s.
2. Gn has not been satisfied yet.
3. There exists t ≤ s such that

A. fn(G |̀ zt) is defined.
B. G |̀ zs is consistent with (G |̀ zt)fn(G |̀ zt).
C. There is no e, k ∈ N such that

(1). 〈e, k〉 < n.
(2). ∀u < s (‖(G∆Pe) |̀ zu‖ − ‖(G∆B) |̀ zu‖ < k).
(3). There exists y ∈ dom((G |̀ zt)fn(G |̀ zt)) − dom(G |̀ zs) such that

Pe(y) 6= B(y).
Fix the minimal m such that Rm requires attention. If there is no such m, let

G(zs) = B(zs). Otherwise we say that Rm receives attention. Moreover, if Rm =
NL〈e,k〉 then let G(zs) = B(zs). If Rm = Gn then fix the least t in the above
item 3 corresponding to the requirement Gm. Let G(zs) = ((G |̀ zt)fm(G |̀ zt))(zs) if
zs ∈ dom((G |̀ zt)fm(G |̀ zt)) and let G(zs) = B(zs) otherwise.

This completes the construction of G.
It suffices to show that all requirements are met. Note that, by definition of

requiring attention, Rm is met if and only if Rm requires attention at most finitely
often. So, for a contradiction, fix the minimal m such that Rm requires attention
infinitely often. By minimality of m, fix a stage s0 such that no requirement Rm′ with
m′ < m requires attention after stage s0. Then Rm receives attention at any stage
s > s0 at which Rm requires attention. Now, we first assume that Rm = Gn. Then
at some stage s > s0, Gn receives attention and becomes satisfied forever. Finally
assume that Rm = NL〈e,k〉. Then B∆Pe is infinite and, at all stages s > s0 such that
B(zs) 6= Pe(zs), the requirement NL〈e,k〉 receives attention; hence G(zs) = B(zs).
Since, for all other stages s with s > s0, B(zs) = Pe(zs), G∆Pe grows more rapidly
than G∆B; hence

lim
n

(‖(G∆Pe) |̀ zn‖ − ‖(G∆B) |̀ zn‖) =∞

and NL〈e,k〉 is met contrary to assumption.
Corollary 4.11. The class of ∆-levelable sets is neither meager nor comeager

in the sense of resource-bounded (general) Ambos-Spies, Lutz, and Fenner categories.
Proof. The proof follows from Theorems 3.7, 4.9, and 4.10.

5. Resource-bounded randomness versus polynomial-time approxima-
tions. We first introduce a fragment of Lutz’s effective measure theory which will be
sufficient for our investigation.

Definition 5.1. A martingale is a function F : Σ∗ → R+ such that, for all
x ∈ Σ∗,

F (x) =
F (x1) + F (x0)

2
.

A martingale F succeeds on a sequence ξ ∈ Σ∞ if lim supn F (ξ[0..n−1]) =∞. S∞[F]
denotes the set of sequences on which the martingale F succeeds.

Definition 5.2 (see Lutz [10]). A set C of infinite sequences has p-measure 0
(µp(C) = 0) if there is a polynomial-time computable martingale F : Σ∗ → Q+ which

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 405

succeeds on every sequence in C. The set C has p-measure 1 (µp(C) = 1) if µp(C̄) = 0
for the complement C̄ = {ξ ∈ Σ∞ : ξ /∈ C} of C.

Definition 5.3 (see Lutz [10]). A sequence ξ is nk-random if, for every nk-time
computable martingale F , lim supn F (ξ[0..n − 1]) < ∞; that is to say, F does not
succeed on ξ. A sequence ξ is p-random if ξ is nk-random for all k ∈ N .

The following theorem is straightforward from the definition.
Theorem 5.4. A set C of infinite sequences has p-measure 0 if and only if there

exists a number k ∈ N such that there is no nk-random sequences in C.
Proof. See, e.g., [16].
The relation between p-measure and the class of P-levelable sets is characterized

by the following theorem.
Theorem 5.5 (see Mayordomo [11]). The class of P-bi-immune sets has p-

measure 1.
Corollary 5.6. The class of P-levelable sets has p-measure 0.
Corollary 5.7. The class of sets which possesses optimal polynomial-time safe

approximations has p-measure 1.
Corollary 5.8. For each p-random set A, A has an optimal polynomial-time

safe approximation.
Now we turn our attention to the relations between the p-randomness concept

and the concept of polynomial-time unsafe approximations. In our following proof,
we will use the law of the iterated logarithm for p-random sequences.

Definition 5.9. A sequence ξ ∈ Σ∞ satisfies the law of the iterated logarithm if

lim sup
n→∞

2
∑n−1
i=0 ξ[i]− n√
2n ln lnn

= 1

and

lim inf
n→∞

2
∑n−1
i=0 ξ[i]− n√
2n ln lnn

= −1.

Theorem 5.10 (see Wang [17]). There exists a number k ∈ N such that every
nk-random sequence satisfies the law of the iterated logarithm.

For the sake of convenience, we will identify a set with its characteristic sequence.
The symmetric difference of two sets can be characterized by the parity function on
sequences.

Definition 5.11.
1. The parity function ⊕ : Σ× Σ→ Σ on bits is defined by

b1 ⊕ b2 =

{
0 if b1 = b2,
1 otherwise,

where b1, b2 ∈ Σ.
2. The parity function ⊕ : Σ∞×Σ∞ → Σ∞ on sequences is defined by (ξ⊕η)[n] =
ξ[n]⊕ η[n].

3. The parity function ⊕ : Σ∗×{f : f is a partial function from Σ∗ to Σ} → Σ∗

on strings and functions is defined by x⊕ f = b0 · · · b|x|−1, where bi = x[i]⊕
f(x[0..i− 1]) if f(x[0..i− 1]) is defined and bi = λ otherwise.

4. The parity function ⊕ : Σ∞ × {f : f is a partial function from Σ∗ to Σ} →
Σ∗ ∪ Σ∞ on sequences and functions is defined by ξ ⊕ f = b0b1 · · · where
bi = ξ[i]⊕ f(ξ[0..i− 1]) if f(ξ[0..i− 1]) is defined and bi = λ otherwise.

406 YONGGE WANG

The intuitive meaning of ξ ⊕ f is as follows: Given a sequence ξ and a number
n ∈ N such that f(ξ[0..n − 1]) is defined, we use f to predict the value of ξ[n] from
the first n bits ξ[0..n − 1]. If the prediction is successful, then output 0, else output
1. And ξ ⊕ f is the output sequence.

We first explain a useful technique which is similar to the invariance property of
p-random sequences.

Lemma 5.12. Let ξ ∈ Σ∞ be nk-random and f : Σ∗ → Σ be a partial function
computable in time nk such that ξ ⊕ f is an infinite sequence. Then ξ ⊕ f is nk−1-
random.

Proof. For a contradiction assume that ξ⊕f is not nk−1-random and let F : Σ∗ →
Q+ be an nk−1-martingale that succeeds on ξ ⊕ f . Define F ′ : Σ∗ → Q+ by letting
F ′(x) = F (x⊕ f) for all x ∈ Σ∗. It is a routine to check that F ′ is an nk-martingale.
Moreover, since F succeeds on ξ ⊕ f , F ′ succeeds on ξ, which is a contradiction with
the hypothesis that ξ is nk-random.

Lemma 5.13. Let k be the number in Theorem 5.10, and let A,B,C ⊆ Σ∗ be
three sets such that the following conditions hold.

1. B,C ∈ P.
2. ‖B∆C‖ =∞.
3. There exists c ∈ N such that, for almost all n,

‖(A∆C) |̀ zn‖ − ‖(A∆B) |̀ zn‖ ≥ −c.(2)

Then A is not nk+1-random.

Proof. Let α, β, and γ be the characteristic sequences of A,B, and C, respectively.

By Lemma 5.12, it suffices to define an n2-time computable partial function f :
Σ∗ → Σ such that α ⊕ f is an infinite sequence which is not nk-random. Define the
function f by

f(x) =

{
β[|x|] if β[|x|] 6= γ[|x|],
undefined if β[|x|] = γ[|x|].

Then f is n2-time computable and, since ‖B∆C‖ =∞, α⊕ f is an infinite sequence.
In order to show that α ⊕ f is not nk-random, we show that α ⊕ f does not satisfy
the law of the iterated logarithm.

We first show that, for all n ∈ N+, the following equation holds:

n−1∑
i=0

(α⊕ γ)[i]−
n−1∑
i=0

(α⊕ β)[i] = ln − 2

ln−1∑
i=0

(α⊕ f)[i],(3)

where ln = |α[0..n− 1]⊕ f |.
Let

a(n) = ‖{i < n : α[i] 6= γ[i] = β[i]}‖,

b(n) = ‖{i < n : α[i] 6= γ[i] 6= β[i]}‖,

c(n) = ‖{i < n : α[i] = γ[i] 6= β[i]}‖,

d(n) = ‖{i < n : α[i] = γ[i] = β[i]}‖.

GENERICITY, RANDOMNESS, AND APPROXIMATIONS 407

Then ∑n−1
i=0 (α⊕ γ)[i] = a(n) + b(n),∑n−1
i=0 (α⊕ β)[i] = a(n) + c(n),

ln = b(n) + c(n),∑ln−1
i=0 (α⊕ f)[i] = c(n).

Obviously, this implies (3).
The condition (2) is equivalent to

n−1∑
i=0

(α⊕ γ)[i]−
n−1∑
i=0

(α⊕ β)[i] ≥ −c.

So, by (3),

ln − 2

ln−1∑
i=0

(α⊕ f)[i] ≥ −c(4)

for almost all n, where ln = |α[0..n− 1]⊕ f |. By (4),

lim inf
n→∞

n− 2
∑n−1
i=0 (α⊕ f)[i]√

2n ln lnn
≥ 0.

Hence, by Theorem 5.10, α⊕ f is not nk-random. This completes the proof.
Now we are ready to prove our main theorems of this section.
Theorem 5.14. The class of ∆-levelable sets has p-measure 0.
Proof. Let A be a ∆-levelable set. Then there is a function f(n) ≥ 0 satisfying

limn→∞ f(n) =∞ and polynomial-time computable sets B,C such that for all n,

‖(A∆C) |̀ zn‖ − ‖(A∆B) |̀ zn‖ ≥ f(n).

By Lemma 5.13, A is not nk+1-random, where k is the number in Theorem 5.10.
So the theorem follows from Theorem 5.4.

Theorem 5.15. The class of sets which have optimal polynomial-time unsafe
approximations has p-measure 0.

Proof. If A has an optimal polynomial-time unsafe approximation, then there is
a polynomial-time computable set B and a number c ∈ N such that, for all n,

‖(A∆B) |̀ zn‖ − ‖(A∆B̄) |̀ zn‖ < c;

i.e.,

‖(A∆B̄) |̀ zn‖ − ‖(A∆B) |̀ zn‖ > −c.
By Lemma 5.13, A is not nk+1-random, where k is the number in Theorem 5.10.

So the theorem follows from Theorem 5.4.
Corollary 5.16. The class of sets which are weakly ∆-levelable but not ∆-

levelable has p-measure 1.
Corollary 5.17. Every p-random set is weakly ∆-levelable but not ∆-levelable.

408 YONGGE WANG

Acknowledgments. I would like to thank Professor Ambos-Spies for many com-
ments on an early version of this paper, and I would like to thank two anonymous
referees for their valuable comments on this paper.

REFERENCES

[1] K. Ambos-Spies, On optimal polynomial time approximations: P-levelability vs. ∆-levelability,
in Proc. 22nd ICALP, Springer-Verlag, Berlin, New York, 1995, pp. 384–392.

[2] K. Ambos-Spies, Resource-bounded genericity, in Proc. 10th Conf. on Structure in Complexity
Theory, IEEE Computer Society Press, Piscataway, NJ, 1995, pp. 162–181.

[3] K. Ambos-Spies, H. Fleischhack, and H. Huwig, Diagonalizations over polynomial time
computable sets, Theoret. Comput. Sci., 51 (1987), pp. 177–204.

[4] K. Ambos-Spies, H.-C. Neis, and S. A. Terwijn, Genericity and measure for exponential
time, Theoret. Comput. Sci., 168 (1996), pp. 3–19.

[5] L. Berman, On the structure of complete sets, in Proc. 17th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society Press, Piscataway, NJ, 1976, pp. 76–80.

[6] P. Duris and J. D. P. Rolim, E-complete sets do not have optimal polynomial time approxi-
mations, Lecture Notes in Comput. Sci. 841, Springer-Verlag, New York, 1994, pp. 38–51.

[7] S. Fenner, Notions of resource-bounded category and genericity, in Proc. 6th Conf. on Struc-
ture in Complexity Theory, IEEE Computer Society Press, Piscataway, NJ, 1991, pp.
196–212.

[8] K. Ko and D. Moore, Completeness, approximation and density, SIAM J. Comput., 10
(1981), pp. 787–796.

[9] J. H. Lutz, Category and measure in complexity classes, SIAM J. Comput., 19 (1990), pp.
1100–1131.

[10] J. H. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci., 44
(1992), pp. 220–258.

[11] E. Mayordomo, Almost every set in exponential time is P-bi-immune, Theoret. Comput.
Sci., 136 (1994), pp. 487–506.

[12] E. Mayordomo, Contributions to the Study of Resource-Bounded Measure, Ph.D. thesis, Uni-
versidad Polytecnica de Catalunya, Barcelona, 1994.

[13] A. R. Meyer and M. S. Paterson, With what frequency are apparently intractable problems
difficult? Technical Report TM-126, Laboratory for Computer Science, MIT, Cambridge,
MA, 1979.

[14] P. Orponen, A. Russo, and U. Schöning, Optimal approximations and polynomially levelable
sets, SIAM J. Comput., 15 (1986), pp. 399–408.

[15] D. A. Russo, Optimal approximation of complete sets, Lecture Notes in Comput. Sci. 223,
Springer-Verlag, New York, 1986, pp. 311–324.

[16] Y. Wang, Randomness and Complexity. Ph.D. thesis, Heidelberg, 1996.
[17] Y. Wang, The law of the iterated logarithm for p-random sequences, in Proc. 11th Conf.

Computational Complexity (formerly Conf. on Structure in Complexity Theory), IEEE
Computer Society Press, Piscataway, NJ, 1996, pp. 180–189.

[18] Y. Wang, Randomness, stochasticity, and approximations, Lecture Notes in Comput. Sci. 1269,
Springer-Verlag, New York, 1997, pp. 213–225.

[19] Y. Yesha, On certain polynomial-time truth-table reducibilities of complete sets to sparse sets,
SIAM J. Comput., 12 (1983), pp. 411–425.

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES∗

LUC DEVROYE†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 409–432

Abstract. Random binary search trees, b-ary search trees, median-of-(2k+1) trees, quadtrees,
simplex trees, tries, and digital search trees are special cases of random split trees. For these trees,
we offer a universal law of large numbers and a limit law for the depth of the last inserted point, as
well as a law of large numbers for the height.

Key words. binary search tree, data structures, expected time analysis, depth of a node,
random tree, law of large numbers

AMS subject classifications. 68Q25, 68P05, 60F05, 60C05

PII. S0097539795283954

Random split trees. We introduce a model for a random tree that is sufficiently
general that it encompasses many important families of random trees, such as random
binary search trees, random m-ary search trees, random fringe-balanced trees, random
median-of-(2k + 1) trees, random quadtrees, and random simplex trees. A skeleton
tree Tb of branch factor b is an infinite rooted position tree, in which each node has
b children, numbered 1 through b. A split tree (with branch factor b > 0, vertex
capacity s > 0, and of cardinality n ≥ 0) is a skeleton tree of branch factor b in which
n balls are assigned to a collection of vertices, where each vertex may hold up to s
balls. Nodes or vertices are denoted by u. N(u) denotes the number of balls in the
subtree rooted at u. C(u) denotes the number of balls associated with vertex u. A
vertex u is a leaf if C(u) = N(u) > 0, or equivalently, if C(u) > 0 and N(v) = 0 for
all b children v of u. A node u is useless if N(u) = 0. Two split trees with the same
parameters b, s, n are equivalent if for all their vertices, the N(u)’s are identical. The
trimmed split tree is the (finite) split tree from which all useless nodes are deleted.

We now introduce a random split tree with parameters b, s, s0, s1, V, and n. The
branch factor b, vertex capacity s, and number of balls n are as for split trees. The
additional integers s0 and s1 are needed to describe the ball distribution process and
satisfy the inequalities

0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0.

Finally, V is a prototype random vector (V1, . . . , Vb) of probabilities:
∑
i Vi = 1;Vi ≥

0. A random split tree is a skeleton tree Tb in which each vertex u is given an
independent copy of V, and in which n balls are distributed in the manner described
below over the vertices, where each vertex may hold up to s balls. The distribution
is done in an incremental fashion, as described below. Initially, there are no balls, so
every node has a ball count C(u) = 0. Adding a ball to a tree rooted at u proceeds
as follows. Let (V1, . . . , Vb) be the probability vector associated with u.

A. If u is not a leaf (so that C(u) = s0), choose child i with probability Vi,
increment N(u) by 1, and recursively add the ball to the subtree rooted at
child i.

∗Received by the editors March 31, 1995; accepted for publication (in revised form) April 3, 1997;
published electronically July 7, 1998. The research of the author was sponsored by NSERC grant
A3456 and by FCAR grant 90-ER-0291.

http://www.siam.org/journals/sicomp/28-2/28395.html
†School of Computer Science, McGill University, Montreal, Canada H3A 2K6 (luc@cs.mcgill.ca).

409

410 LUC DEVROYE

All internal nodes have s0=2 balls

All leaf nodes have between 1 and s=4 balls
Note that s1=0

All internal nodes have s0=0 balls

All leaf nodes have between 1
 and s=4 balls
Note that s1=1

Fig. 1. A random trimmed split tree with parameters b, s, s0, s1, V, and n is a random split
tree with parameters b, s, s0, s1, V, and n from which we eliminate all useless nodes. Note that
there is in general no simple relationship between the number of vertices and the number of balls
(or points). The ball distribution method described above has several advantages, first and foremost
among them the direct relationship with several species of trees that occur as natural data structures.
The parameters s, s0, s1 add sufficient flexibility. We will see that all trees with fixed finite values of
these parameters have the same asymptotic behavior for various shape parameters. When we refer
to a random split tree, it is understood that we mean a random trimmed split tree.

B. If u is a leaf but C(u) = N(u) < s (where s is the capacity of a vertex
introduced in the previous paragraph), then add the ball to u and stop. C(u)
and N(u) are both incremented by 1.

C. If u is a leaf but C(u) = N(u) = s, there is no room for the ball at u. In that
case, we set N(u) = s+ 1 and C(u) = s0. We place s0 ≤ s randomly selected
balls at u, and send s+ 1− s0 balls down to the children of u. This is done
as follows. We first give s1 randomly selected balls to each child and adjust
the ball counts for the children. The remaining s + 1 − s0 − bs1 balls are
sent down by choosing a child for each ball independently, according to the
probability vector (V1, . . . , Vb), and applying the procedure “add a ball” to
the tree rooted at the selected child. Note that this may have to be repeated
several times if s0 = 0, but only once if s0 > 0 (because no child will reach
the capacity s).

Note that every nonleaf node has C(u) = s0 and every leaf has 0 < C(u) ≤ s. Two
split trees, one with (s, s0, s1) = (4, 2, 0) and the other with (s, s0, s1) = (4, 0, 1), are
shown below.

The depth of a vertex is its distance from the root. The height of a tree is the

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 411

maximal depth of any of the leaves. When the (n + 1)st ball is added to a random
split tree of cardinality n (that is, a tree holding n balls), the depth of the vertex
reached by the ball is denoted by Dn+1. If the leaf is split, the ball ends up, if s0 > 0,
at depth Dn+1 or Dn+1 + 1, depending upon which ball we choose to follow in the
splitting process. It is therefore convenient to study Dn.

Interestingly, the following property is valid for a tree with n balls rooted at u:
if n ≤ s, all balls are in the root node, which is a leaf; if n > s, there are s0 balls
in the root node, and the cardinalities (N1, . . . , Nb) of the b subtrees of the root are
distributed as (s1, . . . , s1) plus a multinomial (n−s0− bs1, V1, . . . , Vb) random vector,
where (V1, . . . , Vb) is associated with u. This property is repeated recursively at every
node. Roughly speaking, the subtrees rooted at the children have cardinalities close
to nV1, . . . nVb.

The behavior of several other parameters is easily deduced from that of Dn. For
example, let D′n be the average depth, i.e., the sum of the depths of the n balls divided
by n. The incremental growing process described above shows that, if s0 > 0,

n− an
n

E{Dan} ≤ E{D′n} ≤ E{Dn}+ 1

for any a > 0 such that an is integer. This implies that if E{Dn} ∼ c log n for some
constant c, then E{D′n} ∼ c log n. For this reason, we will not investigate D′n at
length.

The purpose of this paper is to point out that within this general setting, the
asymptotics—a law of large numbers and a limiting distribution—of Dn are easy to
determine. Interestingly, one proof is offered that works for all trees mentioned above.

Throughout this paper, we assume that the components of (V1, . . . , Vb) are iden-
tically distributed. Note that if they are not, a random permutation (σ1, . . . , σb) of
(1, 2, . . . , b) shows that we achieve this goal by taking (Vσ1

, . . . , Vσb). This random
permutation of the children does not affect the depth and height. If Vi has a distribu-
tion described by the probability measure µi, then the Vσi ’s are identically distributed
with common probability measure (1/b)

∑
j µj . The latter is called the splitting dis-

tribution. A random variable V with the splitting distribution is called a splitter.
Define W = VS where, given (V1, . . . , Vb), S = i with probability Vi. Observe that
EV = EW = 1/b in all cases. The law of large numbers and the limit law for Dn

depend upon just two parameters,

µ = E{log(1/W)} = bE{V log(1/V)}

and

σ2 = Var{logW} = bE
{
V log2 V

}− µ2.

We first state our main results without proof. Then we give a brief discussion of the
random trees to which the results apply. The proofs are at the end of the paper.

The main result. For all trees that follow the given model, if Hn denotes the
height, that is, the maximal distance between the root and any leaf, we have Hn =
O(log n) in probability. The behavior of Hn is related to that of the moment function

m(t) = E{V t}, t ≥ 0.

For later reference, we provide the key properties of this function.

412 LUC DEVROYE

Lemma 1.
A. The function m decreases monotonically from m(0) = 1 to P{V = 1} as

t→∞.
B. m is differentiable for all t > 0.
C. logm is convex. In particular, m′/m is increasing on (0,∞).
D. m(t)1/t ≤ m(s)1/s for t < s. Thus, log(m(t))/t is nondecreasing.
E. For t > 0, m′(t) = E{V t log(V)} and m′′(t) = E{V t log2(V)}.
F. m′/m takes every value between E{log(V)} (as t ↓ 0) and log v∞, where v∞

is the rightmost point in the support of V .
G. The solution of the equation m′(t)/m(t) = −1/c is called t∗ = t∗(c). Then t∗

is a monotonically increasing function of c, and a solution exists when

− 1

E{log(V)} < c < − 1

log v∞
.

H. t∗/c+ logm(t∗) decreases in c (or t∗). The value of t∗/c+ logm(t∗) changes
from 0 (at t∗ = 0) to R (possibly −∞) as t∗ →∞, where R = limt→∞(logm(t)−
tm′(t)/m(t)).

Theorem 1. Let V be a splitter for a random split tree. Assume that P{V =
1} = 0. Then there exists a finite constant c such that

lim
n→∞P{Hn > c log n} = 0.

If, additionally, R < − log b, where

R = lim
t→∞(logm(t)− tm′(t)/m(t)),

then the same is true for all c > γ and γ ∈ (0,∞) is a parameter only depending upon
b and the distribution of V , and is defined by

γ = inf{c : et
∗
(bm(t∗))c < 1} = inf{c : t∗/c+ log(m(t∗)) < − log b},

where t∗ is the unique solution of m′(t)/m(t) = −1/c. (See Lemma 1 below.)
We note that under the conditions of Theorem 1, Hn/ log n → γ in probability.

The lower bound that goes with the upper bound of Theorem 1 can be obtained
by various methods, and its straightforward proof is not included here (as we focus
mainly on depths in this paper). Galton–Watson processes (see Athreya and Ney,
1972) may be used directly (Devroye, 1987). One may also use extrema in branching
random walks as exhibited in Devroye (1986b) (see Biggins (1976, 1977), Hammersley
(1974), and Kingman (1973) for branching random walks, and see Mahmoud (1992)
for further applications). Pittel (1994) points out how one may use the Crump–Mode
process in this respect.

Theorem 2. Let Dn be the depth of the last node in a random split tree with n
nodes and splitter V . If µ 6= 0 and P{V = 1} = 0, then

Dn

log n
→ 1

µ

and E{Dn}/ log n tends to the same limit. Furthermore, if σ > 0, then

Dn − (log n)/µ√
σ2(log n)/µ3

L→ N (0, 1),

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 413

where N (0, 1) denotes the normal distribution and
L→ denotes convergence in distri-

bution.
The law of large numbers for Dn does not apply when E{V log V } = 0, i.e., when

P{V ∈ {0, 1}} = 1. This degenerate case is excluded from further consideration. It
suffices that V has a density (as in many examples that follow below). For the limit
law, we need in addition Var{logW} > 0. This is equivalent to asking that V not be
monoatomic. Of all the examples below, only special cases of tries—the symmetric
tries and symmetric digital search trees—have a monoatomic splitter V (V ≡ 1/b).
All other examples satisfy the latter condition.

Some properties of the beta distribution. The beta distribution plays an
important role in many important random split trees. We summarize some key prop-
erties. Define the beta (a, b) density

f(x) =
xa−1(1− x)b−1

B(a, b)
, 0 < x < 1,

where a, b > 0 are parameters and B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
Lemma 2. If X is a beta (a, b) random variable, then

E{log(1/X)} = ψ(a+ b)− ψ(a),

where ψ(u) = Γ′(u)/Γ(u) is the derivative of log Γ at u (also called the digamma
function). Furthermore,

E{X log(1/X)} =
a

a+ b
(ψ(a+ 1 + b)− ψ(a+ 1)).

Let ψ′—the trigamma function—be the derivative of ψ. Then

E{log2(X)} = (ψ(a+ b)− ψ(a))
2

+ ψ′(a)− ψ′(a+ b).

Finally,

E{X log2(X)} =
a

a+ b
(ψ(a+ 1 + b)− ψ(a+ 1))

2
+

a

a+ b
(ψ′(a+ 1)− ψ′(a+ 1 + b)) .

For integrals such as those dealt with in Lemma 2, we refer to Sibuya (1979) or
Gradshteyn and Ryzhik (1980, pp. 538, 541). We recall that the digamma function
basically behaves like the harmonic numbers (Abramowitz and Stegun, 1970, pp. 258–
259): if γ is Euler’s constant,

ψ(n) = −γ +

n−1∑
k=1

1

k
(n ≥ 2), ψ(1) = −γ;

ψ(z + 1) = ψ(z) +
1

z
= −γ +

∞∑
n=1

z

n(n+ z)
, z > −1.

For the trigamma function, we have

ψ′(z) =
∞∑
n=0

1

(z + n)2
.

Also, ψ′(z) = ψ′(z − 1)− 1/(z − 1)2, and ψ′(1) = π2/6.

414 LUC DEVROYE

Table 1

Tree V
L
= s s0 s1 b

Random binary search tree U , uniform [0, 1] 1 1 0 2
beta (1,1)

Random b-ary search tree
U(b−1)=min(U1,...,Ub−1)

beta(1,b−1)
b− 1 b− 1 0 b

Random quadtree
∏d

i=1
Ui 1 1 0 2d

Random median-of-(2k+1) median (U1, . . . , U2k+1) 2k 1 k 2
binary search tree beta (k + 1, k + 1)

Random simplex tree
min1≤i≤d Ui
beta(1,d)

1 1 0 d+ 1

AB tree symmetric beta (a, a) 1 0(1) 0 2

Extended AB tree uniform {beta (a, b), beta (b, a)} 1 0(1) 0 2

Trie uniform {p1, . . . , pb} 1 0 0 b

Digital search tree uniform {p1, . . . , pb} 1 1 0 b

Random m-grid tree

∏d

i=1
U′i

U′
1
,...,U′

d
i.i.d. beta(1,m)

m m 0 (m+ 1)d

Examples: An overview. In Table 1, we list a number of important special
cases of random split trees. In this table, U,U1, U2, . . . are independently and identi-
cally distributed (i.i.d.) uniform [0, 1] random variables. Recall that s is the capacity
of a node before it is split, s0 is the number of balls left in a node after a split, s1 is
the minimum number of balls sent to any subtree, and b is the branch factor.

Table 1 shows that a large variety of trees may be dealt with in one sweep. The
fixed parameters s, s0, and s1 are irrelevant for first term asymptotics and the law of
large numbers for depths and heights. Only the distribution of the splitter V matters.

Nonetheless, many trees cannot be molded into our framework, such as all trees
whose depth does not grow logarithmically with n. For example, it is well known
that the uniform random binary tree has average depth and height of the order of

√
n

(Flajolet and Odlyzko, 1982; Vitter and Flajolet, 1990). Interestingly, Aldous (1993)
has introduced a model that includes many (but not all) of the trees in Table 1 and
the uniform random trees, as well as a continuum of trees that link them. Our work
was inspired for a great deal by Aldous’s paper.

The parameters µ and σ2 are computed for the trees mentioned above. Most
of the limit laws and laws of large numbers are known, but the unified approach of
this paper explains things in a stronger way. More details are provided in the nine
subsequent subsections, in which each tree is briefly discussed separately. The symbols
H and H2 are properly defined in the section on tries.

Example 1: The random binary search tree. In a random binary search tree with
n nodes, the following operation is applied independently and recursively: a random
node is chosen from the n nodes at hand, and it is made the root. The nodes with a
smaller label travel to the left subtree of the root, and the others, to the right subtree.
The size of the left subtree is distributed as bnUc, where U is uniform [0, 1]. The size
of the right subtree has a similar distribution. Equivalently, attach to each of the balls
an independent copy of a uniform [0, 1] random variable, to get U1, U2, . . . , Un. Put
U1 in the root and partition the others into left and right subsets by comparison with
U1. Repeating the splitting process at each node creates a random split tree. In a
third equivalent representation, that of the random split tree, we may associate with

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 415

random binary search tree

random b-ary search tree

random median-of-(2k+1) binary
search tree

extended AB tree

random simplex tree

random quadtree

random grid tree

U

U U U

U

U

U

U

U

U U U U U

B: beta mixture

0

0

0

0

0

0

0

0

1

1

1

1

1
1

1
1

1

3

2

(5)(4)(3)(2)(1)

(3)(2)(1)

Fig. 2. Various ways of splitting spaces are shown. All splits are applied recursively. U refers
to the uniform distribution, and B, to a mixture of beta distributions.

Table 2

Tree σ2 1/µ (limit of Dn/ logn)

Random binary search tree 1/4 2

Random b-ary search tree
∑b

i=2
1
i2

1∑b

i=2

1
i

Random quadtree d2/4 2/d

Random median-of-(2k+1)
binary search tree

∑2k+2

j=k+2
1
j2

1∑2k+2

i=k+2

1
i

Random simplex tree
∑d+1

i=2
1
i2

1∑d+1

i=2

1
i

AB tree (ψ(2a+1)−ψ(a+1))2

+(ψ′(a+1)−ψ′(2a+1))

1
ψ(2a+1)−ψ(a+1)

= 1∑∞
n=1

a
(n+a+1)(n+2a+1)

Extended AB tree

a
a+b

(ψ(a+ 1 + b)− ψ(a+ 1))2

+ a
a+b

(ψ′(a+ 1)− ψ′(a+ 1 + b))

+ b
a+b

(ψ(a+ 1 + b)− ψ(b+ 1))2

+ b
a+b

(ψ′(b+ 1)− ψ′(a+ 1 + b))

a+b
a(ψ(a+1+b)−ψ(a+1))
+b(ψ(a+1+b)−ψ(b+1))

b-ary trie H2 −H2 1/H
b-ary digital search tree H2 −H2 1/H

Random m-grid tree d
∑m+1

j=2
1
j2

+ d(d− 1)

(∑m+1

j=2
1
j

)2
1

d
∑m+1

i=2

1
i

416 LUC DEVROYE

each node an independent random split vector (V1, V2) distributed as (U1, 1− U1).

It is known thatDn/ log n→ 2 in probability (Lynch, 1965; Knuth, 1973; Devroye,

1988). The limit law for Dn was derived by Devroye (1988): (Dn−2 log n)/
√

2 log n
L→

N (0, 1). Robson (1979), Pittel (1984), and Devroye (1986b, 1987) showed that
Hn/ log n → 4.31107 . . . in probability. All of these results are contained in Theo-
rems 1 and 2 as m(t) = 1/(t+ 1), µ = 1/2, and σ2 = 1/4.

An important variant of the binary search tree related to the standard occurs
when no balls are stored in internal nodes; so, s0 = 0. This leads to a binary search
tree in which all balls are at leaves. This too is a random split tree, and it follows the
same limit laws as the ordinary random binary search tree.

Example 2: The random b-ary search tree. Let n balls be given and associate with
each ball an independent uniform [0, 1] random variable. In a random b-ary search
tree with n nodes, the following operation is applied independently and recursively:
b − 1 random balls are chosen from the n balls at hand and are associated with the
root. The other balls, if there are any, are partitioned into b sets by membership in
the intervals induced by the b − 1 balls. If (N1, . . . , Nb) are the number of balls in
the intervals (with

∑
iNi = n − b + 1, of course), then this vector is multinomial

(n− b+ 1, V1, . . . , Vb), where the Vi’s are the lengths of the intervals (or spacings; see
Pyke (1965)). The split vector of Vi’s is thus distributed as the collection of b spacings
induced by b− 1 i.i.d. uniform [0, 1] random variables on [0, 1]. In particular, V = V1

is distributed as a beta (1, b− 1) random variable.

We easily compute µ =
∑b
i=2 1/i and σ2 =

∑b
i=2 1/i2. This yields

Dn

log n
→ 1∑b

i=2
1
i

in probability

(a result of Mahmoud and Pittel (1984)) and

Dn − (1/µ) log n√
(σ2/µ3) log n

L→ N (0, 1).

As an example, if b = 3, µ = 5/6, σ2 = 78/125, and

Dn − (6/5) log n√
(78/125) log n

L→ N (0, 1).

We also know that Hn/ log n→ c in probability for a function c of b given in Devroye
(1990) and indicated in Theorem 1.

Example 3: The random quadtree. The point quadtree in Rd (Finkel and Bentley,
1974; see Samet (1990b) for a survey) generalizes the binary search tree. One ball is
put in each node of a tree with branch factor 2d; each ball has associated with it a
d-vector for the point it represents; each subtree of a node corresponds to one of the
quadrants formed by considering the ball’s d-vector as the new origin. Insertion into
point quadtrees is as for binary search trees.

We assume that a random quadtree is constructed on the basis of an i.i.d. se-
quence drawn from the uniform distribution on [0, 1]d. In that case, it is conve-
nient to index the split vector by a bit sequence of length d: (b1 . . . bd). The vector
(V00...00, . . . , V11...11) has components that may be written as

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 417

Fig. 3. At the left, a partition of the plane by a random quadtree is shown. The circled point
is the root. It partitions the space into four quadrants, and the splitting rule is recursively applied
to each quadrant. At the right, the same points are shown together with the edges in the quadtree.

V(b1...bd) =
d∏
j=1

U
bj
j (1− Uj)1−bj ,

where (U1, . . . , Ud) is the point in the node where the split takes place.

The height Hn of a random quadtree is in probability asymptotic to (c/d) log n,
where c = 4.31107 . . . is the constant in the height of the random binary search tree
(Devroye, 1987). This also follows from Theorem 1 as m(t) = E{V t} = 1/(t + 1)d.

Write V = V11...11 =
∏d
j=1 Uj . Then it takes just a moment to verify that

(1−U
1
)(1−U

2
)U

1
(1−U

2
)

(1−U
1
)U

2
U

1
U

2

Fig. 4. The split induced by the root of the quadtree is shown. The random variables U1, U2

are i.i.d. uniform [0, 1]. The areas of the four rectangles are all distributed like products of two
independent uniform [0, 1] random variables.

418 LUC DEVROYE

µ = E{logW} = 2dE{V log(1/V)}

= 2d
d∑
j=1

E

{
d∏
k=1

Uk log(1/Uj)

}

= 2ddE

{
d∏
k=2

Uk

}
E {U1 log(1/U1)}

= 2dE {U1 log(1/U1)}
=
d

2
.

From this, we see that

Dn

log n
→ 2

d
in probability,

a result first noted by Devroye and Laforest (1990). See also Flajolet et al. (1991).
The computations of the variance are a bit more tedious. We have

σ2 + µ2 = 2dE{V log2(1/V)}

= 2dE

d∏
k=1

Uk

 d∑
j=1

log(1/Uj)

2

= 2ddE

{
d∏
k=2

Uk

}
E
{
U1 log2(1/U1)

}
+ 2d d(d− 1)E

{
d∏
k=3

Uk

}
E2 {U1 log(1/U1)}

= 2dE
{
U1 log2(1/U1)

}
+ 4d(d− 1)E2 {U1 log(1/U1)}

=
d2

4
+
d

4
.

Hence, σ2 = d/4. This yields the limit law

Dn − (2/d) log n√
(2/d2) log n

L→ N (0, 1),

valid for any d ≥ 1. This result was obtained via complex analysis by Flajolet and
Lafforgue (1994).

Example 4: The random median-of-(2k + 1) binary search tree. Bell (1965) and
Walker and Wood (1976) introduced the following method for constructing a binary
search tree. Take 2k + 1 points at random from the set of n points on which a total
order is defined, where k is integer. The median of these points serves as the root of
a binary tree. The remaining points are thrown back into the collection of points and
are sent to the subtrees. Following Poblete and Munro (1985), we may look at this
tree by considering internal nodes and external nodes, where internal nodes hold one
data point and external nodes are bags of capacity 2k. Insertion proceeds as usual.

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 419

As soon as an external node overflows (i.e., when it would grow to size 2k+1), its bag
is split about the median, leaving two new external nodes (bags) of size k each and an
internal node holding the median. After the insertion process is completed, we may
wish to expand the bags into balanced trees. Using the branching process method of
proof (Devroye, 1986b, 1987, 1990; see also Mahmoud, 1992) the almost sure limit
of Hn/ log n for all k may be obtained (Devroye, 1993). For another possible proof
method, see Pittel (1992). The depth Dn of the last node when the fringe heuristic
is used has been studied by the theory of Markov processes or urn models in a series
of papers, notably by Poblete and Munro (1985) and Aldous, Flannery, and Palacios
(1988). See also Gonnet and Baeza-Yates (1991, p. 109). Poblete and Munro (1985)
showed that

Dn

log n
→ 1∑2k+2

i=k+2
1
i

in probability. It should be clear by now that this tree is a random split tree with
s = 2k, s0 = 1, s1 = k, b = 2 and split vector (V1, V2) distributed as (B, 1 − B),
where B is beta (k+ 1, k+ 1). That is, B is distributed as the median of 2k+ 1 i.i.d.
uniform [0, 1] random variables. This representation is obtained by associating with
each point in the data an independent uniform [0, 1] random variable. Clearly,

µ =

2k+2∑
i=k+2

1

i
.

Also, if X is beta (a, a) and a is integer-valued, Lemma 2 and the properties of the
digamma and trigamma functions imply

E{X log2(X)} =
1

2
(ψ(2a+ 1)− ψ(a+ 1))

2
+

1

2
(ψ′(a+ 1)− ψ′(2a+ 1))

=
1

2

 2a∑
j=a+1

1

j

2

+

2a∑
j=a+1

1

j2

 .

Thus,

σ2 =
2k+2∑
j=k+2

1

j2
.

Therefore, we obtain a limit law for all k. As an example, for k = 1, we obtain
µ = 1/3 + 1/4 = 7/12, σ2 = 1/9 + 1/16 = 25/144, and thus

Dn − (12/7) log n√
(300/343) log n

L→ N (0, 1).

We rediscover results for the number of comparisons Cn for median-of-(2k + 1)
quicksort. As ECn = E{nDn}, where Dn is the depth of the nth point when inserted
in a median-of-(2k + 1) binary search tree holding n − 1 points. From the above
results,

lim
n→∞

ECn
n log n

=
1

1
k+2 + 1

k+3 + · · ·+ 1
2k+2

.

420 LUC DEVROYE

1

2

3

4

5

6

7

8

1

2 3

45

6

7

8

Fig. 5. A triangle is triangulated by a cloud of random points. The corresponding ternary tree
is shown on the right.

Thus, for median-of-5 quicksort, as 60/47n log n, the expected number of comparisons
grows. By generating function methodology (Vitter and Flajolet, 1990; Kemp, 1984;
Sedgewick, 1983) or via urn models (Aldous, Flannery, and Palacios, 1988), results of
this nature are harder to obtain. However, our method does not allow one to compute
anything but the main asymptotic term in ECn.

Example 5: Random simplex trees. Triangulating polygons and objects in the
plane is an important problem in computational geometry. An O(n log n) algorithm
for triangulating n points was found by Avis and El Gindy (1987). Arkin et al.
(1994) obtained a simple fast O(n log n) expected time algorithm for triangulating
any collection of n planar points in general position. We look more specifically at
their triangulation and its d-dimensional extension to simplices, and ask what the
tree generated by this partitioning looks like if the points are uniformly distributed
in the unit simplex. Given are n vectors X1, . . . , Xn taking values in a fixed simplex
S of IRd. It is assumed that this is an i.i.d. sequence with a uniform distribution on
S for the purposes of analysis. X1 is associated with the root of a d + 1-ary tree.
It splits S into d + 1 new simplices by connecting X1 with the d + 1 vertices of S.
Associate with each of these simplices the subset of X2, . . . , Xn consisting of those
points that fall in the simplex. Each nonempty subset is sent to a child of the root,
and the splitting is applied recursively to each child. As every split takes linear time
in the number of points processed, it is clear that the expected time is proportional to
nEDn, where Dn is the expected depth of a random node in the tree. The partition
consists of dn+ 1 simplices, each associated with an external node of the tree. There
are precisely n nodes in the tree and each node contains one point.

If |S| denotes the size of a simplex S, then the following crucial property is valid.

Lemma 3. If simplex S is split into d + 1 simplices S1, . . . , Sd+1 by a point X
distributed uniformly in S, then (|S1|, . . . , |Sd+1|) is jointly distributed as (|S|V1, . . . ,

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 421

|S|Vd+1), where V1, . . . , Vd+1 are the spacings of [0, 1] induced by d i.i.d. uniform [0, 1]
random variables.

Proof. It is known that X is distributed as
∑d+1
i=1 Viti, where t1, . . . , td+1 are the

vertices of S (see Rubinstein (1982), Smith (1984), or Devroye (1986a)). But for a
simplex S, we know that

|S| = 1

d!
det

(
t1 t2 t3 · · · td+1

1 1 1 · · · 1

)
.

Apply this formula to S1 by replacing t1 by X:

|S1| = 1

d!
det

(
X t2 t3 · · · td+1

1 1 1 · · · 1

)
=

1

d!
det

(∑
i Viti t2 t3 · · · td+1∑
i Vi 1 1 · · · 1

)
=
V1

d!
det

(
t1 t2 t3 · · · td+1

1 1 1 · · · 1

)
= V1|S|.

The statement then follows trivially.
It is immediate that the random simplex tree is a random split tree with split

vector distributed as the spacings defined by d i.i.d. uniform [0, 1] random variables
on [0, 1], s0 = 1, s = 1, s1 = 0, and b = d+ 1. Therefore, by Theorem 2, Dn behaves

precisely as for the random d+1-ary tree discussed earlier. Thus, µ =
∑d+1
i=2 1/i and

σ2 =
∑d+1
i=2 1/i2. This yields

Dn

log n
→ 1∑d+1

i=2
1
i

in probability

and

Dn − (1/µ) log n√
(σ2/µ3) log n

L→ N (0, 1).

As an example, if d = 2, then µ = 5/6, σ2 = 78/125, and

Dn − (6/5) log n√
(78/125) log n

L→ N (0, 1).

For d = 3, µ = 1/2 + 1/3 + 1/4 = 13/12. Thus, Dn/ log n → 12/13 in probability.
We also know that Hn/ log n → c in probability for a function c of d that may be
computed via the recipe described in Theorem 1.

Example 6: Extended AB trees and simulation. When generating random trees
that resemble botanical trees, a number of mathematical models have been proposed.
We refer to Viennot’s survey (1990) or the book by Prusinkiewicz and Lindenmayer
(1990) for further references. Stripped from geometrical considerations, most trees
are binary. The main parameter one needs to control is the height of the tree as a
function of the number of nodes. Alternately, one may wish to control the average
distance from a node to the root. For this, it is necessary to have a family of random
trees in which these parameters can take any large value. In the context of this paper,

422 LUC DEVROYE

if we had a family of splitting trees—a continuum of trees, really—with parameter α
and for which Dn/ log n → c(α) in probability, we would be saved if the domain of
values of c(α) would be (log 2,∞) as α varies over a given range.

In 1993, Aldous introduced a family of random split trees with s = 1, s1 = 0, and
s0 = 0. With this set-up, all balls are put in leaves, and internal nodes have no balls.
Aldous splits with the aid of (V, 1 − V), where V is beta (a, a) for some parameter
a > 0. By varying a and even extending it beyond its natural range, Aldous creates a
one-parameter family that may be used to model certain splitting processes in biology.
He also studies the depths of nodes in these trees and obtains laws of large numbers
for their heights. We define an AB tree (for Aldous beta) in a similar fashion but
take s0 = s = 1 and s1 = 0. This change is only cosmetic, as it will not affect any
asymptotic result. For a = 1, we obtain the random binary search tree. As a ↓ 0,
the tree becomes more elongated, and the amount of stretching may be controlled by
a. As a→∞, every split is nearly 50-50, and the height of the tree is in probability
asymptotic to log2 n. The laws of large numbers for depths and heights are essentially
those obtained by Aldous for his model.

We feel that a lot is gained by considering two-parameter families for modeling
biological phenomena and simulating botanical trees. This may be achieved by ex-
tending the AB trees and taking B as an equal mixture of a beta (a, b) and a beta
(b, a) density. The splitter V remains symmetric, but as a and b diverge so that
a/(a+ b)→ p ∈ (0, 1), we see that in the limit V is p or 1− p with equal probability.
This creates trees of height about log1/min(p,1−p) n. The AB trees are obtained at
b = a. We call this versatile family of trees extended AB trees. We will report on the
drawing of realistic-looking trees via extended AB trees elsewhere.

From Lemma 2, the parameters are easily obtained:

µ =
a(ψ(a+ 1 + b)− ψ(a+ 1)) + b(ψ(a+ 1 + b)− ψ(b+ 1))

a+ b
,

and

σ2 =
a

a+ b
(ψ(a+ 1 + b)− ψ(a+ 1))

2
+

a

a+ b
(ψ′(a+ 1)− ψ′(a+ 1 + b))

+
b

a+ b
(ψ(a+ 1 + b)− ψ(b+ 1))

2
+

b

a+ b
(ψ′(b+ 1)− ψ′(a+ 1 + b)) .

If we set b = 1 and a is integer, the limit for EDn/ log n is

a+ 1∑a
i=1

1
i

.

This grows unbounded like a/ log a as a→∞. As a ↓ 0, the limit is (a+ 1)/(a/(a+
1) + ψ(a + 2) − 1) ∼ 1/a. This grows unbounded as well. In the AB trees, we have
a = b, and thus,

Dn

log n
→ 1

ψ(2a+ 1)− ψ(a+ 1)
=

1∑∞
n=1

a
(n+a+1)(n+2a+1)

.

This result matches that of Aldous (1993), where the limit is written as an integral. It
is easy to verify that as a ↓ 0, the limit is asymptotic to 1/(a(π2/6−1)). At a = 1, we
have a limit of 2 as in the random binary search tree. As a→∞, the limit approaches
1/ log 2, and the splits because nearly all perfectly balanced. The variance is given by

σ2 = (ψ(2a+ 1)− ψ(a+ 1))
2

+ (ψ′(a+ 1)− ψ′(2a+ 1)) .

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 423

Finally, consider extended AB trees in which as a, b→∞, a = p(a+ b) with p ∈ (0, 1)
fixed. The limit then behaves as

1

−p log p− (1− p) log(1− p) =
1

H(p)
,

where H(p) is the entropy of a Bernoulli (p) random variable. Here we rediscover
a known property of the entropy H = −∑i pi log(pi) of a discrete distribution
(p1, p2, . . .): split a set of size n into subsets of sizes close to np1, np2, np3, As-
sociate each subset with a child of the root and repeat this process until no further
splitting is possible (note that there is no randomness involved in this splitting). If
one grabs a random node in the resulting tree, its depth is in probability equal to
(1/H) log n. This is exactly like the behavior of random nodes in tries (Fredkin, 1960)
in which the symbols have probabilities p1, p2, p3, . . .; see Pittel (1985, 1986) and
Szpankowski (1988) and the next section.

Example 7: Tries and digital search trees. Tries are b-ary trees for storing infi-
nite strings. Assume that the data consists of n infinite strings of {1, . . . , b}-valued
symbols, called X1, . . . , Xn. Each string carves out an infinite path in the infinite
complete b-ary tree. For a node u, let N(u) denote the number of strings that pass
through node u. Now, eliminate all nodes with N(u) = 0 and eliminate all those
with N(u) = 1 whose parent also has N(u) = 1. The resulting tree has n leaves
with N(u) = 1, and every nonleaf v has N(v) > 1. Invented in 1960 by Fredkin, this
structure is called a trie. Assume that all the symbols are drawn independently, and
that each symbol takes the value i with probability pi. Define the entropy H by

H = −
b∑
i=1

pi log pi,

and the second-order entropy by

H2 =

b∑
i=1

pi log2 pi.

The trie may be viewed as a random split tree with s = 1, s0 = s1 = 0, in which a
node u at which N(u) = n is not split if n = 1, and in which a split occurs when
n > 1; in the latter case, the sizes of the subtrees are distributed jointly as a multi-
nomial (n, p1, . . . , pb) random variable. If V is pS , where S is uniformly distributed
on {1, 2, . . . , b}, then

bE{V log(1/V)} = H.
Therefore, from Theorem 2,

Dn

log n
→ 1

H .

Also,

Dn − log n/H√
(H2 −H2) log n/H3

L→ N (0, 1).

The law of large numbers is due to Pittel (1985). The limit law was discovered
independently by Jacquet and Régnier (1986) and Pittel (1986). See Szpankowski

424 LUC DEVROYE

(1988) for additional results and references. Our result unifies the analysis of tries
and binary search trees. The normal limit law as stated above is not valid if H2 = H2.
This occurs if and only if p1 = p2 = · · · = pb = 1/b. In the random split tree, this
situation corresponds to a monoatomic distribution for the splitter (V ≡ 1/b), which
has zero variance.

The digital search tree of Coffman and Eve (1970) is like a trie. It is best described
by its incremental construction. It has n nodes, one per string. Nodes are added one
by one, starting with X1 and ending with Xn. The node associated with Xn is the
first node u in the infinite path of string Xn that has N(u) = 0 before Xn is inserted.
This is a random split tree in which a node with N(u) = n spawns subtrees when
n > 1 of sizes that are jointly distributed as a multinomial (n− 1, p1, . . . , pb) random
variable. The limit laws given above for tries remain valid here, without change.
These were known; see Pittel (1985) for the law of large numbers and Pittel (1986)
and Louchard (1987) for the normal limit law. Again, when all pi’s are equal, the
normal limit law as stated above is not valid. Another proof method is needed to deal
with that situation. Also, Theorem 1 only states that for nondegenerate tries and
digital search trees, Hn = O(log n) in probability. Theorem 1 cannot be used to get
a finer result. However, the behavior of the height is well known (Pittel, 1985).

Example 8: The random grid tree. The quadtree is easily generalized as follows:
consider a collection of m IRd-valued points drawn from the data, and partition the
space into (m + 1)d hyperrectangles by the d perpendicular hyperplanes centered
at each of the m points. In a quadtree, m = 1. This generates a tree, the m-
grid tree, with fan-out (m + 1)d, and with up to m points per node. If the data
consist of n independent random vectors uniformly distributed over IRd, the tree thus
constructed becomes a random split tree with split vector (V1, . . . , Vb) in which each

Vi is distributed as V =
∏d
j=1Bj , and B1, . . . Bd are independent beta (1,m) random

variables. While not exactly the same, the random grid tree borrows ideas from
the celebrated grid file data structure (Nievergelt, Hinterberger, and Sevcik, 1984;
Nievergelt and Hinrichs, 1993). We note the following:

µ = E{logW} = (m+ 1)dE{V log(1/V)}

= (m+ 1)d
d∑
j=1

E

{
d∏
k=1

Bk log(1/Bj)

}

= (m+ 1)ddE

{
d∏
k=2

Bk

}
E {B1 log(1/B1)}

= (m+ 1)dE {B1 log(1/B1)}

= d

m+1∑
j=2

1

j
.

From this, we see that

Dn

log n
→ 1

d
∑m+1
j=2

1
j

in probability.

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 425

Also,

σ2 + µ2 = (m+ 1)dE{V log2(1/V)}

= (m+ 1)dE

d∏
k=1

Bk

 d∑
j=1

log(1/Bj)

2

= (m+ 1)ddE

{
d∏
k=2

Bk

}
E
{
B1 log2(1/B1)

}
+ (m+ 1)d 2d(d− 1)E

{
d∏
k=3

Bk

}
E2 {B1 log(1/B1)}

= (m+ 1)dE
{
B1 log2(1/B1)

}
+ 2(m+ 1)2d(d− 1)E2 {B1 log(1/B1)}

= d
m+1∑
j=2

1

j2
+ d

m+1∑
j=2

1

j

2

+ 2d(d− 1)

m+1∑
j=2

1

j

2

.

Hence,

σ2 = d
m+1∑
j=2

1

j2
+ d(d− 1)

m+1∑
j=2

1

j

2

.

This yields the limit law obtained earlier for the quadtree when m = 1. For m = 2,
we have

Dn − (6/5d) log n√(
180d−102

125d2

)
log n

L→ N (0, 1)

for any d ≥ 1. For d = 1, this coincides with the result obtained earlier for the random
3-ary search tree.

Proof of Theorem 1: The height. We show that P{Hn ≥ (c + 3ε) log n} → 0 for
all ε > 0 and c > γ. Define δ = s1, k′ = bε log nc, and l = k′(δ + 1). If n is the
number of balls stored in a random split tree, then the cardinalities of the subtrees
at distance k from the root are bounded from above by quantities of the form

Zk
def
= binomial

(
n,

k∏
i=1

V (i)

)
+ binomial

(
δ,

k∏
i=2

V (i)

)

+ binomial

(
δ,

k∏
i=3

V (i)

)
+ · · ·+ binomial

(
δ, V (k)

)
+ δ

≤ binomial

(
n,

k∏
i=1

V (i)

)
+ binomial

(
δ(k − k′ + 1),

k∏
i=k−k′+1

V (i)

)
+ k′δ,

where V (1), . . . , V (k) is a sequence of i.i.d. random variables distributed as V , and the
inequality is in a stochastic sense only. For each of the bk paths down to a node at
distance k, a different sequence is obtained. Thus, by Boole’s inequality and the fact
that all splitters are identically distributed, we have for integer k, l > 0,

P{Hn ≥ k + 3l} ≤ bkP{Zk ≥ 3l}.

426 LUC DEVROYE

We further argue as follows:

P{Zk ≥ 3l} ≤ P

{
binomial

(
n,

k∏
i=1

V (i)

)
≥ l
}

+ P

{
binomial

(
δ(k − k′ + 1),

k∏
i=k−k′+1

V (i)

)
≥ l
}

+ P {k′δ ≥ l} .

The last term is zero by the choice of l. Conditioned on the V (i)’s, the first term is
easily bounded using Markov’s inequality and Chernoff’s bounding method. Let t > 0
be picked later. Then, if Z =

∏k
i=1 V

(i),

P{binomial(n,Z) ≥ l|Z} ≤ E
{

(1− Z + Zet)n|Z} e−tl
≤ E

{
e(et−1)nZ |Z

}
e−tl

≤ E
{
el−nZ+l log(nZ)|Z

}
(take et = l/(nZ)).

Take the expectation with respect to Z. The inequality is then further developed by
noting the following: for z ∈ (0, 1) and t > 0,

P{binomial(n,Z) ≥ l} ≤ el−z+l log(z) + P{nZ > z}
≤ (ez)l + (n/z)tE{Zt}.

Similarly, for z′ ∈ (0, 1), t′ > 0, and Z ′ =
∏k
i=k−k′+1 V

(i),

P{binomial(δ(k − k′ + 1), Z ′) ≥ l} ≤ el−z′+l log(z′) + P{δ(k − k′ + 1)Z ′ > z′}
≤ (ez′)l + (δ(k − k′ + 1)/z′)t

′
E{Z ′t′}.

Take z = z′ = b−2k/l/e and note that ze ∼ b−2c/ε(δ+1). Then, combining the previous
bounds,

bkP{Zk ≥ 3l} ≤ 2b−k + bk(ne)tb2kt/lm(t)k + bk(δ(k − k′ + 1)e)t
′
b2kt

′/lm(t′)k
′

def
= I + II + III,

where m(t) is the tth moment of V . Clearly, I = o(1). Choose t′ large enough so that
bm(t′)ε/c < 1. This is possible, as P{V = 1} = 0 and thus m(t′) → 0 as t′ → ∞
(Lemma 1). With this choice of t′, III = o(1). To treat II, fix t and observe that
II = o(1) if

bkntm(t)k → 0,

which occurs if

(bm(t))cet < 1 or, equivalently, c log(bm(t)) + t < 0.

Here we distinguish between the two statements in the theorem. For the first state-
ment, take t so large that bm(t) < 1. Then take c large enough to ensure that
(bm(t))cet < 1. For the second statement, we must be a bit more careful. The

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 427

minimal value of c log(bm) + t is obtained at the solution t∗ = t∗(c) of the equation
m′(t)/m(t) = −1/c. From Lemma 1, a solution exists when

− 1

E{log(V)} < c < − 1

log v∞
.

Replace t by t∗ (as we are allowed to choose any positive t) and let c > γ. As
R < − log b, c log(bm(t∗)) + t∗ < 0, and thus II = o(1). This concludes the proof of
Theorem 1.

Proof of Theorem 2: The depth. The following lemma will be useful for bounding
tail probabilities.

Lemma 4. If X is binomial (n,Z) (written Bn,Z) where Z ∈ [0, 1] is a random
variable, then for 0 < a < n,

P{X ≥ a} ≤ P{Z > a/(2n)}+
(e

4

)a/2
.

Similarly,

P{X ≤ a} ≤ P{Z < 2a/n}+

(
2

e

)a
.

Proof. If X is binomial (n, p), then, for 1 > u ≥ p by Chernoff’s bound (Chernoff,
1952; Okamoto, 1958),

P{X ≥ nu} ≤
((p

u

)u(1− p
1− u

)1−u)n
.

Interestingly, the same bound applies for P{X ≤ nu} if 0 < u ≤ p. In particular,

P{X ≥ 2np} ≤
((

1

2

)2p(
1− p
1− 2p

)1−2p
)n
≤
((

1

2

)2p

ep

)n
=
(e

4

)np
.

Also,

P{X ≤ np/2} ≤
(

(2)
p/2

(
1− p/2

1− p/2
)1−p/2)n

≤
(

(2)
p/2

e−p/2
)n

=

(√
2

e

)np
.

Applying this, we have

P{X > a} ≤ P{Z > a/(2n)}+ P{Bn,a/(2n) > a}

≤ P{Z > a/(2n)}+
(e

4

)a/2
.

Similarly, assuming without loss of generality that n ≥ 2,

P{X ≤ a} ≤ P{Z < 2a/n}+ P{Bn,2a/n ≤ a}

≤ P{Z < 2a/n}+

(
2

e

)a
.

The convergence of E{Dn} follows from the weak convergence,

E{Dn} =

∫ 1

0

P{Dn > t} dt,

428 LUC DEVROYE

and the tail probabilities for P{Dn > t} developed below. The details are omitted.
For the proof of Theorem 2, we consider an infinite random path in the tree,

u0, u1, u2, . . ., where u0 is the root, and given ui and the split vector (V1, . . . , Vb) for
ui, ui+1 is the j-child of ui with probability Vj . Put n balls in the tree as in the
construction of a random split tree, and let u∗ be the unique leaf on the infinite path.
Then Dn is less than or equal to the distance between u∗ and the root.

We first show that for all c > 1/µ, P{Dn > c log n} → 0. Take k = bc log nc. Let
u0 be the root, and let u0, u1, . . . be the path of nodes followed by the inserted point
from the root down. We have, if β = (s0 + 1)k,

[Dn > k + l] ⊆ [N(uk) > β] ∪ [Hβ > l],

where Hβ is the height of a random split tree with β balls. But

P{N(uk) > β} ≤ P

{
ks0 + binomial

(
n,

k−1∏
i=0

Wi

)
> β

}
,

where W0,W1, . . . are i.i.d. random variables distributed as W = VS , and S = i with
probability Vi. Here we made use of the fact that a binomial (N, p) in which N is
binomial (n, q) is distributed as a binomial (n, pq). By Lemma 4, we see that

P

{
binomial

(
n,

k−1∏
i=0

Wi

)
> β − ks0

}
≤ P

{
k−1∏
i=0

Wi >
β − ks0

2n

}
+
(e

4

) β−ks0
2

= P

{
k−1∑
i=0

logWi > log

(
β − ks0

2n

)}
+
(e

4

) k
2

= I + II.

Clearly, II = o(1). Also, I = o(1) by the law of large numbers, as∑k−1
i=0 logWi

kE{logW} → 1

almost surely. Recall that µ = E{log(1/W)}. Also, we used the fact that

lim inf
n→∞

log
(
β−ks0

2n

)
+ kµ

k
= −1

c
+ µ > 0

since c > 1/µ. To wrap up the proof of the first part, we must show that P{Hβ >
l} → 0, where l is our choice. Let us pick l = b2γ log βc = b2γ log((s0 + 1)k)c, where
γ > 0 is as in Theorem 1. Then P{Hβ > l} → 0, because

lim
n→∞P{Hβ > 2γ log β} = 0.

As l ∼ log log n, the first part of the law of large numbers is proved.
Next, we show that for all c < 1/µ, P{Dn < c log n} → 0. Take k = bc log nc.

Then, if N(.) refers to the tree with n− 1 balls,

[Dn < k] ⊆ [N(uk) = 0].

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 429

But

P{N(uk) = 0} ≤ P

{
−ks+ binomial

(
n− 1,

k−1∏
i=0

Wi

)
≤ 0

}
,

where W0,W1, . . . are as in the earlier part of this proof. By Lemma 4, we see that

P

{
binomial

(
n− 1,

k−1∏
i=0

Wi

)
≤ ks

}
≤ P

{
k−1∏
i=0

Wi ≤ 2ks

n− 1

}
+

(
2

e

)ks

= P

{
k−1∑
i=0

logWi ≤ log

(
2ks

n− 1

)}
+

(
2

e

)ks
= I + II.

Obviously, II = o(1). I = o(1) by the law of large numbers, as∑k−1
i=0 logWi

kE{logW} → 1

almost surely and

lim sup
n→∞

log
(

2ks
n

)− kE{logW}
k

= −1

c
−E{logW} = −1

c
+ µ < 0.

This concludes the proof of the lower bound for the law of large numbers.
The limit law is obtained by using the same upper and lower bounds introduced

in the proof of the law of large numbers. Additionally, we will use the fact that∑k−1
i=0 logWi + kµ√

kσ2

L→ N (0, 1).

Consider first the probability P{Dn > k}, where k = b(1/µ) log n + u
√

log nc and
u ∈ IR. We have, if β = (s0 + 1)k,

[Dn > k + l] ⊆ [N(uk) > β] ∪ [Hβ > l],

where Hβ is the height of a random split tree with β balls. Arguing as in the first
part of this proof,

P{N(uk) > β} ≤ P

{
binomial

(
n,
k−1∏
i=0

Wi

)
> β − ks0

}

= P

{
k−1∑
i=0

logWi > log

(
β − ks0

2n

)}
+
(e

4

) k
2

= P

∑k−1
i=0 logWi + kµ√

kσ2
>

log
(
β−ks0

2n

)
+ kµ

√
kσ2

+ o(1)

= P

N (0, 1) >
log
(
β−ks0

2n

)
+ kµ

√
kσ2

+ o(1)

= P

{
N (0, 1) >

uµ3/2

σ

}
+ o(1).

430 LUC DEVROYE

Recall that for l = b2γ log βc = b2γ log((s0 + 1)k)c, we obtain P{Hβ > l} → 0. As
l ∼ log log n, the first part of the limit law is proved:

P{Dn > k} ≤ P{N > uµ3/2/σ}+ o(1).

Using the arguments for the lower bound, we may prove in a similar fashion that

P{Dn < k} ≤ P{N < uµ3/2/σ}+ o(1).

Taken together, this proves that

lim
n→∞P{Dn < k} = P{N < uµ3/2/σ},

which was to be shown.

Other possible universal models for random split trees. We could have
developed this theory based on other models. In a random split tree, the subtree sizes
are multinomial (n, V1, . . . , Vb), where (V1, . . . , Vb) in turn is a random split vector.
This introduces two levels of randomization. A more rigid and perhaps less universal
model would fix an integer δ and require that the subtree sizes N(u1), . . . , N(ub) for
the children u1, . . . , ub of a node u satisfy:

max
1≤i≤b

|N(ui)− nVi| ≤ δ.

Some of the trees discussed earlier fall into this framework. For example, in a random
binary search tree, it is well known that the left and right subtrees of the root have
cardinalities (N1, N2) that are jointly distributed as (bnUc, bn(1 − U)c), where U is
uniform [0, 1] and n is the cardinality of the tree. Setting (V1, V2) = (U, 1 − U), we
thus have maxi |Ni − nVi| ≤ 1. Theorems 1 and 2 have straightforward equivalent
versions (with the same dependence upon µ, σ2 and m(t)). We should note that for
generating extended AB trees for the purpose of simulation, the model of this section
is more convenient. Here the split vectors V1 and V2 = 1 − V1 are mixtures of beta
random variables, but no multinomial sampling is necessary, as we use (N1, N2) =
(bnV1c, bnV2c) to determine subtree sizes at the root of a subtree of cardinality n.
This way, each node will receive one ball.

Acknowledgment. I thank Paul Kruszewski and two anonymous referees for
great feedback on the manuscript.

REFERENCES

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Tables, Dover, New York, 1970.
A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley,

Reading, MA, 1983.
D. Aldous, B. Flannery, and J. L. Palacios, Two applications of urn processes: The fringe

analysis of search trees and the simulation of quasi-stationary distributions of Markov chains,
Probab. Engrg. Inform. Sci., 2 (1988), pp. 293–307.

D. Aldous, Probability Distributions on Cladograms, Technical Report, Institute of Mathematics
and Applications, University of Minnesota, Minneapolis, 1993.

E. Arkin, M. Held, J. Mitchell, and S. Skiena, Hamiltonian triangulations for fast rendering,
in Algorithms–ESA’94, Lecture Notes in Computer Science 855, J. van Leeuwen, ed., Springer-
Verlag, New York, 1994, pp. 36–47.

K. B. Athreya and P. E. Ney, Branching Processes, Springer-Verlag, Berlin, 1972.
D. Avis and H. El Gindy, Triangulating point sets in space, Disc. Comput. Geom., 2 (1987), pp. 99–

111.

UNIVERSAL LIMIT LAWS FOR DEPTHS IN RANDOM TREES 431

C. J. Bell, An Investigation into the Principles of the Classification and Analysis of Data of an
Automatic Digital Computer, Ph.D. Thesis, Leeds University, UK, 1965.

J. D. Biggins, The first and last-birth problems for a multitype age-dependent branching process,
Adv. Appl. Probab., 8 (1976), pp. 446–459.

J. D. Biggins, Chernoff’s theorem in the branching random walk, J. Appl. Probab., 14 (1977),
pp. 630–636.

H. Chernoff, A measure of asymptotic efficiency of tests of a hypothesis based on the sum of
observations, Ann. Math. Stat., 23 (1952), pp. 493–507.

E. G. Coffman and J. Eve, File structures using hashing functions, Comm. ACM, 13 (1970),
pp. 427–436.

L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986a.
L. Devroye, A note on the height of binary search trees, J. Assoc. Comput. Mach., 33 (1986b),

pp. 489–498.
L. Devroye, Branching processes in the analysis of the heights of trees, Acta Inform., 24 (1987),

pp. 277–298.
L. Devroye, Applications of the theory of records in the study of random trees, Acta Inform., 26

(1988), pp. 123–130.
L. Devroye, On the height of random m-ary search trees, Random Structures Algorithms, 1 (1990),

pp. 191–203.
L. Devroye, On the expected height of fringe-balanced trees, Acta Inform., 30 (1993), pp. 459–466.
L. Devroye and L. Laforest, An analysis of random d-dimensional quadtrees, SIAM J. Comput.,

19 (1990), pp. 821–832.
S. W. Dharmadhikari and K. Jogdeo, Bounds on moments of certain random variables, Ann.

Math. Stat., 40 (1969), pp. 1506–1508.
R. A. Finkel and J. L. Bentley, Quad trees: A data structure for retrieval on composite keys,

Acta Inform., 4 (1974), pp. 1–9.
P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson, The analysis of multidimensional search-

ing in quad-trees, in Proceedings of the Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1991, pp. 100–109.

P. Flajolet and T. Lafforgue, Search costs in quadtrees and singularity perturbation analysis,
Disc. Comput. Geom., 12 (1994), pp. 151–175.

P. Flajolet and A. Odlyzko, The average height of binary trees and other simple trees, J. Comput.
System Sci., 25 (1982), pp. 171–213.

P. Flajolet and R. Sedgewick, Digital search trees revisited, SIAM J. Comput., 15 (1986), pp. 748–
767.

E. H. Fredkin, Trie memory, Comm. ACM, 3 (1960), pp. 490–500.
D. K. Fuk and S. V. Nagaev, Probability inequalities for sums of independent random variables,

Theory Probab. Appl., 16 (1971), pp. 643–660.
G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures, Addison-Wesley,

Workingham, UK, 1991.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New

York, 1980.
G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford University Press,

Oxford, UK 1992.
J. M. Hammersley, Postulates for subadditive processes, Ann. Probab., 2 (1974), pp. 652–680.
P. Jacquet and M. Régnier, Trie Partitioning Process: Limiting Distributions, Lecture Notes in

Computer Science 214, Springer-Verlag, New York, 1986, pp. 196–210.
R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms, B. G. Teubner,

Stuttgart, 1984.
J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab., 1 (1973), pp. 883–909.
D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
G. Louchard, Exact and asymptotic distributions in digital and binary search trees, Theoret. Inform.

Appl., 21 (1987), pp. 479–496.
W. C. Lynch, More combinatorial problems on certain trees, Comput. J., 7 (1965), pp. 299–302.
H. M. Mahmoud, On the average internal path length of m-ary search trees, Acta Inform., 23 (1986),

pp. 111–117.
H. M. Mahmoud, Evolution of Random Search Trees, John Wiley, New York, 1992.
H. Mahmoud and B. Pittel, On the most probable shape of a search tree grown from a random

permutation, SIAM J. Algebraic Disc. Meth., 5 (1984), pp. 69–81.
H. M. Mahmoud and B. Pittel, On the joint distribution of the insertion path length and the

number of comparisons in search trees, Disc. Appl. Math., 20 (1988), pp. 243–251.

432 LUC DEVROYE

J. Marcinkiewicz and A. Zygmund, Sur les fonctions indépendantes, Fundamentales de Mathé-
matiques, 29 (1937), pp. 60–90.

S. V. Nagaev and N. F. Pinelis, Some inequalities for sums of independent random variables,
Theory Probab. Appl., 22 (1977), pp. 248–256.

J. Nievergelt and K. H. Hinrichs, Algorithms and Data Structures with Applications to Graphics
and Geometry, Prentice-Hall, Englewood Cliffs, NJ, 1993.

J. Nievergelt, H. Hinterberger, and K.C. Sevcik, The grid file: An adaptable, symmetric mul-
tikey file structure, ACM Trans. on Database Systems, 9 (1984), pp. 38–71.

M. Okamoto, Some inequalities relating to the partial sum of binomial probabilities, Ann. Math.
Statist., 10 (1958), pp. 29–35.

V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975.
B. Pittel, On growing random binary trees, J. Math. Anal. Appl., 103 (1984), pp. 461–480.
B. Pittel, Asymptotical growth of a class of random trees, Ann. Probab., 13 (1985), pp. 414–427.
B. Pittel, Paths in a random digital tree: Limiting distributions, Adv. Appl. Probab., 18 (1986),

pp. 139–155.
B. Pittel, Note on the heights of random recursive trees and random m-ary search trees, Random

Structures Algorithms, 5 (1994), pp. 337–347.
P. V. Poblete and J. I. Munro, The analysis of a fringe heuristic for binary search trees, J.

Algorithms, 6 (1985), pp. 336–350.
P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, Springer-Verlag, New

York, 1990
R. Pyke, Spacings, J. Roy. Statist. Soc. Ser. B, 7 (1965), pp. 395–445.
J. M. Robson, The height of binary search trees, Austral. Comput. J., 11 (1979), pp. 151–153.
R. Y. Rubinstein, Generating random vectors uniformly distributed inside and on the surface of

different regions, European J. Oper. Res., 10 (1982), pp. 205–209.
H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990a.
H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA,

1990b.
R. Sedgewick, Mathematical analysis of combinatorial algorithms, in Probability Theory and Com-

puter Science, G. Louchard and G. Latouche, eds., Academic Press, London, 1983, pp. 123–205.
M. Sibuya, Generalized hypergeometric, digamma and trigamma distributions, Ann. Inst. Statist.

Math., 31 (1979), pp. 373–390.
R.L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over

bounded regions, Oper. Res., 32 (1984), pp. 1296–1308.
W. Szpankowski, Some results on V -ary asymmetric tries, J. Algorithms, 9 (1988), pp. 224–244.
X.G. Viennot, Trees everywhere, in CAAP 90, Lecture Notes in Computer Science 431, A. Arnold,

ed., Springer-Verlag, Berlin, 1990, pp. 18–41.
J. S. Vitter and P. Flajolet, Average-case analysis of algorithms and data structures, in Hand-

book of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen,
ed., MIT Press, Amsterdam, 1990, pp. 431–524.

A. Walker and D. Wood, Locally balanced binary trees, Comput. J., 19 (1976), pp. 322–325.

AVERAGE-CASE LOWER BOUNDS FOR NOISY BOOLEAN
DECISION TREES∗

WILLIAM EVANS† AND NICHOLAS PIPPENGER‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 433–446

Abstract. We present a new method for deriving lower bounds to the expected number of queries
made by noisy decision trees computing Boolean functions. The new method has the feature that
expectations are taken with respect to a uniformly distributed random input, as well as with respect
to the random noise, thus yielding stronger lower bounds. It also applies to many more functions
than do previous results. The method yields a simple proof of the result (previously established
by Reischuk and Schmeltz) that almost all Boolean functions of n arguments require Ω(n logn)
queries, and strengthens this bound from the worst-case over inputs to the average over inputs. The
method also yields bounds for specific Boolean functions in terms of their spectra (their Fourier
transforms). The simplest instance of this spectral bound yields the result (previously established
by Feige, Peleg, Raghavan, and Upfal) that the parity function of n arguments requires Ω(n logn)
queries and again strengthens this bound from the worst-case over inputs to the average over inputs.
In its full generality, the spectral bound applies to the “highly resilient” functions introduced by
Chor, Friedman, Goldreich, Hastad, Rudich, and Smolensky, and it yields nonlinear lower bounds
whenever the resiliency is asymptotic to the number of arguments.

Key words. fault-tolerance, reliability, noisy computation, error-correction

AMS subject classifications. 68M15, 68P10, 68R05

PII. S0097539796310102

1. Introduction. We shall deal in this paper with dynamic decision trees for
computing Boolean functions. A dynamic decision tree is a binary tree in which each
internal node N is labelled with an argument index α(N) ∈ {1, . . . , n}, each child
M of an internal node N is labelled with a Boolean value β(M) ∈ {0, 1} that might
be assumed by this argument (with siblings being labelled with distinct values), and
each leaf L is labelled with a Boolean function value φ(L) ∈ {0, 1}. Such a dynamic
decision tree computes a Boolean function f of n Boolean arguments x1, . . . , xn in
an obvious way: start at the root; when at an internal node N , query the argument
xα(N) and proceed to the child M of N such that β(M) = xα(N); when at a leaf
L, announce the function value f(x1, . . . , xn) = φ(L). For such a dynamic decision
tree, we may speak of the worst-case cost (the maximum over argument values of the
depth of the leaf that announces the function value) or the average-case cost (the
average with a uniform distribution over argument values of the depth of the leaf that
announces the function value).

We shall be interested in the situation in which dynamic decision trees are noisy,
that is, in which each internal node independently passes control to the incorrect
child (that is, the child M of the internal node N such that β(M) = ¬xα(N)) with
some fixed probability 0 < ε < 1/2. We shall say that such a tree (ε, δ)-computes a

∗Received by the editors October 2, 1996; accepted for publication (in revised form) April 10,
1997; published electronically July 7, 1998. A preliminary version of this paper appeared in Proc.
28th Annual ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 620–628.

http://www.siam.org/journals/sicomp/28-2/31010.html
†Department of Computer Science, The University of Arizona, Tucson, AZ 85721-0077

(will@cs.arizona.edu). The work of this author was supported by an NSERC Canada International
Fellowship.
‡Department of Computer Science, The University of British Columbia, Vancouver, BC V6T

1Z4 Canada (nicholas@cs.ubc.ca). The work of this author was supported by an NSERC Operating
Grant.

433

434 W. EVANS AND N. PIPPENGER

Boolean function f if, for all x1, . . . , xn ∈ {0, 1}, the probability that control reaches
an incorrectly labelled leaf (that is, a leaf L labelled φ(L) = ¬f(x1, . . . , xn)) is at
most δ < 1/2. For such a noisy dynamic decision tree, we may again speak of the
worst-case or average-case cost (where we may maximize or average over argument
values but always average over noise).

An alternative to the error model we have adopted is to assume that errors oc-
cur with probability at most ε, rather than exactly ε. This alternative model gives
stronger upper bounds. Our interest in this paper is in lower bounds, for which the
model we have adopted gives stronger results.

To describe the history of our results, we shall need to refer to two additional
computational models. The first of these is the static decision tree, which we may
regard as a dynamic decision tree in which the argument queried by an internal node
does not depend on the outcomes of previous queries (and thus depends only on the
depth of the node in the tree), and in which all leaves appear at the same depth. The
cost in this case is simply the common depth C of the leaves. It is not hard to see
that we may ignore the tree structure, and simply focus on the number of queries
Ci to each argument xi. We then have C1 + · · · + Cn = C. Furthermore, we may
ignore the sequence of answers to the queries to a given argument and focus on the
number Di of affirmative answers among answers to the Ci queries to xi. We then
have 0 ≤ Di ≤ Ci for 1 ≤ i ≤ n. While a noisy static decision tree might announce
distinct function values for the same values of D1, . . . , Dn, it is not hard to see that
these announcements can be replaced by a consistent announcement φ(D1, . . . , Dn),
without increasing the probability of an incorrect announcement in any situation.
Thus we may describe a static decision tree by specifying the numbers C1, . . . , Cn
and the labelling φ(D1, . . . , Dn) for 0 ≤ D1 ≤ C1, . . . , 0 ≤ Dn ≤ Cn.

Our final computational model is the circuit with noisy gates. We shall not de-
scribe this model in detail but merely remark that a lower bound to static decision
tree cost yields a lower bound to the size (number of gates) of a circuit with noisy
gates.

Work on reliable computation in the presence of noise was begun by von Neumann
[14], who argued (although he did not give a rigorous proof) that a computation that
can be performed by a noiseless network with L gates could be reliably performed
by a noisy network with O(L logL) gates. Dobrushin and Ortyukov [4] provided a
rigorous proof of this result, and [3] claimed the following matching lower bound: a
noisy network that reliably computes a function f must have Ω(S logS) gates, where
S is the sensitivity of f (the maximum over inputs x1, . . . , xn of the number of indices
i such that f(x1, . . . , xi−1,¬xi, xi+1, . . . , xn) 6= f(x1, . . . , xn)). Since there are many
functions (for example, the disjunction, conjunction, or parity of n arguments) that
have sensitivity S = n and can be computed by noiseless networks with O(n) gates,
this result shows that the logarithmic ratio of noisy to noiseless gates is necessary for
certain functions.

There are, however, several errors in the proof of the lower bound of Dobrushin
and Ortyukov [3]. These were pointed out by Pippenger, Stamoulis, and Tsitsiklis [16],
who gave a proof of the weaker result that a noisy network that reliably computes
the parity function of n arguments must have Ω(n log n) gates. The full strength
of the lower bound in terms of sensitivity was regained by Gál [9] (see also Gács
and Gál [10]) and by Reischuk and Schmeltz [17]. An important consequence of
this stronger result is that a noisy network that reliably computes the disjunction
(or conjunction) of n arguments must have Ω(n log n) gates. All of these lower bound

LOWER BOUNDS FOR DECISION TREES 435

arguments apply to static decision trees as well as to circuits. For noisy static decision
trees, lower bounds of Ω(n log n) are best possible, since any Boolean function of n
arguments can be computed by a noisy static decision tree with O(n log n) queries
(with 2 log(n/δ)

/
log
(
1/4ε(1− ε)) = O(log n) queries, it is possible to determine a

single argument with error probability at most δ/n).
Noisy dynamic decision trees were considered by Feige et al. [6, 7], who showed

that there are noisy dynamic decision trees that reliably compute the disjunction or
conjunction of n arguments with O(n) queries. Since we have seen that noisy static
decision trees require Ω(n log n) queries, this exhibits a clear separation between the
two models. For noisy dynamic decision trees, Feige et al. [6, 7] showed that Ω(n log n)
queries are needed to compute the parity or majority of n arguments, and Reischuk
and Schmeltz [17] showed that Ω(n log n) queries are needed for almost all Boolean
functions of n arguments. (This last result contrasts with results of Muller [13] and
Pippenger [15] for circuits, to the effect that for almost all Boolean functions of
n arguments, Ω(2n/n) noiseless gates are necessary and O(2n/n) noisy gates are
sufficient.) The lower bound proofs of both Feige et al. and of Reischuk and Schmeltz
depend on locating particular sets of inputs that are difficult for a dynamic decision
tree, and thus they yield lower bounds for the worst-case over inputs but not for
the average-case over inputs (and clearly no proof that applied to disjunction or
conjunction could give a nontrivial lower bound for the average over inputs).

The present paper gives a new method of establishing lower bounds for noisy
dynamic decision trees. The gist of the method is to argue that for certain Boolean
functions there cannot be even one leaf in the decision tree that has both a small
depth and a small probability of error (conditional on control reaching the leaf). The
Boolean functions to which the method applies are difficult to compute for all inputs
rather than just for certain inputs. This implies that lower bounds established by
the method apply to the average case over inputs rather than just the worst case.
(It also implies of course that the method is powerless to deal with functions such
as disjunction, conjunction, and majority that have inputs such as x1 = · · ·xn = 1,
x1 = · · ·xn = 0, or both for which it is easy to reliably determine the function value.)
These strengths and weaknesses of our new method are embodied in a new complexity
measure for Boolean functions, which we call “noisy leaf complexity.” In section 2
we shall define noisy leaf complexity and relate it to noisy dynamic decision tree
complexity described above.

Our method considers the situation in which control has arrived at a leaf L.
Arrival at L conditions the uniform prior distribution on the input x to a posterior
distribution. Our method is based on the fact that, if the depth of L is small, this
posterior distribution must be spread over a large range of possible input values. In
section 3 we shall calculate this posterior distribution and derive quantitative versions
of the assertion that it is spread over a large range.

Section 4 deals with random Boolean functions and establishes a lower bound of
the form Ω(n log n) for the noisy leaf complexity of “almost all” Boolean functions of
n arguments. Specifically, we show that if L is a leaf of cost

C ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

where E = (1−ε)/ε, then the probability is at most 2e−n
2

that L has error probability
(conditional on arrival at L) at most δ for a random Boolean function of n arguments.
This strengthens (from the worst-case over inputs to the average-case over inputs) the
lower bound of Reischuk and Schmeltz [17].

436 W. EVANS AND N. PIPPENGER

Section 5 establishes a lower bound of the form Ω(n log n) for the noisy leaf
complexity of the parity function of n arguments. Specifically, we show that if a leaf
with cost C has conditional error probability at most δ for the parity function of n
arguments, then

C ≥ n logE n− n logE log
(
1/(1− 2δ)

)
,

where E = (1 − ε)/ε. This strengthens (from the worst-case over inputs to the
average-case over inputs) the lower bound of Feige et al. [6, 7] for the parity func-
tion. The proof of our lower bound uses the Fourier transform of the parity function,
which has a particularly simple form. Other examples of the use of the Fourier trans-
form to derive lower bounds to the computational complexity of Boolean functions
are given by Brandman, Orlitsky, and Hennessy [1] (noiseless decision trees) and
by Linial, Mansour, and Nisan [12] (bounded-depth circuits). It would be possible
to rephrase this proof so as not to refer to the Fourier transform. Indeed, Fourier
analysis on finite groups such as the Boolean n-cube is tantamount to linear alge-
bra in finite-dimensional vector spaces. Fourier analysis lends this linear algebra a
certain suggestive terminology, however, that provides a vivid intuition to guide the
manipulations. This intuition was valuable in discovering the more general results of
section 6.

A general class of Boolean functions to which our method applies is the class of
“highly resilient” functions. If a Boolean function is significantly “biased” (that is,
if it assumes the values 0 and 1 with significantly unequal probabilities under the
uniform input distribution), then even a leaf at depth 0 can announce the function
value with a probability of output error significantly less than 1/2. This suggests we
focus our attention on “unbiased” functions, which assume the values 0 and 1 each
with probability 1/2. Extending this reasoning, we see that if a Boolean function can
be significantly biased by substituting constants for a small number of arguments,
then a leaf with small depth can achieve a probability of output error significantly
less than 1/2. This suggests we focus our attention on functions that are unbiased
and which remain unbiased even when constants are substituted for some number
t of arguments. Such functions are called “t-resilient” by Chor et al. [2]. Though
defined combinatorially, the highly resilient functions have natural characterizations
in terms of their “spectra,” either in the sense of their Fourier transforms or in the
sense of the eigenvalues of the adjacency matrix of the Boolean hypercube. These
characterizations are discussed by Friedman [8].

Section 6 establishes a lower bound for the noisy leaf complexity of t-resilient
Boolean functions. Specifically, we show that if f is t-resilient and a leaf with cost C
has conditional error probability at most δ for f , then

C ≥ (t+ 1) logE
t+ 1

n
2H

(
t+1
n

)
+ log 1

1−2δ

,

where E = (1− ε)/ε, and H(η) = −η log η− (1−η) log(1−η) for 0 < η < 1, extended
by continuity to H(0) = H(1) = 0. The most resilient function of n arguments is
the parity function, which is (n − 1)-resilient. Thus we recover the lower bound of
section 5 in this special case. There are, however, many highly resilient functions that
are not parity functions. For these functions, our method yields a nonlinear lower
bound whenever t ∼ n, that is, whenever the resiliency is asymptotic to the number
of arguments.

LOWER BOUNDS FOR DECISION TREES 437

2. Noisy leaf complexity. Let f be a Boolean function of n arguments x1, . . . , xn.
Let T be a decision tree and let L be a leaf of T . By the cost of L we shall mean the
number of queries along the path from the root of T to L. Suppose now that the input
x is chosen at random with the uniform distribution (with each possible input having
probability 2−n). Suppose further that the tree T is applied to the input x with query
error probability ε > 0 at each internal node. We shall say that L is (ε, δ)-good for f
if the probability Pr(φ(L) = ¬f(x) | L) of output error at L, conditional on control
reaching L, is at most δ < 1/2. It is clear that whether or not a leaf L is (ε, δ)-good
for f depends only on the numbers C1, . . . , Cn of queries to the arguments x1, . . . , xn,
and on the numbers D1, . . . , Dn of affirmative responses to these queries, and not on
the rest of T . By the (ε, δ)-leaf complexity of a Boolean function f , we shall mean
the smallest possible cost of a leaf that is (ε, δ)-good for f .

Proposition 2.1. Suppose that the noisy dynamic decision tree T (ε, δ)-computes
the Boolean function f with expected cost C averaged over both inputs and noise. Let
δ′ be such that δ < δ′ < 1/2. Then f has (ε, δ′)-leaf complexity at most C ′ =
C/(1− δ/δ′).

Proof. Let the input x be chosen with the uniform distribution. For each leaf L in
T , let pL = Pr(L) denote the probability that control reaches L, let δL = Pr(φ(L) =
¬f(x) | L) denote the probability of error conditional on control reaching L, and let
CL denote the cost of L. Let A denote the set of leaves L such that δL > δ′. If A is
nonempty we have

δ′
∑
L∈A

pL <
∑
L∈A

pLδL ≤
∑
L

pLδL = δ,

and if A is empty we have

δ′
∑
L∈A

pL = 0 < δ,

so in any case we have ∑
L∈A

pL < δ/δ′.

Let B denote the set of leaves L such that CL > C ′. If B is nonempty we have

C ′
∑
L∈B

pL <
∑
L∈B

pLCL ≤
∑
L

pLCL = C,

and if B is empty we have

C ′
∑
L∈B

pL = 0 < C,

so in any case we have ∑
L∈B

pL < C/C ′.

These inequalities yield ∑
L6∈A∪B

pL > 1− δ/δ′ − C/C ′ = 0.

Thus with positive probability control arrives at a leaf L such that δL ≤ δ′ and
CL ≤ C ′, which shows that the (ε, δ′)-leaf complexity of f is at most C ′.

438 W. EVANS AND N. PIPPENGER

3. The posterior distribution. Suppose that we choose an input x at random
with a uniform distribution: Pr(x) = 2−n. Then suppose that we apply a noisy
dynamic decision tree T with query error probability ε > 0 and arrive at a leaf L.
We shall calculate the posterior probability distribution on x, given arrival at L:
Pr(x | L).

Suppose that along the path from the root of T to L the input xi is queried
Ci times, with Di affirmative responses (and thus Ci −Di negative responses). The
event of arrival at L is the conjunction of n events L1, . . . , Ln, where Li specifies a
particular sequence of responses of the Ci queries to xi. The prior distribution of xi
is Pri(xi) = 1/2. The conditional probability Pri(Li | xi) of Li given xi is

Pri(Li | 0) = εDi(1− ε)Ci−Di ,
Pri(Li | 1) = εCi−Di(1− ε)Di ,

and thus

Pr(Li) =
εDi(1− ε)Ci−Di + εCi−Di(1− ε)Di

2
.

Thus the posterior distribution Pri(xi | Li) of xi, conditioned on Li, is

Pri(0 | Li) =
εDi(1− ε)Ci−Di

εDi(1− ε)Ci−Di + εCi−Di(1− ε)Di ,(3.1)

Pri(1 | Li) =
εCi−Di(1− ε)Di

εDi(1− ε)Ci−Di + εCi−Di(1− ε)Di .(3.2)

Finally, since the xi and the responses to the queries given the xi are all independent,
we have

Pr(x | L) =
∏

1≤i≤n
Pri(xi | Li).(3.3)

Formulas (3.1), (3.2), and (3.3) give the desired posterior distribution of x.
It will be convenient to have bounds for Pri(xi | Li) that are independent of Di.

If we divide the numerator and denominator of (3.1) by the numerator, we obtain

Pri(0 | Li) =
1

1 + E2Di−Ci ,

where E = (1 − ε)/ε (and E > 1, since ε < 1/2). The right-hand side is maximized
when Di = 0, so we have

Pri(0 | Li) ≤ 1

1 + E−Ci
.

Similar reasoning from (3.2) yields an expression that is maximized when Di = Ci, re-
sulting in the same bound for Pri(1 | Li). Thus if we set Pi = max{Pri(0 | Li),Pri(1 |
Li)}, we have

Pi ≤ 1

1 + E−Ci

=
ECi

ECi + 1

= 1− 1

ECi + 1

≤ 1− 1

2ECi
.(3.4)

LOWER BOUNDS FOR DECISION TREES 439

This is the desired bound.

4. Random Boolean functions. Throughout this section, f will denote a ran-
dom Boolean function of n arguments, for which f(x) is equally likely to be 0 or 1,
independently for each value of x. Our strategy will be to consider a leaf L of small
depth and bound the probability that L is (ε, δ)-good for f . Our main result is the
following.

Theorem 4.1. Let L be a leaf of cost

C ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

where E = (1 − ε)/ε. Then L is (ε, δ)-good for a random Boolean function of n

arguments with probability at most 2e−n
2

.
This result easily yields a lower bound for the noisy leaf complexity of almost all

Boolean functions.
Corollary 4.2. For all sufficiently large n (depending on E = (1 − ε)/ε > 1

and δ < 1/2), the fraction of all Boolean functions of n arguments having (ε, δ)-leaf

complexity at most (n/2) logE(n/2) is at most 2e−n
2/2.

Proof. For all sufficiently large n, we have

C = (n/2) logE(n/2) ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

so we may apply Theorem 4.1 to any leaf of cost at most C. But such a leaf is
determined by specifying (1) which of the n arguments is queried at each of the C
queries and (2) the response (affirmative or negative) to each query. Thus there are
at most (2n)C leaves, and thus the probability that some leaf is (ε, δ)-good for f

is at most 2e−n
2

(2n)(n/2) logE(n/2). For sufficiently large n, this bound is at most

2e−n
2/2.

It will be convenient to work not only with the Boolean function f but also with
the rescaled real-valued function F (x) = 1 − 2f(x), which is equally likely to be +1
or −1, independently for each value of x. Similarly, it will be convenient to work
not only with the probability of error δL associated with a leaf L but also with the
correlation ξL = 1 − 2δL between the rescaled label Φ(L) = 1 − 2φ(L) of L and the
rescaled function F (x). If δL ≤ δ < 1/2, then ξL ≥ 1−2δ > 0. Thus if L is (ε, δ)-good
for f we have

1− 2δ ≤ ξL = Exx
(
Φ(L)F (x)

)
= Φ(L)

∑
x

Pr(x | L)F (x).

Since Φ(L) = ±1, this implies

(4.1) 1− 2δ ≤
∣∣∣∣∣∑
x

Pr(x | L)F (x)

∣∣∣∣∣ .
The terms Pr(x | L)F (x) are independent random variables that assume the values
±Pr(x | L) each with probability 1/2. Thus, to estimate the probability that (4.1)
holds, it will suffice to use an estimate for the probability of large deviations for sums
of independent, but not necessarily identically distributed, random variables. The
following result of Hoeffding [11, Theorem 2] suits our purpose.

Proposition 4.3 (see [11]). If Ax are independent random variables with mean
0 and range |Ax| ≤ ∆x, then

Pr

(∑
x

Ax ≥ T
)
≤ exp(−T 2/2S),

440 W. EVANS AND N. PIPPENGER

where

S =
∑
x

∆2
x.

Since the random variables Pr(x | L)F (x) are distributed symmetrically about 0,
the probability that (4.1) holds is just twice the probability that

(4.2) 1− 2δ ≤
∑
x

Pr(x | L)F (x)

holds. We can bound this using Proposition 4.3 by taking Ax = Pr(x | L)F (x), so
that ∆x = Pr(x | L), and T = 1− 2δ. Thus we seek an estimate for

S =
∑
x

Pr(x | L)2.

We observe that by virtue of (3.3) we have

S =
∑
x

Pr(x | L)2 =
∏

1≤i≤n

(
Pri(0 | Li)2 + Pri(1 | Li)2

)
.

Since

u2 + (1− u)2 = 1− 2u(1− u) ≤ max{u, 1− u},
we have

S ≤
∏

1≤i≤n
Pi,

with Pi = max{Pri(0 | Li),Pri(1 | Li)} as defined in section 3. Using (3.4) we have

S ≤
∏

1≤i≤n

(
1− 1

2ECi

)
.

Since 1− u ≤ exp(−u), we have

S ≤
∏

1≤i≤n
exp

(
−1

2
E−Ci

)

= exp

−1

2

∑
1≤i≤n

E−Ci

 .

Since Eu = expE u is a convex function of u, we have

S ≤ exp

−n
2

expE

− 1

n

∑
1≤i≤n

Ci

= exp

(
− expE

(
logE

n

2
− C

n

))
.

Thus if

C ≤ n logE(n/2)− n logE log
(
2n2/(1− 2δ)2

)
,

we have S ≤ (1− 2δ)2/2n2. Proposition 4.3 then implies that (4.2) holds with prob-

ability at most e−n
2

, so (4.1) holds with probability at most 2e−n
2

. This completes
the proof of Theorem 4.1.

LOWER BOUNDS FOR DECISION TREES 441

5. The parity function. In this section we shall derive a lower bound for the
(ε, δ)-leaf complexity of the parity function:

f(x1, . . . , xn) = x1 + · · ·+ xn (mod 2).

Our result is the following.

Theorem 5.1. If the leaf L with cost C is (ε, δ)-good for the parity function f
of n arguments, then

C ≥ n logE n− n logE log
(
1/(1− 2δ)

)
,

where E = (1− ε)/ε.
The proof of this theorem depends on the notion of the Fourier transform of a

Boolean function. This notion has already been applied to the computational com-
plexity of Boolean functions by circuits (see Linial, Mansour, and Nisan [12]) and
noiseless dynamic decision trees (see Brandman, Orlitsky, and Hennessy [1]), but the
present paper appears to mark its debut for the complexity of noisy computation.

Let F : Bn → R be a real-valued function of n Boolean arguments. By the
Fourier transform of F we shall mean the function F̂ : Bn → R defined by

F̂ (y) =
1√
2n

∑
x

(−1)x·yF (x),

where x·y =
∑

1≤j≤n xjyj denotes the inner product of x and y. (The factor (−1)x·y is

the specialization of the usual Fourier kernel e2πix·y/m to m = 2.) The normalization
factor 1/

√
2n has been chosen to make the transform an involution: we have

ˆ̂
F (z) =

1√
2n

∑
y

(−1)y·zF̂ (y)

=
1√
2n

∑
y

(−1)y·z
1√
2n

∑
x

(−1)x·yF (x)

=
1

2n

∑
x

F (x)
∑
y

(−1)x·y+y·z

= F (z),

since

∑
y

(−1)x·y+y·z =

{
2n if x = z,

0 otherwise.

(The general Fourier transform is not an involution, but rather has period four, and
the effect of applying the transform twice is to reverse the function by negating its
argument. But in B, regarded as an additive group of order two, every element is its
own negative, so each function is its own reversal.)

The key result we shall need is the Parseval identity∑
y

F̂ (y) Ĝ(y) =
∑
y

F (y)G(y),

442 W. EVANS AND N. PIPPENGER

which says that the Fourier transform is an isometry of the Hilbert space RBn . This
follows from a calculation similar to the one above:∑

y

F̂ (y) Ĝ(y) =
∑
y

1√
2n

∑
x

(−1)x·yF (x)
1√
2n

∑
z

(−1)z·yG(z)

=
1

2n

∑
x

∑
z

F (x)G(z)
∑
y

(−1)x·y+z·y

=
∑
x

F (x)G(x).

For the proof of Theorem 5.1, we take F (x) = 1− 2f(x) to be the rescaled parity
function. As in the preceding section, we have

1− 2δ ≤
∣∣∣∣∣∑
x

Pr(x | L)F (x)

∣∣∣∣∣ .
Setting G(x) = Pr(x | L) and applying the Parseval identity, we have

(5.1) 1− 2δ ≤
∣∣∣∣∣∑
y

Ĝ(y)F̂ (y)

∣∣∣∣∣ .
For F the rescaled parity function, a simple calculation yields F̂ :

F̂ (y) =

{√
2n if y = (1, . . . , 1),

0 otherwise.

Substituting this formula into (5.1) yields

1− 2δ ≤
√

2n |Ĝ(1, . . . , 1)|.
From the definitions of G and Ĝ, this reduces to

(5.2) 1− 2δ ≤
∣∣∣∣∣∑
x

(−1)|x| Pr(x | L)

∣∣∣∣∣,
where |y| = ∑1≤i≤n yi denotes the number of i such that yi = 1.

To estimate the right-hand side of (5.2), we observe that∑
x

(−1)|x| Pr(x | L) =
∏

1≤i≤n

(
Pri(0 | Li)− Pri(1 | Li)

)
=

∏
1≤i≤n

(
1− 2Pri(1 | Li)

)
.

Since

|1− 2u| = 2 max{u, 1− u} − 1,

we have

1− 2δ ≤
∣∣∣∣∣∑
x

(−1)|x| Pr(x | L)

∣∣∣∣∣
=

∏
1≤i≤n

(2Pi − 1),

LOWER BOUNDS FOR DECISION TREES 443

with Pi = max{Pri(0 | Li),Pri(1 | Li)} as defined in section 3. Using (3.4) we have

1− 2δ ≤
∏

1≤i≤n

(
1− 1

ECi

)
.

Since 1− u ≤ exp−u, we have

1− 2δ ≤
∏

1≤i≤n
exp

(−E−Ci)

= exp

− ∑
1≤i≤n

E−Ci

 .

Since Eu = expE u is a convex function of u, we have

1− 2δ ≤ exp

−n expE

− 1

n

∑
1≤i≤n

Ci

= exp

(
− expE

(
logE n−

C

n

))
.

Thus we obtain

C ≥ n logE n− n logE log
(
1/(1− 2δ)

)
.

This completes the proof of Theorem 5.1.

6. Resilient Boolean functions. A Boolean function f of n arguments is un-
biased if ∑

x

F (x) = 0,

where F (x) = 1−2f(x) is the rescaled real-valued function as in the preceding section,
and the sum is over all 2n values of x. Thus a function is unbiased if it assumes the
values 0 and 1 for equal numbers of inputs.

A Boolean function f is t-resilient if every function obtained from f by substi-
tuting constants for at most t arguments is an unbiased function of the remaining
arguments. Thus a function is 0-resilient if and only if it is unbiased. Our main result
in this section is the following.

Theorem 6.1. If f is t-resilient and the leaf L with cost C is (ε, δ)-good for f ,
then

C ≥ (t+ 1) logE
t+ 1

n
2H

(
t+1
n

)
+ log 1

1−2δ

,

where E = (1− ε)/ε, and H(η) = −η log η− (1− η) log(1− η) for 0 < η < 1, extended
by continuity to H(0) = H(1) = 0.

The projection functions, of the form f(x1, . . . , xn) = xi, are 0-resilient but not 1-
resilient. The parity functions, of the form f(x1, . . . , xn) = x1 + · · ·+xn+c (mod 2),
are (n − 1)-resilient, which is the maximum possible for a function of n arguments.

444 W. EVANS AND N. PIPPENGER

Theorem 5.1 applies to many other functions however. If g and h are t-resilient
functions of k arguments, then

f(x1, . . . , xk+1) =

{
g(x1, . . . , xk) if xk+1 = 0,
h(x1, . . . , xk) if xk+1 = 1,

defines a t-resilient function of k+1 arguments. Since there are two distinct t-resilient
parity functions of t+ 1 arguments, and this scheme allows us to square the number
of functions by adding one argument, we conclude that there are at least 22n−t−1

t-resilient functions of n arguments.
Our proof of Theorem 5.1 will exploit a characterization of resilient functions in

terms of their Fourier transforms. Friedman [8] has observed that this characteriza-
tion is implicit in the work of Chor et al. [2], although the terminology of Fourier
transforms is not used there.

Proposition 6.2 (see [2]). Let F̂ be the Fourier transform of F (x) = 1− 2f(x)
for some Boolean function f of n arguments. Then for t ≥ 0, f is t-resilient if and
only if F̂ (y) = 0 for all y such that |y| ≤ t.

In particular, a function f is unbiased if and only if F̂ (0, . . . , 0) = 0, and the parity
functions are the only functions for which F̂ (y) = 0 for all y except y = (1, . . . , 1).

We shall also need the following standard estimate for sums of binomial coeffi-
cients.

Lemma 6.3. If l ≥ n/2, then∑
k≥l

(
n

k

)
≤ exp

(
nH
(
l/n
))
.

Proof. For ξ ≥ 1 we have∑
k≥l

(
n

k

)
≤ ξ−l

∑
k

(
n

k

)
ξk = ξ−l(1 + ξ)n.

Taking ξ = l/(n− l), so that ξ ≥ 1 follows from l ≥ n/2, we obtain∑
k≥l

(
n

k

)
≤ nn

ll(n− l)n−l = exp
(
nH(l/n)

)
,

as claimed.
As in the preceding, section we have

(6.1) 1− 2δ ≤
∣∣∣∣∣∑
y

Ĝ(y)F̂ (y)

∣∣∣∣∣ ,
where Ĝ is the Fourier transform of G(x) = Pr(x | L). Since f is t-resilient, we have
F̂ (y) = 0 for |y| ≤ t, and thus we have

1− 2δ ≤
∑
y

|y|≥t+1

|Ĝ(y)||F̂ (y)|.

Using Cauchy’s inequality we obtain

(6.2) (1− 2δ)2 ≤

 ∑
y

|y|≥t+1

Ĝ(y)2

 ∑

y
|y|≥t+1

F̂ (y)2

 .

LOWER BOUNDS FOR DECISION TREES 445

Since F (x) = ±1, Parseval’s identity yields∑
y

|y|≥t+1

F̂ (y)2 ≤
∑
y

F̂ (y)2 =
∑
x

F (x)2 = 2n.

Thus from (6.2) we obtain

(6.3) (1− 2δ)2 ≤

 ∑
y

|y|≥t+1

Ĝ(y)2

 2n.

We have

∑
y

|y|≥t+1

Ĝ(y)2 ≤
(

max
y

|y|≥t+1

Ĝ(y)2

) ∑
y

|y|≥t+1

1

≤
(

max
y

|y|≥t+1

Ĝ(y)2

) ∑
k≥t+1

(
n

k

)
≤
(

max
y

|y|≥t+1

Ĝ(y)2

)
exp

(
nH

(
t+ 1

n

))
.

Thus from (6.3) we obtain

(1− 2δ)2 ≤
(

max
y

|y|≥t+1

Ĝ(y)2

)
exp

(
nH

(
t+ 1

n

))
2n.

We have

Ĝ(y)2 =
1

2n

(∑
x

(−1)x·yPr(x | L)

)2

.

The sum on the right-hand side can be estimated in the same way as the sum in (5.2):
if |y| = k ≥ t+ 1, the sum factors into a product of k factors, and the final result is

Ĝ(y)2 ≤ 1

2n
exp

(
−2 expE

(
logE k −

C

k

))
,

so that

max
y

|y|≥t+1

Ĝ(y)2 ≤ 1

2n
exp

(
−2 expE

(
logE(t+ 1)− C

t+ 1

))
.

Thus from (6.3) we obtain

(1− 2δ)2 ≤ exp

(
−2 expE

(
logE(t+ 1)− C

t+ 1

))
exp

(
nH

(
t+ 1

n

))
.

This yields

C ≥ (t+ 1) logE
t+ 1

n
2H

(
t+1
n

)
+ log 1

1−2δ

,

which completes the proof of Theorem 6.1.

446 W. EVANS AND N. PIPPENGER

REFERENCES

[1] Y. Brandman, A. Orlitsky, and J. Hennessy, A spectral lower bound technique for the size
of decision trees and two-level AND/OR circuits, IEEE Trans. Comput., 39 (1990), pp.
282–287.

[2] B. Chor, O. Goldreich, J. Hastad, J. Friedman, S. Rudich, and R. Smolensky, The
bit extraction problem or t-resilient functions, in Proc. 26th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1985,
pp. 396–407.

[3] R. L. Dobrushin and S. I. Ortyukov, Lower bound for the redundancy of self-correcting
arrangements of unreliable functional elements, Problems Inform. Transmission, 13 (1977),
pp. 59–65.

[4] R. L. Dobrushin and S. I. Ortyukov, Upper bound for the redundancy of self-correcting
arrangements of unreliable functional elements, Problems Inform. Transmission, 13 (1977),
pp. 203–218.

[5] W. Evans and N. Pippenger, Lower bounds for noisy Boolean decision trees, in Proc. 28th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 620–628.

[6] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Computing with unreliable information,
in Proc. 22nd Annual ACM Symposium on Theory of Computing, ACM, New York, 1990,
pp. 128–137.

[7] U. Feige, P. Raghavan, D. Peleg, and E. Upfal, Computing with noisy information, SIAM
J. Comput., 23 (1994), pp. 1001–1018.

[8] J. Friedman, On the bit extraction problem, in Proc. 33rd Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp.
314–319.

[9] A. Gál, Lower bounds for the complexity of reliable Boolean circuits with noisy gates, in Proc.
32nd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1991, pp. 594–601.

[10] P. Gács and A. Gál, Lower bounds for the complexity of reliable Boolean circuits with noisy
gates, IEEE Trans. Inform. Theory, 40 (1994), pp. 579–583.

[11] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13–30.

[12] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and
learnability, J. Assoc. Comput. Mach., 40 (1993), pp. 607–620.

[13] D. E. Muller, Complexity in electronic switching circuits, Institute of Radio Engineers Trans.
Elec. Comput., 5 (1956), pp. 15–19.

[14] J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable
components, in Automata Studies, C. E. Shannon and J. McCarthy, eds., Princeton Uni-
versity Press, Princeton, NJ, 1956, pp. 43–98.

[15] N. Pippenger, On networks of noisy gates, in Proc. 26th Annual IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1985, pp.
30–36.

[16] N. Pippenger, G. D. Stamoulis, and J. N. Tsitsiklis, On a lower bound for the redundancy
of reliable networks with noisy gates, IEEE Trans. Inform. Theory, 37 (1991), pp. 639–643.

[17] R. Reischuk and B. Schmeltz, Reliable computation with noisy circuits and decision trees—
A general n logn lower bound, in Proc. 32nd Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1991, pp. 602–611.

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH
TRAVERSAL∗

AMOS FIAT† , DEAN P. FOSTER‡ , HOWARD KARLOFF§ , YUVAL RABANI¶, YIFTACH

RAVID‖, AND SUNDAR VISHWANATHAN∗∗

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 447–462

Abstract. A layered graph is a connected graph whose vertices are partitioned into sets L0 =
{s}, L1, L2, ..., and whose edges, which have nonnegative integral weights, run between consecutive
layers. Its width is max{|Li|}. In the on-line layered graph traversal problem, a searcher starts at
s in a layered graph of unknown width and tries to reach a target vertex t; however, the vertices in
layer i and the edges between layers i−1 and i are only revealed when the searcher reaches layer i−1.

We give upper and lower bounds on the competitive ratio of layered graph traversal algorithms.
We give a deterministic on-line algorithm which is O(9w)-competitive on width-w graphs and prove
that for no w can a deterministic on-line algorithm have a competitive ratio better than 2w−2 on
width-w graphs. We prove that for all w, w/2 is a lower bound on the competitive ratio of any
randomized on-line layered graph traversal algorithm. For traversing layered graphs consisting of
w disjoint paths tied together at a common source, we give a randomized on-line algorithm with a
competitive ratio of O(logw) and prove that this is optimal up to a constant factor.

Key words. competitive analysis, layered graphs, search strategies

AMS subject classifications. 68Q10, 68Q25

PII. S0097539795279943

1. Introduction. Finding the shortest path in a graph from a source to a tar-
get is a well-studied problem. Dijkstra’s algorithm [Dij] appeared in 1959. Other
algorithms can be found in [Bel, Flo, FF, AMOT].

Baeza-Yates, Culberson, and Rawlins [BCR] and Papadimitriou and Yannakakis
[PY] consider a large family of shortest path problems that operate with incomplete
information. They describe algorithms that start at a source, search for the target,
and learn about the environment as they progress. The complexity measure associated
with such an algorithm is the ratio of the total distance traversed by the algorithm
to the length of the shortest source–target path. Related work on exploring graphs
with incomplete information is considered in [DP].

∗Received by the editors January 13, 1995; accepted for publication (in revised form) December
23, 1996; published electronically July 28, 1998.

http://www.siam.org/journals/sicomp/28-2/27994.html
†Computer Science Department, School of Mathematics, Tel-Aviv University, Tel-Aviv 69978,

Israel (fiat@math.tau.ac.il).
‡Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA

19104-6302 (foster@hellspark.wharton.upenn.edu). This work was done while the author was at the
Graduate School of Business, University of Chicago.
§College of Computing, Georgia Tech, Atlanta, GA 30332-0280 (howard@cc.gatech.edu). This

author was supported in part by NSF grant CCR-8807534. This work was done while the author
was at the Department of Computer Science, University of Chicago.
¶Computer Science Department, The Technion, Haifa 32000, Israel (rabani@cs.technion.ac.il).

This work was done while the author was a graduate student at the Computer Science Department,
Tel Aviv University.
‖IBM Haifa Research Laboratory–Tel Aviv Annex, IBM House, 2 Weizmann St., Tel Aviv 61336,

Israel (yiftach@haifa.vnet.ibm.com). This work was done while the author was a graduate student
at the Computer Science Department, Tel Aviv University.
∗∗Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, India

400076 (sundar@cse.iitb.ernet.in). This author was supported in part by NSF grants CCR-8710078
and CCR-8906799. This work was done while the author was a graduate student at the Department
of Computer Science, University of Chicago.

447

448 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

This measure is closely related to the concept of competitive analysis, introduced
by Sleator and Tarjan [ST], which gives a worst case complexity measure for on-line
algorithms. An on-line algorithm is an algorithm which must deal with a sequence
of events, responding to events in real time without knowing what the future holds.
The competitive ratio of an on-line algorithm A is defined as the supremum, over all
sequences of events σ, and all possible (on- or off-line) algorithms ADV, of the ratio
between the cost associated with A to deal with σ and the cost associated with ADV
to deal with σ. We say that A is c-competitive if this supremum is at most c. (In some
of the on-line literature, especially that dealing with paging and the k-server problem,
from the cost of A on σ a constant additive term is subtracted, before dividing by
the cost of ADV on σ. Where ambiguity might arise, we shall say that A is strictly
c-competitive, meaning that the definition without an additive term is used.)

The layered graph traversal problem was introduced in [PY] and generalizes work
of [BCR]. A layered graph is a connected graph in which the vertices are partitioned
into sets L0 = {s}, L1, L2, L3, ... and all edges run between Li−1 and Li for some i.
Each edge has a nonnegative integral weight. Vertex s is known as the source. Let
w = max{|Li|}; w is called the width of the graph. An on-line layered graph traversal
algorithm starts at the source and, without knowing w, moves along the edges of the
graph, paying a cost equal to the weight of the edge traversed. Its goal is to reach
the vertex t in the last layer known as the “target”; which vertex is the target is not
revealed until the searcher occupies a vertex in the last layer.

Edges can be traversed in either direction, but the on-line algorithm pays when-
ever it crosses the edge. The edges between Li−1 and Li, and their lengths, become
known only when a node in Li−1 is reached.

We define the competitive ratio of a layered graph traversal algorithm to be the
worst case ratio between the total distance traveled by the on-line algorithm and the
length of the shortest source–target path. (If the algorithm is randomized, we use
the expected distance it travels.) The competitive ratio of a layered graph traversal
algorithm is given as a function of the width w.

A layered graph is said to consist of w disjoint paths if it is formed from w paths
which are vertex disjoint except that each contains the common source. [BCR] gave
optimal deterministic algorithms for all w with a competitive ratio which is asymptotic
to 2ew.

For arbitrary layered graphs, [PY] gave an optimal algorithm for width 2, with
a competitive ratio of 9. It follows from [BCR] that 1 + 2w(1 + 1

w−1)w−1 ∼ 2ew is
a lower bound on the competitive ratio. Prior to this paper no other bounds were
known.

Section 2 proves that general layered graphs of width w weighted with arbitrary
nonnegative integers are no more difficult to traverse than width-w layered trees whose
weights are 0−1. Notice that if we know a lower bound on the smallest nonzero weight
of an edge, then we can express the weights as multiples of this lower bound and round
to the closest integer, thereby converting the problem with arbitrary nonnegative
weights to one with integer weights. The competitive ratio is affected by at most a
constant factor due to this conversion. This factor can be made arbitrarily close to
one by taking the lower bound arbitrarily close to zero.

In sections 3 and 4 we give upper and lower bounds, exponential in w, on the
competitive ratio for deterministic layered graph traversal.

• Section 3 gives an algorithm which attains a competitive ratio of O(9w) on
layered graphs of width w. This algorithm does not need to know w in

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 449

advance and automatically adjusts itself to deal with the real width on hand.
• Section 4 proves that for all w, 2w−2 is a lower bound on the competitive

ratio of any deterministic on-line layered graph traversal algorithm.
Thus arbitrary layered graphs are much harder to traverse than those consisting of
disjoint paths.

Randomized on-line algorithms are addressed in several papers including [BLS,
RS, CDRS, FKLMSY, BBKTW, KRR]. An oblivious adversary is one who constructs
the sequence of events in advance and deals with the sequence optimally. For this
adversary model [BLS] and [FKLMSY] give examples where randomization can im-
prove the competitive ratio exponentially. This adversary models a world in which
the on-line algorithm’s actions do not themselves influence future events. One can
consider a situation where the on-line algorithm’s actions have a direct influence on
the future. In such cases [BBKTW] showed that randomization cannot improve the
competitive ratio more than polynomially. We deal with randomized layered graph
traversal algorithms (assuming an oblivious adversary), and present the following re-
sults.

• Section 5 gives a randomized on-line algorithm for the disjoint path traversal
problem. The competitive ratio is O(logw). We also show that this is optimal
up to a constant factor. This is an exponential improvement over the bound
for deterministic algorithms. This result immediately gives a randomized
min operator [FRR] for on-line k-server algorithms: given a set of w possibly
conflicting on-line strategies, a new on-line strategy can be devised which is
no worse than O(logw) times the best of these strategies on every input.
• Section 6 gives a lower bound of w/2 on the competitive ratio of any random-

ized traversal algorithm for general layered graphs.
The problem of traversing layered graphs generalizes numerous on-line problems.

For instance, metrical task systems (see [BLS]) can be modeled as layered graphs
where layers represent tasks, and in each layer there is a node for each possible state.
The k-server problem (see [MMS]), viewed in the servers’ configuration space, is the
problem of traversing the layered graph of permitted configurations for each request.
Unfortunately, the width of this graph depends on the cardinality of the metric space,
and not just on the number of servers, so layered graph techniques are inadequate for
producing solutions to the k-server problem directly. However, the algorithm given
in [BCR] for traversing layered graphs consisting of disjoint paths was used by [FRR]
in their construction of competitive k-server algorithms.

As an additional example of the power of layered graph traversal as a tool for
designing on-line algorithms, consider the problem of metrical service systems, sug-
gested by [CL]. A single server moving among points of a metric space is presented
with requests. Each request is a set of at most w points. One of these points is then
selected by the on-line algorithm, and the server is moved to that point; the cost is
the distance moved. [CL] gave a competitive metrical service system algorithm for
uniform metric spaces and deterministic and randomized algorithms for all metric
spaces for the case of w = 2. Note that the k-server problem can be reduced to the
metrical service systems problem in the configuration space. Section 7 shows that
the metrical service systems problem with requests of size w (in metric spaces with
integral distances) is equivalent to the width-w layered graph traversal problem, when
w is known in advance, in that a cw-competitive algorithm exists for one problem if
and only if one exists for the other. Related recent work appears in [FL].

450 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

2. Trees are sufficient. We first prove that given a competitive on-line algo-
rithm for traversing width-w layered trees, in which each edge has a 0 − 1 weight
and each nonsource vertex has a neighbor in the previous layer, one can construct an
on-line algorithm, with the same competitive ratio, for traversing arbitrary width-w
layered graphs.

Definition 1. Let H be any layered graph with source s, and let v be a vertex
in H in, say, layer Lj. Define Hv to be a shortest s− v path in H which contains no
vertex of Lj+1 ∪ Lj+2 ∪ Lj+3 ∪ · · · (if such a path exists).

Let G be a layered graph of width at most w with nonnegative integral edge
weights and with source s. We start by proving that an on-line algorithm traversing
G can construct, on the fly, a layered tree T with the following properties.

1. A vertex v is in T ’s ith layer if and only if v is in G’s ith layer and Gv exists.
2. For all v, the length of Tv is at most the length of Gv (if Gv exists).
3. Each nonsource vertex in T has exactly one neighbor in the previous layer.

(We call such a tree rooted.)
Furthermore, any on-line traversal algorithm for T can be simulated on G without
increasing the cost.

The tree T = T (G) is defined by induction on the layer index i, starting from
a one-node graph (i = 0). Let i > 0. For every v in G’s ith layer Li for which
Gv exists, one vertex and one edge are added to T as follows. Let u0 = s and let
Gv = 〈u0, u1, u2, . . . , u`, v〉. Let uk be the first vertex in Gv which is in layer Li−1.
Add to T vertex v and edge (uk, v) with weight equal to the weight of the portion of
Gv between uk and v.

Lemma 2. For all v, the length of Tv is at most the length of Gv.
Proof. The proof by induction on the index of the layer containing v.
Basis: i = 0. Trivial.
Inductive Step: i > 0. Assume correctness for i − 1. Suppose that v is adjacent

in T to uk in T ’s i− 1st layer. In path Gv, let a be the length of the prefix from s to
uk and let b be the length of the uk − v suffix. The length of Tv equals the length of
Tuk plus b. By the inductive hypothesis, the length of path Tuk is at most the length
of Guk , which is itself at most a. Therefore, the length of Tv is at most a + b, the
length of Gv.

Given an algorithm A to traverse T , we show how to traverse G without increasing
the cost. Suppose that A moves in T from u in layer i− 1 to v in layer i. The weight
of the edge traversed in T is the length of a portion of Gv in G. This portion avoids
layers i+ 1, i+ 2, ..., so the G-traversal algorithm can follow it. Similarly, if A moves
from v in layer i to u in layer i− 1, the G-traversal algorithm can traverse backward
the corresponding portion of Gv.

A layered tree with arbitrary nonnegative integral weights can be converted to
a layered tree with 0 − 1 weights by inserting additional intermediate layers, on
the fly.

3. A deterministic algorithm. Without loss of generality, we may assume
that the original problem asks for a traversal algorithm for 0−1, rooted, layered trees
of arbitrary width, each having a target. Instead, for each w we will build a traversal
algorithm Aw that maintains the following property. For each 0− 1 rooted tree T of
width at most w without a target, for each i, the cost incurred by Aw on T between
the start and the time it visits its first layer-i vertex is at most 8 · 9w times the length
of a shortest path between s and any vertex of Li.

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 451

We can easily solve the original problem via algorithms A1, A2, We need only
run Aj , starting with j = 1, until the width exceeds j, or until we reach some vertex
in the same layer as the target. If, including the newly revealed layer, the width is
k > j, we backtrack to the source and execute procedure Ak, starting at the source,
forgetting everything we know about the graph. As soon as we learn that the layer
we occupy contains the target, we backtrack to the source and then travel optimally
to t. The total cost incurred by this algorithm on a width-w graph whose shortest
source−target path is of length d is bounded by

d[8 · 91 + 8 · 92 + · · ·+ 8 · 9w + (8 · 9w + 1)].

This is O(9w) times the source−target distance.
In order to define algorithms Aw, we need some terminology.
1. We refer to the time just after layer t and the edges from layer t− 1 to t have

been revealed as time t. The algorithm must move to a vertex in layer t after time t
and before time t+ 1.

2. Vertex v is active at time t if it has a descendant in layer t. At time t, vertices
in layer t are called active leaves.

3. At time t, SP (v) denotes the length of the shortest path from v to a descendant
of v in layer t (if v is active at time t).

Now we construct the algorithms. A1 is the obvious algorithm. Aw for w > 1 is
constructed from A1, A2, A3, ..., Aw−1 as follows. Its execution is divided into phases.
Within each phase, a vertex r, initially the source, is designated as the root for that
entire phase. We will maintain the invariant that every path from the source to an
active leaf passes through the root r. The searcher occupies r at the start of the
phase. Furthermore, an integer d is fixed for the entire duration of the phase.

To start a phase, we let d = SP (r). If d = 0, the searcher moves along length-0
edges from r, visiting all descendents of r at distance 0 from r (using, say DFS), then
returning back to r, all at no cost.

At this point, d = SP (r) ≥ 1 is fixed for the phase, and the searcher occupies r.
If y is a descendant of x, let d(x, y) denote the length of the unique x − y path. At
all times, let S = {s|s is an active descendant of r, d(r, s) = d, s’s parent u satisfies
d(r, u) = d − 1, and SP (s) < d}. (A function of time, S may change many times
within a phase to reflect its definition; however, d is defined once at the beginning of
a phase and remains constant.) Because some active leaf is at distance exactly d from
r at the start of a phase, S 6= ∅ at that time. Because the active leaf descendants of
different s ∈ S are distinct, |S| ≤ w always.

Let St denote the set S at time t. A phase ends as soon as either (1) there is an
x ∈ St such that at time t, x has w active leaf descendants, or (2) St = ∅. If either (1)
or (2) occurs, the current phase ends at time t− 1, and a new phase, possibly with a
new root, begins immediately afterward.

Each phase is divided into subphases. The start of a phase marks the beginning of
its first subphase. A new subphase begins at a later time t if St is strictly smaller than
St−1. (A phase may end in the middle of a subphase.) At the start of a subphase the
searcher occupies the root r. He chooses an arbitrary s ∈ S and at a cost of d moves
from r to s. Where z = |S|, if z = 1, then the searcher executes procedure Aw−1 with
s as the root, and if z ≥ 2, he executes procedure Aw−(z−1) with s as the root.

When the subphase terminates, the searcher retraces all of his steps within that
subphase back to r. This ensures that the searcher occupies r at the beginning of the
next subphase.

452 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

If a phase terminates because of termination condition (1), i.e., there is an x ∈ St
such that the tree rooted at x has w active leaves, then St = {x}. In this case the
searcher moves from r to x, a distance of d, and makes x the root for the next phase. If
a phase terminates because of termination condition (2), i.e., St = ∅, the root remains
the same vertex r. Notice that in this case, SP (r) increased during the phase by at
least d, so the next phase will begin with the new d at least double its value in the
previous phase. This concludes the definition of Aw.

Analysis.
We state four easily proven facts.
Fact 3. If z = |S| at the beginning of a subphase which starts at s, then through-

out that subphase the width of the subtree rooted at s is at most w − (z − 1).
Proof. At any time during the subphase, each vertex in S has at least one active

leaf as a descendant. Since |S − {s}| equals z − 1 during the subphase, s can have at
most w − (z − 1) active leaf descendants at any time, and therefore the width of the
subtree rooted at s cannot exceed w − (z − 1).

Fact 4. Within one phase, algorithm Aw−1 is executed at most twice. For i <
w−1, Ai is executed at most once within a phase. An invocation of Ai (1 ≤ i ≤ w−1)
starting at vertex s terminates with SP (s) ≤ d.

Proof. For a given z, only one recursive call is made while |S| = z. For z ≤ 2, Aw
calls Aw−1. Ai for i < w − 1 can be called by Aw only if z = w − i + 1. As soon as
SP (s) ≥ d, s is evicted from S and the subphase terminates (if not before).

Fact 5. If a phase ends because of phase termination condition (1), i.e., there
is an x ∈ S such that the tree rooted at x has w active leaves, then the new root x
satisfies d(source, x) = d(source, r) + d, and, at the phase end, every source−active
leaf path passes through x.

Proof. Since x ∈ S implies that x is a descendant of r satisfying d(r, x) = d,
clearly d(source, x) = d(source, r)+d. And if the tree rooted at x has w active leaves
when a phase ends, the width bound of w implies that from that time onward every
source–leaf path contains x.

Fact 6. If condition (2) triggers the end of a phase, then the length of a shortest
path from the source to an active leaf is at least d greater at the end of the phase than
at the end of the previous phase.

Proof. When the phase starts, SP (r) = d. If S = ∅ at the phase end, then every
vertex originally in S has been evicted from S. All vertices in S at the beginning of
the phase evicted by reason of inactivity are inactive at the end of the phase.

If y is any active leaf at the phase end, on the r − y path there must be a
vertex x closest to r such that d(r, x) = d. The only possible reason why this active
vertex is not in S at the end of the phase is that SP (x) ≥ d at the end. Therefore,
d(r, y) = d(r, x)+d(x, y) ≥ d+d = 2d and SP (r) ≥ 2d at the end of the phase.

Theorem 7. For each w, for each rooted 0 − 1 tree T of width at most w, the
cost incurred by Aw on T is at most 8 · 9w times the length of a shortest path from
the source to a vertex in the highest-numbered layer.

Proof. We prove the statement by induction on w. For w = 1 the statement is
clear.

Let w > 1. At the start of a phase rooted at, say, r, the searcher occupies r. It
incurs no cost until every path from r to an active leaf has positive cost. Moving from r
to the designated s costs d. Within a subphase, let z denote |S| at the beginning of the
subphase. If z ≥ 2, algorithm Aw−(z−1) is invoked, and by Fact 3 the width of the tree
on which Aw−(z−1) is invoked does not exceed w− (z−1) during the subphase. Aw−1

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 453

is invoked if z = 1, but the width cannot exceed w − 1 during the subphase—for if it
did, the tree rooted at s would have w active leaves and phase termination condition
(1) would hold, thereby aborting the current phase (and subphase). Furthermore,
within a subphase which starts at s, SP (s) cannot exceed d− 1. If it did, s would be
evicted from S.

By the inductive hypothesis, if z > 1 at the start of the subphase, the cost
incurred during this subphase is bounded by d (the cost of moving from r to s), plus
8 · 9w−(z−1)d, plus the cost of backtracking to s and then to r, a total of at most
d+ 2(8 · 9w−(z−1)d) + d. If instead z = 1, the cost is at most 2d+ 16 · 9w−1d. There
is an additional cost of d at the end of a phase if we move the root forward.

By Fact 4, the total cost in a phase is at most

d+

w∑
z=2

(2d+ 16 · 9w−(z−1)d) + (2d+ 16 · 9w−1d)

= (2w + 1)d+ 16d[(9 + 92 + 93 + · · ·+ 9w−2 + 9w−1) + 9w−1]

= (2w + 1)d+ 16d

[
9w − 9

8
+ 9w−1

]

< 2wd+ 16d

[
17

72
· 9w

]

= d

[
2w +

34

9
· 9w

]

≤ d
[

2

9
· 9w +

34

9
· 9w

]
= 4d · 9w.

Suppose v is of minimum distance from the root among those vertices in the jth
and final layer. For the analysis alone, add w dummy children to v via length-0 edges.
At time i+1, v has w active leaf descendants. Thus either d = 0 in the current phase,
or one vertex x ∈ S has w active leaf descendants. Hence either d = 0, or a phase
ends at time j and x becomes the new root. In either case, we can study the cost
incurred during complete phases.

At all times, define Φ to be the distance from the source to the current root
r. Define Ψ to be the length of a shortest path from the source to an active leaf;
Ψ = Φ + SP (r). In a phase, either Φ increases by d, if (1) terminated the phase, or if
(2) ended the phase, Ψ increases by at least d. Thus Φ + Ψ increases within a phase
by at least d, and neither Φ nor Ψ ever decreases. It follows that the cost incurred by
Aw to visit some vertex in Li is at most 4 · 9w times the final value of Φ + Ψ, which
is at most twice the final value of Ψ. Therefore, Aw is 8 · 9w-competitive.

4. A lower bound for deterministic algorithms. Fix a competitive deter-
ministic layered graph algorithm A for arbitrary layered graphs. A traces out a path
in each layered graph. We construct a layered tree that forces A to perform poorly.
Figure 1 illustrates the lower bound construction. The construction is recursive. The

454 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

b b

b

b

b
b

b

b

b

b

bb

bb

b
b

B
BB
�
��

��
��HH

HHj

XX
XX

XXz

��
��

��:

XX XX XXz

XX XX XXz

-

B
BB
�
��

B
BB
�
��

@
@
@R

¡
¡
¡�

B
BB
�
��

B
BB
�
��

B
BB
�
��

B
BB
�
��

-

-

-

-

00

000

b4b3b2b1

a4a3a2a1

2w
2

2w
2

s
Ew−1

Ew−1

Ew−1

Ew−1

Ew−1

Fig. 1. Deterministic lower bound.

idea is that A is forced to move back and forth between the two subtrees attached
to the source s, thus incurring a large cost compared with the shortest path to the
target.

Definition 8. Let H be a layered tree. Suppose that v ∈ Li−1 6= ∅ is the vertex
visited by A at time i.

1. Define T (v) to be the minimum j > i, if any, such that A visits a nondescen-
dant of v at time j.

2. Define L(v) to be the length of a shortest path from v to a descendant of v in
layer T (v) (if T (v) and any descendants in layer T (v) exist).

3. Define C(v) to be the cost incurred by A from the time when v is first visited
until the path traced out by A first exits the subtree rooted at v (if ever). This is
exactly the cost incurred by A at times i+ 1, i+ 2, ..., T (v)− 1, plus the portion of the
cost incurred at time T (v) attributable to edges in the subgraph rooted at v.

Lemma 9. Let w ≥ 1. Let H be a layered tree of height i, say, and arbitrary
width, with at least two vertices in the ith layer, and let s be the leaf in layer i visited
by A. Then there is an infinite rooted tree Ew of width at most w with these properties.

1. The root of Ew has min{2, w} children. The edge(s) out of the root are of

length 2w
2

.
2. If Ew is attached to vertex s and an infinite path of length 0 is attached to

all other vertices in the ith layer of H, then for this new infinite tree, L(s) exists and

C(s) ≥ 2w−1(L(s)− 2w
2

).
Proof. The proof is by induction on w. Let w = 1 and let H be a tree with at least

two leaves. If we attach to s an infinite path of edges of length 212

= 2 and attach
infinite paths of length 0 to other vertices in the last layer, because A is competitive,
T (s) must exist. C(s) ≥ L(s)− 2. So, clearly, C(s) ≥ 21−1(L(s)− 212

).
Let w ≥ 2. Let H be a layered tree and let s ∈ Li be visited by A, where Li+1 = ∅

and |Li| ≥ 2. Attach to s two children a1, b1 via edges of length 2w
2

. Add to all other
vertices in Li an edge of length 0.

If A occupies neither a1 nor b1 at time i+ 1, then T (s) = i+ 1, L(s) = 2w
2

, and

C(s) = 0, so clearly C(s) ≥ 2w−1(L(s)− 2w
2

).
So we may suppose without loss of generality that A visits a1 at time i + 1. By

induction, there is an infinite tree Ew−1 of width at most w − 1 such that if a1 is
extended by Ew−1 and all other leaves are extended by infinite paths of length 0,

C(a1) ≥ 2w−2(L(a1)− 2(w−1)2

).

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 455

At time T (a1), A occupies either a descendant of b1 or a nondescendant of s. Suppose
A occupies a descendant b2 of b1. Choose a descendant of a1 in layer T (a1) of minimum
distance from a1. Call it a2. (Such a descendant exists because Ew−1 is infinite.)
“Kill” all other descendants of a1 in layer T (a1), i.e., mark them as inactive. They will
have no children. Now “truncate” the entire infinite tree to level T (a1) by removing
all vertices in layers T (a1) + 1, T (a1) + 2, T (a1) + 3,

By the inductive assertion we can find a new infinite tree E′w−1 of width at
most w − 1 so that if E′w−1 is attached to b2 and all other vertices in layer T (a1)
(including a2 but no other descendants of a1) are extended by 0-length infinite paths,

C(b2) ≥ 2w−2(L(b2) − 2(w−1)2

). Now truncate the tree to level T (b2) by eliminating
all vertices in layers T (b2)+1, T (b2)+2, T (b2)+3, At time T (b2), A occupies either
a descendant a3 of a2 or a nondescendant of s. If A occupies a descendant a3 of a2 we
attach a new infinite tree E′′w−1 to a3 and “kill” all descendants of b2 in layer T (b2)
except for one descendant b3 of minimum distance from b2.

This process continues until at some point A visits a nondescendant of s. This
must happen eventually, because there is at least one infinite 0-path. Since each stage
adds at least 2w

2

to A’s cost, every competitive algorithm must eventually switch at
some time T (s) to a nondescendant of s.

Suppose that the algorithm has constructed a1, b1, a2, b2, . . . , ak, bk but neither
ak+1 nor bk+1. Thus A visits either ak or bk but exits the subtree rooted at s at time
T (ak) or T (bk), whichever is defined.

Claim. C(s) increases by at least

2w
2

+ 2w−2(L(ai)− 2(w−1)2

) ≥ 2w−2L(ai)

between the time when A occupies ai and time T (ai). Similarly, between the time
when A occupies bi and time T (bi), C(s) increases by at least

2w
2

+ 2w−2(L(bi)− 2(w−1)2

) ≥ 2w−2L(bi).

Proof of Claim. In moving from ai to a nondescendant of ai, A incurs a cost of
at least 2w

2

on the edges out of s. On the edges in the subtree rooted at ai, A incurs
a cost of

C(ai) ≥ 2w−2(L(ai)− 2(w−1)2

)

by the inductive case of the theorem. The proof of the second statement is similar.
But if

α = L(a1) + L(a3) + L(a5) + · · ·
and

β = L(b2) + L(b4) + L(b6) + · · · ,
then

L(s) = 2w
2

+ min{α, β}.

Thus C(s) ≥ 2w−2(α+ β) ≥ 2w−1 min{α, β} = 2w−1(L(s)− 2w
2

). Now make the tree
infinite, as required, by attaching infinite length-0 paths to each leaf in the final layer.

456 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

Now we prove a lower bound of 2w−2 on the competitive ratio.
Theorem 10. If A is a layered graph traversal algorithm, then its competitive

ratio on width-w graphs is at least 2w−2.
Proof. We may assume w ≥ 2. Let s be a source with two children a1 and

b1 via edges of length 2w
2

. Suppose A moves from s to a1. As in Lemma 9, we
can attach to a1 an infinite tree Ew−1 of width at most w − 1 such that C(a1) ≥
2w−2(L(a1)−2(w−1)2

) if b1 is extended by an infinite path of length 0. At time T (a1),
A occupies a descendant b2 of b1. Truncate the tree to height T (a1). Let a2 be a
descendant of a1 in layer T (a1), of minimum distance from a1. All descendants of a1

in layer T (a1), other than a2, will have no children. Now attach to b2 an infinite tree
E′w−1, as in Lemma 9, and to a2 attach an infinite length-0 path

C(b2) ≥ 2w−2(L(b2)− 2(w−1)2

).

At time T (b2), A occupies a descendant a3 of a2. Truncate the tree to height T (b2).
Let b3 be a descendant of b2 in layer T (b2), of minimum distance from b2. All descen-
dants of b2 in layer T (b2), other than b3, will get no children.

Repeat this process ad infinitum. Each pair of additions increases the length of
the shortest root−active-leaf path by at least 2(w−1)2

. Eventually we reach a situation
in which we have constructed a1, b1, a2, b2, ..., ak, bk so that if

α = L(a1) + L(a3) + L(a5) + · · ·
and

β = L(b2) + L(b4) + L(b6) + · · · ,

then min{α, β} ≥ 2w
2

. By the claim embedded in the proof of Lemma 9, by that time
A’s cost is at least

2w−2(α+ β) ≥ 2w−1 min{α, β}.
The adversary’s cost is

2w
2

+ min{α, β} ≤ 2 min{α, β}.
Therefore the competitive ratio is at least

2w−1 min{α, β}
2 min{α, β} = 2w−2.

5. Disjoint paths. Let L be a layered graph which consists of a set of disjoint
paths except that they share the common source. Each edge has a 0− 1 length.

We define the algorithm in phases. At the beginning, while some path has length
0, the algorithm simply chooses such a path and follows it until, if ever, its length
increases. It then switches to another path of length 0, and follows that one until its
length increases. This continues until all paths have positive length. Then the first
phase begins.

In the kth phase (k = 1, 2, ...), the length of the shortest path from the source
to the current layer lies in the interval Ik = [2k−1, 2k). At the start of phase k the
algorithm chooses a path randomly and uniformly from among those paths of length
in Ik running from the source to the current layer. It then backtracks through the

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 457

source to the current layer on the chosen path, incurring a cost of at most 2 · 2k in
the process.

Whatever path the algorithm is following in phase k, it blindly continues to follow
that path until its length reaches 2k. Whenever the length of the current path reaches
2k, the algorithm replaces it by a path chosen randomly from those paths of length
less than 2k—if any exist—backtracking through the source and incurring a cost of at
most 2 · 2k in the process. A new phase begins and k is incremented as soon as every
path has length at least 2k.

Analysis.
Our initial backtracking cost at the start of a phase is at most 2 · 2k. If Ew is an

upper bound on the expected number of times the algorithm switches paths within any
phase, then the expected cost within phase k is at most 2k+1+Ew2k+1 = 2k+1(1+Ew).
Let ` denote the number of phases. Our total expected cost is bounded above by
(1 + Ew)

∑`
k=1 2k+1 < (1 + Ew)2`+2. The adversary’s cost is at least 2`−1, giving us

a competitive ratio bounded by 8 + 8Ew. We show that we can take Ew = Hw =
1 + 1

2 + 1
3 + · · ·+ 1

w ∼ lnw.
We now describe a probabilistic game which models the path selection process

in a phase. Let S be a set of size n. There are two players A and B. Initially B
randomly and uniformly picks one element, hiding his choice from A. At each step A
chooses one element of S and removes it from S. Whenever A discards the element
selected by B, B pays A $1 and B uniformly at random picks a new item (if S is still
nonempty).

We prove that the expected cost Fn incurred by B is exactly Hn. Clearly, F1 = 1,
and for n ≥ 2, Fn satisfies

Fn =
1

n
(1 + Fn−1) +

1

n
(1 + Fn−2) +

1

n
(1 + Fn−3) + · · ·+ 1

n
(1 + F1) +

1

n
(1 + 0).

This recurrence and the fact that F1 = 1 imply that Fn = Hn for all n since

Fn = 1 +
1

n
(F1 + F2 + F3 + · · ·+ Fn−1).

Thus

nFn = n+ (F1 + F2 + · · ·+ Fn−1)

and

(n− 1)Fn−1 = (n− 1) + (F1 + F2 + · · ·+ Fn−2),

if n ≥ 3, so

nFn − (n− 1)Fn−1 = 1 + Fn−1.

Therefore, for n ≥ 3, n(Fn − Fn−1) = 1 and Fn = Fn−1 + 1/n. Since F2 = 3/2, it
follows that Fn = Hn for all n.

The connection between the experiment and layered graph traversal.
A corresponds to the adversary and B corresponds to the algorithm. Each element

in the set is associated with a path in the layered graph of length less than 2k at the
beginning of the kth phase. A discards an element from the set when the length of the
corresponding path reaches 2k. He pays $1 every time this happens. The expected

458 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

number of times B backtracks is at most the expected cost to B of the game above.
Thus we may take Ew = Hw. We have proven the following theorem.

Theorem 11. The competitive ratio of the randomized algorithm above for
traversing disjoint paths is at most 8 + 8Hw.

A lower bound.
Theorem 12. Let w and M be any positive integers. For any randomized on-line

algorithm A for traversing disjoint paths of width at most w, there is a width-w layered
graph for which the length of the shortest source−target path is M , but on which A’s
expected cost is at least M(2Hw − 1).

Proof. Each path in the width-w layered graph begins with M unit-cost edges.
For a layered graph that begins this way, at time M there is at least one layer-M
vertex which is occupied by the searcher with probability at least 1/w. We give that
vertex no children, but to every other layer-M vertex we give a child via a length-0
edge. At time M + 1, at least one of the w − 1 layer-(M + 1) vertices is occupied
by the searcher with probability at least 1/(w − 1). We add a length-0 edge to layer
M + 2 from every layer-(M + 1) vertex but that one. That one dies. We repeat this
process for layers M + 2,M + 3, ...,M + (w−1); in layer M + i there are exactly w− i
vertices, i = 0, 1, 2, ..., w− 1. The unique vertex in layer M +w− 1 is the target. The
expected cost incurred by A is bounded below by M plus 2M times the sum, over
each leaf in the graph other than the target, of the probability that A visits that leaf.
This sum of probabilities is 1

w + 1
w−1 + 1

w−2 + · · ·+ 1
2 = Hw − 1. The total expected

cost is hence at least M(1 + 2(Hw − 1)) = (2Hw − 1)M.

6. A randomized lower bound. Now we return to general layered graphs. Fix
an integer m ≥ 2. Let rw = w(1− 1/m) for all w.

By induction on w, we construct for each w a probability distribution G(w) on
a finite family of layered graphs of width w. Every graph drawn from G(w) has a
designated vertex as the root and another as the target; the target is the unique
vertex in the final layer. From the inductive construction it will be easy to verify that
the following quantities depend only on w and m:

• the length Lw of the shortest root−target path in the graph,
• the sum Sw of the edge lengths,
• the number Fw of layers, excluding L0 (the layer containing the source).

Let Ew = 2SwFw. It is clear that this is an upper bound on the distance traversed
by any algorithm when it traverses any layered graph drawn from G(w).

Now we construct the probability distributions. See Figure 2.
Basis: w = 1. With probability 1 we draw a single edge (s, t) of length 1 with s

the root and t the target.
Inductive Step: w > 1. We start with a vertex designated as the root, say s. To

s we attach two edges (s, u1), (s, l1) of length (1/2)Ew−1 each. We now construct the
graph in stages. For stage 1 we draw a copy H1 from G(w − 1) and attach it to u1

(i.e., make u1 the root of this copy). The target of H1 we call u2. H1 has Fw−1 layers
of nonsource vertices in it. For these Fw−1 layers we extend l1 by a path of Fw−1

length-0 edges ending at l2. For stage 2, we extend l2 by independently drawing a
graph H2 from G(w − 1), and we extend u2 by a path of Fw−1 length-0 edges. We
continue this pattern for N = Nw = mrw−1Ew−1 stages (N is an even integer). In
the ith stage, for i odd, we independently select a graph Hi as in stage 1, and for
i even, we choose Hi independently as in stage 2. In the last layer we have vertices

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 459

b

b

b

bb

bb

b
b

-

-

-

-

-

J
J
J
JĴ

�

!!!!!!!aaaaaaa

!!!!!!!aaaaaaa

!!!!!!!aaaaaaa

!!!!!!!aaaaaaa

Ew−1

2

Ew−1

2

0

00

0 lN+1 −→ t

uN+1

l3l2l1

u3u2u1

s

HN∈ G(w − 1)

H3 ∈ G(w − 1)

H2 ∈ G(w − 1)

H1 ∈ G(w − 1)

Fig. 2. Randomized lower bound.

uN+1 and lN+1. We toss a coin and equiprobably choose one. It gets a child, the
target, via a length-0 edge; the other gets none. This completes the construction.

Lemma 13. For all positive integers w, for all deterministic algorithms Aw de-
signed to traverse graphs drawn from G(w), the expected cost of Aw to traverse a graph
drawn randomly from G(w) is at least rwLw.

Proof. The proof is by induction on w. The w = 1 case is trivial.
Let w ≥ 2. Choose a deterministic algorithm Aw for graphs drawn from G(w).
Within this proof, we imagine that the random graph H is generated “on the

fly”; i.e., only when the searcher reaches either ui or li, for i odd, are the two graphs
for stages i and i+ 1 drawn from G(w− 1), and only then are stages i and i+ 1 of H
built. This makes no difference, since Aw is on-line and its behavior cannot depend
on the future.

Pick an odd i < N . At the end of stage i− 1, the searcher occupies either ui or
li. Let J be a graph having i − 1 stages that induces the searcher to occupy ui at
the end of stage i− 1 (if possible). Now define an algorithm Aw−1 (dependent on J)
for traversing graphs drawn from G(w− 1), as follows. Aw−1 mimics Aw in the graph
drawn from G(w − 1) in the Fw−1 layers succeeding ui, until, if ever, Aw backtracks
through s to a nondescendant of ui. At this point, Aw−1 blindly marches ahead in a
naive way, until ui+1 is reached.

The cost of backtracking through s is so large that the cost incurred by Aw in the
2Fw−1 layers succeeding ui, given that the first i − 1 stages equal J , is at least the
cost of Aw−1 on those same layers. The inductive hypothesis now implies that the
expected cost of Aw in the 2Fw−1 layers succeeding ui, given J , is at least rw−1Lw−1.

Now choose an i− 1-stage graph J ′, if possible, so that Aw occupies li at the end
of stage i−1. A similar argument implies that the conditional expected cost incurred
by Aw in the 2Fw−1 layers succeeding li, given that the first i− 1 stages of H equal
J ′, is at least rw−1Lw−1. It follows that the (unconditional) expected cost incurred
by Aw in progressing from either ui or li to either ui+2 or li+2 is at least rw−1Lw−1.

At the end of stage N , we flip a coin to decide which vertex, uN+1 or lN+1,
becomes the parent of the target. With probability 1/2, the searcher must back-
track through s to the target. Thus it incurs an additional expected cost of at least
(1/2)(NLw−1 + Ew−1). The total expected cost divided by Lw is at least

460 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

(N/2)rw−1Lw−1 + (1/2)(NLw−1 + Ew−1)

(1/2)Ew−1 + (N/2)Lw−1

=
(N/2)rw−1Lw−1 + (1/2)rw−1Ew−1 + (1/2)(NLw−1 + Ew−1)− (1/2)rw−1Ew−1

(1/2)Ew−1 + (N/2)Lw−1

= (rw−1 + 1)− (1/2)rw−1Ew−1

(1/2)Ew−1 + (N/2)Lw−1

≥ (rw−1 + 1)− (1/2)rw−1Ew−1

(N/2)Lw−1

≥ rw−1 + 1− rw−1Ew−1

N
= rw−1 + (1− 1/m).

Now we prove the following theorem.
Theorem 14. For every positive integer w, for every randomized algorithm B for

traversing graphs drawn from G(w), there exists a layered graph K of width at most w
such that the ratio of the expected distance traversed by B to the length of the shortest
root−target path in K is at least rw.

Proof. The proof follows Yao’s observation regarding the minimax principle [Yao].
Choose a randomized algorithm B and a width w. Lemma 13 implies that the ex-
pected cost incurred by every deterministic algorithm A on a graph drawn randomly
from G(w) is at least rwLw. However, B is nothing more than a probability distribu-
tion on deterministic algorithms. It follows that the expected cost of B on a graph
drawn randomly from G(w) is at least rwLw. It follows that on some graph K as-
signed positive probability under G(w), B’s expected cost is at least rwLw. But the
source−target distance in K is Lw.

7. Metrical service systems. In the following section, w-MSS abbreviates
“metrical service systems with requests of size at most w,” w-LGT abbreviates “traver-
sal of layered graphs of width at most w,” and w-LTT abbreviates “traversal of 0− 1
rooted layered trees of width at most w.” (Notice that w-LGT and w-LTT algorithms
traverse only graphs of width at most w.)

Lemma 15. If A is a cw-competitive algorithm for w-LGT, then there exist
strictly cw-competitive on-line algorithms for w-MSS in all metric spaces with integral
distances.

Proof. Fix a metric space where the distances are integral. Given a sequence
of w-MSS requests, we construct, in an on-line manner, a layered graph. Layer 0
contains a single vertex, which is the starting point of the server. The vertices of
layer i > 0 are the points of the ith request. For every i ≥ 0, every vertex of layer i
is connected to every vertex of layer i+ 1 by an edge of weight equal to the distance
between the two points. Apply the w-LGT algorithm A to this graph. When A first
encounters layer i, it chooses a vertex in that layer to move to. The w-MSS algorithm
serves the ith request by moving to that point.

Definition 16. Let I be an infinite rooted layered tree in which each vertex has
2w children. Let r denote the root of I. Let M be an infinite metric space whose
underlying set is V (I) and in which the distance between u and v is the length of the
u− v path in I.

Lemma 17. Let B be a strictly cw-competitive w-MSS algorithm for the infinite
metric space M. Then there exists a cw-competitive on-line w-LTT algorithm A (and
therefore one for w-LGT).

COMPETITIVE ALGORITHMS FOR LAYERED GRAPH TRAVERSAL 461

Proof. Let T be an instance of the w-LTT problem. Let s be the source vertex of
T , initially occupied by the searcher. We use B to define algorithm A which traverses
T as follows. From the, say, li ≤ w vertices vi1, v

i
2, ..., v

i
li

in the ith layer of T , we

construct, on-the-fly, a sequence pi1, p
i
2, ..., p

i
li

of li vertices of the metric space M (pij
“representing” vij), and then present the set {pi1, pi2, ..., pili} as a request of li ≤ w

points to B. B will choose one of the points, say, pij , to move to. We stipulate, then,

that A moves to vij .

Let us start by defining v0
1 := s, the source vertex of T . Representing v0

1 is p0
1 := r,

the root of I. A starts on the node p = p0
1.

At a generic time, A will occupy some node in, say, layer i of the layered graph.
When layer i + 1 is revealed, we must choose request i + 1 in M, the response to
which tells to which node of layer i + 1 A should move. This is done as follows. Let
the li+1 ≤ w nodes of the i + 1st layer of T be vi+1

1 , vi+1
2 , ..., vi+1

li+1
. Look at the edge

between a node vi+1
j in the i + 1st layer and its parent called, say, vik. If the edge

between vi+1
j and its parent vik is of weight 0, then we represent vi+1

j by the same

node pik that represented its parent: pi+1
j := pik. If, on the other hand, the edge from

vi+1
j to its parent vik is of weight 1, then we choose a child of pik to represent vi+1

j :

we choose, among the 2w children of pik, a child which is the root of a subtree in I
containing no representative of a vertex in the ith (previous) layer and also containing
no representative (so far) of a vertex in layer i+ 1. (Since there are at most 2w nodes
in layers i and i+ 1, the 2w children of pik suffice.) This child is then pi+1

j .
It remains to show that for any two consecutive layers, the distance in T between

any pair of vertices contained in those two layers is equal to the distance in I between
their representatives. Consider any two consecutive layers numbered i and i+ 1. The
proof is by induction on i. The case of i = 0 is easy and the proof is omitted. Now
consider i > 0. Notice that by the inductive hypothesis the claim is true if both
vertices in the pair are taken from the ith layer. As we generate the representatives
for the vertices in the i+1st layer, we check the distances between the representatives
and the representatives of vertices in the ith layer, and the distances between their
representatives and the representatives already created for vertices in layer i + 1.
Consider a particular vertex vi+1

j of the i+ 1st layer. If the distance to its parent vik
in T is 0, then, as described above, we have pi+1

j = pik, which is the representative of

its parent. Since pik has already been considered in the current step of the induction,
the claim trivially holds. If the distance between vi+1

j and vik is 1, the choice of pi+1
j

guarantees that its distance to any representative q of a vertex in layer i + 1 which
was already considered in the current step of the induction, or of a vertex in layer i,
is exactly the distance between pik and q, plus 1. Thus, the claim holds in this case
as well.

Therefore we conclude that at each step, the distance traversed by the w-MSS
server is equal to the distance traversed by the w-LTT searcher. We also conclude
that the optimal costs for both instances are the same (since an optimal path for one
induces a path for the other with the same cost). This completes the proof of the
lemma.

Lemmas 15 and 17 give the following result.
Theorem 18. For each w, strictly cw-competitive, deterministic or randomized

algorithms exist for w-MSS for all metric spaces with integral distances if and only
if a cw-competitive, deterministic or randomized algorithm, respectively, exists for
w-LGT.

462 FIAT, FOSTER, KARLOFF, RABANI, RAVID, VISHWANATHAN

8. Concluding remarks. An obvious open problem is to close the gap be-
tween the upper bound and the lower bound for deterministic and randomized layered
graph traversal. Of special interest is the question of designing an efficient random-
ized traversal algorithm. In an earlier version of this paper, we conjectured that
a polynomial upper bound is achievable by the use of randomization. Since then,
this conjecture has been proven by Ramesh [Ram], who gives an O(w13)-competitive
randomized algorithm. Ramesh has also reported improvements in the determinis-
tic upper bounds (to O(w32w)) and in the randomized lower bounds (to a nearly
quadratic bound). Burley [Bur] recently further improved the deterministic upper
bound to O(w2w) via an algorithm for metrical service systems.

REFERENCES

[AMOT] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms
for the shortest path problem, J. Assoc. Comput. Mach., 37 (1990), pp. 213–223.

[BCR] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, Searching in the
plane, Inform. and Comput., 106 (1993), pp. 234–252.

[Bel] R. Bellman, On the routing problem, Quart. Appl. Math., 16 (1958), pp. 87–90.
[BBKTW] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson, On the

power of randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2–
14.

[BLS] A. Borodin, N. Linial, and M. Saks, An optimal on-line algorithm for metrical
task systems, J. Assoc. Comput. Mach., 39 (1992), pp. 745–763.

[Bur] W. R. Burley, Traversing layered graphs using the work function algorithm, J.
Algorithms, 20 (1996), pp. 479–511.

[CDRS] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir, Random walks on
weighted graphs and applications to on-line algorithms, J. Assoc. Comput.
Mach., 40 (1993), pp. 421–453.

[CL] M. Chrobak and L. Larmore, Server Problems and On-Line Games, DIMACS
Workshop on On-Line Algorithms, February 1991.

[Dij] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math.,
1 (1959), pp. 269–271.

[DP] X. Deng and C. H. Papadimitriou, Exploring an unknown graph, in Proc. 31st
IEEE Annual Symposium on Foundations of Computer Science, 1990, pp. 355–
361.

[FKLMSY] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N.
E. Young, Competitive paging algorithms, J. Algorithms, 12 (1991), pp. 685–
699.

[FF] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

[FL] J. Friedman and N. Linial, On convex body chasing, Discrete Comput. Geom., 9
(1993).

[Flo] R. W. Floyd, Algorithm 97 (shortest path), Comm. ACM, 5 (1962), p. 345.
[FRR] A. Fiat, Y. Rabani, and Y. Ravid, Competitive k-server algorithms, J. Comput.

System Sci., 48 (1994), pp. 410–428.
[KRR] H. J. Karloff, Y. Rabani, and Y. Ravid, Lower bounds for randomized k-server

and motion-planning algorithms, SIAM J. Comput., 23 (1994), pp. 293–312.
[MMS] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for

on-line problems, J. Algorithms, 11 (1990), pp. 208–230.
[PY] C. H. Papadimitriou and M. Yannakakis, Shortest paths without a map, Theoret.

Comput. Sci., 84 (1991), pp. 127–150.
[RS] P. Raghavan and M. Snir, Memory versus randomization in on-line algorithms,

in Proc. 16th ICALP, 1989. Springer-Verlag, New York, pp. 687–703.
[Ram] H. Ramesh, On traversing layered graphs on-line, J. Algorithms, 18 (1995), pp. 480–

512.
[ST] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update and paging

rules, Comm. ACM, 28 (1985), pp. 202–208.
[Yao] A. C. C. Yao, Probabilistic computations: Towards a unified measure of complexity,

in Proc. 18th IEEE Annual Symposium on Foundations of Computer Science,
1977, pp. 222–227.

ON MULTIRATE REARRANGEABLE CLOS NETWORKS∗

D. Z. DU† , B. GAO‡ , F. K. HWANG§ , AND J. H. KIM¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 463–470

Abstract. In the multirate switching environment each (connection) request is associated with a
bandwidth weight. We consider a three-stage Clos network and assume that each link has a capacity
of one (after normalization). The network is rearrangeable if for all possible sets of requests such
that each input and output link generates a total weight not exceeding one, there always exists a
set of paths, one for each request, such that the sum of weights of all paths going through a link
does not exceed the link capacity. The question is to determine the minimum number of center
switches which guarantees rearrangeability. We obtain a lower bound of 11n/9 and an upper bound
of 41n/16. We then extend the result for the three-stage Clos network to the multistage Clos network.
Finally, we propose the weighted version of the edge-coloring problem, which somehow has escaped
the literature, associated with our switching network problem.

Key words. multirate switching, rearrangeable, Clos network

AMS subject classifications. 94C15, 0515

PII. S0097539795284716

1. Introduction. Let C(n,m, r) denote a symmetric three-stage Clos network
satisfying the following conditions.

1. Each of the input (first) and output (third) stage consists of r n×m crossbars.
The center (second) stage consists of m r × r crossbars.

2. There exists one link between every center switch and every input (output)
switch. No link exists between any other pair of switches.

A C(2, 3, 4) is illustrated in Figure 1.
The inlets (outlets) of the input (output) switches are the inputs (outputs) of the

network. Inputs and outputs are referred to as external links, while links between
switches are referred to as internal links. When C(n,m, r) is used in the multirate
environment, each connection is associated with a weight which can be thought of
as the bandwidth requirement of that connection. A link can carry any number of
connections as long as the load, total weight of these connections, does not exceed
the link capacity. It is commonly assumed that links have uniform capacity which is
normalized to be unity.

A (connection) request is a triple (x, y, w) where x is an inlet, y an outlet, and w
the weight. A request frame is a collection of requests such that the total weight of
all requests in the frame involving a fixed inlet or outlet does not exceed unity. To
discuss routing it is convenient to assume that all links are directed from left to right.
Thus a path from an inlet to any outlet always consists of the sequence: an inlet link
→ an input switch → a link → a center switch → a link → an output switch → an
outlet link. Furthermore, since the crossbar is assumed to be nonblocking with fan-in
and fan-out properties, a request (x, y, w) is routable if and only if there exists a path

∗Received by the editors April 17, 1995; accepted for publication (in revised form) March 19,
1996; published electronically July 28, 1998.

http://www.siam.org/journals/sicomp/28-2/28471.html
†Department of Computer Science, University of Minnesota, Minneapolis, MN 55455 (dzd@cs.

umn.edu).
‡Lattice Semiconductor Corporation, Milpitas, CA 95035 (biao@lscjc.latticesemi.com).
§Department of Applied Mathematics, Chiaotung University, Hsinchu Taiwan 30050, Republic of

China (fhwang@math.nctu.edu.tu).
¶Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (jhk@research.att.com).

463

464 D. DU, B. GAO, F. HWANG, AND J. KIM

Fig. 1. C(2, 3, 4).

from x to y such that every link on this path has unused capacity at least 1−w before
carrying out this request. A request frame is routable if there exists a set of paths,
one for each request, such that for every link the sum of weights of all requests going
through it does not exceed unity. C(n,m, r) is called rearrangeable if every request
frame is routable.

Let M(n, r) denote the minimum value of m such that C(n,m, r) is rearrangeable
for given n and r. In this paper we prove that 11n/9 ≤M(n, r) ≤ 41n/16. (Chung
and Ross [2] have conjectured that a strictly nonblocking network for the classical
circuit switching, hence C(n, 2n − 1, r), is rearrangeable if the weights belong to a
given finite set.) We also describe a weighted edge-coloring problem which is related
to the multirate routing problem.

2. When weights are restricted. Let B and b denote the upper and lower
bound of the weight of a request. Let M(B,b)(n, r) denote the corresponding M(n, r)
when B and b are given. Then M(n, r) can also be interpreted as M(1,0)(n, r). Define
a bipartite graph G with the input switches as one part, the output switches as the
other part, and an edge with weight w between vertices X and Y for each request
(x, y, w) where x(y) is an inlet (outlet) of the switch X(Y). The routing problem
for C(n,m, r) can then be formulated as an edge-coloring problem on G where the
requirement is that the sum of weights of all edges of the same color at a vertex
cannot exceed one. To see this, simply color each center switch with a distinct color
and route a request through the switch with the same color.

Melen and Turner [5] gave an elegant routing algorithm, CAP, for the Beneš
network. Here we adopt it for C(n,m, r) to prove Lemma 1. Let d(v) denote the
degree of v in G.

ON MULTIRATE REARRANGEABLE CLOS NETWORKS 465

Lemma 1. M(B,0)(n, r) ≤ n−B
1−B .

Proof. For each vertex v in G, order its d(v) edges into q(v) ≡ dd(v)/me groups
g1(v), . . . , gq(v)(v), where g1(v) consists of the m heaviest edges, g2(v) of the next m
heaviest edges, and so on (gq(v)(v) may have less than m edges). Let G′ be a bipartite
graph obtained from G by splitting each vertex v into q(v) vertices v1, . . . , vq(v) with
edges g1(v), . . . , gq(v)(v), respectively. Then the maximum degree of a vertex in G′ is
upper bounded by m. Hence the edges of G′ can be m-colored by the König theorem
[3]. Note that an edge-coloring of G′ induces an edge-coloring of G. Let W (v, c)
denote the set of weights of edges of color c at vertex v. Order the weights in W (v, c)
into w1(v, c) ≥ w2(v, c) ≥ · · · ≥ wq(v)(v, c), where wq(v)(v, c) = 0 if w(v, c) has only
q(v)− 1 edges. Then

w1(v, c) ≤ B, wi+1(v, c) ≤ wi(v, c′) for i = 1, . . . q − 1 and any c′ 6= c .

Define w(v, c) =
∑q(v)
i=1 wi(v, c). Then

w(v, c)−B ≤ w(v, c′) for any c′ 6= c .

Adding the above inequality over the m− 1 colors other than c, plus the equality

w(v, c)−B = w(v, c)−B ,

we obtain

m(w(v, c)−B) ≤ n−B ,

or

w(v, c) ≤ n

m
+
m− 1

m
B .

Therefore w(v, c) ≤ 1 will be assured if

n

m
+
m− 1

m
B ≤ 1

or

m ≥ n−B
1−B .

Corollary 1. M(1/2,0)(n, r) ≤ 2n− 1.
On the other hand, we can also use b to obtain an upper bound of M(1,b)(n, r).
Lemma 2. M(1,b)(n, r) ≤ nb1/bc.
Proof. Since each inlet (outlet) can appear in at most b1/bc requests, the max-

imum degree of a vertex in G is upper bounded by nb1/bc. Again, by the König
theorem, G can be edge-colored in nb1/bc colors.

Note that Lemma 1 is not very useful when B → 1, and Lemma 2 is not useful
when b → 0. Therefore, Lemma 1 and Lemma 2, individually, do not contribute to
bounding M(n, r). However, they can be combined to yield the following result.

Theorem 1. M(n, r) ≤ 3n− 1.
Proof. Partition the weights into two groups, those > 1/2 and those ≤ 1/2. We

route these two groups through two disjoint sets of center switches. The first group
has a lower bound b > 1/2. By Lemma 2, its routing requires n center switches. The

466 D. DU, B. GAO, F. HWANG, AND J. KIM

second group has an upper bound B = 1/2. By Corollary 1, its routing requires 2n−1
center switches. Hence n+ (2n− 1) = 3n− 1 center switches suffice.

With more restrictive bounds, better results can be obtained. For example, Chung
and Ross proved that a network which is rearrangeable for the classical circuit switch-
ing is multirate rearrangeable if all weights are equal. A corollary of this result is that
a network which is strictly nonblocking for the classical circuit switching is multirate
rearrangeable if the weights are either 1 or a constant b, 0 < b < 1. Since C(n, n, r)
is rearrangeable and C(n, 2n − 1, r) strictly nonblocking [1] for the classical circuit
switching, they are multirate rearrangeable when the weights meet the above condi-
tions. We now generalize the results of Chung and Ross under more flexible weight
conditions.

Theorem 2. A network which is rearrangeable for the classical circuit switching
is multirate rearrangeable if all weights are in the interval (1/(k + 1), 1/k] for some
positive integer k.

Proof. Construct a bipartite graph H with the inputs and the outputs as the two
parts of vertices, and an edge between u and v if there exists a request between u and
v. Since each vertex can have at most k edges, the edges of H can be k-colored. Edges
of a given color represent a matching between inputs and outputs. Since the network
is assumed to be rearrangeable for the classical circuit switching, it can route any such
matching (where each internal link carries at most one path). When we combine the
routing of the k colors, then each internal link carries at most k paths, one in each
color. Therefore, the load of an internal link is upper bounded by k(1/k) = 1.

Corollary 2. A network which is strictly nonblocking for the classical circuit
switching is multirate rearrangeable if all weights not exceeding 1−b are in the interval
(1/(k + 1), 1/k], where k = b1/bc for some 0 < b ≤ 1/2.

Proof. Each input (output) can be involved with at most one request with weight
exceeding 1 − b. Since the network is strictly nonblocking for the classical circuit
switching, it can route all these large weights. Delete these requests from the request
frame and delete these paths from the network; the remaining network must still
be strictly nonblocking, hence rearrangeable for the remaining inputs and outputs.
Apply Theorem 2.

By k-rate we mean that the set of weights consists of k distinct numbers.

Corollary 3. C(n, kn, r) is k-rate rearrangeable.

Proof. Let w1, . . . , wk denote the k types of rate. Reserve n center switches for
each type.

Let Mk(n, r) denote M(n, r) conditional on k-rate. Clearly, M1(n, r) ≥ n, and
by Theorem 2, M1(n, r) = n. By stretching an example given by Chung and Ross for
n = 2, we obtain the following theorem.

Theorem 3. M2(n, r) ≥ n+ 1 for r ≥ 3.

Proof. Suppose n colors suffice. Label the inputs (outputs) of the ith input
(output) switch by the set {(i−1)n+ 1, . . . , in}. Consider a request frame containing
the following requests: {(i, i, 1), 1 ≤ i ≤ 2n − 1, i 6= n, (n, 2n, 1/2), (n, 3n, 1/2),
(2n, 2n + 1, 1)}. Since the n − 1 weights (i, i, 1), 1 ≤ i ≤ n − 1, must each take a
different color, (n, 2n, 1/2) and (n, 3n, 1/2) must take the same color, say blue. Then
the n unity weights from the second input switch must have distinct colors other than
blue, which is impossible.

Theorem 4. M3(n, r) ≥ 11n/9 for r ≥ 3.

Proof. Consider a bipartite graph with vertices (X,Y, Z)× (U, V) and the request
frame {(X,U, 0.6)2n/3, (Y,U, 0.4)2n/3, (Z,U, 0.7)n/3, (X,V, 0.7)n/3, (Y, V, 0.7)2n/3},

ON MULTIRATE REARRANGEABLE CLOS NETWORKS 467

where the exponent indicates the number of copies of the request in the (multi)set.
Note that at vertex Y , the 2n/3 0.4-weights can come from n/3 inlets each having
two-requests.

Consider vertex U and let f denote the proportion of 0.4-weights which are paired
with 0.6-weights in coloring. Note that a 0.7-weight cannot be paired with any weight.
The number of colors at U is at least n+(2n/3−fn)/2, where the latter term denotes
the number of colors required by those 0.4-weights paired with each other (but not
with the 0.6-weights). Note that none of those fn colors can appear at vertex V , or
a conflict would have occurred either at vertex X or vertex Y . Hence at least n+ fn
colors are required. Therefore

M3(n, r) ≥ max

{
n+

2n/3− fn
2

, n+ fn

}
≥ max

{
n+

2n/3− 2n/9

2
, n+ 2n/9

}
= 11n/9 .

3. The general weight case. We first prove a lemma.
Lemma 3. Suppose that all weights > 1/f , f an integer, are colored by a set C of

c ≥ 2n colors. Then at most d(c− 2)/f − c+ 2ne additional colors are needed which,
together with C, color all weights ≤ 1/f .

Proof. Color the small weights (those ≤ 1/f) by C until no more coloring is
possible. Let S denote the bipartite graph on the uncolored small weights. We prove
that the maximum degree of S ≤ c− 2− (c− 2n)f . Consider vertex u. Let w be the
minimum weight at u in S. Suppose w is between vertices u and v. Let Wj(i) denote
the weight of all edges in color j ∈ C at vertex i. Then for each j,

Wj(u) +Wj(v) ≥ max{Wj(u), Wj(v)} > 1− w ,

or w would be colored by j. Summing over all j,

W (u) +W (v) ≡
∑
j∈C

Wj(u) +
∑
j∈C

Wj(v) > c(1− w) .

But

W (v) ≤ n− w .

Hence

W (u) > c(1− w)− (n− w) = c− n− (c− 1)w .

This implies that the total uncolored small weights involving u is at most

n−W (u) < (c− 1)w − c+ 2n .

But a small weight is lower bounded by w, hence the number of small weights at u is
fewer than

c− 1− c− 2n

w
≤ c− 1− (c− 2n)f for c ≥ 2n .

Since u is arbitrary, S has maximum degree c − 2 − (c − 2n)f , and hence can be
dc − 2 − (c − 2n)fe-colored by the König theorem. But each color has at most one

468 D. DU, B. GAO, F. HWANG, AND J. KIM

edge at a vertex and the weight of that edge is at most 1/f . Hence we can combine
any f colors into one and the weight of each color at a vertex is still at most one.
Therefore, the number of additional colors required is d(c− 2)/f − c+ 2ne.

Let dG(v) denote the degree of a vertex v in G. A spanning subgraph of G is a
subgraph with the same vertex-set as G (although a vertex can have zero degree). We
quote a result from de Werra [6] (also see Lovász [4, p. 56]).

Lemma 4. Let G be any bipartite graph and suppose k ≥ 1. Then G is the union
of k edge-disjoint spanning subgraphs G1, . . . , Gk such that⌊

dG(v)

k

⌋
≤ dGi(v) ≤

⌈
dG(v)

k

⌉
for each v ∈ G .

The subgraphs are required to be spanning so that the “union” operation is well
defined.

Theorem 5. C(n,m, r) is rearrangeable if m ≥ d(41n − En)/16e, where En =
8, 5, 6, 3 if n ≡ 0, 1, 2, 3 (mod 4).

Proof. Partition the weights into large: w > 1/2, medium: 1/4 < w ≤ 1/2,
and small: 0 < w ≤ 1/4. Let li(mi) denote the number of large (medium) weights
associated with vertex i. Then li ≤ n and mi ≤ li + 3(n− li) since each external link
having a large weight can have at most one medium weight, and each other external
link can have at most three medium weights. For easier presentation, assume 4 divides
n.

Consider the bipartite graph G defined in section 2. Let L denote the subgraph
of G consisting of only edges of large weights and M consisting of medium weights.
By Lemma 4, M = M1∪M2, where M1 and M2 are edge-disjoint spanning subgraphs
of M and for j = 1, 2, dMj (i) ≤ 3n

2 − li for all vertices i in M .

Let L′ = L + M1. Then vertex i has degree at most 3n/2 in L′. Hence edges
in L′ can be 3n/2-colored. Furthermore, edges in M2 can also be 3n/2-colored. But
since each edge in M2 has weight at most 1/2, we can combine any two colors into
one without violating the condition that each color carries a load not exceeding one.
In other words, M2 can be 3n/4-colored in our sense.

Let C denote the set of colors used in coloring L′ and M2. Then |C| ≤ 3n/2 +
3n/4 = 9n/4. Add colors to C, if necessary, so that |C| = 9n/4. By Lemma 3, the
small weights can be colored in at most (f = 4)⌈

9n/4− 2

4
− (9/4− 2)n

⌉
=

⌈
5n− 8

16

⌉
additional colors. Hence the total number of colors needed is

9n

4
+

⌈
5n− 8

16

⌉
=

⌈
41n− 8

16

⌉
.

The case in which 4 does not divide n can be derived similarly.

Note that

M(n, r) ≥Mk(n, r) ≥Mk−1(n, r) for k ≥ 2 .

Hence any lower bounds of Mk(n, r), in particular, those obtained in section 2, are
also lower bounds of M(n, r).

ON MULTIRATE REARRANGEABLE CLOS NETWORKS 469

4. Extensions. We first note that Theorems 1–5 are independent of r (Theo-
rems 3 and 4 require r ≥ 3); hence they hold even if the input stage and the output
stage have different numbers of switches. Next we consider the case in which the
number of inlets per input switch is different from the number of outlets per output
switch. Namely, consider the asymmetric 3-stage Clos network C(n1, n2,m, r1, r2)
whose input stage consists of r1 n1 × m crossbars, whose center stage consists of
m r1 × r2 crossbars, and whose output stage consists of r2 m × n2 crossbars. De-
fine n = max(n1, n2). Without loss of generality, assume n = n1. Add n − n2

imaginary outlets to each output switch. Then C(n1, n2,m, r1, r2) can be treated as
C(n, n,m, r1, r2), except the imaginary outlets do not appear in the request frame.
Thus we have Theorem 6.

Theorem 6. C(n1, n2,m, r1, r2) is multirate rearrangeable if m ≥ d(41n −
En)/16e, where n = max{n1, n2}.

With Theorem 4 we can generalize our result on three-stage Clos networks to
multistage Clos networks. A (2k + 1)-stage, k ≥ 2, Clos network can be obtained
from a (2k − 1)-stage Clos network by replacing a stage of p × q crossbars with a
C(n1, n2,m, r1, r2) such that n1r1 = p and n2r2 = q.

Theorem 7. Suppose that we start with a multirate rearrangeable Clos network
and then replace the crossbars only with multirate rearrangeable three-stage Clos net-
works. Then the resultant network is multirate rearrangeable.

Note that the external links of the three-stage Clos networks replacing the cross-
bars are internal links of the multistage Clos network. This explains why we assume
that both external and internal links have the same capacity in the three-stage Clos
network model.

For applications in which the external links have a capacity larger than the in-
ternal link, let k denote the smallest integer not less than the external link capacity.
By partitioning each request (x, y, w) into k copies of (x, y, w/k), we can handle each
copy by the results obtained for the uniform case. The corresponding results for the
nonuniform case are obtained by multiplying by a factor of k.

5. The weighted edge-coloring problem. LetG = (V,E,W) denote a weight-
ed multigraph where each edge e is associated with a weight w(e) ∈W , b ≤ w(e) ≤ B,
and b and B are constants satisfying 0 < b ≤ B ≤ 1. The edges are to be colored such
that for each vertex v and each color c, the sum of weights of all edges incident to v
with color c is at most unity. The problem is to minimize the number of colors. For
b = B = 1, the weighted edge-coloring problem is reduced to the usual edge-coloring
problem. Surprisingly, this very natural extension of the edge-coloring problem seems
to have been neglected in the literature.

The notion of maximum degree plays an important role in the edge-coloring prob-
lem. In the weighted version, the counterpart is the maximum load of a vertex while
the load of a vertex is the sum of weights of all edges incident to it.

The routing problem studied in this paper corresponds to a bipartite weighted
edge-coloring problem where the maximum load is n. However, Theorems 1–4 assume
some information from the external links which are not in G; i.e., the load of a vertex
can be decomposed into n subsets each having a load at most unity. We now give
a result on the bipartite weighted edge-coloring problem which does not assume this
extraneous condition.

Let W (n) denote the minimum number of colors required in the above bipartite
weighted edge-coloring problem.

Theorem 8. W (n) ≤ d(17n− 5)/6e .

470 D. DU, B. GAO, F. HWANG, AND J. KIM

Proof. For a given vertex i partition all its weights into li large weights: w > 1/2,
mi medium weights: 1/2 ≥ w > 1/3, and si small weights: w ≤ 1/3. Let L,M , and
S denote the bipartite graphs on the large, medium, and small weights, respectively.
Then

li
2

+
mi

3
≤ n,

or equivalently,

mi ≤ 3n− 3li
2
.

By Lemma 4, M = M1∪M2∪M3, where the Mi’s are edge-disjoint spanning subgraphs
of M such that dMj

(i) ≤ dn− li/2e. Let L′ denote the union of L,M1, and M2. Then
the maximum degree of L′ is at most

max
i

{
li + 2

(
n− li

2

)}
= 2n,

hence 2n colors suffice to color L′.
The maximum degree of M3 is at most

max
i

{⌈
n− li

2

⌉}
≤ n ,

hence n colors suffice to color M3. But since the weight of each edge in M3 does not
exceed 1/2, we can combine any two colors into one, and the weight of a color at a
vertex still does not exceed one. Hence dn2 e colors suffice for M . Adding the colors
in L′ and M3, we have

2n− 1 +
⌈n

2

⌉
≤ 5n− 1

2
.

By Lemma 4 (f = 3), at most⌈
(5n− 5)/2

3
− 5n− 1

2
+ 2n

⌉
=

⌈
n− 1

3

⌉
additional colors are needed. So the total number of colors is at most d 17n−5

6 e.
Next we prove a lower bound of W (n).
Theorem 9. W (n) ≥ 2n− 1.
Proof. Let vertex v have 2n − 1 edges of weight n/(2n − 1) > 1/2. Then all of

these 2n− 1 edges must have distinct colors.

Acknowledgment. We thank a referee for many helpful comments.

REFERENCES

[1] V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press, New York, 1965.

[2] S.-P.Chung and K. W. Ross, On nonblocking multirate interconnection networks, SIAM J.
Comput., 20 (1991), pp. 726–736.

[3] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre,
Math. Ann., 77 (1916), pp. 453–465.

[4] L. Lovász, Combinatorial Problems and Exercises, 2nd ed., North Holland, Amsterdam, 1993.
[5] R. Melen and J. S. Turner, Nonblocking multirate networks, SIAM J. Comput., 18 (1989),

pp. 301–313.
[6] D. de Werra, Balanced schedules, Inform. J., 9 (1971), pp. 453–465.

FINDING THE CONSTRAINED DELAUNAY TRIANGULATION
AND CONSTRAINED VORONOI DIAGRAM OF A SIMPLE

POLYGON IN LINEAR TIME∗

FRANCIS CHIN† AND CAO AN WANG‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 471–486

Abstract. In this paper, we present an Θ(n) time worst-case deterministic algorithm for finding
the constrained Delaunay triangulation and constrained Voronoi diagram of a simple n-sided polygon
in the plane. Up to now, only an O(n logn) worst-case deterministic and an O(n) expected time
bound have been shown, leaving an O(n) deterministic solution open to conjecture.

Key words. algorithm, computational geometry, constrained Delaunay triangulation, polygon,
Voronoi diagram

AMS subject classifications. 68P05, 68Q20, 68Q25, 68U05

PII. S0097539795285916

1. Introduction. Delaunay triangulation and Voronoi diagram, duals of one
another, are two fundamental geometric constructs in computational geometry. These
two geometric constructs for a set of points as well as their variations have been
extensively studied [17, 3, 4]. Among these variations, Lee and Lin [15] considered
two problems related to constrained Delaunay triangulation:1

(i) the Delaunay triangulation of a set of points constrained by a set of noncross-
ing line segments, and

(ii) the Delaunay triangulation of the vertices of a simple polygon constrained by
its edges.

They proposed an O(n2) algorithm for the first problem and an O(n log n) al-
gorithm for the second one. While the O(n2) upper bound for the first problem was
later improved to Θ(n log n) by several researchers [6, 21, 18], the upper bound for
the second has remained unchanged and the quest for an improvement has become a
recognized open problem [1, 3, 4].

Recently, there have been some results related to this open problem on the De-
launay triangulation of simple polygons. Aggarwal et al. [2] showed that the con-
strained Delaunay triangulation of a convex polygon can be constructed in linear time.
Chazelle [5] presented a linear-time algorithm for finding an “arbitrary” triangulation
of a simple polygon. Klein and Lingas showed that the aforementioned open problem
for L1 metrics can be solved in linear time [12], and this problem for the Euclidean
metrics can be solved in expected linear time by a randomized algorithm [13]. These
efforts all seem to point toward a linear solution to the Delaunay triangulation of
simple polygons and support the intuition that the simple polygon problem is easier
than the noncrossing line segment problem.

In this paper, we settle this open problem by presenting a deterministic linear-
time worst-case algorithm. Our approach follows that of [13]:

∗Received by the editors May 5, 1995; accepted for publication (in revised form) August 22, 1996;
published electronically July 28, 1998. This work was partially supported by the RGC research grant
HKU 439/94E and the NSERC grant OPG0041629.

http://www.siam.org/journals/sicomp/28-2/28591.html
†Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong

(chin@cs.hku.hk).
‡Department of Computer Science, Memorial University of Newfoundland, St. John’s, NFLD,

Canada A1C 5S7 (wang@garfield.cs.mun.ca).
1Same as generalized Delaunay triangulation as defined in [15]

471

472 FRANCIS CHIN AND CAO AN WANG

(i) first decomposing the given simple polygon into a set of simpler polygons,
called pseudonormal histograms (PNHs),

(ii) constructing the constrained Delaunay triangulation of each normal
histogram (NH), and

(iii) merging the constrained Delaunay triangulations of all these NHs to get the
result.

In this three-step process, the first and third steps were shown to be possible in
linear time, but the second step was done in expected linear time by a randomized
algorithm. Our contribution is to show how this second step can be done in linear
worst-case time deterministically.

The organization of the paper is as follows. In section 2, we review some definitions
and known facts, which are related to our method. In section 3, we concentrate on how
to construct the constrained Delaunay triangulation or constrained Voronoi diagram
of a normal histogram in linear time. We conclude the paper in section 4.

2. Preliminaries. In this section,
(i) we define the constrained Delaunay triangulation and its dual, the constrained

Voronoi diagram,
(ii) we define PNHs, and
(iii) to put our solution of how to construct the constrained Voronoi diagram of a

PNH into perspective, we explain the approach taken to first partition any
simple polygon into PNHs and then merge constrained Voronoi diagrams of
these pseudodiagrams for the solution of the original polygon.

2.1. Constrained Delaunay triangulations and constrained Voronoi dia-
grams. The constrained Delaunay triangulation [15, 6, 21, 18] of a set of noncrossing
line segments L, denoted by CDT (L), is a triangulation of the endpoints S of L
satisfying the following two conditions:
(i) the edge set of CDT (L) contains L, and
(ii) the line segments in L are treated as obstacles and the interior of the circumcircle

of any triangle of CDT (L), say ∆ss′s′′, does not contain any endpoint in S
visible2 to all vertices s, s′, and s′′.

Essentially, the constrained Delaunay triangulation is the Delaunay triangulation
with the further constraint that the triangulation must contain a set of designated line
segments. Figure 1a shows the constrained Delaunay triangulation of two obstacle
line segments and a point (a degenerated line segment). In particular, if L forms a
nonintersecting chain C, monotone with respect to a horizontal line l, we are only
interested in the portion of CDT (C) between C and l. If L forms a simple polygon
P , we only consider the portion of CDT (P) internal to P .

Given a set of line segments L, we can define the Voronoi diagram with respect
to L as a partition of the plane into cells, one for each endpoint set S of L, such that
a point p belongs to the cell of an endpoint v if and only if v is the closest endpoint
visible from p. Figure 1b illustrates the corresponding Voronoi diagram for the set
of line segments given in Figure 1a. Unfortunately, this Voronoi diagram is not the
complete dual diagram of CDT (L) [3]; i.e., some of the edges in CDT (L) may not
have a corresponding edge in this Voronoi diagram.

In [18, 16, 9], the proper dual for the constrained Delaunay triangulation has
been defined as the constrained (or bounded) Voronoi diagram of L, denoted by Vc(L).

2Two points are visible to each other if the straight line joining them does not intersect any line
segments in L.

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 473

a

b

e

the portion of Voronoi diagram

side of obstacle (ab).

plane

on the sheet attached on upper

sheet

c
d

a

b

The portion of Voronoi diagram

side of obstacle (ab).

plane

on the sheet attached on lower

bc

a
e

e

c

d

a

(a) the constrained Delaunay triangulation of
line segments (ab) and (cd), and point e, (L).

(c) Constrained Voronoi diagram on ‘extended’ space.

b

d

plane

sheet

sheet

(b) Voronoi diagram w.r.t. L

Fig. 1. Constrained Delaunay triangulation and constrained Voronoi diagram.

Imagine two sheets or half-planes attached to each side of the obstacle line segments;
for each sheet, there is a well-defined Voronoi diagram that is induced only by the
endpoints on the other side of the sheet excluding the obstacle line segment attached
to the sheet. The constrained Voronoi diagram extends the standard Voronoi diagram
by including the Voronoi diagrams induced by the sheets, i.e., the extended Voronoi
diagrams beyond both sides of each line segment in L. Figure 1c gives an example
of Vc(L), the Voronoi diagrams on the plane and on the two sheets of the obstacle
line segment ab. Note that the Voronoi diagrams on the two sheets of the obstacle
line segment cd happened to be the same as the Voronoi diagram on the plane. With
this definition of Vc(L), there is a one-to-one duality relationship between edges in
Vc(L) and edges in CDT (L). It was further proved in [18, 9] that the dual diagrams,
CDT (L) and Vc(L), can be constructed from each other in linear time. For simplicity,
we omit the word “constrained” over Voronoi diagrams in this paper as all the Voronoi
diagrams are deemed to be constrained unless they are explicitly stated to be standard
Voronoi diagrams.

474 FRANCIS CHIN AND CAO AN WANG

x

y

v

v

v
v

v

v

v
v

1

2

4

5

7

8

9

6

3

v

v

v
v

v

v

v

v
v

1

2

4

5

7

8

9

6

3

10

(a) a normal histogram.

v

v
10

(b) a pseudo-normal histogram.
10

v’

Fig. 2. NH and PNH.

2.2. PNHs. A NH [8] is a monotone polygon with respect to one of its edges,
called the bottom edge, such that all the vertices of the polygon lie on the same side of
the line extending the bottom edge (Figure 2a gives an example). A PNH [13] with a
bottom edge e is a simple polygon which, by adding at most one right-angle triangle
flush with e, can be transformed into a NH whose bottom edge is the extension of e by
the colinear edge of the triangle. Intuitively, a PNH can be viewed as a NH missing
one of its bottom corners; i.e., a PNH can be transformed into a NH by adding a
right-angle triangle at its bottom3 (Figure 2b).

3 4

5

7

8
9

10

11 e

2

1

6

e’

13

2 3 4

6 7

9 10 11

1213

5

8

1

12

Fig. 3. A decomposition of P into a tree of PNHs.

2.3. Decomposition of a simple polygon into PNHs. Figure 3 illustrates
how a polygon P is decomposed into 13 PNHs. PNH1 is associated with the vertical
bottom edge e missing its upper bottom corner; PNH2, associated with the horizontal
bottom edge e′, is missing its left bottom corner, etc.

A simple polygon P with n vertices can be decomposed into PNHs in O(n) time
according to [13] when provided with what are known as the horizontal and vertical
visibility maps of P (Figure 4), which in turn can be obtained in linear time according
to [5]. A diagonal of P is a line segment joining two vertices of P and lying entirely
inside P , while a chord of P is a line segment which

3Our definition of PNH is different from that given in [13], in which a PNH might be missing both
bottom corners. Following the same approach as given in [13], decomposition of a simple polygon
into PNHs is also possible with our definition.

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 475

P

Fig. 4. Horizontal and vertical visibility maps of simple polygon P .

(i) lies entirely inside P ,
(ii) is parallel to the designated bottom edge, and
(iii) joins a vertex and a boundary point of P (such a boundary point is called a

pseudovertex).
The horizontal visibility map of a simple polygon P is the set of horizontal chords

associated with every vertex of P . Note that every vertex of P is associated with at
most two chords, and the horizontal visibility map partitions P into a number of hor-
izontal trapezoids (horizontal trapezoidal decomposition or horizontal trapezoidation).
The vertical visibility map can be defined similarly.

The decomposition of P into PNHs starts with an arbitrary edge e of P as the
bottom edge of the first PNH. The interior of the PNH refers to the part of P that
is illuminated by the parallel light emanating into PNH perpendicular to e from its
pseudobottom edge e ∪ es, where es is the edge (if any) incident to e at an interior
angle between 90◦ and 180◦, i.e., the hypotenuse of the missing right-angle triangle.
The boundary edges of the PNH that are not edges of P will be the bottom edges in
the next step.

The decomposition of P can then be represented by a tree such that each tree
node is a PNH and each tree edge represents the adjacency of two PNHs sharing a
chord. Consider the example as given in Figure 3: PNH1, with an edge of P as its
bottom edge, is classified as the root. For each edge in PNH1 which is not an edge of
P , we regard it as the bottom edge for a son of PNH1. PNH2, PNH3, and PNH4

are sons of PNH1 whose bottom edges are all horizontal, whereas PNH2 is on one
side facing PNH3 and PNH4, which are on the other. Similarly, the grandsons of
PNH1 are those with vertical bottom edges adjacent to sons of PNH1, etc.

2.4. Merging the Voronoi diagrams of PNHs. It has been proved [13] that
a Voronoi cell in Vc(P) of a vertex in a PNH would not share any boundary edge with
a Voronoi cell of a vertex in another PNH as long as these two vertices are not shared
by these two PNHs, and these two PNHs are
(i) at the same depth not facing each other, or
(ii) with their corresponding depths at least two apart.

The Voronoi diagram of a PNH is first merged with the extended Voronoi diagram
of its parent, then with those of its sons on one side, and finally with those of the
remaining sons on the other. Condition (ii) ensures that the extended Voronoi diagram
of its parent will not share any boundary with those of its sons, and thus, only those of

476 FRANCIS CHIN AND CAO AN WANG

its neighbors (sons and parent) have to be considered in the construction of the part of
the Voronoi diagram Vc(P) in a PNH. Condition (i) ensures that merging the Voronoi
diagram of a PNH with the extended ones of its sons will trace the bisectors between
sites of the PNH at most twice (once for sites on each side) [10, 11, 14, 17, 19]. So, the
merging of Voronoi diagrams at each PNH can be done in time linearly proportional
to the total size of the PNH and all its sons. Thus, the Voronoi diagram Vc(P) can
be obtained in time linearly proportional to the size of P by merging the Voronoi
diagram of each PNH together with the extended ones of its neighbors.

In order to find Vc(P) in deterministic linear time, what remains to be solved
is the efficient construction of the constrained Voronoi diagram of a PNH. In [13], a
randomized algorithm is introduced to find the Voronoi diagram of a NH in expected
linear time. The Voronoi diagram of the corresponding PNH can then be obtained by
removing the bottom vertex from the Voronoi diagram of this NH, and this can be
done in time linearly proportional to the size of the NH. In the next section, we shall
concentrate our effort to design a linear-time deterministic algorithm for constructing
the Voronoi diagram of a NH.

3. Finding the constrained Voronoi diagram of an NH. Given a normal
histogram H with a horizontal bottom edge e, H is decomposed recursively into a
tree, say TI , of smaller normal histograms called influence normal histograms (INH),
where a node of TI corresponds to an INH and an edge of TI indicates an adja-
cency between two INHs. A formal definition of INH with an algorithmic method
of construction will be given in section 3.2. In Figure 5, node 0 (the root INH) is
(v1, v

′
3, v3, v

′′
3 , v5, v6, v7, v8, v9, v10, v

′
12, v12, v13, v

′
13, v25, v

′
25, v28, v

′
28, v33, v34, v35).

Nodes 1–6 form the second level and are sons of node 0.
Node 1 = (v′3, v2, v3),
Node 2 = (v3, v4, v

′′
3),

Node 3 = (v′12, v11, v12),
Node 4 = (v13, v14, v

′
14, v

′
13),

Node 5 = (v25, v26, v27, v
′
25), and

node 6 = (v28, v
′
30, v30, v

′
32, v32, v

′
28).

Nodes 7–9 form the third level with
Node 7 = (v14, v15, v16, v17, v

′
17, v19, v20, v21, v22, v23, v24, v

′
14),

Node 8 = (v′30, v29, v30),
Node 9 = (v′32, v31, v32).

Node 10 = (v17, v18, v
′
17) is on the fourth level.

The decomposition ensures that the portion of Voronoi diagram Vc(H) in each
INH can only be affected by its own vertices and the vertices of its sons and nothing
beyond. In general, the Voronoi cells of Vc(H) associated with vertices of an INH
might cross its bottom edge and share edges with Voronoi cells associated with vertices
of its parent, but not with those of its brothers or its grandparents. Similarly, the
Voronoi cells of an INH would not share any boundary with those of its grandsons.
This property implies that, should the Voronoi diagrams of the INHs (Vc(INH)) be
given, the repeated merging of the Voronoi diagrams of the adjacent INHs can be
done in time linearly proportional to the sum of their sizes.

Let V (p) denote the Voronoi cell associated with vertex p in a Voronoi diagram.
A point p in a normal histogram H is called an influence point if the Voronoi cell V (p)
in Vc(H ∪ {p}) will cross H’s bottom edge e. The set of influence points is called the
influence region (IR) with respect to bottom edge e. Consider Figure 5: the IR of H
with respect to v1v35 (the bottom edge e) is the region enclosed by v̂1v5, v5v6, v6v7,
v7v8, v8v9, v9v10, v̂10v25, v̂25v28, v̂28v34, v34v35, and v35v1, where xy and x̂y represent,

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 477

respectively, the straight line and the arc joining vertices x and y. The root (or root
INH) of TI is defined as the NH enclosing all influence points of H and consisting of
all horizontal trapezoids that intersect the IR. In other words, the root INH would
contain all its horizontal chords which will intersect the IR of H, i.e., the smallest
NH containing IR in the sense that the INH is bound above by the lowest horizontal
chords which do not intersect IR. As an example, the root INH is indicated by the
unshaded region in Figure 5. Let us now consider the part of H excluding the root
INH, which consists of zero or more disjoint polygons. Each polygon is also a NH with
a chord as its bottom edge. As given in Figure 5, H is decomposed into a root INH
and six other NHs, i.e., the NHs above chords v′3v3, v3v′′3 , v′12v12, v13v′13, v25v′25, and
v28v′28. For example, the NH above chord v28v′28 is (v28, v29, v30, v31, v32, v

′
28). The

decomposition can be recursively applied to each of these NHs.
Since any node of TI does not contain the influence points of its parent by the

definition of INH, the Voronoi cell associated with a vertex in any node of TI could
not cross the bottom edge of its parent. Thus, the part of Vc(H) within the root can
be formed by merging the Voronoi diagram of the root INH with those of its sons. As
the Voronoi cells associated with the internal vertices of an INH never share any edges
with the Voronoi cells of its brother INH (Theorem 1), the merging can be performed
in O(m0 +

∑s
i=1mi) time, where m0 is the number of vertices of the root, s is the

number of its sons, and mi is the number of vertices of its ith son.
Theorem 1. Let v1 be a vertex of INH1 with bottom edge u1w1 and v2 be a

vertex of INH2 with bottom edge u2w2. Assume that INH1 and INH2 are brothers
in TI , v1 6= u1, v1 6= w1, v2 6= u2, and v2 6= w2. Then, the Voronoi cell of v1 will
never share any point with the Voronoi cell of v2.

Proof. Without loss of generality, assume that u1w1 is on the left-hand side of
u2w2; i.e., u1 < w1 ≤ u2 < w2 according to their x-coordinates. We show that there
does not exist a point p in H
(i) that is equidistant to v1 and v2, and
(ii) for which there exists no other vertex in H closer to p than v1 and v2.

Assume p exists. Since p is in H, p has to lie directly under u1w1 in order to be
closer to v1 than to u1 or w1, i.e., u1 < p < w1. Similarly, p has to lie directly under
u2w2, i.e., u2 < p < w2. Obviously, p cannot simultaneously satisfy both conditions.

For example, the Voronoi cell of v14 in INH4 never shares any point with the
Voronoi cell of v26 or v27 in INH5. Let M(n) denote the merging time for constructing
Vc(H) with | H |= n when provided with the Voronoi diagram of every INH in TI .
Then, we have M(n) = k(m0 +

∑s
i=1mi) +

∑s
i=1M(ni), where k is a constant and

ni is the number of vertices of the ith subtree. As n = m0 +
∑s
i=1 ni, we can show

that M(n) = k(2n −m0) by induction. Thus, the total merging time is O(n). Note
that in the above calculation, the pseudovertices are also counted. As n is at most
thrice the actual number of vertices of H (as each vertex of H might associate with
at most two pseudovertices), the total merging time is still linearly proportional to
the actual number of vertices of H.

In the following sections, we shall prove the properties of the IR and the INH
which allow us to do efficient merging and identification.

3.1. IR. Let HV be a subpolygon of NH H, consisting of the bottom edge of H
and all those vertices of H with the property that their associated Voronoi cells in
Vc(H) cross the bottom edge of H. HV can also be viewed as the maximum subse-
quence of the vertices of H having this property. As H is a NH, HV will also be a

478 FRANCIS CHIN AND CAO AN WANG

29v v31
v32

v

7

34

8
v

25v

v

n)35v

v

(v

5
v

28v

10
v

11
v

v
12

27

14

15
v

v
17

18
v

26

v

3

v

9
v

v
16

13
v

20
v

v21 23vv22
24v

v

v

6

v

4

v
1

v
2

v’ v’

the bottom edge of H

v’

v’
3

3
v’’

12

25

30v’

30v 32

v33

28v’

H

A tree of INH’s of H

TI

x

z

10

7

4 5 6

98

321

0

v’17
v19

v’14

v’13

Fig. 5. Decomposition of H into INHs and TI .

NH sharing the same bottom edge as H. Let us consider the example given in Fig-
ure 5 again, in which HV is indicated by the sequence of vertices (v1, v5, v6, v7, v8, v9,
v10, v25, v28, v34, v35).

Lemma 1. All points in HV are influence points.
Proof. By the definition of HV , the bisector of two adjacent vertices (except the

two vertices of the bottom edge) of HV , which forms part of the Vc(H), always crosses
the bottom edge of H. In other words, HV are partitioned by these bisectors into cells,
each of which is associated with one of its vertices. These cells resemble the Voronoi
cells of Vc(H). In fact, each of these cells in Vc(HV) always includes its corresponding
Voronoi cell in Vc(H). These bisectors also partition the bottom edge into segments
according to their closest vertices in H or HV . It is sufficient to prove this lemma
by showing that given any point x in HV , there always exists a point on the bottom
edge which is closer to x than to any vertex in H; i.e., V (x), the Voronoi cell of x,
in Vc(H ∪ {x}) would cross the bottom edge. Let x be a point in HV , in particular,
in a Voronoi cell V (u), corresponding to vertex u in Vc(HV). Furthermore, let the
extended line of ux intersect the boundary of this Voronoi cell V (u) at y, which may
be a point on the bottom edge or a point on a bisector. If y is on the bottom edge, let
z be y; otherwise let z be the intersection point of that bisector and the bottom edge.
An example is given in Figure 5, where x is in V (v10), i.e., u = v10. As ∠uxz > 90◦,
z is always closer to x than to u by the triangular property. It is easy to see that
z is closer to x than to any other vertices in H, thus z is a point on the bottom
edge that belongs to V (x); i.e., V (x) crosses the bottom edge. Hence, x belongs to
the IR.

In general, the IR includes some regions not belonging to HV . Let b be a boundary
edge of HV . If b is also an edge of H, then b must be an edge of the IR, e.g., v5v6,
v6v7, v7v8, etc. in Figure 5. However, if b = uw is a diagonal of H, then the IR must
include some region of H above b and below the circular arc ûw, where ûw is part of

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 479

the semicircle above the bottom edge. (The semicircle is uniquely defined by boundary
points u and w and center c, where c is the intersection point of the bottom edge and
the perpendicular bisector of u and w.) Let Ouw denote the region in H above b
(i.e., outside HV) and below the circular arc ûw, and let Ov1v5 , Ov10v25 , Ov25v28 , and
Ov28v34 be such examples in Figure 5. Then we have the following theorem.

Theorem 2. IR = (∪uw∈DOuw) ∪HV , where D is the set of edges of HV which
are diagonals of H.

Proof. By Lemma 1, we need to prove IR−HV = ∪uw∈DOuw (as HV ∩Ouw = φ).
Consider a point p inH, but not inHV . Then, point pmust lie above an edge uw ofHV

which is a diagonal of H. On one hand, if point p ∈ Ouw, then bup and bpw will cross
the bottom edge before intersecting each other, where bxy denotes the perpendicular
bisector of vertices x and y, and thus p belongs to the IR; i.e., IR−HV ⊇ ∪uw∈DOuw.
On the other hand, if p 6∈ Ouw, then bup and bpw will intersect each other above the
bottom edge, and thus p does not belong to the IR; i.e., IR − HV ⊆ ∪uw∈DOuw.

Corollary. Assume a NH H and let HV = (v0, v1, . . . , vn). Then the IR with
respect to H can be defined by keeping the sequence of vertices of HV and by replacing
all diagonals vivi+1 of H in the sequence of HV by an arc v̂ivi+1.

3.2. INH. As the root INH is the smallest NH containing the IR, an INH would
contain all the edges of the IR, in particular, those edges of HV (Theorem 2) which are
also edges of H (e.g., v5v6, v6v7, v7v8, etc. in Figure 5). As Ouw is part of the IR for
every uw ∈ D (Theorem 2), the remaining edges of an INH above uw would be those
chords and edges of H enclosing Ouw. Thus, we define HB above uw as the smallest
NH containing Ouw, which consists of edges (or parts of edges) of H and the lowest
horizontal chord which do not intersect the IR. For example, as in Figure 5, the HB ’s
are (v1, v

′
3, v3, v

′′
3 , v5), (v10, v

′
12, v12, v13, v

′
13, v25), (v25, v

′
25, v28), and (v28, v

′
28, v33, v34).

Now, we can have a precise description of an INH. There are two types of vertices
in an INH, the vertices of HV and the vertices of HB ’s, with one HB for each edge in
D. Thus, any vertex in an INH that is not in HV will be in HB , and the endpoints of
any edge in D will be vertices in both HV and HB . In the following, we shall describe
the properties of HB and HV and show that the Voronoi diagram of an INH can be
constructed in linear time.

A monotonic histogram is an NH such that if the bottom edge is on the x-axis,
then the x-coordinates of the vertices along the boundary are monotonically non-
decreasing, and the y-coordinates of the vertices (except the last vertex) along the
boundary are monotonically nondecreasing or nonincreasing. A bitonic histogram is a
composition of two monotone histograms such that the x-coordinates of the vertices
along the boundary are monotonically nondecreasing, and the y-coordinates of the
vertices along the boundary are first monotonically nondecreasing on one side and
then monotonically nonincreasing on the other.

Lemma 2. HB is bitonic.
Proof. Since HB is the smallest NH enclosing Ouw, all its internal horizontal

chords will intersect with Ouw; i.e., all vertices of HB , except possibly the top vertex
and its associated pseudovertex (vertices), should be horizontally visible from Ouw.
As HB consists of only edges (or parts of edges) and chords of H, all edges of HB

should be monotonically nondecreasing in the x- and y-coordinates on one side and
monotonically nondecreasing in the x-coordinate but monotonically nonincreasing in
the y-coordinate on the other. Thus, HB is bitonic.

Lemma 3. The Voronoi diagrams of HB and HV can be constructed in linear
time.

480 FRANCIS CHIN AND CAO AN WANG

Proof. It is shown in [8] that the Voronoi diagram of a monotonic histogram can
be constructed in linear time. Because HB can be partitioned into two monotonic
histograms by the vertical line through its highest vertex or edge (Lemma 2), the
Voronoi diagrams of two such monotonic polygons can be merged in linear time [20,
13]. Thus, Vc(HB) can be found in linear time. As far as HV is concerned, because the
vertices on the boundary of HV are in sorted order according to their x-coordinates
(property of the NH), the extended Voronoi diagram below the bottom edge can be
found in linear time [2]. Since all the Voronoi cells in HV must cross the bottom
edge, the Voronoi diagram of HV can be constructed in linear time from its extended
Voronoi diagram below the bottom edge.

Note that in the construction of the Voronoi diagrams of HB and HV , all the
pseudovertices are ignored. Thus, the resulting Voronoi diagrams do not contain any
Voronoi cell of pseudovertices. This approach is different from that proposed in [13],
which requires the removal of the Voronoi cells of pseudovertices.

The following lemma shows that the Voronoi diagrams of two HB ’s cannot affect
each other.

Lemma 4. Assume an INH with its attached HB’s, and let x and y be two
vertices not belonging to HV but in two different HB’s. Then the Voronoi cells, V (x)
and V (y), cannot share any point in Vc(HV).

Proof. As x and y are vertices in two different HB ’s but not in HV , x and y must
be separated by some vertex z in HV . By the definition of HV , the Voronoi cell V (z)
must cross the bottom edge. Thus, V (x) cannot share any point with V (y) above the
bottom edge.

Theorem 3. The Voronoi diagram of an INH can be constructed in time linearly
proportional to its size.

Proof. By Lemma 3, the Voronoi diagrams of HV and HB ’s can be constructed
in time linearly proportional to their sizes. Since each HB shares an edge with HV ,
the Voronoi diagrams of each HB and HV can be merged in time proportional to the
number of Voronoi edges shared by them [20, 13]. As different HB ’s do not interfere
with each other (Lemma 4), the total merging time is linearly proportional to the
number of Voronoi edges shared by HB ’s and HV , i.e., the size of the INH.

3.3. Region identification. In this section, we shall present an algorithm which
identifies the INH in a NH in time linearly proportional to the size of the INH.
Chazelle’s linear-time algorithm [5] is first applied to the NH to obtain its horizontal
visibility map (Figure 6). By the property of a normal histogram, H can be further
represented by a partition tree TP , in which each tree node represents a chord in the
map and each tree edge represents the adjacency of two chords. Let n(v) denote the
chord(s) associated with vertex v of H. If there are two chords in n(v), nL(v) and
nR(v) denote the left chord and right chord, respectively. With this partition tree TP ,
the INH to be identified can be represented as a rooted subtree of TP .4 For example,
the INH indicated by the shaded area can be represented by the rooted subtree as
marked in Figure 6. The algorithm to identify the INH is based on tree traversal. In
order to achieve linear time complexity, only those tree nodes relevant to the INH will
be traversed. Thus, one of the key steps in the tree traversal is the pruning condition,
i.e., under what conditions the traversal of a subtree can be terminated. The other
key step is the identification of the vertices of HV so that we can partition the INH

4A rooted subtree of T has the property that the root of T is also the root of the subtree.

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 481

n ()

1v

v2n()

n ()L

n()3v

n()5v

n()

vR

2

n()v14

n()9v

n()v8

v

v

4

T

7

L v

n()v13

n ()v6
R

n()
12v

n()v11

n ()R v10

n ()L
6v

n ()L v6

1

P

n ()

n()

10

v

v

v

7

8
v

Ln ()

9v

v’

v

v’

v8

v

v

10

4v

9

11

10v

v11

v12

Rn ()v6

v’8

6v
v’6
v4

v3

5v
n()11v

n ()

vn()

n()

v
10

Rv

13

v

C

C

C

L
10

R
10

13

14

1

Fig. 6. An INH and its tree TP .

into HB ’s and HV for further constructing of Voronoi diagrams, as described in the
previous section.

The following lemma gives a necessary and sufficient condition for a vertex v of
H to be a vertex of HV . Based on Theorem 2 and the definition of HB , we can ensure
that a visited vertex, that is not a vertex of HV , will be a vertex of HB .

Lemma 5. For any vertex v of H, v is a vertex of HV if and only if v can be
touched by a circle centered at the bottom edge and empty of other vertices of H.

Proof. The center of such a circle is a point closer to vertex v than to other vertices
of H. As Voronoi cells are simply connected, the Voronoi cell V (v) will intersect or
cross the bottom edge. The lemma follows directly from the definition of HV .

Without loss of generality, assume the parent of n(v) intersects the IR and n(v)
is being visited on the traversal of TP . Based on Lemma 5, vertex v is tested and
classified into one of the following three types: (i) a vertex in HV , (ii) a vertex in HB

(if not in HV), or (iii) a potential vertex.
A potential vertex is such a vertex that can be touched by a circle centered at the

bottom edge and empty of any vertices of H on or below n(v); i.e., the Voronoi cell of
a potential vertex would extend across the bottom edge if no vertex above n(v) will
affect this Voronoi cell. However, since we have not examined any vertex above n(v)
yet, we cannot rule out the possibility that v is in HB .

Assume that all circles in the following discussion will be centered at the bottom
edge. Let Cv denote the largest circle that crosses chord n(v) and whose interior does
not contain any vertex on or below n(v). If vertex v is associated with two chords,
then CLv and CRv denote such circles that cross nL(v) and nR(v), respectively. Let us
first study some properties of Cv, which can be used to determine the IR above n(v)
by considering only the histogram studied so far, i.e., the histogram below n(v) (note
that CLv and CRv also have these properties).

Lemma 6. If Cv exists, then
(i) Cv must touch vertices to the left and right of its centers, or is centered at a

nonvertex endpoint of the bottom edge, i.e., pseudovertex, and
(ii) if v is the left (right) endpoint of n(v), then the center of Cv must be to the right

(left) of v.
Proof. (i) If Cv exists, then Cv is unique. This is because, by the x-monotonic

property of H, there is no vertex below the bottom edge (e) and between the intervals

482 FRANCIS CHIN AND CAO AN WANG

of n(v); i.e., the largest circle centered at e cannot be bounded by such vertices. Then,
either the largest circle centered at e must touch only one vertex above e and hence
will be centered at the (nonvertex) endpoint of e, or this circle must touch two or
more vertices above e on both sides of its center. In either case, this largest circle is
the Cv if it crosses n(v). (ii) By contradiction, assume that the center of Cv is to the
left of v, which is the left endpoint of n(v); then Cv would not cross n(v) and cannot
exist.

The following lemma will give a sufficient condition for a vertex to be in HV .
Lemma 7.
(i) If both CLv and CRv exist, then vertex v must be in HV .
(ii) If CLv (CRv) does not exist, then the traversal of the subtree above nL(v)

(nR(v)) is terminated.
Proof. (i) The existence of both CLv and CRv implies the existence of an empty

circle with center at the bottom edge and lying entirely below n(v). Thus v must be
in HV by Lemma 5. (ii) Since there does not exist any vertex above nL(v) that can
affect the IR, the tree traversal can be terminated.

Let us consider an example as given in Figure 6 to show how these properties can
be applied to classify v. Initially Cv1

is the circle that touches v1 and is centered at
v′1. The next vertex to be visited is v4. Since both CLv4

and CRv4
exist, v4 is in HV

(Lemma 7). When the tree traversal of TP at nR(v4) is continued, vertices v14, v6,
and v13 will be visited and classified as potential vertices.

In order to construct Cv for each v during the tree traversal TP , the potential
vertices previously identified are kept in two stacks, L and R. Except possibly for
their bottom vertices, L contains the “left” potential vertices (i.e., left endpoints of
the corresponding chords) while R contains the “right” ones. For example, after v6

and v13 are visited, L and R contain [v4, v6) and (v13, v14], respectively, with v6 and
v13 being their top vertices. The following lemma gives the properties of stacks L and
R.

Lemma 8. With respect to the histogram on or below the chord n(v) studied so
far, (i) stacks L and R contain the vertices whose Voronoi cells cross the bottom edge
in order, and (ii) the largest empty circle Cv is determined by the top vertex of L and
the top vertex of R.

Proof. (i) First, we have to show that the y-coordinates of the vertices in L are
monotonically increasing while those in R are monotonically decreasing. Without loss
of generality, assume the contrary, that L contains a vertex v whose y-coordinate is
lower than that of its precedent vertex t. Then it is impossible for t to be the left
endpoint of a chord. As the vertices in L and R are potential vertices visited according
to their y-coordinates, their Voronoi cells must cross the bottom edge in order.

(ii) As L and R contain the “left” and “right” potential vertices (i.e., left and
right endpoints of the chords), the largest circle Cv must touch the top vertices of
L and R, which are the rightmost left endpoint and the leftmost right endpoints,
respectively.

We shall describe the construction of Cv′ and the tree traversal algorithm of TP .
Assume v′ is the next vertex to be visited after v.

Case 1. n(v′) does not exist or does not intersect Cv; the tree traversal is termi-
nated/pruned at n(v′) and all vertices in L and R become vertices in HV . Subtrees
rooted at such n(v′) (if they exist) are pruned because their corresponding INHs do
not contain the IR. The pruned subtrees represent smaller NHs needed to be processed
recursively.

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 483

For example, in Figure 6, the tree traversal is terminated at n(v8) and n(v11) as
they do not intersect Cv9

and CRv10
, respectively. Vertex v6, previously in L, becomes

a vertex in HV . In Figure 5 the pruned portion (v28, v29, v30, v31, v32, v28′) is an NH
with v28v28′ (the pruned chord) as the bottom edge to be processed recursively.

Case 2. n(v′) intersects Cv; the tree traversal will continue to visit n(v′)’s son(s).
(a) v′ is outside Cv (i.e., buv′ and bv′w intersect each other above the bottom edge

where u and w are top vertices of L and R, respectively). − v′ will not be
in HV and must be in HB ; stacks L and R remain unchanged. Vertex v9 in
Figure 6 is such an example.

(b) v′ is inside Cv (i.e., buv′ and bv′w cross the bottom edge before intersecting each
other), and − v′ may be closer to some point of the bottom edge than vertices
in L and R. The Voronoi cell of v′ crosses the bottom edge and may crowd out
the Voronoi cells of some vertices in L and R. If the largest circle determined
by the next-to-top vertex of L and v′ does not contain the top vertex of L (i.e.,
bu′u intersects buv′ above the bottom edge where u′ is the next-to-top vertex
of L), then pop the top vertex of L and assign it as a vertex in HB . Vertices of
L are popped until its top vertex remains in L; Lemma 8 guarantees that all
vertices beneath also remain in L. Stack R is handled similarly. For example,
in Figure 6, v13 is popped when v10 is visited.

(i) If either CLv′ or CRv′ exists but not both, v′ is pushed onto stack L(R) if v′

is the left (right) endpoint of that chord. The tree traversal is continued
at n(v′) using the new empty circle Cv′ , new stack L(R), and old stack
R(L). Vertices v6 and v13 are such examples which are pushed onto their
corresponding stacks L and R when n(v6) and n(v13) are visited.

(ii) If both CLv′ and CRv′ exist, v′ must be a vertex in HV by Lemma 7. The
tree traversal will continue at nL(v′), where CLv′ , old stack L, and new
stack R′ containing v′ alone will be used for further vertex classification.
Similarly, the traversal at nR(v′) will use CRv′ , old stack R, and a new
stack L′ containing only v′. Vertex v10 in Figure 6 is such an example.

For visualizing the above algorithm, Figure 7 gives a walk-through of the example
in Figure 6.

3.4. Complexity analysis. Our method for constructing the constrained
Voronoi diagram of a simple polygon P mainly relies on the efficiency of the identifi-
cation of the INHs from an NH. Since the identification for different INHs is executed
recursively, we shall only consider the root INH of an NH.

As described previously, when we traverse tree TP of an NH to identify an INH,
we visit each vertex of the INH exactly once. Those vertices which have not been
visited in the traversal of TP cannot belong to the root INH. Therefore, we only need
to show that each visited vertex is tested in constant time in order to classify it as a
vertex in HV or in HB .

Let us consider a vertex v. In the test, v can be classified into one of the following
three types: (i) vεHV , (ii) vεHB , and (iii) v is a potential vertex.

For type (i), v is stored in the list of vertices representing HV .
For type (ii), v is stored in the list of vertices corresponding to a particular HB and

vertex v will never be tested again. Note that each vertex in HV or potential vertex
is associated with a separate list HB of vertices. If the potential vertex, separating
the two lists of vertices corresponding to two HB ’s, has been determined to be in HB ,
then these two lists of vertices will be concatenated together.

For type (iii), v is stored in the left or right stack and could be repeatedly tested

484 FRANCIS CHIN AND CAO AN WANG

Initially L = [v1), R = (], HV = (v1)
visiting v4: insert v4 into HV / ∗ case2b(ii) ∗ /

left chord nL(v4), L = [v1), R = (v4]
visiting v2: chord n(v2), L = [v1, v2), R = (v4] / ∗ case2b(i) ∗ /
visiting v3: traversal terminated, insert v2, v3 into HV / ∗ case1 ∗ /

right chord nR(v4), L = [v4), R = (]
visiting v14: chord n(v14), L = [v4), R = (v14] / ∗ case2b(i) ∗ /
visiting v6: / ∗ case2b(i) ∗ /

left chord nL(v6), traversal pruned, process NH above nL(v6) recursively
/ ∗ case1 ∗ /

right chord nR(v6), L = [v4, v6), R = (v14]
visiting v13: chord n(v13), L = [v4, v6), R = (v13, v14] / ∗ case2b(i) ∗ /
visiting v10: insert v10 in HV / ∗ case2b(ii) ∗ /

left chord nL(v10), L = [v4, v6), R = (v10]
visiting v9: HB(−, v10) = (v9, v10) / ∗ case2a ∗ /
visiting v8: traversal pruned, insert v6 into HV / ∗ case1 ∗ /
HB(v6, v10) = concatenate (v6, v

′
8, v8) and HB(−, v10))

= (v6, v
′
8, v8, v9, v10)

process NH above n(v8) recursively
right chord nR(v10), L = [v10), pop v13 from R and assign v13

as an element in HB ,
R = (v14], HB(-, v14)=(v13, v14)

visiting v11: traversal pruned, / ∗ case1 ∗ /
HB(v10, v14) = concatenate (v10, v11, v

′
11) and HB(−, v14))

= (v10, v11, v
′
11, v13, v14)

process NH above n(v11) recursively
Finally HV = (v1, v2, v3, v4, v6, v10, v14)

Fig. 7. Walk-through of the example in Figure 6.

when the descendants of v are visited. However, once vertex v is identified to be a
vertex in HV or HB , v will never be tested again. Thus, we can argue that the time
for visiting a vertex is constant when amortized over a sequence of tests. To see this,
our analysis assumes that one unit credit should have been assigned to each potential
vertex in L and R. For each vertex v of H in the bottom-up sweep of TP , two unit
credits of work are needed for each test: one for carrying the test itself, i.e., either
assigning v as a vertex in HV , HB or a potential vertex in L or R; the other unit
credit is assigned to the vertex should it be identified as a potential vertex. The test
on a vertex in L or R to determine whether or not it has to be reassigned to HB or
HV will be paid by the unit credit associated with the vertex. This either happens
once for the checked vertex (which is accounted to it) or this test stops at a vertex
which still cannot be reassigned and the test stop condition is accounted to the vertex
again.

It is not difficult to see that linked lists can be used to keep track of the vertices in
HV and HB ’s. In particular, insertion and concatenation operations on HV and HB ’s
can be executed in constant time. The time complexity analysis for the construction of
Voronoi diagrams of INH, NH, and P is obvious, as described in the previous sections.
We shall conclude the above analysis by the following theorem.

Theorem 4. CDT (P) can be found in Θ(| P |) time for simple polygon P .

DELAUNAY TRIANGULATION OF SIMPLE POLYGON 485

4. Concluding remarks. In this paper, we presented a deterministic algorithm
for finding the constrained Delaunay triangulation of a simple polygon with n sides
in Θ(n) time in the worst case. This may be one of the few linear-time algorithms for
nonarbitrary triangulation of a simple polygon.

In the definition of Delaunay triangulation, we can check whether a triangulation
is Delaunay by studying vertices within local proximity. It should not be surprising
that the Delaunay triangulation and the constrained Voronoi diagram of a simple
polygon can be done in linear time after being given Chazelle’s horizontal visibility
map, which links vertices within proximity together. The horizontal visibility maps
are helpful to decompose the polygon into components such that the “divide and
conquer” approach can be applied. However, if the decomposition of the polygon
into components is not carefully done, “interaction” of the Voronoi diagrams of the
components may be more than linear (even quadratic time). From Theorem 1, the
partition of the polygon into components by chords has the advantage that the Voronoi
diagrams of the components at the same level would not interact with each other;
i.e., horizontal interaction can be reduced. Moreover, because of the property of HV ,
interaction of Voronoi diagrams of components at different levels can also be confined;
i.e., vertical interaction can be eliminated.

With our linear-time algorithm, the following related problems can also be solved
efficiently:

(1) all nearest (mutual visible) neighbors of the vertices of a simple polygon [13],
(2) a shortest diagonal of a simple polygon [13],
(3) a largest inscribing circle of vertices of a simple polygon [12],
(4) the nearest vertex from a query point [13],
(5) finding DT (S) if the Euclidean minimum spanning tree for a point set S is

given [1],
(6) finding standard Voronoi diagram for S′ if the Voronoi diagram of a point set

S is known [1], where S′ ⊂ S.
By treating edges and vertices of a single polygon as sites for the Voronoi diagram,

we can apply ideas similar to those given in this paper to find the medial axis of a
simple polygon in linear time [7].

Acknowledgment. The authors would like to thank Bethany Chan, Siu-Wing
Cheng, and the anonymous referees for their patience in reading the first draft of this
paper and their comments in improving the readability of the paper.

REFERENCES

[1] A. Aggarwal (1988), Computational Geometry, MIT Lecture Notes 18.409, MIT, Cambridge,
MA.

[2] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor (1989), A linear time algorithm for computing
the Voronoi diagram of a convex polygon, Discrete Comput. Geom., 4, pp. 591–604.

[3] A. Aurenhammer (1991), Voronoi diagrams: A survey, ACM Computing Surveys, 23, pp. 345-
405.

[4] M. Bern and D. Eppstein (1992), Mesh Generation and Optimal Triangulation, Technical
Report, Xerox PARC, Palo Alto, CA.

[5] B. Chazelle (1991), Triangulating a simple polygon in linear time, Discrete Comput. Geom.,
6, pp. 485–524.

[6] P. Chew (1987), Constrained Delaunay triangulation, in Proc. 3rd ACM Symposium on Comp.
Geometry, pp. 213–222.

[7] F. Chin, J. Snoeyink, and C. A. Wang (1995), Finding the medial axis of a simple polygon in
linear time, in Proc. 6th International Symposium (ISAAC′95), Lecture Notes in Comput.
Sci. 1004, Springer-Verlag, New York, pp. 382–391.

486 FRANCIS CHIN AND CAO AN WANG

[8] H. Djidjev and A. Lingas (1991), On computing the Voronoi diagram for restricted planar
figures, in Lecture Notes in Comput. Sci. 519, Springer-Verlag, New York, pp. 54–64.

[9] B. Joe and C. Wang (1993), Duality of constrained Delaunay triangulation and Voronoi
diagram, Algorithmica, 9, pp. 142–155.

[10] D.G. Kirkpatrick (1979), Efficient computation of continuous skeletons, in Proc. 20th IEEE
Symposium on Foundations of Computer Science, pp. 18–27.

[11] R. Klein (1989), Concrete and Abstract Voronoi Diagrams, Lecture Notes in Comput. Sci. 400
Springer-Verlag, New York.

[12] R. Klein and A. Lingas (1992), A linear time algorithm for the bounded Voronoi diagram
of a simple polygon in L1 metrics, in Proc. 8th ACM Symposium on Comp. Geometry,
pp. 124–133.

[13] R. Klein and A. Lingas (1993), A linear time randomized algorithm for the bounded Voronoi
diagram of a simple polygon, in Proc. 9th ACM Symposium on Comp. Geometry, pp. 124–
133.

[14] D. T. Lee (1982), Medial axis transformation of a planar shape, IEEE Trans. Pat. Anal. Mach.
Int., PAMI-4(4), pp. 363–369.

[15] D. Lee and A. Lin (1986), Generalized Delaunay triangulations for planar graphs, Discrete
Comput. Geom., 1, pp. 201–217.

[16] A. Lingas (1987), A space efficient algorithm for the constrained Delaunay triangulation, in
Lecture Notes in Control and Inform. Sci. 113, Springer-Verlag, New York, pp. 359–364.

[17] F. P. Preparata and M. I. Shamos (1985), Computational Geometry - An Introduction,
Springer-Verlag, New York.

[18] R. Seidel (1988), Constrained Delaunay Triangulations and Voronoi Diagrams with Obstacles,
Rep. 260, IIG-TU Graz, Austria, pp. 178–191.

[19] M. I. Shamos and D. Hoey (1975), Closest point problems, in Proc. 16th IEEE Symposium
on the Foundations of Computer Science, pp. 151–162.

[20] C. Wang (1993), Efficiently updating the constrained Delaunay triangulations, BIT, 33,
pp. 176–181.

[21] C. Wang and L. Schubert (1987), An optimal algorithm for constructing the Delaunay tri-
angulation of a set of line segments, in Proc. 3rd ACM Symposium on Comp. Geometry,
pp. 223–232.

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED
DATA∗

SIGAL AR† , RICHARD J. LIPTON† , RONITT RUBINFELD‡ , AND MADHU SUDAN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 487–510

Abstract. We consider a variant of the traditional task of explicitly reconstructing algebraic
functions from black box representations. In the traditional setting for such problems, one is given
access to an unknown function f that is represented by a black box, or an oracle, which can be
queried for the value of f at any input. Given a guarantee that this unknown function f is some nice
algebraic function, say a polynomial in its input of degree bound d, the goal of the reconstruction
problem is to explicitly determine the coefficients of the unknown polynomial. All work on polynomial
interpolation, especially sparse ones, are or may be presented in such a setting. The work of Kaltofen
and Trager [Computing with polynomials given by black boxes for their evaluations: Greatest common
divisors, factorization, separation of numerators and denominators, in Proc. 29th Ann. IEEE Symp.
on Foundations of Computer Science, 1988, pp. 296–305], for instance, highlights the utility of this
setting, by performing numerous manipulations on polynomials presented as black boxes.

The variant considered in this paper differs from the traditional setting in that our black boxes
represent several algebraic functions f1, . . . , fk, where at each input x, the box arbitrarily chooses a
subset of f1(x), . . . , fk(x) to output and we do not know which subset it outputs. We show how to
reconstruct the functions f1, . . . , fk from the black box, provided the black box outputs according
to these functions “often.” This allows us to group the sample points into sets, such that for each
set, all outputs to points in the set are from the same algebraic function. Our methods are robust
in the presence of a small fraction of arbitrary errors in the black box.

Our model and techniques can be applied in the areas of computer vision, machine learning,
curve fitting and polynomial approximation, self-correcting programs, and bivariate polynomial fac-
torization.

Key words. Bezout’s theorem, error correcting codes, multivariate polynomials, PAC learning,
noisy interpolation, polynomial factoring, polynomial interpolation

AMS subject classifications. 68Q25, 68Q40, 68Q60

PII. S0097539796297577

1. Introduction. Suppose you are given a large set of points in the plane and
you are told that an overwhelming majority of these points lie on one of k different
algebraic curves of some specified degree bound D (but you are not told anything
else about the curves). Given the parameters k and D, your task is to determine or
“reconstruct” these algebraic curves, or alternatively, to group the points into sets,
each of which is on the same degree D curve. Related versions of this problem may also
be of interest, such as extensions to higher dimensions, and a setting where instead of
the points being given in advance, one is allowed to make queries of the form “what

∗Received by the editors January 22, 1996; accepted for publication (in revised form) November
18, 1996; published electronically July 28, 1998.

http://www.siam.org/journals/sicomp/28-2/29757.html
†Department of Computer Science, Princeton University, Princeton, NJ 08544 (shr@cs.

princeton.edu, rjl@cs.princeton.edu). The research of the first author was supported by Dept. of
Navy grant N00014-85-C-0456, NSF PYI grant CCR-9057486, and a grant from MITL. Part of this
research was done while the second author was at Matsushita Information Technology Labs.
‡Department of Computer Science, Cornell University, 5137 Upson Hall, Ithaca, NY 14853

(ronitt@cs.cornell.edu). Part of this research was done while the author was at Hebrew Univer-
sity and Princeton University. This research was supported by DIMACS, NSF-STC88-09648, ONR
Young Investigator award N00014-93-1-0590, and grant 92-00226 from the United States–Israel Bi-
national Science Foundation (BSF).
§Laboratory for Computer Science, MIT, Cambridge, MA 02139 (madhu@lcs.mit.edu). Part of

this work was done while this author was at U.C. Berkeley and IBM’s Thomas J. Watson Research
Center, supported in part by NSF grant CCR 88-96202.

487

488 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

is the value of one of the curves at point x?” (The answer to such a query will not
specify which of the k curves was used to compute the value.)

Solutions to this fundamental problem have applications to:
• the grouping problem in computer vision,
• computational learning theory,
• curve fitting over discrete domains,
• simple algorithms for polynomial factorization,
• self-correcting programs.

Computer vision. Consider a computer vision system for a robot that picks parts
out of a bin. The input to the system contains an intensity map of the scene. The
robot can distinguish between the parts by extracting edges from the image. Current
edge detection algorithms use discretized differential operators to extract edges (e.g.,
[30], [10]). These algorithms produce output consisting of a bit map, where for every
image point (x, y), the bit value of the point, e(x, y), is set to 1 if and only if this point
lies on an edge. For many vision applications it is then desired to connect between
neighboring points to achieve a more compact representation of the edge map. This
problem, known as “the grouping problem,” is complicated by the fact that the parts
are cluttered, they may be nonconvex, and they may contain holes. No polynomial
time algorithm has been found for this problem.

Under the assumption that the edges of the parts are given by piecewise alge-
braic curves, and that the edge detection process produces results which are free of
precision error, our algorithm transforms edge maps into piecewise polynomial curves
in polynomial time. The second assumption is unrealistic in real computer vision
applications. However, we feel that it suggests an interesting approach which should
be studied further.

Computational learning theory. Our mechanism can be used to extend some well-
known results on learning boolean functions to the setting of learning real-valued
functions. Here is a specific instance of such a situation: in the study of economics, the
price–demand curve is often considered to be well described by an algebraic function
(e.g., f(x) = c/x or f(x) = −a · x + b). However, it is also the case that this curve
may change [23]. In particular, there may be several unknown price–demand curves
which apply in various situations: one may correspond to the behavior found when the
country is at war, a second may apply after a stock market crash, and a third behavior
may be found after a change in the tax structure. Some of the factors that determine
which curve applies may be obvious, but others may occur because of more subtle
reasons. The task of learning the price–demand relationship may be decomposed into
the two subtasks of first determining the unknown curves, and then learning what
determines the move from one curve to another. Our algorithm gives a solution for
the first task.

We consider the Valiant model of PAC learning [36], in which a concept is learn-
able if there is an efficient algorithm that is able to find a good approximation to the
concept on the basis of sample data. In general, our results imply that any function
on input x and boolean attributes (y1, . . . , ym) which uses (y1, . . . , ym) to select fi
from a set of polynomial functions f1, . . . , fk and then computes and outputs fi(x)
can be learned, as long as the selector function can be learned.

For example, a polynomial-valued decision list given by a list of terms (conjuncts
of literals) (D1, . . . , Dk) over boolean variables y1, . . . , yn, and a list of univariate
polynomials (f1, . . . , fk+1) in a real variable x, represents a real-valued function f as
follows:

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 489

f(x, y1, . . . , yn) = fi(x),

where i is the least index such that Di(y1, . . . , yn) is true.
If the terms are restricted to being conjunctions of at most c literals, we call it

a polynomial-valued c-decision list. This is an extension of the boolean decision list
model defined by Rivest in [32], where the polynomials fi are restricted to being the
constants 0 or 1.

In [32], Rivest shows that the class of boolean c-decision lists is learnable in
polynomial time. Using our techniques, in combination with Rivest’s algorithm, we
can extend this result to show that the class of polynomial-valued c-decision lists can
be learned in polynomial time. The only technical point that needs to be made is as
follows: Rivest gives an algorithm for producing a decision list that is consistent with
the random examples and then argues using an Occam argument (see Blumer et al.
[8]) that any hypothesis that is consistent with the labels of the random examples
is a good hypothesis (i.e., computes a function that is usually equal to the target
function). Our techniques in combination with Rivest’s algorithm yield a consistent
hypothesis, but since our hypothesis is not a boolean function, we must use the work
of Haussler [22] to see that a consistent hypothesis is a good hypothesis.

Independent of our work, Blum and Chalasani [6] also consider a model of learn-
ing from examples where the examples may be classified according to one of several
different concepts. In their model an adversary controls the decision of which concept
would be used to classify the next example. Under this model they study the task
of learning boolean-valued concepts such as k-term DNFs and probabilistic decision
lists.

Curve fitting problems over discrete domains. A typical curve fitting problem
takes the following form: given a set of points {(x1, y1), . . . , (xm, ym)} on the plane,
give a simple curve that “fits” the given points. Depending on the exact specification
of the “fit,” the problem takes on different flavors: for instance, if the curve is to pass
close to all the points, then this becomes a uniform approximation problem (see text
by Rivlin [33]), while if the curve is supposed to pass through most of the points, then
it resembles problems from coding theory. Here, we consider a problem that unifies
the above two instances over discrete domains. For example, given a set of m points,
with integer coordinates, we show in section 4.1 how to find a polynomial with integer
coefficients that is ∆-close to all but an ε fraction of the points (if such a polynomial

exists), where ε need only be less than 1/2 (provided m is larger than (4∆+1)d
1−2ε).

Reducing bivariate factoring to univariate factoring. In [4] Berlekamp gave a ran-
domized polynomial time algorithm for factoring univariate polynomials over finite
fields. Kaltofen [24] and Grigoriev and Chistov [18] show that the problem of bivariate
factoring can also be solved in polynomial time by a reduction to univariate factoring,
using somewhat deep methods from algebra. Our techniques in section 4.2 give a
simple method to reduce the problem of factoring bivariate polynomials to that of
factoring univariate polynomials over finite fields in the special case when the bivari-
ate polynomial splits into factors which are monic and of constant degree in one of
the variables. Though the results are not new, nor as strong as existing results, the
methods are much simpler than those used to obtain the previously known results.

Self-correcting programs. One motivation for this work comes from the area of self-
correcting programs introduced independently in [7] and [28]. For many functions,
one can take programs that are known to be correct on most inputs and apply a
simple transformation to produce a program that is correct with high probability on
each input. But how bad can a program be and still allow for such a transformation?

490 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

There is previous work addressing this question when the functions in question are
polynomials (see, for example, [28], [13], [14]). When the program is not known
to be correct on most inputs, the definition of self-correction needs to be modified,
since the program can toggle between two seemingly correct functions. Our methods
give self-correctors that work when the error of the program is such that it answers
according to one of a small number of other algebraic functions. An algebraic decision
tree may contain a small number of branches, in which all subtrees are intended to
compute the same function but are computed separately for purposes of efficiency.
The algebraic decision tree program might err in some of the subtrees and compute
the wrong algebraic function. Our self-correctors output a small number of candidates
for the correct function.

One particular situation where this is useful is in the computation of the perma-
nent of a matrix, over a finite field. Results of Cai and Hemachandra [9], when used
in combination with our results, imply that if there is an efficient program which com-
putes the permanent correctly on a nonnegligible fraction of the input and computes
one of a small number of other algebraic functions on the rest of the inputs, then the
permanent can be computed efficiently everywhere.

1.1. The k-algebraic black box model. We consider the following black box
reconstruction problem, which is general enough to model all of the aforementioned
problems. We think of the black box as “containing” k functions, f1, . . . , fk, where fi is
an “algebraically well-behaved” function. For instance, each fi could be a polynomial
of degree at most d, and on every input x the black box outputs fi(x) for some
i ∈ [k]. (Here and throughout this paper, the notation [k] stands for the set of
integers {1, . . . , k}.) Relating to the problem discussed in the first paragraph of the
introduction, this corresponds to the case where for every value of an x-coordinate
there is at least one point that has that value. We now present this definition formally,
starting with the standard black box model (k = 1).

Definition 1. A black box B is an oracle representing a function from a finite
domain D to a range R.

There are two kinds of domains that will be of interest to us. One is a finite
subset H of a (potentially infinite) field F . The second is an n-dimensional vector
space over a finite field F . In both cases the range will be the field F .

Previous research on black box reconstruction focused on the following: assuming
that B is one of a special class of functions (for example, that B is a degree d poly-
nomial), determine an explicit representation of B. In our model, there may be more
than one output that is valid for each input. More specifically, we give the following
definition.

Definition 2. A black box B mapping a finite subset H of a field F to F is a
(k, d)-polynomial black box if there exist polynomials f1, . . . , fk : F → F of degree
at most d such that for every input x ∈ H, there exists i ∈ {1, . . . , k}, such that
B(x) = fi(x). In such a case, we say that the functions f1, . . . , fk describe the black
box B.

Our first black box reconstruction problem is:
Given a (k, d)-polynomial black boxB, find a set of functions f1, . . . , fk
that describe B.

The definition of a (k, d)-polynomial black box can be generalized to situations
involving noise as follows.

Definition 3. For ε ∈ [0, 1] and for a finite subset H of a field F , a black
box B : H → F is an ε-noisy (k, d)-polynomial black box if there exist polynomials

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 491

f1, . . . , fk : F → F of degree at most d and a set S ⊂ H, with |S| ≥ (1− ε)|H|, such
that for every input x ∈ S, there exists i ∈ {1, . . . , k} such that B(x) = fi(x). In such
a case, the functions f1, . . . , fk are said to describe B.

The notion of the reconstruction problem generalizes to the noisy case in the
obvious way. We now attempt to generalize the problem to allow the black box to
compute other algebraic functions, such as B(x) =

√
x, etc. This part is somewhat

more technical, so we now introduce some new terminology.
Definition 4. For positive integers dx, dy and indeterminates x, y, the {(dx, x),

(dy, y)}-weighted degree of a monomial xiyj is idx + jdy. The {(dx, x), (dy, y)}-
weighted degree of a polynomial Q(x, y) is the maximum over all monomials in Q
(i.e., the monomials with nonzero coefficients in Q) of their {(dx, x), (dy, y)}-weighted
degree.

We now introduce the notion of an algebraic box and show how it relates to the
earlier notion of a polynomial black box.

Definition 5. For a finite subset H of a field F , a black box B : H → F
is a (k, d)-algebraic black box if there exists a polynomial Q(x, y) of {(1, x), (d, y)}-
weighted degree at most kd, such that for every input x ∈ H, the output y of the black
box satisfies Q(x, y) = 0. In such a case, we say that the polynomial Q describes B.

For example, if B(x) =
√
x, the polynomial Q(x, y) = (y2 − x) satisfies the

requirement of the definition and describes B. The {(1, x), (d, y)}-weighted degree of
Q is 2d.

Proposition 6. If B is a (k, d)-polynomial black box then B is also a (k, d)-
algebraic black box.

Proof. Let B be a (k, d)-polynomial black box and let f1, . . . , fk describe it.

Then the polynomial Q(x, y)
def
=
∏k
i=1(y − fi(x)) describes B and has {(1, x), (d, y)}-

weighted degree at most kd.
The (k, d)-algebraic black box reconstruction problem is:

Given a (k, d)-algebraic boxB, find the polynomialQ of {(1, x), (d, y)}-
weighted degree at most kd which describes it.

The definition and proposition can be extended easily to the ε-noisy case.
All the above definitions generalize to a case where the input is an n-dimensional

vector over F and the black box is computing n-variate functions. In particular, we
have the following definition.

Definition 7. For a finite field F , an n-variate black box B : Fn → F is a (k, d)-
polynomial black box if there exist polynomials f1, . . . , fk : Fn → F of total degree
at most d such that for every input (x1, . . . , xn) ∈ Fn there exists i ∈ {1, . . . , k} such
that B(x1, . . . , xn) = fi(x1, . . . , xn).

Definition 8. For a finite field F , an n-variate black box B : Fn → F is a (k, d)-
algebraic black box if there exists a polynomial Q(x1, . . . , xn, y) of {(1, x1), . . . , (1, xn),
(d, y)}-weighted degree at most kd such that for every input (x1, . . . , xn) ∈ Fn, the
output y of the black box satisfies Q(x1, . . . , xn, y) = 0.

Again the reconstruction problems are defined correspondingly. In this paper we
attempt to solve all such reconstruction problems. Notice that this problem is not
well defined if there exist multiple solutions, say Q and Q̃, such that both Q and Q̃
describe the black box. Much of the work is done in establishing conditions under
which any Q̃ that describes the black box gives a meaningful answer.

1.2. Previous work and our results. The setting where the black box repre-
sents a single polynomial or rational function, without noise, is the classic interpola-
tion problem and is well studied. Efficient algorithms for sparse multivariate polyno-

492 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

mial interpolation are given by Zippel [40, 41], Grigoriev, Karpinski, and Singer [21],
Ben-Or [2] and Ben-Or and Tiwari [3], and for sparse rational functions by Grigoriev
and Karpinski GK and Grigoriev, Karpinski, and Singer [20].

The case where the black box represents a single function with some noise has
also been studied previously. Welch and Berlekamp [39, 5] (see also [14]) show
how to reconstruct a univariate polynomial from a (1

2 − δ)-noisy (1, d)-polynomial
black box and Coppersmith [11], Gemmell et al. [13], and Gemmell and Sudan [14]
show how to do the same for multivariate polynomials. All the above-mentioned
results require, however, that the field size be at least polynomially large in d

δ . The
conditions are required to ensure that there is a unique degree d polynomial describing
the black box on a 1

2 +δ fraction of the inputs. Reconstructing functions from a black
box representing more than one function, or when the function it represents is not
guaranteed to be unique, seems to be a relatively unexplored subject. The works of
Goldreich and Levin [15] and Kushilevitz and Mansour [26] are the only exceptions
we know of. Both papers study the reconstruction of n-variate linear functions (i.e.,
homogenous polynomials of degree 1) from a 1

2 − δ-noisy black box over GF(2). In

this case, there can be up to O(1
δ

2
) polynomials representing the black box and they

reconstruct all such polynomials.
The main result in this paper is an algorithm for reconstructing algebraic func-

tions describing noisy algebraic black boxes, which works when the black box satisfies
certain conditions. To see why the result needs to have some conditions on the black
box, consider the following example. Suppose the black box is described by the poly-
nomial (x2 + y2 − 1)(x + y − 1). But suppose that for every x the black box always
outputs a y from the unit circle (and never according to the line x + y − 1 = 0).
Then clearly the reconstruction algorithm has no information to reconstruct the line
x+y−1. The condition imposed on the black box essentially addresses this issue. We
describe the result for univariate ε-noisy (k, d)-polynomial black boxes. We present a
randomized algorithm which takes as input a parameter p > ε and with high proba-
bility outputs a list of all polynomials fi which describe the black box on more than
p fraction of the input, provided (p− ε)|H| > kd. (This condition amounts to saying
that the black box must output according to fi sufficiently often.) The running time
of the algorithm is a polynomial in k, d, and 1

(p−ε) . This result is presented along with

generalizations to univariate noisy algebraic black boxes in section 2.
To reconstruct a univariate polynomial, we sample the black box on a small set

of inputs and construct a bivariate polynomial Q̃(x, y) which is zero at all the sample
points. Then we use bivariate polynomial factorization to find a factor of the form
(y− f(x)). If it exists, f(x) then becomes our candidate for output. We show that if
the number of points (x, y) such that y = f(x) is large in the sample we chose, then
y − f(x) has to be a factor of any Q̃ which all the sample points satisfy.

Our results do not generalize immediately to multivariate polynomials. Among
other factors, one problem is that an n-variate polynomial of degree d has

(
n+d
d

)
coef-

ficients, which is exponential in n (or d). This seems to make the problem inherently
hard to solve in time polynomial in n and d. However, we bypass this, once again
using the idea of black boxes. Instead of trying to reconstruct the multivariate poly-
nomial explicitly (i.e., by determining all its coefficients), we allow the reconstruction
algorithm to reconstruct the polynomial implicitly, i.e., by constructing a black box
which computes the multivariate polynomial. If the polynomial turns out to be sparse
then we can now use any sparse interpolation algorithm from [3, 20, 21, 40] to recon-
struct an explicit representation of the polynomials in time polynomial in n, d and the

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 493

number of nonzero coefficients. On the other hand, by using the techniques of [25] we
can also continue to manipulate the black boxes as they are for whatever purposes.1

We now describe our result for reconstructing multivariate polynomials. We
present a randomized algorithm which takes as input a parameter p and with high
probability reconstructs probabilistic black boxes for all the polynomials f1, . . . , fk
describing a noisy (k, d)-black box over a finite field F , provided the noisy (k, d)-black
black box satisfies the following conditions. (1) Every polynomial is represented on
at least a p fraction of the inputs (i.e., for every i, Prx̂∈Fn [B(x̂) = fi(x̂)] ≥ p). (2)
The finite field F over which the black box works is sufficiently large (|F | should be
polynomially large in k, d, 1

(p−ε)). The running time of the algorithm is polynomial in

k, d, and 1
(p−ε) . The main technique employed here is a randomized reduction from

the multivariate to the univariate case. We note that the solution obtained here for
the multivariate case differs in several aspects from the solution for the univariate
case. First, this algorithm does not extend to the case of finite subsets of infinite
fields. Second, it needs to make sure that all the polynomials are well represented in
the black box. The latter aspect is a significant weakness, and getting around this is
an open question.

Subsequent work. One of the main questions left open by this paper is the prob-
lem of reconstructing all degree d polynomials that agree with an arbitrary black box
on ε fraction of the inputs. Some recent work has addressed this question. Goldreich,
Rubinfeld, and Sudan [16] give an algorithm to (explicitly) reconstruct all n-variate
degree d polynomials agreeing with a black box over F on an ε fraction of the inputs,
provided ε ≥ 2

√
d/|F |. Their algorithm runs in time O((n, 1

ε)poly(d)), which is expo-
nential in d. Their algorithm generalizes the earlier mentioned solution of Goldreich
and Levin [15]. For the case of univariate polynomials, Sudan [35] has given a poly-
nomial time algorithm which can find all degree d polynomials agreeing with a black
box on ε fraction of the domain, provided ε ≥ 2

√
d/|F |. The main contribution in

[35] is a simple observation which shows that m input/output pairs from any black
box can be thought of as the output of a (O(

√
m), 1)-algebraic black box. Using this

observation, Lemma 18 of this paper is applied to reconstruct all polynomials of low
degree which describe the black box on an ε fraction of the inputs. Finding a similar
solution for the multivariate cases remains open (some cases are addressed by [35],
but the problem is not completely resolved). A second question that is left open is
the task of solving the (k, d)-polynomial black box problem over the reals, where the
points are not provided to infinite precision. This is the true problem underlying the
application to computer vision. While the ideas in this paper do not immediately ap-
ply to this question, some variants (in particular, the variant employed in [35]) seem
promising and deserve to be investigated further

In other related work, Rubinfeld and Zippel [34] have employed the black box
reconstruction problem and build on the techniques presented in this paper to present
a modular approach to the polynomial factorization problem. While the application
presented in this paper (in section 4.2) is to a restricted subclass of the bivariate
factorization problem, the work of [34] finds an application to the general multivariate
factorization problem.

1The idea of manipulating multivariate polynomials and rational functions represented by black
boxes was proposed by Kaltofen and Trager in [25]. They show that it is possible to factor and
compute gcd’s for polynomials given by such a representation and to separate the numerator from
the denominator of rational functions given by such a representation.

494 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

1.3. Organization. The rest of this paper is organized as follows. In section 2,
we describe our results for univariate polynomials, rational functions, and other al-
gebraic functions. In section 3, we consider extensions of the reconstruction problem
to the case of multivariate polynomials. Finally, in section 4, we describe several
applications of our work.

2. Univariate black boxes. In this section we consider the univariate recon-
struction problem for (noisy) (k, d)-polynomial and algebraic black boxes. We describe
the general format of our results with the example of a (k, d)-polynomial black box
described by f1, . . . , fk. We present a solution in the form of an algorithm which
takes m input/output pairs {(x1, y1), . . . , (xm, ym)} of the black box and attempts
to reconstruct the polynomials f1, . . . , fk from this set of input/output pairs. In or-
der to reconstruct a small set of polynomials which includes a specific polynomial
fi, the algorithm (obviously) needs to find sufficiently many points (xj , yj) such that
yj = fi(xj) (d + 1 such points are needed). We present complementary bounds,
showing that if the number of points on fi is sufficiently large, then the output is
guaranteed to include fi. We then show how some simple sampling of the black box
(either by exhaustively sampling all points from the domain H or by picking a ran-
dom sample of xj ’s chosen independently and uniformly at random from H) yields
a collection of input/output pairs which satisfies the required condition, provided H
is large enough and the fraction of inputs on which B’s output is described by fi is
large enough.

2.1. An intermediate model. As a first step towards solving the algebraic
reconstruction problem, we consider the case where the black box outputs all of
f1(x), . . . , fk(x) on any input x. We refer to this as a (k, d)-total polynomial black
box. These are output in arbitrary order, which is not necessarily the same for each
x. We further assume that there are no errors in the output. Thus the reconstruction
problem we wish to solve may be stated formally as follows.

Given: Positive integers k and d, a field F , and a black box B = (B1, . . . , Bk),
where Bi : F → F with the property that there exist polynomials f1, . . . fk of degree
at most d over F , such that for every x ∈ F , the multisets {B1(x), . . . , Bk(x)} and
{f1(x), . . . , fk(x)} are identical.

Problem: Find f1, . . . , fk.
We reduce the problem of extracting the polynomials to that of bivariate polyno-

mial factorization. The main idea underlying this reduction is the following: on input
x, if the (k, d)-total polynomial black box outputs {y1, . . . , yk}, we know that ∀j ∈
[k], ∃i ∈ [k] such that yj = fi(x). Therefore, each input/output pair (x; y1, . . . , yk) of
the black box satisfies the relation:∑

j

∏
i

(yj − fi(x)) = 0.

Our aim will be to construct a related polynomial which will enable us to recover the
fi’s.

Consider the functions σj : F 7→ F , j ∈ [k] defined as

σj(x)
def
=

∑
S⊂[k],|S|=j

∏
i∈S

fi(x)

(these are the primitive symmetric functions of f1, . . . , fk).

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 495

Observe that σj(x) can be evaluated at any input x using the given (k, d)-total
polynomial black box, using the identity

σj(x) =
∑

S⊂[k],|S|=j

∏
i∈S

Bi(x).

Furthermore this computation can be performed in time in O(k log k log log k) using
a fast Fourier transform (see survey article by von zur Gathen [12, pp. 320–321]).
Observe further that σj is a polynomial of degree at most jd. Hence evaluating it at
jd + 1 points suffices to find all the coefficients of this polynomial (if the black box
outputs every fi(x) for every x).

Now consider the following bivariate polynomial, in x and a new indeterminate
y:

Q(x, y)
def
= yk − σ1(x)yk−1 + · · ·+ (−1)kσk(x).

From the explicit representation of the σi’s, we can also compute an explicit repre-
sentation of Q. But now notice that Q can equivalently be written as:

Q(x, y) =

k∏
i=1

(y − fi(x)).

(The equivalence follows from the definition of the σj ’s.) Therefore, to recover the
fi’s, all we have to do is find the factors of the bivariate polynomial Q. Bivariate
factorization can be done efficiently over the rationals [18, 24, 29] and can be done
efficiently (probabilistically) over finite fields [17, 24].

We now summarize our algorithm. The input to the algorithm is kd+ 1 distinct
elements {x1, . . . , xkd+1} from the the field F , and a set {y1,j , . . . , yk,j} for every
j ∈ [kd+ 1] representing the output of the black box B on input xj .

1. Evaluate σj(xi) for every j ∈ [k] and every i ∈ [kd+ 1].
2. Interpolate for the coefficients of σj(x) and let σj,l be the coefficient of xl in
σj .

3. Let Q(x, y) be the polynomial
∑k
j=0

∑jd
l=0(−1)jσj,lx

lyk−j .

4. Factor Q into its irreducible factors. This will yield Q(x, y) =
∏k
i=1(y−gi(x)).

5. Output the polynomials g1, . . . , gk.
The arguments leading to this algorithm prove its correctness and we have the

following lemma.
Lemma 9. Let {(xj ; (yj,1, . . . , yj,k))}kd+1

j=1 be the input/output pairs of a (k, d) total
polynomial black box B over a field F on kd + 1 distinct inputs. Then there exists
a randomized algorithm whose running time is polynomial in k, d which explicitly
reconstructs the set of polynomials {f1, . . . , fk} which describe B.

Since the only condition on the xj ’s is that they be distinct, it is easy to get a
total polynomial reconstruction algorithm from the above lemma and thus we get the
following theorem.

Theorem 10. Let f1, . . . , fk be degree d polynomials over Q (the rationals) or
a finite field F of cardinality at least kd + 1. Given a black box B which on input x
outputs the multiset {f1(x), . . . , fk(x)} (in arbitrary order), there exists an algorithm
which queries the black box on kd+ 1 distinct inputs and reconstructs the polynomials
that describe the black box. The algorithm is deterministic when the polynomials are
over Q and probabilistic when the polynomials are over some finite field.

496 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

2.2. (k, d)-polynomial black boxes. We now build on the methods of the
previous section to reconstruct information from a (k, d)-polynomial black box which
outputs the value of one of k univariate polynomials f1, . . . , fk, on every input. Our
method extends immediately to two more general cases:

1. (k, d)-algebraic black boxes,
2. noisy (polynomial and algebraic) black boxes.

The generalizations are dealt with in the next section.
The problem we wish to solve is formally stated as follows.
Given: Positive integers k and d, a field F , a finite set H ⊆ F , and a black box

B : H → F with the property that there exist polynomials f1, . . . fk of degree at most
d over F , such that for every x ∈ H, B(x) ∈ {f1(x), . . . , fk(x)}.

Problem: Find f1, . . . , fk.
Our solution for this problem is based on the solution of the previous subsection.

The critical observation is that the polynomial Q produced by the algorithm of the
previous section always satisfied the property Q(x, y) = 0 for any input x to the
black box and where y is any element of the output set of the black box on input x.
We will try to construct a polynomial Q in two variables as in the previous section,
satisfying the property that if y = B(x) is the output of the black box on input x,
then Q(x, y) = 0. However, we will not be able to construct the polynomials σi(x) as
in the previous case. Hence, we will abandon that part of the algorithm and directly
try to find any polynomial Q̃ such that Q̃(x, y) = 0 on all the sampled points. We
will then use the factors of this polynomial to determine the fi’s as in the previous
section. Thus our algorithm is summarized as follows.

The input to the algorithm is m distinct pairs of elements {(x1, y1), . . . , (xm, ym)}.
1. Interpolate to find a set of coefficients q̃lj of the polynomial

Q̃(x, y) =

k∑
l=0

dl∑
j=0

q̃ljy
k−lxj

that satisfies Q̃ 6≡ 0 and Q̃(xi, yi) = 0 for i ∈ [m].
2. Factor the polynomial Q̃ and if it has any factors of the form (y − g(x)),

output g as a candidate polynomial.
Notes. The important step above is step 1, which involves finding a nontrivial

solution to a homogenous linear system. First we need to make sure this system has
at least one solution. This is easy since Q(x, y) =

∏
i(y − fi(x)) is such a solution.

However, the solution in such a step need not necessarily be unique and we will simply
find any solution to this system and show that it suffices, under certain conditions,
for step 2. In what follows, we shall examine the conditions under which the output
will include a certain polynomial fi.

Lemma 11. For a set {(xj , yj)|j ∈ [m]} of m distinct pairs from F × F , if Q̃ is
a bivariate polynomial of {(1, x), (d, y)}-weighted degree kd satisfying

∀ j ∈ [m], Q̃(xj , yj) = 0

and f is a univariate polynomial of degree d satisfying

|{j|f(xj) = yj}| > kd,

then the polynomial (y − f(x)) divides the polynomial Q̃(x, y).

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 497

Proof. Let S
def
= {j|f(xj) = yj}. Notice that for distinct j1, j2 ∈ S, xj1 6= xj2 , or

else the pairs (xj1 , f(xj1)) and (xj2 , f(xj2)) are not distinct.

Consider the univariate polynomial Q̃f (x) ≡ Q̃(x, f(x)). For all indices j ∈ S we

have that Q̃(xj) = 0. Furthermore, Q̃f (x) is a polynomial of degree at most kd in x.

Hence if Q̃f is zero at |S| > kd places, then it must be identically zero, implying that

(y − f(x))|Q̃(x, y).
The lemma above guarantees that under certain circumstances, the factors of

Q̃(x, y) do give useful information about the fi’s. The effect is summarized in the
following lemma.

Lemma 12. Let {(x1, y1), . . . , (xm, ym)} be m distinct pairs of elements which
are the input/output pairs of a (k, d)-polynomial black box B described by polynomials
f1, . . . , fk. If there exists an i ∈ [k] such that |{j|yj = fi(xj)}| > kd, then a set of at
most k polynomials {g1, . . . , gk} that includes fi can be found in time polynomial in
m, k, and d.

Remark. Notice that Lemma 12 is a strict strengthening of Lemma 9.
To finish the analysis of the algorithm we need to determine how to sample the

black box B so as to get enough points according to fi. Let pi
def
= Prx∈H [B(x) = fi(x)]

and δ > 0 be the confidence parameter. Let M = 4
pi

(kd + ln 2
δ). The strategy for

picking the points {(x1, y1), . . . , (xm, ym)} depends on |H|. If |H| ≥ 2
δ

(
M
2

)
, then we

let m = M and pick m elements x1, . . . , xm independently and uniformly at random
from H. Lemma 35 in the appendix (shown using a simple combination of Chernoff
bounds and the “birthday problem analysis”) shows that the sampled points are all
distinct and satisfy |{j : B(xj) = fi(xj)}| > kd with probability at least 1− δ. Thus
in this case we will use {(x1, B(x1)), . . . , (xm, B(xm))} as the input to the algorithm
described above. If, on the other hand, |H| is not large enough, then we will simply
sample every point in H (i.e., the input set will be {(x,B(x))|x ∈ H}), implying in
particular that m = |H|, and in this case the algorithm described above will include fi
as part of its output provided pi|H| > kd. Notice that in both cases the running time
of the algorithm is polynomial in M , which is in turn bounded by some polynomial
in k, d, 1

pi
, 1
δ . Furthermore, by choosing δ′ = δ/k and a threshold parameter p and

running the algorithm above with confidence parameter δ′, we find that the algorithm
above recovers, with confidence 1 − δ, every polynomial fi, such that pi ≥ p. The
running time is still a polynomial in k, d, 1

p ,
1
δ . This yields the following theorem.

Theorem 13. Let B be a (k, d)-polynomial black box, mapping a finite domain H

to a field F , described by polynomials f1, . . . , fk. For i ∈ [k], let pi
def
= Prx∈H [B(x) =

fi(x)]. There exists an algorithm which takes as input a confidence parameter δ > 0
and a threshold p > 0, runs in time poly(k, d, 1

p ,
1
δ) and makes calls to the black box

B, and with probability at least 1−δ reconstructs a list of at most k polynomials which
includes all polynomials fi such that pi ≥ p, provided p > kd

|H| .

2.3. (k, d)-algebraic black boxes. The algorithm of section 2.2 extends im-
mediately to the case of algebraic black boxes. Here, by definition, the input/output
pair of the black box, (x, y), satisfies an algebraic relation of the form Q(x, y) = 0.
We can attempt to find a polynomial Q̃ which satisfies Q̃(x, y) = 0 for all the sampled
points by interpolation (step 3 in the algorithm of section 2.2).

As in the previous section, it will not be possible to guarantee that the output we
produce will be exactly Q. For instance, if Q(x, y) = (x2+y2−1)(x+y−1), but all the
points actually come from the unit circle, then the algorithm has no information to

498 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

point to the line x+ y− 1 = 0. Thus, as in the previous section, we will only attempt
to find those parts of the curve that describe significant portions of output of the black
box. More precisely, if Q(x, y) factors into irreducible factors Q1(x, y), . . . , Ql(x, y)
and we know that many points satisfy, say, Q1(xj , yj) = 0, then we would like Q1 to
be one of the outputs of the algorithm.

The proof that this is indeed the case is slightly more complicated than in the
previous subsection. We will use a version of Bezout’s theorem ([38, Theorem 3.1]).
Essentially, Bezout’s theorem states that two algebraic curves in the plane cannot
intersect in infinitely many points, unless they are identical. The theorem gives an
explicit bound on the number of points where two curves of degree d1 and d2 may
meet. Bezout’s bound is slightly weaker than the one we wish to prove for the case
of (k, d)-algebraic black boxes, so we prove our lemma from first principles.

Before going on to the next lemma we review a couple of standard definitions
from algebra (cf. [38]).

Definition 14. Given univariate polynomials P (y) =
∑d1

i=0 αiy
i and Q(y) =∑d2

j=0 βjy
j over some domain F , let M(P,Q) be the (d1 +d2)× (d1 +d2) matrix given

as follows:

M(P,Q) =

α0 α1 · · · αd1−1 αd1
0 · · · 0 0 0 · · · 0

0 α0 · · · αd1−2 αd1−1 αd1
· · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 · · · 0 0 0 · · · α0 α1 α2 · · · αd1

β0 β1 · · · βd1−1 βd1 βd1+1 · · · βd2−1 βd2 0 · · · 0
0 β0 · · · βd1−2 βd1−1 βd1 · · · βd2−2 βd2−1 βd2 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · β0 β1 β2 · · · βd2−d1 βd2−d1+1 βd2−d1+2 · · · βd2

.

The resultant of the polynomials P and Q, denoted Res(P,Q), is the determinant
of M(P,Q). For multivariate polynomials P (x1, . . . , xn; y) and Q(x1, . . . , xn, y) their
resultant with respect to y is defined similarly by viewing P,Q as polynomials in y
with coefficients from the ring of polynomials in x1, . . . , xn. We define the matrix
My(P,Q) as above and its determinant is the resultant Resy(P,Q).

Lemma 15. For a set of points {(x1, y1), . . . , (xm, ym)}, with the xj’s being dis-

tinct, if Q̃(x, y) and Q1(x, y) are polynomials of {(1, x), (d, y)}-weighted degree at most
kd and k1d, respectively, satisfying the properties (1) ∀ j ∈ [m], Q̃(xj , yj) = 0 and

(2) |{j|Q1(xj , yj) = 0}| > kk1d, then the polynomials Q1(x, y) and Q̃(x, y) share a
nonconstant common factor.

Proof. Consider the resultant Ry(x) of the polynomials Q̃(x, y) and Q1(x, y) with
respect to y. Observe that the resultant is a polynomial in x. The following claim
bounds the degree of this polynomial.

Claim 16. Ry(x) is a polynomial of degree at most k1kd.

Proof. The determinant of the matrix My(Q̃,Q1) is given by

∑
π

k+k1∏
i=1

sign(π)(My(Q̃,Q1))iπ(i),

where π ranges over all permutations from [k+k1] to [k+k1] and sign(π) denotes the
sign of the permutation. We will examine every permutation π : [k + k1] → [k + k1]

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 499

and show that the degree of the term
∏k+k1

i=1 (My(Q̃,Q1))iπ(i) (viewed as a polynomial
in x) is at most kk1d. This will suffice to show that the determinant is a polynomial
of degree at most kk1d.

Let dij denote the degree of the entry (My(Q̃,Q1))ij . Observe that, by the
definition of the resultant, dij ≤ (i + k − j)d for i ≤ k1 and dij ≤ (i − j)d for
i ≥ k1. (Here we consider the polynomial 0 as having degree −∞.) Thus the degree

of the term
∏k+k1

i=1 (My(Q̃,Q1))iπ(i) is given by

k+k1∑
i=1

diπ(i) =

k1∑
i=1

diπ(i) +

k+k1∑
i=k1+1

diπ(i)

≤
k1∑
i=1

(i+ k − π(i))d+

k+k1∑
i=k1+1

(i− π(i))d

=

k+k1∑
i=1

id−
k+k1∑
i=1

π(i)d + kk1d

= kk1d.

This concludes the proof.
It is well known that the resultant of two polynomials is zero if and only if the

polynomials share a common factor (cf. [38, Chapter 1, Theorem 9.3]). We will show
that Ry(x) is identically zero, and this will suffice to prove the lemma. We show this
part in the next claim by showing that Ry(x) has more zeroes than the upper bound
on its degree.

Claim 17. For every j such that Q̃(xj , yj) = Q1(xj , yj) = 0, Ry(xj) = 0.

Proof. Fix xj and consider the polynomials q̃(y) = Q̃(xj , y) and q1(y) = Q1(xj , y).
Now Ry(xj) gives the resultant of the polynomials q̃(y) and q1(y). Now we know that
q̃(yj) = q1(yj) = 0, implying that (y− yj) is a common factor of q̃ and q1. Therefore,
the resultant of q̃ and q1 must be zero, implying Ry(xj) = 0.

Since the above holds for any factor Qi of Q, we have the following lemma.
Lemma 18. Let B be a (k, d)-algebraic black box described by a bivariate polyno-

mial Q with no repeated nonconstant factors. Let Q1, . . . , Ql be the irreducible factors
of Q of {(1, x), (d, y)}-weighted degree k1d, . . . , kld, respectively. Given m pairs of
elements {(x1, y1), . . . , (xm, ym)} which are the input/output pairs of B on m distinct
inputs, if there exists an i ∈ [k] such that |{j|Qi(xj , yj) = 0}| > kikd, then a set of

at most k polynomials {Q̃1, . . . , Q̃k} that includes Qi can be found in time polynomial
in m, k, and d.

Remark. For a set of pairs {(x1, y1), . . . , (xm, ym)}, with distinct xj ’s, Lemma 18
is a strengthening of Lemma 12. Unfortunately, the proof as shown above does not
extend to the case where the pairs are distinct, but the xj are not. Due to this
limitation, Lemma 18 does not even cover the case of Lemma 9.

Once again, using a sampling method similar to that used for Theorem 13, we
get the following theorem.

Theorem 19. Let B be a (k, d)-algebraic black box described by a polynomial Q
with distinct irreducible factors Q1, . . . , Ql such that the {(1, x), (d, y)}-weighted degree
of Q is at most kd and that of Qi is at most kid. Further, let pi = Prx∈H [Qi(x,B(x)) =
0]. There exists a randomized algorithm which takes as input a confidence parame-
ter δ > 0 and a threshold p > 0, runs in time poly(k, d, 1

p ,
1
δ), makes calls to the

500 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

black box B, and with probability at least 1 − δ reconstructs a list of at most k bi-
variate polynomials which includes every polynomial Qi such that pi/ki ≥ p, provided
p|H| > kd.

2.4. ε-noisy black boxes. Finally we extend the reconstruction algorithms of
the previous section to the case when the black boxes are allowed to output noise
on an ε fraction of the inputs from H. As usual, the basic algorithm will be to find
a polynomial Q̃(x, y) which is zero on all the input-output pairs of the black box.
However, we will have to do something about the noisy points which do not lie on
any nice algebraic curve. We adapt an algorithm of Welch and Berlekamp [39, 5] (see
also [14]) to handle this situation.

Say we sample the black box B in m points x1, . . . , xm and the black box outputs
y1, . . . , ym according to some (unknown) polynomial Q in all but m′ locations. Say
that these locations are given by E = {j|Q(xj , B(xj)) 6= 0}. We use the fact that
there exists a nonzero polynomial W (x) of degree at most m′ which is zero when
x = xj for j ∈ E. Indeed W (x) =

∏
j∈E(x−xj) is such a polynomial. Let Q∗(x, y) =

Q(x, y) · W (x). Then Q∗(xj , yj) is zero for all j ∈ [m]. Thus we can modify the
algorithm of the previous section to try to find Q∗. This algorithm is summarized as
follows.

The input to the algorithms is m pairs of elements {(x1, y1), . . . , (xm, ym)} with
distinct xj ’s.

1. Interpolate to find a set of coefficients qlj of the polynomial

Q̃(x, y) =

k∑
l=0

dl+m′∑
j=0

qljy
k−lxj

that satisfies Q̃(xi, yi) = 0 for i ∈ [m]. /* The parameter m′ will be specified
later. */

2. Factor the polynomial Q̃ and output all its irreducible factors.
Let Q1(x, y), . . . , Ql(x, y) be the irreducible factors of the unknown polynomial

Q∗(x, y) describing the black boxB. We focus on the factorQ1. Let the {(1, x), (d, y)}-
weighted degree of Q1 be k1d. The following two lemmas essentially show that if the
fraction of points (xi, yi) for which Q1(xi, yi) = 0 is sufficiently larger than k1 times
the fraction of noise, then we can reconstruct the polynomial Q1.

Lemma 20. For a set of points {(xj , yj)|j ∈ [m]}, if Q̃(x, y) and Q1(x, y) are
polynomials of {(1, x), (d, y)}-weighted degree at most kd + m′ and k1d, respectively,
satisfying the properties (1) ∀ j ∈ [m], Q̃(xj , yj) = 0 and (2) |{j|Q1(xj , yj) = 0}| >
k1(kd+m′), then the polynomials Q1(x, y) and Q̃(x, y) share a nonconstant common
factor.

Proof. The proof is a straightforward modification of the proof of Lemma 15.
The only change is in Claim 16, where the bound on the degree of the resultant
Resy(Q̃,Q1) goes up to k1(kd+m′), because the degree of the nonzero entries in the
first k1 columns goes up by m′.

Lemma 21. Let B be a (k, d)-algebraic black box described by a bivariate polyno-
mial Q with no repeated nonconstant factors. Let Q1, . . . , Ql be the irreducible fac-
tors of Q of at most {(1, x), (d, y)}-weighted degree k1d, . . . , kld, respectively. Given
m′ ≤ m and m pairs {(x1, y1), . . . , (xm, ym)}, which are the input/output pairs of B
on distinct inputs, if there exists an i ∈ [k] such that |{j|Qi(xj , yj) = 0}| > ki(m

′+kd)
and |{j|Q(xj , yj) 6= 0}| ≤ m′, then a set of at most k bivariate polynomials that in-
cludes Qi can be found in time polynomial in m, k, and d.

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 501

Lemma 36 of the appendix ensures that if M = kikd
p−kiε + 16

(p−kiε)2 ln 3
δ and |H| ≥

3
δ

(
M
2

)
, then a sample of M elements {x1, . . . , xM} chosen independently and uniformly

at random from F satisfies the following three properties.
1. The xj ’s have no repeated elements.
2. There are (strictly) less than ((ε + pi/ki)/2)M − kd/2 values of j such that
Q(xj , B(xj)) 6= 0.

3. There are at least ((pi+kiε)/2)M+kikd/2 values of j such thatQi(xj , B(xj)) =
0.

Thus if |H| ≥ 3
δ

(
M
2

)
, then we randomly choose m = M points from H and use

{(x1, B(x1)), . . . , (xm, B(xm))} and m′ = ((ε + pi/ki)/2)M − kd/2 − 1 as input to
the algorithm described above. If, on the other hand, H is small, then we use all
{(x,B(x))|x ∈ H} as the input set and use m′ = ε|H| as input to our algorithm. In
the latter case, Qi is guaranteed to be part of the output if (pi−kiε)|H| > kkid. This
yields the following theorem.

Theorem 22. Let B be an ε-noisy (k, d)-algebraic black box described by a poly-
nomial Q with no repeated nonconstant factors. Further, let Q1, . . . , Ql be the (dis-

tinct) irreducible factors of Q and let pi
def
= Prx∈H [Qi(x,B(x)) = 0]. There exists

an algorithm which takes as input δ, p > 0, runs in time poly(k, d, 1
p−ε ,

1
δ), and with

probability at least 1 − δ reconstructs a list of at most k bivariate polynomials which
includes every Qi such that pi/ki ≥ p, provided (p− ε)|H| > kd.

3. Multivariate black boxes. In this section, we extend Theorem 22 to multi-
variate polynomial black boxes over finite fields. The methods of section 2, i.e., those
based on trying to find the coefficients of polynomials simultaneously, do not seem
to extend directly to the general multivariate case. This is due to the possibly large
explicit representation of the function extracted from the black box, which makes it
inefficient to work with. Instead, we use techniques of pairwise independent sampling
to reduce the problem to a univariate situation and then apply Theorem 22 to the
new univariate problem. We start by summarizing the problem.

Given: An n-variate ε-noisy (k, d)-polynomial black box B : Fn → F . That is,
there exist n-variate polynomials f1, . . . , fk of total degree at most d such that

Pr
x̂∈Fn

[∃i ∈ [k] s.t. B(x̂) = fi(x̂)] ≥ 1− ε,

and furthermore, each fi is well represented in B; i.e.,

∀ i ∈ [k] Pr
x̂∈Fn

[B(x̂) = fi(x̂)] ≥ p > ε.

Problem: Construct k black boxes computing the functions f1, . . . , fk.
Notice that we have changed the problem from that of the previous section in

several ways. First, we no longer ask for an explicit representation of fi, but allow for
implicit representations. This is a strengthening of the problem, since explicit repre-
sentations may be much longer than implicit ones, and thus allow a reconstruction
algorithm much more time than we do. For instance, if the reconstructed function
is a sparse multivariate polynomial, then we can use any of the sparse multivariate
polynomial interpolation algorithms given in [3, 20, 21, 40] to recover explicit repre-
sentations of the reconstructed functions, in running time which is polynomial in the
number of nonzero coefficients rather than the total number of possible coefficients.
A second change from the problem of the previous section is that we expect all the

502 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

polynomials f1, . . . , fk to be well represented in the black box B. This is a weakening
of the problem, and we do not know how to get around it.

The outline of the method we use to solve the above problem is as follows. Con-
sider first the slightly simpler problem: given B and an input b̂ ∈ Fn, find the multiset
{f1(b̂), . . . , fk(b̂)}. This we solve by a reduction to a univariate version of the recon-
struction problem. Now a solution to this problem does not immediately suffice to
yield a solution to the n-variate reconstruction problem as described above. This is
because the solution produces a multiset of values {y1, . . . , yk} for which we do not
know which yj corresponds to fi. We want the black boxes to always output according
to the same polynomial consistently.

In order to solve this problem, we introduce the notion of a reference point r̂ ∈ Fn,
which will have the property that the value of the k different polynomials will be all
distinct on this point. We will then use a more general reduction to the univariate
problem which will allow us to reconstruct a set of pairs {(y1, z1), . . . , (yk, zk)} =

{(f1(b̂), f1(r̂)), . . . , (fk(b̂), fk(r̂))}. This, along with the property of the reference

point, allows us to order the points consistently for all inputs b̂. We now go into
the details.

3.1. Reference points. The following definition of a reference point is moti-
vated by the above discussion. We wish to consider the polynomial Q(x1, . . . , xn; y) =∏k
i=1(y−fi(x1, . . . , xn)), and want to ensure that at the reference point r̂, fi(r1, . . . , rn)
6= fj(r1, . . . , rn), whenever i 6= j. One way to test for this is to see if the polynomial

p(y)
def
= Q(r1, . . . , rn; y) has any repeated nonconstant factors. This will be our defi-

nition of a reference point. Note that this definition is general enough to apply also
to polynomials Q which do not factor linearly in y.

Definition 23. For a multivariate polynomial Q(x1, . . . , xn; y) that has no non-
constant repeated factors, a reference point is an element r̂ = (r1, . . . , rn) of Fn such

that the univariate polynomial p(y)
def
= Q(r1, . . . , rn; y) has no repeated nonconstant

factors.
The next lemma will show that a random point is likely to be a reference point

for any given polynomial Q, provided the field size is large compared to the degree of
the polynomial Q. We will need one more notion which is standard in algebra.

Definition 24. The discriminant of a univariate polynomial Q(y), denoted ∆,
is Res(Q,Q′) where Q′ is the derivative of Q with respect to y. The discriminant of a
multivariate polynomial Q(x1, . . . , xn; y) with respect to y, denoted ∆(x1, . . . , xn), is
defined to be Resy(Q,Q′) where Q′ is the derivative of Q with respect to y. (Formally,
the derivative of a monomial qiy

i is (qi + · · · + qi)y
i−1, where the summation is of

i qi’s. The derivative of a polynomial is simply the sum of the derivatives of the
monomials in it.)

The above definition is motivated by the following well-known fact: a polynomial
p (over any unique factorization domain) has repeated nonconstant factors if and
only if it shares a common factor with its derivative (cf. [27, Theorem 1.68]). From
the well-known fact about resultants, this extends to saying that a polynomial has
repeated nonconstant factors if and only if its discriminant is zero.

Lemma 25. For a polynomial Q(x1, . . . , xn; y) of {(1, x1), . . . , (1, xn), (d, y)}-
weighted degree at most kd with no repeated nonconstant factors, a random point

r̂ ∈ Fn is a reference point with probability at least 1− k(k−1)d
|F | .

Proof. Let ∆(x1, . . . , xn) be the discriminant of Q with respect to y. Notice that
Q′ is a polynomial of {(1, x1), . . . , (1, xn), (d, y)}-weighted degree at most (k − 1)d.

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 503

Thus, as in Claim 16, we can show that ∆(x1, . . . , xn) is a polynomial in x1, . . . , xn
of degree at most k(k − 1)d. Since Q has no repeated factors, ∆(x1, . . . , xn) is not
identically zero. Thus for a random point r̂ ∈ Fn, the probability that ∆(r̂) = 0 is
at most k(k − 1)d/|F |. But observe that ∆(r̂) is the discriminant of the univariate

polynomial p(y)
def
= Q(r1, . . . , rn, y), and if ∆(r̂) 6= 0, then r̂ is a reference point.

3.2. Reduction to the univariate case. We now consider the case where we
are given a black box B, described by polynomials f1, . . . , fk, and two points â, b̂ ∈ Fn,
and we wish to find a set of k pairs {(y1, z1), . . . , (yk, zk)} such that for every i ∈ [k],

there exists some j ∈ [k] such that (yj , zj) = (fi(â), fi(b̂)). We solve this problem
by creating a univariate reconstruction problem and then using Theorem 22 to solve
this problem. This reduction builds upon a method of [14], which in turn builds upon
earlier work of [1, 13].

We create a univariate “subdomain,” more precisely, a function D : F → Fn,

such that the image of the domain, Im(D)
def
= {D(t)|t ∈ F}, satisfies the following

properties.
1. â and b̂ are contained in Im(D).
2. The restriction of a polynomial Q̃(x1, . . . , xn, y) of {(1, x1), . . . , (1, xn), (d, y)}-

weighted degree kd to Im(D), i.e., the function Q̃D(t, y)
def
= Q̃(D(t), y), is a

bivariate polynomial of {(1, t), (3d, y)}-weighted degree 3kd.
3. Im(D) resembles a randomly and independently chosen sample of Fn of size
|F |. In particular, with high probability, the fraction of points from Im(D)
where the black box responds with f(x1, . . . , xn) is very close to the fraction
of points from Fn where the black box responds with f .

For a finite field F , with |F | > 3, D = (D1, . . . , Dn), where Di : F → F is

constructed by picking vectors ĉ = (c1, . . . , cn) and d̂ = (d1, . . . , dn) at random from
Fn and setting Di(t) = ai+cit+dit

2 +(bi−ci−di−ai)t3 for i ∈ [n]. By construction,
it is immediately clear that the “subdomain” D satisfies properties (1) and (2) listed
above. The following lemma shows that it also satisfies property (3) above.

Lemma 26. For sets S1, . . . , Sk, E ⊂ Fn, let pi
def
= |Si|/|Fn| and ε

def
= |E|/|Fn|

and let γ > 0. Then

Pr
ĉ,d̂

[∃i ∈ [k] s.t. |Im(D) ∩ Si|/|F | ≤ pi − γ/2 or |Im(D) ∩ E|/|F | ≥ ε+ γ/2]

≤ k + 1

γ2(|F | − 2)
.

Proof. Observe that the set of points {D(t)|t ∈ F \ {0, 1}} constitutes a pairwise
independent sample of points chosen uniformly at random from Fn. The lemma now
follows from a standard application of Chebyshev bounds.

Thus we obtain the following algorithm (tuned for confidence parameter δ = 1/3).
The algorithm is given a threshold p.
1. Pick ĉ, d̂ at random from Fn.
2. Let D(t) = (D1(t), . . . , Dn(t)) be given by Di(t) = ai + cit+ dit

2 + (bi− ai−
ci − di)t3, and let B′ : H → F be the black box given by B′(t) = B(D(t)),
where H = F − {0, 1}.

3. Reconstruct all univariate polynomials g1, . . . , gk of degree at most 3d de-
scribing B′, for threshold p and confidence 1− 1/6.

504 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

4. Output {(g1(0), g1(1)), . . . , (gk(0), gk(1))}.
Let γ =

√
6(k+1)
(|F |−2) . By Lemma 26 we know that the above algorithm finds a

univariate domain D, s.t. at most an ε + γ/2 fraction of the points on the domain
are “noisy” and every polynomial is represented on at least a pi − γ/2 fraction of the
domain, with probability at least 1−1/6. Thus if pi ≥ p for every i, and (p−ε−γ)(|F |−
2) > 3kd, then the univariate reconstruction algorithm is guaranteed to find all the
fi’s, with probability at least 1− 1/6. The condition on |F | above can be simplified
(somewhat) to (p − ε)|F | > 3kd +

√
6(k + 1)|F | + 2, and under this condition the

algorithm above returns {(f1(0), f1(1)), . . . , (fk(0), fk(1))} correctly with probability
at least 2/3. Notice that by repeating log 1

δ times and outputting the majority answer
(i.e., the set that is output most often), we can boost the confidence up to 1− δ, for
any δ > 0. This yields the following lemma.

Lemma 27. Given an ε-noisy n-variate polynomial black box B described by
polynomials f1, . . . , fk of degree d, s.t.

∀i ∈ [k], Pr
x̂∈Fn

[B(x̂) = fi(x̂)] ≥ p > ε,

there exists a randomized algorithm that takes as input δ, p > 0 and â, b̂ ∈ Fn, runs in
time poly(n, k, d, 1

(p−ε) , log 1
δ), and outputs the set of k ordered pairs {(f1(â), f1(b̂)),

. . . , (fk(â), fk(b̂))} with probability at least 1 − δ provided (p − ε)|F | > 3kd + 2 +√
6(k + 1)|F |.

3.3. Putting it together. We are now ready to describe the algorithm for
solving the multivariate reconstruction problem. The algorithm has a preprocessing
stage where it sets up k black boxes, and a query processing stage where it is given a
query point â ∈ Fn and the black boxes compute fi(â).
Preprocessing Stage: Given: Oracle access to a black box B described by polynomials

f1, . . . , fk. Parameters k, ε, p, and δ.
Step 1: Pick r̂ at random and b̂ at random.
Step 2: Reconstruct, with confidence 1 − δ, the set {(f1(r̂), f1(b̂)), . . . ,

(fk(r̂), fk(b̂))} using the algorithm of section 3.2.
Step 3: If the multiset {f1(r̂), . . . , fk(r̂)} has two identical values, then output

“failure”. Else pass the reference point r̂ and the values f1(r̂), . . . , fk(r̂)
to the Query Processing Stage.

Query Processing Stage: Given: Oracle access to a black box B, b̂ ∈ Fn, and parame-
ters k, d, p, and δ. Additionally, reference point r̂ and values v1, . . . , vk
passed on by the Preprocessing Stage.

Step 1: Reconstruct with confidence δ the set {(f1(r̂), f1(b̂)), . . . , (fk(r̂), fk(b̂))}
using the algorithm of section 3.2.

Step 2: If the set {f1(r̂), . . . , fk(r̂)} equals the set {v1, . . . , vk} then reorder
the indices so that fi(r̂) = vi for every i ∈ [k]. If the sets are not
identical, then report “failure”.

Step 3: For every i ∈ [k], the black box Bi outputs fi(b).
This yields the following theorem.
Theorem 28. Let B be an ε-noisy n-variate (k, d)-polynomial black box s.t.

Pr
x̂∈Fn

[∃i ∈ [k], s.t. B(x̂) = fi(x̂)] ≥ 1− ε

and ∀i ∈ [k] Pr
x̂∈Fn

[B(x̂) = fi(x̂)] ≥ p > ε.

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 505

Then, if (p−ε)|F | > 3kd+2+
√

6(k + 1)|F |, there exists a randomized algorithm that
takes as input a confidence parameter δ and with probability 1 − δ produces k black
boxes Bj such that for every i ∈ [k] there exists j ∈ [k] s.t. for every input b̂ ∈ Fn,

the black box Bj computes fi(b̂) with probability 1− δ.
4. Applications. In this section, we describe the application of our techniques

to curve fitting and bivariate polynomial factorization.

4.1. Curve fitting problems over discrete domains. In this subsection, we
study the curve fitting problem over discrete domains. Given a set of m points, with
integer coordinates, we show how to find a polynomial with integer coefficients that
is ∆-close to all but an ε fraction of the points (if such a polynomial exists), where ε

need only be less than 1/2 (provided m is larger than (4∆+1)d
1−2ε). Over Zp (or over the

integers) the problem can be formulated as follows.
Given: m pairs of points, {(x1, y1), . . . , (xm, ym)} and ε, such that there exists a

polynomial f , of degree at most d, such that for all but εm values of j in [m]

∃i ∈ [−∆,∆] s.t. yj = f(xj) + i

Problem: Find such an f .

Consider fi(x)
def
= f(x) + i, where i ∈ [−∆,∆]. Notice that all but an ε fraction

of the points are described by the polynomial fi’s. Thus the above problem could be
thought of as a reconstruction problem for an ε-noisy (2∆ + 1, d)-polynomial black
box reconstruction problem. Lemma 21 can now be applied to this set of points to
get the following result.

Claim 29. If there exists an i such that the number of points for which y = fi(x)
is strictly more than εm + kd, then we can find a small set of polynomials which
includes fi.

The weakness of the above procedure is that it can only be guaranteed to succeed
if ε is smaller than 1

2∆+2 , since only then can we guarantee the existence of an i such
that the polynomial fi(x) is represented more often than the noise in the input set.
We now present a variation of the above method which gets around this weakness
and solves the curve fitting problem for strictly positive values of ε (independent of
∆) and in fact works for ε arbitrarily close to 1/2.

The idea is that we can artificially decrease the influence of the bad points. To
do this, we look at the following set of points: {(xi1, yi1), . . . , (xim, y

i
m)}∆i=−∆, where

xij = xj and yij = yj −∆ + i. (From each point in the original sample, we generate
2∆ + 1 points, by adding and subtracting up to ∆ to the y coordinate of each point.)
We show that these points represent the output of a (k, d)-algebraic black box for
k = εm+ (4∆ + 1)d.

Observe that the following conditions hold for the (2∆ + 1)m points constructed
above.

• There exists a polynomial Q(x, y) of {(1, x), (d, y)}-weighted degree at most
εm+(4∆+1)d such that Q(x, y) = 0 for all the points. This is the polynomial:
Q(x, y) = W (x) ·Π2∆

i=−2∆ (y− fi(x)), where fi(x) = f(x) + i and W (x) is the
polynomial satisfying W (xj) = 0 if fi(xj) 6= yj for any i ∈ [−∆,∆]. (Notice
that the degree of W is εm.)
• At least (1 − ε)m of the points satisfy y = f(x). This is because for every

point in the original (xj , yj) such that yj is within ∆ of f(xj) (and there were
(1− ε)m such points), one of the new (xij , y

i
j) pairs satisfies yij = f(xij).

506 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

Lemma 30. Given m points {(x1, y1), . . . , (xm, ym)}, integer d, and ε < 1
2 , there

exists a polynomial time algorithm that can find all polynomials f of degree d such

that f is ∆-close to all but an ε fraction of the points (xj , yj), provided m > (4∆+1)d
1−2ε .

Proof. Find a polynomial Q̃(x, y) such that Q̃(x, y) = 0 for all the points

{(xij , yij)}m, ∆
j=1,i=−∆ such that the degree of Q̃ is at most εm + (4∆ + 1)d. If εm +

(4∆ + 1)d < (1− ε)m, then by Lemma 11 we know that for every candidate function
f which forms an (ε,∆) fit on the given points, (y − f(x)) divides Q̃. Thus factoring
Q̃ will give us all the candidates.

4.2. Reducing bivariate factoring to univariate factoring. In section 2.1,
we saw how to reduce the problem of reconstructing total polynomial black boxes to
the problem of factoring bivariate polynomials. In the specific case of univariate poly-
nomial black boxes over finite fields, we will also reduce the reconstruction problem
to that of factoring univariate polynomials into their irreducible factors. As an in-
teresting consequence, we describe a simple way of reducing the problem of factoring
special bivariate polynomials over finite fields to the problem of factoring univariate
polynomials.

We first show how to reduce the reconstruction problem to that of factoring
univariate polynomials. Suppose we have a black box which on input x outputs the
(unordered) set {f1(x), . . . , fk(x)}, where the fi’s are univariate polynomials, each of
degree at most d. Sampling from the black box and interpolating, we can find the
polynomial f(x) =

∏k
i=1 fi(x) explicitly (in terms of its coefficients). If somehow we

could guarantee that at least one of the fi’s is irreducible, we could factor t to find
fi. Such a guarantee is not available, but we simulate it via randomization.

Let α(x) ∈ F [x] be a random degree d polynomial. We can convert the given set of
sample points so that on each input x we have the (still unordered) set {g1(x), . . . , gk(x):
gi(x) = fi(x) + α(x)}. Each of the polynomials gi is a random degree d polynomial
(but they are not necessarily independent). We then use the fact that random poly-
nomials over finite fields have a reasonable chance of being irreducible.

Lemma 31 ([27, p. 84]). The probability Pq(d) that a random polynomial of degree
d is irreducible over Fq is at least 1

d (1− 1
q−1).

We can thus interpolate (after sampling at kd+ 1 points) and explicitly compute

g(x) =
∏k
i=1 gi(x). We factor g into irreducible factors r1, · · · , rl. For each factor rj

of g, we verify whether or not rj − α is a candidate for one of the fi’s by checking
that it evaluates to one of the outputs of the black box B on all the sampled points.
By Lemma 31 we know that with nonnegligible probability gi is irreducible and if this
happens, we find gi as one of the factors of g (i.e., as one of the rj ’s). Subtracting α
from gi gives us fi, which will pass the candidacy verification.

Lemma 32. If a degree d polynomial p agrees with one of the outputs of the black
box on kd+ 1 different x’s, then p agrees with one of the outputs of the black box on
all x’s.

Proof. If p agrees with one of the outputs of the black box on kd+ 1 different x’s,
then by the pigeonhole principle there is a polynomial fi which agrees with p on at
least d+ 1 different x’s. Thus p ≡ fi.

Thus, no rj which is not equal to one of the gi’s will pass the candidacy verifica-
tion. By repeating this procedure enough times and outputting all the candidates, we
can reconstruct all the polynomials {f1, . . . , fk}. Straightforward analysis shows that
the expected number of times that we need to repeat the process (choose random α)
is O(k/Pq(d)). Refining the analysis, we can show that O(ln k/Pq(d)) times suffice.

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 507

From the above, we get the following algorithm for finding the monic linear factors
of a bivariate polynomial Q(x, y).

program Simple Factor
repeat O(ln k/Pq(d)) times

pick a random degree d polynomial

α(x) over F
factor Q(x, α(x))
for every factor g(x) of Q(x, α(x))

if (y + g(x)− α(x)) divides Q(x, y)
output (y + g(x)− α(x))

end

Claim 33. Given a bivariate polynomial Q(x, y), over a finite field F , of total
degree at most kd, the algorithm Simple Factor finds all the linear and monic factors
of Q(x, y).

We next extend this mechanism and apply the reconstruction mechanism of sec-
tion 2.2 to the problem of finding the factors of Q(x, y) which are monic and of
constant degree in y. Our mechanism tries to isolate some factor A(x, y) of Q(x, y)
of the form

A(x, y) = yc + ac−1(x)yc−1 + · · ·+ a0(x),

where the ai’s are polynomials in x of degree at most d (and c is a constant).
Let Q(x, y) be a polynomial of {(1, x), (d, y)}-weighted degree kd. For each i ∈ [c]

we construct a program Pi which is supposed to be a (K, d)-algebraic box for ai,
for some K ≤ 2ikd

(
k
c

)
. We then use our reconstruction procedure (Theorem 22) to

produce, for each i ∈ [c], a list of at most K polynomials which contains ai. This,
in turn, gives a set of at most Kc polynomials in x and y which contains A(x, y).
A(x, y) can be isolated from this set by exhaustive search. The running time of this

algorithm is thus some polynomial in (kd)c
2

.
The program Pi for ai works as follows on input x1.
• Pi constructs the polynomial Qx1

(y) ≡ Q(x1, y) (which is a polynomial in y)
and factors Qx1

.
• Let S be the set of factors of Qx1

. (S contains polynomials in y.)
• Let Sc be the set of polynomials of degree c obtained by taking products of

polynomials in S.
• Pi picks a random polynomial f in Sc and outputs the coefficient of yi in f .

We now show that Pi is a (2ikd
(
k
c

)
, d)-algebraic black box described by some

polynomial Q∗(x, y) such that y − ai(x) divides Q∗(x, y). Let Q(x, y) = qk(x)yk +
qk−1y

k−1 + · · ·+ q0(x). Over the algebraic closure of the quotient ring of polynomials
in x, Q(x, y) factors into linear factors in y; let this factorization be

Q(x, y) = qk(x)(y − b1(x))(y − b2(x)) · · · (y − bk(x)).

(The bi(x) are some functions of x, but not necessarily polynomials.) For T ⊂ [k],

|T | = c, let σT,i(x)
def
=
∑
S⊂T,|S|=i

∏
l∈S bl(x). Notice that the function ai(x) that we

are interested in is actually σT,i(x) for some T . Notice further that the output of the
program Pi is always σT,i(x) for some T (though this T is some arbitrary subset of [k]).
Thus the input/output pairs (x, y) of the program Pi always satisfy

∏
T⊂[k],|T |=c(y−

σT,i(x)) = 0. Unfortunately, σT,i(x) need not be a polynomial in x. So we are not done

508 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

yet. We will show that Q∗(x, y)
def
= (qk(x, y)N)

∏
T⊂[k],|T |=c(y − σT,i(x)) is actually a

polynomial in x and y of {(1, x), (d, y)}-weighted degree at most Ki, where N = i
(
k
c

)
.

To see this, consider the coefficient of yj in Q∗(x, y). This is qk(x)N times some
polynomial in b1(x), . . . , bk(x), denoted gj(b1(x), . . . , bk(x)). By the definition of Q∗,
we notice that gj is a symmetric polynomial in b1(x), . . . , bk(x) of degree at most i

(
k
c

)
.

We now invoke the “fundamental theorem of symmetric polynomials” [27, pp. 29–30],
which states that a symmetric polynomial of degree D in variables z1, . . . , zk can be
expressed as a polynomial of degree at most D in the primitive symmetric functions
in z1, . . . , zk. In our case this translates into saying that there exists some polynomial

g̃j of degree at most N s.t. gj(b1(x), . . . , bk(x)) = g̃j(
qk−1(x)
qk(x) , . . . , q0(x)

qk(x)) (since the

primitive symmetric functions in b1(x), . . . , bk(x) are actually qk−1(x)
qk(x) , . . . , q0(x)

qk(x)). Thus

we find that the coefficient of yj in Q∗(x, y) is a polynomial in x of degree at most
ikd
(
k
c

)
. The claimed bound on the degree of Q∗ now follows easily.

Thus we get the following lemma.
Lemma 34. Given a polynomial Q(x, y) of {(1, x), (d, y)}-weighted degree kd,

there is an algorithm that runs in time polynomial in (kd)c
2

which finds all factors of
Q that are monic and of degree c in y.

Appendix A.
Lemma 35. Given S ⊂ H, with |S|/|H| = p, if |H| ≥ 2

δ

(
M
2

)
, and M ≥ 2

p (kd +

ln 2
δ), then the probability that M points x1, . . . , xM chosen uniformly at random from

H turn out to be distinct and satisfy |{j|xj ∈ S}| ≥ kd is at least 1− δ.
Proof. First observe that for a given i 6= j, the probability that xi = xj is

exactly 1/|H|. Thus the probability that there exists i, j s.t. xi = xj is at most(
M
2

)
/|H| ≤ δ/2.
Now, for the second part, we use Chernoff bounds (in particular, we use a bound

from [31, Theorem 4.2]). Let X denote the number of elements j s.t. xj ∈ S. Let
µ = Mp denote the expected value of X. Then Pr[X ≤ K] ≤ exp(−(µ − K)2/2µ).
Plugging in the values of µ = 2(kd+ ln 2

δ) and K = kd and simplifying, we find that
exp(−(µ−K)2/2µ) ≤ δ/2.

Thus the probability that either of the above two events happens is bounded by
at most δ as desired.

Lemma 36. Given S,E ⊂ H, with |S|/|H| = p and |E|/|H| = ε if |H| ≥ 3
δ

(
M
2

)
,

and M ≥ k1kd
p−k1ε

+ 16
(p−k1ε)2 ln 3

δ , then the probability that M points x1, . . . , xM chosen

uniformly at random from H turn out to be distinct and satisfy |{j|xj ∈ S}| > M(p+
k1ε)/2 + k1kd/2 and |{j|xj ∈ E}| < M(p/k1 + ε)/2− kd/2 is at least 1− δ.

Proof. First we argue as above that the probability that the xj ’s are not distinct
is at most δ/3.

Now for the second part we again use Chernoff bounds (this time we use the
bounds from [31, Theorems 4.2 and 4.3]). Let X denote the number of elements j
s.t. xj ∈ S. The above-mentioned bounds translate to show that the probability
that the number of points from S is less than Mp − λ√Mp is at most exp(−λ2/2).
Similarly, the probability that the number of points from E turns out to be more
than Mε + λ

√
Mε is bounded by at most exp(−λ2/4). Each of these probabilities

is at most δ/3 if we choose λ = 2
√

ln 3
δ . The lemma now follows from the fact that

for the chosen value of M , we have that Mε + λ
√
M < M(p/k1 + ε)/2 − kd/2 and

Mp+ λ
√
M > M(p+ k1ε)/2 + k1kd/2.

RECONSTRUCTING ALGEBRAIC FUNCTIONS FROM MIXED DATA 509

Acknowledgments. We are very grateful to Avi Wigderson for asking a question
that started us down this line of research and for helpful discussions. We are very
grateful to Umesh Vazirani for his enthusiasm, his valuable opinions and suggestions,
and the time that he spent with us discussing this work. We thank Ronen Basri,
Oded Goldreich, and Mike Kearns for their comments on the writeup of this paper.
We thank Joel Friedman for technical discussions about questions related to the topics
of this paper. We also thank the anonymous referees for their extensive reports and
for catching many blatant as well as subtle errors from an earlier version of this paper.

REFERENCES

[1] D. Beaver and J. Feigenbaum, Hiding instance in multioracle queries, in Proc. ACM Sym-
posium on Theoretical Aspects of Computer Science, 1990.

[2] M. Ben-Or, Probabilistic algorithms in finite fields, in Proc. 22nd IEEE Symposium on Foun-
dations of Computer Science, 1981, pp. 394–398.

[3] M. Ben-Or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial
interpolation, in Proc. 20th ACM Symposium on Theory of Computing, 1988, pp. 301–
309.

[4] E. Berlekamp, Factoring polynomials over large finite fields, Math. Comp., 24 (1970), p. 713.
[5] E. Berlekamp, Bounded distance +1 soft-decision Reed-Solomon decoding, in IEEE Trans.

Inform. Theory, 42 (1996), pp. 704–720.
[6] A. Blum and P. Chalasani, Learning switching concepts, in Proc. 5th Annual ACM Workshop

on Computational Learning Theory, 1992, pp. 231–242.
[7] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical

problems, J. Comput. System Sci., 47 (1993), pp. 549–595.
[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Occam’s razor, Inform.

Process. Lett., 24 (1987), pp. 377–380.
[9] J. Y. Cai and L. Hemachandra, A note on enumerative counting, Inform. Process. Lett., 38

(1991), pp. 215–219.
[10] J. Canny, Finding edges and lines in images, Artificial Intelligence Laboratory Report, AI-

TR-720, MIT, Cambridge, MA, 1983.
[11] D. Coppersmith, Personal communication to Ronitt Rubinfeld, Fall 1990.
[12] J. von zur Gathen, Algebraic complexity theory, Ann. Rev. Comput. Sci., 3 (1988), pp. 317–

347.
[13] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-

testing/correcting for polynomials and for approximate functions, in Proc. 23rd ACM
Symposium on Theory of Computing, 1991, pp. 32–42.

[14] P. Gemmell and M. Sudan, Highly resilient correctors for polynomials, Inform. Process. Lett.,
43 (1992), pp. 169–174.

[15] O. Goldreich and L. Levin, A hard-core predicate for any one-way function, in Proc. 21st
ACM Symposium on Theory of Computing, 1989.

[16] O. Goldreich, R. Rubinfeld, and M. Sudan, Learning polynomials with queries: The highly
noisy case, in Proc. 36th IEEE Symposium on Foundations of Computer Science, 1995,
pp. 294–303.

[17] D. Grigoriev, Factorization of polynomials over a finite field and the solution of systems of
algebraic equations, Zap. Nauchn. Sem. Lenningradskogo Otdel. Mat. Inst. Steklov. AN
SSSR, 137 (1984), pp. 20–79 (in translation).

[18] D. Grigoriev and A. Chistov, Fast decomposition of polynomials into irreducible ones and
the solution of systems of algebraic equations, Soviet Math. Dokl., 29 (1984), pp. 380–383.

[19] D. Grigoriev and M. Karpinski, Algorithms for Sparse Rational Interpolation, ICSI Techni-
cal Report TR-91-011, ICSI, Berkeley, CA, 1991.

[20] D. Grigoriev, M. Karpinski, and M. F. Singer, Interpolation of Sparse Rational Functions
without Knowing Bounds on Exponents, Report No. 8539-CS, Institut für Informatik der
Universität Bonn, 1989.

[21] D. Grigoriev, and M. Karpinski, and M. F. Singer, Fast parallel algorithms for sparse mul-
tivariate polynomial interpolation over finite fields, SIAM J. Comput., 19 (1990), pp. 1059–
1063.

[22] D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other
learning applications, Inform. and Comput., 100 (1992), pp. 78–150.

[23] J. Henderson and R. Quandt, Microeconomic Theory, McGraw Hill, New York, 1958, 1971.

510 S. AR, R. LIPTON, R. RUBINFELD, AND M. SUDAN

[24] E. Kaltofen, A polynomial-time reduction from bivariate to univariate integral polynomial
factorization, in 23rd Annual IEEE Symposium on Foundations of Computer Science,
1982, pp. 57–64.

[25] E. Kaltofen and B. Trager, Computing with polynomials given by black boxes for their
evaluations: Greatest common divisors, factorization, separation of numerators and de-
nominators, in 29th Annual IEEE Symposium on Foundations of Computer Science, 1988,
pp. 296–305.

[26] E. Kushilevitz and Y. Mansour, Learning decision trees using the Fourier spectrum, in Proc.
23rd ACM Symposium on Theory of Computing, 1991.

[27] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cam-
bridge University Press, UK, 1986.

[28] R. Lipton, New directions in testing, in Distributed Computing and Cryptography, DIMACS
Ser. Discrete Math. Theoret. Comput. Sci. 2, AMS, Providence, RI, 1991, pp. 191–202.

[29] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, Factoring polynomials with rational coeffi-
cients, Math. Ann., 261 (1982), pp. 515–534.

[30] D. Marr and E. Hildreth, Theory of edge detection, Proc. Roy. Soc. London, B207 (1980),
pp. 187–217.

[31] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, UK,
1995.

[32] R. Rivest, Learning decision lists, Machine Learning, 2 (1987), pp. 229–246.
[33] T. J. Rivlin, An Introduction of the Approximation of Functions, Dover, New York, 1969.
[34] R. Rubinfeld and R. Zippel, A new modular interpolation algorithm for factoring multivari-

ate polynomials, in Proc. Algorithmic Number Theory Symposium, 1994.
[35] M. Sudan, Decoding of Reed Solomon codes beyond the error-correction bound, J. Complexity,

13 (1997), pp. 180–193.
[36] L. Valiant, A theory of the learnable, Comm. ACM, 27 (1984), pp. 1134–1142.
[37] B. L. Van der Waerden, Algebra, Vol. 1, Frederick Ungar Publishing Co., Inc., p. 82.
[38] R. J. Walker, Algebraic Curves, Princeton University Press, Princeton, NJ, 1950.
[39] L. Welch and E. Berlekamp, Error Correction of Algebraic Block Codes, U.S. Patent Number

4,633,470, issued December 1986.
[40] R. E. Zippel, Probabilistic algorithms for sparse polynomials, in Proc. European Conference

on Symbolic and Algebraic Manipulation ’79, Lecture Notes in Comput. Sci. 72, Springer-
Verlag, New York, 1979, pp. 216–226.

[41] R. E. Zippel, Interpolating polynomials from their values, J. Symbol. Comput., 9 (1990),
pp. 375–403.

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE∗

BARUCH AWERBUCH† , ISRAEL CIDON‡ , SHAY KUTTEN§ , YISHAY MANSOUR¶, AND

DAVID PELEG‖

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 511–524

Abstract. This work is concerned with the problem of broadcasting a large message efficiently
when each processor has partial prior knowledge about the contents of the broadcast message. The
partial information held by the processors might be out of date or otherwise erroneous, and con-
sequently, different processors may hold conflicting information. Tight bounds are established for
broadcast under such conditions, and applications of the broadcast protocol to other distributed
computing problems are discussed.

Key words. distributed algorithms, topology update, error correcting code, universal hash, self
stabilization

AMS subject classifications. 94A, 94B, 68Q22

PII. S0097539795279931

1. Introduction.

1.1. Motivation. Many tasks in distributed computing deal with concurrently
maintaining the “view” of a common object in many separate sites of a distributed
system. This object may be the topology of a communication network (in which case
the view is a description of the underlying network graph), or certain resources held
at the system sites (in which case the view is an inventory listing the resources held
at each site), or even a general database. The objects considered here are dynamic
in nature, and are subject to occasional changes (e.g., a link fails, a resource unit is
consumed or released, a database record is modified). It is thus necessary to have an
efficient mechanism for maintaining consistent and updated views of the object at the
different sites.

One obvious algorithm for maintaining updated views of a distributed object is
the full broadcast algorithm. This algorithm is based on initiating a broadcast of the
entire view of the object whenever a change occurs. Due to the possibility of message
pipelining, the time complexity of this algorithm is relatively low. On the other hand,
this algorithm might be very wasteful in communication, since the object may be
rather large.

Consequently, it is clear that a successful consistency maintenance strategy should
strive to utilize the fact that the processors already have a correct picture of “most”

∗Received by the editors January 10, 1995; accepted for publication (in revised form) April 10,
1996; published electronically July 28, 1998.

http://www.siam.org/journals/sicomp/28-2/27993.html
†The Johns Hopkins University, Baltimore, MD 21218 and MIT Laboratory for Computer Science

(baruch@blaze.cs.jhu.edu). This research was supported by Air Force contract TNDGAFOSR-86-
0078, ARPA/Army contract DABT63-93-C-0038, ARO contract DAAL03-86-K-0171, NSF contract
9114440-CCR, DARPA contract N00014-J-92-1799, and a special grant from IBM.
‡Faculty of Electrical Engineering, Technion, Haifa 32000, Israel (cidon@ee.technion.ac.il).
§Department of Industrial Engineering and Management, Technion, Haifa 32000, Israel and IBM

T.J. Watson Research Center, Yorktown Heights, NY 10598 (kutten@ie.technion.ac.il).
¶Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (mansour@

math.tau.ac.il).
‖Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot

76100, Israel (peleg@wisdom.weizmann.ac.il). This research was supported in part by an Allon
Fellowship, by a Walter and Elise Haas Career Development Award, and by a Bantrell Fellowship.

511

512 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

of the object and need to be informed of relatively few changes. Viewed from this
angle, the problem can be thought of as having to broadcast the entire view of the
object, while taking advantage of prior partial knowledge available to the processors
of the system.

On the other extreme there is the incremental update strategy, in which only “nec-
essary” information is transmitted. This strategy is at the heart of the algorithms sug-
gested for handling the topology update problem [ACK90, MRR80, SG89, BGJ+85].
Unfortunately, it is not obvious how to employ information pipelining with this
method, as demonstrated in the sequel. This increases the time complexity.

The purpose of this work is to study the problem of updating a distributed
database, under minimal assumptions. That is, we do not assume any initial co-
ordination and allow only a small amount of space. Under such conditions, we look
for efficient solutions to the problem with respect to communication and time over-
heads. In this setting, it turns out that the main bottleneck of the database update
problem can be characterized as a fairly simple “communication complexity” problem,
called broadcast with partial knowledge.

1.2. The model and the problem. The broadcast with partial knowledge prob-
lem can be formulated as follows. Consider an asynchronous communication network,
consisting of n + 1 processors, p0, . . . , pn; each processor pi has an m-bit local input
wi, and processor p0 is distinguished as the broadcaster. In a correct solution to the
problem all the processors write in their local output the value of the broadcaster’s
input, w = w0.

Without loss of generality we assume that the network is arranged in a line.
That is, each processor pi (for 1 < i < n) is connected only to pi−1 and pi+1. The
algorithm can be easily adapted to be executed on trees, rather than on a line (which
is the “worst-case” tree) as described here. Thus, in an arbitrary topology network,
performing the algorithm on a shortest-path tree yields optimal message and time
complexities. (Our results are expressed in terms of n, as well as of other parameters;
in the case of general networks n is replaced by the diameter of the network.)

This formulation of the problem can be interpreted as follows. The input wi is
stored at processor pi and describes the local representation of the object at processor
pi. The correct description of the object is w = w0, held by the broadcaster. The
local descriptions wi may differ from the correct one as a result of changes in the
object. In particular, every two processors may have different descriptions due to
different messages they got from the broadcaster in the past, as a result of message
losses, topology changes, and the asynchronous nature of the network. Our goal is to
inform all the processors throughout the network about the correct view of the object
w, and to use the processor’s local inputs given to each processor in order to minimize
the time and communication complexities.

In this paper, we provide a randomized solution for the hardest version of this
problem, in which each processor only knows its own input, and has no information
regarding inputs of other processors. A weaker version of the problem is based on
making the rather strong “neighbor knowledge” assumption, namely, assuming that
each processor correctly knows the inputs of all its neighbors, in addition to its own.
This assumption is justified in [ACK90], where it is shown that neighbor knowledge
comes for free in the context of database and topology update protocols. Even for
this weaker problem, none of the previously known solutions are efficient in both com-
munication and time. (Following the original version of the current paper [ACK+91],
a deterministic algorithm was given for the weaker problem [AS91]. The complexity

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE 513

of that algorithm is larger than that of the randomized algorithm presented here by
a polylogarithmic factor.)

In order to quantify the possibility of exploiting local knowledge, we first introduce
a new measure that captures the level of “information” of the knowledge held by each
processor. Let the discrepancy δi of the input wi held by processor pi be the number
of bits in which wi, the local description at pi, differs from the broadcaster’s input
w, which is the correct description of the object. Define also the total discrepancy
∆ =

∑
i δi, the average discrepancy δav = ∆/n, and the maximum discrepancy δmax =

maxi{δi}.
Our goal is to study the relationships between these discrepancies and the com-

plexity of broadcast algorithms, following the intuition that the complexity of broad-
cast protocols should be proportional to discrepancy of processors’ inputs; i.e., if
the views of most processors are “almost correct,” then the overhead of the protocol
should be small. We therefore express the communication and time complexities of
our solution as a function of m, n, and δav. The complexities are measured in the bit
complexity model.

1.3. Basic solutions. The first obvious solution to the broadcast with partial
knowledge problem is the aforementioned full broadcast protocol, which is wasteful
in communication, i.e., requires Ω(nm) bits. On the other hand it is rather fast,
since the broadcast can be done in a pipelined fashion and thus can terminate in
O(n + m) time. Thus, one would like to improve on this algorithm with respect to
communication complexity, aiming towards reducing this complexity to be close to
the total discrepancy ∆, while maintaining near-optimal time complexity.

The incremental update strategy proposed in [ACK90] poses an alternative ap-
proach. It can be applied only under the strong assumption of “neighbor knowledge,”
where each node is assumed to “know” the value of the database at its neighbor.
The essence of this strategy is that a processor with “correct” view transmits to its
neighbor a “correction” list, which contains all the positions where the neighbor’s
input is erroneous. When the neighbor receives all the corrections, it can assume that
the rest of its input is correct and start using it for correcting its own neighbors who
are further away from the source. In this algorithm, a “correction wave” propagates
through the network from the source, until all nodes are corrected. Note that there
is almost no pipelining possible in this algorithm as described above, since a node
can start transmitting only after it is done with the receiving. Even in the simple
case of a path network the protocol may require Ω(∆) time. As mentioned above, in
the follow-up paper [AS91] the complexity of this strategy (for the “neighbor knowl-
edge” variant of the problem) was improved significantly (although still not matching
the lower bound), using a very sophisticated partitioning of the information and a
recursive implementation.

1.4. Our results. In this paper, we provide an efficient randomized solution
to the broadcast with partial knowledge problem. It has success probability at least
1− ε, and uses O(∆ logm+ n log n

ε) communication and O(n+m) time, where ε is a
parameter to the algorithm. Note that in all cases, we allow the inputs stored at the
various processors to differ in arbitrary ways, subject to the discrepancy constraints.

Our upper bounds are derived using linear codes. Such codes were used before
in constructing distributed algorithms for solving various problems. Metzner [Met84]
uses Reed–Solomon and random codes to achieve efficient retransmission protocols
in a complete network. Ben-Or, Goldwasser, and Wigderson [BOGW88] use Bose–
Chaudhuri Hocquenghem (BCH) codes to guarantee privacy in a malicious environ-

514 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

Table 1
Comparison of protocols and lower bounds.

Algorithm Communication Time Assumptions

Full broadcast (folklore) nm n+m

Incr. Update [ACK90] n+ ∆ logm n+ ∆ logm neighbor knowledge

Our algorithm ∆ logm+ n log n
ε n+ log n

ε + min{m,∆ logm}
Our lower bound n+ nδmax log(m/δmax) n+ δmax log(m/δmax)

Table 2
Applications of partial knowledge broadcast protocols to topology update.

Reference Amortized Commun. Quiescence time

Full broadcast [AAG87] V E V + E
Incr. update [ACK90] V logE V 2 · logE

Our upper bound V logE E + V log V
Lower bound V logE E

ment. Rabin [Rab89] uses codes to achieve a reliable fault-tolerant routing with a
low overhead. Another closely related concept is that of source coding with side
information [SW73].

Using simple arguments from information theory and communication complexity
theory, we are able to show that our upper bounds are almost tight. We argue
that when the average discrepancy is δmax, the communication complexity is at least
Ω(∆ log(m

δmax
)) and the time complexity is at least Ω(n + δmax log(m

δmax
)). We also

argue that in the case when no information is known about the discrepancies, any
deterministic protocol would send Ω(nm) bits, even if there are no discrepancies at
all.

The comparison of our protocols, previous results, and the lower bounds is given
in Table 1.

1.5. Applications. One application of our work is to the classical network prob-
lem of topology update. This task is at the heart of many practical network protocols
[MRR80, BGJ+85, ACG+90]. The problem can be formulated as follows. Initially,
each processor is aware of the status of its adjacent links, i.e., whether each link is up
or down, but is unaware of the status of other links. The purpose of the protocol is
to supply each processor with this global link status information.

The topology update algorithm of [ACK90] is based on the incremental update
strategy. The possibility of recurring network partitions and reconnections signifi-
cantly complicates implementation of this strategy. Nevertheless, the resulting broad-
cast procedure is efficient in terms of communication (although not in time) and leads
to essentially communication-optimal topology update protocols [ACK90].

A consequence of [ACK90] that is most significant for our purposes is the observa-
tion that it is possible to relate the complexities of the problem of broadcasting with
partial knowledge to those of topology update, effectively reducing the former problem
to the latter. Namely, given any solution for the broadcast with partial knowledge
problem, one can construct a topology update protocol with lower or equal overheads
in both communication and time.

Table 2 summarizes the complexities of protocols to the topology update task
obtained by applying various broadcast with partial knowledge algorithms (with V,E
denoting the number of vertices and edges in the network, respectively).

It is worth pointing out that our complexity results are presented in the bit com-

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE 515

plexity model, whereas the results in [ACK90] are presented in the message complexity
model which charges only one complexity unit for a message of size O(log n) bits.

Our algorithm may also be applicable for dealing with the issue of self-stabilization
[Dij74, AKY90, KP90, APV91]. The self-stabilization approach is directed at dealing
with intermittent faults that may change the memory contents of nodes and cause
inconsistency between the local states of nodes. Dijkstra’s example [Dij74] is that of a
token passing system, where it is required that exactly one of the nodes holds a token
at any given time. The faults may cause an illegal situation in which no node holds a
token (each “assumes” that some other has it) or alternatively, that several nodes hold
a token. Overcoming such faults requires the nodes to continuously check the states
of their neighbors and possibly to correct them when necessary. It is conceivable that
the faults cause only partial changes in memory, so our algorithm can be used to
mend the situation. Note that in this context, it is essential that we do not make the
“neighbor knowledge” assumption.

1.6. Organization of the paper. The rest of the paper is structured as follows.
In section 2 we review for later use some necessary material concerning universal hash
functions and coding theory. In section 3, we present our upper bound (algorithm
BPart). Finally, lower bounds on the problem are established in section 4.

2. Preliminaries.

2.1. Universal hash functions. Universal hash functions have found many
interesting applications since their introduction by Wegman and Carter [WC79]. A
family of functions F = {h : A → B} is called a universal hash function if for any
a1 6= a2 ∈ A and b1, b2 ∈ B the following holds:

Prob[h(a1) = b1 and h(a2) = b2] =
1

|B|2 ,

where the probability is taken over the possible choices of h, which is randomly and
uniformly chosen from F .

There are many families of simple universal hash functions. One example can be
constructed as follows. Let p be a prime and let B = Zp. (Note |B| = p.) Then

H = {hα,β(x) = (αx+ β) mod p | α, β ∈ Zp}
is a family of universal hash functions.

In the above example the encoding of a hash function requires only two ele-
ments from Zp, and also p; therefore we can describe such a hash function using only
O(log |B|) bits. (Note that the encoding of h does not depend on A.) Later, when us-
ing a universal hash function, it is assumed that it can be represented with O(log |B|)
bits.

Another way to view the parameters is the following. We are interested in a
family of universal hash functions Fε that has the following property: given any two
distinct elements, the probability that a random hash function h ∈ Fε maps them to
the same point is bounded by ε. From the properties of the universal hash function
this occurs with probability 1/|B|. Therefore, choosing ε = 1/|B|, we conclude that
there is a family of hash functions Fε whose encoding size is O(log 1

ε).

2.2. Information theoretic background. The tools developed later on are
based on some basic results from coding theory. A code Cm,d : {0, 1}m 7→ {0, 1}m+r

is a mapping that transforms an input word w ∈ {0, 1}m into a codeword Cm,d(w) =

516 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

ŵ ∈ {0, 1}m+r. The codes considered in this paper are standard “check bit” codes;
namely, the resulting codeword ŵ is assumed to be of the form ŵ = w‖ρ, where
ρ ∈ {0, 1}r is a “trail” of r check bits concatenated to the input word w, called the
syndrome. Denote by the check bit syndrome that the code Cm,d attaches to a word
w by C∗m,d(w). The lengths of the entire codeword and the check bit syndrome are
denoted in the sequel by |Cm,d(w)| and |C∗m,d(w)|, respectively.

A code Cm,d is said to be d-correcting if the original word w can be correctly
decoded from any word z that differs from the codeword Cm,d(w) in no more than d
places.

The following theorem states the properties possessed by the code necessary for
our purposes.

Theorem 2.1. For any m and d ≤ m/3, there exists a check-bit code Cm,d with
the following properties.

1. The check bit syndrome is of length |C∗m,d(w)| = O(d logm).
2. The code Cm,d is d-correcting.
3. The encoding and decoding operations (Cm,d and C−1

m,d, respectively) require
time polynomial in m and d.

In order to show the theorem, we can slightly modify BCH codes, so they will
have all the above properties. It is well known that the decoding and encoding of BCH
codes can be accomplished in polynomial time and that the length of the check bit
syndrome is O(d logm). The only property that we need to comment about is the use
of arbitrary m. The code words in BCH codes are of length 2k − 1. We simply have
to extend our input (e.g., by padding zeros) to the appropriate size. When encoding,
we first extend the input w ∈ {0, 1}m to 2k− 1−|C∗m,d(w)| bits and then perform the
encoding. After the decoding, the padding bits will be removed.

All codes Cm,d referred to later on in the paper are meant to be check bit codes
that satisfy the properties in Theorem 2.1. The subscripts m, d are omitted whenever
m and d are clear from the context.

3. Upper bounds. We develop our solution in a modular fashion via a number
of steps. The first step is a simple deterministic algorithm named Maximum, pre-
sented in section 3.1, which is based on the assumption that the maximum discrepancy
δmax is known to the broadcaster. Next, section 3.2 presents the algorithm Average,
which assumes only knowledge of the average discrepancy. Then, in section 3.3 it is
shown that the assumptions about knowledge of the discrepancy can be eliminated at
the cost of increasing the time complexity by a factor of log δav. Finally, in section 3.4
it is shown that the algorithm can be condensed, so that its time complexity becomes
optimal again.

3.1. Algorithm Maximum. This section handles broadcast in the case where
the maximum discrepancy δmax is known and presents a straightforward broadcast-
ing algorithm Maximum, which assumes that the broadcaster “knows” δmax. The
algorithm requires O(nδmax logm) communication and O(n+ δmax logm) time.

We should note that this algorithm is not efficient, since the maximum discrepancy
can be very far from the average discrepancy. This algorithm is presented in order to
be used in the next section as a subroutine.

For simplicity, it is assumed that the network is a simple path; namely, the n +
1 processors p0, . . . , pn are arranged on a line, with a bidirectional link connecting
processor pi to processor pi+1 for every 0 ≤ i < n. Note that this does not restrict
generality in any way, since the path is the worst topology for broadcast, and moreover,
there exists an easy transformation from every other network to a path network by

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE 517

using a depth-first tour [Eve79].
Algorithm Maximum works as follows: the broadcaster encodes the broadcast

message w using the code C = Cm,δmax . (Note that this code C is fixed and known
to all other processors.) The broadcaster broadcasts only the check bit syndrome
C∗(w). The broadcasting proceeds in full pipelining. That is, each processor pi for
i < n that receives the first bit of C∗(w) immediately forwards it to processor pi+1,
without waiting for the entire value of C∗(w).

Once a processor pi has received the complete message ρ = C∗(w), it concatenates
it to its own input wi, thus obtaining a complete (but possibly corrupted) codeword
ŵi = wi‖ρ and decodes this codeword by computing oi = C−1(ŵi), which is taken to
be the output.

Lemma 3.1. If the input wi of processor pi is different from w in at most δmax
places, then oi = w.

Proof. Consider the word oi output by processor pi. As δi ≤ δmax, it follows
that ŵi = wi‖ρ differs from ŵ = w‖ρ in at most δmax places. Since the code C is
δmax-correcting, it follows that oi = C−1(ŵi) = C−1(ŵ) = w.

Lemma 3.2. The time complexity of algorithm Maximum is n+O(δmax · logm).
Proof. The algorithm broadcasts the message ρ = C∗(w) in full pipelining. Hence

the first bit of ρ reaches the last processor, pn, by time n, and the entire message
reaches pn by time n+ |C∗(w)|. The lemma follows since |C∗(w)| = O(δmax · logm).

Lemma 3.3. The communication complexity of algorithm Maximum is O(n ·
δmax logm).

Proof. The message C∗(w) traverses each edge exactly once. Therefore, the
communication complexity is n · |C∗(w)| = n ·O(δmax · logm).

We complete the description by noting that both the time and communication
complexities can be improved for large δmax. Specifically, if δmax logm > m, then a
full broadcast of the information is more efficient (namely, send w to all the proces-
sors). Therefore we have the following theorem.

Theorem 3.4. Given the value of δmax, there is a deterministic algorithm for
performing broadcast with partial information that requires n+O(min{m, δmax·logm})
time and has communication complexity O(n ·min{m, δmax · logm}).

A similar result holds when the broadcaster knows only an upper bound d on the
discrepancies, where the same complexities hold except with d replacing δmax. When
the upper bound is “accurate,” namely, d = O(δmax), the complexities remain the
same.

Note that the communication complexity of this algorithm is not good when there
are differences between the discrepancies of nodes. For example, consider the case in
which one has a high discrepancy. This forces the algorithm to send a long check bit
syndrome also to the other nodes on the way, although they have low discrepancies.
The algorithm of the next section manages to fix this problem, even though it relies
on a weaker assumption.

3.2. Algorithm Average. In this section we replace the assumption of a known
δmax with the assumption that only the average discrepancy δav is known. Note that
no assumptions are made about how the discrepancies are distributed. In particular,
it may be that some processors have large discrepancies while others have the correct
value. For simplicity of notation, we assume throughout the section that δav ≥ 1, or
∆ ≥ n.

The broadcast algorithm Average presented in this section is randomized; i.e., it

518 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

guarantees the correctness of the output of each processor with high probability. The
communication complexity of algorithm Average depends linearly on the average
discrepancy δav, while its time complexity is still linear in m. Both complexities
apply to the worst-case scenario.

We begin with a high level description of algorithm Average. The algorithm
works in phases and invokes algorithm Maximum of section 3.1 at each phase. At
every phase of the execution, each processor can be in one of two states, denoted K
and R. Initially, only the broadcaster is in state K, while the other processors are in
state R. Intuitively, a processor pi switches from state R to state K when it concludes
that its current guess for w is equal to the “real” broadcast word w.

The phases are designed to handle processors with increasingly large discrep-
ancies. More specifically, let us classify the processors into classes C1, . . . , Cµ, µ =
dlog(m

δav logm)e, where the class Cl contains all processors pi whose discrepancy δi falls

in the range 2l−1δav < δi ≤ min{m, 2lδav} for 2 ≤ l ≤ µ− 1, δi ≤ 2δav for l = 1, and
the rest in Cµ (i.e., δi ≥ m

logm). Then each phase l ≥ 0 is responsible for informing
the processors in class Cl. This is done by letting the processors in state K broadcast
to the other processors.

Note that the K and R states reflect, in a sense, only the processors’ “state of
mind,” and not necessarily the true situation. It might happen that a processor
switches prematurely to state K, erroneously believing it holds the true value of the
input w. Such an error might subsequently propagate to neighboring processors as
well. Our analysis will show that this happens only with low probability.

By a simple counting argument, the fraction of processors whose discrepancy
satisfies δi ≥ kδav is bounded from above by 1

k for every k ≥ 1. The first phase
attempts to correct the inputs of processors from C1, while in general, the lth phase
attempts to correct the processors in Cl. By the previous argument, at least half of
the processors are in C1, and furthermore,

∑µ
j=l |Cj | ≤ n

2l
. Assuming that all the

processors that shifted from R to K had the correct value, then after the lth phase,
at most n

2l
processors are in state R.

Let us now describe the structure of a phase l in more detail. At the beginning
of phase l, the current states of the processors induce a conceptual partition of the
line network into consecutive intervals I1, . . . , It, with each interval I = (pi, pi+1, . . .)
containing one or more processors, such that the first processor pi is in state K and
the rest of the processors (if any) are in state R.

The algorithm maintains the property that each processor knows its state, as well
as the state of its two neighbors, hence each processor knows its relative role in its
interval, as either a “head” of the interval, an intermediate processor, or a “tail” (i.e.,
the last processor of the interval).

Suppose that processor pi is in state K at the beginning of phase l < µ and is the
“head” of some interval I. If the processor pi+1 is also in state K, then the interval I
contains only pi, and thus pi has finished its part in the algorithm. Otherwise, interval
I contains at least one processor in state R. In this case, processor pi is assigned the
role of the broadcaster with respect to its interval in phase l. More specifically, it
needs to reveal its value to all processors of class Cl in its interval I. Hopefully, this
results in the further partition of interval I into subintervals for the next phase.

Processor pi performs this task by using algorithm Maximum of section 3.1, with
parameter dl = 2lδav. To be more specific, if pi’s interval I contains other processors
(i.e., processor pi+1 is in state R) then pi computes C∗m,dl(oi) and sends it to pi+1.
(In case l = µ, processor pi sends oi.) As we shall see, with high probability, oi = w

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE 519

for any processor i that is in state K. Therefore, later in this informal description
we substitute C∗m,dl(w) for C∗m,dl(oi). Consider that any intermediate processor pj
(in state R) in interval I that receives a message simply forwards the message (using
pipelining). The tail processor of the interval (i.e., the one whose successor is in state
K) does nothing.

It remains to explain when a processor decides to change its state from R to K.
This task requires an initialization phase, in which the broadcaster chooses a random
universal hash function h ∈ Fε/nµ and sends both the description of h and the hashed
value of the broadcast message, i.e., the pair

H(w) = 〈h, h(w)〉,
to all processors. Since the description of h requires O(log nµ

ε) bits, the size of the
message is O(log nµ

ε) = O(log logm + log n
ε). The pair H(w) will later serve each

processor to test whether its new computed value of w is correct.
Specifically, as said above, in phase l < µ each processor pj in state R receives

ρl = C∗m,dl(w). It concatenates it to wj and computes

gj(l) = C−1
m,dl

(wjC
∗
m,dl

(w)),

which is its “guess” for w. It then tests whether h(gj(l)) = h(w).
In case of equality, the processor deduces that its current guess is correct. It then

changes its state from R to K and sets its output to be oj = gj(l). At the last phase,
l = µ, when a processor pj receives value oi from some processor pi, then pj sets
oj = oi. The algorithm ends after phase µ.

Lemma 3.5. The probability that some processor produces an incorrect output is
bounded from above by ε.

Proof. Let Ej(l) denote the event that processor pj outputs an incorrect value at
phase l, given that all the outputs at earlier phases were correct. This event implies
that gj(l) 6= w, but h(gj(l)) = h(w). However, the hash function h was chosen so
as to guarantee that this probability is at most ε

nµ . Summing over all possible bad

events Ej(l), it follows that the probability that some processor ends with an incorrect
output is bounded by ε.

Another possible failure is that a processor stays in state R. However, recall that
in this case some other processor has to output an incorrect value before.

Now, we analyze the communication and time complexities of the protocol. We
first show that if no node mistakenly outputs an incorrect value, then both time and
communication complexities are small.

Lemma 3.6. Assuming that no processor outputs an incorrect value, the time
complexity of algorithm Average is O(n+m+ log 1

ε).
Proof. The initialization phase involves sending a message H(w) containing the

pair 〈h, h(w)〉, which is of size O(log logm + log n
ε) bits, to all n processors. This

phase therefore requires time O(n+ log logm+ log n
ε). It remains to analyze the time

required for the main phases.
Assuming that at the start of phase l all the processors in state K have the correct

value, the number of processors in state R at the end of the phase is at most n/2l.
This follows from the fact that at phase l the algorithm corrects the input values of
all processors whose discrepancy is at most dl = 2lδav. Since the average discrepancy
is δav, the number of processors with a larger discrepancy is at most n/2l.

The time required for completing a phase l is clearly bounded from above by
the number of processors in state R plus the size of the message sent in this phase,

520 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

i.e., n/2l + min{m, dl logm}. The first term is clearly bounded by n, and the second
obtains its maximum at the last phase and is therefore bounded by O(m).

Hence the time complexity is O(n+m+ log 1
ε).

Lemma 3.7. Assuming that no processor outputs an incorrect value, the commu-
nication complexity of algorithm Average is O(∆ logm+ n log n

ε).
Proof. Again, the initialization phase requires sending a message of sizeO(log logm

+ log n
ε), which contributes O(n(log logm + log n

ε)) ≤ O(∆ logm + n log n
ε) to the

communication complexity.
Let us now concentrate on the main phases. Consider a processor pi with dis-

crepancy δi. We count the number of bits that pi receives during the entire execution.
After phase µi = dlog(δi/δav)e, assuming that all the processors in state K have the
correct value, pi should already be in state K, and from then on it never receives
messages. At each phase l prior to phase µi, processor pi gets a message C∗m,dl(w)
of size O(dl logm) bits. Therefore, the number of bits received by pi throughout the
execution is bounded by

µi∑
l=1

O(dl logm) = O(2µiδav logm) = O(δi logm).

Summing over all processors, the contribution of the main phases is bounded by

n∑
i=1

O(δi logm) = O(∆ logm).

Consequently, the communication complexity of the entire algorithm isO(∆ logm+
n log n

ε).
Note that ε can always be chosen so as to make the failure probability polyno-

mially small in m, without degrading the time or communication complexities of the
algorithm. Consequently we have the following theorem.

Theorem 3.8. Given an average discrepancy δav and 0 < ε < 1, algorithm
Average solves the broadcast with partial knowledge problem correctly with probability
1− ε. In the case when the solution is correct, the time complexity is O(n+m+log 1

ε)
and the communication complexity is O(δav · n · logm+ n log n

ε) bits.
In case algorithm Average fails and the output is incorrect, we can guarantee

only trivial bounds on the time and communication complexities of the algorithm.
These bounds are derived from bounding the number of phases by logm, and the
number of bits in a message by m. This gives worst-case bounds of O((n+m) logm)
time and O(nm) communication. However, ε can be selected so as to equate the
expected complexity (over all executions) with the high probability complexity (i.e.,
over the executions that have a correct output). Consequently we have the following
corollary.

Corollary 3.9. Algorithm Average has expected time complexity O(n + m)
and expected communication complexity of O(∆ logm+ n log nm) bits.

3.3. Unknown discrepancy. In the case when δav is not known in advance,
we can solve the problem by initiating algorithm Average with a guessed average
discrepancy δ̂av = 1. Call this algorithm Unknown. In such a case, in the log δav
first phases of algorithm Average, it may happen that no processor changes to K.
The communication complexity essentially remains the same, since the additional
O(δav · n) = O(∆) bits are absorbed in the previous bound. However, the time
complexity does increase in this case by an additive factor of O(n log δav).

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE 521

Theorem 3.10. Given 0 < ε < 1, algorithm Unknown solves the broadcast with
partial knowledge problem correctly with probability 1−ε. In the case when the solution
is correct, the time complexity is O(n log δav + m + log 1

ε) and the communication
complexity is O(∆ logm+ n log n

ε) bits.
In a similar way to the previous section, we can bound the expected complexities

by choosing ε appropriately.
Corollary 3.11. Algorithm Unknown has expected time complexity O(n log δav+

m) and expected communication complexity of O(∆ logm+ n log nm) bits.

3.4. Optimal time complexity. Intuitively, the main reason that the time in
the previous subsection is not optimal is the fact that there can be “time spaces”
between the phases. In this section we describe a simulation of algorithm Unknown
in which the information transmitted is fully pipelined. For the sake of clarity we
describe the whole algorithm below.

Algorithm BPart. We assume that ∆ logm < mn. If this assumption does
not hold, then the algorithm might fail, at which time full broadcast can be engaged,
since the maximum complexity must be paid in any case.

The algorithm requires an initialization phase similar to the one of algorithm
Average, in which a random universal hash function h ∈ Fε/nµ is chosen and the
pair H(w) is sent to all processors.

The main part of the algorithm proceed as follows. Set µ = logm − log logm.
The source transmits the syndromes of the encodings w(i) = Cm,2i(w) of its vector
w in all codes C∗m,2i of all levels 0 ≤ i ≤ µ, one after another. Hence the sequence
transmitted by the source is of the form

ξ(w) = 〈w(0), w(1), . . . , w(µ), w〉.

Essentially, this information is to be forwarded along the line to all processors. Ob-
serve that a naive implementation of this would require communication complexity
nm and time m + n. The communication complexity is minimized by stopping the
flood of bits into a node pj once this node is able to correctly decode the entire source’s
vector ξ (with high probability), i.e., to produce an output oj such that h(w) = h(oj).
This is done in the same way as in algorithm Unknown, as described below.

During the main part of the algorithm, each processor pj on the line does the
following. It initially enters stateR, intuitively signifying the fact that its data may be
outdated. It then receives the sequence ξ(oj−1) from its predecessor pj−1, constructs
its own output oj and sequence ξ(oj), and sends this sequence to its successor. The
incoming sequence is received and processed entry by entry, as long as pj is in state
R.

Each arriving entry oj−1(i) = C∗m,2i(oj−1), 0 ≤ i ≤ µ, is processed as follows.

First, the entry is stored as oj(i) and forwarded to pj+1. In addition, pj concatenates
oj−1(i) to wj and computes its “guess” for w,

gj(i) = C−1
m,2i(wj · C∗m,2i(oj−1)).

It then tests whether h(gj(i)) = h(w).
In case of equality, the processor does the following. First, it changes its state

from R to K and informs its predecessor pj−1 to stop sending the rest of the sequence
ξ(oj−1). Next, it sets its output to be oj = gj(i) and computes the rest of the sequence
ξ(oj) locally (in order to be able to continue sending it to its successor on the line).

522 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

Note that pj may fail in its tests in all stages i ≤ µ. In this case, it will receive
the entire sequence ξ(oj−1) from its predecessor, including oj−1 in its last entry, and
adopt this value for oj .

Let us now bound the probability of failure.
Lemma 3.12. The probability that some processor produces an incorrect output

is bounded from above by ε.
Proof. The proof proceeds in the same way as that of Lemma 3.5, except that

we define Ej(i) to be the event that processor pj outputs an incorrect value after
getting oj−1(i), while the output of every processor pl to the left of pj (i.e., such that
l < j) that made its decision after receiving (all or some of) the syndromes ol−1(k)
for 0 ≤ k ≤ i is correct.

Finally, we analyze the communication and time complexities of the protocol.
Theorem 3.13. Assuming that no processor outputs an incorrect value, the

communication complexity of algorithm BPart is O(∆ logm+ n log n
ε).

Proof. The proof is similar to that of Lemma 3.7. In particular, the initialization
message H(w) requires sending O(log nµ

ε) = O(log logm + log n
ε) bits. As for the ξ

messages, nodes with more than m
logm errors receive at most O(m) bits, and there

can be at most δav logm such nodes. Otherwise, a node pj that has less than 2i

errors will decode the original message correctly (with high probability) after receiving
Cm,2i(oj−1), i.e., after receiving O(2i · logm) bits.

Theorem 3.14. Assuming that no processor outputs an incorrect value, the time
complexity of algorithm BPart is O(n+ log n

ε + min{m,∆ logm}).
Proof. The upper bound follows from the fact that all the data from the source

(including both the H(w) and the ξ messages) is sent along the line in full pipelining,
and the combined length of the vector broadcast is O(log n

ε +min{m,∆ logm}).
As before, we bound the expected complexities by choosing ε appropriately.
Corollary 3.15. Algorithm BPart has expected time complexity O(n+m) and

expected communication complexity O(∆ logm+ n log nm).

4. Lower bounds. In this section we establish some simple lower bounds that
show that our construction is optimal. The first bound concerns the communication
complexity of broadcast algorithms assuming maximum discrepancy d = δmax. As-
sume that all processors but the broadcaster have as input the all-zero vector, while
the broadcast message is a vector containing exactly d ones, that is chosen arbitrarily
from among all

(
m
d

)
possible vectors, with all choices being equally likely. This implies

that the entropy of the source (the broadcaster) is log
(
m
d

)
. The entropy is clearly a

lower bound on the number of bits each processor has to receive. Therefore, we have
the following bound.

Theorem 4.1. The communication complexity of any broadcast algorithm is at
least

n log

(
m

δmax

)
= Ω

(
nδmax log

(
m

δmax

))
.

The bound on the time required for broadcast is derived by considering the com-
munication lower bound above and the last processor, and noticing that it cannot
receive any information before time n. Therefore, we have the following theorem.

Theorem 4.2. The time complexity of any broadcast algorithm is at least

n+ log

(
m

δmax

)
= Ω

(
n+ δmax log

(
m

δmax

))
.

OPTIMAL BROADCAST WITH PARTIAL KNOWLEDGE 523

The next theorem establishes the limitations of the derandomization of the algo-
rithm when the average discrepancy is δav, and it is not known in advance. Consider
a simpler task, in which every processor has to decide whether its input equals the
broadcast message or not. This is a well-studied problem in communication complex-
ity theory, where lower bounds for the number of bit exchanges required of solving
the equality problem are known. For the case of n = 2, Yao showed a lower bound
of Ω(m) for deterministic algorithms [Yao79], and Tiwari extended it to a line of pro-
cessors and showed an Ω(nm) lower bound [Tiw84]. This bound holds in particular
when all the inputs are equal, in which case δav = 0. This implies the following lower
bound.

Theorem 4.3. For any deterministic or randomized Las-Vegas-type algorithm
that has to work for an arbitrary δav, there is an input whose discrepancy is zero (i.e.
δav = 0), and the algorithm requires Ω(nm) communication complexity on this input.

5. Conclusion. We have shown that one can take advantage of prior knowledge
of the recipient in order to save in communication, while still keeping the time optimal
in the worst case. It may be interesting to find out whether more efficient solutions
can be derived for special cases. For example, it often happens that faults are related.
Consequently, it may be likely that the set of bits in which w at some recipient dis-
agrees with w0 at the source, forms clusters, rather than being distributed arbitrarily
in w. It may be interesting to devise an algorithm that performs better in such a
case. A technique for finding regions of disagreements appears in [Met91].

There may be other interesting special cases. One such case is when later (and
more updated) versions of a document are longer (or shorter) than previous versions.
Our algorithm can solve this case by “padding” the shorter vector, but this seems to
lead to an inefficient solution.

REFERENCES

[AAG87] Y. Afek, B. Awerbuch, and E. Gafni, Applying static network protocols to dynamic
networks, in 28th Annual IEEE Symposium on Foundations of Computer Science,
1987.

[ACG+90] B. Awerbuch, I. Cidon, I. Gopal, M. Kaplan, and S. Kutten, Distributed control
for paris, in Proc. 9th ACM Symposium on Principles of Distributed Computing,
1990.

[ACK90] B. Awerbuch, I. Cidon, and S. Kutten, Optimal maintenance of replicated infor-
mation, in Proc. 31st IEEE Symposium on Foundations of Computer Science,
1990.

[ACK+91] B. Awerbuch, I. Cidon, S. Kutten, Y. Mansour, and D. Peleg, Broadcast with
partial knowledge, in Proc. 10th ACM Symposium on Principles of Distributed
Computing, 1991.

[APV91] B. Awerbuch, B. Patt-Shamir, and G. Varghese, Self-stabilization by local checking
and correction, in Proc. 32nd IEEE Symposium on Foundations of Computer
Science, 1991, pp. 268–277.

[AS91] B. Awerbuch and L. J. Schulman, The maintenance of common data in a distributed
system, in Proc. 32nd IEEE Symposium on Foundations of Computer Science,
1991.

[AKY90] Y. Afek, S. Kutten, and M. Yung, Memory-efficient self-stabilization on general
networks, in Proc. 4th Workshop on Distributed Algorithms, Italy, September
1990. Lecture Notes in Comput. Sci. 486, Springer-Verlag, 1990. A later version
appeared as The local detection paradigm and its applications to self stabilization,
Theoret. Comput. Sci., 186 (1977), pp. 199–229.

[BGJ+85] A. E. Baratz, J. P. Gray, P. E. Green, Jr., J. M. Jaffe, and D. P. Pozefski,
Sna networks of small systems, IEEE J. on Selected Areas in Communications,
SAC-3(3) (1985), pp. 416–426.

524 AWERBUCH, CIDON, KUTTEN, MANSOUR, AND PELEG

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorem for non-
cryptographic fault tolerant distributed computing, in Proc. 20th ACM Symposium
on Theory of Computing, 1988.

[Dij74] E. W. Dijkstra, Self stabilizing systems in spite of distributed control, Comm. ACM,
17 (1974), pp. 643–644.

[Eve79] S. Even, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
[KP90] S. Katz and K. Perry, Self-stabilizing extensions for message-passing systems, in

Proc. 10th ACM Symposium on Principles of Distributed Computing, Quebec,
Canada, 1990.

[Met84] J. J. Metzner, An improved broadcast retransmission protocol, IEEE Trans. Com-
mun., COM-32(6) (1984), pp. 679–683.

[Met91] J. J. Metzner, Efficient replicated remote file comparison, IEEE Trans. Comput., 40
(1991), pp. 651–660.

[MRR80] I. McQuillan, I. Richer, and E. C. Rosen, The new routing algorithm for the
arpanet, IEEE Trans. Commun., COM-28 (1980), pp. 711–719.

[Rab89] M. Rabin, Efficient dispersal of information for security, load balancing, and fault
tolerance, J. Assoc. Comput. Mach., 36 (1989), pp. 335–348.

[SG89] J. M. Spinelli and R. G. Gallager, Event driven topology broadcast without se-
quence numbers, IEEE Trans. Commun., 37 (1989), pp. 468–474.

[SW73] D. Slepian and J. K. Wolf, Noiseless coding of correlated information sources, IEEE
Trans. Inform. Theory, IT-19 (1973), pp. 471–480.

[Tiw84] P. Tiwari, Lower bounds on communication complexity in distributed computer net-
works, in 25th Annual IEEE Symposium on Foundations of Computer Science,
Singer Island, FL, 1984, pp. 109–117.

[WC79] M. N. Wegman and J. L. Carter, Universal classes of hash functions, J. Comput.
System Sci., 18 (1979), pp. 143–154.

[Yao79] A. Yao, Some complexity questions related to distributed computing, in Proc. 11th
Annual ACM Symposium on Theory of Computing, Atlanta, GA, ACM SIGACT,
1979, pp. 209–213.

PRIMAL-DUAL RNC APPROXIMATION ALGORITHMS FOR SET
COVER AND COVERING INTEGER PROGRAMS∗

SRIDHAR RAJAGOPALAN† AND VIJAY V. VAZIRANI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 525–540

Abstract. We build on the classical greedy sequential set cover algorithm, in the spirit of the
primal-dual schema, to obtain simple parallel approximation algorithms for the set cover problem
and its generalizations. Our algorithms use randomization, and our randomized voting lemmas may
be of independent interest. Fast parallel approximation algorithms were known before for set cover,
though not for the generalizations considered in this paper.

Key words. algorithms, set cover, primal-dual, parallel, approximation, voting lemmas

PII. S0097539793260763

1. Introduction. Given a universe U , containing n elements, and a collection,
S ·

= {Si : Si ⊆ U}, of subsets of the universe, the set cover problem asks for the
smallest subcollection C ⊆ S that covers all the n elements in U (i.e.,

⋃
S∈C S = U).

In a more general setting, one can associate a cost, cS , with each set S ∈ S and ask
for the minimum cost subcollection which covers all of the elements.1 We will use m
to denote |S|.

Set multicover and multiset multicover are successive natural generalizations of
the set cover problem. In both problems, each element e has an integer coverage
requirement re, which specifies how many times e has to be covered. In the case of
multiset multicover, element e occurs in a set S with arbitrary multiplicity, denoted
m(S, e). Setting re = 1 and choosing m(S, e) from {0, 1} to denote whether S contains
e gives back the set cover problem.

The most general problems we address here are covering integer programs. These
are integer programs that have the following form:

min c · x, s.t. Mx ≥ r,x ∈ Z+;

the vectors c and r and the matrix M are all nonnegative rational numbers.
Because of its generality, wide applicability, and clean combinatorial structure, the

set cover problem occupies a central place in the theory of algorithms and approxima-
tions. Set cover was one of the problems shown to be NP-complete in Karp’s seminal
paper [Ka72]. Soon after this, the natural greedy algorithm, which repeatedly adds the
set that contains the largest number of uncovered elements to the cover, was shown to
be an Hn factor approximation algorithm for this problem (Hn = 1 + 1/2 + . . .+ 1/n)
by Johnson [Jo74] and Lovasz [Lo75]. This result was extended to the minimum cost
case by Chvatal [Ch79]. Lovasz establishes a slightly stronger statement, namely,
that the ratio of the greedy solution to the optimum fractional solution is at most

∗Received by the editors November 26, 1993; accepted for publication (in revised form) October
21, 1996; published electronically July 28, 1998.

http://www.siam.org/journals/sicomp/28-2/26076.html
†DIMACS, Princeton University, Princeton, NJ 08544. Current address: IBM Almaden Research

Center, San Jose, CA 95120 (sridhar@almaden.ibm.com). This research was done while the author
was a graduate student at the University of California, Berkeley, supported by NSF PYI Award CCR
88-96202 and NSF grant IRI 91-20074. Part of this work was done while the author was visiting IIT,
Delhi.
‡College of Computing, Georgia Institute of Technology, Atlanta, GA (vazirani@cc.gatech.edu).

This research was supported by NSF grant CCR-9627308.
1Here it is to be understood that the cost of a subcollection C is

∑
S∈C cS .

525

526 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Hn. Consequently, the integrality gap, the ratio of the optimum integral solution to
the optimum fractional one, is at most Hn. An approximation ratio of O(log n) for
this problem has been shown to be essentially tight by Lund and Yannakakis [LY93].2

More recently, Feige [Fe96] has shown that approximation ratios better than lnn are
unlikely.

The first parallel algorithm for approximating set cover is due to Berger, Rompel,
and Shor [BRS89], who found an RNC5 algorithm with an approximation guarantee
of O(log n). Further, this algorithm can be derandomized to obtain an NC7 algorithm
with the same approximation guarantee. Luby and Nisan [LN93], building on the work
of Plotkin, Shmoys, and Tardos [PST91] have obtained a (1+ε) factor (for any constant
ε > 0), NC3 approximation algorithm for covering and packing linear programs. Since
the integrality gap for set cover is Hn, the Luby–Nisan algorithm approximates the
cost of the optimal set cover to within a (1 + ε)Hn factor. Furthermore (as noted by
Luby and Nisan), in the case of set cover, by using a randomized rounding technique
(see [Ra88]), fractional solutions can be rounded to integral solutions at most O(log n)
times their value.

This paper describes a new RNC3, O(log n) approximation algorithm for the set
cover problem. This algorithm extends naturally to RNC4 algorithms for the various
extensions of set cover each achieving an approximation guarantee of O(log n). In
addition, the approximation guarantee that we obtain in the case of covering integer
programs is better than the best known sequential guarantee, due to Dobson [Do82].

2. A closer look at set cover. We begin by taking a closer look at the greedy
algorithm for set cover. In the minimum cost case, the greedy algorithm chooses the
set that covers new elements at the lowest average cost. More precisely, let U(S)
denote the set of yet uncovered elements in S. The greedy algorithm repeatedly adds

the set argminS

{
cS
|U(S)|

}
to the set cover.

Choose cost(e) to be the cost of covering e by the greedy algorithm. Thus, if
S is the first set to cover e and U(S) = k before S was added to the cover, then

cost(e)
·
= cS/k. Let ei be the ith last element to be covered. Let OPT denote the

optimum set cover as well as its cost.
We now observe that cost(ei) ≤ OPT/i because there is a collection of sets,

namely OPT, which covers all i elements {e1, . . . , ei}. Thus, there is a set S such
that cS ≤ OPT/i|U(S)|. Since ei is the element of smallest cost among {e1 · · · ei},
cost(ei) ≤ OPT/i. Therefore, the cost of the cover obtained by the greedy algorithm
is at most

∑
i cost(ei) ≤ OPT

∑
i

1
i = OPTHn, which provides the approximation

guarantee.
The simple proof given above can be viewed in the more general and powerful

framework of linear programming and duality theory. One can state the set cover
problem as an integer program:

IP :
min

∑
S cSxS

s.t.
∑
S3e xS ≥ 1,

xS ∈ {0, 1}.

By relaxing the integrality condition on x, we obtain a linear program which has the

2More precisely, Lund and Yannakakis establish that there is a constant c such that unless
P̃ = ÑP, set cover cannot be approximated to a ratio smaller than c logn.

RNC APPROXIMATION FOR SET COVER 527

following form and dual:

LP : DP :
min

∑
S cSxS max

∑
e ye

s.t.
∑
S3e xS ≥ 1, s.t.

∑
e∈S ye ≤ cS ,

xS ≥ 0; ye ≥ 0.

The primal linear program is a covering problem and the dual is a packing problem.
We will now reanalyze the greedy algorithm in this context. Define value(e) of an
uncovered element as

value(e)
·
= min

S3e
cS
|U(S)| .

The “value” of an element is a nondecreasing function of time in that it gets bigger
as more and more elements get covered and therefore each U(S) gets smaller. The
greedy algorithm guarantees that cost(e) = value(e) at the moment e is covered.

Now consider any set S ∈ S. Let ei ∈ S be the ith last element of S to be covered
by the greedy algorithm. Then, clearly, cost(ei) = value(ei) ≤ cS/i at the moment of
coverage. Thus, we establish the following inequality for each set S:∑

e∈S
cost(e) ≤

(
1 +

1

2
+ · · ·+ 1

|S|
)
cS .

Alternately, if k is the size of the largest set S ∈ S, then the assignment ye =
cost(e)
Hk

is dual feasible. The dual value for this assignment to y is DP =
∑
e ye =

1
Hk

∑
e cost(e) = 1

Hk
greedy cost. Due to the duality theorem of linear programming,

DP is a lower bound on the value of OPT. Thus, the greedy algorithm approximates
the value of set cover to within a factor of Hk.

3. The key ideas behind our parallel algorithm. The greedy algorithm
chooses a set to add to the set cover for which

∑
e∈S value(e) = cS . One of the

key ideas in this paper is to find a suitable relaxation of this set selection criterion
which guarantees that rapid progress is made but does not degrade the approximation
guarantee significantly. This is by no means a new notion. Indeed, it has been used
in the context of set cover earlier [BRS89]. However, the way in which the relaxation
is made and the resulting parallel algorithms are different from the choices made in
[BRS89].

In our algorithm we identify cost-effective sets by choosing those that satisfy the
inequality ∑

e∈U(S)

value(e) ≥ cS
2
.

This criterion can be distinguished from the greedy criterion in that elements with
different values contribute to the desirability of any set. This weighted mixing of
diverse elements and the consequent better use of the dual variables, value(e), appears
to lend power to our criterion.

Our relaxed criterion guarantees rapid progress. To see this, consider α
·
=

mine value(e). Then, any set for which cS
|U(S)| ∈ [α, 2α] qualifies to be picked. Thus, af-

ter each iteration, the value of α doubles. This and a preprocessing step will enable us

528 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

to show rapid progress for our algorithm. However, an algorithm based solely on this
relaxed criterion will not approximate set cover well, as exhibited by Example 3.0.1.

Example 3.0.1. Let U ·
= {1, 2, . . . , n}. Let S be the

(
n
2

)
sets of size 2 derived

from U . The cost of each set is 1. The optimal cover consists of n
2 sets. However, the

relaxed criterion chooses all the sets. 2

We now address the approximation guarantee. We will be able to assign costs to
each element, denoted cost(e), such that the cost of the set cover is at most

∑
e cost(e).

Further, we will establish that at the moment of coverage, cost(e) ≤ µvalue(e) for each
element e and a suitably chosen constant µ. If, for any algorithm, it is possible to
choose element costs such that these conditions are satisfied, then we will say that the
algorithm has the parsimonious accounting property with parameter µ. It is evident
from the analysis of the greedy algorithm detailed earlier that the parsimonious ac-
counting property with parameter µ suffices to establish an approximation guarantee
of µHk where k is the cardinality of the largest set in S.

These observations motivate a straightforward method of relaxing the set selec-
tion criterion which, however, fails to achieve our stated goal, namely, fast parallel
execution. The relaxation and an instance exhibiting its shortcomings are detailed by
Example 3.0.2 below.

Example 3.0.2. Number the sets arbitrarily. In each iteration, each uncovered
element votes for the lowest numbered set that covers it at the least average cost.

Any set with more than U(S)
2 votes adds itself to the set cover. It is easily verified

that this algorithm has the parsimonious accounting property with parameter µ = 2.
However, the algorithm can be forced to execute Θ(n) iterations on the following
input: let U = {ui, vj : 1 ≤ i, j ≤ n}. Choose S = {Ui, Vj : 1 ≤ i, j ≤ n − 1}, where
Ui = {ui, ui+1, vi+1} and Vj = {vj , uj+1, vj+1}. Finally, choose the set costs to satisfy
cUi−1 > cUi = cVi > cUi+1

for ech i. 2

The solution we propose finds a compromise between the two strategies detailed
above to achieve both objectives, namely, rapid progress as well as good approxima-
tion. The critical extra ingredient used in making this possible is the introduction of
randomization into the process.

The primal-dual scheme provides a general framework in which we can search
for good and fast approximation algorithms for otherwise intractable problems. In
the typical case, the hard problem is formulated as an integer program which is then
relaxed to obtain a linear program and its dual. In this context, the algorithm starts
with a primal, integral infeasible solution and a feasible, suboptimal dual solution.
The algorithm proceeds by iteratively improving the feasibility of the primal and the
optimality of the dual while maintaining primal integrality until the primal solution
becomes feasible. On termination, the obtained primal integral feasible solution is
compared directly with the feasible dual solution to give the approximation guarantee.
The framework leaves sufficient room to use the combinatorial structure of the problem
at hand: in designing the algorithm for the iterative improvement steps and in carrying
out the proof of the approximation guarantee.

The greedy algorithm for set cover can be viewed as an instance in the above

paradigm. At any intermediate stage of the algorithm let ye = cost(e)
Hn

if e has been

covered and value(e)
Hn

otherwise. Then, by the arguments presented in section 2, y is
feasible for DP. The currently picked sets constitute the primal solution.

4. The parallel set cover algorithm. Our proposed algorithm for set cover
is described in Figure 1. The preprocessing step is done once at the inception of

RNC APPROXIMATION FOR SET COVER 529

Parallel SetCov

Preprocess.

Iteration:
For each uncovered element e, compute value(e).
For each set S: include S in L if

(•) ∑
e∈U(S) value(e) ≥ cs

2 .

Phase:
(a) Permute L at random.
(b) Each uncovered element e votes for first set S (in the random order)

such that e ∈ S.
(c) If

∑
e votes S value(e) ≥ cS

16 , S is added to the set cover.
(d) If any set fails to satisfy (•), it is deleted from L.

Repeat until L is empty.
Iterate until all elements are covered.

Fig. 1. The parallel set cover algorithm.

the computation and is a technical step which we will explicitly establish in the next
section. The purpose of this step is to reduce the range of values of cS to one wherein
the largest and smallest values are at most a polynomial factor from each other.

Notice that value(e) is computed only at the beginning of an iteration and is not
updated at the inception of each phase.

4.1. Analysis of Parallel SetCov. We now present an analysis of the pro-
posed algorithm. We will first consider the approximation guarantee and then the
running time. The content of the preprocessing step will be defined with the analysis
of the running time.

4.1.1. Approximation guarantee. The algorithm Parallel SetCov satis-
fies the parsimonious accounting property with µ = 16. If we choose cost(e) =
16value(e) if e votes for S and S is added to the set cover in the same phase, then it
is easily verified that

∑
e cost(e) ≥ cost of cover.

4.1.2. Running time. We will now establish that Parallel SetCov is in
RNC3. In order to do this, we will establish the following three assertions.

1. The algorithm executes O(log n) iterations.
2. With high probability, (1− o(1)), every iteration terminates after O(log nm)

phases.
3. Each of the steps in Figure 1 can be executed in time lognmR, where R is

the length of the largest set cost in bits.

These three assertions imply that Parallel SetCov is in RNC3. Indeed, it fol-
lows that Parallel SetCov runs in (logn)(log nm)(log nmR) time on any standard
PRAM or circuit model with access to coins.

The third assertion follows from the parallel complexity of integer arithmetic and
parallel prefix computations. The details of these operations can be found in a number
of standard texts on parallel computation (see [Le92], for instance).

530 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

In order to prove the first assertion, we have to detail the preprocessing step. De-
fine β = maxe minS3e cS . Then, β ≤ cost of optimal cover ≤ nβ. The first inequality
is because any cover has to pick some set that contains e∗, the maximizing element
for β. The second inequality holds because for any arbitrary element e, there is a set
of cost at most β containing e. Thus, there is a cover comprising of all these sets of
cost at most nβ.

Thus, any set S such that cS ≥ nβ could not possibly be in the optimum cover.
The preprocessing step eliminates all such sets from consideration. Further, if for any
element e there is a set S containing it with cost less than β

n , then we will add S to
the set cover immediately. Since there are at most n elements, at most n sets can be
added in this manner. These can all be added in parallel and the total cost incurred
is at most an additional β. Since β is a lower bound on the cost of the set cover, the
additional cost is subsumed in the approximation.

Thus, we can assume that for each set surviving the preprocessing stage, cS ∈ [βn ,
nβ]. This consequence of the preprocessing stage is a key ingredient in establishing
the following lemma.

Lemma 4.1.1. Parallel SetCov requires at most O(log n) iterations.

Proof. Define α
·
= mine value(e). At any point in the current iteration, consider

a set S that has not yet been included in the set cover and such that cS ≤ 2α|U(S)|.
Then, by the definition of α,∑

e∈U(S)

value(e) ≥ |U(S)|α ≥ cS
2
.

Thus S satisfies (•) and must have satisfied it at the inception of the iteration. Thus
S ∈ L. However, at the end of an iteration, L is empty. Thus for every remaining S,
cS ≥ 2α|U(S)|, or alternately, cS

|U(S)| ≥ 2α. This ensures that in the next iteration, α

increases by a factor of 2. Since α is at least β
n2 and is at most nβ, there can be no

more than logn3 = 3 log n iterations. 2

We will now show that the number of phases in every iteration is small with high
probability. To this end, we will show the following lemma.

Lemma 4.1.2. Consider a fixed iteration, i. The probability that the number of
phases in iteration i exceeds O(log nm) is smaller than 1

n2 .

Proof. We will focus our attention only on those sets that are in L. Thus, the
precondition

∑
e∈U(S) value(e) ≥ cS

2 is imposed on all sets that participate in this
proof unless otherwise specified. The proof of this lemma is made via a potential
function argument. The potential function is Φ

·
=
∑
S∈L |U(S)|. In other words, it is

the number of uncovered element-set pairs in L. In what follows, we will show that
Φ decreases by a constant fraction (in expectation) after each phase. Since the initial
value of Φ is at most nm, the lemma will follow from standard arguments.

Define the degree deg(e) of an element as

deg(e)
·
= |{S ∈ L : S 3 e}|.

Call a set-element pair (S, e), e ∈ U(S) good if deg(e) ≥ deg(f) for at least three
quarters of the elements in U(S).

Let e, f ∈ U(S) such that deg(e) ≥ deg(f). Let Ne, Nf , and Nb be the number
of sets that contain e but not f , f but not e, and both e and f , respectively. Thus,
prob(e votes S) = 1

Ne+Nb
. The probability that both e and f vote for S is exactly the

RNC APPROXIMATION FOR SET COVER 531

probability that S is the first among Ne +Nf +Nb sets which is exactly 1
Ne+Nf+Nb

.

Since deg(e) ≥ deg(f) implies that Ne ≥ Nf we have

prob [f votes S | e votes S] =
prob [e and f vote S]

prob [e votes S]
≥ Ne +Nb
Ne +Nb +Nf

>
1

2
.

The statement above provides the heart of the proof, since it implies that if (S, e) is
good, then S should get a lot of votes if e votes for S. Thus, under this condition,
S should show a tendency to get added to the set cover. We shall now make this
formal.

Noting that for any f ∈ U(S), value(f) ≤ cS
|U(S)| , we see that for any good (S, e),∑

f∈U(S),deg(f)>deg(e) ≤ cS
4 . Since S satisfies (•), we obtain∑

f∈U(S),deg(f)≤deg(e)

value(f) ≥ cS
2
− cS

4
=
cS
4
.

The conditional probability statement above allows us to infer that if (S, e) is good
and e votes for S, then the expected value of

∑
f∈U(S),f votes S value(f) is at least cS

8 .
An application of Markov’s inequality will show that the probability that S is picked
is at least 1

15 .

We will ascribe the decrease in Φ when an element e votes for a set S and S is
subsequently added to the set cover, to the set-element pair (S, e). The decrease in
Φ that will then be ascribed to (S, e) is deg(e), since Φ decreases by 1 for each set
containing e. Since e voted for only one set, any decrease in Φ is ascribed to only one
(S, e) pair. Thus, the expected decrease in Φ, denoted ∆Φ, is at least

E(∆Φ) ≥
∑

(S,e):e∈U(S)

prob(e voted for S, S was picked) · deg(e)

≥
∑

(S, e) good

(prob(e voted for S)× prob(S was picked | e voted for S)× deg(e))

≥
∑

(S, e) good

1

deg(e)

1

15
deg(e)

=
1

15
(number of good (S, e) pairs).

Finally since at least a quarter of all relevant (S, e) pairs are good, we observe that
E(∆Φ) ≥ 1

60Φ. We recall the following fact from probability theory.

Fact 4.1.3. Let {Xt} be a sequence of integer-valued and nonnegative random

variables such that E(Xt − Xt+1|Xt = x) ≥ cx for some constant c. Let Y
·
=

mink{Xk = 0}. Then, prob(Y > O(log(pX0))) ≤ p. Here the asymptotic notation
hides the dependence on 1

c which is linear. 2

Notice that we have just established that the evolution of Φ satisfies the precon-
ditions that allow us to apply Fact 4.1.3. Therefore, choosing p = 1

n2 , we have our
lemma. 2

Theorem 4.1. Parallel SetCov finds a cover which is at most 16Hn times
the optimal set cover. Further, the total running time is O(log n · log nm · log nmR)
with probability 1− 1

n .

532 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Comment. The constant 16 can be improved to 2(1+ε) for any ε > 0. This is done
by changing the number cS

16 in step (c) to cS
2(1+ε) and the quantity in the definition of

(•) to cS(1− ε2). 2

Comment. The conditional statement is a correlation inequality which we feel
should be of independent interest. Generalizing this correlation inequality will be
a central issue in our analysis of parallel algorithms for the generalizations of set
cover. 2

5. Set multicover and multiset multicover. The set multicover problem is
a natural generalization of the set cover problem. In this generalization, each element
e is associated with a coverage requirement, re, which indicates the depth to which
e must be covered by any feasible cover. Thus, the set multicover problem can be
formulated as an integer program as follows: min

∑
S cSxS subject to

∑
S3e xS ≥ re

and xS ∈ {0, 1}.
Multiset multicover is the generalization where, in addition to the coverage re-

quirement, each element e appears in any set S with a multiplicity m(S, e). Thus, the
integer program is min

∑
S cSxS subject to

∑
m(S, e)xS ≥ re and xS ∈ {0, 1}.

On relaxing the integrality requirement on xS we obtain the following linear
program and dual in the case of multiset multicover.

LP : DP :
min

∑
S cSxS max

∑
e reye −

∑
S zS

s.t.
∑
Sm(S, e)xS ≥ re, s.t.

∑
em(S, e)ye − zS ≤ cS ,

−xS ≥ −1, zS ≥ 0,
xS ≥ 0; ye ≥ 0.

In the case of set multicover, m(S, e) is simply the indicator function that takes a
value of 1 if e ∈ S and 0 otherwise. The interesting feature here is the need to ex-
plicitly limit the value of xS to at most 1 and the associated appearance of the dual
variables zS . Notice that in the set cover problem the limit of 1 on the value of xS
was implicit.

In the following discussion, we shall largely restrict our attention to the more
general case of multiset multicover. In some places, it is possible to obtain slightly
stronger results in the case of set multicover. We will indicate these at appropriate
points in the text.

5.1. Greedy algorithms. There is a natural greedy sequential algorithm for
multiset multicover. Like the set cover algorithm, this algorithm works by repeatedly
picking sets until all the coverage requirements are met. At an intermediate stage
of this process, let r(e) be the residual requirement of e. Thus, r(e) is initially re
and is decremented by m(S, e) each time a set S is added to the cover. Define

a(S, e)
·
= min{m(S, e), r(e)} and the set of alive elements in S, A(S) to be the multiset

containing exactly a(S, e) copies of any element e if S is not already in the set cover,
and the empty set if it is. The greedy algorithm repeatedly adds a set minimizing
cS
|A(S)| to the set cover.

We will extend this notation to multisets in general. Thus, we will denote |A(S)| ·=∑
e a(S, e). Let k = maxS

∑
em(S, e). Let K denote

∑
e re. Dobson [Do82] shows

that this natural extension of the greedy algorithm to set multicover achieves an
approximation ratio of HK . However, he does this by comparing the cost of the
multicover obtained directly to the optimum integral solution of the set multicover
problem. In what follows, we will establish an approximation ratio ofHk by comparing

RNC APPROXIMATION FOR SET COVER 533

the greedy solution to the best possible fractional multicover. Since we can always
restrict m(S, e) to at most re, k ≤ K. Thus, this represents a slight improvement over
Dobson’s result.3

When a set S is picked, its cost cS is ascribed equally to each tuple (e, i) where
S covers e for the ith time. Here, i ranges from 1 to re. We will say S covers (e, i),
in short, to describe this case. Obviously, the cost assigned to each tuple is exactly

cost(e, i) = cS
|A(S)| . Now, we choose ye = maxi{cost(e,i)}

Hk
= cost(e,re)

Hk
. If a set S is not

picked, let zS = 0, and otherwise let

zS =

∑
(e, i) covered by S (cost(e, re)− cost(e, i))

Hk
.

The value of this dual assignment is easily verified to be the cost of the greedy
multicover divided by Hk.

Lemma 5.1.1. y, z is dual feasible.

Proof. First, trivially, both y and z are nonnegative. Consider for any S,(∑
e

m(S, e)ye

)
− zS

=
1

Hk

∑
e

m(S, e)cost(e, re)−
∑

(e, i) covered by S

(cost(e, re)− cost(e, i))

=

1

Hk

 ∑
(e, i) covered by S

cost(e, i) +
∑

e ∈ S, not covered by S

cost(e, re)

 .

We want to view a multiset S as a set which contains m(S, e) copies of element e.
Notice that there is a term in the right-hand side of the above expression corresponding
to each element copy S. Thus, there are m(S, e) terms corresponding to e. Let us
arrange the element copies in S in the reverse order in which they were covered, for
instance, if m(S, e) = 10 and m(S, f) = 5, and suppose r(e) fell to 9 before r(f)
fell to 4 before r(e) fell to 8. Then, the ninth copy of e precedes the fifth copy of
f which precedes the tenth copy of e in this reverse ordering. Notice that the term
corresponding to the jth element in this ordering is at most cS

j . Thus, we have

(∑
e

m(S, e)ye

)
− zS ≤ 1

Hk

(
k∑
i=1

1

i

)
cS .

In other words, the dual constraint corresponding to S is satisfied. Thus, we establish
the feasibility of y, z for the dual problem. 2

The consequence of the above arguments is the following theorem.

Theorem 5.1. The extended greedy algorithm finds a multiset multicover within
an Hk factor of LP∗.

3Recall that in the case of set cover, the approximation factor is logarithmic in the size of the
largest set and not just in n, the size of the universe. Similarly, in this case, the ratio is logarithmic
in k, which is the “local size,” as opposed to K, the “global size” of the problem.

534 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Parallel MultMultCov
Set r(e) = re for each e.
Iteration:

For each element e, compute value(e) = minS3e cS
|A(S)| .

For each set S: include S in L if
(•) ∑

e a(S, e)value(e) ≥ cs
2 .

Phase:
Initialization:
(a) Permute L at random.
(b) Each element e votes for first r(e) copies of itself in the random

ordering of L.
(c) If

∑
e votes S value(e) ≥ cS

128 , S is added to the set cover.
(d) Decrement r(e) appropriately. Adjust a(S, e) as required.

Delete sets that are picked or fail to satisfy (•) from L.
Repeat until L is empty.

Iterate until all elements are covered.

Fig. 2. The parallel multiset multicover algorithm.

5.2. Parsimonious accounting. More pertinently, the proof implies that the
parsimonious accounting principle ensures approximation in the case of multiset multi-
cover as well. By this we mean the following. Define the dynamic quantity value(e) =
min{ cS

|A(S)|}. Then, as long as we can assign costs cost(e, i) where i ranges from 1 to

re such that
1. cost(e, i) ≤ µvalue(e) at the moment that the set S covering (e, i) is picked,
2.
∑

(e, i) cost(e, i) ≥ cost of cover,
then the algorithm approximates the value of the multiset multicover to within µHk.
Here k is the largest set size, i.e., maxS

∑
em(S, e). We note that in the case of set

multicover, k is at most n, and thus we would have an Hn approximation. Moreover,
in many instances, k could be substantially smaller than n.

5.3. Parallel algorithms and analysis. We now outline parallel algorithms
for multiset multicover. The parallel multiset multicover algorithm is essentially the
same as the set cover algorithm except that with each element we associate a dynamic
variable, r(e), initially re, which tracks the residual requirement of e. After a random
permutation of the candidate sets L is chosen, each element votes for the first r(e)
copies of itself in the sequence.4 The algorithm is detailed in Figure 2. Notice that
we can assume without loss of generality that r(e) ≤ deg(e).

5.4. Analysis. It is easy to see that the algorithm satisfies that parsimonious
accounting property with µ = 128. This establishes the approximation ratio.

The number of iterations is bounded by O(logmnk). As earlier, we will denote
the cost of the optimum multiset multicover by IP∗. The proof follows exactly along
the lines of the proof for the set cover case. The only change required for proving this
is in the definition of the crude estimator β: let S1, S2 · · ·Sm be the sets arranged in

4For example, r(e) is 4 and m(S1, e) = 2, a(S2, e) = 3, and a(S3, e) = 2. Let the permutation
be S1 < S2 < S3. Then, e votes for S1 twice and S2 twice, casting a total of four votes. If the total
number of copies of e in the candidate sets is less than r(e), then e votes for them all.

RNC APPROXIMATION FOR SET COVER 535

increasing order of cost. Let βe be the cost of the set containing the reth copy of e, and
let β = maxe βe. Then, β ≤ IP∗ ≤ mnβ. As before, we can restrict attention to the
sets such that cS ∈ [β/m,mnβ]. Again, it can be easily established that mine value(e)
increases by a constant factor after each iteration. Since value(e) for any element is
at least β/mnk and at most mnβ, there can be only O(logmnk) iterations.

Notice that for the special case of set multicover, k is at most n. Thus, the bound
is logmn iterations.

5.4.1. Phases in an iteration. The number of phases required in an iteration
is at most O(log2 nm). This is established by extending the corresponding lemma for
set cover. However, the extension is non-trivial and we shall need some machinery to
do this.

First we restrict our attention to the sets in L, i.e., sets that satisfy (•). In the
following discussion, we will denote the copies of element e in the set S by e(i). Here,
i ranges from 1 to a(S, e). We say that e(i) votes for S if e(i) is among the first r(e)
copies of e in the random ordering of L.

We will now introduce some notation that will simplify our analysis. We denote
by r(e, i)

·
= r(e)− i+ 1. We denote by deg(e, i)

·
=
∑
S∈Lmin{a(S, e), r(e, i)}. Notice

that from the definitions, it follows that r(e) = r(e, 1) and deg(e) = deg(e, 1). The
second since a(S, e) is at most r(e). In general, it is tricky to get a handle on the
probability that e(i) obtains a vote for S. However, we shall now show the following

lemma which says that the quantity r(e,i)
deg(e,i) approximates this quantity quite nicely.

Lemma 5.4.1.

1

2

r(e, i)

deg(e, i)
≤ prob(e(i) votes S) ≤ 4

r(e, i)

deg(e, i)
.

Proof. The proof has two parts. The first establishes the upper bound, and the
second, the lower bound. For the upper bound we notice that with each permutation

of the sets such that e(i) votes S, we can associate at least deg(e,i)
2r(e,i) − 2 permutations

such that (e, i) does not vote for S. In order to make this association, consider the
notion of a “rotation,” exhibited by Figure 3. This figure is to be interpreted as

r(e,i)

Fig. 3. The top bar shows a permutation of L, and the bottom, a rotated permutation.

follows: the figure shows two permutations of L. These two permutations differ by
a “rotation.” The shaded rectangles representing each permutation represent the
various sets in L. The length of these rectangles correspond to their contributions to
deg(e, i). Thus, the total length of the set of rectangles representing any permutation
of L is exactly deg(e, i).

A rotation is made by extracting from the end of the permutation a minimum
number of sets such that they contribute at least r(e, i) towards deg(e, i) and then
placing them in reversed order in the front of the permutation (as shown).

It is easily verified that a rotation is reversible; i.e., it is possible to “unrotate” any
rotated permutation to the original permutation. This is most easily seen by turning

536 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

Figure 3 upside down. More formally, the unrotation is performed by reversing the
sequence, rotating, and then reversing again.

It is also easily verified that for any configuration such that e(i) votes S, it is

possible to rotate at least deg(e,i)
2r(e,i) − 2 times such that for each rotated configuration,

e(i) does not vote S. This is because the maximum contribution of any set towards
deg(e, i) is r(e, i). Thus, we have associated with each voting permutation at least
deg(e,i)
2r(e,i) − 2 nonvoting permutations. Thus, the probability that e(i) votes for S is

at most (deg(e,i)
2r(e,i) − 1)−1 = 2r(e,i)

deg(e,i)−2r(e,i) . It can be seen via some simple algebraic

manipulations that this implies that prob(e(i) votes S) ≤ 4r(e,i)
deg(e,i) .5

For the second part, we need to do some simple analysis. Let us imagine that
we permute L by choosing at random XT ∈ [0, 1] for each set T and then sorting
L in increasing order of XT . Notice that we do not need to do this algorithmically;
we introduce this just as a means to get a handle on the probability that interests
us. Define Y (x)

·
=
∑
XT<x

min{a(T, e), r(e, i)}. Then, it is easily verified that the

events (e(i) votes S) and (Y (XS) ≤ r(e, i)) are equivalent. Since for any x, E(Y (x)) =
xdeg(e, i), we have by Markov’s inequality,

prob(e(i) votes S | XS = x) ≥ 1− prob(Y (x) ≥ r(e, i)|XS = x) ≥ 1− deg(e, i)

r(e, i)
x.

Let θ ∈ [0, 1]; then

prob(e(i) votes S) ≥
∫ θ

0

prob(e(i) votes S | XS = x)dx ≥ θ − θ2

2

deg(e, i)

r(e, i)
.

Choosing θ = r(e,i)
deg(e,i) completes the proof, since by our assumption (which, as we

pointed out, can be made without loss of generality) that r(e) ≤ deg(e), this fraction
is smaller than 1. Otherwise, the lemma is trivial. 2

Lemma 5.4.2. Let e(i), f (j) ∈ S. Then

prob
(
e(i) and f (j) vote S

) ≥ 1

2

 1
deg(e,i)
r(e,i) + deg(f,j)

r(f,j)

 .

Proof. The proof of this lemma is very similar to the proof of Lemma 5.4.1.

prob (e and f vote S)

=

∫ 1

0

prob (e and f vote S|XS = x) dx

≥
∫ θ

0

prob (e and f vote S|XS = x) dx, θ ∈ [0, 1],

≥
∫ θ

0

1− prob (e does not vote S|XS = x)− prob (f does not vote S|XS = x) dx.

(1)

5To see this, we consider two cases. If deg(e, i) ≤ 4r(e, i), then the conclusion is trivial. Other-

wise, it is easy to see that
2r(e,i)

deg(e,i)−2r(e,i)
≤ 4

r(e,i)
deg(e,i)

by crossmultiplication

RNC APPROXIMATION FOR SET COVER 537

Define Ye(x) and Yf (x) as in the previous lemma,

prob(e(i) does not vote for S | XS = x) ≤ x · deg(e, i)

r(e, i)
,

and do similarly for f (j). Substituting these values back into (1), we obtain

prob(e(i) and f (j) vote for S) ≥ θ −
(

deg(e, i)

r(e, i)
+

deg(f, j)

r(f, j)

)
· θ

2

2
.

Choosing the value of θ to maximize the right-hand side, we get6

prob
(
e(i) and f (j) vote S

) ≥ 1

2

 1
deg(e,i)
r(e,i) + deg(f,j)

r(f,j)

 . 2

Lemma 5.4.3. Let e(i), f (j) ∈ S such that r(e,i)
deg(e,i) ≤ r(f,j)

deg(f,j) .

prob(f (j) votes S | e(i) votes S) ≥ 1

8
.

Proof. The proof is immediate from the previous two lemmas. 2

Remark. In the case of set multicover, the first of the two lemmas implying
Lemma 5.4.3 is trivial. Indeed, since a(S, e) is either 0 or 1, we can immediately

infer that prob(e votes S) = r(e)
deg(e) . The second lemma (with i and j both set to

1) immediately implies the corresponding version of Lemma 5.4.3 with a bound
of 1

4 . 2

Say that a set-element pair (S, e(i)) is good if deg(e,i)
r(e,i) ≥ deg(f,j)

r(f,j) for at least three

quarters of the elements f (j) ∈ S. Then, as in the case of set cover, Lemma 5.4.3
implies that if (S, e(i)) is good

prob
(
S is picked | e(i) votes for S

) ≥ p,
where p > 0. The potential function we use is

Φ
·
=
∑
e

deg(e)Hr(e) =
∑
e

deg(e)

r(e)∑
i=1

1

r(e, i)
.

Initially, Φ ≤ mn log r, where r is the largest requirement. The expected decrease in
Φ ascribable to a good set-element pair (S, e(i)), denoted ∆Φ(S,e(i)), is at least

E(∆Φ(S,e(i))) ≥ prob(e(i) voted for S)× prob(S was picked | e voted for S)
deg(e)

r(e, i)

≥ r(e, i)

deg(e, i)

p

2

deg(e)

r(e, i)

≥ p

2
.

6Again, the assumption that r(e) ≤ deg(e) implies that our choice of θ is at most 1.

538 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

The first inequality is from the definition of Φ, the second is due to Lemmas 5.4.1 and
5.4.3, and the last is due to deg(e) ≥ deg(e, i). Since a constant fraction of all (S, e(i))
are good, E∆Φ ≥ O(Φ

log r), where r is the largest requirement value. From Fact 4.1.3,

we know that the total number of phases is at most O(log r(logmn+ log log r)).
Theorem 5.2. Parallel MultMultCov approximates multiset multicover to

within 128Hn, using a linear number of processors and running in time O(log4mnr).
Corollary 5.4.4. If the number in step (c) of Figure 2 were changed to cS

32 , and
the algorithm were run on an instance of set multicover, then it would be a RNC4

algorithm approximating set multicover to within 32Hn.
Proof. The proof follows from the remark following Lemma 5.4.3. 2

6. Covering integer programs. Covering integer programs are integer pro-
grams of the following form:

CIP :
min

∑
S cSxS

s.t. ∀e ∑
SM(S, e)xS ≥ re,

xS ∈ Z+.

Here, Z+ are the nonnegative integers. The vectors c and r and the matrix M are
all composed of nonnegative (rational) numbers. At this stage, the notion of a “set”
does not have any meaning, however, we continue to use this notation simply to
maintain consistency with the previous discussion. For the purpose of the subsequent
discussion, the reader should keep in mind that S varies over one set of indices, and
e, over the other. Without loss of generality, we may assume that M(S, e) ≤ Re.

What we present here is a scaling and rounding trick. The goal is to reduce to
an instance of multiset multicover with polynomially bounded (and integral) element
multiplicities and requirements. Moreover, in making this reduction, there should be
no significant degradation in the approximation factor.

Lemma 6.0.5. There is an NC1 reduction from covering integer programs to
multiset multicover with element multiplicities and requirements at most O(n2) such
that the cost of the fractional optimal (i.e., the cost of the LP relaxation) goes up by
at most a constant factor.

Proof. Essentially, we need to reduce the element requirements to a polynomial
range and ensure that the requirements and multiplicities are integral. Then, repli-
cating sets to the extent of the largest element requirement, we would get an instance
of multiset multicover. We will achieve this as follows: we will obtain a (crude) ap-
proximation to the fractional optimal within a polynomial factor, and then we will
ensure that the costs of sets are in a polynomial range around this estimate. Also,
we will set all element requirements at a fixed polynomial and set the multiplicities
accordingly. At this point, rounding down the multiplicities will change the fractional
optimal by only a constant factor.

Let βe = Re · minS
cS

M(S,e) and β = maxe βe. Clearly, β ≤ CLP∗ ≤ nβ, where

CLP∗ is the cost of the optimal solution to the LP relaxation of CIP. If a set S
has large cost, i.e., cS > nβ, then S will not be used by the fractional optimal, and
we will eliminate it from consideration. So, for the remaining sets, cS ≤ nβ. Define
αS = d β

ncS
e. We will clump together αS copies of S (i.e., M(S, e) ← M(S, e)αS ,

cS ← cSαS). The cost of the set so created is at least β
n . Additionally, the fractional

optimum is not affected by this scaling (though the same cannot be said of the integral
optimal). Thus, we can assume that for each S, cS ∈ [βn , nβ].

RNC APPROXIMATION FOR SET COVER 539

If any element is covered to its requirement by a set of cost less than β
n , cover

the element using that set and eliminate the element from consideration. The cost
incurred in the process is at most β for all elements so covered, and this is subsumed
in the constant factor. Notice that as a result of this step, the multiplicity of an
element in a set will still be less than its requirements. The reason we require αS to
be integral is that we need to map back solutions from the reduced problem to the
original problem. Henceforth, we can assume that the costs satisfy cS ∈ [βn , nβ]. Next,
we will fix the requirement of each element to be 2n2, and we will set the multiplicities

appropriately, m′(S, e) = M(S,e)
re

· 2n2. Since this is just multiplying each inequality
by a constant, this will not change the (both fractional and integral) optimal solution
or value.

Finally, we will round down the multiplicities, m(S, e) = bm′(S, e)c. We will
show that this will increase the fractional optimal by a factor of at most 4. The same
cannot be said for the integral optimum. This is the reason why we needed to compare
the solution obtained by our approximation algorithms for multiset multicover to the
fractional optimum.

Consider an optimal fractional solution to the problem with multiplicitiesm′(S, e).
Since the cost of this solution is at most nβ, and the cS is at least β

n ,
∑
S xS ≤ n2.

Consider an element e, and let S be the collection of all sets S such that m′(S, e) < 1.
Then, the total coverage of e due to sets in S is at most n2. Therefore, the total
coverage of e due to the remaining sets is at least n2. Since for each of these sets,
m(S, e) ≥ 1

2m
′(S, e), if we multiply each xS by 4, element e will be covered to the

extent of at least 2n2 in the rounded-down problem. The lemma follows. 2

Notice that the reduction in Lemma 6.0.5 is such that a feasible solution to the
instance of the multiset multicover problem can be mapped back to a feasible solu-
tion of the original problem without increasing the cost. Hence we get the following
theorem.

Theorem 6.1. There is an O(log n) factor RNC4 approximation algorithm for
covering integer programs requiring O(n2#(A)) processors, where #(A) is the number
of nonzero entries in A.

Since, in the reduction, all element requirements are set to O(n2), we obtain the
processor bound stated above. Further, since we are comparing the performance of our
algorithm with the fractional optimal, it follows that the integrality gap for covering
integer programs, in which element multiplicities are bounded by requirements, is
bounded by O(log n). It is easy to see that if multiplicities are not bounded by
requirements, the integrality gap can be arbitrarily high.

The previous best (sequential) approximation guarantee for covering integer pro-
grams was Hnmax(A), where max(A) is the largest entry in A, assuming that the
smallest one is 1 [Do82]. Moreover, in that result, the performance of the algorithm
given was compared to the integral optimal.

Notice that the multiset multicover problem with the restriction that each set
can be picked at most once is not a covering integer program, since we will have
negative coefficients. This raises the question of whether there is a larger class than
covering integer programs for which we can achieve (even sequentially) an O(log n)
approximation factor.

Acknowledgments. We thank the referees. Their comments greatly improved
the presentation of the paper.

540 SRIDHAR RAJAGOPALAN AND VIJAY VAZIRANI

REFERENCES

[BRS89] B. Berger, J. Rompel, and P. Shor, Efficient NC algorithms for set cover with applica-
tions to learning and geometry, in Proc. 30th IEEE Symposium on the Foundations
of Computer Science, 1989, pp. 54–59.

[Ch79] V. Chvatal, A greedy heuristic for the set covering problem, Math. Oper. Res., 4 (1979),
pp. 233–235.

[Do82] G. Dobson, Worst-case analysis of greedy heuristics for integer programming with non-
negative data, Math. Oper. Res., 7 (1982), pp. 515–531.

[Fe96] U. Feige, A threshold of lnn for approximating set cover, in Proc. 28th ACM Symposium
on the Theory of Computing, 1996, pp. 312–318.

[Jo74] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System
Sci., 9 (1974), pp. 256–278.

[Ka72] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York,
1972, pp. 85–103.

[LN93] M. Luby and N. Nisan, A parallel approximation algorithm for positive linear program-
ming, in Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 448–457.

[Lo75] L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Math., 13,
pp. 383–390.

[Le92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kauf-
man, San Francisco, 1992.

[LY93] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,
in Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 286–293.

[PST91] S. A. Plotkin, D. B. Shmoys, and E. Tardos, Fast approximation algorithms for frac-
tional packing and covering problems, in Proc. 32nd IEEE Symposium on the Foun-
dations of Computer Science, 1991, pp. 495–504.

[Ra88] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating
packing integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

OPTIMAL CONSTRUCTION OF EDGE-DISJOINT PATHS IN
RANDOM GRAPHS∗

ANDREI Z. BRODER† , ALAN M. FRIEZE‡ , STEPHEN SUEN§ , AND ELI UPFAL¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 541–573

Abstract. Given a graph G = (V,E) with n vertices, m edges, and a family of κ pairs of vertices
in V , we are interested in finding for each pair (ai, bi) a path connecting ai to bi such that the set
of κ paths so found is edge disjoint. (For arbitrary graphs the problem is NP-complete, although it
is in P if κ is fixed.)

We present a polynomial time randomized algorithm for finding the optimal number of edge
disjoint paths (up to constant factors) in the random graph Gn,m for all edge densities above the
connectivity threshold. (The graph is chosen first; then an adversary chooses the pairs of endpoints.)
Our results give the first tight bounds for the edge-disjoint paths problem for any nontrivial class of
graphs.

Key words. edge-disjoint paths, random graphs, eigenvalues of random graphs

AMS subject classifications. 05C38, 05C40, 05C80, 05C85, 60J15, 68Q20, 68Q25, 68R10,
90B10, 90B12

PII. S0097539795290805

1. Introduction. Given a graph G = (V,E) with n vertices, m edges, and a set
of κ pairs of vertices in V , we are interested in finding for each pair (ai, bi) a path
connecting ai to bi such that the set of κ paths so found is edge disjoint.

For arbitrary graphs the related decision problem is NP-complete, although it is
in P if κ is fixed (Robertson and Seymour [16]). Nevertheless, this negative result
can be circumvented for certain classes of graphs. Peleg and Upfal [15] presented a
polynomial time algorithm for the case where G is a (sufficiently strong) bounded
degree expander graph, and κ ≤ nε for a small constant ε that depends on the
expansion property of the graph. (A precise upper bound for ε was not computed, but
it is clearly less that 1/3.) This result has recently been improved by Broder, Frieze,
and Upfal [8]: G still has to be a (sufficiently strong) bounded degree expander but κ
can now grow as fast as n/(lnn)θ, where θ depends only on the expansion properties
of the input graph but is at least 7.

For the vertex-disjoint paths problem Kleinberg and Tardos [13] come within an
O(log n) factor of the maximum possible κ for a class of planar graphs. In random
graphs Shamir and Upfal have shown in [17] that any set of up to O(

√
n) pairs can

be connected via vertex-disjoint paths; similar results using efficient flow techniques

∗Received by the editors August 25, 1995; accepted for publication (in revised form) June 10,
1996; published electronically July 28, 1998. A preliminary version of this paper appeared in the
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1994.

http://www.siam.org/journals/sicomp/28-2/29080.html
†Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301 (broder@src.

dec.com).
‡Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213 (af1p@euler.

math.cmu.edu). A portion of this work was done while this author was visiting IBM Almaden. The
work of this author was supported in part by NSF grants CCR9024935 and CCR9225008.
§Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213 (suen@math.

usf.edu).
¶IBM Almaden Research Center, San Jose, CA 95120, and Department of Applied Mathemat-

ics, The Weizmann Institute of Science, Rehovot, Israel (eli@wisdom.weizmann.ac.il). Work at the
Weizmann Institute was supported in part by the Norman D. Cohen Professorial Chair of Computer
Science, by a MINERVA grant, and by the Israeli Academy of Science.

541

542 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

were also obtained by Hochbaum [12]. These results were proved for graphs with
m ≥ Kn log n random edges, where K is a sufficiently large constant.

Let D be the median distance between pairs of vertices in G. Clearly it is not
possible to connect more than O(m/D) pairs of vertices by edge-disjoint paths for
all choices of pairs, since some choice would require more edges than all the edges
available. In the case of bounded degree expanders, this absolute upper bound on κ
is O(n/ log n). The results mentioned above use only a vanishing fraction of the set
of edges of the graph and thus are far from reaching this upper bound. In contrast,
in this work we show that for the basic models of random graphs, Gn,m and Gn,p,
the absolute upper bound is achievable within a constant factor, and we present an
algorithm that constructs the required paths in polynomial time.

As usual, let Gn,p denote a random graph with vertex set {1, 2, . . . , n} = [n] in
which each possible edge is included independently with probability p, and let Gn,m
denote a random graph also with vertex set [n] and exactly m edges, all sets of m
edges having equal probability. The degree of a vertex v is denoted by dG(v).

Our main result is formulated in the following theorem.

Theorem 1. Let m = m(n) be such that d = 2m/n ≥ (1 + o(1)) lnn. Then as
n −→ ∞ with probability 1 − o(1), the graph Gn,m has the following property: there
exist positive constants α and β such that for all sets of pairs of vertices {(ai, bi) | i =
1, . . . , κ} satisfying

(i) κ = dαm ln d/ lnne,
(ii) for each vertex v, |{i : ai = v}|+ |{i : bi = v}| ≤ min{dG(v), βd},

there exist edge-disjoint paths in G, joining ai to bi, for each i = 1, 2, . . . , κ. Further-
more, there is an O(nm2) time randomized algorithm for constructing these paths.

A similar result holds for Gn,p, with d = np and κ = dαn2p ln d/(2 lnn)e.
This result is the best possible up to constant factors. For (i) note that the

distance between most pairs of vertices in G is Ω(log n/ log d), and thus with m edges
we can connect at most O(m log d/ log n) pairs. For (ii) note that a vertex v can be the
endpoint of at most dG(v) different paths. Furthermore suppose that d ≥ nγ for some
constant γ > 0 so that κ ≥ dαγnd/2e. Let ε = αγ/3, A = [εn], and B = [n] \A. Now
with probability 1− o(1) there are less than (1 + o(1))ε(1− ε)nd edges between A and
B in Gn,m. However, almost all vertices of A have degree (1 + o(1))d and if for these
vertices we ask for (1− ε/2)d edge-disjoint paths to vertices in B then the number of
paths required is at most (1+o(1))ε(1−ε/2)nd < κ, but, without further restrictions,
this many paths would require at least (1− o(1))ε(1− ε/2)nd > (1 + o(1))ε(1− ε)nd
edges between A and B, which is more than what is available. This justifies an upper
bound of 1− ε/2 for β of Theorem 1.

We note that we have proved similar optimal results for the vertex-disjoint paths
problem in random graphs [7].

The construction of n/(lnn)θ edge-disjoint paths on expander graphs that was
described in [8] was achieved through the use of the Lovász local lemma [9]. Sets of
possible paths were constructed for each pair, and the local lemma was applied to
prove that there is a global choice of one path per set such that all the choices are
edge disjoint. However, this approach can only be used when the total number of
edges in the final set of disjoint paths is a vanishing fraction of the number of edges
in the graph; inherently, it does not lead to optimal bounds.

Here we address the problem in a different way. After a randomization phase,
similar to the one in [8], the disjoint paths are constructed one after the other, and
all the edges seen during the construction are deleted from the graph. The paths

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 543

connecting each pair are chosen through a “random walk” type process. The crux of
the analysis is to show that after a number of pairs have already been connected, the
remaining graph is sufficiently connected to continue with this process. To prove that,
we use a good estimate on the eigenvalues of the intermediate graphs generated by
the algorithm. (Since we cannot throw logarithmic factors at our trouble spots, the
proofs are rather intricate, although the algorithm itself is quite simple.) Eventually
the number of pairs not yet connected becomes small enough that we can use [8]
directly.

The disjoint paths problem has numerous algorithmic applications. One that
has received increased attention in recent years is in the context of communication
networks. The only efficient way to transmit high volume communication, such as in
multimedia applications, is through disjoint paths that are dedicated to one pair of
processors for the duration of the communication. To efficiently utilize the network
one needs a very simple algorithm that with minimum overhead constructs a large
number of edge-disjoint paths between a given set of requests. The algorithm we
study is simple and easy to implement (after eliminating some steps that are needed
only for the proof) and thus suggests some possibly good practical heuristics.

In section 3 we present a very brief overview of the algorithm. The details of the
algorithm are exposed in section 4. The remainder of the paper gives the analysis.

2. Preliminaries. The paper contains a number of unspecified constants of
which α and β above are the first. Exact values could be given, but it is easier
for us and the reader if we simply give the relations between them. New constants
will be introduced as C0, C1, . . . without further comment. Furthermore, specific con-
stants have been chosen for convenience, we made no attempt to optimize them, and,
in general, we only claim that inequalities dependent on n hold for n sufficiently large.

For a graph G = (V,E) we use δ(G) and ∆(G) to denote the smallest and largest
degrees, respectively. For a set S ⊆ V we define its neighbor set, N(S,G), as

N(S,G) = {v ∈ V \ S : ∃w ∈ S such that {v, w} ∈ E}.

For S ⊆ V , we use G[S] to denote the subgraph of G induced by S.
The Chernoff bounds on the tails of the binomial bin(n, θ) that we use are

Pr(Bin(n, θ) ≤ (1− ε)nθ) ≤ e−ε2nθ/2,(1)

Pr(Bin(n, θ) ≥ (1 + ε)nθ) ≤ e−ε2nθ/3,(2)

valid for 0 ≤ ε ≤ 1.

3. Overview of the algorithm. Our algorithm divides naturally into the five
phases sketched below.

Phase 1. Partition G into five edge-disjoint graphs Gi = (Vi, Ei), 1 ≤ i ≤ 5.
Phase 2 will use only the graph G1; Phase 3 will use only the graph G2; Phase 4
will use only the graph G3; and Phase 5 will use only the graphs G4 and G5. The
partition is such that V1 = V but V2 = V3 = V4 = V5 ⊆ V with |V2| = n− o(n).

Phase 2. Choose a random multiset Z = {z1, . . . , z2κ} of 2κ points in V2. Connect
the endpoints {(ai, bi) | i = 1, . . . , κ} to the newly chosen points in an arbitrary
manner via edge-disjoint paths in G1 using a flow algorithm. Let ãi (resp., b̃i) be
the vertex connected to ai (resp., bi). The original problem is now reduced to finding
edge-disjoint paths from ãi to b̃i for each i. (This randomization was used in [8] and
has its roots in Valiant’s routing algorithm [19].)

544 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

Phase 3. For each z ∈ Z in turn, we do a random walk of length τ = dC0 lnn/ ln de
in G2, starting at z. We remove the edges of the jth walk before embarking on the
j + 1st. This keeps the paths constructed edge disjoint. The terminating endpoint
of the walk starting at ãi (resp., b̃i) will be denoted by âi (resp., b̂i) for 1 ≤ i ≤
κ. The analysis below shows that in almost every Gn,p, the (multi)set of vertices

â1, . . . , âκ, b̂1, . . . , b̂κ is not too far from being independently, uniformly distributed.
Phase 4. For each i in turn, we repeatedly do a certain type of random walk in G3

starting from âi until one of these walks ends at b̂i. We keep the last walk as our path
from âi to b̂i and remove from G3 all edges seen in these walks. (The analysis below

promises that this process will succeed whp1 for most i.) Not every pair (âi, b̂i) will
be successfully connected in this phase, but the final path for each pair that succeeds
is the concatenation of the paths from ai to ãi, and from bi to b̃i found in Phase 2,
the paths from ãi to âi and b̃i to b̂i found in Phase 3, and the path from âi to b̂i found
here.

Phase 5. At the end of Phase 4, whp, there will be at most n1−ε pairs (âi, b̂i),
for a constant ε > 0, which have not been joined by paths. We use the algorithm of
[8] to join them by edge-disjoint paths, using only the edges of G4 and G5, and then
construct the final paths as above.

To prove Theorem 1 it suffices to show that for almost every Gn,p,
(i) Phases 1 and 2 will succeed for all choices of a1, . . . , bκ and almost every

choice of z1, . . . , z2κ;
(ii) Phases 3, 4, and 5 are successful for almost every choice of z1, . . . , z2κ and

any mapping {ã1, . . . , ãκ, b̃1, . . . , b̃k} ↔ {z1, . . . , z2κ}.
Note that to prove these facts we have to consider only one experiment; namely,

choose Gn,p or Gn,m at random and then z1, . . . , z2κ at random. From this we can
deduce that almost every Gn,p or Gn,m is such that for all choices of a1, . . . , bκ and

almost every choice of z1, . . . , z2κ, we can find edge-disjoint paths ai−ãi−âi−b̂i−b̃i−bi
for 1 ≤ i ≤ κ.

4. Description of the algorithm. The input to our algorithm is a random
graph Gn,p and a set of pairs of vertices {(ai, bi) | i = 1, . . . , κ} satisfying the premises
of Theorem 1. The output is a set of κ edge-disjoint paths, P1, . . . , Pκ such that Pi
connects ai to bi.

4.1. Phase 1. We start by partitioning G into five edge-disjoint graphs Gi =
(Vi, Ei) for 1 ≤ i ≤ 5. Phase 2 will use only G1; Phase 3 will use only G2; Phase 4
will use only G3; Phase 5 will use only G4 and G5. The partition is such that V1 = V
but V2 = V3 = V4 = V5 ⊆ V with |V1| = n− o(n).

In this construction, we use the notion of a k-core. The k-core of a graph H is
the largest S ⊆ V (H) which induces a subgraph of minimum degree at least k. It is
unique and can be found by repeatedly removing vertices of degree less than k until
what remains is empty or has minimum degree k.

The algorithm Split depicted in Figure 1 starts by constructing preliminary
versions of these graphs, denoted G′i for 1 ≤ i ≤ 5. Then edges and vertices are
deleted from G′2, . . . , G

′
5 in order to achieve certain minimum degree properties.

We will show later (Lemma 2) that whp this algorithm terminates with |K| =
n− o(n). Note that Split ensures that the following hold.

(i) The final graphs Gi, 2 ≤ i ≤ 5 have the same vertex set K.

1In this paper, an event En is said to occur whp (with high probability) if Pr(En) = 1−o(n−9/10)
as n −→∞. For reasons explained in section 7, the usual 1− o(1) does not suffice here.

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 545

1. algorithm Split

2. begin

3. Divide E into E′i, 1 ≤ i ≤ 5 by placing each edge of E
independently with probability 5/6 in E′1, and with
probability 1/24 into each of E′i for 2 ≤ i ≤ 5.

4. For 1 ≤ i ≤ 5 set G′i ← (V,E′i)
5. K ← bd/2c-core of G′1
6. For 2 ≤ i ≤ 5 set Gi ← (K,E′i ∩ (K ×K))

7. while ∃v ∈ K such that min{dGi(v) : 2 ≤ i ≤ 5} < d/30 do

8. For 2 ≤ i ≤ 5 remove v and its adjacent edges from
Gi.

9. K ← K \ {v}
10. od

11. For 2 ≤ i ≤ 5 set Vi ← V (Gi) and set Ei ← E(Gi)

12. G1 ← (V,E \ (E2 ∪ E3 ∪ E4 ∪ E5))

13. end Split

Fig. 1. Algorithm Split.

(ii) Every v ∈ K has degree at least bd/2c in G1 and at least bd/30c in each of
Gi, 2 ≤ i ≤ 5.

(iii) If v ∈ V \K then dG1
(v) = dG(v).

4.2. Phase 2. Choose z1, z2, . . . , z2κ ∈ V2 uniformly and randomly with re-
placement. Let Z denote the multiset {z1, z2, . . . , z2κ}. We are going to replace
the problem of finding paths from ai to bi by that of finding paths from ãi to
b̃i, where {ã1, b̃1, ã2, b̃2, . . . , ãκ, b̃κ} = Z as multisets. Let A denote the multiset
{a1, b1, a2, b2, . . . , aκ, bκ}.

We connect A to Z via edge-disjoint paths in the graph G1 using network flow
techniques. We construct a network as follows.

(i) Each undirected edge of G1 gets capacity 1.
(ii) Each member of A becomes a source and each member of Z becomes a sink.
(iii) If a vertex occurs r times in A then it becomes a source with supply r, and

if a vertex occurs s times in Z, then it becomes a sink with demand s.

Then we find a flow from A to Z that satisfies all demands. Since the maximum
flow has integer values, it decomposes naturally into |A| edge-disjoint paths (together
perhaps with some cycles). If a path joins ai to z ∈ Z, then we let ãi = z. Similarly,
if a path joins bi to z ∈ Z, then we let b̃i = z.

Thus Phase 2 finds edge-disjoint paths P
(1)
i from ai to ãi and P

(5)
i from b̃i to bi,

1 ≤ i ≤ κ, where the vertices ã1, b̃1, ã2, b̃2, . . . , ãκ, b̃κ ∈ V2 are chosen uniformly at
random with replacement. (Some of these paths may of course be single vertices.) On
the other hand there may be some difficult conditioning involved in the pairing of ãi
with b̃i, 1 ≤ i ≤ κ. We deal with this in Phase 3.

4.3. Phase 3. We construct paths P
(2)
i , P

(4)
i in G2 with start vertices ãi, b̃i,

respectively, for 1 ≤ i ≤ κ. Each path is constructed by simulating a random walk

546 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

of length τ = dC0 lnn/ ln de from each start point. The endpoints of P
(2)
i , P

(4)
i are

âi, b̂i, respectively. The edges of a walk are deleted from G2 before the next one starts.
This keeps the paths edge disjoint. We construct these walks with start points Z in
the random order z1, z2, . . . , z2κ. (This random order is helpful in the proof of (21)
below.) Wi denotes the walk started at zi; it ends at ẑi. Γi denotes the state of G2

after the edges of W1,W2, . . . ,Wi−1 have been deleted.
A random walk on an undirected graph (or multigraph) G = (V,E) is a Markov

chain {Xt} on V associated with a particle that moves from vertex to vertex according
to the following rule: the probability of a transition from vertex v of degree dv to a
vertex w is 1/dv if {v, w} ∈ E and 0 otherwise. (For multigraphs, each edge out
of a vertex is an equally likely exit; loops are counted as two exits.) Its stationary
distribution, denoted by π or π(G), is given by πv = dv/(2|E|). A trajectory W
of length τ is a sequence of vertices [w0, w1, . . . , wτ] such that {wt, wt+1} ∈ E for
1 ≤ t < τ . The Markov chain induces a probability distribution on trajectories in the

usual way. We use P
(τ)
G (a, b) to denote the probability that a random walk in G of

length τ starting at a terminates at b.

4.4. Phase 4. The problem now is to find edge-disjoint paths P
(3)
i joining âi to

b̂i for 1 ≤ i ≤ κ. We use only the edges of G3 to avoid conflict with paths already
chosen in G1 ∪ G2. Thus eventually we can take Pi to be the path (after removing

cycles if necessary) that joins ai to ãi via P
(1)
i , ãi to âi via P

(2)
i , âi to b̂i via P

(3)
i , b̂i

to b̃i via P
(4)
i , and b̃i to bi via P

(5)
i . (Actually, this will only be true for most i. If

d = O(lnn) then a fifth phase may be necessary to find paths for some indices i.)

The paths P
(3)
i are again found by simulating a random walk. The reader might

expect us to choose a random walk from those with endpoints âi, b̂i. The main problem
with this is that the distribution of b̂i may be significantly different from the steady
state distribution of a walk from âi in G3. If we choose a walk in this manner then
deleting it will condition the graph in a way that is complex to analyze, especially as
we have to repeat the procedure κ times.

We overcome this by choosing a set of random walks and use rejection sampling
to make the final walk have the correct distribution. There is still the complication
that the b̂i are chosen before we do the walks. This leads to the subroutine Walk
described next. See Figure 2. Walk(âi, b̂i, Γ̂i,Γj , zj) generates a series of random

walks of length τ in Γ̂i starting from âi. The graph Γ̂i is such that Γ̂i ⊆ G3 with
V (Γ̂i) = V (G3) = V (Γj), and j is defined by zj ≡ b̃i. The last walk generated ends

at b̂i which, by the construction used in the previous phase, has the distribution

p̂v = P
(τ)
Γj

(zj , v).

The somewhat strange method used to generate these walks will be further explained
in section 7.

We maintain an array of counters, S[v], for v ∈ V3, initially all 0. The counter
S[v] shows how many times v was used as a start point of a walk. No vertex is allowed
to be the start of more than d/120 walks; thus there is a chance (in fact, only when
d = O(lnn)) that for some pairs of vertices Phase 4 will not connect them. The
indices of these pairs are kept in a set L and considered in the last phase.

The distributions pv and p̂v can be computed in O(nmτ) time by computing
powers of the transition matrix, after which a random walk can be found in O(nτ)
time. (For details see [8].) The analysis will show that in the range of interest whp s

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 547

1. subroutine Walk(âi, b̂i, Γ̂i,Γj , zj)

2. begin

3. /* By construction, zj = b̃i. */

4. pv ← P
(τ)

Γ̂i
(âi, v) for v ∈ V3

5. p̂v ← P
(τ)
Γj

(zj , v) for v ∈ V2 (the distribution of b̂i)

6. pmin ← min{pv : v ∈ V3}
7. p̂max ← max{p̂v : v ∈ V2}
8. Choose r from the geometric distribution with probability of

success s = pmin/p̂max

9. if S[âi] + r ≥ d/120 then

10. L← L ∪ {i}
11. exit Walk

12. else

13. S[âi]← S[âi] + r

14. fi

15. for k from 1 to r − 1 do

16. Choose xk according to
Pr(xk = v) = (pv − p̂vpmin/p̂max)/(1− s)

17. od

18. xr ← b̂i

19. for k from 1 to r do

20. Pick a walk Ŵk of length τ in Γ̂i according to the
distribution on trajectories, conditioned on
start point = âi and endpoint = xk

21. od

22. output Ŵ1, Ŵ2, . . . , Ŵr

23. end Walk

Fig. 2. Algorithm Walk.

is bounded away from zero by a constant; hence the expected total running time of
Walk is O(nmτ).

The complete algorithm for Phase 4, GenPaths, is depicted in Figure 3. The
expected running time of GenPaths is O(κnmτ) = O(nm2).

4.5. Phase 5. Use (a slight modification of) the algorithm of [8] to find edge-

disjoint paths in G4 ∪G5 from âi to b̂i for i ∈ L.

5. Analysis of Phase 1. In Lemmas 2, 3, and 4 we calculate with Gn,p and
deduce the result for Gn,m via

Pr(Gn,m ∈ P) ≤ O(n1/2) Pr(Gn,p ∈ P)

for any graph property P, assuming m =
(
n
2

)
p ≥ n.

548 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

1. algorithm GenPaths

2. begin

3. Let E(W) denote the edge set of a walk W .

4. Γ̂1 ← G3

5. for i = 1 to κ do

6. Define j such that zj ≡ b̃i.
7. Execute Walk(âi, b̂i, Γ̂i,Γj , zj)

8. if i /∈ L then

9. P
(3)
i ← Ŵr

10. Γ̂i+1 ← Γ̂i \
(
∪rj=1E(Ŵj)

)
11. fi

12. od

13. end GenPaths

Fig. 3. Algorithm GenPaths.

Our immediate task regarding this phase is to prove Lemma 1.
Lemma 2. With high probability, the vertex set K = Vi, 2 ≤ i ≤ 5 satisfies

|K| = n− o(n).

Proof. Let K0 denote the value of K immediately prior to the execution of the
while loop of Split; that is, K0 is the bd/2c core of G′1. The final K is the largest
subset S of K0 for which δ(G′i[S]) ≥ d/30, 2 ≤ i ≤ 5.

Let A1 = {v ∈ V : dG′1(v) ≤ 2d/3} and Ai = {v ∈ Vi : dG′
i
(v) ≤ d/27, 2 ≤ i ≤ 5}.

Let A =
⋃5
i=1Ai. We show that whp

(i) |A| = o(n),
(ii) v ∈ V \A implies that v has at most 50,000 G-neighbors in A.

It follows from (ii) and the definition of A that for d sufficiently large K ⊇ V \A
and then (i) implies the lemma.

We start from the fact that for any k ≥ 1,

Pr(|A1| ≥ k) ≤
(
n

k

)
Pr(Bin(n− k, 5p/6) ≤ 2d/3)k.

Putting k = k1 = dn61/62e and using (1) with ε = 1/5, we obtain

Pr(|A1| ≥ k1) ≤
(
ne

k1

)k1

e−k1d/61 =

(
ne1−d/61

k1

)k1

= o(n−2).(3)

Also, for any fixed k ≥ 300,

Pr(∃v ∈ V : |N(v,Gn,p) ∩A1| ≥ k)

≤ n
(
n

k

)
pk Pr(Bin(n− k − 1, 5p/6) ≤ 2d/3)k

≤ ndke−kd/61 = o(n−2).

(4)

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 549

Similarly, for any k ≥ 1 and i ≥ 2,

Pr(|Ai| ≥ k) ≤
(
n

k

)
Pr(Bin(n− k, p/24) ≤ d/27)k.

Now putting k = k2 = dn3999/4000e and using (1) with ε = 1/9, we obtain

Pr(|Ai| ≥ k2) ≤
(
ne

k2

)k2

e−k2d/3900 =

(
ne1−d/3900

k2

)k2

= o(n−2),(5)

and for any fixed k ≥ 12000,

Pr(∃v ∈ V : |N(v,Gn,p) ∩Ai| ≥ k)

≤ n
(
n

k

)
pk Pr(Bin(n− k − 1, p/24) ≤ d/27)k

≤ ndke−kd/3900 = o(n−2).

(6)

From (3) and (5) we conclude that whp A = o(n), and from (4) and (6) we conclude
that whp no vertex in G has more than 50,000 neighbors in A.

6. Analysis of Phase 2. In this section we show that if our input graph G =
(V,E) is Gn,p, then whp, after we run Split, we can find in G1 edge-disjoint paths

from ai to ãi and bi to b̃i for 1 ≤ i ≤ κ for any choice for a1, . . . , bκ consistent with
the premises of Theorem 1 and for almost every choice for ã1, . . . , b̃κ.

Let A and Z be as defined in section 4.2. For v ∈ V , let α(v) be the multiplicity
of v ∈ A and ξ(v) be the multiplicity of v ∈ Z. For S ⊆ V , let α(S) =

∑
v∈S α(v)

and ξ(S) =
∑
v∈S ξ(v). For sets S, T ⊆ V , let eG1(S, T) denote the number of edges

of G1 with an endpoint in S and the other endpoint in T . It suffices to prove that

eG1
(S, S̄) ≥ α(S)− ξ(S) ∀S ⊆ V.(7)

We can then apply a theorem of Gale [11] (or see Bondy and Murty [6, Theorem 11.8])
to deduce the existence of the required flow in G1 for the successful run of Phase 2.
(We must of course demonstrate (7) for all A satisfying the premises of Theorem 1
and almost all Z.)

We next prove three lemmas instrumental in proving Lemma 6 below.
Lemma 3. With high probability, for any v ∈ V2,

ξ(v) ≤ βdG1
(v).(8)

Proof. Observe that ξ(v) has the distribution Bin(2κ, |V2|−1). Thus

Pr(ξ(v) > βdG1(v)) ≤
(

2κ

βd/2

)
|V2|−βd/2 ≤

(
4eκ

βd
· 1 + o(1)

n

)βd/2
≤
(

12α ln d

β lnn

)βd/2
= o(n−3),

provided that

α ≤ βe−6/β/12.(9)

550 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

Lemma 4. (a) G1 has the following property whp: if S ⊆ V and n0 = ne−d/10 ≤
|S| ≤ n/2 then eG1

(S, S̄) ≥ d|S|/5.
(b) Gn,p has the following property whp: if S ⊆ V and |S| ≤ n0 then eG(S, S) ≤

2|S|.
Proof. (a) Note that G′1 is distributed as Gn,5p/6 and G′1 ⊆ G1. But

Pr(Gn,5p/6 does not satisfy property (a))

≤
n/2∑
k=n0

(
n

k

)
Pr(Bin(k(n− k), 5p/6) ≤ kd/5)

≤
n/2∑
k=n0

(
n

k

)
Pr

(
Bin(k(n− k), 5p/6) ≤ 1

2
k(n− k)

5

6
p

)

≤
n/2∑
k=n0

(ne
k

)k
exp

(
− 5

48
k(n− k)p

)
= o(n−2).

(b) Note that property (b) holds trivially for |S| ≤ 5 or d ≥ 10 lnn, which implies
n0 ≤ 1. Assume d ≤ 10 lnn and |S| ≥ 6. Thus

Pr(Gn,p does not satisfy property (b))

≤
n0∑
k=6

(
n

k

)(
k(k − 1)/2

2k

)
p2k ≤

n0∑
k=6

(ne
k

)k (k2ep

2k

)2k

= o(n−2).

Lemma 5. Let I = {v ∈ V : dG1(v) ≤ 2βd}. Then whp no two (distinct) vertices
in I are within distance of two or less in G1.

Proof. Observe first that I = ∅ if d ≥ C lnn for C sufficiently large. We can
thus assume that d = O(log n) for the rest of the proof of this lemma. If v ∈ I then
either dG(v) ≤ 2βd or dG1

(v) 6= dG(v). The latter cannot be true, since it implies
that v ∈ V2, and then dG1(v) ≥ bd/2c. Thus

Pr(I contains an edge) ≤ n2p

(
2βd∑
k=0

(
n− 2

k

)
pk(1− p)n−k

)2

.

But

2βd∑
k=0

(
n− 2

k

)
pk(1− p)n−k

= O

((
n

2βd

)
p2βd(1− p)n

)
= O

((
e

2β

)2βd

e−d
)

= O(n−.99),

provided that

2β(1− ln 2β) ≤ 1/100.(10)

Thus

Pr(I contains an edge) = o(n−9/10).

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 551

A similar calculation deals with the case of a path of length two joining two vertices
of I.

The rather tedious calculation for Gn,m is left to the interested reader—see [5]
for details of a similar calculation.

Now inequality (7) will follow easily from Lemma 5.
Lemma 6. Define for every v ∈ V

θ(v) = min{dG1
(v), βd}.

Then whp for every S ⊆ V satisfying 1 ≤ |S| ≤ n/2,

eG1
(S, S̄) ≥ θ(S),(11)

where S̄ = V \ S and θ(S) =
∑
v∈S θ(v).

Proof. Since β < 1/5, Lemma 4(a) implies that for S ⊆ V satisfying n0 ≤ |S| ≤
n/2,

eG1(S, S̄) ≥ d|S|/5 ≥ θ(S).

Suppose next that |S| ≤ n0. Let

I1 = {v ∈ V : dG1(v) ≤ 2βd},
I2 = {v ∈ V : 2βd < dG1(v)}.

Let Si = S ∩ Ii for i = 1, 2. Then

eG1(S, S̄) = eG1(S1, S̄1) + eG1(S2, S̄2)− 2eG1(S2, S1).

But by Lemma 5 G1[S1] has no edges, so that

eG1(S1, S̄1) ≥ θ(S1) whp,

and using Lemma 4(b),

eG1
(S2, S̄2) ≥ (2βd− 4)|S2| whp,

and since Lemma 5 implies that whp no vertex in S2 is adjacent to two or more
vertices in S1, we have also

eG1
(S2, S1) ≤ |S2| whp.

It thus follows that whp

eG1
(S, S̄) ≥ θ(S1) + (2βd− 6) |S2| ≥ θ(S),

where the last inequality holds for sufficiently large n so that βd > 6. This shows
(11).

We now show that Lemma 5 implies equation (7). First note that condition (ii)
in Theorem 1 implies α(v) ≤ θ(v) for all v ∈ V .

Second observe that Split guarantees that for v ∈ Z, θ(v) = βd, assuming that
β < 1/2, since Z ⊆ V2 and every v ∈ V2 has degree at least bd/2c in G1. Thus

Pr(∃v ∈ V such that ξ(v) > θ(v) | |V2|)

≤ |V2|2
(
κ

βd

)
|V2|−βd ≤ 2n

(
(1 + o(1))eαm ln d

nβd lnn

)βd
= o(n−2),

552 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

provided that α is sufficiently small. We can thus assume that whp ξ(v) ≤ θ(v) for
all v ∈ V .

To complete the proof of equation (7), note first that for |S| ≤ n/2, by Lemma 6,

eG1
(S, S̄) ≥ θ(S) ≥ α(S) ≥ α(S)− ξ(S);

and for |S| ≥ n/2,

eG1
(S, S̄) = eG1

(S̄, S) ≥ θ(S̄)≥ ξ(S̄) ≥ ξ(S̄)− α(S̄) = α(S)− ξ(S).

7. Analysis of Phase 3. If a vertex v ∈ V2 has degree d
(i)
v in Γi, then the

steady state probability of a random walk in Γi being at v is

π(i)
v =

d
(i)
v∑

w∈V2
d

(i)
w

.

The main thrust of our analysis is to show that the joint distribution of the ẑi is close
to that of independent samples from π(i) for 1 ≤ i ≤ 2κ; that is, whp for v ∈ V2 and
1 ≤ i ≤ 2κ,

Pr(ẑi = v | Γi, ẑj , j 6= i) = (1 + o(1))π(i)
v .(12)

In this case, when we come to join âi to b̂i then we can argue that b̂i is (essentially)
independent of âi. It is difficult to argue this for ãi, b̃i since they have been “chosen”
as pairs by a flow algorithm. This is why we need Phase 3.

Let E0 denote the intersection of the events previously shown to hold whp. Let
P (i) denote the transition probability matrix of a random walk on Γi. Let λ(i) be the
second largest eigenvalue of P (i). We will prove Theorem 2 later.

Theorem 7. For 1 ≤ i ≤ κ let Ei be the event that
(a) the maximum degree ∆(i) in Γi satisfies

∆(i) ≤ C1d;(13)

and
(b) the minimum degree δ(i) in Γi satisfies

δ(i) ≥ d/C2.(14)

If d ≤ n1/10 then there exists a constant γ = γ(C1, C2) > 0 such that if Fi denotes
the event that

λ(i) ≤ γ/
√
d(15)

and Ui = Fi ∩ Ei ∩ · · · ∩ F1 ∩ E1 ∩ E0, then

Pr(Fi | Ei, Ui−1) = Pr(Fi | Ei) = 1−O(n−3).(16)

Proof. See section 10.
The reader will notice the bound d ≤ n1/10 in the theorem above. If d > n1/10

we can randomly split the edge set of G into r = d2d/n1/10e subsets E1, E2, . . . , Er,
each of size roughly m′ = m/r. We can similarly split the set of κ pairs into r roughly

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 553

equal sets Ki. We can then use the graph Gi = (V,Ei) to find paths for the pairs in
Ki. Every vertex of every Gi will have degree roughly d/r whp. Hence since

κ

r
≤ αm′ lnn

ln d
,

we can apply Theorem 1 to each Gi, which implies that we succeed whp on each Ki,
and thus we will succeed overall2 with probability 1 − o(1). Therefore, without loss
of generality, we can assume from now on that d ≤ n1/10.

We now return to the analysis of Phase 3. We start by assuming that

Ei and Fi hold for every i.(17)

It is well known that the second eigenvalue determines the rate of convergence of
a Markov chain to its steady state. An explicit form of this result was obtained by

Sinclair and Jerrum [18]: if P
(t)
Γi

(u, v) denotes the probability that a random walk of
length t in Γi that starts at u will end at v, then assuming Ei we have

|P (t)
Γi

(u, v)− π(i)
v | ≤

(
λ(i)
)t√π

(i)
v

π
(i)
u

≤
(
λ(i)
)t√

C1C2 ≤ γ(C1, C2)t

dt/2

√
C1C2.(18)

Since in the algorithm we take t = τ = dC0 lnn/ ln de, this implies (12).
We now proceed to show that the assumption (17) is indeed correct whp. We

take C1 = 5 and C2 = 60. Since Γi is a subgraph of Gn,p, inequality (13) holds for all
i whp, and since Γ1 = G2 and by construction δ(G2) ≥ d/30, inequality (14) holds
for Γ1; thus E1 holds. Applying Theorem 7, we see that F1 holds whp. We continue
by showing inductively that for i ≥ 0,

Pr(Ui | E0) = 1−O(in−3).

Since

Pr(Ui+1 | Ui) =
Pr(Ui+1)

Pr(Ui) = Pr(Fi+1 | Ei+1,Ui) Pr(Ei+1 | Ui),

and

Pr(Ui+1 | E0) = Pr(Ui+1 | Ui) Pr(Ui | E0),

and given Theorem 7, we only need to prove that

Pr(Ei+1 | Ui) = 1−O(n−3),(19)

which reduces to proving that given Ui, the removal of the walks W1, . . . ,Wi from G2

does not reduce the degree of any vertex to less than d/60.
Now assume Ui. Consider the walk Wi on Γi. For v ∈ V2, let Zi,v denote the

number of edges incident with v that are covered by Wi, and let Ni,v be the number
of visits to v during Wi. Let qk = Pr(Ni,v = k | Ui) for k ≥ 1. We claim that
independently of W1,W2, . . . ,Wi−1, there exist constants C3 and C4 so that

qk ≤ C4C
k−1
3 lnn

dk−1n ln d
.(20)

2This is the reason for our definition of whp. The number r of subgraphs Gi is O(n9/10) and we
succeed with probability 1− o(n−9/10) on each.

554 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

To prove (20) for k = 1, fix Γi, and let hv(t) be the probability that the walk is
at v at time t. Then

hv(0) = 1/|V2| ≤ C1C2π
(i)
v(21)

since the walk starts from zi which is a vertex chosen uniformly at random in |V2|.
(The last inequality follows assuming that Ui occurs, and thus Ei occurs.)

We next show inductively that for all v ∈ V2, we have hv(t) ≤ C1C2π
(i)
v . This

follows from stationarity equations and

hv(t+ 1) =
∑

w∈N(v:Γi)

hw(t)

d
(i)
w

≤ C1C2π
(i)
v .(22)

Hence since τ = dC0 lnn/ ln de and π
(i)
v ≤ C1C2/n, there is a constant C4 so that

q1 ≤
τ∑
t=0

hv(t) ≤ C4 lnn

n ln d
.

We next prove (20) for k ≥ 2. Fix Γi and for vertex v let ρv be the probability
that a random walk of length τ from v ever returns to v. Since a return to v requires
at least two steps, we obtain from equation (18) that there exists a constant C3 such
that

ρv ≤ τπ(i)
v +

√
C1C2

∑
t≥2

γ(C1, C2)t

dt/2
≤ C3

d
.(23)

This gives (20) since

qk ≤ (ρv)
k−1

τ∑
t=1

hv(t).

We now show that (20) implies (19). First (20) implies that for any constant c,

E(e2cNi,v | Ui,W1, . . . ,Wi−1) ≤ 1 +
∑
k≥1

e2ckC4C
k−1
3 lnn

dk−1n ln d
≤ 1 +

2C4e
2c lnn

n ln d
.

Clearly Zi,v ≤ 2Ni,v. Thus for any constant c > 0 and any t > 0,

Pr

(i∑
j=1

Zj,v ≥ t
∣∣∣∣ Ui)

≤ e−ct E
exp

2c
i∑

j=1

Nj,v

 ∣∣∣∣ Ui

≤ e−ct
(

1 +
2C4e

2c lnn

n ln d

)
E

exp

2c
i−1∑
j=1

Nj,v

 ∣∣∣∣ Ui

≤ e−ct exp

(
2C4e

2c lnn

n ln d

)
E

exp

2c
i−1∑
j=1

Nj,v

 ∣∣∣∣ Ui−1

 Pr(Ui−1)

Pr(Ui)

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 555

≤ exp

(
−ct+ i

2C4e
2c lnn

n ln d

)
1

Pr(Ui)
≤ exp

(
−ct+ 2κ

2C4e
2c lnn

n ln d

)
(1 +O(in−3))

≤ 2 exp(−ct+ 4αC4e
2cd).

Taking t = d/60, c = 240, and α ≤ (4C4e
480)−1, we obtain that

Pr

 i∑
j=1

Zj,v ≥ d

60

∣∣∣∣ Ui
 ≤ 2n−3,

and since the minimum degree in G2 is at least d/30, this proves (19). (Recall that
C2 = 60.)

8. Analysis of Phase 4. We start by discussing the subroutine Walk. Consider
a modification of Walk depicted in Figure 4.

1. subroutine Walk1(âi, Γ̂i,Γj , zj)

2. begin

3. /* By construction, zj = b̃i. */

4. pv ← P
(τ)

Γ̂i
(âi, v) for v ∈ V (Γ̂i)

5. p̂v ← P
(τ)
Γj

(zj , v) for v ∈ V (Γ̂i) (the distribution of b̂i)

6. pmin ← min{pv : v ∈ V (Γ̂i)}
7. p̂max ← max{p̂v : v ∈ V (Γ̂i)}
8. r̄ ← 0

9. forever do

10. r̄ ← r̄ + 1

11. S[âi]← S[âi] + 1

12. if S[âi] ≥ d/120 then

13. L← L ∪ {i}
14. exit Walk1

15. fi

16. Pick a walk W̄r̄ of length τ according to the distribution on
trajectories, conditioned on start point = âi

17. Let x̄r̄ be the terminal vertex of W̄r̄

18. With probability p̂x̄r̄pmin/(px̄r̄ p̂max) accept W̄r̄ and
exitloop

19. od

20. output W̄1, W̄2, . . . , W̄r̄

21. end Walk1

Fig. 4. Algorithm Walk1.

556 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

Lemma 8. In Walk1, x̄r̄ is chosen according to the distribution p̂.
Proof. The probability s that a walk is accepted at the last step in the loop is

given by

s =
∑

v∈V (G)

pv
p̂vpmin

pvp̂max
=
pmin

p̂max
.(24)

(Observe that p̂max ≥ 1/|V (G)| ≥ pmin.) Thus if S0 is the value of S[âi] at the start
of Walk1 and k0 = d/120− S0, then

Pr(x̄r̄ = v | step 14 is not executed)=
1

1− (1− s)k0

k0−1∑
k=0

(1− s)kpv p̂vpmin

pv p̂max
= p̂v.

(25)

Also, Pr(step 14 is executed) is equal to (1− s)k0 in both procedures.
Hence W̄r̄ is a random walk to a vertex chosen with distribution p̂. Furthermore,

since the minimum degree of any graph in which a walk is constructed is at least d/60
and the maximum degree is at most 5d, we find

s ≥ 1

300

def
= σ(26)

and therefore the expected number of generated walks is constant.
There is a minor problem in that we want to choose the endpoints before we do

the walks. This leads to the algorithm Walk described before. We now turn to its
analysis.

Lemma 9. Suppose that b̂i is chosen from V (G) with distribution p̂. Then the
set of walks W̄1, . . . , W̄r̄ in Walk1(âi, G,Γj , zj) and the set of walks Ŵ1, . . . , Ŵr in

Walk(âi, b̂i, G,Γj , zj) have the same distribution.
Proof. Note first from the proof of Lemma 8 that r̄ and r have the same truncated

geometric distribution. Also we have from Lemma 8 that x̄r̄ and xr = b̂i have the
same distribution. Consider next that for v1, v2, . . . , vi ∈ V (G),

Pr(x̄1 = v1, . . . , x̄i = vi and r̄ > i)

=
i∏

j=1

((
1− p̂vjpmin

pvj p̂max

)
pvj

)
=

i∏
j=1

(
pvj −

p̂vjpmin

p̂max

)

= (1− s)i
i∏

j=1

(
pvj − p̂vjpmin/p̂max

1− s
)

= Pr(x1 = v1, . . . , xi = vi and r > i).

Thus x̄1, x̄2, . . . , x̄r̄ and x1, x2, . . . , xr have the same distribution. Finally, the lemma
follows from the fact that the distribution of W̄j conditional on x̄j = v is clearly equal

to that of Ŵj conditional on xj = v.
The net effect of GenPaths is to run Walk κ times. In light of Theorem 7 we

only need show that the minimum degree in G3 is not made too small by the deletion
of paths generated by Walk. This requires a slightly more complicated analysis than
for Phase 3. The main problem in extending the analysis of Phase 3 is that we cannot
argue now that (21) holds independently of previous walks. Each execution of Walk

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 557

(or, equivalently, Walk1) involves a set of walks with the same starting point. The
initial vertex of each set is chosen nearly randomly, but it is the same for each walk.

For the purpose of the analysis we relate to Walk1. Fix v ∈ V3 and 1 ≤ i ≤ κ
and let W̄1, W̄2, . . . , W̄r denote the walks made while trying to connect âi to b̂i. We
shall refer to these walks as the ith bundle, Bi. We shall follow closely the line of
proof used in the analysis of Phase 3, with all the events now referring to Γ̂i rather
than Γi. As before, the proof reduces to showing that given Ui, the removal of the
bundles B1, . . . , Bi from G3 does not reduce the degree of any vertex in G3 to less
than d/60.

The stationary distribution on Γ̂i is denoted π̂i.
Lemma 10. Assuming Ui, the probability that a fixed vertex v is visited by bundle

i is less than

C5 lnn

n ln d
.

Proof. Assume for a moment that the probability of a walk being accepted is
decreased to exactly σ (see (26)). This can only increase the number of visits to v,
but the number of walks is now independent of the start point. For every walk in
the bundle we can show via (20) and (21) applied to Γ̂i that the expected number of

visits to v is less than C1C2τ π̂
(i)
v ; thus the expected total number of visits is less than

C1C2

σ
τπ̂(i)

v =
C5 lnn

n ln d
.

Lemma 11. Assume Ui and consider a random walk of length τ in Γ̂i starting
from vertex v. Then

(a) the probability that the walk returns k times to v is less than (C3/d)k;
(b) for any vertex u 6= v, the probability that u is visited k times is less than

(C3/d)k.
Proof. As before let ρv be the probability that a random walk of length τ from v

ever returns to v. From (23) applied to Γ̂i,

ρv ≤ C3

d
.

For part (a) notice that the probability of k returns to v is bounded by

τ∑
t=2

(
π̂(i)
v +

γ(C1, C2)t

dt/2

)
ρk−1
v ≤

(
C3

d

)k
.

For part (b) the probability of k visits to u is bounded by

C2

d
ρk−1
u +

τ∑
t=2

(
π̂(i)
u +

γ(C1, C2)t

dt/2

)
ρk−1
u ≤

(
C3

d

)k
.

(The first term deals with the case when u is a neighbor of v.)
We are ready now to evaluate the number of visits to a fixed vertex v. For this

goal we will distinguish between free visits and start visits. If v = âi, then v undergoes
|Bi| visits as the start point of all the walks in the bundle. All other visits to v are
free visits. In particular a return visit to âi is a free visit.

558 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

Analogously to the analysis of Phase 3, let Ni,v be the number of free visits to v
during Bi and let qk = Pr(Ni,v = k | Ui) for k ≥ 1. We claim that independently of
B1, B2, . . . , Bi−1, there exists a constant C6 so that

qk ≤ C5C
k−1
6 lnn

dk−1n ln d
.(27)

To simplify notation view the r walks in bundle Bi as a single walk Xt that
restarts from âi every τ steps. Let hv(t) be the probability that this walk is at v at
time t. Then

qk ≤
∑

1≤t≤τ
hv(t) Pr(k − 1 free visits to v after t | âi, Xt = v).

Now given r, the number of walks in bundle Bi, the k − 1 free visits to v can be
distributed among the r walks in at most

(
k+r−2
r−1

)
ways. So in view of Lemma 11 we

have

Pr(k − 1 free visits to v after t | âi, Xt = v, r) ≤
(
k + r − 2

r − 1

)(
C3

d

)k−1

.

From Lemma 10 ∑
1≤t≤τ

hv(t) ≤ C5 lnn

n ln d
,

and using equation (26) we finally obtain that

qk ≤ C5 lnn

n ln d

∑
1≤r≤∞

(
k + r − 2

r − 1

)(
C3

d

)k−1

σ(1− σ)r−1 =
C5 lnn

n ln d

(
C3

σd

)k−1

,

which proves (27). From here we can proceed exactly as in the analysis of Phase 3
to show that the decrease in degree due to free visits is no more than d/120 whp,
provided that α is small enough. By construction the reduction in degree due to start
visits is at most d/120, so that the total reduction in degree during Phase 4 is at most
d/60 as required. It remains to show that not too many pairs are deferred to Phase
5.

9. Analysis of Phase 5. We start by bounding the number of pairs not con-
nected in Phase 4. Recall that a pair âi, b̂i is not connected iff the total number of
walks started from âi would have exceeded d/120.

Fix v ∈ V3. From equation (22) and the discussion that follows it, we have that
for every i

Pr(âi = v) ≤ C2
1C

2
2

n

def
= p.

Thus in view of (26) the number of starts from v is dominated by a random variable
with the following probability generating function:

∑
i

(
κ

i

)
pi(1− p)i σx

1− x(1− σ)
=

(
σpx

1− x(1− σ)
+ 1− p

)κ
.

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 559

In general, given a probability generating function f(x) for the random variableX ≥ 0,
and an integer a ≥ 1 we have

Pr(X ≥ a) ≤ f(x)

xa
, ρ > x ≥ 1,

where ρ is the radius of convergence of f . So let X be the random variable that counts
starts from v. Choosing

x =
2 + σ

2 + σ − σ2
= 1 +

σ2

2 + σ − σ2
,

we obtain that

Pr

(
X ≥ d

120

)
≤
(

1 +
σp

2

)κ(
1 +

σ2

2 + σ − σ2

)−d/120

≤ exp

(
σp

2
κ− σ2

3

d

120

)
= exp

(
C2

1C
2
2σαnd ln d

2n lnn
− σ2d

360

)
≤ exp

(
−σ

2d

400

)
for α small enough.

At the end of Phase 4 we will be left with a set L of indices of pairs (âi, b̂i) for
which Phase 4 failed to find a path. The discussion above shows that |L| is dominated
in distribution by Bin(n, exp(−σ2d/500)), so whp L = ∅ if d ≥ 1000σ−2 log n and
otherwise |L| ≤ n1−ε for a constant ε > 0. So assume that d = O(log n).

We join the pairs in L using a modification of the algorithm of [8]. That algorithm
starts by splitting the edges of an expander graph to form two disjoint expanding
subgraphs. This is unnecessary here as G4 and G5 will suffice for the two expander
graphs; namely, G4 can be used for the flow phase of [8] and then G5 can be used for
the random walks phase of [8]. The algorithm is capable of joining Ω(n/(lnn)c) pairs
for some constant c > 0, provided the graph in the flow phase has edge expansion at
least 1 and the second eigenvalue of the graph used in the random walks phase has a
second eigenvalue bounded away from 1. Here whp we have fewer than n1−ε pairs, the
graph G4 has an edge expansion Ω(lnn), and the graph G5 has a second eigenvalue
of size O(1/

√
lnn). So from this point of view there is room to spare.

On the other hand [8] only deals with the case where the required path endpoints
are distinct. We will replace the flow phase of [8] with the following procedure.
Suppose v ∈ V3 is required to be an endpoint λ(v) times. We have∑

v∈V3

λ(v) = 2|L| ≤ 2n1−ε.

Furthermore, λ(v) is dominated in distribution by Bin(κ, (1+o(1))n); hence E(λ(v)) =
O(d log d/ log n) = O(log log n) and whp

λ(v) ≤ C7 log n/ log log n for all v ∈ V3.

We start Phase 5 by constructing for each v ∈ V and 1 ≤ i ≤ λ(v) a set of 2/ε
random walks of length τ with start point v. We delete the edges of previous walks
before beginning the next walk. The analysis of Phase 3 shows that we will succeed

560 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

in constructing these walks whp, since in Phase 3 the average number of walks per
start point was O(d log d/logn) and the maximum was βd while the corresponding
numbers are now o(1) and O(d/ log d).

The probability that k such walks all end at the endpoints already visited is
bounded by (

4ε−1|L|
k

)
O(n−k) = O(n−εk),

so whp for each v and i at least one of the 2/ε random walks ends up at a previously
unvisited point. Thus we can associate with each v ∈ V3 a set of λ(v) endpoints of
walks started from v, and all these sets are disjoint. From here we can continue with
the second phase of [8] on G5.

It only remains to prove Theorem 7.

10. Proof of Theorem 7. Now it is not too difficult to verify that the second
eigenvalue of the walk on Γ1 is not too large. There is however a technical problem in
the fact that we are deleting the edges of a random graph by a process that conditions
the distribution. We overcome this by considering graphs with a fixed degree sequence
and consequently the configuration model of multigraphs. (We need now only consider
Gn,m. To handle Gn,p we simply condition on the number of edges being close to the
expected number.)

10.1. Configuration model. The graphs Gi, 2 ≤ i ≤ 5 will be random given
their degree sequences. This is because the executions of lines 5 and 8 of split (Figure
1) do not condition the remaining graphs, once we are given their degree sequences.
This idea has been used several times previously; see, for example, Bollobàs, Fenner,
and Frieze [5].

The simplest model for graphs with a fixed degree sequence is the configuration
model of Bollobás [3], which is a probabilistic interpretation of the counting formula
of Bender and Canfield [2]. Let d = {d1, d2, . . . , dν} denote a degree sequence, Di =
{1, . . . , di}×{i} for 1 ≤ i ≤ ν and D = ∪νi=1Di. Let Ω = Ω(D) be the set of partitions
of D into pairs. If F ∈ Ω then the multigraph M = M(F) is defined as follows:
V (M) = [ν] and there is an edge {i, j} for every pair in F of the form {(x, i), (y, j)}
(for some x and y). It is unfortunate that we have to introduce multigraphs, but the
salient properties of M are as follows in Lemma 10.

Lemma 12. (a) If M is simple, then it is equally likely to be any simple graph
with degree sequence d.

(b) Pr(M is simple) = exp{−O(µ2/ν2)} where µ = |D|/2 is the number of edges
in M ; hence 2µ/ν is the average degree of M .

We consider the probability space of multigraphs M(F, φ) where F is chosen
randomly from Ω. We are interested in the case where

δ = min d ≥ d/C2,

∆ = max d ≤ C1d.

It will be useful to think of F as being constructed sequentially by the algorithm
Construct depicted in Figure 5.

It is important to observe that for any t > 0, F \Ft is a random member of Ω(Rt).
An important consequence of the above observation is that if we start with M =

M(F), then the multigraph obtained by removing from M the edges of a random

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 561

1. algorithm Construct

2. begin

3. F0 ← ∅; R0 ←W

4. for t = 1 to m∗ do

5. Choose ut ∈ Rt−1 arbitrarily

6. Choose vt randomly from Rt−1 \ {ut}
7. Ft ← Ft−1 ∪ {{ut, vt}}; Rt ← Rt−1 \ {ut, vt}
8. od

9. output F

10. end Construct

Fig. 5. Algorithm Construct.

walk W remains random. Indeed, we may imagine Construct as performed in
parallel with our walk W . Suppose our walk makes a transition from a vertex x, and
the current value of Rt in Construct is R. The transition from x is equivalent to
choosing a random member u = ut of Dx. If u ∈ R, then we perform one step of
Construct and pair u with a point v = vt ∈ R \ {u}. If v ∈ Dy for some y, then the
walk makes a transition from x to y. If u 6∈ R then v is the point already paired with
u. Thus since F \Ft is random, we see that removing from M the edges of a random
walk results in a multigraph from a random configuration.

10.2. Random walks on configurations. We only discuss G3 since the situa-
tion for G2 is identical. Suppose G3 has degree sequence d′ = (d′1, d

′
2, . . . , d

′
ν), where

ν = n(1−o(1)). As observed, G3 is random given its degree sequence. In our analysis,
we want to consider G3 as of the form M(F) conditional on it being simple.

Each of the κ iterations deletes some pairs from F . Suppose F (i) denotes the
remaining pairs at the start of iteration i and D(i) =

⋃
F (i). If we ignore the condi-

tion that M(F) is simple, then F (i) is a random member of Ω(D(i)). This requires
a little justification. Our algorithm produces paths by choosing â1, â2, . . . , âκ and
b̂1, b̂2, . . . , b̂κ at random and by applying Walk. As observed in Lemma 9, this is
equivalent to just applying Walk1 a number of times. By our arguments of the
previous section, deleting edges in the walks produced by Walk1 leaves a random
configuration.

Thus we may imagine that initially we have a multigraph M1. Then for i ≥ 2 we
apply GenPaths to Mi−1 and eventually produceMi in which case Mi is a multigraph
from a random configuration (when its degree sequence is given).

All that remains now is to show that (15) holds with suitably high probability for
Mi, i ≥ 1, conditioned on it being simple.

10.3. Eigenvalues. We will prove (15) by imitating the proof of Kahn and
Szemerédi [10].

Let d = d1, d2, . . . , dn be a degree sequence with maximum ∆ = o(n1/2) and
minimum δ > 0 such that ∆/δ < θ for some constant θ. (Strictly speaking we should
be concerned with d = d1, d2, . . . , dν , but ν = n−o(n) whp and n is “friendlier.”) Let
M = M(F) be the multigraph on [n] formed from a random configuration F ∈ Ω(d).
Use euv to denote the number of edges joining vertices u and v. Consider the Markov

562 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

chain of a random walk on M . The transition matrix of the chain is

Puv =
euv
du

.

Note that since the Markov chain is reversible, all eigenvalues of P are real and the
largest eigenvalue of P equals 1. The eigenvalues are denoted by

1 = λ1 ≥ λ2 ≥ · · · ≥ λn.

We need to show that conditional on M being simple with probability 1−O(n−3),

ρ∗ = max{|λ2 |, |λn |} ≤ γ/
√
d,(28)

where d =
∑n
i=1 di/n and γ = γ(θ).

Lemma 13. Let A be the matrix

Auv =
euv
dudv

,

and let

ρ1 = max

{
|ytAy| :

∑
u

yu = 0,
∑
u

y2
u = 1

}
.

Then ρ∗ ≤ ∆ρ1.
Proof. Let Q be the matrix

Quv =
euv

d
1/2
u d

1/2
v

.

Note that Q and P are similar; that is, Q = DPD−1 where D is a diagonal matrix

with diagonal elements d
1/2
1 , . . . , d

1/2
n and so (λ, v) is an eigenvalue–eigenvector pair

of P iff (λ,Dv) is an eigenvalue–eigenvector pair of Q. Since the largest eigenvalue

of Q is 1 with eigenvector (d
1/2
1 , d

1/2
2 , . . . , d

1/2
n), the Rayleigh quotient principle gives

that

ρ∗ = max

{ |∑u,v xuQuvxv|∑
u x

2
u

∑
u

xud
1/2
u = 0

}
.

Since ∑
u,v

xuQuvxv =
∑
u,v

xud
1/2
u Auvxvd

1/2
v

and ∑
u

x2
u ≥

1

∆

∑
u

x2
udu,

we have, on putting yu = xud
1/2
u ,

ρ∗ ≤ ∆ max

{
|ytAy|

∑
u

yu = 0,
∑
u

y2
u = 1

}
= ∆ρ1.

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 563

Following Kahn and Szemerédi, choose a real ε ∈ (0, 1) (eventually ε will be fixed
in equation (38)), and let

T =

{
x ∈

(ε

n1/2
Z
)n ∑

u

xu = 0,
∑
u

x2
u ≤ 1

}
,

where Z denotes the set of integers. Then by considering the total volume of cubes
of side ε/

√
n which have their centers in T , we see that

|T | ≤
(
n1/2

ε

)n
V ol

({
x ∈ Rn

∑
u

x2
u ≤

(
1 +

ε

2

)})
=

(
(2 + ε)n1/2

2ε

)n
πn/2

Γ(n/2 + 1)
≤
(

(2 + ε)n1/2

2ε

)n
πn/2en/2

(n/2)n/2
√
πn

≤
(

(2 + ε)
√

2πe

2ε

)n
.

(29)

Lemma 14. Let ρ1 be defined as in Lemma 13. We claim that

ρ1 ≤ (1− ε)−2ρ,

where

ρ = max
{|xtAy| | x, y ∈ T}.

Proof. Let S =
{
x ∈ Rn |∑u xu = 0,

∑
u x

2
u ≤ 1

}
. We first show that for every

x ∈ S there is a y ∈ T such that x − y ∈ εS and ‖x − y‖ ≤ ε. Suppose that for
i = 1, 2, . . . , n,

xi = εmin
−1/2 + fi, mi ∈ Z, fi ∈ [0, εn−1/2).

Note that since
∑
u xu = 0, we have

∑
i fi = εfn−1/2, where f is a nonnegative

integer less than n. Rearrange subscripts so that mi ≤ mj whenever i ≤ j. Define a
vector y ∈ Rn so that

yu =

{
ε(mu + 1)n−1/2 if u ≤ f,
εmun

−1/2 if u > f.

Then we have

(a)
∑
u

yu =
∑
u

xu = 0,

(b)
∑
u

y2
u ≤

∑
u

x2
u ≤ 1,

(c) ‖x− y‖ ≤ ε (since |xu − yu| ≤ εn−1/2).

Thus y is in T and has the required property. It follows that one can apply the above
construction to obtain that for any x ∈ S there are x(0), x(1), . . . in T such that

x =
∑
i

εix(i),

564 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

and therefore for any x ∈ S there are x(i) ∈ T such that

xtAx =
∞∑
i=0

∞∑
j=0

(
x(i)
)t
Ax(j)εi+j ≤ (1− ε)−2 max{|ytAz| : y, z ∈ T}.

The lemma now follows.
Now write

ρ = max{|xtMy| : x, y ∈ T}.
Our aim is to find a probabilistic upper bound for ρ of order O(∆−3/2) that will verify
(28). This is done by considering the random variables X = X(x, y) =

∑
u,v xuAuvyv,

where x, y ∈ T . Note that for any two distinct points in the configuration the proba-
bility that the two points are joined by an edge is 1/(2m− 1), where 2m =

∑n
i=1 di.

Thus for u 6= v,

E[euv] =
dudv

2m− 1

and

E[euu] =
du(du − 1)

2(2m− 1)
.

Fix x, y ∈ T and define

B =
{

(u, v)
∣∣∣ 0 < |xuyv| < ∆1/2/n

}
.(30)

Let

X ′ =
∑

(u,v)∈B
xuAuvyv and X ′′ =

∑
(u,v) 6∈B

xuAuvyv,

so that X = X ′ +X ′′.

10.4. Estimating X′. Note that

E[X ′] =
∑

(u,v)∈B

xuyv
2m− 1

+
∑

(u,u)∈B

xuyu(du − 1)

2(2m− 1)du
.

Write S1 and S2 for the first and second sums in the above equation. Then

|S2| ≤
∑

(u,u)∈B

|xuyu|(du − 1)

2(2m− 1)du
≤ ∆1/2

4m
.(31)

For S1 we follow Lemma 2.4 in [10]. Since
∑
u xu =

∑
v yv = 0 we have

∑
u,v xuyv = 0

and so ∣∣∣∣ ∑
(u,v)∈B

xuyv

∣∣∣∣ =

∣∣∣∣ ∑
(u,v) 6∈B

xuyv

∣∣∣∣.
Now ∣∣∣∣ ∑

(u,v) 6∈B
xuyv

∣∣∣∣ ≤ ∑
|xuyv|≥∆1/2/n

x2
uy

2
v

|xuyv| ≤
n

∆1/2

∑
u,v

x2
uy

2
v ≤

n

∆1/2
.

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 565

Hence

|E[X ′]| ≤ n

(2m− 1)∆1/2
+

∆1/2

4m
= (1 + o(1))

n

2m∆1/2
.(32)

We next show that X ′ is concentrated around its mean. For this we need some
more notation. Recall that a configuration is a perfect matching F of the set W =
∪ni=1{i} × [di]. We call the elements in W points and assume that the points in W
are ordered lexicographically. For α ∈ W , let v(α) denote the first component of α,
and for a pair e = {α, β} in a configuration with α < β, we write t(e) for v(α) and
h(e) for v(β). For real x, define

χ(x) =

{
x if |x| < ∆1/2/n,
0 otherwise.

Then

X ′ =
∑
e∈F

χ(xt(e)yh(e))

dt(e)dh(e)
+
∑
e∈F

χ(xh(e)yt(e))

dt(e)dh(e)
= X ′a +X ′b, say.(33)

We next write F = F1 ∪ F2 ∪ F3 where

F1 = {e ∈ F : |xt(e)| > n−1/2/ε},
F2 = {e ∈ F : |yh(e)| > n−1/2/ε, |xt(e)| ≤ n−1/2/ε},
F3 = {e ∈ F : |yh(e)| ≤ n−1/2/ε, |xt(e)| ≤ n−1/2/ε}.

Then let

Xi =
∑
e∈Fi

χ(xt(e)yh(e))

dt(e)dh(e)
for i = 1, 2, 3,

so that

X ′a = X1 +X2 +X3.

Recall that ∆/δ < θ, a constant. We claim Lemma 15.
Lemma 15. There are constants Bi = Bi(θ) > 0 for i = 1, 2, 3 such that for any

t > 0,

Pr(|X1 −E[X1]| ≥ t∆−3/2) ≤ 2 exp(−tn+B1n),(34)

Pr(|X2 −E[X2]| ≥ t∆−3/2) ≤ 2 exp(−tn+B2n),(35)

Pr(|X3 −E[X3]| ≥ t∆−3/2) ≤ 2 exp(−tn+B3n).(36)

Proof. We first prove (34). Assume without loss of generality that |xi| ≥ |xi+1|
for all i and let the pairs {αi, βi} for 1 ≤ i ≤ m that compose F be ordered such that
αi < βi and αi < αi+1. Recall that the order among points is lexicographic; thus
v(αi) ≤ v(αi+1) and |xv(αi)| ≥ |xv(αi+1)|.

Let ≡k be the equivalence relation on Ω such that F ≡k F ′ if and only if the
sequences of the first k pairs in F and F ′ are identical. Write Ωk for the set of
equivalence classes, and Fk for the corresponding σ-algebra. Define Yk = E[X1|Fk];
that is, Yk is a function from Ω to R so that Yk(F) equals the expected value of

566 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

X1 conditional on the first k pairs being exactly equal to the first k pairs in F .
Now Y0, Y1, . . . , Ym is a Doob martingale with Y0 = E[X1] and Ym = X1. Define
Zk = Yk − Yk−1. Note that as in Lemma 2.7 in [10], if there is fk(ζ) such that
Z ′k = E[exp(ζ2Z2

k)|Fk−1] ≤ fk(ζ), then for all t and ζ > 0,

Pr(|X1 −E[X1]| ≥ t) ≤ 2e−ζt
m∏
k=1

fk(ζ).(37)

We next write down the distribution of Zk. Define

χ̂(x, y) =

{
xy if |xy| < ∆1/2/n and |x| > n−1/2/ε,
0 otherwise.

For a pair e = {α, β} in F with α < β, write

q(e) =
χ̂(xv(α), yv(β))

dv(α)dv(β)
.

Then

X1(F) =
∑
e∈F

q(e).

Note that we can express

Zk(F) =
2m−k(m− k)!

(2m− 2k)!

 ∑
F ′≡kF

X1(F ′)− 1

2m− 2k + 1

∑
F ′′≡k−1F

X1(F ′′)

 .

Let {α, β} be the kth pair in F with α < β and let J be the set of points contained
in the first k pairs in F . For η 6∈ J − {β} and for F ′ ≡k F , we define F ′η as follows.
Suppose that η is matched with γ in F ′. Write e = {α, β}, f = {η, γ}, e′ = {α, η},
f ′ = {γ, β}. Then F ′η is defined to be (F ′ − {e, f}) ∪ {e′, f ′}, giving F ′η ≡k−1 F
and F ′β = F ′. Note also that {{F ′η | η 6∈ J − {β}} | F ′ ≡k F} is a partition of
{F ′′ | F ′′ ≡k−1 F}. Thus

Zk(F) =
2m−k(m− k)!

(2m− 2k)!

1

2m− 2k + 1

∑
F ′≡kF

∑
η 6∈J

(
X1(F ′)−X1(F ′η)

)
.

Also, since

X1(F ′)−X1(F ′η) = q(e) + q(f)− q(e′)− q(f ′),
we have

Zk(F) =
∑
η 6∈J

∑
γ 6∈J,γ 6=η

q({α, β}) + q({γ, η})− q({α, η})− q({γ, β})
(2m− 2k + 1)(2m− 2k − 1)

.

Note that since
∑
x2
u ≤ 1, there at most nε2 indices u such that |xu| > n−1/2/ε. Thus

Zk = 0 if k ≥ ε2∆n; otherwise

2m− 2k − 1 ≥ 2m− 2ε2∆n− 1 ≥ δn

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 567

if we choose ε so that

ε2∆

δ
=

1

3
.(38)

Therefore,

|Zk(F)|≤ 1

(δn)2

∑
η 6∈J

∑
γ 6∈J,γ 6=η

{|q({α, β})|+ |q({γ, η})|+ |q({α, η})|+ |q({γ, β})|} .

Let

yα =
1

|xv(α)| min{|yxv(α)|,∆1/2/n},

and note that xv(α) ≥ max{xv(β), xv(γ), xv(η)} and that |xv(η)| ≤ |xv(α)| implies
|xv(η)|yη ≤ |xv(α)|yα. Therefore,

|q({α, β})| ≤ δ−2|xv(α)|yαv(β),

|q({γ, η})| ≤ δ−2(|xv(γ)|yγv(η) + |xv(η)|yηv(γ)) ≤ δ−2(|xv(α)|yαv(η) + |xv(α)|yαv(γ)),

|q({α, η})| ≤ δ−2|xv(α)|yαv(η),

|q({γ, β})| ≤ δ−2(|xv(γ)|yγv(β) + |xv(β)|yβv(γ)) ≤ δ−2(|xv(α)|yαv(β) + |xv(α)|yαv(γ)).

Next observe that since
∑
y2
u ≤ 1 implies

∑ |yu| ≤ n1/2, we have for example

∑
η 6∈J

yαv(η) ≤
∑
η 6∈J
|yv(η)| ≤ ∆

n∑
w=1

|yw| ≤ ∆n1/2.

Thus we have

|Zk(F)| ≤ 4∆2δ−4|xv(α)|(yαv(β) + n−1/2).

Writing Z ′k = E[exp(ζ2Z2
k)|Fk−1], we have

Z ′k(F) ≤ 1

2m− 2k − 1

∑
ν 6∈J−{β}

exp(16ζ2∆4δ−8(xv(α))
2(yαv(ν) + n−1/2)2).

Take

ζ = ∆3/2n,(39)

which means that the expression

ζ2∆4δ−8(xv(α))
2(yαv(ν) + n−1/2)2

= ζ2∆4δ−8
{

(xv(α)y
α
v(ν))

2 + 2(xv(α)y
α
v(ν))x

α
v(α)n

−1/2 + (xv(α))
2n−1

}
is bounded by 4θ8ε−2.

(Here we use xv(α)y
α
v(ν) ≤

√
∆/n and yαv(ν) ≥ ε/

√
n (since yv(ν) 6= 0) to get

xv(α) ≤
√

∆/(ε
√
n).)

568 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

Hence putting B = exp{64θ8ε−2} and using ex ≤ 1 + xex for x ≥ 0,

Z ′k(F) ≤ 1 +
B

2m− 2k − 1

∑
ν 6∈J−{β}

ζ2∆4δ−8(xv(α))
2(yαv(ν) + n−1/2)2

≤ 1 +Bζ2∆4δ−9n−1(xv(α))
2
∑
ν

(y2
v(ν) + 2|yv(ν)|n−1/2 + n−1)

≤ exp(4Bζ2∆5δ−9n−1(xv(α))
2).

Writing r(k) = dk/∆e, we have for any F ∈ Ω,

Z ′k(F) ≤ exp(4Bζ2∆5δ−9n−1(xr(k))
2).

Thus, using (37), we have

Pr(|X1 −E[X1]| ≥ t∆−3/2) ≤ 2e−ζt∆
−3/2

exp

(
m∑
k=1

4Bζ2∆5δ−9n−1(xr(k))
2

)

≤ 2 exp

(
−tn+ 4B∆8δ−9n

m∑
k=1

(xr(k))
2

)
≤ 2 exp

(−tn+ 4B∆9δ−9n
)
.(40)

This proves (34).
The proof of (35) is almost identical even though F2 has a slightly different defi-

nition of F1. We simply reorder F according to yv(β) and go through the proof above

without using the condition |xv(α)| ≤ n−1/2/ε.
The proof of (36) is much simpler. We use the more usual martingale argument

(Alon and Spencer [1], Bollobás [4], McDiarmid [14]); for now if Yk = E(X3 | Fk)
then |Yk − Yk−1| ≤ 4/(ε2nδ2). Since we took (in (38)), ε = 1/

√
3θ, we have

Pr(|X3 −E[X3]| ≥ t∆−3/2) ≤ 2 exp

(−t2ε4n2δ4

32∆3m

)
≤ 2 exp

(−t2ε4n
32θ4

)
≤ 2 exp

(−t2n
288θ6

)
.

Note that the lemma above shows that there is a constant B > 0 such that

Pr(|X ′a −E[X ′a]| ≥ t∆−3/2) ≤ 6 exp(−tn+Bn).

Clearly the same result holds for the second sum X ′b in (33). Thus we have that for

any ξ̂ < ξ ∈ (0, 1) there is a K = K(θ, ξ) > 0 such that

Pr(|X ′ −E[X ′]| ≥ K∆−3/2 |M is simple) ≤ 2O(d2)ξ̂n ≤ ξn.(41)

Note that we should multiply the right-hand side of (41) by κ ≤ n2 to account for the
probability there exists Mi for which X ′ is large.

10.5. Estimating X ′′. In view of (41), it only remains to show that X ′′ =
O(∆−3/2) with suitably high probability. We shall first prove a preliminary result
showing that the random graph G with degree sequence d is unlikely to have a dense
subgraph. It will be enough to consider the case G = G3 and argue an immediate
implication for its subgraphs.

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 569

Lemma 16. Let G be chosen randomly from the set G(d) of simple graphs with
vertex set [n] and degree sequence d. For A,B ⊆ [n], let e(A,B) be the number of edges
joining a vertex in A to a vertex in B and µ(A,B) = θ|A||B|∆/n, where θ > ∆/δ
is sufficiently large. For every constant K > 0 there is a constant C = C(θ,K) such
that with probability 1− o(n−K) every pair of A,B ⊆ [n], with |A| ≤ |B|, satisfies at
least one of the following:

(i) e(A,B) ≤ Cµ(A,B),

(ii) e(A,B) ln e(A,B)
µ(A,B) ≤ C|B| ln n

|B| .
Proof. Write a = |A|, b = |B|, and let dA and dB be the sums of degrees in A

and in B, respectively. Condition (i) clearly holds deterministically if b is at least a
constant fraction of n since e(A,B) ≤ a∆. Assume then that a, b ≤ n/(4θ).

We prove later that for any set of possible edges S, |S| ≤ n∆/(4θ) ≤ nδ/2, we
have

Pr(G contains S) ≤
(

∆2

m

)|S|
.(42)

Thus the probability that there exists a pair (A,B) with e(A,B) = t is at most(
n

b

)(
n

a

)(
ab

t

)(
∆2

m

)t
≤
(ne
b

)2b
(
abe∆2

mt

)t
≤
(ne
b

)2b
(
µ(A,B)

t

)t
et.

Now consider a value x that satisfies

x ln

(
x

µ(A,B)

)
> Cb ln

(n
b

)
≥ 1

2
Cb ln

(en
b

)
x > Cµ(A,B)

x ≥ (lnn)2.

Then clearly

Pr(∃A,B : e(A,B) = x) ≤ n− lnn,

and therefore

Pr
(∃A,B : (e(A,B) ≥ (lnn)2) & ¬(i) & ¬(ii)

)
=

∑
(lnn)2≤x≤n2

Pr
(
∃A,B : (e(A,B) = x) & ¬(i) & ¬(ii)

)
≤ n2n− lnn.

It remains to deal with Pr
(∃A,B : (e(A,B) < (lnn)2) & ¬(i) & ¬(ii)

)
. If e(A,B) <

(lnn)2 and (ii) does not hold then

2e(A,B) lnn > Cb ln
(n
b

)
≥ Cb ln(4θ)(43)

and so b ≤ e(A,B) lnn ≤ (lnn)3, which in turn, from the first inequality in (43), im-
plies that e(A,B) > Cb/3. But the probability that e(A,B) ≥ Cb/3, for C sufficiently
large, and b ≤ (lnn)3 can be bounded by(

n

b

)(
n

a

)∆(lnn)3∑
t=Cb/3

(
ab

t

)(
∆2

m

)t
≤ 2

(
n

b

)(
n

a

)(
ab

Cb/3

)(
∆2

m

)Cb/3

≤ 2
(ne
b

)2b
(

3ea∆2

Cm

)Cb/3
≤ 2(n2−3C/10bC/3−2)b.

570 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

This yields the conclusion of the lemma.
Proof of (42). Let S = {e1, e2, . . . , es}, G0 = G(d) and Gi = {G ∈ G(d) : G

contains {e1, e2, . . . , ei} for 1 ≤ i ≤ s. It is sufficient to prove that for 0 ≤ i < s,

|Gi+1|
|Gi| ≤

∆2

2m− 2∆2 − 2s
≤ ∆2

m
,(44)

where the second inequality follows from our bound on s. To prove the first inequality
we consider

X = {(H1, H2) : H1 ∈ Gi \ Gi+1, H2 ∈ Gi+1, H1 ∼ H2},
where H1 ∼ H2 means that there is some four-cycle with edges f1 = ei+1, f2, f3, f4

such that H2 is obtained from H1 by adding f1, f3 and deleting f2, f4. The first
inequality in (44) follows immediately from the following:

(i) a particular H1 ∈ Gi \ Gi+1 appears in at most ∆2 pairs of X;
(ii) a particular H2 ∈ Gi+1 appears in at least 2m− 2∆2 − s pairs of X.

Let ei+1 = (x, y). For (i) observe that there are at most ∆2 choices for f2, f4—one
is incident with x and one is incident with y. For (ii), given H2 ∈ Gi+1 we chose an
oriented edge f3 = (u, v) ∈ H2 not incident with ei+1. Let f2 = (x, u) and f4 = (y, v).
At most 2(∆−1)2 choices of f3 are forbidden because at least one of f2, f4 are already
in H1 and at most s− 1 choices are disallowed because f3 ∈ S.

We now explain why it suffices just to consider G3 (and G2) for the large pairs
and not their subgraphs Γ̂j (and Γj). Indeed, if one of the conditions (i) or (ii) hold
for G3 then at least one holds for any of its subgraphs Γ. If condition (i) was true for
G3 then it is true a fortiori for Γ. Similarly, if condition (i) fails, C ≥ 1, and condition
(ii) holds for G3 then it holds a fortiori for Γ.

Lemma 17. Given the assertions in Lemma 16, X ′′ =
∑

(u,v)/∈B xuAuvyv, where

B = {(u, v) | 0 < |xuyv| < ∆1/2/n}, satisfies

X ′′ = O(∆−3/2)

for every pair x, y ∈ T .
Proof. Given x ∈ T , we write

Si(x) = {u : ε2−in−1/2 ≤ |xu| < ε1−in−1/2}, i ∈ I,
where I = {i : Si(x) 6= ∅}. Define J and Sj(y) analogously. Also, for S ⊆ [n] and
x ∈ T , write

(xS)u =

{
xu if u ∈ S,
0 otherwise.

Given x, y ∈ T , we write Ai = Si(x), Bj = Sj(y), ai = |Ai|, bj = |Bj |. Let

C = {(i, j) | i, j > 0, ε2−i−j >
√

∆, ai ≤ bj},
C′ = {(i, j) | i, j > 0, ε2−i−j >

√
∆, ai > bj}.

Since

X ′′ =
∑

|xuyv|≥∆1/2/n

xuAuvyv,

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 571

it is sufficient to show that ∑
(i,j)∈C

(xAi)
tAyBj = O(∆−3/2)

or, equivalently, if ei,j = e(Ai, Bj),

1

n

∑
(i,j)∈C

ei,j
εi+j

= O(
√

∆).

The sum on C′ follows by symmetry.
Note that since

∑
x2
u ≤ 1 for x ∈ T , we have∑

i∈I
ai/ε

2(i−2) ≤ n,
∑
j∈J

bj/ε
2(i−2) ≤ n.

Next partition C into CI ∪CII , where Cx is the set of (i, j) ∈ C such that e(Ai, Bi)
satisfies assertion x in Lemma 16. First, using the definition of C, we have

1

n

∑
(i,j)∈CI

ei,j
εi+j

= O

(
1

n2

∑
(i,j)∈CI

aibj∆

εi+j

)
= O

(
∆

n2

∑
(i,j)∈CI

aibj

ε2(i+j)
√

∆

)
= O(

√
∆).

It therefore remains to show

1

n

∑
(i,j)∈CII

ei,j
εi+j

= O(
√

∆).(45)

For k = 1, . . . , 5, let Dk be the set of (i, j) ∈ CII satisfying (k) below but not (k′)
if k′ < k.

(1) εj ≥ εi√∆,
(2) ei,j ≤ µi,j/(εi+j

√
∆), where µi,j = µ(Ai, Bj),

(3) ln(ei,j/µi,j) ≥ 1
4 ln(n/bj),

(4) n/bj ≤ ε−4j ,
(5) n/bj > ε−4j .

Then equation (45) follows if for k = 1, . . . , 5,

Hk =
1

n

∑
(i,j)∈Dk

ei,j
εi+j

= O(
√

∆).

Start by noting that since (i, j) ∈ CII , we have

ei,j ln(ei,j/µi,j) ≤ Cbj ln(n/bj).(46)

For k = 1, from the trivial inequality ei,j ≤ ai∆ we have

H1 ≤ 1

n

∑
i

∑
j:εj≥εi√∆

ai∆

εi+j
= O

(
1

n

∑
i

ai
√

∆

ε2i

)
= O(

√
∆).

For k = 2, we have

H2 ≤ 1

n

∑
i,j

µi,j√
∆ε2(i+j)

= O

(√
∆

n2

∑
i,j

aibj
ε2(i+j)

)
= O(

√
∆).

572 A. Z. BRODER, A. M. FRIEZE, S. SUEN, AND E. UPFAL

For k = 3, equation (46) implies that

ei,j = O(bj),

and so using (i, j) 6∈ D1, that is, εj < εi
√

∆,

H3 = O

(
1

n

∑
j

∑
i:εi>εj/

√
∆

bj
εi+j

)
= O

(
1

n

∑
j

√
∆bj
ε2j

)
= O(

√
∆).

For k = 4, using (i, j) 6∈ D3, we have

ei,j
µi,j
≤ 1

εj
.

Also, using (i, j) 6∈ D2, we have

ei,j
µi,j
≥ 1

εi+j
√

∆
,

thus giving

ε−i ≤
√

∆.

From (46), we also have ei,j = O(jbj) (using also ei,j ≥ Cµi,j). Thus

H4 = O

(
1

n

∑
j

∑
i:ε−i≤√∆

jbj
εi+j

)
= O

(√
∆

n

∑
j

jbj
εj

)
.

Since
∑
j∈J bj/(nε

2j) = O(1) we have

H4 = O(
√

∆).

For k = 5, since bj < nε4j , we have from (46) that

ei,j ≤ Cnε4j ln ε−4j = O(njε4j).

Also, since (i, j) 6∈ D1, we have εj < εi
√

∆; thus

H5 = O

(∑
j

∑
i:εi>εj/

√
∆

jε3j−i
)

= O

(√
∆
∑
j

jε2j
)

= O(
√

∆).

Observe finally that for future reference we have in fact proven the following
lemma.

Lemma 18. Let d = d1, d2, . . . , dn be a degree sequence with maximum degree
∆ = o(n1/2) and minimum degree δ such that ∆/δ < θ for some constant θ > 0.
Let G be chosen randomly from the set of simple graphs with degree sequence d. Let
0 < c < 1 be an arbitrary constant and G be the set of vertex induced subgraphs H
of G which have degree at least cδ. Let K > 0 be an arbitrary constant. Then with
probability 1 − O(n−K) every graph H in G has a second eigenvalue at most γ/

√
∆

where γ = γ(θ, c,K).
Proof. We can handle “small pairs” by using multigraphs and pass to simple

graphs as above. We observe that only the failure probability (41) now needs to be

EDGE-DISJOINT PATHS IN RANDOM GRAPHS 573

inflated by 2n+O(d2) and this is handled by making ξ small enough or γ large enough.
The case of “large” pairs is handled as before by deducing it from what happens in
G.

There are no lower bounds explicitly stated for δ, but our results are not useful for
small minimum degree. It follows from (40) that γ is at least 4θ9 exp{192θ9}. Thus
say for δ ≤ 106 we will have γ ≥ ∆ and so the estimate for the second eigenvalue will
exceed one, the largest eigenvalue.

Acknowledgment. It is a pleasure to acknowledge the work of the anonymous
reviewers. In particular, we would like to thank the referee who pointed out a small
gap in the originally submitted version of the paper.

REFERENCES

[1] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons, New York, 1992.
[2] E. A. Bender and E. R. Canfield, The asymptotic number of labelled graphs with given

degree sequences, J. Combin. Theory Ser. A, 24 (1978), pp. 296–307.
[3] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular

graphs, European J. Combin., 1 (1980), pp. 311–316.
[4] B. Bollobás, Martingales, isoperimetric inequalities and random graphs, Colloq. Math. Soc.

János Bolyai, 52 (1987), pp. 113–139.
[5] B. Bollobás, T. I. Fenner, and A. Frieze, Hamilton cycles in random graphs with minimal

degree at least k, in “A Tribute to Paul Erdös,” A. Baker, B. Bollobás, and A. Hajnal, eds.,
Cambridge University Press, Cambridge, England, 1990, pp. 59–96.

[6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North–Holland, Amster-
dam, 1976.

[7] A. Z. Broder, A. M. Frieze, S. Suen, and E. Upfal, An efficient algorithm for the vertex-
disjoint paths problem in random graphs, in Proc. 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, Atlanta, GA, Jan. 1996, pp. 261–268.

[8] A. Z. Broder, A. M. Frieze, and E. Upfal, Existence and construction of edge-disjoint paths
on expander graphs, SIAM J. Comput., 23 (1994), pp. 976–989.

[9] P. Erdös and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets, A. Hajnal et al., eds., Colloq. Math. Soc. János
Bolyai, 11 (1975), pp. 609–627.

[10] J. Friedman, J. Kahn, and E. Szemerédi, On the second eigenvalue in random regular graphs,
in Proc. 21st Annual ACM Symposium on Theory of Computing, Seattle, WA, May 1989,
pp. 587–598.

[11] D. Gale, A theorem on flows in networks, Pacific J. Math., 7 (1957), pp. 1073–1082.
[12] S. Hochbaum, An exact sublinear algorithm for the max flow, vertex-disjoint paths and com-

munication problems on random graphs, Oper. Res. 40 (1992), pp. 923–935.

[13] J. Kleinberg and É. Tardos, Approximations for the disjoint paths problem in high-diameter
planar networks, in Proc. 27th Annual ACM Symposium on Theory of Computing, Las
Vegas, NV, 1995, pp. 26–35.

[14] C. J. H. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics,
Proc. 12th British Combinatorial Conference, J. Siemons, ed., Vol. 141 of London Math.
Soc. Lecture Series, Cambridge University Press, Cambridge, England, 1989, pp. 148–188.

[15] D. Peleg and E. Upfal, The token distribution problem, SIAM J. Comput., 18 (1989), pp. 229–
243.

[16] N. Robertson and P. D. Seymour, Graph minors-XIII: The disjoint paths problem, J. Com-
binatorial Theory Ser. B, 63 (1995), pp. 65–110.

[17] E. Shamir and E. Upfal, A fast construction of disjoint paths in networks, Ann. Discrete
Math., 24 (1985), pp. 141–154.

[18] A. Sinclair and M. Jerrum, Approximate counting, uniform generation and rapidly mixing
Markov chains, Inform. and Comput., 82 (1989), pp. 93–133.

[19] L. G. Valiant and G. J. Brebner, Universal schemes for parallel communication, in Proc.
13th Annual ACM Symposium on Theory of Computation, Milwaukee, WI, May 1981,
pp. 263–277.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING: BEING
(MOSTLY) MYOPIC HELPS∗

ZORAN IVKOVIĆ† AND ERROL L. LLOYD‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 574–611

Abstract. The problem of maintaining an approximate solution for one-dimensional bin packing
when items may arrive and depart dynamically is studied. In accordance with various work on fully
dynamic algorithms, and in contrast to prior work on bin packing, it is assumed that the packing
may be arbitrarily rearranged to accommodate arriving and departing items. In this context our
main result is a fully dynamic approximation algorithm for bin packing MMP that is 5

4
-competitive

and requires Θ(log n) time per operation (i.e., for an Insert or a Delete of an item). This competitive
ratio of 5

4
is nearly as good as that of the best practical off-line algorithms. Our algorithm utilizes

the technique (introduced here) whereby the packing of an item is done with a total disregard for
already packed items of a smaller size. This myopic packing of an item may then cause several
smaller items to be repacked (in a similar fashion). With a bit of additional sophistication to avoid
certain “bad” cases, the number of items (either individual items or “bundles” of very small items
treated as a whole) that needs to be repacked is bounded by a constant.

Key words. bin packing, fully dynamic algorithm

AMS subject classifications. 68P05, 68Q25, 68R05

PII. S0097539794276749

1. Introduction. In the (one-dimensional) bin packing problem, a list L =
(a1, a2, ..., an) of items of size size(ai) in the interval (0,1] is given. The goal is to find
the minimum k such that all of the items ai can be packed into k unit-size bins. Bin
packing was shown to be NP-complete in [15].

For the past quarter century, bin packing has been a central area of research
activity in the algorithms and operations research communities (see [3, 7]). Despite
its advanced age, bin packing has retained its appeal by being a fertile ground for the
study of approximation algorithms (more than a decade ago, bin packing was labeled
“the problem that wouldn’t go away” [3]). In this paper, we consider fully dynamic
bin packing, where

• items may arrive and depart from the packing dynamically, and
• items may be moved from bin to bin as the packing is adjusted to accommo-

date arriving and departing items.
In general, fully dynamic algorithms are aimed at situations where the problem in-

stance is changing over time. Fully dynamic algorithms incorporate these incremental
changes without any knowledge of the existence and nature of future changes.

Each of the earlier works on on-line and dynamic bin packing differ from this
notion of fully dynamic bin packing in either of two ways: either they do not allow
an item to be moved from a bin (of course, this has a predictably bad effect on the
achievable quality of the packing), or they restrict themselves to dynamic arrivals of
items—there are no departures.

∗Received by the editors November 7, 1994; accepted for publication (in revised form) September
10, 1996; published electronically July 28, 1998. This research was partially supported by National
Science Foundation grant CCR-9120731.

http://www.siam.org/journals/sicomp/28-2/27674.html
†School of Management, Yale University, 135 Prospect Street, New Haven, CT 06520 (ivkovich@

isis.som.yale.edu).
‡Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716

(elloyd@cis.udel.edu).

574

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 575

Although most of the existing work on fully dynamic algorithms has been directed
toward problems known to be in P, some recent attention has been paid to fully
dynamic approximation algorithms for problems that are NP-complete [9, 16].

In this paper we develop a fully dynamic approximation algorithm for bin packing
that is “competitive” with existing off-line algorithms. In this case, being competitive
with off-line algorithms means that the quality of the approximation produced by the
fully dynamic approximation algorithm should be as good as that produced by the
off-line algorithms. Further, the running time per operation (i.e., change) of the fully
dynamic algorithm should be as small as possible.

1.1. Bin packing—Existing results. The usual measure of the quality of a
solution produced by a bin packing algorithm A is its competitive ratio R(A) defined
as

R(A) = lim
n→∞ sup

OPT(L)=n

A(L)

OPT(L)
,

where A(L) and OPT(L) denote, respectively, the number of bins used for packing
of the list L by A and some optimal packing of L. Here, we say that A is R(A)-
competitive.

In the domain of off-line algorithms, the value of R has been successively im-
proved [3, 19, 5, 13, 4]. Indeed, it has been shown that for any value of R ≥ 1,
there is an O(n log n)-time algorithm with that competitive ratio [14]. Unfortunately,
the running times for these algorithms involve exceedingly large constants (actually,
these “constants” depend on how close R is to 1). Among algorithms of practical
importance, the best result is an O(n log n) algorithm for which R is 71

60 [13].
With respect to on-line bin packing, the problem has been defined strictly in

terms of arrivals (Inserts)—items never depart from the packing (i.e., there are no
Deletes). Further, most on-line algorithms have operated under the restriction that
each item must be packed into some bin, and it should remain in that bin permanently.
In this context, it is shown that for every on-line linear time algorithm A, R(A) ≥
1.536... [3]. Further, the upper bound has been improved over the years to roughly
1.6 [10, 11, 12, 17, 18].

The work reported in [6] focused on a variant of on-line bin packing, again sup-
porting Inserts only, in which each item may be moved a constant number of times
(from one bin to another). Two algorithms were provided: one with a linear running
time (linear in n, the number of Inserts, which is also the number of items) and a
competitive ratio of 1.5, and one with an O(n log n) running time and a competitive
ratio of 4

3 .
Another notion that is related to, but distinct from, fully dynamic bin packing

is dynamic bin packing of [2], where each item is associated with not only its size,
but also with an arrival time and a departure time (interpreted in the natural way).
Here, again (and unlike [6]), items cannot be moved once they are assigned to some
bin, unless they depart from the system permanently (at their departure time). This
variant differs from fully dynamic bin packing in that items are not allowed to be
moved once they are assigned to a bin and through the departure time information.
It was shown in [2] that for any such algorithm A, R(A) ≥ 2.5, and that for their
dynamic first fit (FF), 2.770 ≤ R(FF) ≤ 2.898.

1.2. Competitive ratio and running time for fully dynamic approxi-
mation algorithms. In this section we discuss the notions of competitiveness and
running time in the context of developing fully dynamic approximation algorithms.

576 ZORAN IVKOVIĆ AND ERROL L. LLOYD

We begin by noting that with respect to the definition of competitive ratio there
is no need to make a distinction between fully dynamic and off-line algorithms. In
each case, these measures reflect the size of the packing produced by the algorithm
relative to the size of optimal packing.

With respect to running times, we say that a fully dynamic approximation algo-
rithm B for bin packing has running time O(f(n)) if the time taken by B to process
a change (an Insert or Delete) to an instance of n items is O(f(n)). If O(f(n)) is a
worst-case time bound, then B is uniform. If O(f(n)) is an amortized time bound,
then B is amortized.

Our general goal in developing fully dynamic approximation algorithms for bin
packing is to design algorithms with competitive ratios close to those of the best off-
line algorithms such that the changes are processed quickly. Of particular interest
are algorithms that are, in a sense, the best possible relative to the existing off-line
methods. For bin packing the best known off-line algorithms require time Θ(n log n).
Thus, a fully dynamic algorithm that runs in time Θ(logn) per operation is, in that
sense, the best possible. Indeed, the fully dynamic algorithm MMP that we give in
this paper runs in precisely this time per operation.

The algorithms that we present process a sequence of Inserts (arrivals) and Deletes
(departures) of items. Further, our algorithm is designed to handle “lookup” queries
of the following form:

• size—returns in O(1) time the number of bins in the current packing;
• packing—returns a description of the packing in the form of a list of pairs

(x,Bin(x)), where Bin(x) denotes the bin into which an item x is packed, in
time linear in the number of items in the current instance.

These queries may be interspersed in the Insert/Delete sequence as follows.

1.3. What’s to come. The main result of this paper is a fully dynamic algo-
rithm MMP that is 5

4 -competitive and requires Θ(logn) time per operation. Relative
to the best off-line algorithms, MMP has a running time that is best possible, and
it has a competitive ratio that is nearly the equal of the best practical off-line algo-
rithms. This is a surprising result even in terms of off-line bin packing, since it is
the first practical bin packing algorithm that has a competitive ratio of less than 4

3
that does not rely on packing the items in sorted order (as discussed in section 2,
dynamically maintaining a packing based on a sorted list is problematic). That the
algorithm is fully dynamic is all the more remarkable.

With the preliminaries concluded, the remainder of the paper is organized as fol-
lows. In the next section we review the basic definitions and define two key properties
of MMP packing: LLS-maximality and M-thoroughness. We further provide a sketch
of MMP’s Insert and Delete operations, and we focus on the techniques MMP utilizes
to maintain the above properties: myopic packing, bundles, and LLS-coalitions.

In section 3 we describe the (rather complex) data structure, and the details of
MMP. In section 4 we prove the competitive ratio of 5

4 and the uniform logarith-
mic running time per Insert/Delete operation. Finally, in section 5 we furnish some
concluding remarks.

2. Toward full dynamization of bin packing. Motivated by the notions
of competitiveness introduced in the preceding section, a natural approach to the
development of fully dynamic bin packing algorithms is to adapt existing methods to
work in the fully dynamic situation. Unfortunately, this is easier said than done. The
difficulty is that most of the off-line algorithms perform bin packing in two distinct
stages. First, there is a preprocessing stage in which the items are organized in some

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 577

fashion (this reorganization should have a positive effect on the resulting packing).
This is followed by a packing stage where the actual packing is accomplished. In the
off-line situation, this two stage approach is quite natural since the entire list of items
is available at the outset. However, in a dynamic environment a two-stage process
becomes awkward. Consider, for example, the algorithm first fit decreasing (FFD),
which is 11

9 -competitive. This algorithm first sorts the items and then packs them
in order of decreasing size using the FF packing rule.1 What about a fully dynamic
version of FFD? There is, of course, no difficulty in maintaining a sorted list of the
elements. But there is great difficulty in maintaining the packing based on that sorted
list, since the insertion (or deletion) of a single item can result in a large number of
changes to that packing. It would seem that the packing induced by the sorted list of
items is “too specific” to be maintained dynamically, and that perhaps a less specific
rule might be of use. Indeed, in this paper we utilize a weaker notion: Johnson’s
grouping [10, 11].

2.1. Some definitions. Before proceeding, we require a few definitions that will
be used throughout the remainder of the paper. In particular, for a bin B, level(B) is
the sum of the sizes of the items packed in B; gap(B) is 1− level(B), i.e., the amount
of empty space in B; and content(B) is the set of items packed in B.

We can assume that the bins are numbered in such a way that every bin has
a unique number with the property that, for any two bins, the bin with the lower
number is placed “to the left” of the bin with the higher number. In other words, we
assume that, for conceptual purposes, the bins are numbered in increasing order from
left to right.

Following Johnson’s grouping [10, 11], we partition the items according to their
respective sizes. In particular, an item a is a B-item (big) if size(a) ∈ (1

2 , 1], an
L-item (large) if size(a) ∈ (1

3 ,
1
2], an S-item (small) if size(a) ∈ (1

4 ,
1
3], a T-item (tiny)

if size(a) ∈ (1
5 ,

1
4], and an M-item (miniscule) if size(a) ∈ (0, 1

5].
Let B, L, S, T , andM denote the number of B-items, L-items, S-items, T-items,

and M-items in L, respectively.
When the meaning is otherwise clear, the fact that a is a B-item (L-item, S-item,

T-item, M-item) will be abbreviated as a ∈ B (L,S,T,M). A bin is a B-bin (L-bin,
S-bin, T-bin, M-bin) if its largest item is a B-item (L-item, S-item, T-item, M-item).
There are several types of B-bins: bins containing one B-item and one L-item, and
no more B-items, L-items, S-items, or T-items will be called bins of type BL; bins of
type BST, BS, BTT, BT, and B are defined analogously. Likewise, there are several
types of L-bins, several types of S-bins, and several types of T-bins. The possible
types of B-bins, L-bins, S-bins, and T-bins are illustrated in Figure 1. Note that
we did not take into consideration the M-items: while it is certainly the case that
bins may contain M-items, accounting for them will have no substantive effect on the
competitive ratio of MMP.

By way of preliminaries, we introduce a binary relation of superiority over types
of bins. First, all of the types of B-bins, L-bins, S-bins, and T-bins are superior to
M-bins. Second, we consider non-M-bins. Here the following ordering of relevant
types of items is assumed: B ≺ L ≺ S ≺ T ≺ Z, where Z denotes a fictitious item of
size 0. We imagine that each bin contains, on top of its B-items, L-items, S-items,
and T-items (M-items may be present but are being ignored), a fictitious item of type

1Informally, bins are ordered from left to right, and an item is packed into the leftmost bin into
which it will fit.

578 ZORAN IVKOVIĆ AND ERROL L. LLOYD

B B B B B B

 L S
S

T
TTT

 L L L L L L

L
S T

S S

T
T

T

L L

T
T
T

L

T
T

L

T

L
S

S

T

 S S S S S S

 S S S S

S T
 T

T

T

T
T

T
T

S S

T

 type 1: BL type 2: BST type 3: BS type 4: BTT type 5: BT type 6: B

type 7: LLS type 8: LLT type 9: LL type 10: LSS type 11: LSTT type 12: LST

type 13: LS type 14: LTTT type 15: LTT type 16: LT type 17: L type 18: SSST

type 19: SSS type 20: SSTT type 21: SST type 22: SS type 23: STTT type 24: STT

type 25: ST type 26: S type 27: TTTT type 28: TTT type 29: TT type 30: T

 L L

S

S

S S

T

T

T

T T

T

TT

T T

Fig. 1. Possible types of bins in MMP.

Z (zero), of size 0. Zero items are introduced solely for technical convenience, as their
presence will enable us to impose the desired ordering on the types of bins. Thus,
in view of the introduction of Z-items, the types of bins are BLZ, BSTZ, BSZ, . . . ,
TTZ, and TZ. For these types of bins, the relation of superiority is defined as the
lexicographical ordering over the types of bins. For example, a bin of type BLZ is
superior to a bin of type BSTZ. In the remainder of this paper, we omit Z from the
notation describing the types of bins.2 Finally, we will sometimes find it convenient to
refer to these types of bins according to their canonical index in this lexicographical
ordering, as depicted in Figure 1: a bin of type 1 is a bin of type BL, a bin of type 2
is a bin of type BST, . . ., a bin of type 30 is a bin of type T. We assert naturally that
if Bj is superior to Bi, then Bi is inferior to Bj .

The allowed types of bins in the packings produced by MMP are BL, BST, BS,
BTT, BT, B, LLS, LLT, LL, SSST, SSS, and TTTT, and, of course, M-bins. This
restriction may result in at most six unpacked items: one L-item, two S-items, and

2Although Z is omitted, it is needed to ensure that, e.g., BLZ is superior to BZ. The reader
should keep in mind that the relation of superiority relies on the presence of Z in each non-M-bin.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 579

three T-items. Clearly, these items could be packed into at most two additional bins
(a bin of type LTT and a bin of type SST). MMP will utilize the regular packing,
consisting at all times only of bins of the allowed types, and the auxiliary storage,
containing the items that are not (currently) packed into a bin from the regular
packing.

2.2. LLS-maximality and M-thoroughness. We next define the properties
of packings that play a key role for the competitive ratio of MMP. We first define the
thoroughness property. Next, we define the LLS-maximality property, a property that
is similar to, and (much) stronger than, the thoroughness property. Finally, we define
the M-thoroughness property aimed at the M-items and their role in the packing.
Intuitively, maintaining the LLS-maximality property leads to the competitive ratio
of 5

4 for packings of lists of non-M-items; maintaining LLS-maximality and the M-
thoroughness property leads to the competitive ratio of 5

4 for packings of arbitrary
lists. We begin with two definitions.

Definition 1. Let PB,L,S,T be a set of packings of B-items, L-items, S-items,
and T-items such that each packing P ∈ PB,L,S,T consists only of the allowed types
of bins (BL, BST, BS, BTT, BT, B, LLS, LLT, LL, SSST, SSS, and TTTT), where
all of the bins of type BL are to the left of all the non-BL-bins, all of the bins of type
BST are to the left of all the non-BL-bins and non-BST-bins, etc.

Definition 2. Let a packing P ∈ PB,L,S,T . Then
1. Bins of type BL are thorough in P iff there does not exist a B-item b and

an L-item l such that size(b) + size(l) ≤ 1, and item b is either in a bin of
type inferior to BL in the packing P or in the auxiliary storage, and item l
is either in a bin of type inferior to BL in the packing P or in the auxiliary
storage, i.e., iff it is not possible to pack a B-item from a bin of type inferior
to BL or from the auxiliary storage, and an L-item from a bin of type inferior
to BL or from the auxiliary storage into a bin.

2. Bins of type BST are thorough in P iff there does not exist a bin B of type
BS in P , where b and s are the B-item and the S-item packed into B, and a
T-item t such that size(b) + size(s) + size(t) ≤ 1, and the item t is in a bin of
type inferior to BST in the packing P or the auxiliary storage.

3. Bins of type BS are thorough in P iff there does not exist a B-item b and
an S-item s such that size(b) + size(s) ≤ 1, and the item b is either in a bin
of type inferior to BS in the packing P or in the auxiliary storage, and the
item s is in a bin of type inferior to BS in the packing P or in the auxiliary
storage.

4. Bins of type BTT are thorough in P iff there does not exist a bin B of type
BT in P , where b and t1 are the B-item and the T-item packed into B, and
a T-item t2 such that size(b) + size(t1) + size(t2) ≤ 1, and the item t2 is in a
bin of type inferior to BTT in the packing P or in the auxiliary storage.

5. Bins of type BT are thorough in P iff there does not exist a B-item b and
a T-item t such that size(b) + size(t) ≤ 1, and the item b is either in a bin
of type inferior to BS in the packing P or in the auxiliary storage, and the
item t is in a bin of type inferior to BT in the packing P or in the auxiliary
storage.

6. Bins of type LLS are thorough in P iff there does not exist a bin B of type
LLT or LL in P , where l1 and l2 are the L-items packed into B, and an
S-item s such that size(l1) + size(l2) + size(s) ≤ 1, and the item s is either in
a bin of type inferior to LLS in the packing P or in the auxiliary storage.

580 ZORAN IVKOVIĆ AND ERROL L. LLOYD

i = 1, ... , N

1

3
 + i ε

3

1
+(N+2-i)ε

1

3
− (Ν+2)ε

3

1
− (Ν+1)ε

1

3
− (Ν+1)ε

1

3
− (Ν+1)ε

N/3

Fig. 2. An example of a thorough but not LLS-maximal packing. In the packing above, N is
an arbitrary integer. The bottom L-item a1 from the first bin (i = 1), size(a1) = 1

3
+ ε, and the

top L-item a2 from the second bin (i = 2), size(a2) = 1
3

+ Nε can fit together with an S-item (all

S-items have the size of 1
3
− (N + 1)ε). The same is true of the bottom L-item from the second bin

(i = 2) and the top L-item from the third bin (i = 3), . . . , the bottom L-item from the (N − 1)st bin
and the top L-item from the Nth bin. Thus, although the packing above is thorough, it is far from
LLS-maximal, since many bins of type LLS could be packed from the items in the packing, and all
of the items are packed into bins of type inferior to LLS.

7. Bins of type LLT are thorough in P iff there does not exist a bin B of type
LL in P , where l1 and l2 are the L-items packed into B, and a T-item t such
that size(l1) + size(l2) + size(t) ≤ 1, and the item t is either in a bin of type
inferior to LLT in the packing P or in the auxiliary storage.

8. Bins of type SSST are thorough in P iff there does not exist a bin B of type
SSS in P , where s1, s2, and s3 are the S-items packed into B, and a T-item
t such that size(s1) + size(s2) + size(s3) + size(t) ≤ 1, and the item t is either
in a bin of type inferior to SSST in the packing P or in the auxiliary storage.

Finally, a packing P ∈ PB,L,S,T is thorough iff all of the above types of bins are
thorough in P .

LLS-maximality. MMP will take some pains to be guaranteed of packing a
certain portion of certain L-items and S-items into bins of type LLS (we will call this
endeavor “seeking LLS-coalitions”). Leading toward this guarantee, we define LLS-
maximality. LLS-maximality strengthens thoroughness: maintenance of thoroughness
does not require LLS-coalitions, and the absence of coalitions leads to a competitive
ratio of at least 4

3 (see the lower bound example for FFG in [10]).
Definition 3. Let a packing P ∈ PB,L,S,T . Then P is LLS-maximal iff P is

thorough and bins of type LLS are LLS-maximal in P ; i.e., there does not exist an
L-item l1, another L-item l2, and an S-item s such that size(l1)+size(l2)+size(s) ≤ 1,
and the item l1 is either in a bin of type inferior to LLS in the packing P or in the
auxiliary storage, and the item l2 is in a bin of type inferior to LLS in the packing P
or in the auxiliary storage, and s is in a bin of type inferior to LLS in the packing P
or in the auxiliary storage.

Note that LLS-maximality is a (much) stronger property than thoroughness: there
might be packings that are thorough but not maximal. In Figure 2 we give an example,
a variant of the lower bound example for FFG from [10], of a packing that is thorough
but not maximal.

The key factor that distinguishes between thoroughness and LLS-maximality is
that when considering whether or not it is possible to pack two L-items and an S-item
from bins of type inferior to LLS or the auxiliary storage into a bin, LLS-maximality,
unlike thoroughness, does not insist that the two L-items must come from the same
bin. We note that it can be shown that the maintenance of thoroughness, but not

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 581

 type 1: BL type 2: BST type 3: BS type 4: BTT type 27: TTTT M-bins

Fig. 3. A sketch of the 2-3 tree of bins in MMP. Note that it contains only the allowed types
of bins.

LLS-maximality, leads to a simpler algorithm that also runs in uniform logarithmic
time per Insert/Delete operation, and is 4

3–competitive (see [8]).

M-thoroughness. M-thoroughness is the third property we require. It pertains
to the role of M-items in the MMP packings. Ideally, we would like to be able to
develop a method that would enable MMP to pack as many M-items into non-M-
bins as possible. However, this is not necessary, as it turns out that maintaining
M-thoroughness (a much weaker goal), coupled with LLS-maximality, of course, is
quite sufficient to guarantee a competitive ratio of 5

4 . Later in this section we show
that MMP maintains the M-thoroughness property.

Definition 4. A packing P is M-thorough iff precisely one of the following two
conditions is satisfied:

1. there are no M-bins in P , or
2. there is at least one M-bin in P , and all of the non-M-bins have a level

exceeding 4
5 (i.e., a gap less than 1

5), and all of the M-bins, except for possibly
the rightmost bin in the packing, also have a level exceeding 4

5 .

2.3. A sketch of Insert and Delete. In the next section we describe the data
structure of MMP in detail. Here we briefly note that all of the bins in the packing
will be stored at the leaves of the 2-3 tree of bins, with the bins of type BL placed
in the leftmost leaves of the 2-3 tree of bins, with the bins of type BST placed in the
leftmost remaining leaves (those not holding bins of type BL) of the 2-3 tree of bins,
etc. for all of the other allowed types of bins, and, finally, with the M-bins placed in
the rightmost leaves of the 2-3 tree of bins,3 as depicted in Figure 3.

We now consider, somewhat informally, how to Insert/Delete an item. This is
done using three major ideas: myopic packing, bundles, and LLS-coalitions.

Insert and Delete of non-M-items. We first consider how MMP Inserts an
item a ∈ B ∪ L ∪ S. We begin by explaining how myopic packing is used to maintain
thoroughness. Based on Johnson’s grouping [10, 11], when an item a is being packed,
a should be more insensitive to previously packed items of “smaller” types than the
type of a. Thus, what would a “see” in the bins? Only the items of its own type or
of “larger” type. In this sense, a K-item (K is B, L, S, or T) is myopic in that it can
“see” relatively large items (K-items or larger), and it cannot “see” relatively small
ones (smaller than K-items). Based on that view of the packing, a is packed in an FF

3Recall that the bins are numbered in increasing order from left to right. A numbering of bins
that ranges 1, . . . ,MMP(L) corresponds to the graph theoretic notion of a preorder numbering of
leaves of the 2-3 tree of bins.

582 ZORAN IVKOVIĆ AND ERROL L. LLOYD

fashion (in a’s “K or larger” world) using the information stored in the internal nodes
and leaves of the 2-3 tree of bins.4 Let B be the bin into which a was packed. This
packing of a results in a forceful eviction of items of smaller types from B, if there are
such items at all. The evicted items will be temporarily “set aside” into the auxiliary
storage and will eventually be reinserted. Next, an attempt is made to restore the
thoroughness of the packing by trying to pack additional items into B, starting from
the available items of the largest type that are smaller than K, i.e., the items of the
largest type that are smaller than K from the auxiliary storage and from the bins that
are inferior to the type of bin the algorithm is trying to reconstruct for B. This effort
continues until there are no more available items of that type that can fit with the
current bin content. Next, MMP continues with the available items (auxiliary storage
or inferior bins) of the next largest type, until there are no more available items of
that type that would fit into the bin, etc. Here, if an item is taken from some bin,
that bin is deleted from the packing, and its contents, except for the item that was
taken, are temporarily moved into the auxiliary storage. Upon completing the filling
of B and inserting B into the packing, MMP reinserts the items from the auxiliary
storage into the packing. Their reinsertion may, of course, disturb some other bins
and move their contents to the auxiliary storage for later reinsertion. Eventually,
all of the items from the auxiliary storage (except perhaps at most one L-item, two
S-items, and/or three T-items, of course) are reinserted into the packing, and that
packing is thorough.

In addition to thoroughness, MMP maintains LLS-maximality. This is done by
using LLS-coalitions. To avoid the situation of a list that is thorough but far from
LLS-maximal (see Figure 2), an amendment is made to the myopic discipline outlined
above. Namely, the insertion of an L-item a is carried out as follows: first, packing
a into a B-bin is attempted in a standard myopic fashion. If this attempt fails, a is
authorized to try to form an LLS-coalition with another L-item and an S-item. The
latter two can each be sought in any, and not necessarily the same, bin whose type
is inferior to LLS or in the auxiliary storage. If such a coalition is possible, a and
the two items are packed into a bin of type LLS, and that bin is inserted into the
regular packing. The bins that yielded some or all of these two items need to be
deleted, and their remaining content will eventually be reinserted. If the coalition is
not possible, the packing of a is completed by resuming the standard myopic steps.
Similarly, insertion of an S-item a would involve first packing a into a B-bin in a
standard myopic fashion. If this fails, a will seek two L-items coming from any, and
not necessarily the same, bins whose type is inferior to LLS or from the auxiliary
storage. If two such items are found, an LLS-coalition is formed, and the bin of type
LLS is inserted into the regular packing. If not, the packing of a is completed by
resuming the standard myopic steps. A careful implementation can guarantee that
the added complexity of this mostly myopic discipline does not asymptotically add to
the running time.

Deletes are implemented as follows: the bin in which a (the item that needs to be
deleted) resides is emptied and is deleted. Upon discarding a, the remaining contents
of the deleted bin are temporarily moved to the auxiliary storage, from which they
are reinserted into the packing as a part of this Delete operation.

We show later that Inserts and Deletes can be carried out in Θ(logn) uniform
running time, since the number of bins inserted and deleted by an Insert/Delete

4Note that we do not provide for all the details here. A more detailed description of the data
structure and the algorithm MMP will be furnished in the coming sections.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 583

operation is bounded by a fixed constant. Intuitively, the discipline of “touching”
only the inferior types of bins provides for the desired running time.

Handling M-items. We now consider how MMP packs the lists that contain
M-items. The goal here is to utilize bundles to manipulate many M-items at once
within logarithmic uniform running time. At the same time, a proper manipulation
of M-items will be important for the M-thoroughness property.

In general, the simplest approach would be to pack the M-items independently
of the B-items, L-items, S-items, and T-items by packing them into totally separate
bins. This would, however, lead to a competitive ratio greater than 5

4 . Rather, the
M-items need to be packed, whenever possible, into non-M-bins. Thus, MMP inserts
M-items just like any other items, according to their myopic view of the packing (of
course, they actually “see” the entire packing). However, the presence of M-items in
the packing gives rise to several important considerations.

First, upon insertion of an M-item a into a bin no items will be evicted—M-items
are the smallest items! This makes the insertion of an M-item very efficient.

Second, the insertion of B-items, L-items, S-items, and T-items in situations where
the input lists contain M-items needs to be examined very carefully. In particular, if
the algorithm were to follow only the simple logic of myopic packing, its striving to
maintain a thorough packing might require relocation of as many as O(n) M-items,
leading to O(n log n) time per Insert/Delete operation. This would happen during
both insertions and deletions that require relocation of items from the bins of type
inferior to that of the bin that is currently being filled. Furthermore, the number of
bins that could be inserted and deleted per operation would be huge: it would be
possible, for example, to delete as many as O(n) bins of type BST for the sake of
taking a few M-items from each of them and packing those M-items into a single bin
of type BL. The disaster does not stop here: each of the items from those many bins of
type BST needs to be reinserted, and each reinsertion may again cause an avalanche
of deleted bins.

Third, in case the simple myopic discipline is followed, the deletion of an M-item
would cause the temporary relocation of B-items, L-items, S-items, T-items, and
potentially many M-items into the auxiliary storage. Packing all of these items back
into the bins might be very costly: following the same argument as above, O(n log n)
time might be required to reinsert a single non-M-item, with many inserted and
deleted bins.

Thus handling M-items in the same manner as the other items will not do. We
solve this apparent difficulty by introducing the technique of bundling (see [1]). The
idea is that the M-items in each bin (in the auxiliary storage) are collected into bundles
gi. All of the bundles in a bin (in the auxiliary storage) have the cumulative size of
1
10 < size(gi) ≤ 1

5 , except for at most one bundle whose cumulative size is ≤ 1
10 . The

former kind of bundles is called closed, while the latter kind is called open.
The purpose of bundles is to allow efficient manipulation of large numbers of M-

items at one time: in response to the need to move M-items from a bin to the auxiliary
storage, or from the auxiliary storage to a bin, the algorithm will only move entire
bundles. During this process, when a bundle is inserted into a bin (or temporarily
stored into auxiliary storage), it is first checked to see whether it could be merged
with the open bundle, if any, from that bin (or from the auxiliary storage), and, if so,
the merging is carried out. While this does not asymptotically increase the running
time required for the insertion of an M-item, it drastically decreases the running time
of other operations involving M-bundles and makes MMP fast (Θ(logn) running time
per Insert/Delete operation).

584 ZORAN IVKOVIĆ AND ERROL L. LLOYD

The algorithm will treat bundles of M-items like any other item (except for the
occasional merging of bundles to maintain the property that each bin (auxiliary stor-
age) can have at most one open bundle). Note that a bin can contain at most 10
bundles; hence, we say that no bin can contain more than 10 items. Bundling is one
of the tools used to accomplish M-thoroughness. It is natural to ask whether or not
the technique of bundling is essential for MMP; the answer is in the affirmative, since
it can be shown that moving only a constant number of very small items per In-
sert/Delete operation disallows competitive ratios below 4

3 , regardless of the running
time (see [8]).

3. The data structure and the details of MMP.

3.1. The data structure of MMP. In this section we describe the data struc-
ture utilized by MMP. The data structure is rather complex, and it consists of several
components.

1. The regular packing. The regular packing consists of the bins of the allowed
types and some of the information required for the maintenance of an MMP pack-
ing (LLS-maximal and M-thorough). As mentioned before, the regular packing is
maintained via a 2-3 tree. The leaves represent the bins, while the internal nodes
store some of the information required for the proper maintenance of the packing
(LLS-maximal and M-thorough).

Each leaf contains a record with the following information that provides for a full
description of a bin B:

• content(B)—Five doubly linked circular lists are utilized to record the set of
items currently packed in B, one list for the B-items, one for the L-items,
one for the S-items, one for the T-items, and one for the M-bundles packed
in B. The entries of these lists are the individual records associated with the
B-items, L-items, S-items, T-items, and M-bundles that are currently packed
in B. Recall that each bin can contain at most one B-item, two L-items, three
S-items, four T-items, and ten M-bundles (at most nine closed bundles and
at most one open bundle). Thus these lists are very short.
• Each leaf contains a pointer to the open bundle in B, if any.
• Five numbers that record the myopic levels ofB include the following: levelB(B)

=
∑
a∈content(B)∧a∈B size(a), levelL(B) =

∑
a∈content(B)∧a∈B∪L size(a), levelS(B)

=
∑
a∈content(B)∧a∈B∪L∪S size(a), levelT(B) =

∑
a∈content(B)∧a∈B∪L∪S∪T size(a),

and levelM(B) = level(B).
• Each leaf contains the type of B.

Each internal node contains the following information about its left, middle, and
right (if present) subtree: (1) the largest gaps in the subtree (gapB = 1 − levelB,
gapL = 1− levelL, gapS = 1− levelS, gapT = 1− levelT, and gapM = 1− levelM) and
(2) the most inferior type of bin in the subtree.

2. Inferior trees. One of the consequences of executing an Insert or Delete opera-
tion is that, in order to maintain a packing that is LLS-maximal, the packing of a bin
B may require that some items be removed from bins inferior to B and packed into
B. In order to efficiently search for such items in bins inferior to B, MMP maintains
for each allowed bin type i a set of items of each type of item that appears in a bin
of type i. These sets are each represented by a heap (implemented as a 2-3 tree), and
we call them the inferior trees. To accomplish this efficient search, MMP utilizes 15
min-heaps implemented as 2-3 trees: (1) L-items in bins of type BL, (2) L-items in
bins of type LLS, (3) L-items in bins of type LLT, (4) L-items in bins of type LL,

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 585

(5) S-items in bins of type BST, (6) S-items in bins of type BS, (7) S-items in bins
of type LLS, (8) S-items in bins of type SSST, (9) S-items in bins of type SSS, (10)
T-items in bins of type BST, (11) T-items in bins of type BTT, (12) T-items in bins
of type BT, (13) T-items in bins of type LLT, (14) T-items in bins of type SSST, and
(15) T-items in bins of type TTTT.

For example, if the algorithm attempts to pack a B-item into a bin of type BST,
it needs to search for an S-item and a T-item from bins whose type is inferior to BST.
Thus, an S-item will be searched for in Aux (see below) and in the following inferior
trees: the tree of S-items in bins of type BS, the tree of S-items in bins of type LLS,
the tree of S-items in bins of type SSST, and the tree of S-items in bins of type SSS.
Similarly, a T-item will be searched for in Aux and in the following inferior trees: the
tree of T-items in bins of type BTT, the tree of T-items in bins of type BT, the tree
of T-items in bins of type LLT, the tree of T-items in bins of type SSST, and the tree
of T-items in bins of type TTTT.

In an inferior tree, each leaf contains an item, or more precisely the record associ-
ated with that item, and the internal nodes contain, for left, middle, and (if present)
right subtree, the size of the smallest item in the subtree. This enables an easy search
for the smallest item in that inferior tree.

3. Aux. Admitting only allowed types of bins to the regular packing possibly
results in a few excess items that cannot be packed into the regular packing: at
most one L-item, two S-items, and three T-items. These items are stored in Aux.
In addition, in the course of maintaining an MMP packing, all of the bins that lose
an item(s) a (so that a could be packed into a superior bin), or simply had an item
deleted, need to be deleted from the regular packing, and their content, except for
the lost/deleted item(s), temporarily stored into Aux. The items that are temporarily
stored into Aux within an operation must all, except for at most one L-item, two
S-items, and three T-items, be reinserted into the packing as an integral part of an
Insert/Delete operation. Later in this section we show that the number of items
stored in Aux at any time during the execution of MMP is bounded by a rather small
constant.

Aux is implemented using five min-heaps (again, each heap is implemented as
a 2-3 tree), one for each type of item: AuxB for B-items, AuxL for L-items, AuxS

for S-items, AuxT for T-items, and AuxM for M-bundles. Each leaf contains an item
(bundle), or more precisely the record associated with that item (bundle), and the
internal nodes contain, for left, middle, and (if present) right subtree, the size of the
smallest item in the subtree. This enables an easy search for the smallest B-item,
L-item, S-item, T-item, or M-bundle in Aux.

As it turns out, only closed M-bundles will be stored in the 2-3 tree of M-bundles.
Aux will contain at any time at most one open M-bundle that will be stored separately
from the 2-3 tree of (closed) M-bundles.

4. M-items/bundles. As mentioned earlier, M-items will be collected in bundles.
These bundles may undergo a number of changes in the course of execution of MMP:
M-items may be inserted to/deleted from bundles; two bundles could be merged into
one bundle of M-items; further, there is a need to allow at most one open bundle per
bin (at most one open bundle in Aux) and to ensure that all of the other bundles in a
bin (in Aux) are closed. Each M-bundle b will be represented by a 2-3 tree of M-items
that are collected into b. With each M-bundle b there will be an associated record
that stores detailed information about b.

2-3 trees are particularly suitable for the maintenance and manipulation of bun-

586 ZORAN IVKOVIĆ AND ERROL L. LLOYD

dles. Insertions and deletions of individual M-items into/from a bundle correspond
to the operations Insert and Delete, which are supported by 2-3 trees in logarithmic
time. Furthermore, if there is a need to pack a bundle b into a bin B (or store it into
Aux), b can be easily added onto the list of M-bundles in B (inserted into the 2-3 tree
of M-bundles in Aux by means of an Insert operation on that tree in case b is closed or
designated as open and stored into Aux in case b is open). If there is a need to merge
two bundles, this can be easily accomplished by executing the operation Union, also
supported by 2-3 trees in logarithmic time, on the two 2-3 trees representing the two
bundles.

5. The list of items in L. Each item a will have, for the duration of its presence
in L (i.e., from operation Insert(a) to operation Delete(a)), an associated record that
maintains detailed information about a (size(a) and a few pointers for manipulation
of a in the data structures utilized by MMP). In addition, MMP will maintain L by
storing its items at the leaves of a 2-3 tree of the current items of L. The leaves
of that tree are each associated with an item currently in L. Each leaf stores, next
to the pointers required for the manipulation of the 2-3 tree of the current items, a
unique identifier associated with the item and the pointer to the corresponding record
associated with that item.

When an operation Insert(a) is initiated, the new item a is inserted into the
2-3 tree of items, and its associated record is created. This is followed by other
actions described in subsequent sections. Conversely, the operation Delete(a) involves
certain actions (described in subsequent sections) and, finally, removes a from the 2-3
tree of the current items and destroys a’s associated record. The processing of an
Insert/Delete operation will typically cause changes to the packing and will affect
several items in the packing. None of those changes will, however, have any impact
on the 2-3 tree of the current items.

Finally, we note that, in the course of executing an Insert/Delete of an item a, the
2-3 tree of current items is used to locate the bin in which a is packed (or to realize
that a is in Aux) and, furthermore, if a is an M-item, to locate the bundle b that a
belongs to. Given an identifier associated with a, Θ(logn) running time is required
to locate the leaf in the 2-3 tree of current items that is associated with a. Then the
pointer to the corresponding record associated with a is followed to gain access to
that record within O(log n) uniform running time.

3.2. Details of MMP. In this section we furnish the details of MMP. In the
following subsections we will first provide a top level description of MMP and then
furnish the details of clear Aux, a key function from that description. In the following,
b denotes a B-item, l denotes an L-item, s denotes an S-item, t denotes a T-item, and
m denotes a M-bundle.

3.2.1. Top level description of MMP. We now describe MMP. Simply put,
both Insert(x) and Delete(x) rely heavily on the function clear Aux. The idea behind
Insert is to insert the item x into Aux and then let clear Aux complete the insertion
of x in a manner that will maintain LLS-maximality and M-thoroughness. The idea
behind Delete is similar, except that before invoking clear Aux, the Delete operation
needs to remove x from all of the data structures utilized by MMP.

In the description below, we utilize the following functions:
• store Aux(x)—store the item x into Aux.
• store Aux(X)—store the items and M-bundles from the set X into Aux. Then,

for each L-item, S-item, and T-item from X, delete that item from the inferior tree

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 587

to which it belonged (if any). The set X will be either all of the content of some bin
B or a part of it. In the latter case, adjust the myopic levels of B.
• locate structure(x)—return a pointer to the structure to which x belongs (either

a bin B or Aux).
• terminate(x,p)—delete x from all of the data structures. A pointer p points to

the structure containing x (either a bin B or Aux). If x is an M-item, then delete
x from the M-bundle m to which x belongs; m is contained in the structure pointed
to by p (either a bin B or Aux). If x is a non-M-item, then (1) delete x from the
structure to which p points (either a bin B or Aux), and then (2) if p points to a bin
B, then delete x from the inferior tree to which x belongs (if any). At the conclusion
of terminate, adjust the myopic levels of B, delete x from L, and delete the record
associated with x.
• remove(B)—delete a bin B from the 2-3 tree representing the regular packing.

Then destroy the record associated with B.
• add(B)—insert a bin B into the 2-3 tree representing the regular packing. Let

TYPE be the type of B. add will insert B immediately after the highest numbered
bin of type superior or equal to TYPE. This is accomplished via the information
stored at the internal nodes (the most inferior type of bin in the left, middle, and
right (if present) subtree). add starts at the root and walks down the tree, always to
the subtree that stores the largest type that is still inferior to TYPE, until a leaf q is
reached, or no subtree with a type that is inferior to TYPE could be found. In the
latter case, B is the most inferior bin in the packing, and it will be inserted as the
rightmost leaf of the 2-3 tree of bins. In the former case, B is inserted immediately
to the left of q.

Both remove and add will update the information in the interior nodes on the
path from B to the root of the 2-3 tree representing the regular packing.
• open new bin(B)—create a record associated with a new, unpacked bin; call it

B. Initialize content(B) as empty, and B’s myopic levels to 0. Leave the type of B
unspecified.
• pack(B, x1, . . . , xk, TYPE)—pack items/bundles x1, . . . , xk into B. Set the

type of B to TYPE, if the value of TYPE is one of the allowed bin types (including
M-bins). If TYPE is 0, then pack does not set the type of B. The latter option will be
convenient when packing M-bundles into non-M, nonempty bins. Note that B need
not be empty prior to the execution of the pack operation.
• search myopic K(x) (K ∈ {L, S, T, M}, x is a K-item)—perform a search for

the leftmost bin into which x can fit, with a myopic “K or larger” view of the packing.
The search utilizes the information on the largest gapK in the left, middle, and right
(if present) subtree stored at the internal nodes of the 2-3 tree representing the regular
packing and searches that tree in an FF fashion. search myopic K(x) returns a pointer
p to the bin that can accommodate x (in the myopic sense). In this case we let Bp
refer to that bin. If the value of the pointer p is null, then x could not fit into any of
the bins in the (current) regular packing.
• unload AuxM(B)—pack the following M-bundles into a bin B for as long as

they fit or until AuxM is empty: (1) the open M-bundle from AuxM, (2) one by one,
the smallest remaining closed M-bundle from AuxM. unload AuxM terminates when
either an M-bundle from Aux that cannot fit into B is found or AuxM is empty.
• top with M(B)—fill up a bin B with M-bundles from AuxM. If AuxM is emptied

in the process, the rightmost M-bin Br of the regular packing (if any) is removed from
the regular packing, and all of the M-bundles fromBr are inserted into AuxM, at which
point filling B with M-bundles from AuxM is resumed.

588 ZORAN IVKOVIĆ AND ERROL L. LLOYD

Insert(x):
1 store Aux(x);
2 clear Aux;

Delete(x):
3 p =locate structure(x);
4 terminate(x,p);
5 if (x ∈ M) then
6 begin
7 top with M(Bp); /* Bp is a bin pointed to by p */
8 reload M;
9 end;
10 else /* x is a non-M-item */
11 if p points to a bin Bp then
12 begin
13 store Aux(content(Bp)); /* x is already deleted from Bp */
14 remove(Bp);
15 clear Aux;
16 end;

Fig. 4. A top level description of MMP’s Insert and Delete.

top with M(B):
unload AuxM(B);
while AuxM = ∅ and Br is a M-bin do /* Br—rightmost bin in packing */

begin
store Aux(content(Br));
remove(Br);
unload AuxM(B);

end;

• discharge(x1, . . . , xk,TYPE)—creates a new bin B, packs the items/bundles
x1, . . . , xk into B, sets the type of B to TYPE, and then inserts B into the regular
packing:

discharge(x1, . . . , xk, TYPE):
open new bin(B);
pack(B,x1, . . . , xk,TYPE);
add(B);

• reload M—empty AuxM by packing each of its bundles into the regular packing
via FF:

reload M:
while AuxM 6= ∅ do

begin
b=delete min(AuxM); /* Extract the smallest M-bundle m from AuxM */
p =search myopic M;
if p = null then /* pack m into a new bin */

discharge(m,M-bin);
else pack(Bp,0); /* pack m into Bp, the leftmost possible bin */

end;

We complete this subsection with an observation that it is easy to see that all of
the functions outlined above run in logarithmic uniform running time (using the data
structures outlined in section 3.1).

We now summarize the top level description of Insert and Delete in Figure 4.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 589

clear Aux:
17 phase 1: clear all of the B-items from AuxB ;
18 phase 2: pack L-items, S-items, and T-items from Aux into B-bins of the regular

packing;
19 phase 3: form LLS-coalitions;
20 phase 4: pack the remaining L-items, S-items, and T-items from Aux into non-

B-bins;
21 phase 5: reload M;

Fig. 5. The five phases of clear Aux.

3.2.2. Details of clear Aux. In this subsection we provide a description of
clear Aux, the most involved function invoked by Insert and Delete operations.
clear Aux proceeds in five phases. The first four phases (Figures 6 through 9) are
aimed at the maintenance of LLS-maximality, while the last phase is a simple invo-
cation of reload M aimed at the maintenance of M-thoroughness. The five phases are
listed in Figure 5.

We proceed with a detailed description of the first four phases. We utilize the
functions defined in the previous subsection, as well as the function seek defined below.
• seek(x1, . . . , xk, y1[s1

1, . . . , s
1
y1], . . . , yj [s

j
1, . . . , s

j
yj])—given items x1, . . . , xk, seek

searches for an item y1 in the sources from the list [s1
1, . . . , s

1
y1], . . . , and for an item

yj in the sources from the list [sj1, . . . , s
j
yj] such that all of the x’s and y’s fit together;

i.e., their cumulative size does not exceed 1. The first source on each list is always
AuxKy (the type of Ky is the same as the type of the corresponding y item), while
the remaining sources are the appropriate inferior trees (see code). The length of
each list is always bounded by a small constant. This search gives preference to the
“recruitment” of as many y’s from Aux as possible. When an item currently packed
into a bin must be utilized, it is preferred to search for items from the second source,
and if that fails from the third source, etc. The search in any source is nothing more
than checking the minimum size item in that source, which is easily accomplished in
logarithmic time, since each source is maintained as a min-heap.

If the search is successful and the desired y’s are found, seek proceeds by deleting
all of the entries associated with the y’s that are currently packed into bins from
their respective inferior trees. Further, seek deletes such y’s from their bins, stores
the remaining content of these bins into Aux, and finally deletes these bins from the
regular packing and destroys the records associated with these bins.

Note that seek runs in logarithmic uniform running time, since the number of
searches of various balanced trees in the data structure from section 3.1 is bounded
by a small constant (depending on the lengths of the lists of sources).

3.2.3. Implementation of queries. In this subsection we briefly comment on
the implementation of queries size and packing. The query size asks for the number
of bins in the (current) MMP packing. It is easy to implement it in O(1) uniform
running time by maintaining a global integer variable number that reflects the number
of bins in the regular packing. When a query size is processed, the algorithm will first
look into Aux, which will at that time contain at most one L-item, two S-items, and
three T-items. MMP will then compute (in constant time) z, the number of bins
needed to pack these items from Aux (z ≤ 2), and return number + z as the response
to query size.

Recall that the query packing requests a description of the packing in the form of

590 ZORAN IVKOVIĆ AND ERROL L. LLOYD

phase 1:
22 while AuxB 6= ∅ do
23 begin
24 b = delete min(AuxB);
25 if seek(b, l[AuxL,4,3,2]) then
26 discharge(b, l,BL);
27 else if seek(b, s[AuxS,9,8,7,6]) then
28 if seek(b, s, t[AuxT,15,14,13,12,11]) then
29 discharge(b, s, t,BST);
30 else discharge(b, s,BS);
31 else if seek(b, t[AuxT,15,14,13,12]) then
32 if seek(b, t, t′[AuxT,15,14,13,12]) then
33 discharge(b, t, t′,BTT);
34 else discharge(b, t,BT);
35 else discharge(b,B);
36 end;

Fig. 6. Phase 1 of clear Aux: clear all of the B-items from AuxB.

a list of pairs (x,Bin(x)), where Bin(x) denotes the bin into which an item x is packed,
in time linear in the number of items in the current instance. Such a description of the
regular packing can be obtained by a preorder traversal of the 2-3 tree representing the
regular packing, and a computation of the packing of the items from Aux (without
actually packing the items from Aux into bins, thereby removing these items from
Aux). It is easy to see that this processing requires a uniform running time that is
linear in n, the size of the (current) list L.

4. Competitive ratio and running time of MMP.

4.1. MMP is 5
4 -competitive. In this section the proof of the upper bound on

the competitive ratio of MMP is presented. Lower bound examples with a 5
4 ratio can

be given; hence, this bound is tight. See Figure 10 for details.

4.1.1. Overview of the proof of the upper bound on the competitive
ratio of MMP. The proof of the upper bound on the competitive ratio of MMP
consists of several parts. First, we establish that MMP maintains regular packings
that are LLS-maximal. Second, we show that MMP maintains M-thoroughness. Once
these two important facts about MMP are proved (see subsections 4.1.2 and 4.1.3
below), we consider only lists of non-M-items and prove that the upper bound on
the competitive ratio of MMP for such lists is 5

4 . This is the most difficult part of
the proof. We then prove that MMP is 5

4 -competitive for arbitrary lists by an easy
application of M-thoroughness.

4.1.2. MMP maintains LLS-maximality. In this subsection we prove the
LLS-maximality of packings produced by MMP. In the proof, we will appeal to the
code presented in the previous section.

Lemma 1. MMP maintains LLS-maximality of packings of lists of non-M-items.
Proof. The proof proceeds by induction on the number of Insert and Delete

operations processed by MMP. Suppose that the packing P produced by MMP is
LLS-maximal immediately before an Insert or Delete operation is requested from
MMP. We proceed to show that MMP will process that operation in a manner that
maintains LLS-maximality.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 591

phase 2:
37 do
39 l = min(AuxL);
40 p = search myopic L(l);
41 if p points to a B-bin, call it Bp then
38 begin
42 success = true;
43 l = delete min(AuxL);
44 store Aux({y ∈ content(Bp)| y of type ≺ L});
45 pack(Bp, l,BL);
46 top with M(Bp);
47 end
48 while AuxL 6= ∅ and success;
49 do
50 s = min(AuxS);
51 p = search myopic S(s);
52 if p points to a B-bin, call it Bp then
53 begin
54 success = true;
55 s = delete min(AuxS);
56 store Aux({y ∈ content(Bp)| y of type ≺ S});
57 if seek(b, s, t[AuxT,15,14,13,12,11]) then /* b ∈ content(Bp) */
58 pack(Bp, s, t,BST);
59 else pack(Bp, s,BS);
60 top with M(Bp);
61 end
62 while AuxS 6= ∅ and success;
63 do
64 t = min(AuxT);
65 p = search myopic T(t);
66 if p points to a B-bin, call it Bp then
67 begin
68 success = true;
69 t = delete min(AuxT);
70 store Aux({y ∈ content(Bp)| y of type ≺ T});
71 if seek(b, t, t′[AuxT,15,14,13,12]) then /* b ∈ content(Bp) */
72 pack(Bp, t, t

′,BTT);
73 else pack(Bp, t,BT);
74 top with M(Bp);
75 end
76 while AuxT 6= ∅ and success;

Fig. 7. Phase 2 of clear Aux: pack L-items, S-items, and T-items from Aux into B-bins of the
regular packing.

LLS-maximality concerns only non-M-items. Thus, operations of interest here
are Inserts and Deletes of non-M-items. To complete the proof, it suffices to exam-
ine the first four phases of clear Aux and to verify that their execution maintains
LLS-maximality. This is in turn easy to verify by inspection of the definitions of
thoroughness and LLS-maximality (Definitions 2 and 3, respectively) and the code of
clear Aux.

592 ZORAN IVKOVIĆ AND ERROL L. LLOYD

phase 3:
77 do
78 l = min(AuxL);
79 success = seek(l, l′[AuxL,4,3],s[AuxS,9,8]);
80 if success then discharge(l, l′, s,LLS);
81 while AuxL 6= ∅ and success;
82 do
83 s = min(AuxS);
84 success = seek(s, l1[AuxL,4,3],l2[AuxL,4,3]);
85 if success then discharge(l1, l2, s,LLS);
86 while AuxS 6= ∅ and success;

Fig. 8. Phase 3 of clear Aux: form LLS–coalitions.

phase 4:
87 while |AuxL| ≥ 2 do
88 begin
89 l1 = delete min(AuxL);
90 l2 = delete min(AuxL);
91 if seek(l1, l2, t[AuxT,15,14]) then discharge(l1, l2, t,LLT);
92 else discharge(l1, l2,LL);
93 end;
94 while |AuxS| ≥ 3 do
95 begin
96 s1 = delete min(AuxS);
97 s2 = delete min(AuxS);
98 s3 = delete min(AuxS);
99 if seek(s1, s2, s3, t[AuxT,15]) then discharge(s1, s2, s3, t,SSST);
100 else discharge(s1, s2, s3,SSS);
101 end;
102 while |AuxT| ≥ 4 do
103 begin
104 t1 = delete min(AuxT);
105 t2 = delete min(AuxT);
106 t3 = delete min(AuxT);
107 t4 = delete min(AuxT);
108 discharge(t1, t2, t3, t4,TTTT);
109 end;

Fig. 9. Phase 4 of clear Aux: pack the remaining L-items, S-items, and T-items from Aux into
non-B-bins.

4.1.3. MMP maintains M-thoroughness. In this subsection we prove that
MMP maintains M-thorough packings. This proof also proceeds by induction on the
number of Insert and Delete operations processed by MMP. Suppose that the packing
P produced by MMP is M-thorough immediately before an Insert or Delete operation
is requested from MMP. We proceed to show that MMP will process that operation
in a manner that maintains M-thoroughness.

We first consider the operation Insert(x): the item x is simply stored into Aux, and
then clear Aux is invoked. Within clear Aux, each bin B whose content is changed (B
can be a new bin or a bin whose content partially changes in the course of execution

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 593

L =

(
1

2
+ ε,

1

2
+ 2ε, . . . ,

1

2
+

N

2
ε, . . . ,

1

2
+ Nε,

1

2
−Nε,

1

2
− (N− 1)ε, . . . ,

1

2
− N

2
ε, . . . ,

1

2
− ε

)

ε

1

2

OPT MMP

i = N/2+1 , ... , Ni = 1, ... , N/2 j = 1, ... , N/4

1

2
ε

ε + i
2

1
 + i

2

1

ε
2

1

2

1

1

2

 - i ε- (N-i+1) - i

i = 1, ... , N

ε - (N/2-2j+1)

ε - (N/2-2j+2)
2

1
 + i ε

Fig. 10. A lower bound example for MMP. Here the items are inserted precisely in the order
in which they are listed in L above. This example proves that there are arbitrarily large lists L (N
is an arbitrarily large integer divisible by 4) for which OPT(L) = N, and MMP(L) = 5

4
N, thus

establishing a lower bound of 5
4

on the competitive ratio of MMP, i.e., R(MMP) ≥ 5
4

.

of clear Aux) is filled with M-bundles via the top with M function. This function
continues filling B until an M-bundle that cannot fit into B is found, in which case
level(B) > 4

5 or until there are no more M-bins and AuxM is empty. Finally, phase 5
of clear Aux is an execution of the function reload M. This function will, in case AuxM

is not empty at the conclusion of maintaining LLS-maximality (phases 1 through 4),
accomplish M-thoroughness by packing the M-bundles from AuxM into the regular
packing in an FF fashion. This will guarantee that (1) there could only be M-bins if
each non-M-bin has a level > 4

5 and (2) any M-bin, except, perhaps, for the rightmost
bin in the packing, has a level > 4

5 .
Next, we consider the operation Delete(x), where x is a non-M-item. If x is

packed into a bin Bp, x is deleted from Bp, the remaining content of Bp is inserted
into Aux, Bp is deleted from the regular packing, and clear Aux is invoked. (As argued
above clear Aux maintains the M-thoroughness of the packing.) Note that deletion of
non-M-items from Aux has no effect on M-thoroughness of MMP. Finally, deletion of
M-items (see code: lines 3–9 in Delete) also preserves M-thoroughness via functions
top with M and reload M.

Thus we proved the following lemma.
Lemma 2. MMP maintains M-thoroughness of packings of arbitrary lists.

4.1.4. Consideration of lists with no M-items. We fix an arbitrary list L
that contains no M-items. Recall that L may be obtained by an arbitrary sequence of
Inserts and Deletes of items. This arbitrariness may lead to various MMP packings
of L. We thus fix an arbitrary MMP packing PL of L. PL consists of the regular
packing P0 and the auxiliary storage Aux.

We then fix an arbitrary optimal packing OPT0 of L and derive from it another
optimal packing OPT of L. OPT is a reordering of the bins from OPT0 such that
the bins of type BL are the leftmost bins of OPT, the bins of type BST are the next

594 ZORAN IVKOVIĆ AND ERROL L. LLOYD

leftmost bins of OPT, . . . , and the bins of type T are the rightmost bins of OPT.
We note that it will be convenient to fix P , a reordering of the bins from P0. P

is defined as follows: the kth leftmost B-bin in OPT and the kth leftmost B-bin in P
must contain the same B-item; the order of non-B-bins of P0 and P is identical.

For both OPT and P , let the index of a B-bin B in the packing OPT(P) be the
number assigned to B in the “left to right” numbering of the bins from OPT(P).
Clearly, for an arbitrary B-item b from L, the indices of B-bins into which b is packed
in OPT and P are equal.

Intuitively, the above construction will enable us to view OPT and P in a special
way: we may imagine that the B-items of L are “static”—they “remain in the same
bin” in an imaginary transformation between OPT and P , and the L-items, S-item,
and T-items “migrate,” since they may be packed into the k1th leftmost bin in OPT
and into the k2th leftmost bin in P , where k1 6= k2.

The underlying idea. The underlying idea of the proof is to develop an elegant
way of capturing the following imaginary series of events. At the outset, someone
“glued” the B-items from L into B bins, one B-item per bin. That person is then
required to take the non-B-items from L and pack them into those B bins and as
many additional bins as necessary (these will be non-B-bins), so as to create OPT.
Next, that person is required to remove all of the non-B-items from bins and retain
the bins containing the glued B-items in the “left to right” order produced by OPT.
Finally, that person is again required to take the non-B-items from L and pack them
into those B bins and as many additional bins as necessary (again, these will be non-
B-bins), so as to create P . As indicated in the course of defining P , we are interested
in “migrations” of non-B-items from bins of all types in OPT to B-bins in P . The
notion of glued B-items motivated the definitions of OPT and P : B-items may be
viewed as “static”; they do not move from bin to bin when the packing is changed
from OPT to P . L-items, S-items, and T-items, on the other hand, may “migrate”;
i.e., the indices of the bins they are packed into in OPT and P may differ. The
remainder of the proof explores this “itemographic process.”

We perform an extensive analysis of the structure of P in terms of different types
of bins in P and OPT and their respective multiplicity fi, 1 ≤ i ≤ 30, where fi
denotes the number of bins of type i in OPT (i is the canonical index of bin types
with respect to the superiority relation. See Figure 1.) The proof will not at all
depend on the particular sequence of Inserts and Deletes that led to L and its MMP
packing PL. The proof will depend only on the fact, proved in subsection 4.1.2, that
MMP produces packings that are LLS-maximal. Based on that property, we derive
lower bounds on the quantities LB , SB , and TB , and NLLS defined thus.

Definition 5. Let LB (SB, TB) denote the number of L-items (S-items, T-items)
in B-bins in P . Let NLLS denote the number of bins of type LLS in P .

A preliminary result. We begin with a preliminary lemma. We establish an
upper bound on the number of bins MMP would require to pack a given number of
L-items, S-items, and T-items.

Lemma 3. Suppose L contains only L-items, S-items, and T-items. MMP will
pack L into at most L2 + S

3 + T
4 + 2 bins.

Proof. Recall that MMP maintains LLS-maximality (see Lemma 1). P0 will
require precisely

⌊L
2

⌋
bins with two L-items (these bins may each contain an additional

S-item or an additional T-item), followed by at most
⌊S

3

⌋
bins with three S-items

(analogously, these bins may each contain an additional T-item), followed by at most

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 595⌊T
4

⌋
bins with four T-items. In addition, Aux might contain at most one L-item, two

S-items, and three T-items. All of these items can fit into at most two bins (one bin
of type LTT and one bin of type SST). Hence the number of bins required by MMP
to pack all of the items of L is at most⌊L

2

⌋
+

⌊S
3

⌋
+

⌊T
4

⌋
+ 2 ≤ L

2
+
S
3

+
T
4

+ 2.

Several technical results. We now proceed with several technical results that
are important in estimating the quantities LB , SB , TB , and NLLS . A precise estimate
of these quantities is the key ingredient in the proof. Each of the following lemmas
contains three statements that are quite analogous and are moreover proved analo-
gously. We adopt this particular style of presentation to avoid unnecessary repetition.

Lemma 4. Consider an optimal packing Popt consisting only of k bins of type BL

(BS; LLS). Consider a list L whose optimal packing could be Popt and is constructed

in stages:5

stage 0: X = the set of items in Popt;

L = ∅;
go to stage 1;

stage i: Y = (the smallest B-item in X (B-item; two L-items),
(1 ≤ i ≤ k) the smallest L-item in X (S-item; S-item));

L = L · Y ;
X = X − set of items in Y;
go to stage i+ 1;

stage k + 1: return L;
Then the B-item and the L-item (the B-item and the S-item; the two L-items and

the S-item) assigned to Y in stages 1 through α =
⌈
k
2

⌉
(
⌈
k
2

⌉
;
⌈
k
3

⌉
), respectively, must

fit together into a bin of type BL (BS, LLS).
Proof. Suppose by way of contradiction that it is not the case that the B-item

and the L-item (the B-item and the S-item; the two L-items and the S-item) assigned
to Y in all of the stages 1 through α =

⌈
k
2

⌉
(
⌈
k
2

⌉
;
⌈
k
3

⌉
), respectively, fit together into

a bin of type BL (BS, LLS).
Then there exists a positive integer 1 ≤ β < α such that only the B-items and

the L-items (the B-items and the S-items; the L-items and the S-items) assigned to
Y in stages 1 through β, respectively, fit into a bin of type BL (BS; LLS).

Consider L arranged in a table with 2 (2;3) rows and k columns as follows: ith
column contains exactly the items added to L in the ith stage of the construction of
L, where within a column the items are arranged in successive rows according to the
order in which they were added to L. Refer to Figure 11 for details.

Note that only the items from the first β columns of this table can, according to
the supposition, fit together into bins: one bin per column of type BL (BS; LLS).

Let C1 be the set of all of the items that lie in the first row (first row; first two
rows) and are also in the first β columns. Let n1 = card(C1). Clearly n1 = β (β;
2β). Let C2 be the set of all of the items in the last row that belong to the columns
β + 1, β + 2, ..., k. Let n2 = card(C2). Clearly n2 = k − β.

Any item a ∈ C2 could only be packed into a bin of type BL (BS; LLS) if b, the
B-item (the B-item; at least one of the two L-items) with which a would be packed,

5In the construction below, the operator · denotes concatenation; i.e., · is a binary operator that
appends its second operand to its first operand.

596 ZORAN IVKOVIĆ AND ERROL L. LLOYD

BL (BS):

BBBBB

stage: 1 2 3 ...

...row: 1

2 L(S) L(S) ... L(S) L(S)L(S)

(column)
β

LLS:

stage:
(column)

row:

1

1 2 3 ... β

k

k

1 L L L L L...

S S S S S...3

......

...

...L(S)

B...B

...L(S)

β+1

......β+1

...L...L

...S...S

L2 L L ... L L ... L ... L

2

k

3

k

2

1

1

2

α =

α =

C

C

C

C

S-items increase in size

B-items increase in size

L-items (S-items) increase in size

L-items increase in size

Fig. 11. A tabular arrangement of L. Letters B, L, and S denote B-items, L-items, and S-items
of L, respectively.

would be from C1; otherwise the level of such a bin would exceed 1. Thus, since
the optimal packing of L contains only bins of type BL (BS; LLS), there should be
sufficiently many items in C1 to ensure the packing of each a ∈ C2; i.e., it should be
the case that n1 ≥ n2, i.e., n1 − n2 ≥ 0. However,

n1 − n2 = (c− 1)β − (k − β) = cβ − k ≤ c
(⌈

k

c

⌉
− 1

)
− k

≤
(
k + c− 1

c

)
− c− k = −1,

where c=2 (2;3) bins of type BL (BS; LLS). This is a contradiction.
Clearly, if MMP packs this particular list L in a series of Inserts of items in the

order in which the items appear in L, MMP will pack at least α bins of type BL (BS;
LLS).

Corollary 1. The MMP packing of the list L defined in the statement of
Lemma 4, carried out as a series of Inserts of items in the order in which the items
appear in L, must contain at least α =

⌈
k
2

⌉
(
⌈
k
2

⌉
;
⌈
k
3

⌉
) bins of type BL (BS, LLS).

Thus we have shown that a very particular sequence of Inserts will pack an L with
a very specific optimal packing in the manner that will, informally, “salvage” about
one half (one half; one third) of the bins of type BL (BS; LLS). The following lemma
shows that this particular order of packing the items of L, inserted one by one in the
order in which they appear in L, is not at all essential. Furthermore, it is not essential
that an optimal packing of L consists only of bins of type BL (BS; LLS). In other
words, to determine the lower bound on the number of bins of type BL (BS; LLS) in

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 597

an MMP packing of a list L containing only B-items, L-items, S-items, and T-items
(B-items, S-items, and T-items [note a careful avoidance of L-items); L-items, S-items,
and T-items (note a careful avoidance of B-items)), the only relevant information is
the maximum number of bins of type BL (BS; LLS) that can be constructed from
items in L. MMP will, informally, “salvage” about one half (one half; one third) of
that maximum number of bins of type BL (BS; LLS). We again choose this particular
style of presentation to avoid the unnecessary repetition.

Lemma 5. Let L′ be a list containing B-items, L-items, S-items, and T-items (B-
items, S-items, and T-items; L-items, S-items, and T-items). Let k be the maximum
number of bins of type BL (BS; LLS) that could be packed from the items of L′. Then
any MMP packing of L′, obtained by an arbitrary sequence of Inserts and Deletes
leading to L′, contains at least α =

⌈
k
2

⌉
(
⌈
k
2

⌉
;
⌈
k
3

⌉
) bins of type BL (BS; LLS).

Proof. Suppose by way of contradiction that there is an MMP packing Pbad of
L′ that contains only γ < α bins of type BL (BS; LLS). Let Pdesired be a maximum
cardinality packing of B-items and L-items (B-items and S-items; L-items and S-
items) from L′ into bins of type BL (BS; LLS) (note the correspondence of Pdesired

with Popt from Lemma 11). By a hypothesis, the maximum number of bins of type
BL (BS; LLS) in the Pdesired packing is precisely k. Let L be the list of items derived
from Pdesired in the manner of Lemma 11. Let P ′ be the MMP packing of L obtained
by a sequence of Inserts of items from L in the order in which the items appear in L
(note the correspondence with the situation from Corollary 1). Since there are only
γ < α bins of type BL (BS; LLS) in Pbad , there must be at least one B-item b (one
B-item b; two L-items l1, l2) and one L-item l (one S-item s; one S-item s) that are
packed in one of the first α bins of type BL (BS; LLS) in P ′, and are not packed in a
bin of type BL (BS; LLS) in Pbad . Note that the size of each of b and l (b and s; l1,
l2, and s) is no greater than the size of the B-item and the L-item (the B-item and
the S-item; the two L-items and the S-item) from the αth bin in Pbad . Thus b and l
(b and s; l1, l2, and s) can fit into a bin. This is a contradiction, since MMP produces
packings that are thorough (thorough; LLS-maximal) (Lemma 1) for bins of type BL
(BS; LLS), and would therefore have packed at least one more bin of type BL (BS;
LLS) in Pbad .

Toward a lower bound on NLLS. We proceed by stating several properties
that will be used to obtain a lower bound on the value of NLLS . We begin by
considering bins of type LSTT. We show that two L-items and one S-item, each from
any, and not necessarily the same, bin of type LSTT must fit into a bin.

Lemma 6. Let l1, l2, and s be two L-items and an S-item, each from any, and
not necessarily the same, bin of type LSTT. Then l1, l2, and s can fit into a bin.

Proof. It suffices to show that 2Lmax + Smax ≤ 1, where Lmax (Smax) denotes
the maximum size of L-items (S-items) in any bin of type LSTT;

Lmax = 1− Smin − 2Tmin < 1− 1

4
− 2 · 1

5
=

7

20
,

Smax = 1− Lmin − 2Tmin < 1− 1

3
− 2 · 1

5
=

4

15
,

2Lmax + Smax < 2 · 7

20
+

4

15
=

29

30
< 1,

where Smin and Tmin denote the minimum size of an S-item and an T-item, respec-
tively.

Establishing a good lower bound on the number of bins of type LLS that would be

598 ZORAN IVKOVIĆ AND ERROL L. LLOYD

produced by MMP is very important later in the proof, since that bound is a measure
of the success of the technique of LLS-coalitions utilized by MMP. To that end, we
state and prove the following lemma.

Lemma 7. Suppose that L is a list of non-B-items. Let Popt be an arbitrary
optimal packing of L satisfying the following three conditions:

1. Popt contains at least n1 bins of type LLS;
2. at least n2 L-items from L are not packed into bins of type LLS in Popt, and

each of these L-items can fit into a bin of type LSTT;
3. at least n2 S-items from L are not packed into bins of type LLS in Popt, and

each of these S-items can fit into a bin of type LSTT.
Then the number of bins of type LLS in any MMP packing of L is at least⌈

n1+n2

4

⌉− 1.
Proof. First, the following fact follows immediately from Lemma 6.
Fact 1. The maximum number of bins of type LLS that can be packed from the

items of L is at least n0 = n1 +
⌊
n2

2

⌋
.

Now to prove this lemma, we consider two cases.
Case 1. n1 ≥ n2.
By Lemma 5, MMP will pack at least

⌈
n0

3

⌉
bins of type LLS:

⌈n0

3

⌉
=

⌈
n1 +

⌊
n2

2

⌋
3

⌉
≥

⌈
n1 + n2−1

2

3

⌉
=

⌈ 3
4n1 + 1

4n1 + 1
2n2 − 1

2

3

⌉
=

⌈
n1 + n2

4
− 1

6

⌉
≥
⌈
n1 + n2

4

⌉
− 1.

Case 2. n1 < n2.
By Lemma 6 and the fact that MMP maintains LLS-maximality of bins of type

LLS (Lemma 1), MMP will pack at least
⌊
n2

2

⌋
bins of type LLS. Further, note that

n1 + n2 < 2n2:⌊n2

2

⌋
≥

⌊ n1+n2

2

2

⌋
=

⌊
n1 + n2

4

⌋
≥

⌈
n1 + n2

4

⌉
− 1.

Toward lower bounds on LB, SB, and TB. The next several lemmas estab-
lish important properties that will be used later to bound LB , SB , and TB .

Lemma 8. A B-item from a bin of type BL can be packed together with any
S-item.

Proof. It suffices to show that Bmax + Smax < 1, where Bmax denotes the maxi-
mum size of B-items in any bin of type BL, and Smax denotes the maximum size of
S-items:

Bmax = 1− Lmin < 1− 1

3
=

2

3
, Smax =

1

3
, Bmax + Smax <

2

3
+

1

3
= 1,

where Lmin denotes the minimum size of L-items.
The next nine lemmas are proved quite analogously.
Lemma 9. A B-item from a bin of type BL can be packed together with any

T-item.
Lemma 10. A B-item from a bin of type BST can be packed together with an

L-item from a bin of type LLS.
Lemma 11. A B-item from a bin of type BST can be packed together with an

L-item from a bin of type LSTT.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 599

Lemma 12. A B-item from a bin of type BST can be packed together with any
S-item.

Lemma 13. A B-item from a bin of type BST can be packed together with any
T-item.

Lemma 14. A B-item from a bin of type BS can be packed together with any
T-item.

Lemma 15. A B-item from a bin of type BTT can be packed together with an
L-item from a bin of type LSTT.

Lemma 16. A B-item from a bin of type BTT can be packed together with any
S-item.

Lemma 17. A B-item from a bin of type BTT can be packed together with any
T-item.

MMP is 5
4 -competitive for lists with no M-items. Recall that there are 30

possible types of bins involving B-items, L-items, S-items, and T-items: BL, BST,
. . . , T (see Figure 1). We will find it convenient to refer to these types of bins
according to their canonical index in the lexicographical ordering based on the relation
of superiority. For example, a bin of type 1 is a bin of type BL, a bin of type 2 is a
bin of type BST, . . . , a bin of type 30 is a bin of type T, as depicted in Figure 1.

Next, recall that only a subset of the above types of bins is allowed in MMP
packings. The allowed bin types are BL, BST, BS, BTT, BT, B, LLS, LLT, LL,
SSST, SSS, and TTTT. Alternatively, using the canonical indices, the allowed bin
types are 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, and 27.

Intuitively, certain types of bins will be more important for the proof of the upper
bound on the competitive ratio than the others. We therefore classify the bin types
into the front (more important) types of bins and the back (less important) types of
bins.

Definition 6. The front types of bins are BL, BST, BS, BTT, BT, B, LLS, and
LSTT (types 1, 2, . . . , 7, 11). All of the other types are back types of bins. Let Lback
(Sback, Tback) denote the number of L-items (S-items, T-items) in the bins of back
types in OPT.

Recall that fi, 1 ≤ i ≤ 30, denotes the number of bins of type i in OPT. The
following equations hold (see Figure 1):

Lback = 2(f8 + f9) + f10 +
17∑
i=12

fi,

Sback = 3(f18 + f19) + 2(f10 + f20 + f21 + f22) + f12 + f13 +
26∑
i=23

fi,

Tback = 4f27 + 3(f14 + f23 + f28) + 2(f15 + f20 + f24 + f29)

+ f8 + f12 + f16 + f18 + f21 + f25 + f30,

L = f1 + 2f7 + f11 + Lback,
S = f2 + f3 + f7 + f11 + Sback,
T = f2 + 2f4 + f5 + 2f11 + Tback.

We next furnish a technical definition of the list of indices.
Definition 7. A list of indices l = i1, i2, . . . , ik is a list of positive integers. ∗

will be used as an abbreviation for the list 8, 9, 10, 12, 13, . . . , 30.6

6Note that this list corresponds to the back types of bins.

600 ZORAN IVKOVIĆ AND ERROL L. LLOYD

We would like to use this notation to count the number of bins in OPT whose type
is an element of the list of indices l. To that end, we furnish the following definition.

Definition 8. Let l denote a list of indices. Let fl denote the number of bins in
OPT whose type is an element of l. Then fl =

∑
i∈l fi.

For example, the number of bins in OPT that contains a B-item and an S-item
(bins of type BST (2) or BS (3)) is f2,3 = f2 + f3.

Let us define another technical definition of ranges of bins. Each range of bins ri
captures precisely the indices of B-bins of type i in OPT.

Definition 9. Ranges of bins ri, 1 ≤ i ≤ 6, are segments of positive integers de-
fined as follows: r1 = [1, . . . , f1], r2 = [f1 +1, . . . , f1,2], r3 = [f1,2 +1, . . . , f1,2,3], r4 =
[f1,2,3 + 1, . . . , f1,2,3,4], r5 = [f1,...,4 + 1, . . . , f1,...,5], and r6 = [f1,...,5 + 1, . . . , f1,...,6].

We would like to count the number of items of a certain type (L-items, S-items,
or T-items) that are packed into a bin of type i in OPT and into a B-bin with an
index from the range rj in P . Intuitively, we would like to count how many items of
a certain type “migrated” from bins of type i in OPT (intuitively, the source bins) to
B-bins in P that “used to be” bins of type j in OPT; i.e., the index of such bins in
both OPT and P is from the range rj (intuitively, the destination bins).

We would also like to count the number of items of a certain type (L-items, S-
items, or T-items) that are packed into a bin in OPT whose type is an element of the
list of indices ls (intuitively, the types of source bins), and into a B-bin in P whose
index is from a range of bins indexed by an element of the list of indices ld (intuitively,
the ranges of destination bins).

Definition 10. Let Lsd (Ssd, T sd), s ∈ {1, 2, . . . , 5, 7, 8, . . . , 30} and d ∈ {1, 2, . . . , 6},
denote the number of L-items (S-items, T-items) that are packed into bins of type s
(source) in OPT, and into B-bins with an index from rd (destination) in P .

Let ls and ld denote lists of indices. Let Llsld (Slsld , T lsld) denote the number of L-
items (S-items, T-items) that are packed into a bin in OPT whose type is an element
of the list of indices ls, and into a B-bin in P whose index is from a range of bins
indexed by an element of the list of indices ld. Then

Llsld =
∑
i∈ls

∑
j∈ld

Lij

 Slsld =
∑
i∈ls

∑
j∈ld

Sij , T lsld =
∑
i∈ls

∑
j∈ld

T ij

 .

We illustrate this notation with two examples.
First, L7

1 denotes the number of L-items that are packed into bins of type 7 (LLS)
in OPT, and into bins with an index from r1 in P , that is, into one of the f1 leftmost
bins, bins that contain a B-item that is packed into a bin of type 1 (BL) in OPT.

Second, the number of T-items that are packed into a bin of one of the types
BST (2), BT (4), or LLT (8) in OPT, and into a B-bin whose index is from one of
the ranges r2 or r3 (that is, into one of the bins that contains a B-item that is packed
into a bin of type 2 (BST) or a bin of type 3 (BS) in OPT) is written as follows:

T 2,4,8
2,3 =

∑
i∈2,4,8

∑
j∈2,3

T ij = T 2
2 + T 4

2 + T 8
2 + T 2

3 + T 4
3 + T 8

3 .

We now state and prove the main result of this subsection.
Lemma 18. MMP(L) ≤ 5

4OPT (L) + 3.
Proof. We begin with a series of four claims that establish lower bounds on the

values of LB , SB , TB , and NLLS , respectively.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 601

Claim 1. LB ≥ L1,7,11,∗
1,3,...,6 + L1,∗

2 + min(2f7 + f11 − L7,11
1,3,...,6, f2 − L1,∗

2).
Proof. The key to the proof of this lemma is an observation that any B-item from

a bin of type 2 (BST) can be packed together with any L-item from a bin of type 7
or 11 (LLS or LSTT) (Lemmas 10 and 11).

The right-hand side of the above inequality consists of the follwing three additive
terms.

1. The first term accounts for all of the L-items that are packed into one of the
bins of type 1, 7, 11, or into one of the bins of back type in OPT, and into one of the
B-bins in P that contains a B-item that is packed into a bin of type 1, 3, 4, 5, or 6 in
OPT (note a careful avoidance of bins of type 2 (BST)).

2. The second term accounts for all of the L-items that are packed into one of
the bins of type 1, or into one of the bins of back type in OPT, and into one of the
B-bins in P that contains a B-item that is packed into a bin of type 2 (again, note a
careful avoidance of bins of type 2 (BST)).

3. The third term, the min term, is somewhat more involved.
The first operand of the min term is 2f7 + f11 − L7,11

1,3,...,6. This number denotes
the number of L-items from bins of type 7 (LLS) and 11 (LSTT) in OPT that are not
packed into a bin in P together with a B-item that is packed into a bin of type 1, 3,
4, 5, or 6 in OPT (note a careful avoidance of B-items from bins of type 2 (BST) in
OPT).

The second operand of the min term is f2−L1,∗
2 . This number denotes the number

of B-items that are (1) packed into a bin of type 2 (BST) in OPT and (2) are not
packed into a bin in P together with an L-item that is packed into a bin of type 1
(BL) or one of the back-type bins in OPT (note a careful avoidance of L-items from
bins of type 7 (LLS) and 11 (LSTT) in OPT).

Thus, by Lemmas 10 and 11, any B-item accounted for by the second operand
can be packed together with any L-item accounted for by the first operand of the
min expression. By the LLS-maximality of MMP (see Lemma 1), P will feature
min(2f7 + f11 −L7,11

1,3,...,6, f2 −L1,∗
2) bins of type 1 (BL) containing the above B-items

and L-items.
The following two lemmas are proved quite analogously.
Claim 2. SB ≥ S2,3,7,11,∗

3,5,6 + min(f2 + f3 + f7 + f11 − S2,3,7,11
3,5,6 , f1 + f2 + f4 −

(LB − L1,7,11,∗
3,5,6)).

Claim 3. TB ≥ T 2,4,5,11,∗
5,6 + min(f2 + 2f4 + f5 + 2f11 − T 2,4,5,11

5,6 , f1,...,4 −
(LB − L1,7,11,∗

5,6)− (SB − S2,3,7,11,∗
5,6)).

Claim 4. NLLS ≥ 1
4 (max(0, f7−(L7

1,...,6+S7
1,...,6))+f11−max(L11

1,...,6, S
11
1,...,6))−1.

Proof. The key to the proof of this lemma is the statement of Lemma 7. Let the
set of items packed into non-B-bins in OPT play the role of L in Lemma 7. Let the
non-B-bins of OPT play the role of Popt in Lemma 7. Further, note the following
conditions.

1. max(0, f7 − (L7
1,...,6 + S7

1,...,6)) is a (conservative) lower bound on the number
of bins of type LLS in OPT that do not contain an item that is packed into a B-bin
in P . These max(0, f7 − (L7

1,...,6 + S7
1,...,6)) bins of type LLS play the role of n1 bins

of type LLS in Lemma 7.
2. f11 −max(L11

1,...,6, S
11
1,...,6) is a (conservative) lower bound on the number of L-

items and the number of S-items from bins of type LSTT in OPT that are not packed
into B-bins in P . These f11−max(L11

1,...,6, S
11
1,...,6) L-items and f11−max(L11

1,...,6, S
11
1,...,6)

S-items play the role of n2 L-items and S-items in Lemma 7.

602 ZORAN IVKOVIĆ AND ERROL L. LLOYD

This claim, then, follows directly from Lemma 7. Note that, unlike in Lemma 7,
we did not choose to apply the ceiling operator, as this will have no substantive effect
on the analysis of the competitive ratio of MMP.

Next, we apply Lemma 5 to establish lower bounds on the values of L1
1 and S3

3 .
Note that we do not provide a lower bound for T 5

5 . Again, while a lower bound
on T 5

5 could be established in an analogous manner, accounting for T 5
5 will have no

substantive effect on the analysis of the competitive ratio of MMP.
Claim 5. L1

1 ≥ 1
2 (f1 −min(f1, L

7,11,∗
1 + L1

2,...,6)).
Proof. The proof is immediate from Lemma 5. Let Γ be the set of B-items from

L that are packed into bins of type BL in OPT and at the same time satisfy the
following two properties.

1. They are packed into a bin in OPT together with L-items which satisfy the
property that they are not packed into a bin of type BL in P together with a B-bin
with an index from r2 ∪ r3 . . . ∪ r6. Informally, the B-items from Γ cannot be packed
in OPT together with L-items that “migrate” from bins with indices from r1 in OPT
to other B-bins in P .

2. They are not packed into a bin in P together with L-items that are packed
into non-B-bins in OPT.

A conservative estimate of the lower bound on the cardinality of Γ is f1 −
min(f1, L

7,11,∗
1 +L1

2,...,6). We say that the estimate is conservative, since there may be
B-items that violate both properties, whereas this bound assumes that each B-item
violates at most one property; i.e., it is assumed that there are no “overlaps.”

The list consisting of B-items of Γ and L-items that are packed together with a
B-item from Γ in OPT now plays the role of L′ from Lemma 5. Further, the above
conservative estimate of the cardinality of Γ plays the role of k from Lemma 5.

The claim follows directly from Lemma 5. Note that, unlike in Lemma 5, we did
not apply the ceiling operator, as this will have no substantive effect on the analysis
of the competitive ratio of MMP.

The following claim is proved quite analogously.
Claim 6. S3

3 ≥ 1
2 (f3 −min(f3, L

1,7,11,∗
3 + S2,7,11,∗

3 + S3
1,2,4,5,6)).

Next, we note that the number of bins in OPT is precisely OPT(L) =
∑30
i=1 fi.

Let us now bound the value of MMP(L) in terms of fi’s, LB , SB , TB , and NLLS . The

number of B-bins, B =
∑6
i=1 fi = f1,2,3,4,5,6, is identical for OPT and P . Further,

MMP packs LB (SB , TB) L-items (S-items, T-items) into B-bins, and NLLS bins of
type LLS. Finally, we assume that the L-items, S-items, and T-items that are not
explicitly accounted for via LB , SB , TB , and NLLS are packed in the “worst possible
way.” Hence, we bound the value of MMP(L) as follows:

MMP(L) ≤ f1,...,6 +NLLS +
1

2
(L − LB − 2NLLS)

+
1

3
(S − SB −NLLS) +

1

4
(T − TB) + 2

= f1,...,6 +
1

2
(f1 + 2f7 + f11 + Lback − LB)

+
1

3
(f2 + f3 + f7 + f11 + Sback − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 + Tback − TB) + 2.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 603

Note that

Lback
2

+
Sback

3
+
Tback

4
≤ 5

4
f∗,

which can be verified by a straightforward substitution. Hence, to complete the proof
it suffices to show that

K ≤ 5

4
f1,...,7,11 + 1,

where K is defined as follows:

K = f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − TB).

We outline four conditions, (I),...,(IV), by observing Claims 1 through 4. Our
case analysis will be guided by these conditions:

(I) holds⇐⇒ 2f7 + f11 − L7,11
1,3,...,6 ≤ f2 − L1,∗

2 ,

(II) holds⇐⇒ f2 + f3 + f7 + f11 − S2,3,7,11
3,5,6 ≤ f1 + f2 + f4 − (LB − L1,7,11,∗

3,5,6),

(III) holds⇐⇒ f2 + 2f4 + f5 + 2f11 − T 2,4,5,11
5,6

≤ f1,...,4 − (LB − L1,7,11,∗
5,6)− (SB − S2,3,7,11,∗

5,6),

(IV) holds⇐⇒ L7
1,...,6 + S7

1,...,6 ≤ f7.

Before proceeding with the analysis, we note several useful facts:
1. LB ≥ 1

2f1 (immediate from Lemma 5).
2. If (I) holds,

LB ≥ L1,7,11,∗
1,3,...,6 + L1,∗

2 + 2f7 + f11 − L7,11
1,3,...,6

= L1,∗
1,3,...,6 + L1,∗

2 + 2f7 + f11

≥ 2f7 + f11.

3. If (I) does not hold (¬(I) holds),

LB ≥ L1,7,11,∗
1,3,...,6 + L1,∗

2 + f2 − L1,∗
2

= f2 + L1,7,11,∗
1,3,...,6

= f2 + L1
1 + L1,7,11,∗

3,...,6 + L7,11,∗
1

≥ f2 +
1

2
(f1 −min(f1, L

7,11,∗
1 + L1

2,...,6)) + L1,7,11,∗
3,...,6 + L7,11,∗

1

= f2 +
1

2
(f1 −min(f1, L

7,11,∗
1 + L1

2,...,6)) +

(
1

2
+

1

2

)
L1

3,...,6

+ L7,11,∗
3,...,6 +

(
1

2
+

1

2

)
L7,11,∗

1 +

(
1

2
− 1

2

)
L1

2

= f2 +
1

2
f1 +

1

2
(L7,11,∗

1 + L1
2,...,6)− 1

2
min(f1, L

7,11,∗
1 + L1

2,...,6)

604 ZORAN IVKOVIĆ AND ERROL L. LLOYD

+
1

2
L1

3,...,6 + L7,11,∗
3,...,6 +

1

2
L7,11,∗

1 − 1

2
L1

2

≥ 1

2
f1 + f2 − 1

2
L1

2 +
1

2
L1

3,...,6 + L7,11,∗
3,...,6 +

1

2
L7,11,∗

1

≥ 1

2
f1 + f2 − 1

2
L1

2 +
1

2
L7,11

1,3,...,6.

4. If (II) holds,

SB ≥ S2,3,7,11,∗
3,5,6 + f2 + f3 + f7 + f11 − S2,3,7,11,∗

3,5,6

= f2 + f3 + f7 + f11.

5. If ¬(II) holds,

SB ≥ S2,3,7,11,∗
3,5,6 + f1 + f2 + f4 − LB + L1,7,11,∗

3,5,6

= f1 + f2 + f4 − LB + S2,7,11,∗
5,6 + L1,7,11,∗

5,6 + S3
3 + S2,7,11,∗

3 + S3
5,6 + L1,7,11,∗

3

≥ f1 + f2 + f4 − LB + S2,7,11,∗
5,6 + L1,7,11,∗

5,6 +
1

2
f3

−1

2
min(f3, L

1,7,11,∗
3 + S2,7,11,∗

3 + S3
1,2,4,5,6) + S2,7,11,∗

3 + S3
5,6 + L1,7,11,∗

3

= f1 + f2 + f4 − LB + S2,7,11,∗
5,6 + L1,7,11,∗

5,6 +
1

2
f3

−1

2
min(f3, L

1,7,11,∗
3 + S2,7,11,∗

3 + S3
1,2,4,5,6) +

(
1

2
+

1

2

)
S2,7,11,∗

3

+

(
1

2
+

1

2

)
S3

5,6 +

(
1

2
+

1

2

)
L1,7,11,∗

3 +

(
1

2
− 1

2

)
S3

1,2,4

= f1 + f2 + f4 − LB + S2,7,11,∗
5,6 + L1,7,11,∗

5,6 +
1

2
f3

+
1

2
(L1,7,11,∗

3 + S2,7,11,∗
3 + S3

1,2,4,5,6)

−1

2
min(f3, L

1,7,11,∗
3 + S2,7,11,∗

3 + S3
1,2,4,5,6)

+
1

2
S2,7,11,∗

3 +
1

2
S3

5,6 +
1

2
L1,7,11,∗

3 − 1

2
S3

1,2,4

≥ f1 + f2 +
1

2
f3 + f4 − LB +

1

2
L1,7,11,∗

3 + L1,7,11,∗
5,6 +

1

2
S2,7,11,∗

3

+S2,7,11,∗
5,6 +

1

2
S3

5,6 −
1

2
S3

1,2,4

≥ f1 + f2 +
1

2
f3 + f4 − LB − 1

2
S3

1,2,4.

6. If (III) holds,

TB ≥ T 2,4,5,11,∗
5,6 + f2 + 2f4 + f5 + 2f11 − T 2,4,5,11

5,6

= f2 + 2f4 + f5 + 2f11.

7. If ¬ (III) holds,

TB ≥ T 2,4,5,11,∗
5,6 + f1,...,4 − (LB − L1,7,11,∗

5,6)− (SB − S2,3,7,11,∗
5,6)

≥ f1,...,4 − (LB − L1,7,11,∗
5,6)− (SB − S2,3,7,11,∗

5,6)

≥ f1,...,4 − LB − SB .

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 605

Based on the bounds on LB , SB , TB , and NLLS , the proof of Lemma 18 is
completed by an case analysis.

Case 1. (II) holds; (III) holds.

K = f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − TB)

≤ f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − (f2 + f3 + f7 + f11)−NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − (f2 + 2f4 + f5 + 2f11))

= f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)− 1

3
NLLS

≤ f1,...,6 +
1

2

(
f1 + 2f7 + f11 − 1

2
f1

)
=

5

4
f1 + f2,...,7 +

1

2
f11

≤ 5

4
f1,...,7,11 + 1.

Case 2. (II) holds; ¬(III) holds.

K = f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − TB)

≤ f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − (f1 + f2 + f3 + f4 − LB − SB))

=
5

4
f1 +

4

3
f2 +

13

12
f3 +

5

4
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11

−1

4
LB − 1

12
SB − 1

3
NLLS

≤ 5

4
f1 +

4

3
f2 +

13

12
f3 +

5

4
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11

−1

4
LB − 1

12
(f2 + f3 + f7 + f11)− 1

3
NLLS

≤ 5

4
f1,2 + f3 +

5

4
f4,5 + f6 +

5

4
f7,11

≤ 5

4
f1,...,7,11 + 1.

606 ZORAN IVKOVIĆ AND ERROL L. LLOYD

Case 3. ¬(II) holds; ¬(III) holds.

K = f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − TB)

≤ f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − (f1 + f2 + f3 + f4 + (L1,7,11,∗

5,6 − LB) + (S2,3,7,11,∗
5,6 − SB)))

=
5

4
f1 +

4

3
f2 +

13

12
f3 +

5

4
f4,5 + f6 +

4

3
f7,11 − 1

4
LB − 1

12
SB − 1

3
NLLS

−1

4
L1,7,11,∗

5,6 − 1

4
S2,3,7,11,∗

5,6

≤ 5

4
f1 +

4

3
f2 +

13

12
f3 +

5

4
f4,5 + f6 +

4

3
f7,11 − 1

4
LB

− 1

12

(
f1 + f2 +

1

2
f3 + f4 − LB − 1

2
S3

1,2,4

)
− 1

3
NLLS − 1

4
L1,7,11,∗

5,6 − 1

4
S2,3,7,11,∗

5,6

≤ 7

6
f1 +

5

4
f2 +

25

24
f3 +

7

6
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11 − 1

6
LB − 1

3
NLLS

−1

4
L1,7,11,∗

5,6 − 1

4
S2,3,7,11,∗

5,6

≤ 7

6
f1 +

5

4
f2 +

25

24
f3 +

7

6
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11 − 1

6
LB − 1

12
S7,11

5,6 −
1

3
NLLS .

Case 3.1. (I) holds.

K ≤ 7

6
f1 +

5

4
f2 +

25

24
f3 +

7

6
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11 − 1

6
(2f7 + f11)

≤ 5

4
f1,...,7,11 + 1.

Case 3.2. ¬(I) holds.

K ≤ 7

6
f1 +

5

4
f2 +

25

24
f3 +

7

6
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11

−1

6

(
1

2
f1 + f2 − 1

2
L1

2 +
1

2
L7,11

1,3,...,6

)
− 1

12
S7,11

5,6 −
1

3
NLLS

=
13

12
f1 +

13

12
f2 +

25

24
f3 +

7

6
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11 +

1

12
L1

2 −
1

12
L7,11

1,3,...,6

− 1

12
S7,11

5,6 −
1

3
NLLS

≤ 7

6
f1 − 1

12
S7,11

1 +
1

12
L1

2 +
7

6
f2 − 1

12
L7,11

2 − 1

12
S7,11

2 +
9

8
f3 − 1

12
S7,11

3

+
5

4
f4 − 1

12
S7,11

4 +
5

4
f5 + f6 +

4

3
f7 +

4

3
f11 − 1

12
L7,11

1,3,...,6 −
1

12
S7,11

5,6 −
1

3
NLLS

≤ 5

4
f1 +

7

6
f2 +

9

8
f3 +

5

4
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11 − 1

12
L7,11

1,...,6 −
1

12
S7,11

1,...,6 −
1

3
NLLS

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 607

≤ 5

4
f1 +

7

6
f2 +

9

8
f3 +

5

4
f4 +

5

4
f5 + f6 +

4

3
f7 +

4

3
f11 − 1

12
L7,11

1,...,6 −
1

12
S7,11

1,...,6

−1

3

(
1

4
(max(0, f7 − (L7

1,...,6 + S7
1,...,6)) + f11 −max(L11

1,...,6, S
11
1,...,6))− 1

)
=

5

4
f1 +

7

6
f2 +

9

8
f3 +

5

4
f4 +

5

4
f5 + f6 +

4

3
f7 +

5

4
f11 − 1

12
L7,11

1,...,6 −
1

12
S7,11

1,...,6

− 1

12

(
max(0, f7 − (L7

1,...,6 + S7
1,...,6)) +

1

12
max(L11

1,...,6, S
11
1,...,6)

)
+

1

3

≤ 5

4
f1,...,7,11 + 1 +

1

12
f7 − 1

12

(
max(0, f7 − (L7

1,...,6 + S7
1,...,6))− 1

12
L7,11

1,...,6 −
1

12
S7,11

1,...,6

+
1

12
max(L11

1,...,6, S
11
1,...,6)

)
≤ 5

4
f1,...,7,11 + 1 +

1

12
K′,

where K′ = f7 − (max(0, f7 − L7
1,...,6 − S7

1,...,6) + L7
1,...,6 + S7

1,...,6).
Case 3.2.1. (IV) holds. K′ = f7−(f7−L7

1,...,6−S7
1,...,6 +L7

1,...,6 +S7
1,...,6) = 0.

Case 3.2.2. ¬(IV) holds. K′ = f7 − L7
1,...,6 − S7

1,...,6 < 0.
Case 4. ¬(II) holds; (III) holds.

K = f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3
(f2 + f3 + f7 + f11 − SB −NLLS)

+
1

4
(f2 + 2f4 + f5 + 2f11 − TB)

≤ f1,...,6 +
1

2
(f1 + 2f7 + f11 − LB)

+
1

3

(
f2 + f3 + f7 + f11 −

(
f1 + f2 +

1

2
f3 + f4 − LB

+
1

2
L1,7,11,∗

3 + L1,7,11,∗
5,6 +

1

2
S2,7,11,∗

3 + S2,7,11,∗
5,6 +

1

2
S3

5,6 −
1

2
S3

1,2,4

)
−NLLS

)
+

1

4
(f2 + 2f4 + f5 + 2f11 − (f2 + 2f4 + f5 + 2f11))

=
7

6
f1 + f2 +

7

6
f3 +

2

3
f4 + f5,6 +

4

3
f7 +

5

6
f11 − 1

6
LB − 1

3
NLLS +

1

6
S3

1,2,4

−1

3

(
1

2
L1,7,11,∗

3 + L1,7,11,∗
5,6 +

1

2
S2,7,11,∗

3 + S2,7,11,∗
5,6 +

1

2
S3

5,6

)
≤ 7

6
f1 + f2 +

7

6
f3 +

2

3
f4 + f5,6 +

4

3
f7 +

5

6
f11 − 1

6
LB +

1

6
S3

1,2,4 −
1

12
S7

3,5,6 −
1

3
NLLS .

Case 4.1. (I) holds.

K ≤ 7

6
f1 + f2 +

7

6
f3 +

2

3
f4 + f5,6 +

4

3
f7 +

5

6
f11 − 1

6
(2f7 + f11) +

1

6
S3

1,2,4

≤ 5

4
f1 − 1

12
S3

1 +
13

12
f2 − 1

12
S3

2 +
5

4
f3 − 1

12
S3

1,2,4 +
3

4
f4 − 1

12
S3

4

+ f5,6,7 +
2

3
f11 +

1

6
S3

1,2,4

608 ZORAN IVKOVIĆ AND ERROL L. LLOYD

=
5

4
f1 +

13

12
f2 +

5

4
f3 +

3

4
f4 + f5,6,7 +

2

3
f11

≤ 5

4
f1,...,7,11 + 1.

Case 4.2. ¬ (I) holds.

K ≤ 7

6
f1 + f2 +

7

6
f3 +

2

3
f4 + f5,6 +

4

3
f7 +

5

6
f11 − 1

6

(
1

2
f1 + f2 − 1

2
L1

2 +
1

2
L7

1,3,...,6

)
+

1

6
S3

1,2,4 −
1

12
S7

3,5,6 −
1

3
NLLS

≤ 5

4
f1 − 1

12
S3

1 −
1

12
S7

1 +
7

6
f2 − 1

12
L1

2 −
1

12
S3

2 −
1

12
L7

2 −
1

12
S7

2

+
5

4
f3 − 1

12
S3

1,2,4 +
3

4
f4 − 1

12
S3

4 −
1

12
S7

4 + f5,6 +
4

3
f7 +

5

6
f11

+
1

12
L1

2 −
1

12
L7

1,3,...,6 +
1

6
S3

1,2,4 −
1

12
S7

3,5,6 −
1

3
NLLS

=
5

4
f1 +

7

6
f2 +

5

4
f3 +

3

4
f4 + f5,6 +

4

3
f7 +

5

6
f11 − 1

12
L7

1,...,6 −
1

12
S7

1,...,6 −
1

3
NLLS

≤ 5

4
f1 +

7

6
f2 +

5

4
f3 +

3

4
f4 + f5,6 +

4

3
f7 +

5

6
f11 − 1

12
L7

1,...,6 −
1

12
S7

1,...,6

−1

3

(
1

4
(max(0, f7 − (L7

1,...,6 + S7
1,...,6)) + f11 −max(L11

1,...,6, S
11
1,...,6))− 1

)
≤ 5

4
f1 +

7

6
f2 +

5

4
f3 +

3

4
f4 + f5,6 +

4

3
f7 +

11

12
f11 − 1

12
L7,11

1,...,6 −
1

12
S7,11

1,...,6

− 1

12

(
max(0, f7 − (L7

1,...,6 + S7
1,...,6)) +

1

12
max(L11

1,...,6, S
11
1,...,6)

)
+

1

3

≤ 5

4
f1,...,7,11 + 1 +

1

12
f7 − 1

12

(
max(0, f7 − (L7

1,...,6 + S7
1,...,6))− 1

12
L7,11

1,...,6 −
1

12
S7,11

1,...,6

+
1

12
max(L11

1,...,6, S
11
1,...,6)

)
≤ 5

4
f1,...,7,11 + 1 +

1

12
K′,

where K′ = f7 − (max(0, f7 − L7
1,...,6 − S7

1,...,6) + L7
1,...,6 + S7

1,...,6).
Case 4.2.1. (IV) holds. K′ = f7−(f7−L7

1,...,6−S7
1,...,6 +L7

1,...,6 +S7
1,...,6) = 0.

Case 4.2.2. ¬(IV) holds. K′ = f7 − L7
1,...,6 − S7

1,...,6 < 0.

4.1.5. Consideration of arbitrary lists. We established that the competitive
ratio of MMP packings of lists of non-M-items is 5

4 . We now use the M-thoroughness
of MMP, established in Lemma 2, to establish 5

4 as the competitive ratio of MMP for
arbitrary lists.

Theorem 1. Let L be a list of items of arbitrary size from (0, 1]. Then

MMP(L) ≤ 5

4
OPT(L) + 3.

Proof. We consider the following two cases.
Case 1. There are no M-bins in any MMP packing of L.
We may disregard all of the M-items from L and directly apply Lemma 18.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 609

Case 2. There exists at least one MMP packing of L that contains an M-bin.
Fix an arbitrary MMP packing PL of L that contains an M-bin. Let P0 and Aux be

the regular packing and the auxiliary storage of PL, respectively. By M-thoroughness
of MMP (Lemma 2), all of the bins of the regular packing have a level of at least 4

5 ,
except for, possibly, the last bin. This immediately implies that the regular packing
P0 requires at most 5

4OPT(L) + 1 bins to pack all of the items of L, except for the
excess items from Aux: at most one L-item, two S-items, and three T-items, all of
which can be packed into two bins. Thus the overall number of bins required by PL
is at most 5

4OPT(L) + 3.

4.2. The running time of MMP is Θ(logn).
Theorem 2. MMP can be implemented to run in Θ(logn) uniform running time

per Insert/Delete operation.
Proof. Recall from sections 3.2.1 and 3.2.2 that each of the functions utilized by

MMP runs in logarithmic time. It is easy to see from the code that there is a small
bounded number of calls to these functions preceding each packing of an item and
in particular each insertion and deletion of a whole bin. Note that this in itself is
not sufficient to prove the logarithmic running time of MMP. However, it does suffice
to show that the number of bins that are inserted and deleted as a consequence of a
single Insert or Delete operation is bounded by a constant.

The proof proceeds by a case analysis. The nontrivial cases are the following:
Insert of a B-item, Insert of an L-item, Insert of an S-item, and Insert of a T-item;
Delete of a B-item, Delete of an L-item, Delete of an S-item, and, finally, Delete of a
T-item.

We only show the case of an Insert of an S-item and note that the proofs are quite
analogous for each of the other cases.

To facilitate a simple exposition of the proof, we denote items by upper case
letters corresponding to their type (e.g., a T-item will be denoted as T in this proof).
Items that could form an LLS-coalition will be decorated with an apostrophe.

What is the longest possible sequence of bin insertions/deletions an Insert of an
S-item S’ could generate?

We consider two subcases. First, S’ is inserted so as to form an LLS’ bin. Second,
S’ is inserted into a B-bin. It can be shown that the more difficult case is the second
case and with that case the subcase leading to a BS’T bin is more difficult than the
subcase leading to a BS’ bin.

We proceed with an analysis of the case of a BS’T bin. Before the Insert of S’,
the content of Aux was in the worst case: {L, 2S, 3T}.

To construct BS’T, S’ may have in the worst case evicted two T-items from a
BTT bin and “recruited” a T-item from another BTT bin. At this moment, one bin
(BS’T) is inserted, one bin (BTT) is deleted, and the content of Aux is in the worst
case: {B, L, 2S, 6T}.

The B-item from Aux could now, in the worst case, form a BTT bin with two
T-items, each from a BT bin. At this moment, one bin (BTT) is inserted and two
bins (BT, BT) are deleted. Aux is now {2B, L, 2S, 8T}.

The two B-items from Aux could now, in the worst case, each form a BT bin with
a T-item from an LLT bin. At this moment, two bins (BT, BT) are inserted, and two
bins (LLT, LLT) are deleted. Aux is now {5L, 2S, 8T}.

By LLS-maximality of MMP, none of the L-items from Aux can form LLS-
coalitions. Thus, in the worst case, each of the five L-items from Aux can form

610 ZORAN IVKOVIĆ AND ERROL L. LLOYD

an LLT bin with a T-item from an SSST bin. At this moment, five LLT bins are
inserted, and five SSST bins are deleted. Aux is now {L, 17S, 8T}.

Again, by LLS-maximality of MMP, none of the S-items from Aux can form LLS-
coalitions. Thus, in the worst case, five SSST bins are formed out of 15 S-items from
Aux, coupled with five T-items, each from a TTTT bin. At this moment, five SSST
bins are inserted, and five TTTT bins are deleted. Aux is now {L, 2S, 23T}.

Finally, five TTTT bins are inserted, each containing four T-items from Aux. At
the conclusion, the content of Aux is {L, 2S, 3T}.

Thus, the overall number of inserted bins is 18, and the overall number of deleted
bins is 15. Note that we ignored the possibility that M-bins may be deleted to execute
top with M, and at the end of the Insert of S’ reload M. Clearly, consideration of
M-bins could contribute only very few inserted or deleted M-bins. For example, a
(generous) upper bound on the number of deleted M-bins is 18.

5. Conclusion. We have studied the problem of maintaining an approximate so-
lution for one-dimensional bin packing when items may arrive and depart dynamically
and when the packing may be rearranged to accommodate arriving and departing
items. Our main result is a fully dynamic bin packing algorithm MMP that is 5

4 -
competitive and requires Θ(logn) uniform running time per Insert/Delete operation.
Relative to the best practical off-line algorithms, our algorithm is the best possible
with respect to its running time and is nearly approximation-competitive with those
algorithms (losing but a factor of 1

15 to the best of those [13]).
The major unresolved issue is whether there exist fully dynamic bin packing

algorithms (accommodating both Inserts and Deletes) that attain better competitive
ratios, i.e., are there algorithms that are α-competitive for some α < 5

4 , and require
o(n) time per operation. Here, both uniform and amortized algorithms are of interest.

Other unresolved issues are (1) what is the nature of the trade-off between running
times and competitive ratios of fully dynamic bin packing algorithms for bin packing
(both uniform and amortized), and (2) is there a competitive ratio for which there
are no fully dynamic approximation algorithms for bin packing featuring sublinear
running times (uniform or amortized)?

REFERENCES

[1] R. J. Anderson, E. W. Mayr, and M. K. Warmuth (1983), Parallel approximation algorithms
for bin packing, Inform. and Comput., 82, pp. 262–277.

[2] E. G. Coffman, M. R. Garey, and D. S. Johnson (1983), Dynamic bin packing, SIAM J.
Comput., 12, pp. 227–258.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson (1984), Approximation algorithms for
bin packing: An updated survey, in Algorithm Design for Computer System Design, G.
Ausiello, M. Lucertini, and P. Serafini, eds., Springer-Verlag, New York, pp. 49–106.

[4] W. Fernandez de la Vega and G. S. Lueker (1981), Bin packing can be solved within 1 + ε
in linear time, Combinatorica, 1, pp. 349–355.

[5] D. K. Friesen and M. A. Langston (1991), Analysis of a compound bin packing algorithm,
SIAM J. Discrete Math., 4, pp. 61–79.

[6] G. Gambosi, A. Postiglione, and M. Talamo (1990), New algorithms for on–line bin packing,
in Algorithms and Complexity, Proceedings of the First Italian Conference, G. Aussiello,
D. P. Bovet, and R. Petreschi, eds., World Scientific, Singapore, pp. 44–59.

[7] M. R. Garey and D. S. Johnson (1979), Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco.

[8] Z. Ivković (1995), Fully Dynamic Approximation Algorithms, Ph.D. thesis, University of
Delaware, Newark, DE.

FULLY DYNAMIC ALGORITHMS FOR BIN PACKING 611

[9] Z. Ivković and E. L. Lloyd (1993), Fully dynamic maintenance of vertex cover, in Proc.
19th International Workshop on Graph–Theoretic Concepts in Computer Science, Lecture
Notes in Computer Science, Springer-Verlag, New York, pp. 99–111.

[10] D. S. Johnson (1973), Near–Optimal Bin Packing Algorithms, Ph.D. thesis, MIT, Cambridge,
MA.

[11] D. S. Johnson (1974), Fast algorithms for bin packing, J. Comput. System Sci., 8, pp. 272–314.
[12] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham (1974), Worst–

case performance bounds for simple one-dimensional packing algorithms, SIAM J. Com-
put., 3, pp. 299–325.

[13] D. S. Johnson and M. R. Garey (1985), A 71/60 theorem for bin packing, J. Complexity, 1,
pp. 65–106.

[14] N. Karmarkar and R. M. Karp (1982), An efficient approximation scheme for the one-
dimensional bin-packing problem, in Proc. 23rd IEEE Symposium on Foundations of Com-
puter Science, pp. 312–320.

[15] R. M. Karp (1972), Reducibility among combinatorial problems, in Complexity of Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum, New York, pp. 85–103.

[16] P. N. Klein and S. Sairam (1993), Fully Dynamic Approximation Schemes for Shortest Path
Problems in Planar Graphs, manuscript.

[17] C. C. Lee and D. T. Lee (1985), A simple on-line bin-packing algorithm, J. Assoc. Comput.
Mach., 3, pp. 562–572.

[18] P. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee (1989), On-line bin-packing in linear
time, J. Algorithms, 3, pp. 305–326.

[19] A. C.–C. Yao (1980). New algorithms for bin packing, J. Assoc. Comput. Mach., 27, pp. 207–
277.

DYNAMIC TREES AND DYNAMIC POINT LOCATION∗

MICHAEL T. GOODRICH† AND ROBERTO TAMASSIA‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 612–636

Abstract. This paper describes new methods for maintaining a point-location data structure for
a dynamically changing monotone subdivision S. The main approach is based on the maintenance
of two interlaced spanning trees, one for S and one for the graph-theoretic planar dual of S. Queries
are answered by using a centroid decomposition of the dual tree to drive searches in the primal
tree. These trees are maintained via the link-cut trees structure of Sleator and Tarjan [J. Comput.
System Sci., 26 (1983), pp. 362–381], leading to a scheme that achieves vertex insertion/deletion in
O(logn) time, insertion/deletion of k-edge monotone chains in O(logn+k) time, and answers queries
in O(log2 n) time, with O(n) space, where n is the current size of subdivision S. The techniques
described also allow for the dual operations expand and contract to be implemented in O(logn) time,
leading to an improved method for spatial point location in a 3-dimensional convex subdivision.
In addition, the interlaced-tree approach is applied to on-line point location (where one builds S
incrementally), improving the query bound to O(logn log logn) time and the update bounds to O(1)
amortized time in this case. This appears to be the first on-line method to achieve a polylogarithmic
query time and constant update time.

Key words. computational geometry, point location, centroid decomposition, dynamic data
structures, on-line algorithms

AMS subject classifications. 68U05, 68Q25, 68P05, 68P10

PII. S0097539793254376

1. Introduction. An exciting direction in algorithmic research has been to show
how one can efficiently maintain various properties of a combinatoric or geometric
structure while updating that structure in a dynamic fashion (e.g., see [13]). A prob-
lem with tremendous potential for dynamization is planar point location, a classic
problem in computational geometry (e.g., see [1, 17, 28, 33, 37]). Given a subdivision
S of the plane into “cells,” described by a total of n line segments, the problem is
to preprocess S to allow for efficiently naming the cell containing a query point p.
An important special case of the point-location problem occurs when each face in
the planar subdivision is a monotone polygon with respect to the y-axis; that is, the
boundary of each face is intersected at most twice by any horizontal line. Given such
a subdivision, Kirkpatrick [26] shows that one can construct an O(n)-space structure
in O(n) time that allows O(log n)-time point-location queries. Edelsbrunner, Guibas,
and Stolfi [18] show that one can achieve these same bounds by applying the frac-
tional cascading paradigm of Chazelle and Guibas [8, 9] to the chain method of Lee
and Preparata [27]. Cole [15] and Sarnak and Tarjan [41] independently show that
one can also achieve these bounds after O(n log n) preprocessing by applying a per-

∗Received by the editors August 26, 1993; accepted for publication (in revised form) August 16,
1996; published electronically August 4, 1998. A preliminary version of this paper was presented at
the 23rd Annual ACM Symposium on the Theory of Computing, New Orleans, 1991.

http://www.siam.org/journals/sicomp/28-2/25437.html
†Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218

(goodrich@cs.jhu.edu). This research was supported in part by National Science Foundation grants
CCR-8810568, CCR-9003299, and CCR-9625289 and by U.S. Army Research Office grant DAAH04-
96-1-0013.
‡Department of Computer Science, Brown University, Providence, RI 02912-1910

(rt@cs.brown.edu). This research supported in part by National Science Foundation grants
CCR-9007851 and CCR-9423847, by U.S. Army Research Office grants DAAL03-91-G-0035 and
DAAH04-96-1-0013, and by Office of Naval Research and the Advanced Research Projects Agency
contract N00014-91-J-4052, ARPA order 8225.

612

DYNAMIC TREES AND DYNAMIC POINT LOCATION 613

sistence technique (e.g., see Driscoll et al. [16]) to a simple plane-sweeping procedure
(as an example of a static→dynamic→static conversion). (See [17, 28, 37] for other
references on this important problem.)

We are interested in maintaining a monotone subdivision dynamically, subject
to edge insertion and deletion, vertex insertion and deletion, as well as the insertion
or deletion of a monotone chain of k edges. In addition, we are also interested in
operations that are duals to edge insertion and deletion, as in the framework of Guibas
and Stolfi [25], where we allow for vertex expansion and contraction: an expansion
splits a vertex v into two new vertices connected by an edge, and a contraction merges
two adjacent vertices into a new vertex. These operations are useful in applying a
dynamic point location to spatial point location in 3-dimensional subdivisions [40] via
persistence [16].

1.1. Previous work. Before we describe our main results, let us briefly review
previous work on dynamic point location, which we summarize in Table 1. Early work
on dynamic point location includes a method by Overmars [35], which is based on a
segment-tree [4] approach to planar-point location, and achieves an O(log2 n) query
and update time with O(n log n) space. Fries [20] and Fries, Mehlhorn, and Näher [21]
present a data structure with O(n) space, O(log2 n) query time, and O(log4 n) amor-
tized update time (for edge insertion/deletion only), using an approach based on the
static chain method of Lee and Preparata [27]. Neither of these methods seems to
extend to the dual update operations of expand and contract, however.

Table 1
Previous results for dynamic point location. N denotes the number of possible y-coordinates

for edge endpoints in the subdivision. Also, we use Ō(∗) to denote an amortized bound.

Type Queries Insert Delete

General [3] O(logn log logn) Ō(logn log logn) Ō(log2 n)
Connected [11] O(log2 n) O(logn) O(logn)
Connected [12] O(logn) Ō(log3 n) Ō(log3 n)
Monotone [14] O(logn) Ō(log2 n) Ō(log2 n)
Convex [39] O(logn+ logN) O(logn logN) O(logn logN)
Staircase [2] O(logn) Ō(logn) Ō(logn)

Preparata and Tamassia [38] have given techniques for maintaining monotone
subdivisions that are also based on this chain method, but they improve the bounds
of Fries, Melhorn, and Näher by representing the chains topologically rather than
geometrically. In their scheme, inserting/deleting vertices on edges requires O(log n)
time, and inserting/deleting monotone chains of edges requires O(log2 n + k) time.
Moreover, as shown in [40], their scheme can be extended to the dual update opera-
tions, which leads, via persistence [16], to a data structure for spatial point location
that uses O(N log2N) space, requires O(N log2N) processing time, and allows for
queries to be answered in O(log2N) time, where N is the size of the 3-dimensional
subdivision.

Cheng and Janardan [11] present two methods for dynamic planar point location
that improve the time of edge updates. In their Scheme I they achieve O(log2 n) query
time, O(log n) time for inserting/deleting a vertex, and O(k log n) time for insert-
ing/deleting a chain of k edges, and in their Scheme II they achieve O(log n log log n+
k) time for inserting/deleting monotone chains, at the expense of increasing ver-
tex insertion/deletion time to O(log n log log n) and increasing the query time to
O(log2 n log log n). Both of their methods are based on a search strategy derived

614 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

from the priority search tree data structure of McCreight [30]. They dynamize this
approach with the BB(α) tree data structure (e.g., see [32]) using the approach of
Willard and Lueker [43] to spread local updates over future operations and the method
of Overmars [34] to perform global rebuilding (at the same time) before the “current”
data structure becomes too unbalanced. Their methods do not seem to extend to the
dual update operations, however, nor does it seem possible to improve their bounds
for the on-line case.

The dynamic data structure by Baumgarten, Jung, and Mehlhorn [3] combines
interval trees, segment trees, fractional cascading, and the data structure of [11].
It achieves O(n) space, O(log n log log n) query and insertion time, and O(log2 n)
deletion time, where the time bounds for updates are amortized.

Chiang and Tamassia [14] present a dynamic data structure for monotone subdi-
visions, which is based on the static trapezoid method of Preparata [36] and extends
previous work by Preparata and Tamassia [39] on dynamic point location in con-
vex subdivisions with vertices on a fixed set of lines. The operations supported are
insertion and deletion of vertices and edges and horizontal translation of vertices.
They show how to achieve queries in O(log n) time, while requiring O(log2 n) time
for updates. The space requirement for their method is O(n log n). Finally, Atallah,
Goodrich, and Ramaiyer [2] show how to apply a new data structure, which they call
biased finger trees to achieve an O(log n) query time and O(log n) amortized update
time for a fairly restricted class of subdivisions known as staircase subdivisions, where
each face is bounded above and below by “staircase” polygonal chains.

In related work, Chiang, Preparata, and Tamassia [12] have shown that one can
achieve an O(log n) query time in a dynamic environment that allows for ray-shooting
queries and subdivision updates in O(log3 n) time, and Goodrich and Tamassia [23]
show how to maintain a similar environment so as to achieve O(log2 n) time for all
updates and queries (using a method built upon the scheme of the present paper).

1.2. Our results. In this paper we show how to dynamically maintain a mono-
tone subdivision so as to achieve O(log2 n) query time, O(log n) time for vertex inser-
tion/deletion, and O(log n + k) time for the insertion/deletion of a monotone chain
of k edges. Our methods are based on the maintenance of two interlaced spanning
trees, one for the subdivision and one for its graph-theoretic dual, to answer queries.
Queries are performed by using a centroid decomposition of the dual tree to drive
searches in the primal tree. We dynamize this approach using the edge-ordered dy-
namic tree data structure of Eppstein et al. [19], which is an extension of the link-cut
trees data structure of Sleator and Tarjan [42]. We use the “built-in” operations of
link, cut, split, and merge to implement both our updates and queries. Our methods
improve the previous bounds for dynamically maintaining monotone subdivisions.

We also show how to extend our approach to implement the dual operations of
expand and contract, which, in turn, leads to an improved data structure for spatial
point location via the persistence paradigm of Driscoll et al. [16], where one dynamizes
the problem to a 3-dimensional space sweep that uses our data structure to maintain
the current “slice.” This leads to an O(N logN) space data structure that requires
only O(N logN) preprocessing time while achieving an O(log2N) query time, for
a 3-dimensional convex subdivision with N facets, which improves the space and
preprocessing of the previous method [40] by a logN factor.

Finally, we show how to apply our approach to on-line planar point location,
where one builds a monotone subdivision incrementally. In this case we show how to
maintain the centroid decomposition of the dual tree explicitly (in a BB(α) tree [32])

DYNAMIC TREES AND DYNAMIC POINT LOCATION 615

and apply a simple version of the fractional cascading paradigm of Chazelle and
Guibas [8, 9] to improve the query time to O(log n log log n) while also improving the
complexity of updates to O(1) amortized time. We believe this is the first on-line
point location method to achieve a polylogarithmic query time and constant update
time.

2. Preliminaries.

2.1. Monotone subdivisions. A (planar) subdivision S is a partition of the
plane into polygons, called the regions of S. We assume that S has one unbounded
region, called the external region. A subdivision S is generated by a planar graph
embedded in the plane such that the edges are straight-line segments. We assume a
standard representation for the subdivision S such as doubly connected edge lists [37].

A monotone chain is a polygonal chain such that each horizontal line intersects it
in at most one point. A polygon is monotone if its boundary is partitionable into two
monotone chains. A monotone subdivision is such that all its regions are monotone
polygons (even the external region). A triangulation is a subdivision such that the
boundary of each region has three edges.

Let us orient each edge of a monotone subdivision S by decreasing ordinate, i.e.,
so that it “points down.” Because each face in S is a monotone polygon, in orienting
the edges of S in this way we obtain a planar st-graph, i.e., a planar acyclic digraph
with exactly one source (vertex without incoming edges) and one sink (vertex without
outgoing edges). The source s and sink t of S are the highest and lowest vertices of S,
respectively. The left chain of a region r of S is the monotone chain on the boundary
of r such that r is on the left side of it when traversed from top to bottom. The
right chain is similarly defined. Note that according to this definition the left (resp.,
right) chain of the external region appears on the right (resp., left) boundary of the
subdivision.

2.2. Centroid decomposition. Let T be free tree with n vertices of degree at
most 3. A centroid edge of T is an edge e whose removal partitions T into two trees
of size at most 1 + 2n/3 each. It is well known that if n > 1, such an edge exists and
can be found in time O(n) (e.g., see [6, 31]).

A centroid decomposition tree for T is a rooted binary tree B recursively defined
as follows: if T has a single vertex v, then B consists of a single leaf node that
stores vertex v. Otherwise, let e be a centroid edge of T , and let T ′ and T ′′ be the
trees that result when removing e from T . The root of B stores edge e, and the left
and right subtrees of B are centroid trees for T ′ and T ′′, respectively. The centroid
decomposition tree B has O(log n) height and can be constructed in O(n) time (e.g.,
see [10, 24]).

2.3. Dynamic trees. Dynamic trees [42] are a versatile dynamic data structure
for maintaining a forest of rooted trees. We shall use an extension of dynamic trees,
called edge-ordered dynamic trees [19].

An edge-ordered tree is a rooted tree in which a cyclic order is imposed on the
edges incident on each node (including the edge to the parent). The circular sequence
of edges incident to node µ is called the edge ring of µ. For example, in our application
the trees are drawn in the plane and we use the counterclockwise ordering of the edges
around each vertex given by the embedding. Edge-ordered dynamic trees support the
following repertory of update operations [19].
link(µ′, µ′′, e′, e′′). This operation assumes that µ′ is the root of a tree T ′, µ′′ is a

node of another tree T ′′, and e′′ is an edge incident on µ′′. Add a new edge

616 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

e′ from node µ′ to node µ′′, thus making T ′ a subtree of T ′′. The new edge
e′ is inserted after edge e′′ in the edge ring of µ′′.

cut(µ, e). This operation assumes that node µ is not the root of a tree and e is the
edge from µ to its parent. Remove edge e, thus separating the subtree rooted
at µ.

split(µ, µ′, µ′′, e, e1, e2). Split node µ into two nodes µ′ and µ′′ connected by a new
edge e. If (αe1βe2γ) is the edge ring of µ, then αeγ and ee1βe2 are the
edge-rings of µ′ and µ′′, respectively.

merge(µ′, µ′′, e). Merge adjacent nodes µ′ and µ′′ connected by edge e into a single
node µ. If αe is the edge ring of µ′ and βe is the edge ring of µ′′, then αβ is
the edge ring of µ.

Let T be a dynamic tree, subject to the above operations. Sleator and Tarjan [42]
present two schemes for efficiently performing the link and cut operations on T , and
these schemes carry over naturally to edge-ordered dynamic trees [19]. In this paper
we assume the scheme that uses partitioning by size. In this scheme the edges of T
are considered to be directed from the child to the parent, and an edge e from µ to
ν is said to be solid if the subtree rooted at µ has more than half of the edges of the
subtree rooted at ν. Otherwise, edge e is said to be dashed. There is at most one
solid edge entering any node (from its children). Therefore, every node is in exactly
one path of solid edges (of length 0 or more). We refer to these paths as solid paths.
(See Fig. 1a.) A solid path π is represented as a balanced binary tree Pπ, so that T is
then stored as a collection of these path trees. For more details on partitioning by size
and how it can be exploited to efficiently perform dynamic tree updates and queries,
see [19, 42].

While link-cut trees support a variety of query operations, such as finding the
least-common ancestor of two nodes, we shall use only the following operation that is
part of the standard repertory of dynamic trees [19, 42].
expose(µ). Create a solid path π from node µ to the root by converting to solid all

the dashed edges of π, and converting to dashed all the solid edges that enter
a node of π but are not on π. (See Fig. 1b.) This operation may violate the
definition of solid edges, so it is always followed by a procedure that undoes
its effects.

Edge-ordered dynamic trees use linear space and support each of the above op-
erations in O(log n) time, where n is the size of the tree(s) involved in the opera-
tion [19, 42].

3. Our approach. In this section we address the problem of performing point
location in a triangulation S with n vertices. Without loss of generality, we assume
that S does not have horizontal edges. General subdivisions can be handled via a pre-
liminary triangulation step, which takes O(n) time if the subdivision is connected [7],
and O(n log n) time otherwise [22].

We describe here a static method that uses O(n log n) space and preprocessing
time and supports point-location queries in O(log2 n) time. We will show in the
subsequent section how to dynamize this approach so as to achieve O(n) space, the
same query time, and an update time that is O(log n).

3.1. Building the structure. A monotone spanning tree T of S is a rooted
spanning tree such that any root-to-leaf path of T is monotone with respect to the y-
axis. The root T then is the vertex t in S with smallest y-coordinate. Such a monotone
spanning tree T is obtained by choosing for each vertex v in S some edge emanating
from v, assuming all edges are directed downward. Note that this simple choosing

DYNAMIC TREES AND DYNAMIC POINT LOCATION 617

v

v

(a)

(b)
Fig. 1. (a) A link-cut tree with edges partitioned into solid and dashed. (b) Effect of operation

expose(v) on the tree of part (a).

operation would not necessarily define a spanning tree if S were not monotone. (See
Fig. 2.) As we show in the next lemma, such a spanning tree has a nice property that
can be exploited for point location.

Lemma 3.1. For any nontree edge e of S, the fundamental cycle F (e) determined
by e and T is a monotone polygon.

Proof. Let e = (v′, v′′). Since the spanning tree T is monotone, the paths π′ and
π′′ of T from v′ to t and v′′ to t are monotone chains. Let v be the least-common
ancestor of v′ and v′′. The cycle F (e) that results when adding e to T is the polygon
formed by the following monotone chains: (i) the subpath of π′ from v to v′ plus edge
e and (ii) the subpath of π′′ from v to v′′. Therefore, we have that F (e) is a monotone
polygon.

618 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

t

t

(a)

(b)
Fig. 2. (a) A monotone spanning tree. (b) Its dual spanning tree.

This motivates the construction of our point-location structure, which is per-
formed in the following four steps.

Step 1. Construct a monotone spanning tree T for S and represent T as an edge-
ordered tree rooted at the sink vertex t, where the ordering of the edges incident on
a vertex is given by the planar embedding.

Step 2. Construct the graph-theoretic planar dual [5] of S, but exclude any edges
dual to edges in T . This defines a spanning tree D on the dual graph [19], called the
dual spanning tree of T (see Fig. 2). Each node of D is a region r of S, and each edge
e∗ of D corresponds to a nontree edge e in S, which in turn determines a unique cycle
F (e) in S (when e is added to T). We represent D as an edge-ordered tree rooted
at the external region, where the ordering of the edges incident on a node (region) is
given by the planar embedding.

DYNAMIC TREES AND DYNAMIC POINT LOCATION 619

Step 3. Form a centroid decomposition of D [6, 10, 24]. Recall that a centroid
edge in D divides D into two subtrees whose sizes are in the interval [|D|/3, 2|D|/3];
hence, a centroid decomposition defines a binary tree B, where each internal node µ
in B corresponds to a centroid edge e∗µ of D, with the left child of µ being the portion
of D “below” eµ (i.e., inside F (eµ)) and the right child being the portion “above” eµ
(i.e., outside F (eµ)). (See Fig. 3.)

Step 4. With each node µ in B we store the left and right chains of monotone
polygon F (eµ) in two sorted arrays L(µ) and R(µ), respectively. Note that to avoid
confusion in the L and R lists we consider each edge to have two sides, a left side and
a right side, which are distinct edges for the sake of this definition. (See Fig. 3.)

Lemma 3.2. The above method runs in O(n log n) time and uses O(n log n)
space.

Proof. Steps 1 and 2 can be easily implemented in O(n) time. Step 3 takes O(n)
time using the method of [10, 24]. Step 4 is the bottleneck step, in that it requires
O(n log n) time and space to copy and store all the L and R lists for the nodes in B
(since B has depth O(log n)).

Having presented our structure, let us describe how it can be used to answer a
point-location query.

3.2. Querying the structure. Suppose we are given a query point p, and we
wish to locate the cell in S containing p. Our method for performing this point-
location query is actually quite simple. We perform a search down B, where at each
node µ we use the lists L(µ) and R(µ) to determine if p is inside or outside the polygon
F (eµ). Since L(µ) and R(µ) are stored as arrays, we can perform two binary searches
to determine if p is inside F (eµ) in O(log n) time. If p is inside F (eµ), then we visit
µ’s left child next; otherwise, we visit µ’s right child next. This procedure continues
until we reach the leaf of B corresponding to a single region—the cell of S containing
p. Therefore, we have the following lemma.

Lemma 3.3. Our point-location data structure supports point-location queries in
O(log2 n) time.

Incidentally, one can improve the query time to O(log n), while increasing the
preprocessing time and space by at most a constant factor, via the fractional cascading
technique of Chazelle and Guibas [8, 9]. Thus one can modify the above approach
to match the query bounds of previous point location methods [18, 26, 41]. Our
motivation for designing this new method was not to simply match the performance of
previous methods, however, but to design a scheme that leads to an efficient dynamic
point-location method. So, let us leave the details of this static data structure to the
interested reader and concentrate instead on how this approach can be dynamized.

4. Dynamic planar point location. In this section we show how to implement
our point-location method dynamically using dynamic trees. Our dynamic environ-
ment supports the following repertory of update operations on a monotone subdivision
S (i.e., we assume that each operation is performed only if it is known to preserve the
monotonicity of S).
InsertEdge(e, r, v, w; r1, r2). Insert edge e between vertices v and w inside region r,

which is then decomposed into regions r1 and r2 to the left and right of e,
respectively.

DeleteEdge(e, v, w, r1, r2; r). Remove edge e between vertices v and w and merge
into region r the two regions r1 and r2 formerly to the left and right of e,
respectively.

620 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

t

m

e1

e2

e3

e10

e11

e7

e6

e5

e4e8

e9

e4

e5

e6 e8

e7 e9

m

e3

e10 e1

e11 e2

r2

r1

r6
r9

r8r5

r4
r7

r3

r10

r12

r11

r6 r5

r4

r9 r8

r7

r11 r12

r10

r3 r2

r1

r1

r2

r3

r4

r5

r6

r7

r8

r9

r11

r12

r10

e1

e2

e3

e4

e5
e6

e7

e8

e9

e10

e11

*

* †

(a)

(b) (c)
Fig. 3. A centroid decomposition of the dual spanning tree of the previous figure. (a) The

subdivision S and monotone spanning tree T . In this example the edges in L(µ) are marked with a
“∗” and the edge in R(µ) (other than e4) is marked with a “ †,” where µ is the node in B associated
with edge e4. (b) The dual tree D. (c) The centroid decomposition tree B.

Expand(e, v, r1, r2; v1, v2). Expand vertex v into vertices v1 and v2 connected by edge
e, which has regions r1 and r2 to its left and right, respectively.

Contract(e, r1, r2, v1, v2; v). Contract edge e between vertices v1 and v2 into vertex
v. Regions r1 and r2 are those formerly to the left and right of e, respectively.

InsertChain(γ, r, v, w; r1, r2). Insert a monotone chain γ between vertices v and w
inside region r, which is then decomposed into regions r1 and r2 to the left
and right of e, respectively.

DYNAMIC TREES AND DYNAMIC POINT LOCATION 621

vk-1

v0

v1

v2

v'k-1

v'2

vk-1

v0

v1

v2

vk vk

(a) (b)

Fig. 4. Example of refinement of a region.

DeleteChain(γ, v, w, r1, r2; r). Let γ be a monotone chain between vertices v and w,
whose internal vertices have degree 2. Remove γ and merge into region r the
two regions r1 and r2 formerly to the left and right of γ, respectively.

Several problems arise in the dynamization of the static structure of section 3.
The first is that the static data structure assumes a preliminary triangulation step to
ensure that the dual spanning tree has bounded degree and therefore admits a centroid
decomposition. But it appears difficult to dynamically maintain a triangulation, since
a newly inserted edge could intersect many triangulation edges. So we do not attempt
to maintain a triangulation of our current subdivision; instead we refine it so as to
maintain a crucial property that such a triangulation would give us.

4.1. A virtual triangulation of the regions in S. Let S be a monotone
subdivision. We refine S into a new subdivision R as follows. For each region r of S,
let vk, vk−1, . . . , v0 be the left chain of r as traversed from top to bottom. If k ≥ 3, we
add inside r a “comb” consisting of k − 2 new vertices, v′2, v

′
3, . . . , v

′
k−1, and 2(k − 2)

edges, (v2, v
′
0), (v′i+1, v

′
i), (i = 2, . . . , k − 2), and (vi, v

′
i) (i = 2, . . . , k − 1). See an

example in Fig. 4. We assume that each new vertex v′i is placed below and to the
right of vi and infinitesimally close to it. Hence the above refinement affects only the
topology of the subdivision, so that a point location query has the same answer in S
and R. Also, it is immediate to verify that the refined subdivision has O(n) vertices.

The leftist spanning tree of a monotone subdivision is defined as the monotone
spanning tree obtained by selecting the leftmost outgoing edge of every vertex, except
the source (see Fig. 5a). In addition to the above refinement of S into R, we also
maintain T as a leftist spanning tree of R, with D being its graph-theoretic planar
dual. As we show in the following lemma, this is sufficient to achieve the desired
result.

Lemma 4.1. The planar dual of the leftist spanning tree in R has degree at
most 3.

Proof. Let T be the leftist spanning tree, and D its dual (see Fig. 5b). We observe
that tree D exactly consists of the dual edges of the topmost edges of the right chain
of each region. Also, all the remaining edges of the right chain of each region are in
tree T . Hence the degree of a node r of D is at most one plus the number of nontree
edges on the left chain of region r.

622 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

(a) (b)

Fig. 5. (a) Leftist spanning tree of a refined subdivision R. (b) Dual of the leftist spanning tree
of part (a). Tree edges are drawn thick, with the comb edges in this tree being dark gray. The edges
of the dual tree are drawn as thick light gray lines, and their dual edges in the comb are drawn as
dotted lines. (We use this same convention in all the figures that follow as well.)

To prove the lemma, we show that every region r of the refined subdivision R
has at most two nontree edges in its left chain. Namely, if region r is to the left of a
comb, then it has exactly two edges and thus no more than two nontree edges in its
left chain. Else (r is to the right of a comb), only the two topmost edges of the left
chain of r may not be in T , since each of the remaining edges (which form the “spine”
of the comb) is the only outgoing edge of its end vertex and hence is in T .

Our dynamic data structure for point location in S simply consists of the leftist
spanning tree T of R, and of its dual spanning tree D, each represented as an edge-
ordered dynamic tree [19, 42]. Tree T is rooted at the node associated with the
(bottom-most) sink vertex t, and tree D is rooted at the node associated with the
external region. In both trees, the ordering of the edges incident on each node is
given by the planar embedding. The overall space requirement of the data structure
is O(n).

4.2. Finding fundamental cycles. In order to perform queries efficiently we
must be able to construct searchable representations of fundamental cycles in T ,
the monotone spanning tree for R. More significantly, like our triangulation, our
representations must be virtual, since an update operation may cause substantial
restructurings in the centroid tree and edge lists. Our approach for overcoming this
difficulty consists of representing T as an edge-ordered dynamic tree [19] (see also
[42]). As we show in the following lemma, this is sufficient for us to be able to quickly
perform a point-cycle query in T .

Lemma 4.2. Let T be a monotone spanning tree of S, with root t. By representing
T as an edge-ordered link-cut tree, one can determine in time O(log n) whether a query
point p is on, inside, or outside the fundamental cycle F (e) induced by a nontree edge
e of S.

DYNAMIC TREES AND DYNAMIC POINT LOCATION 623

Proof. In a link-cut tree [19, 42] representing T the operation expose(v) returns
a balanced binary tree Pπ that represents the path π of T between the root t and
vertex v (i.e., the external and internal nodes of Pπ store the vertices and edges of
π, respectively, such that the in-order visit of Pπ yields π). Hence we can determine
if a query point p is inside F (e) as follows. Let v′ and v′′ denote the left and right
endpoints of edge e, respectively. We issue an expose(v′) and perform a binary search
on the balanced-tree representation of the left chain of F (e), minus edge e, that is
returned, to determine if p is to the left, to the right, or outside the scope of y-
coordinates for this chain. After the structural changes in the link-cut representation
of T from this expose are undone, we then issue an expose(v′′) and perform a similar
binary search on the balanced-tree representation of the right chain of F (e), minus
edge e, that is returned. Whether a point p is on, inside, or outside cycle F (e) can then
be easily determined from the results of these two searches and a simple comparison
involving the edge e. All of the above steps take O(log n) time.

Constructing fundamental cycles in S is important, but not sufficient, for, in order
to achieve an O(log2 n) query time, we must also be able to find a centroid edge in
the dual tree, D.

4.3. Locating a centroid edge in the dual tree. We do not explicitly main-
tain a centroid decomposition tree for D, however. Instead, we show in the following
lemma that the link-cut representation of D can itself be used to quickly find a cen-
troid edge in D.

Lemma 4.3. Let D be a tree of degree 3 represented by a link-cut tree with
partitioning by size. Then a centroid edge in D can be located in O(log n) time.

Proof. As mentioned above, one of the main ideas of the link-cut tree data
structure is to partition the tree D into “solid” paths and “dashed” edges [19, 42] and
represent each solid path with a binary search tree. Let π be the solid path containing
the root of D. We claim that the set of edges that are either in π or incident on the
first node of π contains a centroid edge.

Proof of claim. Let π = (µ1, . . . , µk). We denote with Si the subset of nodes
of D consisting of node µi and the nodes in the (at most three) subtrees connected
to µi by dashed edges (see Fig. 6a). Let wi be the size of Si, called the weight of

node µi. We have that
∑k
i=1 wi = n, where n is the number of nodes of D. From

the definition of dashed edges [19, 42], we have that wi < n/2 for i = 2, . . . , k.
We distinguish two cases. If w1 ≤ 1 + 2n/3, then there exists some j such that

n/3 − 1 ≤ ∑j
i=1 wi ≤ 1 + 2n/3. In this case the solid edge from µj to µj+1 is a

centroid edge. Otherwise, the dashed edge connecting the largest subtree of µ1 is a
centroid edge, since the largest of the subtrees of µ1 has at most n/2 nodes (because
it is connected by a dashed edge) and at least n/3− 1 nodes (because µ1 has no more
than three incident edges). The claim is proved.

Therefore, we can find a centroid edge of D in O(log n) time by traversing a
root-to leaf path in the binary tree of the solid path containing the root of D. (See
Fig. 6b.)

Thus we have shown how to perform the two main components of our point-
location procedure.

4.4. Point-location querying. The location of a query point p, therefore, is
performed as follows.

1. If D consists of a single node, we return the corresponding region and stop.
2. We find a centroid edge e∗ of D using the algorithm of Lemma 4.3.

624 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

µ1

µ2

µ3

µ4

µ5

w1=39
w2=4

w3=3
w4=6 w5=8

39

4 3

6 8

46

7

60

14

(a)

(b)
Fig. 6. (a) Solid path containing the root of a dynamic tree. (b) Balanced tree associated with

the solid path of part (a).

3. We cut tree D at edge e∗ and let D′ and D′′ be the resulting trees, where
D′′ contains the former root of D. Note that since this is a query step, not
an update, we also store the edge e∗ on a stack in this step, so that after the
query is done we can reconstruct the original D via a series of link operations.

4. We determine if p is on, inside, or outside cycle F (e) by applying the algorithm
of Lemma 4.2 to tree T .

5. If p is on cycle F (e), return the edge or vertex of F (e) that contains e. Else,
if p is inside the cycle, recursively apply the algorithm using D′. Otherwise
(p is outside the cycle), recursively apply the algorithm using D′′.

Our query operation is completed by reconstructing tree D by means of a sequence
of O(log n) link operations that undo the cuts (by a series of pop operations on the
stack used in step 3).

DYNAMIC TREES AND DYNAMIC POINT LOCATION 625

Thus we have the following theorem.
Theorem 4.4. The above dynamic point-location data structure supports point-

location queries in time O(log2 n) and uses O(n) space.
Proof. The query time bound should be immediately apparent given the above

description. For the space bound note that the data structure is no more than R,
represented using any standard plane graph representation and T and D represented
as link-cut trees (plus cross pointers, so, for example, each nontree edge in R has a
pointer to its dual in D).

Having given our method for performing queries, let us next address our methods
for updating R. We begin with the Contractand Expandoperations.

4.5. Edge contraction and expansion. Recall that in the Expand(v, v1, v2, e)
operation we expand vertex v into vertices v1 and v2 connected by edge e with regions
r1 and r2 being to the left and right of e, respectively (see Fig. 7). There are two
cases. In the first case the relative positions of v1 and v2 require that e become an
edge in the leftist spanning tree T (as illustrated in Fig. 7a). In this case we perform
the obvious split in T at v and update the corresponding pointer structures in R and
D. We may also have to add an edge to the combs of pseudo edges in r1 and r2 so as
to maintain our refinement invariant. If this occurs we also need to update the dual
tree D (using O(1) split and link operations) so that it remains a planar dual to R.
This can all be done in O(log n) time.

In the second case the positions of v1 and v2 require that e become a nontree edge
(see Fig. 7b). In this case we perform the obvious split in T at v, forming v1 and
v1, cut T along e, and then link v2 to its leftmost adjacent node, w in R. We also
perform any edge additions to combs in r1 and r2, if necessary, as in the first case.
Of course, our modifications of T require that we perform changes to D. Specifically,
we must cut D at the edge dual to (v2, w) and perform a link to create a node dual
to e. Since this can all be done in O(log n) time, it implies that we can perform the
Contractoperation in O(log n) time.

We implement the Expandoperation by “reversing” the above steps in the obvious
manner. Thus we may also perform the Expandoperation in O(log n) time.

4.6. Edge insertions and deletions. The next update operation we consider
is edge insertion. Recall that in the operation InsertEdge(e, r, v, w; r1, r2) we insert
edge e between vertices v and w inside region r, which is then decomposed into regions
r1 and r2 to the left and right of e, respectively. There are two cases.

In the first case v and w are on opposite sides of r; i.e., without loss of generality,
v is on the left chain of r and w is on the right chain of r (see Fig. 8). We distinguish
two subcases.

1.1. Suppose e = (v, w) must become an edge in the leftist spanning tree T (see
Fig. 8a). In this case we perform a cut in T along the edge going out of w and
then link the resulting subtree rooted at w to v. This may also require that
we cut the comb in r at the vertex associated with v, deleting its incident
edges, and begin a new comb at v (which contains any previous comb edges
above v). Likewise, each cut in T has a corresponding link in D, and each
link in T has a corresponding cut in D. Since the number of needed cut and
link operations is O(1), the total time for this case is O(log n).

1.2. Suppose e = (v, w) must become a nontree edge (see Fig. 8b). In this case we
need only change the comb in r by cutting it at the vertex associated with
v and beginning a new comb at w. This can be done with O(1) cut and link
operations in T , but it does not change the topology of D. Thus this case

626 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

r

r

1

2

r

r

1

2

r

r

1

2

r1

r
2

v1

v1 v
2

v
2

v

v

e

e

(a)

(b)
Fig. 7. (a) An Expandoperation in which e becomes an edge in the leftist spanning tree T , and

(b) an Expandin which e becomes a nontree edge.

also takes only O(log n) time.
In the second case for edge insertion vertices v and w are on the same side of r.

There are two obvious subcases.
2.1. Suppose v and w are both in the left chain of r (see Fig. 9a), where, without

loss of generality, v has larger y-coordinate than w. In this case we must
cut the comb in r at the vertex associated with v and the vertex associated
with w, and add the edge e = (v, w) as a nontree edge in R. We begin a
new comb at w in r1 that retains the edges of the old comb between the
vertices associated with v and w, and we concatenate the portion of the old
comb below the vertex associated with w with the portion of the old comb
above the vertex associated with v, to form the new comb for r2. This can
all be done using O(1) link and cut operations in T . Likewise, cutting the

DYNAMIC TREES AND DYNAMIC POINT LOCATION 627

v v

w w

v v

w w

(a)

(b)
Fig. 8. Insertions where v and w are on opposite sides of the region r. We illustrate in

(a) an InsertEdgeoperation in which e becomes an edge in the leftist spanning tree T and in (b) an
InsertEdgein which e becomes a nontree edge.

comb in r also requires that we perform associated cuts in D, and the comb
concatenations have associated links in D. Again, there are only O(1) such
operations, however, so this case can be implemented in O(log n) time.

2.2. Suppose v and w are both in the right chain of r (see Fig. 9b), where, without
loss of generality, v has larger y-coordinate than w. In this case we simply
cut T at the edge f going out of v and perform a link of the subtree rooted
at v along the edge e = (v, w). This also requires that we create a new (leaf)
node in D and link it along the edge dual to f . We need not change the comb

628 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

v

w

v

w

v

w

(a)

(b)

v

w

Fig. 9. Insertions where v and w are on the same side of the region r. We illustrate in (a) the
case when v and w are in the left chain and in (b) the case when v and w are in the right chain.

in r (which is now the comb for r1), and the comb in r2 is the null comb, so
this completes the construction. Clearly, this case requires O(log n) time.

Thus we can perform the InsertEdgeoperation in O(log n) time. Since the Dele-
teEdgeoperation is the “reverse” of an InsertEdge, this also implies that we can per-
form the DeleteEdgeoperation in O(log n) time.

4.7. Chain updates. The only update operations that remain to be described
are the chain update operations. Recall that in the operation InsertChain(γ, r, v, w; r1,
r2) we insert a monotone chain γ between vertices v and w inside region r, which is
then decomposed into regions r1 and r2 to the left and right of e, respectively. Note
that this is essentially the same as in the case of the InsertEdgeoperation, except that
instead of adding a single edge (v, w) we are now inserting a monotone chain. It should
not be surprising, then, that our method for performing the InsertChainoperation

DYNAMIC TREES AND DYNAMIC POINT LOCATION 629

is the same as that for the InsertEdgeoperation, except that where we previously
performed a single link in T from v to w, and added a trivial chain in r2 from v to
w, we must now link in an entire chain in T , as well as its corresponding comb. If we
perform these link operations in series, then we will require O(k log n) time, where k is
the length of the chain. So, instead, we first build a link-cut tree representation of the
chain and its corresponding comb, which takes O(k) time [19, 42], and then we perform
the O(1) link operations required to link these chains into T . Likewise, we must build
a chain of size O(k) dual to the inserted chain and its comb and link this into D, but
again a link-cut tree representation of the chain can be built in O(k) time, and then
this can be linked into D with O(1) link operations. Thus the entire time needed for
the InsertChainoperation is O(log n+k). Since the DeleteChainoperation amounts to
the reversal of this procedure, this also implies that the DeleteChainoperation can be
implemented in O(log n+ k) time (it is actually easier, since we replace the building
of link-cut tree representations of O(k)-length chains with the garbage collection of
the space used by such representations). Therefore, we have the following theorem.

Theorem 4.5. Let S be a monotone subdivision of current size n that is subject
to a sequence of on-line updates. Point location in S can be done with a fully dynamic
data structure that uses O(n) space and supports queries in time O(log2 n) and update
operations InsertEdge, DeleteEdge, Expand, and Contractin time O(log n). Also,
update operations InsertChainand DeleteChaintake time O(log n+ k), where k is the
size of the monotone chain being inserted or deleted. All the time bounds are worst
case.

5. Spatial point location. We can extend our method further to derive an
efficient algorithm for performing point location in 3-dimensional cell complexes whose
cells are convex polytopes. Let C be such a convex cell complex with n vertices and N
facets. Note that both n and the number of edges of C are O(N). Following the same
general approach of Preparata and Tamassia [40], we obtain a spatial point-location
data structure by combining the persistence-addition technique of Driscoll et al. [16]
and our dynamic structure for planar point location.

A conventional dynamic data structure is called ephemeral since its instantiation
preceding an update is not recoverable after the execution of the update. A fully
persistent structure supports both accesses and updates to any of its past versions; a
partially persistent structure supports accesses to any of its past versions but updates
only to its most current version. The general technique of Driscoll et al. [16] can
be used to add persistence to an ephemeral linked data structure whose records are
pointed to by a bounded number of pointers. The resulting persistent data structure
uses additional O(1) amortized space per update operation and has the same asymp-
totic query time (worst case for partial persistence and amortized for full persistence).
Since each of our update operations requires a total time of O(log n) in the worst case,
this implies that we make at most O(log n) pointer updates in any update. Therefore,
each of our update operations can be implemented persistently in O(log n) amortized
time, and each one adds O(log n) amortized additional space to be added to the per-
sistent data structure. In order to implement this persistent strategy, however, we
need the following lemma.

Lemma 5.1. The dynamic point-location data structure of Theorem 4.5 can be
implemented with a linked representation such that each record is pointed to by a
bounded number of pointers.

630 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

Proof. As mentioned above, our data structure is essentially just a link-cut tree
representation of a leftist monotone spanning tree T and its graph-theoretic planar
dualD. Moreover, we maintainD as a degree-3 tree, which implies that the underlying
link-cut tree representation satisfies the bounded number of pointers condition (see
[19, 42] for details). The tree T need not have bounded degree, however. Nevertheless,
by using the implementation of edge-ordered dynamic trees given by Eppstein et
al. [19], we represent T so as to satisfy the bounded-degree condition (see [19] for
details).

Thus we can create a persistent version of our point location data structure. But
being able to search in the “past” must also be meaningful. We find this meaning in
the following lemma.

Lemma 5.2. Let S1 and S2 be monotone subdivisions whose associated planar st-
graphs are isomorphic. A dynamic point location data structure for S1 (as discussed
in Theorem 4.5) can be used for dynamic point location in S2 after changing only the
values of the vertex coordinates.

Proof. Since the planar st-graphs associated with S1 and S2 are isomorphic, the
leftist spanning tree for (the refinement of) S1 and the leftist spanning tree for (the
refinement of) S2 are isomorphic (as are their respective graph-theoretic planar duals).
Thus applying our construction to S1 yields a data structure that is topologically
identical to that for S2. Moreover, at no place in our point-location method do we
ever explicitly need the coordinates of the subdivision endpoints. We only needed to
be able to perform a comparison-based binary search for a y-coordinate in a monotone
chain, and then we must be able to determine to which side of a line L a query point
lies. That is, we can use the actual x- and y-coordinates of a query point implicitly
to resolve y-coordinate comparisons in a binary search of a monotone chain or the
“side-of” comparisons with an oriented line L (i.e., we “plug” them in at the last
moment). Thus by replacing the comparison tests of S1 with the isomorphic tests in
S2, we obtain a dynamic point-location structure for S2.

We reduce the 3-dimensional point-location problem to an application of persis-
tence to a dynamic 2-dimensional point location where we “sweep” space by a plane
π(z) parallel to the x- and y-axes and at height z for z = −∞ to z = +∞. Let C(z)
be the intersection of C with the plane π(z). It is easy to verify that C(z) is a convex
(and hence monotone) subdivision. We view the z-axis as a measure of “time” and
consider the process of making plane π(z) sweep the cell complex C. The location of
a query point q = (x, y, z) in the cell complex C can be reduced to the location of
point (x, y) in the monotone subdivision C(z). Hence spatial point location can be
performed using a partially persistent planar point location data structure.

While the geometry of C(z) continuously evolves in time, its topology changes
only when plane π(z) goes through a vertex v of C; i.e., for z′, z′′ such that zi <
z′ < z′′ < zi+1 the planar st-graphs associated with C(z′) and C(z′′) are isomorphic.
Hence the space-sweep process goes through 2n+1 topologically different subdivisions.
Also, when the plane π(z) goes through a vertex vi, the resulting modification of the
subdivision C(z) can be performed by a sequence of fi update operations, each an
Expandor a Contract, where fi is the number of facets whose top or bottom vertex is
vi (see Preparata and Tamassia [40] for more details). Note that

∑n
i=1 fi = O(N).

By Lemma 5.2, the same planar point-location data structure can be used for all
query points whose z-coordinate is in the range (zi, zi+1), provided the x and y coordi-
nates of the vertices are expressed as (linear) functions of z. Thus our data structure
for spatial point location consists of a partially persistent version of the dynamic

DYNAMIC TREES AND DYNAMIC POINT LOCATION 631

planar point-location data structure of Theorem 4.5. By Lemma 5.1, such structure
satisfies the hypothesis for applying the persistence-addition technique of [16].

It is important to observe that although our query algorithm modifies the ephem-
eral data structure (see section 4.2), such changes are only temporary and need not
be remembered by the persistent data structure. Hence at the expense of increasing
the storage space by a constant factor we can use duplicate copies for the pointers
and data fields that are modified by a query operation. The duplicate fields are
disregarded during the updates.

We summarize the performance of our spatial point-location data structure in the
following theorem.

Theorem 5.3. Let C be a convex 3-dimensional cell complex with N facets.
There exists a data structure for point location in C that uses O(N logN) space and
supports queries in O(log2N) time worst case.

6. On-line point location. Many applications involve constructing an object
incrementally while requiring that all the properties of the structure be maintained
on line. In the context of this paper, we desire a scheme to incrementally construct a
planar subdivision while maintaining an efficient point-location data structure for it.
This can also be viewed as an instance of dynamic point location when only insertions
are allowed. In this section we show how to implement our centroid-decomposition
approach to planar point location on line using BB(α) trees and some dynamic data
structuring techniques of Overmars [34] to achieve O(1) amortized time per update
and O(log n log log n) time (worst case) for answering queries.

We support the following operations.
InsertVertex (v, e, r1, r2; e1, e2). Insert a vertex v on edge e, which has regions r1 and

r2 to its left and right, respectively, expanding e into e1 and e2.
InsertEdge(e, r, v1, v2; r1, r2). Insert edge e between vertices v1 and v2 inside region

r, which is decomposed into regions r1 and r2 to the left and right of e,
respectively. v1 and v2.

InsertChain(γ, r, v1, v2; r1, r2). Insert a monotone chain γ between vertices v1 and
v2 inside region r, which is decomposed into regions r1 and r2 to the left and
right of e, respectively.

6.1. A simple on-line point location structure. We explicitly maintain the
monotone tree T and the dual tree D for the refined subdivision R. We also explicitly
maintain B, the balanced decomposition tree of D, in a BB(α) tree. Each node µ in
B corresponds to a subtree Dµ of D, which in turn corresponds to a subpolygon Pµ
of P . Thus each leaf in B corresponds to a node of D, which in turn corresponds to
a region in R. For each node µ in B we explicitly store the chains L(µ) and R(µ).
In addition, in the spirit of fractional cascading1 [8, 9], for each node µ we maintain
auxiliary lists AL(µ) and AR(µ), which are defined recursively as follows:

AL(µ) =

{
L(µ) µ is a leaf,
L(µ) ∪AL(λ) ∪AL(ν) otherwise,

AR(µ) =

{
R(µ) µ is a leaf,
R(µ) ∪AR(λ) ∪AR(ν) otherwise,

where λ and ν are the children of µ should µ be an internal node. By keeping pointers
from each element x in AL(µ) to its predecessors in L(µ), AL(λ), and AL(ν) (and

1Specifically, we create auxiliary search lists as in the fractional cascading paradigm; we do not,
however, need to implement fractional list propagation.

632 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

similar pointers for each x in AR(µ)) we can answer queries in O(log n) time. This is
because after an O(log n) time binary search in the AL and AR lists for the root of B,
the search at every other node in B requires only O(1) time, and there are O(log n)
such other nodes. The update operations are easily implemented as follows.

InsertVertex (v, e, r1, r2; e1, e2). We first make the obvious update to the planar
graph representation of R, inserting v on e and splitting e into e1 and e2. We then
use the pointer to e to locate the records in L(µ) and R(µ′) for the endpoint w of
e that is nearer to the root of T . We then add a record for v next to w’s record in
L(µ) and R(µ′), respectively. This can all easily be done in O(1) time. We must also
update the auxiliary lists, however, by adding a record for v to the AL list for each
node from µ to the root of B and a record for v to the AR list for each node from µ′

to the root. This can be implemented in O(log n) time by performing a query for v
from the root to µ and µ′, respectively, and adding v to each list we search in along
the way.

InsertEdge(e, r, v1, v2; r1, r2). We first make the obvious update to the planar
graph representation of R, inserting e into r and splitting r into r1 and r2. This also
necessitates that we modify the node λ in D corresponding to r. This modification
will be in the form of the division of λ into two nodes λ1 and λ2, with some of λ’s
adjacencies becoming λ1’s adjacencies and the other adjacencies of λ becoming λ2’s
adjacencies. Of course, in performing this modification of D we must also update
B to reflect this modification. We do this by visiting the leaf µ in B associated
with λ, creating two new nodes µ1 and µ2, which are associated with λ1 and λ2,
respectively, and making these nodes be the children of µ. This addition, in turn,
requires that we update the balance information stored in B, and in some cases
this requires that we perform node rotations in B to maintain the weight-balance
requirements of this BB(α) tree. Performing a rotation at a node µ in B requires
more than just updating balance information and changing some pointers at the nodes
around µ—it also requires that we change the L and R lists (and their associated
auxiliary lists) for µ and ν, the child of µ that is now becoming the parent of ν. Note,
however, that we must change the pointer fields of the records in the auxiliary lists
at µ’s old parent ρ, but we do not need to add or delete any records from these lists.
This is because the set of descendants of ρ do not change. Thus the time required to
perform such a rotation is proportional to the size of the L, R, AL, and AR lists at
µ and ν, which is proportional to nµ, the number of descendants of µ.

InsertChain(γ, v1, v2). This operation can be implemented by combining the
methods for InsertVertex and InsertEdge. We leave the details to the interested
reader.

From the above descriptions it should be clear that queries can be answered in
O(log n) worst-case time, as can InsertVertex operations. Also, the worst-case time
for an InsertEdge operation is O(n). Nevertheless, since we are represented B as a
BB(α) tree, we can derive an efficient amortized running time for the InsertEdge
operation. In particular, we observe that performing a rotation at µ requires O(nµ)
time, where nµ is the number of leaf descendants of µ. This is because the size of
AL(µ) and AR(µ) is bounded by the number of vertices in P (µ), the subpolygon
associated with µ, which is O(nµ). We can, therefore, take advantage of the following
lemma.

Lemma 6.1 (see [32]). Let α ∈ (1/4, 1 − √2/2) and let f be a nondecreasing
function such that the cost of performing a rotation in a BB(α) tree at a node µ is
f(nµ). Then the total cost of the rebalancing operations in a sequence of m insertions

DYNAMIC TREES AND DYNAMIC POINT LOCATION 633

and deletions into an initially empty tree is

O

(
m

c logm∑
i=1

(1− α)if((1− α)−i−1)

)
,

where c = 1/ log(1− α).
This immediately implies that the cost of performing a sequence of n Insert-

Edge operations starting with an initially empty subdivision is O(n log n); hence the
amortized cost of each InsertEdge operation is O(log n). This gives us the following
theorem.

Theorem 6.2. One can maintain a monotone subdivision on-line with O(log n)
query time for point locations and O(log n) amortized time for vertex and edge inser-
tions (inserting a chain of k vertices requires O(k log n) amortized time). The space
for this data structure is O(n log n).

One can improve the space of the above method to O(n) at the expense of making
the query time an amortized bound, using the methods of Fries [20], and Fries, Mel-
horn, and Näher [21]. As we mentioned earlier, however, our interest is in performing
updates in O(1) amortized time (O(k) time for chain insertion). In the next section
we show how to modify our approach to achieve this goal. Our modification reduces
the space to O(n) and increases the query time by only a log logn factor.

6.2. Improving the implementation. The main idea of our improvement is
to apply a “bucketing” technique [34] at two different places in our structure. The
first application is for the L and R lists at the nodes of B. For simplicity of expression,
let us concentrate our attention on the L lists; the modifications for the R lists are
similar. For each node µ we add a list L′(µ), which we maintain to be a subsequence of
L(µ) so that between any two consecutive elements (e, f) in L′(µ) there are at most
2N elements of L(µ), where N is Θ(log n). Moreover, for each pair of consecutive
elements (e, f) in L′(µ) we store the elements of L(µ) that fall between e and f in
a data structure that allows O(1) insertion time, given an element’s position, and
O(log ne) query time, where ne = O(N) is the number of elements between e and
f [29]. The elements of L(µ) between e and f can intuitively be viewed as belonging
to a “bucket” for the pair (e, f).

We modify our definition of the AL and AR lists to take advantage of the sublists
L′ and R′. In particular we now define AL(µ) and AR(µ) as follows:

AL(µ) =

{
L′(µ) µ is a leaf,
L′(µ) ∪AL(λ) ∪AL(ν) otherwise,

AR(µ) =

{
R′(µ) µ is a leaf,
R′(µ) ∪AR(λ) ∪AR(ν) otherwise,

where λ and ν are the children of µ should µ be an internal node. This immediately
implies that the query time increases to O(log n logN) = O(log n log log n), since,
given a query value x, determining the predecessor of x in L(µ) requires O(logN) =
O(log log n) time given the position of x in AL(µ). Nevertheless, this modification has
a worthwhile consequence—it reduces the time for InsertVertex operations to O(1)
(amortized). This bound follows from the fact that an InsertVertex requires more
than O(1) time only if that InsertVertex operation causes a bucket size to grow larger
than 2N . In such a case we simply split this bucket into two buckets with sizes N and
N + 1, respectively. Of course, splitting a bucket in, say, L(µ) requires that we add a

634 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

new element to L′(µ) and, hence, to the AL list at each node from µ to the root of B.
Since all of these updates can be implemented in O(log n+N) = O(N) time, we can
charge this cost to the N operations that previously inserted elements to this bucket
(to make it grow to size 2N). Thus the amortized cost of an InsertVertex is O(1).

We can also reduce the space of this method to O(n + n log n/N) = O(n), since
N is Θ(log n), by insuring that any time two consecutive buckets have size smaller
than bN/2c we concatenate these buckets into a single bucket.

These modifications do not reduce the cost for InsertEdge operations, however.
To reduce their cost we apply the bucketing idea a second time, this time to the tree
B itself. In particular, we modify our maintenance of B so that, instead of associating
a single node of D (corresponding to a single region of R) with each leaf of B, we
associate a subtree of D with at most 2N nodes. Any time an InsertEdge operation
causes a leaf subtree Dµ to grow to more than 2N nodes, we locate the centroid
edge in Dµ and split Dµ into two trees Dµ1

and Dµ2
, creating two new nodes µ1

and µ2, which become the children of µ. This of course necessitates that we build
new lists (L, R, L′, R′, AL, and AR) for µ1 and µ2 and update the AL and AR
lists from µ to the root to reflect the addition of any new values (needed to maintain
the recursive definitions of the AL and AR lists). Nevertheless, this can all be done
in O(log n + N) = O(N) time, which can be charged to the N previous InsertEdge
operations at µ (each were implemented in O(1) time). Thus each InsertEdge will run
in O(1) amortized time.

The method for implementing InsertChain operations is basically a combination
of the methods for InsertVertex and InsertEdge, the details of which we leave to the
interested reader. Thus we have the following theorem.

Theorem 6.3. One can maintain a monotone subdivision on-line with the query
time O(log n log log n) for point locations and O(1) amortized time for vertex and edge
insertions (inserting a chain of k vertices requires O(k) amortized time). The space
needed for this data structure is O(n).

We believe this theorem provides the first on-line point-location data structure
with an O(1) amortized update time and polylogarithmic query time.

7. Conclusion. We have given a new approach to planar point location and
showed how it can be used to derive new, improved bounds for dynamic point location,
spatial point location, and on-line point location. We leave as an open problem the
existence of a fully dynamic method for point location in subdivisions that are at least
as combinatorially rich as the monotone subdivisions that runs in O(log n) time per
query and O(log n) amortized time per update. As mentioned in the introduction,
Atallah, Goodrich, and Ramaiyer [2] achieve this result for the fairly restrictive class
of staircase subdivisions.

Acknowledgments. We would like to thank Bernard Chazelle for suggesting
the pursuit of an on-line point-location method with O(1) amortized update time.
We would also like to thank Siu-Wing Cheng, Ravi Janardan, and S. Rao Kosaraju
for several stimulating conversations related to topics addressed in this paper.

REFERENCES

[1] M. J. Atallah, Parallel techniques for computational geometry, Proc. IEEE, 80 (1992),
pp. 1435–1448.

[2] M. J. Atallah, M. T. Goodrich, and K. Ramaiyer, Biased finger trees and three-dimensional
layers of maxima, in Proc. 10th Ann. ACM Sympos. Comput. Geom., 1994, pp. 150–159.

DYNAMIC TREES AND DYNAMIC POINT LOCATION 635

[3] H. Baumgarten, H. Jung, and K. Mehlhorn, Dynamic point location in general subdivisions,
J. Algorithms, 17 (1994), pp. 342–380.

[4] J. L. Bentley and D. Wood, An optimal worst case algorithm for reporting intersections of
rectangles, IEEE Trans. Comput., C-29 (1980), pp. 571–577.

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North–Holland, New
York, 1976.

[6] B. Chazelle, A theorem on polygon cutting with applications, in Proc. 23rd Ann. IEEE Sym-
pos. Found. Comput. Sci., 1982, pp. 339–349.

[7] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991),
pp. 485–524.

[8] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algo-
rithmica, 1 (1986), pp. 133–162.

[9] B. Chazelle and L. J. Guibas, Fractional cascading: II. Applications, Algorithmica, 1 (1986),
pp. 163–191.

[10] B. Chazelle and L. J. Guibas, Visibility and intersection problems in plane geometry, Dis-
crete Comput. Geom., 4 (1989), pp. 551–581.

[11] S. W. Cheng and R. Janardan, New results on dynamic planar point location, SIAM J.
Comput., 21 (1992), pp. 972–999.

[12] Y.-J. Chiang, F. P. Preparata, and R. Tamassia, A unified approach to dynamic point
location, ray shooting, and shortest paths in planar maps, in Proc. 4th ACM-SIAM Sympos.
Discrete Algorithms, 1993, pp. 44–53.

[13] Y.-J. Chiang and R. Tamassia, Dynamic algorithms in computational geometry, Proc. IEEE,
80 (1992), pp. 1412–1434.

[14] Y.-J. Chiang and R. Tamassia, Dynamization of the trapezoid method for planar point loca-
tion in monotone subdivisions, Internat. J. Comput. Geom. Appl., 2 (1992), pp. 311–333.

[15] R. Cole, Searching and storing similar lists, J. Algorithms, 7 (1986), pp. 202–220.
[16] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures

persistent, J. Comput. System Sci., 38 (1989), pp. 86–124.
[17] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monogr. Theoret. Com-

put. Sci., 10 (1987), Springer-Verlag, Heidelberg.
[18] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone sub-

division, SIAM J. Comput., 15 (1986), pp. 317–340.
[19] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. Westbrook, and M. Yung,

Maintenance of a minimum spanning forest in a dynamic planar graph, J. Algorithms, 13
(1992), pp. 33–54.

[20] O. Fries, Zerlegung einer planaren Unterteilung der Ebene und ihre Anwendungen, Master’s
thesis, Inst. Angew. Math. Inform., Univ. Saarlandes, Saarbrücken, 1985.

[21] O. Fries, K. Mehlhorn, and S. Näher, Dynamization of geometric data structures, in Proc.
1st Ann. ACM Sympos. Comput. Geom., 1985, pp. 168–176.

[22] M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple
polygon, Inform. Process. Lett., 7 (1978), pp. 175–179.

[23] M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths via balanced
geodesic triangulations, in Proc. 9th Ann. ACM Sympos. Comput. Geom., 1993, pp. 318–
327.

[24] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple polygons, Algo-
rithmica, 2 (1987), pp. 209–233.

[25] L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graph., 4 (1985), pp. 74–123.

[26] D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983),
pp. 28–35.

[27] D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applica-
tions, SIAM J. Comput., 6 (1977), pp. 594–606.

[28] D. T. Lee and F. P. Preparata, Computational geometry: A survey, IEEE Trans. Comput.,
C-33 (1984), pp. 1072–1101.

[29] C. Levcopoulos and M. H. Overmars, A balanced search tree with O(1) worst-case update
time, Acta Inform., 26 (1988), pp. 269–277.

[30] E. M. McCreight, Priority search trees, SIAM J. Comput., 14 (1985), pp. 257–276.
[31] N. Megiddo, Linear-time algorithms for linear programming in R3 and related problems, SIAM

J. Comput., 12 (1983), pp. 759–776.
[32] K. Mehlhorn, Sorting and Searching, Data Structures and Algorithms, vol. 1, Springer-Verlag,

Heidelberg, 1984.

636 MICHAEL T. GOODRICH AND ROBERTO TAMASSIA

[33] J. O’Rourke, Computational geometry, Ann. Rev. Comput. Sci., 3 (1988), pp. 389–411.
[34] M. H. Overmars, The design of dynamic data structures, Lecture Notes in Computer Science

156, Springer-Verlag, New York, 1983.
[35] M. H. Overmars, Range searching in a set of line segments, in Proc. 1st Ann. ACM Sympos.

Comput. Geom., 1985, pp. 177–185.
[36] F. P. Preparata, A new approach to planar point location, SIAM J. Comput., 10 (1981),

pp. 473–482.
[37] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-

Verlag, New York, 1985.
[38] F. P. Preparata and R. Tamassia, Fully dynamic point location in a monotone subdivision,

SIAM J. Comput., 18 (1989), pp. 811–830.
[39] F. P. Preparata and R. Tamassia, Dynamic planar point location with optimal query time,

Theoret. Comput. Sci., 74 (1990), pp. 95–114.
[40] F. P. Preparata and R. Tamassia, Efficient point location in a convex spatial cell-complex,

SIAM J. Comput., 21 (1992), pp. 267–280.
[41] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees, Comm.

Assoc. Comput. Mach., 29 (1986), pp. 669–679.
[42] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, J. Comput. System

Sci., 26 (1983), pp. 362–381.
[43] D. E. Willard and G. S. Lueker, Adding range restriction capability to dynamic data struc-

tures, J. Assoc. Comput. Mach., 32 (1985), pp. 597–617.

QUERY ORDER∗

LANE A. HEMASPAANDRA† , HARALD HEMPEL‡ , AND GERD WECHSUNG§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 637–651

Abstract. We study the effect of query order on computational power and show that PBHj [1]:BHk[1]

—the languages computable via a polynomial-time machine given one query to the jth level of
the boolean hierarchy followed by one query to the kth level of the boolean hierarchy—equals
Rp
j+2k−1-tt(NP) if j is even and k is odd and equals Rp

j+2k-tt(NP) otherwise. Thus unless the poly-

nomial hierarchy collapses it holds that, for each 1 ≤ j ≤ k, PBHj [1]:BHk[1] = PBHk[1]:BHj [1] ⇐⇒
(j = k) ∨ (j is even ∧ k = j + 1). We extend our analysis to apply to more general query classes.

Key words. ordered computation, bounded queries, computational complexity theory

AMS subject classifications. 68Q15, 68Q10, 03D10, 03D15

PII. S0097539796297632

1. Introduction. This paper studies the importance of query order. Everyone
knows that it makes more sense to first look up in your on-line date book the date
of the yearly computer science conference and then phone your travel agent to get
tickets, as opposed to first phoning your travel agent (without knowing the date) and
then consulting your on-line date book to find the date. In real life, order matters.

This paper seeks to determine—for the first time to the best of our knowledge—
whether one’s everyday-life intuition that order matters carries over to complexity
theory.

In particular, for classes C1 and C2 from the boolean hierarchy [10, 11], we ask
whether one question to C1 followed by one question to C2 is more powerful than one
question to C2 followed by one question to C1. That is, we seek the relative powers of
the classes PC1[1]:C2[1] and PC2[1]:C1[1].

As is standard [26], for any constant m we say A is m-truth-table reducible to B
(A ≤pm-tt B) if there is a polynomial-time computable function that, on each input
x, computes both (a) m strings x1, x2, . . . , xm and (b) a boolean function, α, of m
boolean variables, such that x1, x2, . . . , xm and α satisfy

x ∈ A ⇐⇒ α(χB(x1), χB(x2), . . . , χB(xm)) = 1,

where χB denotes the characteristic function of B. For any a and b for which ≤ba is
defined and for any class C, let Rb

a(C) = {L | (∃C ∈ C)[L ≤ba C]}.
We prove via the mind change technique that for j, k ≥ 1,

PBHj [1]:BHk[1] =

{
Rp
j+2k−1-tt(NP) if j is even and k is odd,

Rp
j+2k-tt(NP) otherwise.

∗Received by the editors January 24, 1996; accepted for publication (in revised form) September
26, 1996; published electronically August 4, 1998. This research was supported in part by grants
NSF-INT-9513368/DAAD-315-PRO-fo-ab and NSF-CCR-9322513.

http://www.siam.org/journals/sicomp/28-2/29763.html
†Department of Computer Science, University of Rochester, Rochester, NY 14627 (lane@

cs.rochester.edu). This work was done in part while this author was visiting Friedrich-Schiller-
Universität Jena.
‡Institut für Informatik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany (hempel@

informatik.uni-jena.de).
§Institut für Informatik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany (wechsung@

informatik.uni-jena.de).

637

638 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

Informally, this says that the second query counts more toward the power of the class
than the first query does. In particular, assuming that the polynomial hierarchy does
not collapse, we have that if 1 ≤ j ≤ k then PBHj [1]:BHk[1] and PBHk[1]:BHj [1] differ
unless (j = k) ∨ (j is even ∧ k = j + 1).

The interesting case is the strength of PBHj [1]:BHk[1] when j is even and k is odd.
In some sense, j + 2k NP questions underpin this class. However, by arguing that
a certain underlying graph must contain an odd cycle, we show that one can always
make do with j+ 2k−1 queries. We generalize our results to apply broadly to classes
with tree-like query structure.

The work of this paper (especially Theorem 3.6), which first appeared in [21],
should be compared with the independent work of Agrawal, Beigel, and Thierauf [1].
In particular, let PBHj [1]:BHk[1]+ denote the class of languages recognized by some
polynomial-time machine making one query to a BHj oracle followed by one query
to a BHk oracle and accepting if and only if the second query is answered “yes.”
Agrawal, Beigel, and Thierauf prove (using different notation)

PBHj [1]:BHk[1]+ =

{
BHj+2k−1 if j 6≡ k (mod 2),
BHj+2k otherwise.

Note that this result is incomparable with the results of Theorem 3.6, as their
result deals with a different and seemingly more restrictive acceptance mechanism.
Some insight into the degree of restrictiveness of their acceptance mechanism, and
its relationship to ours, is given by the following claim (Corollary 3.7), which follows
immediately from Theorem 5.7 and Lemma 5.9 of [1] and Theorem 3.6 of the present
paper:

Rp
1-tt(P

BHj [1]:BHk[1]+) =

{
PBHj−1[1]:BHk[1] if j is odd and k is even,
PBHj [1]:BHk[1] otherwise.

2. Preliminaries. For standard notions not defined here, we refer the reader
to any computational complexity textbook, e.g., [6, 2, 27]. Let χA, m-truth-table
reducibility (“≤pm-tt”), Rb

a(C), and PBHj [1]:BHk[1]+ be as defined in section 1.
The boolean hierarchy [10, 11] is defined as follows, where C1 ª C2 = {L | (∃A ∈

C1)(∃B ∈ C2)[L = A−B]}:

BH1 = NP,

BHk = NPª BHk−1, for k > 1,

coBHk = {L | L ∈ BHk}, for k > 0, and

BH =
⋃
i≥1

BHi.

The boolean hierarchy has been intensely investigated, and quite a bit has been learned
about its structure (see, e.g., [10, 11, 9, 25, 24, 30, 14, 3, 5]). Recently, various
results have also been developed regarding boolean hierarchies over classes other than
NP [7, 13, 5, 22].

QUERY ORDER 639

For any language classes C1 and C2, define PC1[1]:C2[1] to be the class of languages
accepted by polynomial-time machines making one query to a C1 oracle followed by
one query to a C2 oracle. For any language classes C1, C2, and C3, define PC1[1]:C2[1],C3[1]

to be the class of languages accepted by polynomial-time machines making one query
to a C1 oracle followed in the case of a “no” answer to this first query by one query
to a C2 oracle, and in the case of a “yes” answer to the first query by one query to a
C3 oracle.

3. The importance of query order. We ask whether the order of queries
matters. We will study this in the setting of the boolean hierarchy. In particular,
does PBHj [1]:BHk[1] equal PBHk[1]:BHj [1], or are they incomparable, or does one strictly
contain the other?

For clarity of presentation, in this section we will handle classes only of the
form PBHj [1]:BHk[1]. We show that for no j, k, j′, and k′ are PBHj [1]:BHk[1] and
PBHj′ [1]:BHk′ [1] incomparable. In section 4 we will handle the more general case of
classes of the form PBHj [1]:BHk[1],BHl[1], and even classes with a more complicated
tree-like query structure.

Indeed, we show in this section that in almost all cases, PBHj [1]:BHk[1] is so powerful
that it can do anything that can be done with j+2k truth-table queries to NP. Since,
based on the answer to the first BHj query, there are two possible BHk queries that
might follow, j + 2k is exactly the number of queries asked in a brute force truth-
table simulation of PBHj [1]:BHk[1]. Thus, our result shows that (in almost all cases)
the power of the class is not reduced by the nonlinear structure of the j + 2k queries
underlying PBHj [1]:BHk[1]—that is, the power is not reduced by the fact that in any
given run only j+k underlying NP queries will be even implicitly asked (via the BHj

query and the one asked BHk query). We say “in almost all cases” as if j is even and
k is odd, we prove there is a power reduction of exactly one level.

All the results of the previous paragraph follow from a general characterization
that we prove. For j, k ≥ 1,

PBHj [1]:BHk[1] =

{
Rp
j+2k−1-tt(NP) if j is even and k is odd,

Rp
j+2k-tt(NP) otherwise.

Our proof employs the mind change technique, which predates complexity theory. In
particular we show that PBHj [1]:BHk[1] has at most j + 2k (j + 2k − 1 if j is even and
k is odd) mind changes, and that BHj+2k (BHj+2k−1 if j is even and k is odd) is
contained in PBHj [1]:BHk[1].

The mind change technique or equivalent manipulation was applied to complexity
theory in each of the early papers on the boolean hierarchy, including the work of Cai
et al. ([10]; see also [32, 12]); Köbler, Schöning, and Wagner [25]; and Beigel [3].
These papers use mind changes for a number of purposes. Most crucially they use the
maximum number of mind changes (what a mind change is will soon be made clear) of
a class as an upper bound that can be used to prove that the class is contained in some
other class. In the other direction, they also use the number of mind changes that
certain classes—especially the classes of the boolean hierarchy due to their normal
form as nested subtractions of telescoping sets [10]—possess to show that they can
simulate other classes. Even for classes that have the same number of mind changes,
relativized separations are obtained via showing that the mind changes are of different
character (mind change sequences are of two types, depending on whether they start
with acceptance or rejection). The technique has also proven useful in many other
more recent papers, e.g., [14, 13, 5].

640 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

To make clear the basic nature of mind change arguments, in a simple form, we
give an example. We informally argue that each set that is k-truth-table reducible to
NP is in fact in Rp

1-tt(BHk).
Lemma 3.1. For every k ≥ 1, Rp

k-tt(NP) = Rp
1-tt(BHk).

Proof. This fact (stated slightly differently) is due to Köbler, Schöning, and
Wagner [25], and the proof flavor presented here is most akin to the approach of
Beigel [3]. Consider a k-truth-table reduction to an NP set F . Let L be the language
accepted by the k-truth-table reduction to F . Consider some input x and without
loss of generality assume k queries are generated. Let us suppose for the moment
that the reduction rejects when all k queries receive the answer “no.” Consider the
k-dimensional hypercube such that one dimension is associated with each query (0 in
that dimension means the query is answered no and 1 means it is answered yes). So
the origin is associated with all queries getting the answer no, and the point (1,1,...,1)
is associated with all queries getting the answer yes. Now, also label each vertex
with either A (Accept) or R (Reject) based on what the truth-table would do given
the answers represented by that vertex. So under our supposition the origin has the
label R. Finally, label each vertex with an integer as follows. Label the origin with
0. Inductively label each remaining vertex with the maximum integer induced by the
vertices that immediately precede it (i.e., those that are the same as it except one yes
answer has been changed to a no answer). A preceding vertex v with integer label
i induces in a successor v′ the integer i + 1 if v and v′ have different A/R labels,
and i if they have the same label. Note that vertices given even labels correspond
to rejection and those given odd labels correspond to acceptance. Informally, a mind
change is just changing one or more strings from no to yes in a way that moves us
from a vertex labeled i to one labeled i + 1. For 1 ≤ i ≤ k, let Bi be the NP set
that accepts x if (in the queries/labeling generated by the action of the truth-table
on input x) for some vertex v labeled i all the queries v claims are yes are indeed
in the NP set F . Note that B1 ⊇ B2 ⊇ B3 ⊇ · · ·, as if a node labeled v is in
Bj , j ≥ 2, then certainly its predecessor node with label j − 1 must be in Bj−1, as
that predecessor represents a subset of the strings v represents. But now note that
L is exactly B1 − (B2 − (B3 − (· · · − (Bk−1 − Bk) · · ·))). Why? Let the vertex w
(say with integer label iw) represent the true answers to the queries. Note that by
construction x ∈ Bq for all q ≤ iw but x 6∈ Bq for any q > iw. As the Bi were
alternating in terms of representing acceptance and rejection, and given the format
B1−(B2−(B3−(· · ·−(Bk−1−Bk) · · ·))), the setB1−(B2−(B3−(· · ·−(Bk−1−Bk) · · ·)))
will do exactly what Biw represents, namely, the action on the correct answers. Thus,
we have just given a proof that a k-truth-table reduction that rejects whenever all
answers are no can be simulated by a set in BHk. Of course, one cannot validly
assume that the reduction rejects whenever all answers are no. But it is not hard to
see (analogously to the above) that the case of inputs where the reduction accepts
when all answers are no can (analogously to the above) be handled via the complement
of a BHk set and that (since what the truth-table reduction does when all answers
are no is itself polynomial-time computable) via a set in Rp

1-tt(BHk) we can accept
an arbitrary set in Rp

k-tt(NP). Of course, it is clear by brute force simulation that
Rp

1-tt(BHk) ⊆ Rp
k-tt(NP), and so it holds that Rp

1-tt(BHk) = Rp
k-tt(NP).

What actually is being shown above is that Rp
1-tt(BHk) can handle k appropri-

ately structured mind changes, starting either from reject or accept. In the following
theorem, the crucial things we show are that (a) PBHj [1]:BHk[1] can simulate, starting
at either accept or reject, j + 2k (respectively, j + 2k − 1) mind changes if j is odd

QUERY ORDER 641

or k is even (respectively, if j is even and k is odd), and (b) for j even and k odd,
PBHj [1]:BHk[1] can never have more than j + 2k− 1 mind changes. We achieve (b) by
examining the possible mind change flow of a PBHj [1]:BHk[1] machine, j even and k
odd, and showing that either a mind change is flagrantly wasted, or a certain under-
lying graph has an odd length directed cycle (which thus is not two-colorable, and
from this will lose one mind change).

Since our arguments in the proofs of this section use paths in hypercubes, we will
find useful the concept of an ascending path in a hypercube. Let K = {0, 1}d be
the d-dimensional hypercube. Then every path p in K can be described as a linear
combination of unit vectors u1, . . . , ud, where ui is the ith unit vector. We call p an
ascending path in K leading from (0, 0, . . . , 0) to v if and only if it can be identified
with a sum

ui1 + ui2 + · · ·+ uin

of distinct unit vectors uν such that the vertices of this path p are

v0 = (0, . . . , 0), v1 = ui1 , v2 = ui1 + ui2 , . . . , v = ui1 + ui2 + · · ·+ uin .

We will call this sum the description of p. Note that the order of the u’s matters,
as a permutation of the u’s results in another path. We call p an ascending path
(without specifying starting point and endpoint) if p is an ascending path leading
from (0, 0, . . . , 0) to (1, 1, . . . , 1).

Before turning to results, first we will study the structure of ascending paths in
labeled hypercubes and give some necessary definitions. Building upon them, we will
then prove Lemma 3.5, which states that PBHj [1]:BHk[1] can handle exactly j + 2k
(j + 2k − 1 if j is even and k is odd) mind changes.

Let M be a PBHj [1]:BHk[1] machine with oracles A ∈ BHj and B ∈ BHk and let
x ∈ Σ∗. On input x, M first makes a query q1(x) to A and then if the answer to the
first query was “no” asks query q2(x) to B and if the answer to the first query was
“yes” asks query q3(x) to B. Without loss of generality assume that on every input
x exactly two queries are asked.

Every set C ∈ BHl can be written as the nested difference of sets C1, C2, . . . , Cl ∈
NP

C = C1 − (C2 − (· · · − (Cl−1 − Cl) · · ·))

and following Cai et al. [10] we even can assume that

Cl ⊆ Cl−1 ⊆ · · · ⊆ C2 ⊆ C1.

Hence a query “q ∈ C?” can certainly be solved via l queries “q ∈ C1?,” “q ∈ C2?,”
. . . , “q ∈ Cl?”

In light of this comment, we let

A = A1 − (A2 − (· · · − (Aj−1 −Aj) · · ·)) where Ai ∈ NP for i = 1, 2, . . . , j

and Aj ⊆ · · · ⊆ A1, and

B = B1 − (B2 − (· · · − (Bk−1 −Bk) · · ·)) where Bi ∈ NP for i = 1, 2, . . . , k

and Bk ⊆ · · · ⊆ B1.

642 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

For the sake of definiteness let us assume that the queries

q1(x) ∈ A1, . . . , q1(x) ∈ Aj , q2(x) ∈ B1, . . . , q2(x) ∈ Bk, q3(x) ∈ B1, . . . , q3(x) ∈ Bk
correspond in this order to the j+2k dimensions of the (j+2k)-dimensional hypercube
H = {0, 1}j+2k. More precisely, a vector (a1, . . . , aj+2k) ∈ H is understood to consist
of the answers to the above-mentioned queries, where 0 means “no” and 1 means “yes.”

Since a query “q ∈ C?” for some C ∈ BHl and C = C1−(C2−(· · · (Cl−1−Cl) · · ·))
can be solved by evaluating the answers to “q ∈ C1?,” “q ∈ C2?,” . . . , “q ∈ Cl?” every
node v ∈ H gives us answers to “q1(x) ∈ A?” (by evaluating the first j components
of v), to “q2(x) ∈ B?” (by evaluating the k components of v that immediately follow
the first j components of v), and to “q3(x) ∈ B?” (by evaluating the last k of v’s
components). This gives us a labeling of all vertices of H. We simply assign label
A (Accept) to vertex v ∈ H if MA[1]:B[1](x) accepts if the answers to the two asked
questions are as determined by v. If MA[1]:B[1](x) rejects in this case we assign label
R (Reject) to v.

So letHM (x) be the (j+2k)-dimensional hypercube labeled according toMA[1]:B[1](x).
The number of mind changes on an ascending path p ofHM (x) leading from (0, 0, . . . , 0)
to a vertex t is by definition the number of label changes when moving from (0, 0, . . . , 0)
to t along p. The number of mind changes of an internal node v of HM (x) is the max-
imum number of mind changes on an ascending path leading from (0, 0, . . . , 0) to v.
And, finally, the number of mind changes of a PBHj [1]:BHk[1] machine M is by defini-
tion the maximum number (we take the maximum over all x ∈ Σ∗) of mind changes
of the vertex (1, 1, . . . , 1) in HM (x); in other words, this number is the maximum
number of label changes on an ascending path in HM (x) for some x ∈ Σ∗.

We say we lose a mind change (between two adjacent vertices vi and vi+1) along
an ascending path if when moving from vi to vi+1 the machine does not change its
acceptance behavior.

One can easily verify the following fact.
Fact 3.2. If M is a PBHj [1]:BHk[1] machine such that on input x the acceptance

behavior is independent of the answer to one or more of the two possible second queries
(that is, if for at least one of the second queries both a “yes” and a “no” answer yield
the same acceptance or rejection behavior), then we lose at least one mind change on
every path in HM (x).

So from now on, in light of Fact 3.2, let MA[1]:B[1](x) be a PBHj [1]:BHk[1] machine
that has, on input x, one of the following four acceptance schemes (the scheme may
depend on the input).
(1) M accepts if and only if exactly one of the two sequential queries is answered

“yes.”
(2) M accepts if and only if either both or neither of the two asked queries is answered

“yes.”
(3) M accepts if and only if the second query is answered “yes.”
(4) M accepts if and only if the second query is answered “no.”

Fact 3.3. If p is an ascending path in HM (x) such that p contains adjacent
vertices v and v + ud such that

d ≤ j and the (d′)th component of v is 0 for some d′ < d,

then p loses a mind change.
Proof. Since A ∈ BHj and thus A = A1− (A2− (· · ·− (Aj−1−Aj) · · ·)) and there

is a 0 in the (d′)th component of v and v + ud, both vertices yield the same answer

QUERY ORDER 643

to “q1(x) ∈ A?” The 1 in the dth component of v + ud has no effect at all on the
answer to “q1(x) ∈ A?” and so on the outcome of MA[1]:B[1](x). Hence both vertices
have the same label and p loses a mind change.

Similarly, one can prove that if p is an ascending path and p contains two adjacent
vertices v and v+ ud such that j < d′ < d ≤ j + k and the (d′)th component of v is 0
or j + k < d′ < d ≤ j + 2k and the (d′)th component of v is 0, then p also loses one
mind change.

Furthermore, in light of Fact 3.3, let us focus only on paths p that change their
first j, second k, and last k dimensions from the smallest to the highest dimension in
each group. This allows us to simplify the description of paths as follows. Let e1 be
the following operator on H:

e1((a1, . . . , aj+2k))

=

{
(a1, . . . , ai−1, 1, . . . , aj+2k) if i ≤ j, ai = 0 ∧ (∀j : j < i)[aj = 1],
(a1, . . . , aj+2k) otherwise.

The operators e2 and e3 act on the index groups (j + 1, . . . , j + k) and (j + k +
1, . . . , j + 2k), respectively, in the same manner: the zero component with smallest
index among the zero components is incremented by 1. The only reasonable paths to
consider are those emerging from repeated applications of e1, e2, and e3 to (0, . . . , 0).
We will use (ei1 , ei2 , . . . , eij+2k

) to denote the path with vertices v0 = (0, . . . , 0),
v1 = ei1(v0), v2 = ei2(v1), . . . , vj+2k = eij+2k

(vj+2k−1) = (1, 1, . . . , 1).
The next fact gives sufficient conditions for an ascending path to lose a mind

change.
Fact 3.4. On any ascending path p a mind change loss occurs if

Case 1.1. there is an e2 after an odd number of e1’s in the description of p, or
Case 1.2. there is an e3 after an even number of e1’s in the description of p, or
Case 2. the description of p contains a sequence of odd length at least 3 that starts

and ends with e1 and contains no other e1’s.
Proof. We will call the occurrence of Case 1.1 (Case 1.2) in p an “e2-loss” (“e3-

loss”) and the occurrence of Case 2 an “odd episode.” In general we call a subpath of
p of length at least 3 that starts and ends with e1 and contains no other e1 an episode.

Intuitively p loses a mind change in the case of Case 1.1 (Case 1.2), since in the
actual computation M(x) does not really ask query q2(x) (q3(x)) and so a change
in the answers to the k underlying NP queries of q2(x) (q3(x)) does not affect the
outcome of the overall computation.

Intuitively in Case 2 the following argument holds. If the description of p con-
tains an odd episode, say starting with eil = e1 and ending with eil′ = e1, then
vl−1, vl, . . . , vl′ form an even-length subpath p′ of p. If the odd episode contains both
e2’s and e3’s then note that Case 1 applies and we are done. In fact due to Case 1
we may henceforth assume the odd episode, between the starting and the ending e1’s,
has only e2’s (respectively, e3’s) if we have an even (respectively, odd) number of e1’s
up to and including the e1 starting the odd episode. So in this case vl−1 and vl′ have
the same label Accept/Reject. The acceptance behavior of MA[1]:B[1](x) due to vl−1

and vl′ is the same, because after two e1’s the answer to “q1(x) ∈ A?” is the same
as it was before the two e1’s, and the e2’s (e3’s) have not influenced the answer to
q3(x) (q2(x)). Thus we have a subpath of even length, namely, vl−1, vl, . . . , vl′ , whose
starting point and endpoint have the same Accept/Reject label. To assign to each
vertex of this path an Accept/Reject label in such a way that no mind changes are
lost is equivalent to the impossible task of 2-coloring an odd cycle. Hence we lose at
least one mind change for every occurrence of an odd episode.

644 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

Before proving the main theorem of this section, we show Lemma 3.5, which
tells how many mind changes PBHj [1]:BHk[1] can handle. We say a complexity class
PBHj [1]:BHk[1] can handle exactly m mind changes if and only if (a) no PBHj [1]:BHk[1]

machine has more than m mind changes and (b) there is a specific PBHj [1]:BHk[1]

machine that has m mind changes. It is known (see, e.g., [10, 25, 3]) that Rp
k-tt(NP)

can handle exactly k mind changes.
Lemma 3.5. The class PBHj [1]:BHk[1] can handle exactly m mind changes, where

m =

{
j + 2k − 1 if j is even and k is odd,
j + 2k otherwise.

Proof. We first consider the case in which j is even and k is odd.
We want to argue that for every PBHj [1]:BHk[1] machine M and every x ∈ Σ∗,

on every ascending path in the j + 2k-dimensional, appropriately labeled hypercube
HM (x) there are at most j+2k−1 mind changes. Let x ∈ Σ∗ and M be a PBHj [1]:BHk[1]

machine with the oracles A and B. Due to Facts 3.3 and 3.2, it suffices to consider
a PBHj [1]:BHk[1] machine M with one of the four previously mentioned acceptance
schemes on input x and to show that every path p having the introduced description
loses at least one mind change. Let M(x) be such a machine and p be such a path.
There are two possibilities.

Case A. The description of p contains an e2-loss or an e3-loss.
According to Fact 3.4, p loses at least one mind change.

Case B. The description of p contains neither an e2-loss nor an e3-loss.
Hence the description of p consists of blocks of consecutive e2’s and e3’s separated
by blocks of e1’s. Since the description of p contains k e3’s and k is odd, there is
a block of e3’s of odd size in p. Since we have no e3-loss and j is even, this block
is surrounded by e1’s. Thus we have an odd episode in the description of p and,
according to Fact 3.4, p loses a mind change.

So no PBHj [1]:BHk[1] machine can realize more than j + 2k − 1 mind changes.
It remains to show that there is a deterministic PBHj [1]:BHk[1] machine and an

input x ∈ Σ∗ such that in the associated hypercube HM (x) there is a path having
exactly j + 2k − 1 mind changes.

Let us consider the path p0,

p0 = (e2, e2, . . . , e2︸ ︷︷ ︸
k

, e1, e1, . . . , e1︸ ︷︷ ︸
j−1

, e3, e3, . . . , e3︸ ︷︷ ︸
k

, e1).

Consider the deterministic oracle machine W that asks two sequential queries
and accepts an input x if and only if the second query of W (x) was answered “yes”
(acceptance scheme (3)). We know as was just shown that all ascending paths of
HW (x) have at most j + 2k − 1 mind changes. Note that for every x ∈ Σ∗ the path
p0 loses only one mind change and thus PBHj [1]:BHk[1] can handle exactly j + 2k − 1
mind changes.

This completes the proof of the case “j is even and k is odd.” We now turn to
the “j is odd or k is even” case of the lemma being proven.

Since our hypercube has (in all cases) j + 2k dimensions, certainly PBHj [1]:BHk[1]

can handle (in all cases) no more than j + 2k mind changes.
If j is odd, we consider the path

p1 = (e2, e2, . . . , e2︸ ︷︷ ︸
k

, e1, e1, . . . , e1︸ ︷︷ ︸
j

, e3, e3, . . . , e3︸ ︷︷ ︸
k

)

QUERY ORDER 645

and—using the acceptance scheme numbering introduced just after Fact 3.3—we con-
sider the machine having for every input x acceptance scheme (3) or (1) for k odd or
even, respectively. If j is even and k is even, we consider path p0 and we consider the
machine having acceptance scheme (1) for every input.

In each of these cases the considered machine changes its mind along the associ-
ated path exactly j+ 2k times. Hence for j odd or k even the class PBHj [1]:BHk[1] can
handle exactly j + 2k mind changes.

Now we are ready to prove our main theorem of this section.
Theorem 3.6. For j, k ≥ 1,

PBHj [1]:BHk[1] =

{
Rp
j+2k−1-tt(NP) if j is even and k is odd,

Rp
j+2k-tt(NP) otherwise.

Proof. In order to avoid unnecessary case distinctions we prove the fact for ar-
bitrary j and k and simply denote the appropriate number of mind changes by m,
namely (see Lemma 3.5), j+2k−1 if j is even and k is odd and j+2k otherwise. First
we would like to show that PBHj [1]:BHk[1] ⊆ Rp

m-tt(NP). We show this by explicitly
giving the appropriate truth-table reduction.

Let A ∈ PBHj [1]:BHk[1] and let m be the number of mind changes (according
to Lemma 3.5) the class PBHj [1]:BHk[1] can handle. Let M be a deterministic oracle
machine, witnessingA ∈ PBHj [1]:BHk[1], via the sets S1 ∈ BHj and S2 ∈ BHk. As noted
by Beigel [3], the set Q = {〈x, k〉 |M(x) has at least k mind changes} is an NP set.
Note that ifMS1[1]:S2[1](x) on a particular input x rejects (respectively, accepts) if both
queries have the answer “no,” then MS1[1]:S2[1](x) accepts if and only if the node (of
the implicit hypercube) associated with the actual answers has an odd (respectively,
even) number of mind changes.

Define the variables o, y1, y2, . . . , ym and the m-ary boolean function α:
o = 0 if MS1[1]:S2[1](x) rejects if both queries are answered “no,”
o = 1 if MS1[1]:S2[1](x) accepts if both queries are answered “no,”

y1 = 〈x, 1〉,
y2 = 〈x, 2〉,
y3 = 〈x, 3〉,

...
ym = 〈x,m〉, and

α(z1, z2, . . . , zm) = 1 ⇐⇒ (max{l | zl = 1}+ o) ≡ 1 (mod 2).
Clearly we can compute the just defined variables for a given x and also evaluate

the function α at (χQ(y1), χQ(y2), . . . , χQ(ym)) in polynomial time. And, finally, we
have x ∈ A ⇐⇒ α(χQ(y1), χQ(y2), . . . , χQ(ym)) = 1. Thus A ∈ Rp

m-tt(NP).
It remains to show that Rp

m-tt(NP) ⊆ PBHj [1]:BHk[1]. Recall Rp
k-tt(NP) = Rp

1-tt(BHk)
from Lemma 3.1. Since the class PBHj [1]:BHk[1] is closed under ≤p1-tt reductions it suf-
fices to prove BHm ⊆ PBHj [1]:BHk[1].

So let B ∈ BHm. Following Cai et al. [10] we may assume that the set B is of the
formB = B1 − (B2 − (B3 − (· · · − (Bm−1 −Bm) · · ·))) withB1, B2, . . . , Bm ∈ NP and
Bm ⊆ · · · ⊆ B2 ⊆ B1.

We show B ∈ PBHj [1]:BHk[1] by using ideas of the second part of the proof of
Lemma 3.5, namely by implementing the specific good path p0, respectively p1. B is
accepted by a PBHj [1]:BHk[1] machine M as follows:
Case 1. j is odd.

Define the two oracle sets O1 and O2:
O1 = Bk+1 − (Bk+2 − (· · · − (Bk+j−1 −Bk+j) · · ·)), and

646 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

O2 = {〈y, 2〉 | y ∈ B1 − (B2 − (· · · − (Bk−1 −Bk) · · ·))}
∪{〈y, 3〉 | y ∈ Bj+k+1 − (Bj+k+2 − (· · · − (Bj+2k−1 −Bj+2k) · · ·))}.

Note that O1 ∈ BHj and O2 ∈ BHk. On input x M first queries “x ∈ O1.” In
case of a “no” answer M(x) queries 〈x, 2〉 ∈ O2 and in case of a “yes”answer
to the first query M(x) asks 〈x, 3〉 ∈ O2.
Case 1.1. k is odd.

M(x) accepts if and only if the second query is answered “yes.”
Case 1.2. k is even.

M(x) accepts if and only if exactly one of the two queries is answered
“yes.”

Case 2. j is even.
Define the two oracle sets O1 and O2:
O1 = Bk+1 − (Bk+2 − (· · · − (Bk+j−1 −Bm) · · ·)), and
O2 = {〈y, 2〉 | y ∈ B1 − (B2 − (· · · − (Bk−1 −Bk) · · ·))}

∪{〈y, 3〉 | y ∈ Bj+k − (Bj+k+1 − (· · · − (Bm−2 −Bm−1) · · ·))}.

Note that O1 ∈ BHj and O2 ∈ BHk. On input x M first queries “x ∈ O1.” In
case of a “no” answer M(x) queries 〈x, 2〉 ∈ O2 and in case of a “yes” answer
to the first query M(x) asks 〈x, 3〉 ∈ O2.
Case 2.1. k is odd.

M(x) accepts if and only if the second query is answered “yes.”
Case 2.2. k is even.

M(x) accepts if and only if exactly one of the two queries is answered
“yes.”

It is interesting to note which properties of NP are actually required in the above
proof for the result to hold. The proof essentially rests on the fact that the key set
Q (describing that, for given x and m, the PBHj [1]:BHk[1] machine M on input x has
at least m mind changes) is an NP set. So considering an arbitrary underlying class
C, for proving Q ∈ C it suffices to note that Q is in the class ∃b · Rp

c-btt(C),1 and to
assume that C be closed under ∃b and conjunctive bounded truth-table reductions.
Indeed, the ∃b quantifier describes that there is a path in the boolean hypercube
HM (x), and via the ≤pc-btt-reduction it can be checked that this path is an ascending
path and all the answers the vertices on that path claim to be “yes” answers indeed
correspond to query strings that belong to the class C. Similar observations have
been stated in earlier papers [3, 5]. In terms of the present paper, note in particular
that the assertion of Theorem 3.6 holds true for all classes C closed under union,
intersection, and polynomial-time many-one reductions. C=P, R, and FewP all have
these closure properties, to name just a few examples. If the underlying class C
is closed under polynomially bounded ∃ quantification and unbounded conjunctive
truth-table reductions, it is not hard to see that this analysis can even be done safely
up to the case of logarithmically bounded query classes, as the number of paths in
the hypercube is polynomial and thus generates a polynomial-sized disjunction.

Theorem 3.6 allows us to derive a relationship between classes of the form PBHj [1]:BHk[1]

and PBHj [1]:BHk[1]+ . Classes of the latter form were studied in [1].

1Here, ≤p
c-btt

denotes the conjunctive bounded truth-table reducibility, and for any class K, ∃b ·K
is defined to be the class of languages A for which there exists a set B ∈ K and a constant bound m
such that x ∈ A if and only if there exists a string y of length at most m with 〈x, y〉 ∈ B.

QUERY ORDER 647

Corollary 3.7. For every j, k ≥ 1,

Rp
1-tt(P

BHj [1]:BHk[1]+) =

{
PBHj−1[1]:BHk[1] if j is odd and k is even,
PBHj [1]:BHk[1] otherwise.

The proof is immediate by the results of Theorem 3.6 of this paper and Theo-
rem 5.7 and Lemma 5.9 of [1].

From Theorem 3.6 we can immediately conclude that order matters for queries
to the boolean hierarchy unless the boolean hierarchy itself collapses.

Corollary 3.8.
1. If (j = k) ∨ (j is even and k = j + 1), 1 ≤ j ≤ k, then PBHj [1]:BHk[1] =

PBHk[1]:BHj [1].
2. Unless the boolean hierarchy (and thus the polynomial hierarchy) collapses,

for every 1 ≤ j ≤ k, PBHj [1]:BHk[1] 6= PBHk[1]:BHj [1] unless (j = k)∨ (j is even
and k = j + 1).

The corollary holds, in light of the theorem, simply because the boolean hierarchy
and the truth-table hierarchy are interleaved [25] in such a way that the boolean
hierarchy levels are sandwiched between levels of the bounded-truth-table hierarchy,
and thus if two different levels of the bounded-truth-table hierarchy are the same (say
levels r and s, r < s), then some level (in particular, BHr+1) of the boolean hierarchy
is closed under complementation, and thus, by the downward separation property
of the boolean hierarchy [10], the boolean hierarchy would collapse. Furthermore,
Kadin [24] has shown that if the boolean hierarchy collapses then the polynomial
hierarchy collapses, and Wagner [28, 29], Chang and Kadin [14], and Beigel, Chang,
and Ogiwara [5] have improved the strength of this connection. The strongest known

connection is: If BHq = coBHq, then PH = (PNP
(q−1)-tt)

NP
[5], where (PNP

m-tt)
NP

denotes

the class of languages accepted by P machines given m-truth-table access to an NPNP

oracle and also given unlimited access to an NP oracle (note that (PNP
1-tt)

NP
is equal

to PNPNP[1]:NP as leading NP queries can be absorbed into the NPNP query).
In light of this discussion, we can make more clear exactly what collapse is spo-

ken of in the second part of the above corollary. In particular, the collapse of the

polynomial hierarchy is (at least) to (PNP
(k+2j)-tt)

NP
.2

Note added in proof. A connection, stronger than that obtained in [5], be-
tween boolean and polynomial hierarchy collapses has very recently been obtained by
Hemaspaandra, Hemaspaandra, and Hempel [33] and Reith and Wagner [34].

Of course, Theorem 3.6 applies far more generally. From it, for any j, k, j′, and
k′, one can either immediately conclude equality, or can immediately conclude that the

classes are not equal unless the polynomial hierarchy collapses to (PNP
(min(α(j,k), α(j′,k′)))-tt)

NP
,

where α(a, b) equals a+ 2b− 1 if a is even and b is odd and a+ 2b otherwise.
The point of Theorem 3.6 is that from the even/odd structure of PBHj [1]:BHk[1]

classes one can immediately tell their number of mind changes, and thus their strength,
without having to do a separate, detailed, mind change analysis for each j and k pair.
However, note that one can, via a time-consuming but mechanical procedure, analyze

2Although one level is gained by the q − 1 in the [5] connection between the boolean hierarchy
and the polynomial hierarchy, one level is lost in the collapse of the boolean hierarchy that follows
from a given collapse in the truth-table hierarchy. We speculate that it might be possible for the
k+ 2j claim to be strengthened by one level by applying the [5] technique directly to the truth-table
hierarchy.

648 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

almost any class with a query tree structure (namely, by looking at the full tree of
possible queries and answers, and for each of the huge number of possible ways its
leaves can each be labeled accept-reject compute the number of mind changes that
labeling creates, and then look at the maximum over all these numbers). For example,
one can quickly see that one query to DP followed by 4-tt access to NP yields exactly
the languages in Rp

10-tt(NP).

4. General case. In the previous section, we studied classes of the form
PBHj [1]:BHk[1]. We completely characterized them in terms of reducibility hulls of
NP and noted that in this setting the order of access to different oracles matters quite
a bit. What can be said about, for example, the class PBHj [1]:BHk[1]:BHl[1]? Is it equal
to PBHj [1]:BHk[1],BHl[1]? (We’ll see that the answer is “no” in certain cases.) Even
more generally, what can be said about the classes of languages that are accepted
by deterministic oracle machines with tree-like query structures and with each query
being made to a (potentially) different oracle from a (potentially) different level of
the boolean hierarchy? Is it possible that with a more complicated query structure
we might lose even more than the one mind change lost in the case of PBHj [1]:BHk[1]

with j even and k odd? (From the results of the section, it will be clear that the
answer to this question is “yes”; mind changes can, in certain specific circumstances,
accumulate.)

First , we can immediately derive a characterization of the class PBHj [1]:BHk[1],BHl[1]

from the results of the previous section, namely, we have Theorem 4.1.
Theorem 4.1. For j, k, l ≥ 1,

PBHj [1]:BHk[1],BHl[1] =

{
Rp
j+k+l−1-tt(NP) if j is even and l is odd,

Rp
j+k+l-tt(NP) otherwise.

Proof. Note that in Lemma 3.5 we handle the special case of k = l. However,
notice that the mind change loss for j even and k odd is due only to the fact that the
query made after the first query is answered “yes” is made to an oracle from an odd
level, namely, k, of the boolean hierarchy. In particular the mind change loss is not
tied to the query we ask in case the first query is answered “no.” Thus we have the
following claim.
Claim. The class PBHj [1]:BHk[1],BHl[1] can handle exactly m mind changes where

m =

{
j + k + l − 1 if j is even and l is odd,
j + k + l otherwise.

Similar to the proof of Theorem 3.6 one can now show the equality we claim.
Note that for every j, k, l ≥ 1, we obviously have

PBHj [1]:BHk[1],BHl[1] = PRp
1-tt(BHj)[1]:Rp

1-tt(BHk)[1],Rp
1-tt(BHl)[1],

and thus the following corollary holds.
Corollary 4.2. For j, k, l ≥ 1,

PRp
1-tt(BHj)[1]:Rp

1-tt(BHk)[1],Rp
1-tt(BHl)[1] =

{
Rp
j+k+l−1-tt(NP) if j is even and l is odd,

Rp
j+k+l-tt(NP) otherwise.

The last corollary is the key tool to use in evaluating any class of languages that
is accepted by deterministic oracle machines with tree-like query structures and with

QUERY ORDER 649

�°��v1

n1 = 2

�°��v3

n3 = 4

�°��v2

n2 = 2

�°��v5

n5 = 3

�°��v4

n4 = 1

leaf

leaf

leaf

leaf

leaf

leaf
�
�
�
�
�
�
�
��

Q
Q
Q
Q
Q
Q
Q
QQ

��
��
��

���

PPPPPPPPP

��
��
��

��

PPPPPPPP

((((
((((

hhhhhhhh

((((
((((

hhhhhhhh

Fig. 1. Tree T .

each query being made to a (potentially) different oracle from a (potentially) different
level of the boolean hierarchy.

We formalize some notions to use in studying this. Let T be a binary tree, not
necessarily complete, such that each internal node vi (a) has exactly two children and
(b) is labeled by a natural number ni (whose purpose will be explained below). For
such a tree T , define fT by fT (vi) = ni. Henceforward, we will write f for fT in
contexts in which T is clear. Let rootT be the root of the tree (we will assign to this
node the name v1) and let LTT and RTT , respectively, be the left and right subtrees
of the root. We will denote the class of sets that are accepted by a deterministic oracle
machine with a T -like query structure by P(T). Here the structure of the tree T gives
the potential computation tree of every P(T) machine in the sense that inductively if
a query at node v is answered “no” (“yes”) we keep on moving through the tree in
the left (right) subtree of v. And at each internal node vi of T the natural number ni
gives the level of the boolean hierarchy from which the oracle queried at that node is
taken.

For example consider the tree T (see Figure 1), in which f(v1) = 2, f(v2) = 2,
f(v3) = 4, f(v4) = 1, and f(v5) = 3. A P(T) machine works as follows. The first
query is made to a DP oracle. If the answer to that first query is “no” a second query
is made to the DP oracle associated with v2, and if the answer to the first query is
“yes” the second query is made to the BH4 oracle associated with v3. A third query
is made only if the answer to the first query is “yes”; in this case, the oracle set of
the third query is in NP if the answer to the second query is “no,” and is in BH3 if
the answer to the second query is “yes.” Note that for every input x ∈ Σ∗ every P(T)

650 L. A. HEMASPAANDRA, H. HEMPEL, AND G. WECHSUNG

machine M(x) assigns a label A (Accept) or R (Reject) to each leaf of T with its own
specific acceptance behavior (which, in particular, may depend on x).

If T is the complete tree of depth 1 (i.e., a root plus two leaves), then by definition
m(T) = f(rootT), and otherwise define

m(T) =

 f(rootT) +m(LTT) +m(RTT)− 1 if f(rootT) ≡ 0 (mod 2) and
m(RTT) ≡ 1 (mod 2),

f(rootT) +m(LTT) +m(RTT) otherwise.

For our example tree T we have m(T) = 10. The main theorem of this section
will prove m(T) determines the number of bounded truth-table accesses to NP that
completely characterize the class P(T). It follows from the main theorem that, for
example, P(T) = Rp

10-tt(NP).
Theorem 4.3. P(T) = Rp

m(T)-tt(NP).

Proof. The proof consists of an obvious induction over the depth d of the tree.
Note that the correctness of the base case of the induction, d = 2, is given by The-
orem 4.1. The proof of the inductive step follows immediately from the obvious fact
that

P(T) = PBHf(rootT):P
(LTT),P(RTT)

,

combined with Lemma 3.1 (Rp
k-tt(NP) = Rp

1-tt(BHk)) and Corollary 4.2.
Finally, we mention that a study of query order in the polynomial hierarchy (as

opposed to the boolean hierarchy) has very recently been initiated by E. Hemaspaan-
dra, L. Hemaspaandra, and H. Hempel ([19]; see also [31, 4]) and this study has
led to a somewhat surprising downward translation result: for k > 2, Σpk = Πp

k ⇐⇒
PΣp

k
[1] = PΣp

k
[2] ([16]; see also the extensions obtained in [8, 20]). Query order (see also

the survey [17]) has also recently proven useful in studying the structure of complete
sets [18] and in characterizing bottleneck-computation classes [23].

Acknowledgments. We thank Edith Hemaspaandra, Johannes Köbler, and
Jörg Vogel for helpful conversations. We thank Johannes Köbler for providing an
advance copy of [15]. We are extremely indebted to Jörg Rothe for his generous help.
The insights of the paragraph after the proof of Theorem 3.6 are due to him and
appear here with his kind permission. He also made countless invaluable suggestions
throughout this project and proofread an earlier version of this paper. We also are
deeply grateful to editor Ker-I Ko and two anonymous referees for their invaluable
suggestions regarding the organization of the paper and a very nice proof simplification
for section 4.

REFERENCES

[1] M. Agrawal, R. Beigel, and T. Thierauf, Modulo Information from Nonadaptive Queries
to NP, Tech. Report 96-001, Electronic Colloquium on Computational Complexity, Trier,
Germany, Jan. 1996.

[2] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, 2nd ed., Springer-Verlag,
Berlin, New York, 1995.

[3] R. Beigel, Bounded queries to SAT and the boolean hierarchy, Theoret. Comput. Sci., 84
(1991), pp. 199–223.

[4] R. Beigel and R. Chang, Commutative queries, in Proc. 5th Israeli Symposium on Theory
of Computing and Systems, IEEE Computer Society Press, Piscataway, NJ, June 1997,
pp. 159–165.

[5] R. Beigel, R. Chang, and M. Ogiwara, A relationship between difference hierarchies and
relativized polynomial hierarchies, Math. Systems Theory, 26 (1993), pp. 293–310.

QUERY ORDER 651

[6] D. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, Prentice–Hall, Engle-
wood Cliffs, NJ, 1993.

[7] D. Bruschi, D. Joseph, and P. Young, Strong separations for the boolean hierarchy over RP,
Internat. J. Found. Comput. Sci., 1 (1990), pp. 201–218.

[8] H. Buhrman and L. Fortnow, Two Queries, Tech. Report 96-20, Department of Computer
Science, University of Chicago, Chicago, IL, Sept. 1996.

[9] J. Cai, Probability one separation of the boolean hierarchy, Lecture Notes in Comput. Sci. 247,
Springer-Verlag, New York, 1987, pp. 148–158.

[10] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung, The boolean hierarchy I: Structural properties, SIAM J. Comput., 17 (1988),
pp. 1232–1252.

[11] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and
G. Wechsung, The boolean hierarchy II: Applications, SIAM J. Comput., 18 (1989),
pp. 95–111.

[12] J. Cai and L. Hemachandra, The boolean hierarchy: Hardware over NP, Lecture Notes in
Comput. Sci. 223, Springer-Verlag, New York, June 1986, pp. 105–124.

[13] R. Chang, On the Structure of NP Computations under Boolean Operators, Ph.D. thesis,
Cornell University, Ithaca, NY, 1991.

[14] R. Chang and J. Kadin, The boolean hierarchy and the polynomial hierarchy: A closer con-
nection, SIAM J. Comput., 25 (1996), pp. 340–354.

[15] F. Green, J. Köbler, K. Regan, T. Schwentick, and J. Torán, The power of the middle
bit of a #P function, J. Comput. Systems Sci., 50 (1995), pp. 456–467.

[16] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, A downward collapse within the
polynomial hierarchy, SIAM J. Comput., to appear.

[17] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, An introduction to query order,
Bulletin of the EATCS., 63 (1997), pp. 93–107.

[18] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, RSN1-tt(NP) distinguishes robust many-
one and Turing completeness, Theory Comput. Systems, to appear.

[19] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, Query order in the polynomial hier-
archy, Lecture Notes in Comput. Sci. 1279, Springer-Verlag, New York, Sept. 1997.

[20] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, Translating Equality Down-
wards, Tech. Report TR-657, Department of Computer Science, University of Rochester,
Rochester, NY, Apr. 1997. (See also the strengthening of this in TR-681.)

[21] L. Hemaspaandra, H. Hempel, and G. Wechsung, Query Order and Self-Specifying Ma-
chines, Tech. Report TR-596, Department of Computer Science, University of Rochester,
Rochester, NY, Oct. 1995.

[22] L. Hemaspaandra and J. Rothe, Unambiguous computation: Boolean hierarchies and sparse
Turing-complete sets, SIAM J. Comput., 26 (1997), pp. 634–653.

[23] U. Hertrampf, Acceptance by transformation monoids (with an application to local self-
reductions), in Proc. 12th Annual IEEE Conference on Computational Complexity, IEEE
Computer Society Press, Piscataway, NJ, June 1997, pp. 213–224.

[24] J. Kadin, The polynomial time hierarchy collapses if the boolean hierarchy collapses, SIAM J.
Comput., 17 (1988), pp. 1263–1282; Erratum SIAM J. Comput., 20 (1991), p. 404.

[25] J. Köbler, U. Schöning, and K. Wagner, The difference and truth-table hierarchies for NP,
RAIRO Theoret. Inform. Appl., 21 (1987), pp. 419–435.

[26] R. Ladner, N. Lynch, and A. Selman, A comparison of polynomial time reducibilities, The-
oret. Comput. Sci., 1 (1975), pp. 103–124.

[27] C. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994.
[28] K. Wagner, Number-of-Query Hierarchies, Tech. Report 158, Universität Augsburg, Institut

für Mathematik, Augsburg, Germany, Oct. 1987.
[29] K. Wagner, Number-of-Query Hierarchies, Tech. Report 4, Institut für Informatik, Universität

Würzburg, Würzburg, Germany, Feb. 1989.
[30] K. Wagner, Bounded query classes, SIAM J. Comput., 19 (1990), pp. 833–846.
[31] K. Wagner, A Note on Parallel Queries and the Difference Hierarchy, Tech. Report 173,

Institut für Informatik, Universität Würzburg, Würzburg, Germany, June 1997.
[32] G. Wechsung, On the boolean closure of NP, Lecture Notes in Comput. Sci. 199, Springer-

Verlag, New York, 1985, pp. 485–493. (An unpublished precursor of this paper was coau-
thored by K. Wagner.)

[33] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, What’s Up with Downward Collapse:
Using the Easy-Hard Technique to Link Boolean and Polynomial Hierarchy Collapses,
Department of Computer Science Technical Report TR-98-682, University of Rochester,
1998.

[34] S. Reith and K. Wagner, On Boolean Lowness and Boolean Highness, manuscript, 1998.

FINDING THE k SHORTEST PATHS∗

DAVID EPPSTEIN†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 652–673

Abstract. We give algorithms for finding the k shortest paths (not required to be simple)
connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these
paths in a digraph with n vertices and m edges, in time O(m+ n logn+ k). We can also find the k
shortest paths from a given source s to each vertex in the graph, in total time O(m+n logn+kn). We
describe applications to dynamic programming problems including the knapsack problem, sequence
alignment, maximum inscribed polygons, and genealogical relationship discovery.

Key words. shortest paths, network programming, path enumeration, near-optimal solutions,
dynamic programming, knapsack problem, sequence alignment, inscribed polygon, genealogy

AMS subject classifications. 05C12, 05C85, 94C15

PII. S0097539795290477

1. Introduction. We consider a long-studied generalization of the shortest path
problem, in which not one but several short paths must be produced. The k-shortest-
paths problem is to list the k paths connecting a given source-destination pair in the
digraph with minimum total length. Our techniques also apply to the problem of
listing all paths shorter than some given threshold length. In the version of these
problems studied here, cycles of repeated vertices are allowed. We first present a
basic version of our algorithm, which is simple enough to be suitable for practical
implementation while losing only a logarithmic factor in time complexity. We then
show how to achieve optimal time (constant time per path once a shortest path tree has
been computed) by applying Frederickson’s [26] algorithm for finding the minimum k
elements in a heap-ordered tree.

1.1. Applications. The applications of shortest path computations are too nu-
merous to cite in detail. They include situations in which an actual path is the
desired output, such as robot motion planning, highway and power line engineer-
ing, and network connection routing. They include problems of scheduling such as
critical path computation in PERT charts. Many optimization problems solved by
dynamic programming or more complicated matrix searching techniques, such as the
knapsack problem, sequence alignment in molecular biology, construction of optimal
inscribed polygons, and length-limited Huffman coding, can be expressed as shortest
path problems.

Methods for finding k shortest paths have been applied to many of these appli-
cations, for several reasons.

• Additional constraints. One may wish to find a path that satisfies certain
constraints beyond having a small length, but those other constraints may
be ill defined or hard to optimize. For instance, in power transmission route
selection [18], a power line should connect its endpoints reasonably directly,
but there may be more or less community support for one option or another.
A typical solution is to compute several short paths and then choose among

∗Received by the editors August 18, 1995; accepted for publication (in revised form) April 17,
1997; published electronically August 4, 1998. This research was supported in part by NSF grant
CCR-9258355 and by matching funds from Xerox Corporation.

http://www.siam.org/journals/sicomp/28-2/29047.html
†Department of Information and Computer Science, University of California, Irvine, CA 92697-

3425 (eppstein@ics.uci.edu, http://www.ics.uci.edu/˜eppstein).

652

FINDING THE k SHORTEST PATHS 653

them by considering the other criteria. We recently implemented a similar
technique as a heuristic for the NP-hard problem of, given a graph with
colored edges, finding a shortest path using each color at most once [20].
This type of application is the main motivation cited by Dreyfus [17] and
Lawler [39] for k-shortest-path computations.
• Model evaluation. Paths may be used to model problems that have known

solutions, independent of the path formulation; for instance, in a k-shortest-
path model of automatic translation between natural languages [30], a correct
translation can be found by a human expert. By listing paths until this known
solution appears, one can determine how well the model fits the problem, in
terms of the number of incorrect paths seen before the correct path. This
information can be used to tune the model as well as to determine the number
of paths that need to be generated when applying additional constraints to
search for the correct solution.
• Sensitivity analysis. By computing more than one shortest path, one can de-

termine how sensitive the optimal solution is to variation of the problem’s pa-
rameters. In biological sequence alignment, for example, one typically wishes
to see several “good” alignments rather than one optimal alignment; by com-
paring these several alignments, biologists can determine which portions of an
alignment are most essential [8, 64]. This problem can be reduced to finding
several shortest paths in a grid graph.
• Generation of alternatives. It may be useful to examine not just the opti-

mal solution to a problem but a larger class of solutions, to gain a better
understanding of the problem. For example, the states of a complex system
might be represented as a finite state machine, essentially just a graph, with
different probabilities on each state transition edge. In such a model, one
would likely want to know not just the chain of events most likely to lead
to a failure state but rather all chains having a failure probability over some
threshhold. Taking the logarithms of the transition probabilities transforms
this problem into one of finding all paths shorter than a given length.

We later discuss in more detail some of the dynamic programming applications
listed above and show how to find the k best solutions to these problems by using
our shortest path algorithms. As well as improving previous solutions to the general
k-shortest-paths problem, our results improve more specialized algorithms for finding
length-bounded paths in the grid graphs arising in sequence alignment [8] and for
finding the k best solutions to the knapsack problem [15].

1.2. New results. We prove the following results. In all cases we assume we are
given a digraph in which each edge has a nonnegative length. We allow the digraph
to contain self-loops and multiple edges. In each case the paths are output in an
implicit representation from which simple properties such as the length are available
in constant time per path. We may explicitly list the edges in any path in time
proportional to the number of edges.

• We find the k shortest paths (allowing cycles) connecting a given pair of
vertices in a digraph in time O(m+ n log n+ k).
• We find the k shortest paths from a given source in a digraph to each other

vertex in time O(m+ n log n+ kn).
We can also solve the similar problem of finding all paths shorter than a given

length, with the same time bounds. The same techniques apply to digraphs with
negative edge lengths but no negative cycles, but the time bounds above should be

654 DAVID EPPSTEIN

modified to include the time to compute a single source shortest path tree in such
networks, O(mn) [6, 23] or O(mn1/2 logN) where all edge lengths are integers and N
is the absolute value of the most negative edge length [29]. For a directed acyclic graph
(DAG), with or without negative edge lengths, shortest path trees can be constructed
in linear time and the O(n log n) term above can be omitted. The related problem
of finding the k longest paths in a DAG [4] can be transformed to a shortest path
problem simply by negating all edge lengths; we can therefore also solve it in the same
time bounds.

1.3. Related work. Many papers study algorithms for k shortest paths [3, 5,
7, 9, 13, 14, 17, 24, 31, 32, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 51, 56, 57, 58,
59, 60, 63, 65, 66, 67, 68, 69]. Dreyfus [17] and Yen [69] cite several additional papers
on the subject going back as far as 1957.

One must distinguish several common variations of the problem. In many of
the papers cited above, the paths are restricted to be simple; i.e., no vertex can be
repeated. This has advantages in some applications, but as our results show this
restriction seems to make the problem significantly harder. Several papers [3, 13,
17, 24, 41, 42, 58, 59] consider the version of the k-shortest-paths problem in which
repeated vertices are allowed, and it is this version that we also study. Of course, for
the DAGs that arise in many of the applications described above, including scheduling
and dynamic programming, no path can have a repeated vertex and the two versions
of the problem become equivalent. Note also that in the application described earlier
of listing the most likely failure paths of a system modelled by a finite state machine,
it is the version studied here rather than the more common simple path version that
one wants to solve.

One can also make a restriction that the paths found be edge disjoint or vertex
disjoint [61] or include capacities on the edges [10, 11, 12, 49]; however, such changes
turn the problem into one more closely related to network flow.

Fox [24] gives a method for the k-shortest-path problem based on Dijkstra’s al-
gorithm, which with more recent improvements in priority queue data structures [27]
takes time O(m + kn log n); this seems to be the best previously known k-shortest-
paths algorithm. Dreyfus [17] mentions the version of the problem in which we must
find paths from one source to each other vertex in the graph, and describes a simple
O(kn2) time dynamic programming solution to this problem. For the k-shortest-
simple-paths problem, the best known bound is O(k(m + n log n)) in undirected
graphs [35] or O(kn(m + n log n)) in directed graphs ([39], again including more re-
cent improvements in Dijkstra’s algorithm). Thus all previous algorithms took time
O(n log n) or more per path. We improve this to constant time per path.

A similar problem to the one studied here is that of finding the k minimum weight
spanning trees in a graph. Recent algorithms for this problem [22, 21, 25] reduce it
to finding the k minimum weight nodes in a heap-ordered tree, defined using the best
swap in a sequence of graphs. Heap-ordered tree selection has also been used to find
the smallest interpoint distances or the nearest neighbors in geometric point sets [16].
We apply a similar tree selection technique to the k-shortest-path problem; however,
the reduction of k shortest paths to heap-ordered trees is very different from the
constructions in these other problems.

2. The basic algorithm. Finding the k shortest paths between two terminals
s and t has been a difficult enough problem to warrant much research. In contrast,
the similar problem of finding paths with only one terminal s, ending anywhere in the
graph, is much easier: one can simply use breadth first search. Maintain a priority

FINDING THE k SHORTEST PATHS 655

queue of paths, initially containing the single zero-edge path from s to itself; then
repeatedly remove the shortest path from the priority queue, add it to the list of
output paths, and add all one-edge extensions of that path to the priority queue.
If the graph has bounded degree d, a breadth first search from s until k paths are
found takes time O(dk + k log k); note that this bound does not depend in any way
on the overall size of the graph. If the paths need not be output in order by length,
Frederickson’s heap selection algorithm [26] can be used to speed this up to O(dk).

The main idea of our k-shortest-paths algorithm, then, is to translate the problem
from one with two terminals, s and t, to a problem with only one terminal. One
can find paths from s to t simply by finding paths from s to any other vertex and
concatenating a shortest path from that vertex to t. However, we cannot simply apply
this idea directly, for several reasons: (1) There is no obvious relation between the
ordering of the paths from s to other vertices and the ordering of the corresponding
paths from s to t. (2) Each path from s to t may be represented in many ways as a
path from s to some vertex followed by a shortest path from that vertex to t. (3) Our
input graph may not have bounded degree.

In outline, we deal with problem (1) by using a potential function to modify the
edge lengths in the graph so that the length of any shortest path to t is zero; therefore
concatenating such paths to paths from s will preserve the ordering of the path lengths.
We deal with problem (2) by considering only paths from s in which the last edge is
not in a fixed shortest path tree to t; this leads to the implicit representation we use
to represent each path in constant space. (Ideas similar to these appear also in [46].)
However, this solution gives rise to a fourth problem: (4) We do not wish to spend
much time searching edges of the shortest path tree, as this time can not be charged
against newly found s-t paths.

The heart of our algorithm is the solution to problems (3) and (4). Our idea
is to construct a binary heap for each vertex, listing the edges that are not part of
the shortest path tree and that can be reached from that vertex by shortest-path-
tree edges. In order to save time and space, we use persistence techniques to allow
these heaps to share common structures with each other. In the basic version of the
algorithm, this collection of heaps forms a bounded-degree graph havingO(m+n log n)
vertices. Later we show how to improve the time and space bounds of this part of the
algorithm using tree decomposition techniques of Frederickson [25].

2.1. Preliminaries. We assume throughout that our input graph G has n ver-
tices and m edges. We allow self-loops and multiple edges, so m may be larger than(
n
2

)
. The length of an edge e is denoted `(e). By extension we can define the length

`(p) for any path in G to be the sum of its edge lengths. The distance d(s, t) for a
given pair of vertices is the length of the shortest path starting at s and ending at t;
with the assumption of no negative cycles, this is well defined. Note that d(s, t) may
be unequal to d(t, s). The two endpoints of a directed edge e are denoted tail(e) and
head(e); the edge is directed from tail(e) to head(e).

For our purposes, a heap is a binary tree in which vertices have weights, satisfying
the restriction that the weight of any vertex is less than or equal to the minimum
weight of its children. We will not always care whether the tree is balanced (and in
some circumstances we will allow trees with infinite depth). More generally, a D-heap
is a degree-D tree with the same weight-ordering property; thus the usual heaps above
are 2-heaps. As is well known (e.g., see [62]), any set of values can be placed into a
balanced heap by the heapify operation in linear time. In a balanced heap, any new
element can be inserted in logarithmic time. We can list the elements of a heap in

656 DAVID EPPSTEIN

s

t11

12

(a)

109

13

818

7

15

14202

27

15 20

14

25

0111937

7233342

22365655

(b)

Fig. 1. (a) Example digraph G with edge lengths and specified terminals; (b) shortest path tree
T and distances to t in G.

order by weight, taking logarithmic time to generate each element, simply by using
breadth first search.

2.2. Implicit representation of paths. As discussed earlier, our algorithm
does not output each path it finds explicitly as a sequence of edges; instead it uses an
implicit representation, described in this section.

The ith shortest path in a digraph may have Ω(ni) edges, so the best time we
could hope for in an explicit listing of shortest paths would be O(k2n). Our time
bounds are faster than this, so we must use an implicit representation for the paths.
However, our representation is not a serious obstacle to use of our algorithm: we can
list the edges of any path we output in time proportional to the number of edges, and
simple properties (such as the length) are available in constant time. Similar implicit
representations have previously been used for related problems such as the k minimum
weight spanning trees [22, 21, 25]. Further, previous papers on the k-shortest-path
problem give time bounds omitting the O(k2n) term above, so these papers must
tacitly or not be using an implicit representation.

Our representation is similar in spirit to those used for the k minimum weight
spanning trees problem: for that problem, each successive tree differs from a previously
listed tree by a swap, the insertion of one edge and removal of another edge. The
implicit representation consists of a pointer to the previous tree and a description of
the swap. For the shortest path problem, each successive path will turn out to differ
from a previously listed path by the inclusion of a single edge not part of a shortest
path tree and appropriate adjustments in the portion of the path that involves shortest
path tree edges. Our implicit representation consists of a pointer to the previous path,
and a description of the newly added edge.

Given s and t in a digraph G (Figure 1(a)), let T be a single-destination shortest
path tree with t as destination (Figure 1(b); this is the same as a single source shortest
path tree in the graph GR formed by reversing each edge of G). We can compute T
in time O(m + n log n) [27]. We denote by nextT (v) the next vertex reached after v
on the path from v to t in T .

Given an edge e in G, define

δ(e) = `(e) + d(head(e), t)− d(tail(e), t).

Intuitively, δ(e) measures how much distance is lost by being “sidetracked” along e
instead of taking a shortest path to t. The values of δ for our example graph are
shown in Figure 2(a).

FINDING THE k SHORTEST PATHS 657

s

t

3

4

10 6

1

9

(a)

s

t

3

4

9

(b)

Fig. 2. (a) Edges in G− T labeled by δ(e) (δ(e) = 0 for edges in T); (b) path p, sidetracks(p)
(the heavy edges, labeled 3, 4, and 9), and prefpath(p) (differing from p in the two dashed edges;
sidetracks(prefpath(p)) consists of the two edges labeled 3 and 4).

Lemma 1. For any e ∈ G, δ(e) ≥ 0. For any e ∈ T , δ(e) = 0.
For any path p in G, formed by a sequence of edges, some edges of p may be in

T , and some others may be in G− T . Any path p from s to t is uniquely determined
solely by the subsequence sidetracks(p) of its edges in G−T (Figure 2(b)). For, given
a pair of edges in the subsequence, there is a uniquely determined way of inserting
edges from T so that the head of the first edge is connected to the tail of the second
edge. As an example, the shortest path in T from s to t is represented by the empty
sequence. A sequence of edges in G − T may not correspond to any s-t path, if it
includes a pair of edges that cannot be connected by a path in T . If S = sidetracks(p),
we define path(S) to be the path p.

Our implicit representation will involve these sequences of edges in G − T . We
next show how to recover `(p) from information in sidetracks(p).

For any nonempty sequence S of edges in G − T , let prefix(S) be the sequence
formed by the removal of the last edge in S. If S = sidetracks(p), then we denote
this last sidetrack edge by lastsidetrack(p); prefix(S) will define a path prefpath(p) =
path(prefix(S)) (Figure 2(b)).

Lemma 2. For any path p from s to t,

`(p) = d(s, t) +
∑

e∈sidetracks(p)

δ(e) = d(s, t) +
∑
e∈p

δ(e).

Lemma 3. For any path p from s to t in G, for which sidetracks(p) is nonempty,
`(p) ≥ `(prefpath(p)).

Our representation of a path p in the list of paths produced by our algorithm will
then consist of two components:

• the position in the list of prefpath(p).
• edge lastsidetrack(p).

Although the final version of our algorithm, which uses Frederickson’s heap selection
technique, does not necessarily output paths in sorted order, we will nevertheless be
able to guarantee that prefpath(p) is output before p. One can easily recover p itself
from our representation in time proportional to the number of edges in p. The length
`(p) for each path can easily be computed as δ(lastsidetrack(p)) + `(prefpath(p)). We
will see later that we can also compute many other simple properties of the paths in
constant time per path.

2.3. Representing paths by a heap. The representation of s-t paths discussed
in the previous section gives a natural tree of paths, in which the parent of any path p

658 DAVID EPPSTEIN

{}

{3}

{3,1} {3,4}

{3,4,6} {3,4,9}

{6} {10}

{3,1,9}

Fig. 3. Tree of paths, labeled by sidetracks(p).

is prefpath(p) (Figure 3). The degree of any node in this path tree is at most m, since
there can be at most one child for each possible value of lastsidetrack(p). The possible
values of lastsidetrack(q) for paths q that are children of p are exactly those edges in
G−T that have tails on the path from head(lastsidetrack(p)) to t in the shortest path
tree T .

If G contains cycles, the path tree is infinite. By Lemma 3, the path tree is heap-
ordered. However, since its degree is not necessarily constant, we cannot directly apply
breadth first search (nor Frederickson’s heap selection technique, described later in
Lemma 8) to find its k minimum values. Instead we form a heap by replacing each
node p of the path tree with an equivalent bounded-degree subtree (essentially, a heap
of the edges with tails on the path from head(lastsidetrack(p)) to t, ordered by δ(e)).
We must also take care that we do this in such a way that the portion of the path
tree explored by our algorithm can be easily constructed.

For each vertex v we wish to form a heap HG(v) for all edges with tails on the
path from v to t, ordered by δ(e). We will later use this heap to modify the path tree
by replacing each node p with a copy of HG(head(lastsidetrack(p))).

Let out(v) denote the edges in G− T with tails at v (Figure 4(a)). We first build
a heap Hout(v) for each vertex v of the edges in out(v) (Figure 4(b)). The weights
used for the heap are simply the values δ(e) defined earlier. Hout(v) will be a 2-heap
with the added restriction that the root of the heap only has one child. It can be built
for each v in time O(|out(v)|) by letting the root outroot(v) be the edge minimizing
δ(e) in out(v) and letting its child be a heap formed by heapification of the rest of the
edges in out(v). The total time for this process is

∑
O(|out(v)|) = O(m).

We next form the heap HG(v) by merging all heaps Hout(w) for w on the path in
T from v to t. More specifically, for each vertex v we merge Hout(v) intoHG(nextT (v))
to form HG(v). We will continue to need HG(nextT (v)), so this merger should be done
in a persistent (nondestructive) fashion.

We guide this merger of heaps using a balanced heap HT (v) for each vertex v, con-
taining only the roots outroot(w) of the heaps Hout(w), for each w on the path from
v to t. HT (v) is formed by inserting outroot(v) into HT (nextT (v)) (Figure 5(a)). To
perform this insertion persistently, we create new copies of the nodes on the path up-
dated by the insertion (marked by asterisks in Figure 5(a)), with appropriate pointers
to the other, unchanged members of HT (nextT (v)). Thus we can store HT (v) without
changing HT (nextT (v)) by using an additional O(log n) words of memory to store only
the nodes on that path.

We now form HG(v) by connecting each node outroot(w) in HT (v) to an additional

FINDING THE k SHORTEST PATHS 659

1

6

12

14

13

3

7

17

19
4

8

10

p

q

r

s

t

1

6

12 14

13 3

7
17

19

4

8

10

(a) (b)

Fig. 4. (a) Portion of a shortest path tree, showing out(v) and corresponding values of δ; (b)
Hout(v).

4*

4*

17*

4*

13*17

17*

1*

134*

3*

4*17

p

q

r

s

t 4

4

17

17

3

4

4

13

1

4 6

12 14

7

19

8

10

(a) (b)

Fig. 5. (a) HT (v) with asterisks marking path of nodes updated by insertion of outroot(v) into
HT (nextT (v)); (b) D(G) has a node for each marked node in Figure 5(a) and each nonroot node in
Figure 4(b).

subtree beyond the two it points to in HT (v), namely, to the rest of heap Hout(w).

660 DAVID EPPSTEIN

HG(v) can be constructed at the same time as we construct HT (v), with a similar
amount of work. HG(v) is thus a 3-heap, as each node includes at most three children,

either two from HT (v) and one from Hout(w) or none from HT (v) and two from
Hout(w).

We summarize the construction so far in a form that emphasizes the shared struc-
ture in the various heaps HG(v).

Lemma 4. In time O(m + n log n) we can construct a DAG D(G) and a map
from vertices v ∈ G to h(v) ∈ D(G), with the following properties:

• D(G) has O(m+ n log n) vertices.
• Each vertex in D(G) corresponds to an edge in G− T .
• Each vertex in D(G) has out-degree at most 3.
• The vertices reachable in D(G) from h(v) form a 3-heap HG(v) in which the

vertices of the heap correspond to edges of G− T with tails on the path in T
from v to t, in heap order by the values of δ(e).

Proof. The vertices in D(G) come from two sources: heaps Hout(v) and HT (v).
Each node in Hout(v) corresponds to a unique edge in G − T , so there are at most
m − n + 1 nodes coming from heaps Hout(v). Each vertex of G also contributes
blog2 ic nodes from heaps HT (v), where i is the length of the path from the vertex to
t, 1 + blog2 ic measures the number of balanced binary heap nodes that need to be
updated when inserting outroot(v) into HT (nextT (v)), and we subtract one because
outroot(v) itself was already included in our total for Hout(v). In the worst case, T is
a path and the total contribution is at most

∑
iblog2 ic ≤ n log2 n− cn, where c varies

between roughly 1.91 and 2 depending on the ratio of n to the nearest power of two.
Therefore the total number of nodes in D(G) is at most m+ n log2 n− (c+ 1)n. The
degree bound follows from the construction, and it is straightforward to construct
D(G) as described above in constant time per node, after computing the shortest
path tree T in time O(m+ n log n) using Fibonacci heaps [27].

Map h(v) simply takes v to the root of HG(v). For any vertex v in D(G), let δ(v)
be a shorthand for δ(e), where e is the edge in G corresponding to v. By construction,
the nodes reachable from h(v) are those in HT (v) together with, for each such node
w, the rest of the nodes in Hout(w); HT (v) was constructed to correspond exactly to
the vertices on the path from v to t, and Hout(w) represents the edges with tails at
each vertex, so together these reachable nodes represent all edges with tails on the
path. Each edge (u, v) in D(G) corresponds to an edge either in some HT (w) or in
some Hout(w), and in either case the heap ordering for D(G) is a consequence of the
ordering in these smaller heaps.

D(G) is shown in Figure 5(b). The nodes reachable from s in D(G) form a
structure HG(s) representing the paths differing from the original shortest path by
the addition of a single edge in G− T . We now describe how to augment D(G) with
additional edges to produce a graph which can represent all s-t paths, not just those
paths with a single edge in G− T .

We define the path graph P (G) as follows. The vertices of P (G) are those of D(G),
with one additional vertex, the root r = r(s). The vertices of P (G) are unweighted,
but the edges are given lengths. For each directed edge (u, v) in D(G), we create the
edge between the corresponding vertices in P (G), with length δ(v) − δ(u). We call
such edges heap edges. For each vertex v in P (G), corresponding to an edge in G−T
connecting some pair of vertices u and w, we create a new edge from v to h(w) in
P (G), having as its length δ(h(w)). We call such edges cross edges. We also create

FINDING THE k SHORTEST PATHS 661

an initial edge between r and h(s), having as its length δ(h(s)).
P (G) has O(m + n log n) vertices, each with out-degree at most four. It can be

constructed in time O(m+ n log n).
Lemma 5. There is a one-to-one length-preserving correspondence between s-t

paths in G, and paths starting from r in P (G).
Proof. Recall that an s-t path p in G is uniquely defined by sidetracks(p), the

sequence of edges from p in G − T . We now show that for any such sequence,
there corresponds a unique path from r in P (G) ending at a node corresponding to
lastsidetrack(p), and conversely any path from r in P (G) corresponds to sidetracks(p)
for some path p.

Given a path p in G, we construct a corresponding path p′ in P (G) as follows. If
sidetracks(p) is empty (i.e., p is the shortest path), we let p′ consist of the single node
r. Otherwise, form a path q′ in P (G) corresponding to prefpath(p) by induction on the
length of sidetracks(p). By induction, q′ ends at a node of P (G) corresponding to edge
(u, v) = lastsidetrack(prefpath(p)). When we formed P (G) from D(G), we added an
edge from this node to h(v). Since lastsidetrack(p) has its tail on the path in T from
v to t, it corresponds to a unique node in HG(v), and we form p′ by concatenating
q′ with the path from h(v) to that node. The edge lengths on this concatenated
path telescope to δ(lastsidetrack(p)), and `(p) = `(prefpath(p)) + `(lastsidetrack(p))
by Lemma 2, so by induction `(p) = `(q′) + `(lastsidetrack(p)) = `(p′).

Conversely, to construct an s-t path in G from a path p′ in P (G), we construct a
sequence of edges in G, pathseq(p′). If p′ is empty, pathseq(p′) is also empty. Otherwise
pathseq(p′) is formed by taking in sequence the edges in G corresponding to tails of
cross edges in p′ and adding at the end of the sequence the edge in G corresponding
to the final vertex of p′. Since the nodes of P (G) reachable from the head of each
cross edge (u, v) are exactly those in HG(v), each successive edge added to pathseq(p′)
is on the path in T from v to t, and pathseq(p′) is of the form sidetracks(p) for some
path p in G.

Lemma 6. In O(m+ n log n) time we can construct a graph P (G) with a distin-
guished vertex r, having the following properties.

• P (G) has O(m+ n log n) vertices.
• Each vertex of P (G) has out-degree at most four.
• Each edge of P (G) has nonnegative weight.
• There is a one-to-one correspondence between s-t paths in G and paths start-

ing from r in P (G).
• The correspondence preserves lengths of paths in that length ` in P (G) cor-

responds to length d(s, t) + ` in G.
Proof. The bounds on size, time, and out-degree follow from Lemma 4, and the

nonnegativity of edge weights follows from the heap ordering proven in that lemma.
The correctness of the correspondence between paths in G and in P (G) is shown
above in Lemma 5.

To complete our construction, we find from the path graph P (G) a 4-heap H(G),
so that the nodes in H(G) represent paths in G. H(G) is constructed by forming a
node for each path in P (G) rooted at r. The parent of a node is the path with one
fewer edge. Since P (G) has out-degree four, each node has at most four children.
Weights are heap-ordered, and the weight of a node is the length of the corresponding
path.

Lemma 7. H(G) is a 4-heap in which there is a one-to-one correspondence
between nodes and s-t paths in G, and in which the length of a path in G is d(s, t)

662 DAVID EPPSTEIN

plus the weight of the corresponding node in H(G).
We note that, if an algorithm explores a connected region of O(k) nodes in H(G),

it can represent the nodes in constant space by assigning them numbers and indicating
for each node its parent and the additional edge in the corresponding path of P (G).
The children of a node are easy to find simply by following appropriate out-edges in
P (G), and the weight of a node is easy to compute from the weight of its parent.
It is also easy to maintain along with this representation the corresponding implicit
representation of s-t paths in G.

2.4. Finding the k shortest paths.
Theorem 1. In time O(m+ n log n) we can construct a data structure that will

output the shortest paths from s to t in a graph in order by weight, taking time O(log i)
to output the ith path.

Proof. We apply breadth first search to P (G), as described at the start of the
section, and translate the search results to paths using the correspondence described
above.

We next describe how to compute paths from s to all n vertices of the graph.
In fact our construction solves more easily the reverse problem of finding paths from
each vertex to the destination t. The construction of P (G) is as above, except that
instead of adding a single root r(s) connected to h(s), we add a root r(v) for each
vertex v ∈ G. The modification to P (G) takes O(n) time. Using the modified P (G),
we can compute a heap Hv(G) of paths from each v to t and compute the k smallest
such paths in time O(k).

Theorem 2. Given a source vertex s in a digraph G, we can find in time O(m+
n log n + kn log k) an implicit representation of the k shortest paths from s to each
other vertex in G.

Proof. We apply the construction above to GR, with s as destination. We form
the modified path graph P (GR), find for each vertex v a heap Hv(G

R) of paths in
GR from v to s, and apply breadth first search to this heap. Each resulting path
corresponds to a path from s to v in G.

3. Improved space and time. The basic algorithm described above takes time
O(m + n log n + k log k), even if a shortest path tree has been given. If the graph is
sparse, the n log n term makes this bound nonlinear. This term comes from two
parts of our method, Dijkstra’s shortest path algorithm and the construction of P (G)
from the tree of shortest paths. But for certain graphs, or with certain assumptions
about edge lengths, shortest paths can be computed more quickly than O(m+n log n)
[2, 28, 33, 36], and in these cases we would like to speed up our construction of P (G)
to match these improvements. In other cases, k may be large and the k log k term
may dominate the time bound; again we would like to improve this nonlinear term.
In this section we show how to reduce the time for our algorithm to O(m + n + k),
assuming a shortest path tree is given in the input. As a consequence we can also
improve the space used by our algorithm.

3.1. Faster heap selection. The following result is due to Frederickson [26].
Lemma 8. We can find the k smallest weight vertices in any heap in time O(k).
Frederickson’s result applies directly to 2-heaps, but we can easily extend it to

D-heaps for any constant D. One simple method of doing this involves forming a
2-heap from the given D-heap by making D− 1 copies of each vertex, connected in a
binary tree with the D children as leaves, and breaking ties in such a way that the Dk
smallest weight vertices in the 2-heap correspond exactly to the k smallest weights in

FINDING THE k SHORTEST PATHS 663

(a) (b)

Fig. 6. (a) Restricted partition of order 2; (b) multilevel partition.

the D-heap.
By using this algorithm in place of breadth first search, we can reduce the

O(k log k) term in our time bounds to O(k).

3.2. Faster path heap construction. Recall that the bottleneck of our algo-
rithm is the construction of HT (v), a heap for each vertex v in G of those vertices on
the path from v to t in the shortest path tree T . The vertices in HT (v) are in heap
order by δ(outroot(u)). In this section we consider the abstract problem, given a tree
T with weighted nodes, of constructing a heap HT (v) for each vertex v of the other
nodes on the path from v to the root of the tree. The construction of Lemma 4 solves
this problem in time and space O(n log n); here we give a more efficient but also more
complicated solution.

By introducing dummy nodes with large weights, we can assume without loss of
generality that T is binary and that the root t of T has indegree one. We will also
assume that all vertex weights in T are distinct; this can be achieved at no loss in
asymptotic complexity by use of a suitable tie-breaking rule. We use the following
technique of Frederickson [25].

Definition 1. A restricted partition of order z with respect to a rooted binary
tree T is a partition of the vertices of V such that

1. each set in the partition contains at most z vertices;
2. each set in the partition induces a connected subtree of T ;
3. for each set S in the partition, if S contains more than one vertex, then there

are at most two tree edges having one endpoint in S;
4. no two sets can be combined and still satisfy the other conditions.

In general such a partition can easily be found in linear time by merging sets until
we get stuck. However for our application, z will always be 2 (Figure 6(a)), and by
working from the bottom up we can find an optimal partition in linear time.

Lemma 9 (Frederickson [25]). In linear time we can find an order-2 partition of
a binary tree T for which there are at most 5n/6 sets in the partition.

Contracting each set in a restricted partition gives again a binary tree. We form
a multilevel partition [25] by recursively partitioning this contracted binary tree (Fig-
ure 6(b)). We define a sequence of trees Ti as follows. Let T0 = T . For any i > 0, let
Ti be formed from Ti−1 by performing a restricted partition as above and contracting
the resulting sets. Then |Ti| = O((5/6)in).

For any set S of vertices in Ti−1 contracted to form a vertex v in Ti, define
nextlevel(S) to be the set in the partition of Ti containing S. We say that S is an

664 DAVID EPPSTEIN

interior set if it is contracted to a degree two vertex. Note that if t has indegree one,
the same is true for the root of any Ti, so t is not part of any interior set, and each
interior set has one incoming and one outgoing edge. Since Ti is a contraction of T ,
each edge in Ti corresponds to an edge in T . Let e be the outgoing edge from v in Ti;
then we define rootpath(S) to be the path in T from head(e) to t. If S is an interior
set, with a single incoming edge e′, we let inpath(S) be the path in T from head(e′)
to tail(e).

Define an m-partial heap to be a pair (M,H), where H is a heap and M is a set
of m elements each smaller than all nodes in H. If H is empty, M can have fewer
than m elements and we will still call (M,H) an m-partial heap.

Let us outline the structures used in our algorithm, before describing the details
of computing these structures. We first find a partial heap (M1(S), H1(S)) for the
vertices of T in each path inpath(S). Although our algorithm performs an interleaved
construction of all of these sets at once, it is easiest to define them from the top
down by defining M1(S) for a set S in the partition of Ti−1 in terms of similar sets
in Ti and higher levels of the multilevel partition. Specifically, let M2(S) denote
those elements in M1(S′) for those S′ containing S at higher levels of the multilevel
partition, and let k = max(i+2, |M2(S)|+1); then we define M1(S) to be the vertices
in inpath(S) having the k smallest vertex weights. Our algorithm for computing
H1(S) from the remaining vertices on inpath(S) involves an intermediate heap H2(S′)
formed by adding the vertices in M1(S′)−M1(S) to H1(S′), where S′ consists of one
or both of the subsets of S contracted at the next lower level of the decomposition
and containing vertices of inpath(S). After a bottom-up computation of M1, H1, and
H2, we then perform a top-down computation of a family of (i + 1)-partial heaps,
(M3(S), H3(S)); M3 is formed by removing some elements from M1 and H3 is formed
by adding those elements to H1. Finally, the desired output HT (v) can be constructed
from the 1-partial heap (M3(v), H3(v)) at level T0 in the decomposition.

Before describing our algorithms, let us bound a quantity useful in their analysis.
Let mi denote the sum of |M1(S)| over sets S contracted in Ti.

Lemma 10. For each i, mi = O(i|Ti|).
Proof. By the definition of M1(S) above,

mi =
∑
S

max(i+ 2, |M2(S)|+ 1) ≤
∑
S

|M2(S)|+ i+ 2 ≤ (i+ 2)|Ti|+
∑
S

|M2(S)|.

All sets M2(S) appearing in this sum are disjoint, and all are included in mi+1, so we
can simplify this formula to

mi ≤ (i+ 2)|Ti|+mi+1 ≤
∑
j≥i

(j + 2)|Tj | ≤
∑
j≥i

(j + 2)

(
5

6

)j−i
|Ti| = O(i|Ti|).

We use the following data structure to compute the sets M1(S) (which, recall, are
sets of low-weight vertices on inpath(S)). For each interior set S, we form a priority
queue Q(S), from which we can retrieve the smallest weight vertex on inpath(S) not
yet in M1(S). This data structure is very simple: if only one of the two subsets forming
S contains vertices on inpath(S), we simply copy the minimum-weight vertex on that
subset’s priority queue, and otherwise we compare the minimum-weight vertices in
each subset’s priority queue and select the smaller of the two weights. If one of the
two subsets’ priority queue values change, this structure can be updated simply by
repeating this comparison.

FINDING THE k SHORTEST PATHS 665

We start by setting all the sets M1(S) to be empty, then progress from the top
down through the multilevel decomposition, testing for each set S in each tree Ti (in
decreasing order of i) whether we have already added enough members to M1(S). If
not, we add elements one at a time until there are enough to satisfy the definition
above of |M1(S)|. Whenever we add an element to M1(S) we add the same element to
M1(S′) for each lower level subset S′ to which it also belongs. An element is added by
removing it from Q(S) and from the priority queues of the sets at each lower level. We
then update the queues bottom up, recomputing the head of each queue and inserting
it in the queue at the next level.

Lemma 11. The amount of time to compute M1(S) for all sets S in the multilevel
partition, as described above, is O(n).

Proof. By Lemma 10, the number of operations in priority queues for subsets of
Ti is O(i|Ti|). So the total time is

∑
O(i|Ti|) = O(n

∑
i(5/6)i) = O(n).

We next describe how to compute the heaps H1(S) for the vertices on inpath(S)
that have not been chosen as part of M1(S). For this stage we work from the bottom
up. Recall that S corresponds to one or two vertices of Ti; each vertex corresponds
to a set S′ contracted at a previous level of the multilevel partition. For each such S′

along the path in S we will have already formed the partial heap (M1(S′), H1(S′)).
We let H2(S′) be a heap formed by adding the vertices in M1(S′)−M1(S) to H1(S′).
Since M1(S′)−M1(S) consists of at least one vertex (because of the requirement that
|M1(S′)| ≥ |M1(S)|+1), we can form H2(S′) as a 2-heap in which the root has degree
one.

If S consists of a single vertex we then let H1(S) = H2(S′); otherwise we form
H1(S) by combining the two heaps H2(S′) for its two children. The time is constant
per set S or linear overall.

We next compute another collection of partial heaps (M3(S), H3(S)) of vertices in
rootpath(S) for each set S contracted at some level of the tree. If S is a set contracted
to a vertex in Ti, we let (M3(S), H3(S)) be an (i + 1)-partial heap. In this phase
of the algorithm, we work top down. For each set S, consisting of a collection of
vertices in Ti−1, we use (M3(S), H3(S)) to compute for each vertex S′ the partial
heap (M3(S′), H3(S′)).

If S consists of a single set S′, or if S′ is the parent of the two vertices in S,
we let M3(S′) be formed by removing the minimum weight element from M3(S) and
we let H3(S′) be formed by adding that minimum weight element as a new root to
H3(S).

In the remaining case, if S′ and parent(S′) are both in S, we form M3(S′) by
taking the i+ 1 minimum values in M1(parent(S′))∪M3(parent(S′)). The remaining
values in M1(parent(S′))∪M3(parent(S′))−M3(S′) must include at least one value v
greater than everything inH1(parent(S′)). We formH3(S′) by sorting those remaining
values into a chain, together with the root of heap H3(parent(S′)), and connecting v
to H1(parent(S′)).

To complete the process, we compute the heaps HT (v) for each vertex v. Each
such vertex is in T0, so the construction above has already produced a 1-partial heap
(M3(v), H3(v)). We must add the value for v itself and produce a true heap, both of
which are easy.

Lemma 12. Given a tree T with weighted nodes, we can construct for each vertex
v a 2-heap HT (v) of all nodes on the path from v to the root of the tree, in total time
and space O(n).

Proof. The time for constructing (M1, H1) has already been analyzed. The only

666 DAVID EPPSTEIN

remaining part of the algorithm that does not take constant time per set is the time
for sorting remaining values into a chain, in time O(i log i) for a set at level i of the
construction. The total time at level i is thus O(|Ti|i log i) which, summed over all i,
gives O(n).

Applying this technique in place of Lemma 4 gives the following result.
Theorem 3. Given a digraph G and a shortest path tree from a vertex s, we

can find an implicit representation of the k shortest s-t paths in G, in time and space
O(m+ n+ k).

4. Maintaining path properties. Our algorithm can maintain along with the
other information in H(G) various forms of simple information about the correspond-
ing s-t paths in G.

We have already seen that H(G) allows us to recover the lengths of paths. How-
ever, lengths are not as difficult as some other information might be to maintain, since
they form an additive group. We used this group property in defining δ(e) to be a
difference of path lengths, and in defining edges of P (G) to have weights that were
differences of quantities δ(e).

We now show that we can in fact keep track of any quantity formed by combining
information from the edges of the path using any monoid. We assume that there is
some given function taking each edge e to an element value(e) of a monoid, and that
given two edges e and f we can compute the composite value value(e) · value(f) in
constant time. By associativity of monoids, the value value(p) of a path p is well
defined. Examples of such values include the path length and number of edges in a
path (for which composition is real or integer addition) and the longest or shortest
edge in a path (for which composition is minimization or maximization).

Recall that for each vertex we compute a heap HG(v) representing the sidetracks
reachable along the shortest path from v to t. For each node x in HG(v) we maintain
two values: pathstart(x) pointing to a vertex on the path from v to t, and value(x)
representing the value of the path from pathstart(x) to the head of the sidetrack edge
represented by x. We require that pathstart of the root of the tree is v itself, that
pathstart(x) be a vertex between v and the head of the sidetrack edge representing
x, and that all descendents of x have pathstart values on the path from pathstart(x)
to t. For each edge in HG(v) connecting nodes x and y we store a further value,
representing the value of the path from pathstart(x) to pathstart(y). We also store for
each vertex in G the value of the shortest path from v to t.

Then as we compute paths from the root in the heap H(G), representing s-t
paths in G, we can keep track of the value of each path merely by composing the
stored values of appropriate paths and nodes in the path in H(G). Specifically, when
we follow an edge in a heap HG(v) we include the value stored at that edge, and
when we take a sidetrack edge e from a node x in HG(v) we include value(x) and
value(e). Finally we include the value of the shortest path to t from the tail of the
last sidetrack edge to t. The portion of the value except for the final shortest path can
be updated in constant time from the same information for a shorter path in H(G),
and the remaining shortest path value can be included again in constant time, so this
computation takes O(1) time per path found.

The remaining difficulty is computing the values value(x), pathstart(x), and also
the values of edges in HG(v).

In the construction of Lemma 4, we need only compute these values for the
O(log n) nodes by which HG(v) differs from HG(parent(v)), and we can compute each
such value as we update the heap in constant time per value. Thus the construction

FINDING THE k SHORTEST PATHS 667

here goes through with unchanged complexity.
In the construction of Lemma 12, each partial heap at each level of the con-

struction corresponds to all sidetracks with heads taken from some path in the short-
est path tree. As each partial heap is formed the corresponding path is formed by

concatenating two shorter paths. We let pathstart(x) for each root of a heap be equal
to the endpoint of this path farthest from t. We also store for each partial heap the
near endpoint of the path, and the value of the path. Then these values can all be
updated in constant time when we merge heaps.

Theorem 4. Given a digraph G and a shortest path tree from a vertex s, and
given a monoid with values value(e) for each edge e ∈ G, we can compute value(p) for
each of the k shortest s-t paths in G, in time and space O(m+ n+ k).

5. Dynamic programming applications. Many optimization problems solved
by dynamic programming or more complicated matrix searching techniques can be
expressed as shortest path problems. Since the graphs arising from dynamic programs
are typically acyclic, we can use our algorithm to find longest as well as shortest paths.
We demonstrate this approach by a few selected examples.

5.1. The knapsack problem. The optimization 0-1 knapsack problem (or knap-
sack problem for short) consists of placing “objects” into a “knapsack” that has room
for only a subset of the objects, and maximizing the total value of the included ob-
jects. Formally, one is given integers L, ci, and wi (0 ≤ i < n), and one must find
xi ∈ {0, 1} satisfying

∑
xici ≤ L and maximizing

∑
xiwi. Dynamic programming

solves the problem in time O(nL); Dai et al. [15] show how to find the k best solutions
in time O(knL). We now show how to improve this to O(nL+ k) using longest paths
in a DAG.

Let directed acyclic graph G have nL+L+ 2 vertices: two terminals s and t and
(n + 1)L other vertices with labels (i, j), 0 ≤ i ≤ n and 0 ≤ j ≤ L. Draw an edge
from s to each (0, j) and from each (n, j) to t, each having length 0. From each (i, j)
with i < n, draw two edges: one to (i+ 1, j) with length 0, and one to (i+ 1, j + ci)
with length wi (omit this last edge if j + ci > L).

There is a simple one-to-one correspondence between s-t paths and solutions to
the knapsack problem: given a path, define xi to be 1 if the path includes an edge
from (i, j) to (i+ 1, j + ci); instead let xi be 0 if the path includes an edge from (i, j)
to (i+ 1, j). The length of the path is equal to the corresponding value of

∑
xiwi, so

we can find the k best solutions simply by finding the k longest paths in the graph.
Theorem 5. We can find the k best solutions to the knapsack problem as defined

above, in time O(nL+ k).

5.2. Sequence alignment. The sequence alignment or edit distance problem is
that of matching the characters in one sequence against those of another, obtaining
a matching of minimum cost where the cost combines terms for mismatched and
unmatched characters. This problem and many of its variations can be solved in
time O(xy) (where x and y denote the lengths of the two sequences) by a dynamic
programming algorithm that takes the form of a shortest path computation in a grid
graph.

Byers and Waterman [8, 64] describe a problem of finding all near-optimal solu-
tions to sequence alignment and similar dynamic programming problems. Essentially
their problem is that of finding all s-t paths with length less than a given bound
L. They describe a simple depth first search algorithm for this problem, which is

668 DAVID EPPSTEIN

especially suited for grid graphs although it will work in any graph and although the
authors discuss it in terms of general DAGs. In a general digraph their algorithm
would use time O(k2m) and space O(km). In the acyclic case discussed in the paper,
these bounds can be reduced to O(km) and O(m). In grid graphs its performance is
even better: time O(xy + k(x+ y)) and space O(xy). Naor and Brutlag [46] discuss
improvements to this technique that among other results include a similar time bound
for k shortest paths in grid graphs.

We now discuss the performance of our algorithm for the same length-limited
path problem. In general one could apply any k shortest paths algorithm together
with a doubling search to find the value of k corresponding to the length limit, but
in our case the problem can be solved more simply: simply replace the breadth first
search in H(G) with a length-limited depth first search.

Theorem 6. We can find the k s-t paths in a graph G that are shorter than a
given length limit L, in time O(m+n+k) once a shortest path tree in G is computed.

Even for the grid graphs arising in sequence analysis, our O(xy + k) bound im-
proves by a factor of O(x+ y) the times of the algorithms of Byers and Waterman [8]
and Naor and Brutlag [46].

5.3. Inscribed polygons. We next discuss the problem of, given an n-vertex
convex polygon, finding the “best” approximation to it by an r-vertex polygon, r < n.
This arises, e.g., in computer graphics, in which significant speedups are possible by
simplifying the shapes of faraway objects. To our knowledge the “k best solution”
version of the problem has not been studied before. We include it as an example in
which the best-known algorithms for the single solution case do not appear to be of the
form needed by our techniques; however, one can transform an inefficient algorithm
for the original problem into a shortest path problem that with our techniques gives
an efficient solution for large enough k.

We formalize the problem as that of finding the maximum area or perimeter
convex r-gon inscribed in a convex n-gon. The best known solution takes time
O(n log n + n

√
r log n) [1]. However, this algorithm does not appear to be in the

form of a shortest path problem, as needed by our techniques.
Instead we describe a less efficient technique for solving the problem by using

shortest paths. Number the n-gon vertices v1, v2, etc. Suppose we know that vi is
the lowest numbered vertex to be part of the optimal r-gon. We then form a DAG Gi
with O(rn) vertices and O(rn2) edges, in r levels. In each level we place a copy of each
vertex vj , connected to all vertices with lower numbers in the previous level. Each
path from the copy of vi in the first level of the graph to a vertex in the last level of the
graph has r vertices with numbers in ascending order from vi, and thus corresponds
to an inscribed r-gon. We connect one such graph for each initial vertex vi into one
large graph, by adding two vertices s and t, edges from s to each copy of a vertex vi
at the first level of Gi, and edges from each vertex on level r of each Gi to t. Paths
in the overall graph G thus correspond to inscribed r-gons with any starting vertex.

It remains to describe the edge lengths in this graph. Edges from s to each vi
will have length zero for either definition of the problem. Edges from a copy of vi
at one level to a copy of vj at the next level will have length equal to the Euclidean
distance from vi to vj , for the maximum perimeter version of the problem, and edges
connecting a copy of vj at the last level to t will have length equal to the distance
between vj and the initial vertex vi. Thus the length of a path becomes exactly the
perimeter of the corresponding polygon, and we can find the k best r-gons by finding
the k longest paths.

FINDING THE k SHORTEST PATHS 669

Victoria

VI

II
Windsor

Elizabeth

Windsor

George

von

Windsor

Mountbatten
Philip

Mountbatten
Julie
Elizabeth

Alice
Victoria

Brabant
Marie
Elizabeth
Alberta
Victoria

Wettin
Mary

Alice

Maud

Marie

Irene

von

Paul

II

Olga

Karl

V

Windsor
Elizabeth

Windsor
George

Württemberg
Agnes
Claudine

Pauline
Augusta
Victoria

Württemberg
Alexander

Ludwig
Franz

Württemberg
Constantin

Ludwig
Alexander

Henriette

 VI

von

Louisa
Mary

von

Paul

 von

 =

Olga

Luise

Ludwig

Mountbatten
Philip

Oldenburg
Andrew

Romanov

 von
Elisabeth
Marianne

Henriette
Friederike
Alexandra

Württemberg
Philippine

Wilhelmine
Amalie

Württemberg
Alexander

von

Wettin

Pauline

von

Therese

von
Friedrich

II

Windsor
Elizabeth

Windsor
George

Windsor
George

Oldenburg
Julia
Louisa

Charlotte
Caroline

Alexandra

von
Auguste

Caroline
Friederike

Wilhelmine
Louise

 von

VI

V

Mary

Brabant =
Julie

Mountbatten
Philip

Oldenburg
Andrew

Oldenburg
George

Oldenburg
IX

Christian

 I

von

von

von

of

II

Olga

Mary

Windsor
Elizabeth

Windsor
George

Württemberg
Agnes
Claudine

Pauline
Augusta
Victoria

 von
Elizabeth

Wilhelmina
Adelaide

Brabant
Louisa
Wilhelmina

Augusta

Usingen
Nassau-

Polyxene
Caroline

 VI

von

Mary

Welf

von

 =

Louisa

von

Friedrich

Mountbatten
Philip

Oldenburg
Andrew

Oldenburg
George

Brabant
Auguste

Caroline
Friederike

Wilhelmine
Louise

Brabant
Wilhelm

Brabant
von

 I

(2)

von

von

Julie

(2)
von

George

Wettin
VII

Edward

 = Wettin von
Emanuel
Augustus
Charles
Francis
Albert

Welf I

Fig. 7. Some short relations in a complicated genealogical database.

For the maximum area problem, we instead let the distance from vi to vj be
measured by the area of the n-gon cut off by a line segment from vi to vj . Thus
the total length of a path is equal to the total area outside the corresponding r-gon.
Since we want to maximize the area inside the r-gon, we can find the k best r-gons
by finding the k shortest paths.

Theorem 7. We can find the k maximum area or perimeter r-gons inscribed in
an n-gon, in time O(rn3 + k).

5.4. Genealogical relations. If one has a database of family relations, one
may often wish to determine how some two individuals in the database are related
to each other. Formalizing this, one may draw a DAG in which nodes represent
people, and an arc connects a parent to each of his or her children. Then each dif-
ferent type of relationship (such as that of being a half-brother, great-aunt, or third
cousin twice removed) can be represented as a pair of disjoint paths from a com-
mon ancestor (or couple forming a pair of common ancestors) to the two related
individuals, with the specific type of relationship being a function of the numbers
of edges in each path and of whether the paths begin at a couple or at a single
common ancestor. In most families, the DAG one forms in this way has a tree-like
structure, and relationships are easy to find. However, in more complicated families
with large amounts of intermarriage, one can be quickly overwhelmed with many dif-
ferent relationships. For instance, in the British royal family, Queen Elizabeth and
her husband Prince Philip are related in many ways, the closest few being second
cousins once removed through King Christian IX of Denmark and his wife Louise,
third cousins through Queen Victoria of England and her husband Albert, and fourth
cousins through Duke Ludwig Friedrich Alexander of Württemberg and his wife Hen-
riette (Figure 7). The single shortest relationship can be found as a shortest path in a
graph formed by combining the DAG with its reversal, but longer paths in this graph

670 DAVID EPPSTEIN

do not necessarily correspond to disjoint pairs of paths. A program my wife, Diana,
and I wrote, Gene (http://www.ics.uci.edu/~eppstein/gene/), is capable of find-
ing small numbers of relationships quickly using a backtracking search with heuristic
pruning, but Gene starts to slow down when asked to produce larger numbers of
relationships.

We now describe a technique for applying our k-shortest-path algorithm to this
problem, based on a method of Perl and Shiloach [48] for finding shortest pairs of
disjoint paths in DAGs. Given a DAG D, we construct a larger DAG D1 as follows.
We first find some topological ordering of D, and let f(x) represent the position
of vertex x in this ordering. We then construct one vertex of D1 for each ordered
pair of vertices (x, y) (not necessarily distinct) in D. We also add one additional
vertex s in D1. We connect (x, y) to (x, z) in D1 if (y, z) is an arc of D and f(z) >
max(f(x), f(y)). Symmetrically, we connect (x, y) to (z, y) if (x, z) is an arc of D and
f(z) > max(f(x), f(y)). We connect s to all vertices in D1 of the form (v, v).

Lemma 13. Let vertices u and v be given. Then the pairs of disjoint paths in
D from a common ancestor a to u and v are in one-for-one correspondence with the
paths in D1 from s through (a, a) to (u, v).

As a consequence, we can find shortest relationships between two vertices u and
v by finding shortest paths in D1 from s to (u, v).

Theorem 8. Given a DAG with n nodes and m edges, we can construct in
O(mn) time a data structure such that, given any two nodes u and v in a DAG, we
can list (an implicit representation of) the k shortest pairs of vertex-disjoint paths
from a common ancestor to u and v, in time O(k). The same bound holds for listing
all pairs with length less than a given bound (where k is the number of such paths).
Alternately, the pairs of paths can be output in order by total length in time O(log i)
to list the ith pair. As before, our representation allows constant-time computation of
some simple functions of each path, and allows each path to be explicitly generated in
time proportional to its length.

For a proof of Lemma 13 and more details of this application, see [19].

6. Conclusions. We have described algorithms for the k-shortest-paths prob-
lem, improving by an order of magnitude previously known bounds. The asymptotic
performance of the algorithm makes it an especially promising choice in situations
when large numbers of paths are to be generated, and there already exist at least two
implementations: one by Shibuya, Imai, and coworkers [52, 53, 54, 55] and one by
Martins (http://www.mat.uc.pt/~eqvm/eqvm.html).

We list the following as open problems.
• The linear time construction when the shortest path tree is known is rather

complicated. Is there a simpler method for achieving the same result? How
quickly can we maintain heaps HT (v) if new leaves are added to the tree?
(Lemma 4 solves this in O(log n) time per vertex, but it seems that at least
O(log log n) should be possible.)
• As described above, we can find the k best inscribed r-gons in an n-gon, in

time O(rn3 + k). However, the best single-optimum solution has the much
faster time bound O(n log n + n

√
r log n) [1]. Our algorithms for the k best

r-gons are efficient (in the sense that we use constant time per r-gon) only
when k = Ω(rn3). The same phenomenon of overly large preprocessing times
also occurs in our application to genealogical relationship finding: the short-
est relationship can be found in linear time, but our k-shortest-relationship
method takes time O(mn+ k). Can we improve these bounds?

FINDING THE k SHORTEST PATHS 671

• Are there properties of paths not described by monoids which we can nev-
ertheless compute efficiently from our representation? In particular, how
quickly can we test whether each path generated is simple?

Acknowledgments. I thank Greg Frederickson, Sandy Irani, and George Lueker
for helpful comments on drafts of this paper.

REFERENCES

[1] A. Aggarwal, B. Schieber, and T. Tokuyama, Finding a minimum weight K-link path in
graphs with Monge property and applications, in Proc. 9th Symp. Computational Geometry,
Assoc. for Computing Machinery, 1993, pp. 189–197.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the
shortest path problem, J. Assoc. Comput. Mach., 37 (1990), pp. 213–223.

[3] J. A. Azevedo, M. E. O. Santos Costa, J. J. E. R. Silvestre Madeira, and E. Q. V.
Martins, An algorithm for the ranking of shortest paths, Eur. J. Operational Research, 69
(1993), pp. 97–106.

[4] A. Bako, All paths in an activity network, Mathematische Operationsforschung und Statistik,
7 (1976), pp. 851–858.

[5] A. Bako and P. Kas, Determining the k-th shortest path by matrix method, Szigma, 10 (1977),
pp. 61–66 (in Hungarian).

[6] R. E. Bellman, On a routing problem, Quart. Appl. Math., 16 (1958), pp. 87–90.
[7] A. W. Brander and M. C. Sinclair, A comparative study of k-shortest path algorithms, in

Proc. 11th UK Performance Engineering Workshop for Computer and Telecommunications
Systems, 1995.

[8] T. H. Byers and M. S. Waterman, Determining all optimal and near-optimal solutions when
solving shortest path problems by dynamic programming, Oper. Res., 32 (1984), pp. 1381–
1384.

[9] P. Carraresi and C. Sodini, A binary enumeration tree to find K shortest paths, in Proc.
7th Symp. Operations Research, Methods Oper. Res. 45, Athenäum/Hain/Hanstein, 1983,
pp. 177–188.

[10] G.-H. Chen and Y.-C. Hung, Algorithms for the constrained quickest path problem and the
enumeration of quickest paths, Comput. Oper. Res., 21 (1994), pp. 113–118.

[11] Y. L. Chen, An algorithm for finding the k quickest paths in a network, Comput. Oper. Res.,
20 (1993), pp. 59–65.

[12] Y. L. Chen, Finding the k quickest simple paths in a network, Inform. Process. Lett., 50 (1994),
pp. 89–92.

[13] E. I. Chong, S. R. Maddila, and S. T. Morley, On finding single-source single-destination
k shortest paths, in Proc. 7th Int. Conf. Computing and Information, Trent University,
Canada, 1995.

[14] A. Consiglio and A. Pecorella, Using simulated annealing to solve the K-shortest path
problem, in Proc. Conf. Italian Assoc. Operations Research, 1995.

[15] Y. Dai, H. Imai, K. Iwano, and N. Katoh, How to treat delete requests in semi-online
problems, in Proc. 4th Int. Symp. Algorithms and Computation, Lecture Notes in Comput.
Sci. 762, Springer-Verlag, New York, 1993, pp. 48–57.

[16] M. T. Dickerson and D. Eppstein, Algorithms for proximity problems in higher dimensions,
Comput. Geom., 5 (1996), pp. 277–291.

[17] S. E. Dreyfus, An appraisal of some shortest path algorithms, Oper. Res., 17 (1969), pp. 395–
412.

[18] El-Amin and Al-Ghamdi, An expert system for transmission line route selection, in Int. Power
Engineering Conf, Vol. 2, Nanyang Technol. Univ., Singapore, 1993, pp. 697–702.

[19] D. Eppstein, Finding common ancestors and disjoint paths in DAGs, Tech. Report 95-52,
Univ. of California, Dept. Information and Computer Science, Irvine, 1995.

[20] D. Eppstein, Ten algorithms for Egyptian fractions, Mathematica in Education and Research,
4 (1995), pp. 5–15.

[21] D. Eppstein, Z. Galil, and G. F. Italiano, Improved sparsification, Tech. Report 93-20,
Univ. of California, Dept. Information and Computer Science, Irvine, 1993.

[22] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification—A technique
for speeding up dynamic graph algorithms, in Proc. 33rd Symp. Foundations of Computer
Science, IEEE, 1992, pp. 60–69.

[23] L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, Princeton University Press, Prince-

672 DAVID EPPSTEIN

ton, NJ, 1962.
[24] B. L. Fox, k-th shortest paths and applications to the probabilistic networks, in ORSA/TIMS

Joint National Mtg., Vol. 23, 1975, p. B263.
[25] G. N. Frederickson, Ambivalent data structures for dynamic 2-edge-connectivity and k small-

est spanning trees, in Proc. 32nd Symp. Foundations of Computer Science, IEEE, 1991,
pp. 632–641.

[26] G. N. Frederickson, An optimal algorithm for selection in a min-heap, Inform. and Comput.,
104 (1993), pp. 197–214.

[27] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596–615.

[28] M. L. Fredman and D. E. Willard, Trans-dichotomous algorithms for minimum spanning
trees and shortest paths, in Proc. 31st Symp. Foundations of Computer Science, IEEE,
1990, pp. 719–725.

[29] A. V. Goldberg, Scaling algorithms for the shortest paths problem, SIAM J. Comput., 24
(1995), pp. 494–504.

[30] V. Hatzivassiloglou and K. Knight, Unification-based glossing, in Proc. 14th Int. Joint Conf.
Artificial Intelligence, 1995, Morgan Kaufmann, San Francisco, pp. 1382–1389.

[31] G. J. Horne, Finding the K least cost paths in an acyclic activity network, J. Oper. Res. Soc.,
31 (1980), pp. 443–448.

[32] L.-M. Jin and S.-P. Chan, An electrical method for finding suboptimal routes, in Int. Symp.
Circuits and Systems, Vol. 2, IEEE, 1989, pp. 935–938.

[33] D. B. Johnson, A priority queue in which initialization and queue operations take O(log logD)
time, Math. Systems Theory, 15 (1982), pp. 295–309.

[34] N. Katoh, T. Ibaraki, and H. Mine, An O(Kn2) algorithm for K shortest simple paths in an
undirected graph with nonnegative arc length, Trans. Inst. Electronics and Communication
Engineers of Japan, E61 (1978), pp. 971–972.

[35] N. Katoh, T. Ibaraki, and H. Mine, An efficient algorithm for K shortest simple paths,
Networks, 12 (1982), pp. 411–427.

[36] P. N. Klein, S. Rao, M. H. Rauch, and S. Subramanian, Faster shortest-path algorithms for
planar graphs, in Proc. 26th Symp. Theory of Computing, Assoc. for Computing Machinery,
1994, pp. 27–37.

[37] N. Kumar and R. K. Ghosh, Parallel algorithm for finding first K shortest paths, Computer
Science and Informatics, 24 (1994), pp. 21–28.

[38] A. G. Law and A. Rezazadeh, Computing the K-shortest paths, under nonnegative weighting,
in Proc. 22nd Manitoba Conf. Numerical Mathematics and Computing, Congr. Numer.,
92 (1993), pp. 277–280.

[39] E. L. Lawler, A procedure for computing the K best solutions to discrete optimization problems
and its application to the shortest path problem, Management Science, 18 (1972), pp. 401–
405.

[40] E. L. Lawler, Comment on computing the k shortest paths in a graph, Commun. Assoc.
Comput. Mach., 20 (1977), pp. 603–604.

[41] E. Q. V. Martins, An algorithm for ranking paths that may contain cycles, Eur. J. Oper. Res.,
18 (1984), pp. 123–130.

[42] S.-P. Miaou and S.-M. Chin, Computing k-shortest path for nuclear spent fuel highway trans-
portation, Eur. J. Oper. Res., 53 (1991), pp. 64–80.

[43] E. Minieka, On computing sets of shortest paths in a graph, Commun. Assoc. Comput. Mach.,
17 (1974), pp. 351–353.

[44] E. Minieka, The K-th shortest path problem, in ORSA/TIMS Joint National Mtg., Vol. 23,
1975, p. B/116.

[45] E. Minieka and D. R. Shier, A note on an algebra for the k best routes in a network, J. Inst.
Mathematics and Its Applications, 11 (1973), pp. 145–149.

[46] D. Naor and D. Brutlag, On near-optimal alignments of biological sequences, J. Computa-
tional Biology, 1 (1994), pp. 349–366.

[47] A. Perko, Implementation of algorithms for K shortest loopless paths, Networks, 16 (1986),
pp. 149–160.

[48] Y. Perl and Y. Shiloach, Finding two disjoint paths between two pairs of vertices in a graph,
J. Assoc. Comput. Mach., 25 (1978), pp. 1–9.

[49] J. B. Rosen, S.-Z. Sun, and G.-L. Xue, Algorithms for the quickest path problem and the
enumeration of quickest paths, Comput. Oper. Res., 18 (1991), pp. 579–584.

[50] E. Ruppert, Finding the k shortest paths in parallel, in Proc. 14th Symp. Theoretical Aspects
of Computer Science, Lecture Notes in Comput. Sci. 1200, Springer–Verlag, New York,
1997, pp. 475–486.

FINDING THE k SHORTEST PATHS 673

[51] T. Shibuya, Finding the k shortest paths by AI search techniques, Cooperative Research Re-
ports in Modeling and Algorithms, 7 (1995), pp. 212–222.

[52] T. Shibuya, T. Ikeda, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku, Finding a
realistic detour by AI search techniques, in Proc. 2nd Intelligent Transportation Systems,
4 (1995), pp. 2037–2044.

[53] T. Shibuya and H. Imai, Enumerating suboptimal alignments of multiple biological sequences
efficiently, in Proc. 2nd Pacific Symp. Biocomputing, World Scientific, Singapore, 1997,
pp. 409–420.

[54] T. Shibuya and H. Imai, New flexible approaches for multiple sequence alignment, in Proc.
1st Int. Conf. Computational Molecular Biology, Assoc. for Computing Machinery, 1997,
pp. 267–276.

[55] T. Shibuya, H. Imai, S. Nishimura, H. Shimoura, and K. Tenmoku, Detour queries in
geographical databases for navigation and related algorithm animations, in Proc. Int. Symp.
Cooperative Database Systems for Advanced Applications, 2 (1996), pp. 333–340.

[56] D. R. Shier, Algorithms for finding the k shortest paths in a network, in ORSA/TIMS Joint
National Mtg., 1976, p. 115.

[57] D. R. Shier, Iterative methods for determining the k shortest paths in a network, Networks, 6
(1976), pp. 205–229.

[58] D. R. Shier, On algorithms for finding the k shortest paths in a network, Networks, 9 (1979),
pp. 195–214.

[59] C. C. Skicism and B. L. Golden, Solving k-shortest and constrained shortest path problems
efficiently, in Network Optimization and Applications, B. Shetty, ed., Annals Oper. Res.
20, Baltzer Science Publishers, Bussum, The Netherlands, 1989, pp. 249–282.

[60] K. Sugimoto and N. Katoh, An algorithm for finding k shortest loopless paths in a directed
network, Trans. Information Processing Soc. Japan, 26 (1985), pp. 356–364 (in Japanese).

[61] J. W. Suurballe, Disjoint paths in a network, Networks, 4 (1974), pp. 125–145.
[62] R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Reg. Conf. Ser. Appl.

Math. 44, SIAM, Philadelphia, 1983.
[63] R. Thumer, A method for selecting the shortest path of a network, Z. Oper. Res., Serie B

(Praxis), 19 (1975), pp. B149–153 (in German).
[64] M. S. Waterman, Sequence alignments in the neighborhood of the optimum, Proc. Natl. Acad.

Sci. USA, 80 (1983), pp. 3123–3124.
[65] M. M. Weigand, A new algorithm for the solution of the k-th best route problem, Computing,

16 (1976), pp. 139–151.
[66] A. Wongseelashote, An algebra for determining all path-values in a network with application

to k-shortest-paths problems, Networks, 6 (1976), pp. 307–334.
[67] A. Wongseelashote, Semirings and path spaces, Discrete Math., 26 (1979), pp. 55–78.
[68] J. Y. Yen, Finding the K shortest loopless paths in a network, Management Science, 17 (1971),

pp. 712–716.
[69] J. Y. Yen, Another algorithm for finding the K shortest-loopless network paths, in Proc. 41st

Mtg. Operations Research Society of America, 20 (1972), p. B/185.

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS∗

NADER H. BSHOUTY† , PAUL W. GOLDBERG‡ , SALLY A. GOLDMAN§ , AND

H. DAVID MATHIAS¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 674–699

Abstract. We first present an algorithm that uses membership and equivalence queries to
exactly identify a discretized geometric concept defined by the union of m axis-parallel boxes in
d-dimensional discretized Euclidean space where each coordinate can have n discrete values. This
algorithm receives at most md counterexamples and uses time and membership queries polynomial
in m and logn for any constant d. Furthermore, all equivalence queries can be formulated as the
union of O(md logm) axis-parallel boxes.

Next, we show how to extend our algorithm to efficiently learn, from only equivalence queries, any
discretized geometric concept generated from any number of halfspaces with any number of known
(to the learner) slopes in a constant dimensional space. In particular, our algorithm exactly learns
(from equivalence queries only) unions of discretized axis-parallel boxes in constant dimensional space
in polynomial time. Furthermore, this equivalence query only algorithm can be modified to handle
a polynomial number of lies in the counterexamples provided by the environment.

Finally, we introduce a new complexity measure that better captures the complexity of the union
of m boxes than simply the number of boxes and the dimension. Our new measure, σ, is the number
of segments in the target, where a segment is a maximum portion of one of the sides of the target that
lies entirely inside or entirely outside each of the other halfspaces defining the target. We present a
modification of our first algorithm that uses time and queries polynomial in σ and logn. In fact, the
time and queries (both membership and equivalence) used by this single algorithm are polynomial
for either m or d constant.

Key words. computational learning, geometric concepts, exact learning, membership and equiv-
alence queries

AMS subject classifications. 68Q25, 68T05

PII. S0097539794274246

1. Introduction. Recently, learning geometric concepts in d-dimensional Eu-
clidean space has been the subject of much research [6, 15, 17, 28, 30, 31, 32, 34]. We
study the problem of learning geometric concepts under the model of learning with
queries [1] in which the learner is required to output a final hypothesis that correctly
classifies every point in the domain. To apply such a learning model to a geometric
domain, it is necessary to look at a discretized (or digitalized) version of the domain.
We use d to denote the number of dimensions and n to denote the number of discrete
values that exist in each dimension. Thus a discretized geometric concept G is a set of

∗Received by the editors September 6, 1994; accepted for publication (in revised form) January
12, 1997; published electronically August 4, 1998. Portions of this paper appear in preliminary form
in [22] and [12].

http://www.siam.org/journals/sicomp/28-2/27424.html
†Department of Computer Science, University of Calgary, Calgary, AB, Canada T2N 1N4 and

Department of Computer Science, Technion 32000, Haifa, Israel (bshouty@csa.technion.ac.il). The
research of this author was supported in part by the NSERC of Canada.
‡Department of Computer Science, University of Warwick, Coventry CV47AL, UK (pwg@dcs.

warwick.ac.uk). The research of this author was performed while visiting Washington University
with support from NSF NYI grant CCR-9357707, and while at Sandia National Lab with support
from U.S. Department of Energy contract DE-AC04-76AL85000.
§Department of Computer Science, Washington University, St. Louis, MO 63130 (sg@cs.wustl.

edu). The research of this author was supported in part by NSF grant CCR-9110108 and NSF NYI
grant CCR-9357707 with matching funds provided by Xerox PARC and WUTA.
¶Ohio State University, Columbus, OH 43210 (dmath@cis.ohio-state.edu). The research of this

author was performed while visiting Washington University with support from NSF NYI grant CCR-
9357707 with matching funds provided by Xerox PARC and WUTA.

674

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 675

integer points G ⊆ N d
n , where Nn = {1, . . . , n}. In this paper we consider discretized

geometric concepts whose boundaries are defined by hyperplanes of known slope.
We begin by studying a special case: the well-studied class of unions of axis-

parallel boxes. (By a “box,” we mean an axis-aligned hypercuboid.) The algorithm
for this special case is easily extended to learn discretized geometric concepts defined
by axis-parallel hyperplanes. We use boxdn to denote the class of axis-parallel boxes1

over N d
n , and

⋃
≤m boxdn to denote the class of the union of at most m concepts from

boxdn. Let c be a concept in
⋃
≤m boxdn. We say that c is defined by s ≤ m boxes from

boxdn if s is the minimum number of boxes whose union is equivalent to c. We note
that it is easy to show that this class is a generalization of disjunctive normal form
(DNF) formulas and a special case of the class of unions of intersections of halfspaces
over N d

n .
We first present a query algorithm that exactly learns

⋃
≤m boxdn with at most

md + 1 equivalence queries2 and O((4m)d + md(log n + d)) membership queries and
computation time. Thus our algorithm exactly learns the union of m discretized
axis-parallel boxes over N d

n in polynomial time for any constant d.
The hypothesis class used by this algorithm can be evaluated in timeO(d logm log n).

Furthermore, in O((2m)2d) time we can transform our hypothesis to the union of at
most O(md logm) boxes. Thus we obtain the stronger result that our algorithm can
exactly learn the union of m axis-parallel boxes over N d

n while making at most md+1
equivalence queries, where each equivalence query is simply the union of O(md logm)
concepts from boxdn; making O((4m)d+md(log n+d)) membership queries, and using
O((md)2 logm · (2m)2d +md log n) computation time. Thus for any constant d, this
algorithm still uses time and queries polynomial in m and logn. We also describe a
variation of this basic algorithm that uses only equivalence queries and still has com-
plexity polynomial in m for time and queries and logn for d constant. Our algorithm
uses O((8d2m log n)d) equivalence queries and computation time.

Next we study the problem of learning with only equivalence queries the class of
discretized geometric concepts in which the hyperplanes defining the boundaries of
the concept need not be axis parallel but rather can have any known slopes. That
is, the geometric discretized concepts we study here are those whose boundaries lie
on hyperplanes {x = (x1, . . . , xd) |

∑d
j=1 aijxj = b} for i = 1, . . . , |S|, where S is

the set of slopes of the hyperplanes. The possible slopes of those hyperplanes, i.e.,
ai = (ai1, . . . , aid), are known to the learner, but the same slope with different shifts
b can be used for many hyperplanes in the target concept g. Note that if we choose
the slopes S = {ei}, the standard basis, then we get the special case in which all
hyperplanes are axis parallel.

Let S ⊂ Zd where Z is the set of integers, and let ‖S‖ denote the representation
size of S (the sum of the logarithms of the absolute values of the integers in S). Let
g be a geometric concept whose boundaries lie on m hyperplanes in N d

n with slopes
from S. A key result of this paper is that for any constant d, any such geometric
concept is exactly learnable in poly(l,m, ‖S‖, log n) time and equivalence queries even
if the equivalence oracle lies on l counterexamples. So for example, if the space is the
plane N 2

n and S = {(0, 1), (1, 0), (1, 1), (1,−1), (1, 2), (2, 1), (1,−2), (2,−1)}, then our
algorithm can efficiently learn the geometric concepts generated from lines that make
angles 0, 90, 135, 45, 120, 150, 30, and 60, respectively, with the x-axis, in polynomial

1Note that we include in boxdn boxes with zero size in any dimension.
2The final equivalence query is the correct hypothesis, and thus at most md counterexamples are

received.

676 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

time. (As this example illustrates, the representation that we use for a slope is that
derived from the formula, given above, defining a hyperplane.) In higher constant
dimensional space our algorithm can efficiently learn any geometric concept whose
boundary slopes are known. Another generalization of this result is an algorithm
to exactly learn polynomially sized decision trees over the basis “Is xi � c,” where
�∈ {>,<,≥,≤} in constant dimensional space.

Finally, we reexamine our first algorithm for learning the union of m discretized
boxes. We introduce a new complexity measure that better captures the complexity of
a union of boxes than simply the number of boxes and dimensions. More specifically,
our new measure, σ, is the number of segments in the target concept, where a segment
is a maximum portion of one of the defining hyperplanes of the target that lies entirely
inside or entirely outside each of the other defining hyperplanes. We show that σ ≤
(2m)d. We present an improvement of our first algorithm that uses time and queries
polynomial in σ and logn. The hypothesis class used by this modified algorithm is
that of decision trees of height at most 2md. Thus, observe that the hypothesis output
(and the intermediate hypotheses) can be evaluated in polynomial time without any
restrictions on m or d. We then use an alternate analysis of this algorithm to show
that the time and queries used are polynomial in d and logn for any constant m,
thus generalizing the exact learnability of DNF formulas with a constant number of
terms. Combining these two methods of analysis, we get the interesting result that
this single algorithm is efficient for either m or d constant.

The paper is organized as follows. In section 2 we describe the learning model
that we use. Next, in section 3 we summarize the previous work on learning geometric
concepts. Then in section 4 we give some preliminary definitions. Section 5 describes
our results for learning unions of boxes with membership and equivalence queries. We
present this algorithm, in part, because it introduces the approach used to obtain our
other results and also because it uses very few equivalence queries, which is of interest
if one’s goal is to minimize the number of prediction errors made by the learner [13].
Next, in section 6 we describe a modification of this algorithm that efficiently learns
the union of boxes in constant dimensional space with only equivalence queries. In
section 7 we present our extensions to learning the class of geometric concepts defined
by any hyperplanes of known slopes using only equivalence queries. In section 8 we
describe how to modify this algorithm to handle the situation in which there are lies
in the answers to the equivalence queries. In section 9 we present our new complexity
measure and describe a modification of our first algorithm that runs in polynomial
time with respect to this complexity measure. Finally, in section 10 we conclude
with some open problems. This paper subsumes the results presented by Goldberg,
Goldman, and Mathias [22] and includes several results given by Bshouty [11].

2. Learning model. The learning model we use in this paper is that of learning
with queries developed by Angluin [1]. When applied to our class of discretized
geometric concepts, the learner’s goal is to learn exactly how an unknown target

concept, g, drawn from the concept class G ⊆ 2N
d
n , classifies as positive or negative

all instances from the instance space N d
n . Thus each concept is the set of instances

from N d
n that it classifies as positive. We say that y ∈ N d

n is a positive instance for
target concept g if y ∈ g (also denoted g(y) = 1) and say that y is a negative instance
otherwise (also denoted g(y) = 0). It is often convenient to view the target concept
g as the Boolean function g : N d

n → {0, 1}. A hypothesis h is a polynomial-time
algorithm that, given any y ∈ N d

n , outputs a prediction for g(y). Throughout we
use y to denote an instance (i.e., a point in N d

n) and x = (x1, . . . , xd) to denote the

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 677

variables associated with the d axes. For example, for d = 2, 2x1 + 3x2 = 7 defines a
two-dimensional hyperplane. For the point y = (2, 1), y is on this hyperplane.

As mentioned above, the learning criterion in this paper is that of exact identifi-
cation. In order to achieve exact identification, the learner’s final hypothesis, h, must
be such that h(y) = g(y) for all instances y ∈ N d

n . To achieve this goal the learner is
provided with two types of queries with which to learn about g. A membership query,
MQ(y), returns “yes” if g(y) = 1 and returns “no” if g(y) = 0. We note that learning
using only membership queries is quite difficult for many concept classes. For exam-
ple, to learn a single positive point in an nd discrete grid requires O(nd) membership
queries. An equivalence query, EQ(h), returns “yes” if h is logically equivalent to g
or returns a counterexample otherwise. A positive counterexample y is an instance
such that g(y) = 1 and h(y) = 0. Similarly, a negative counterexample is such that
g(y) = 0 and h(y) = 1. Equivalence queries are answered by a computationally un-
bounded adversary with knowledge of the target concept and the learning algorithm.
Several of the algorithms we present use only equivalence queries. The others use
both membership and equivalence queries. In some domains, presenting the learner
with a single positive instance (as a counterexample to an equivalence query) makes
learning with membership queries feasible (see the discussion of geometric probing in
section 3).

An exact learning algorithm is said to run in polynomial time if the computa-
tion time and the number of queries are polynomial in both the size3 of an example
(whether it is for a membership query or a counterexample from an equivalence query)
and the size of the target concept. Here an example is one of the nd points in N d

n and
thus it can be represented with ddlg ne bits. Each box in the target concept can be en-
coded with 2ddlg ne bits, and thus encoding the entire target concept uses 2dmdlg ne
bits. Thus for the problems studied here, a polynomial-time algorithm must use time
and queries polynomial in d, log n, and m.

An l-liar equivalence oracle is an oracle that is allowed to lie at most l times
during the learning session when providing counterexamples to equivalence queries.
The teacher is allowed at most l lies total even if multiple lies are for the same instance.
This definition seeks to capture a notion of erroneous data and robust, error-tolerant
algorithms. We seek a more efficient approach than testing each counterexample we
receive using a membership query, especially in view of the fact that we are interested
in algorithms that may use only equivalence queries.

Another important learning model is the PAC model introduced by Valiant [38].
In this model the learner is presented with labeled examples chosen at random accord-
ing to an unknown, arbitrary distribution D over the instance space. Given values
for parameters ε and δ, the learner’s goal is to output a hypothesis that with high
probability, at least (1 − δ), correctly classifies most of the instance space. That is,
the weight, under D, of misclassified instances must be at most ε. This is in contrast
to the query learning model in which the learner is required to classify correctly every
instance in the instance space. The learner is permitted time polynomial in 1/ε, 1/δ,
the size of an example, and the size of the target concept to formulate a hypothesis.
The relationship between the PAC model and the query model is well understood.
Angluin [1] showed that any class that is learnable using only equivalence queries is
also PAC learnable. The relationship is unchanged by the addition of membership
queries to each model. Blum [8] showed that PAC learnability does not imply query
learnability. The concept class studied here has also been considered in the PAC

3By size we mean the number of bits to encode the example.

678 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

model, as summarized in the next section.

3. Previous work. The problem of learning geometric concepts over a discrete
domain was extensively studied by Maass and Turán [31, 32]. One of the geometric
concepts that they studied was the class boxdn. They showed that if the learner
is restricted to make only equivalence queries in which each hypothesis was drawn
from boxdn then Ω(d log n) queries are needed to achieve exact identification [28, 31].

Auer [6] improves this lower bound to Ω(d2

log d log n).
If one always makes an equivalence query using the simple hypothesis that pro-

duces the smallest box consistent with the previously seen examples, then the resulting
algorithm makes O(dn) equivalence queries. An algorithm making O(2d log n) equiv-
alence queries was given by Maass and Turán [30]. The best result known for learning
the class boxdn was provided by Chen and Maass [17]. They gave an algorithm making
O(d2 log n) equivalence queries. They also provide an algorithm to learn the union
of two axis-parallel rectangles in the discretized space {1, . . . , n}× {1, . . . ,m} in time
polynomial in logn and logm, where one rectangle has a corner at (0,m) and the
other has a corner at (n, 0). More recently, Chen [15] gave an algorithm that used
equivalence queries to learn general unions of two boxes in the (discretized) plane.
The algorithm uses O(log2 n) equivalence queries and involves a detailed case analysis
of the shapes formed by the two rectangles.

Homer and Chen [25] presented an algorithm to learn the union of m rectan-
gles in the plane using O(m3 log n) queries (both membership and equivalence) and
O(m5 log n) time. The hypothesis class of their algorithm is the union of 8m2 − 2
rectangles. In work independent of ours, Chen and Homer [16] have improved upon
their earlier result by giving an algorithm that learns any concept from

⋃
≤m boxdn

using O(m2(d+1)d2 log2d+1 n) equivalence queries by efficiently applying the bounded
injury method from recursive function theory. This algorithm appears in [11] along
with the equivalence-query algorithms presented here in sections 6 and 7. While the
Chen and Homer result is very similar to our result of section 6, they use a very dif-
ferent technique to obtain the result. Also, our algorithm uses only O((8d2m log n)d)
equivalence queries.

Finally, in other independent work, Maass and Warmuth [34] have developed, as
part of a more general result, an algorithm to learn any concept from

⋃
≤m boxdn using

O(md log n) equivalence queries andO
(
(md log n)O(d)

)
computation time. In addition

their technique enables them to efficiently learn a single box in a constant dimensional
space that is not axis parallel but uses slopes from a known set of slopes. Their
algorithm improves upon our result of section 6, in that the number of equivalence
queries has polynomial dependence on m, d, and logn. However, their work does not
give results comparable to the other results presented in this paper. Most notably,
in section 7 we give an algorithm that can learn the union of non-axis-parallel boxes
(using slopes from a known set of slopes) versus just learning a single box.

Closely related to the problem of learning the union of discretized boxes, is the
problem of learning the union of nondiscretized boxes in the PAC model [38]. Blumer
et al. [10] present an algorithm to PAC-learn an m-fold union of boxes in Ed by draw-
ing a sufficiently large sample of size m′ = poly

(
1
ε , lg

1
δ ,m, d

)
and then performing a

greedy covering over the at most (em
′

2d)2d boxes defined by the sample. Thus for d
constant this algorithm runs in polynomial time. Long and Warmuth [29] present an
algorithm to PAC-learn this same class by again drawing a sufficiently large sample
and constructing a hypothesis that consists of at most m(2d)m boxes consistent with

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 679

the sample. Thus both the time and the sample complexity of their algorithm de-
pend polynomially on m, dm, 1

ε , and lg 1
δ . For m constant this yields an efficient PAC

algorithm.
We note that either of these PAC algorithms can be applied to the class

⋃
≤m boxdn

giving efficient PAC algorithms for this class for either d constant or m constant. As
discussed by Maass and Turán [31], the task of a concept learning algorithm is to pro-
vide a “smart” hypothesis based on the data available. In other words, the hypothesis
must be carefully chosen so that as much information as possible is obtained from each
counterexample. To illustrate this point consider the task of learning a concept of a
half interval over {1, . . . n} (so an example x ∈ {1, . . . , n} is positive iff x ≤ r where
0 ≤ r ≤ n is not known). Within the PAC model a satisfactory hypothesis would be
r = h, where h is the maximum positive example (0 if no positive examples have been
seen). However, in the exact learning model when using only equivalence queries this
hypothesis performs very poorly in that each counterexample could just be one to the
right of the last one. Thus n counterexamples may be needed. However, if one uses the
“smarter” hypothesis of r = (h+g)/2, where h is the maximum positive example seen
and g is the minimum negative example seen (n+1 if no negative examples have been
seen), then at most dlog ne counterexamples are needed. More generally, the results
from Blumer et al. [10] show that under the PAC model any concise hypothesis that
is consistent with the data is satisfactory. In other words, the PAC model provides
no suitable basis for distinction among different consistent hypotheses. On the other
hand, a criterion for defining a “smart” hypothesis is implicitly contained within the
query learning model. One must select hypotheses for the equivalence queries so that
sufficient progress is made with each counterexample. This requirement of selecting
a “smart” hypothesis makes the problem of obtaining an efficient algorithm to learn
exactly the class

⋃
≤m boxdn significantly harder than obtaining the corresponding

PAC result. Also Blum [8] has shown that if one-way functions exist, then there exist
functions that are PAC-learnable but not exactly learnable.

Finally, under a variation of the PAC model in which membership queries can be
made, Frazier et al. [21] have given an algorithm to PAC-learn the m-fold union of
boxes in Ed for which each box is entirely contained within the positive quadrant and
contains the origin. Furthermore, their algorithm learns this subclass of general unions
of boxes in time polynomial in both m and d. Recall that since

⋃
≤m boxdn generalizes

DNF, a polynomial-time algorithm for arbitrary d and m would solve the problem of
learning DNF. Observe that the class considered by Frazier et al. is a generalization
of the class of DNF formulas in which all variables only appear negated.

While there has been some work addressing the general issue of mislabeled training
examples in the PAC model [3, 27, 37, 26], there has been little research on learning
geometric concepts with noise. Auer [6] investigates exact learning of boxes where
some of the counterexamples, given in response to equivalence queries, are noisy. Auer
shows that boxdn is learnable using hypotheses from boxdn if and only if the fraction of
noisy examples is less than 1/(d+1) and presents an efficient algorithm that handles a
noise rate of 1/(2d+ 1). In the query learning model, Angluin and Kriķis [2] examine
the case in which membership queries can be answered incorrectly under adversarial
control.

There has also been some work on learning discretized geometric concepts defined
by non–axis-parallel hyperplanes. Maass and Turán [33] study the problem of learning
a single discretized halfspace using only equivalence queries. They give an efficient
algorithm using O(d2(log d + log n)) queries and give an information theoretic lower

680 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

bound of
(
d
2

)
on the number of queries when all hypotheses are discretized halfspaces.

There has also been work on learning non–axis-parallel discretized rectangles with
only equivalence queries. Maass and Turán [32] show an Ω(n) information theoretic
lower bound on the number of equivalence queries when the hypotheses must be drawn
from the concept class. Contrasting this lower bound, Bultman and Maass [14] give
an efficient algorithm that uses membership and equivalence queries to learn this class
using O(log n) equivalence queries. Their algorithm returns a hypothesis consisting
of a description of the vertices and edges of the polygon.

Computational geometry researchers have looked at the slightly related problem
of geometric probing (for example, see [36]). Geometric probing studies how to iden-
tify, verify, or determine some property of an unknown geometrical object using a
measuring device known as a probe. In one special case of geometric probing the aim
is to construct (or learn) an unknown convex polygon given a point inside the polygon
along with the ability to make a probe in which the algorithm can “shoot” a ray in a
specified direction to find out the location where the ray hits the polygon. Note that
using a binary search technique, such a probe can be simulated for this problem with a
polynomial number of membership queries (for discretized domains). Thus such work
can be thought of as learning a convex polygon from only membership queries along
with a single positive example. However, when working with nonconvex objects, the
probe used in such work is more powerful than a membership query.

Geometric testing (for example, see [35, 4]) is a subarea of geometric probing
involved with solving verification problems. The work that has been done on this
problem [5, 7, 23, 24] involves determining which of a finite set of models is being
probed, and seems to be the most closely related to this paper among the geometric
probing literature. The restriction to a finite set of models effectively discretizes the
domain of geometric points, as is done here by considering points with bounded integer
coordinates.

4. Preliminaries. Let N ,Z, and R be the set of nonnegative integers, inte-
gers, and reals, respectively. Recall, as discussed in section 2, that we use x1, . . . , xd
to denote the variables associated with the d axes. Let Nn = {1, . . . , n} and S =
{a1, . . . , as} ⊂ Zd be a set of slopes. A d-dimensional hyperplane is {x = (x1, . . . , xd) |∑d
j=1 aijxj = b} for some aij ∈ Z, b ∈ R. A halfspace is {x = (x1, . . . , xd) |

∑d
j=1 aijxj

� b}, where �∈ {>,≥, <,≤}. A discretized hyperplane (respectively, halfspace) is
H ∩N d

n for some hyperplane (respectively, halfspace) H. A geometric concept gener-
ated from hyperplanes with slopes from S ⊂ Zd is a set ĝ ⊂ Rd whose boundaries are
defined by hyperplanes with slopes from S. A discretized geometric concept generated
from hyperplanes with slopes from S ⊂ Zd is g = ĝ ∩N d

n .
The complexity CS(ĝ) of a geometric concept ĝ is the minimum number of hy-

perplanes with slopes from S such that their union contains the boundary of ĝ. The
complexity CS(g) of a discretized geometric concept g is the minimum CS(ĝ) over
all geometric concepts ĝ that satisfy g = ĝ ∩ N d

n . By a simple information theoretic
argument, it follows that any exact learning algorithm for a nontrivial discretized
geometric concept g cannot run in time less than the complexity CS(g). Also, the
complexity of learning one box in N d

n is at least Ω(d log n). The input for our al-
gorithms is S, together with n and d. We use ‖S‖ to denote the sum of the loga-
rithms of the absolute values of the integers in S and call this the size of S. Thus,
a learning algorithm, for the class of discretized geometric concepts with complexity
measure CS(g), is a polynomial-time algorithm if the time and query complexities are
poly(‖S‖, CS(g), log n, d).

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 681

Observe that if we choose the slopes S = {ei}, the standard basis, then for any
discretized geometric concept g defined by the union of m boxes in d dimensional
space, CS(g) ≤ 2md since at most 2d halfspaces are needed to define the boundaries
of each box.

5. Learning unions of boxes with membership and equivalence queries.
In this section we present an algorithm that exactly identifies any concept from⋃
≤m boxdn (so S = {ei}, the standard basis) while receiving at most md counterex-

amples and using time and membership queries that are polynomial in m and logn for
any constant d. This section serves two purposes: (1) the other algorithms presented
build upon this basic algorithm, and thus for ease of exposition we present it here,
and (2) it uses very few equivalence queries, which is of interest if one’s goal is to
minimize the number of prediction errors made by the learner [13].

The following definition is used throughout this section.
Definition 1. For a discretized geometric concept g, we define a +/i− pair

to be a positive point y+ = (y1, . . . , yi, . . . , yd) paired with a negative point y− where
y− = (y1, . . . , yi+1, . . . yd) or y− = (y1, . . . , yi−1, . . . , yd), where we implicitly assume
that any point outside N d

n is a negative point.
We define the halfspace associated with a given +/− pair to be the unique, axis-

aligned halfspace H that contains the positive but not the negative point. So for a
+/i− pair where the positive point’s ith coordinate is c, if the negative point’s ith

coordinate is c + 1, then H is given by xi ≤ c. Similarly, if the negative point’s ith
coordinate is c − 1, then H is given by xi ≥ c. We define the associated hyperplane
to be the set of all points satisfying xi = c.

For each of the d dimensions, we maintain a set Hi of hyperplanes discovered for
that dimension that define the boundaries of g. We let H =

⋃d
i=1Hi. Observe that in

dimension i we have decomposed N d
n into up to 2|Hi|+ 1 regions: |Hi| corresponding

to the hyperplanes themselves and |Hi| + 1 corresponding to the “strips” obtained
when N d

n is cut by each of the |Hi| hyperplanes. Recall that |Hi| ≤ 2m, and thus our
final hypothesis divides N d

n into a grid GH of

d∏
i=1

(2|Hi|+ 1) ≤
d∏
i=1

(4m+ 1) = (4m+ 1)d(5.1)

regions (or connected components). We say that GH is consistent if for any two
points, with known classification, in any region of GH, the points have the same
classification. Given a consistent GH, a hypothesis is obtained by simply classifying
all points according to the unique classification of all known points in that region
(with negative used as a default).

We now demonstrate that we can represent such a hypothesis so that it is very
efficient to evaluate. For each dimension i we maintain a balanced binary search tree
Ti where each internal node corresponds to one of the hyperplanes in Hi and each
leaf node corresponds to one of the strips created. The ith coordinate of the points
in a hyperplane in Hi is used as the key for the associated node in Ti. For each leaf
node v of Ti we keep a pair (miniv,maxiv), where miniv (respectively, maxiv) holds the
minimum (respectively, maximum) x such that x is the ith coordinate of some point
in the region corresponding to leaf v. (For the internal nodes, the key itself serves the
role of both miniv and maxiv.)

We define Ri = {[miniv,maxiv] | v is a node of Ti and miniv and maxiv are the
minimum and maximum values of the ith coordinates of points in v}. Let T =

682 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

y2

y1

+

+

+

+

+

+

+ +

36

17

1

52

61

89

100

1 20 40 49 60 67 n=100

Fig. 1. This shows the final set of regions corresponding to the target concept, formed by a
union of m = 4 boxes, outlined in bold. The classification of each two-dimensional region is shown
inside the region. (The classifications of the one-dimensional and zero-dimensional regions are not
shown but are stored in the prediction matrix A.) The boundary of the target concept is segmented
to illustrate a new complexity measure introduced in section 9.

{T1, . . . , Td}. Thus GH = R1 × R2 × · · · × Rd. For r ∈ GH, corresponding to nodes
vi ∈ Ti, we shall refer to the point (min1

v1
, . . . ,mindvd) as the lower corner of r and

(max1
v1
, . . . ,maxdvd) as the upper corner of r.

In addition to the trees T1, . . . , Td, our hypothesis also maintains a prediction
array A with |GH| entries where, for r ∈ GH, A[r] gives the classification for region
r. For a consistent region (i.e., all known points have the same classification) A
will contain either a 0 (for negative) or a 1 (for positive). However, for regions in
which there is an inconsistency, there will be a pointer into a queue Q of inconsistent
regions. In addition, for each region r ∈ Q we store points y+ and y− giving a pair
of inconsistent points in r. We use h(GH, A) to denote the hypothesis defined by the
regions in GH with the classifications given in A. Note that the hypothesis is well-
defined only if all regions are consistent. Figure 1 shows the set of regions defined by
a target concept once all hyperplanes are discovered, and the classifications of all of
the regions (as stored in A).

Given a hypothesis h(GH, A) (we sometimes denote this simply as h) for which
the queue Q of inconsistent regions is empty, and a point y, we can compute h(y),
the prediction made by hypothesis h on point y, as follows. For 1 ≤ i ≤ d we
perform a search for yi in tree Ti to find the node having yi in its range. Combining
the ranges of the d nodes found defines the region r ∈ GH that contains y. Finally
h(y) = A[j1, . . . , jd], where ji is contained in the node found in Ti during the search for
y and denotes the dimension i index for A corresponding to the region that contains y.
Then combining the indices obtained from each of the trees provides an index into A.
Since we know an upper bound on the number of nodes in each tree, we can initially
allocate enough space for A.

5.1. The membership and equivalence query algorithm. Our algorithm
works by repeatedly building a consistent hypothesis that incorporates all known
halfspaces. The hypothesis is represented as a decision tree rather than as a union of
boxes; subsequently we show how to express it as a union of (not too many) boxes.

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 683

Given an inconsistent hypothesis h(GH, A) and the queue Q of inconsistent regions
from GH, we refine h(GH, A) so that it is consistent using the following procedure that
uses membership queries to find new hyperplanes with which to modify the hypothesis.
We never remove any hyperplane from H and search for a new hyperplane only in
such a way that we are certain that an existing hyperplane will not be rediscovered in
the process. We also maintain the invariant that Q always contains exactly one entry
for each inconsistent region of GH. Note that we never make an equivalence query
using an inconsistent hypothesis.

Our procedure to build a consistent hypothesis repeatedly does the following until
Q is empty (and thus the hypothesis is consistent). Let r be the region at the front
of the queue. Since r is not a consistent region, we know that there must be some
unknown hyperplane of g that goes between y+ (a known positive point in r) and
y− (a known negative point in r). Thus we can perform a binary search between
y+ and y− (where the comparisons are replaced by membership queries) to find a
+/− pair contained within region r using only d + dlog ne membership queries. We
use dlog ne queries to find a positive point and a negative point whose positions
differ by at most one in each coordinate by performing a single binary search on all
d dimensions. (Query points are chosen by bisecting the range in each dimension;
noninteger coordinates may be rounded arbitrarily.) We then use d additional queries
to determine the slope of the separating hyperplane. Furthermore, the hyperplane
defined by this +/− pair is guaranteed to be a hyperplane that has not yet been
discovered (by the definition of a region).

The full details of procedure add-hyperplane, which modifies h(GH, A) to in-
corporate the new hyperplane found, is given in Figure 2. The learner begins by using
a standard tree insertion procedure to insert the new hyperplane into the search tree
for the appropriate dimension. Then the set of regions that have been split by the
hyperplane are deleted from H, and each is replaced by three new regions (one of
them being a degenerate region corresponding to the hyperplane itself). For each new
region of r we make a membership query on the lower and/or upper opposing corners
if those queries have not already been made. As we shall discuss in section 6, this
step can be replaced by just using 0 as the default value for A[r]. If the classifications
of these two corners are the same, then the classification is entered in A[r]; otherwise
the region is placed in Q with these corners used for y+ and y−.

Our algorithm Learn-With-MQs works as follows. For ease of exposition we
artificially extend the instance space fromN d

n to {0, 1, . . . , n, n+1}d, where it is known
a priori that any example with a coordinate of 0 or n+1 in any dimension is a negative
example. (The pseudocode does not explicitly make this check, but one could imagine
replacing the calls to MQ with a procedure that first checks for such cases.) Initially,
GH just contains the single region corresponding to the entire instance space. Since
the upper and lower corners of this region are negative, the initial hypothesis predicts
0 for all instances.

We then repeat the following process until a successful equivalence query is made.
Let y be the counterexample received from an equivalence query made with a con-
sistent hypothesis. Using membership queries (in the form of a binary search) we
can find two new hyperplanes of the target concept. Without loss of generality, we
assume that y is a positive counterexample in region r of GH. Since the hypothesis
was consistent and y is a positive counterexample, we know that the upper and lower
corners of r are classified as negative. Thus we can use these corners of r (with y) as
the endpoints for binary searches to discover two new hyperplanes. We find a hyper-

684 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

add-hyperplane(h(GH, A), Q, i, c)
Let v be the leaf of Ti for which miniv ≤ c ≤ maxiv
Using a standard balanced tree insertion procedure, update Ti so that

v is an internal node with key c
v has a left child with range [miniv, c− 1]
v has a right child with range [c+ 1,maxiv]

Let Rdelete = R1 × · · · ×Ri−1 × {[miniv,maxiv]} ×Ri+1 × · · · ×Rd
Let Radd = R1 × · · · ×Ri−1 × {[miniv, c− 1], [c, c], [c+ 1,maxiv]} ×Ri+1 × · · · ×Rd

For each r ∈ Rdelete
Let r=, r<, and r> be the regions in Radd for which (r= ∪ r< ∪ r>) = r
If A[r] = b (for b = 0 or b = 1)

Let A[r=] = A[r<] = A[r>] = b
Else (so A[r] is a pointer to element q of Q)

Generate new queue nodes for r=, r<, and r>
Set the corresponding entries of A to point to these new nodes
Copy y− and y+ in the appropriate queue entries for r< and r>
Remove q from Q

For each r′ ∈ {r=, r<, r>}
Let yu (respectively, y`) be the upper (respectively, lower) corner of r′

Make a membership query to determine yu and y` if not already known
If g(yu) = g(y`) then let A[r′] = g(yu)
Else (r′ is inconsistent)

Assign yu and y` to y− and y+ as appropriate
Q.enqueue(r′)

Fig. 2. Our subroutine to update h(GH, A) to incorporate the newly discovered hyperplane
xi = c. The new hyperplane is added to tree Ti. Then all regions in GH that are split are removed
from Q. Finally this procedure initializes the new entries of GH in the prediction matrix A. Note
that in the for loop that adds new regions, we could choose not to perform membership queries on the
upper and lower corners of r, as is done in section 6. Instead, we could just use the known points
in r=, r<, and r> to determine their labels (with 0 as a default if there are no points in the region).
The advantage of doing this step is that the number of equivalence queries is reduced by a factor of 2
since two hyperplanes of the target are guaranteed to be found for each counterexample (Lemma 1).
If we find that the opposing corners have different classifications then we place that newly created
region on Q, which in turn will cause a binary search to be done to find a new hyperplane and split
that region further.

plane by doing a binary search until we find a +/− pair (two points that are labeled
differently and differ by at most one in each dimension). We know that a side of a
target box must pass between these two points (or through one of the points). We
then use d additional queries to discover the slope of this hyperplane. The hypothesis
is updated using add-hyperplane to incorporate these two hyperplanes. Finally,
we call make-consistent-hypothesis to refine any inconsistent regions. Figure 3
gives the complete algorithm.

5.2. Analysis. We now analyze the time and query complexity of Learn-With-
MQs. As part of this analysis we use the following lemma.

Lemma 1. Every counterexample can be used to discover at least two distinct new
hyperplanes of the target concept.

Proof. Let y be the counterexample and r ∈ GH be the region containing y. Since
h(GH, A) is a consistent hypothesis, we know that the upper and lower corners of r

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 685

Learn-With-MQs:
Let Q← ∅
Let (0, . . . , 0) and (n+ 1, . . . , n+ 1) be negative corners of single region r
For 1 ≤ i ≤ d

Initialize Ti to be a single leaf covering the range 0 to n+ 1
For r the single region of GH, let A[r] = 0

While Equiv(h(GH, A)) 6= “yes”
Let y be the counterexample where y is in region r of h(GH, A)
Let z1 and z2 be the lower and upper opposing corners of r
For 1 ≤ ` ≤ 2

Perform binary search between y and z` to find hyperplane xi = c
add-hyperplane(h(GH, A), Q, i, c)

h(GH, A)←make-consistent-Hypothesis(h(GH, A), Q)
Return h(GH, A)

make-consistent-hypothesis(h(GH, A), Q)
While Q 6= ∅

r ← Q.dequeue
Perform binary search between y− and y+ from r

to find the hyperplane xi = c
add-hyperplane(h(GH, A), Q, i, c)

Fig. 3. Algorithm for learning unions of d-dimensional axis-parallel boxes using membership
and equivalence queries. Note that i, in the calls to add-hyperplane, is the dimension separated
by the hyperplane found in the binary search.

are classified opposite y and all points in r are classified opposite y by the hypothesis.
Since a positive point and a negative point must be separated by some hyperplane of
the target concept, searches between y and each of the upper and lower corners will
find some +/− pair. These will be distinct since the two searches move away from
each other in all dimensions.

We now prove that our first algorithm has the stated complexity.
Theorem 1. Given any g ∈ ⋃≤m boxdn, Learn-With-MQs achieves exact

identification of g making at most md+ 1 equivalence queries, and using O((4m)d +
md(log n+ d)) time and membership queries.

Proof. The correctness of Learn-With-MQs is trivial. Since the algorithm
only returns a hypothesis h(GH, A) for which Equiv(h(GH, A)) returns “yes,” the
algorithm is correct upon returning a hypothesis.

We now analyze the query and time complexity of Learn-With-MQs. Recall
that since there are only m boxes in the target concept, there are at most 2md
hyperplanes in the final hypothesis. Clearly, any box can be subdivided into a union
of smaller boxes, unnecessarily increasing the complexity of the target. However, our
algorithm adds hyperplanes only where there is evidence for the existence of a side
of a target box (a +/− pair) and, therefore, does not unnecessarily subdivide boxes
(subdividing does occur due to extending hyperplanes through the entire domain, but
this is already accounted for in our analysis). Furthermore, since no hyperplane is ever
rediscovered and every binary search (which uses O(log n + d) membership queries)
discovers a hyperplane, we know that O(md(log n+ d)) membership queries are used
during all of the binary searches made by the algorithm. Also, as given in (5.1),

686 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

there are at most (4m + 1)d regions in the final hypothesis, and thus the number of
membership queries used for querying the upper and lower opposing corners is at most
2 · (4m + 1)d = O((4m)d). Since these are the only two places in which membership
queries are performed, the total number of membership queries made by our algorithm
is O((4m)d +md(log n+ d)).

From Lemma 1 we know that each counterexample enables Learn-With-MQs
to find at least two new, distinct hyperplanes of the target concept. Since there are
at most 2md hyperplanes comprising the m boxes, at most md counterexamples can
be received and thus at most md+ 1 equivalence queries are made.

The time needed to evaluate h(GH, A)(x) for an unlabeled example y is O(d logm)
since the key operation is performing d searches in balanced search trees of depth
O(logm). Thus, the time complexity of this algorithm is found to be O((4m)d +
md(log n+ d)).

Finally, it is easily seen that this algorithm extends to learning any discretized
geometric concept generated by hyperplanes with slopes from S = {ei} (the stan-
dard basis) while receiving at most CS(g)/2 counterexamples and using time and
membership queries polynomial in CS(g) and logn for d any constant.

5.3. Using a hypothesis class of unions of boxes. We now describe how a
consistent hypothesis can be converted to the union of O(md logm) boxes from boxdn.
Since all equivalence queries are made with consistent hypotheses, such a conversion
enables our algorithm to learn the union of m boxes from boxdn using as a hypothesis
class the union of O(md logm) boxes from boxdn. Note that it is NP-hard to find a
minimum covering of a concept from

⋃
≤m boxdn by individual boxes [19].

Recall that a consistent hypothesis h essentially encodes the set of positive regions.
Thus our goal is to find the union of as few boxes as possible that “cover” all of the
positive regions. We now describe how to formulate this problem as a set covering
problem for which we can then use the standard greedy set covering heuristic [18]
to perform the conversion. The set X of objects to cover will simply contain all
positive regions in h. Thus |X| ≤ (4m + 1)d. Then the set F of subsets of X will
be made as follows. Consider the set B of boxes where each box in B is formed by
picking a minimum and maximum coordinate in each dimension from the hyperplanes
represented in h for that dimension. For any b ∈ B, if b contains any negative region,
then throw it out. Otherwise, place in F the set of regions contained within b.
Thus |F| ≤ (2m)2d since there are at most 2m values in each dimension that can
form the two sides of the box. Furthermore, F contains a subset of size m that
covers all items in X. Finally, we can apply the greedy set covering heuristic to find
a set of at most m(ln |X| + 1) = m(d ln(4m + 1) + 1) = O(md logm) boxes that
cover all positive regions. The time to perform the conversion is O((2m)2dmd logm).
Thus, since at most md + 1 equivalence queries are made, the total time spent in
converting the internal hypotheses into hypotheses that are unions of boxes is at most
O((md)2 logm · (2m)2d).

6. Learning unions of boxes using only equivalence queries. We now
describe a simple method to remove the use of membership queries in Learn-With-
MQs. First observe that the use of membership queries in this algorithm can easily
be reduced to only their use within the binary searches. Instead of querying opposing
corners of new regions created, we can instead use the classification of the single known
point or otherwise a default of negative for the classification of the region. Then the
counterexamples from the equivalence queries can be used to obtain a positive and
negative point in the region that can be used for the binary search. (Of course, this

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 687

modification dramatically increases the number of equivalence queries used.)
Now to remove the use of membership queries in a binary search between y+ and

y− we simply take the midpoint between y+ and y− (i.e., the first point on which a
membership query would be made) and insert a hyperplane going through that point
for each of the d dimensions. There are 2dm hyperplanes defining the target. We
require at most 2dlog ne counterexamples (that cause H to be modified) to find each
hyperplane. Thus, the total number of counterexamples required (that cause H to be
modified) is at most 4dmdlog ne. For each such counterexample (i.e., one that causes
H to be modified) we insert d hyperplanes in the hypothesis. Thus the number of
hyperplanes in the hypothesis is at most 4d2mdlog ne. By (5.1) there are at most
(8d2mdlog ne + 1)d regions in the final hypothesis. There is at most one equivalence
query made for each of the hyperplanes found and at most one equivalence query
made for each region. Thus we obtain the following result.

Theorem 2. Given any g ∈ ⋃≤m boxdn, there is an algorithm that achieves exact

identification of g using O((8d2m log n)d) equivalence queries (and no membership
queries). The time complexity is O((8d2m log n)d).

It is easily seen that for d constant this algorithm exactly learns
⋃
≤m boxdn us-

ing only equivalence queries with both time and the number of equivalence queries
polynomial in m and logn.

7. Extending S to arbitrary known slopes. We now present a modification
of the equivalence query algorithm described in section 6 that handles the situation
in which S can be an arbitrary set of known slopes versus just being the standard
basis. We let s denote the number of distinct slopes in S (i.e., s = |S|).

Let S = {a1, . . . , as} ⊂ Zd be a set of slopes. Thus ai = (ai1, ai2, . . . , aid) (for
1 ≤ i ≤ s) defines a slope for a d-dimensional hyperplane, that is, a hyperplane of

the form
∑d
j=1 aijxj = b (or equivalently aix

T = b) for any real constant b. Let
B = {B1, . . . , Bs}, where Bi ⊂ R defines a set of |Bi| possible values for the constant
term “b” for those hyperplanes with slope given by ai. Thus together S and B define
a set of hyperplanes

H = {aixT = b | x = (x1, . . . , xd), i = 1, . . . , s, b ∈ Bi}.
The hypothesis h = h(GH, A) is that which classifies each x ∈ N d

n according to the
unique classification of all known points (if any) in the region of GH containing x.
If there are no known points in the region containing x, then negative is used as the
default.

As in our basic equivalence query algorithm, this algorithm begins with the entire
region classified as negative. After the first two equivalence queries are made (the
first with h = ∅ and the second with h = N d

n), the algorithm will have a positive
counterexample y and a negative counterexample u. Thus the straight line between
y and u must intersect one of the hyperplanes that define g. Let v = (y + u)/2 be
the midpoint of the line between y and u. Without the ability to make membership
queries it is not possible to find a +/− pair. Furthermore, even if we could find a
+/− pair, we would not be able to determine the slope of the hyperplane that created
that +/− pair. As in the previous section, we address this problem by adding to our
set of hyperplanes H a hyperplane passing through the midpoint v for each slope in
S. We repeatedly use this process until an equivalence query made with h(GH, A) is
correct.

For ease of exposition, in this section we will not discuss the details of how to
represent H so that h(GH, A) can be efficiently evaluated (in terms of all parameters).

688 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

Learn-General-Slopes(S = {a1, . . . , as})
H ← ∅
Let r be the single region of GH, let A[r] = 0
While Equiv(h(GH, A)) 6= “yes”

Let y be the counterexample where y is in region r of h(GH, A)
A[r] = 1− h(GH, A)(y)
If there is a known point u in r classified opposite y

v = (y + u)/2
For i = 1 to s
H ← H ⋃

(aix
T = b = (aiv

T))
Update A to incorporate the new regions created

Return h(GH, A)

Fig. 4. Algorithm for exactly learning a discretized geometric concept defined by slopes in S
using only equivalence queries.

However, the technique of section 5 of using s balanced search trees, one for each
element of S, generalizes in an obvious manner.

Our algorithm, at a high level, is shown in Figure 4. In this algorithm, Learn-
General-Slopes, S is the set of the possible slopes of the hyperplanes. We initialize
H to be the empty set and the classification of the single region to be 0. (And
thus the initial hypothesis, h(GH, A), is simply the always false hypothesis.) We
ask the equivalence query h(GH, A) and use the counterexample y to update A. If
this counterexample is the first counterexample in its region then we just update A.
Otherwise, if this counterexample is in some region for which we have already seen a
point u, then y and u have different classifications in g and the line that passes through
y and u must intersect a defining hyperplane of g. We then define v = (y + u)/2 and
add all possible hyperplanes that pass through v to the set H. We then repeat this
process until h(GH, A) is logically equivalent to g.

7.1. Analysis. We now prove the correctness of our algorithm and analyze its
complexity. We use the following lemma to bound the maximum number of regions
that will be contained in GH.

Lemma 2. Any t d-dimensional hyperplanes in a (d+1)-dimensional space divide
the space into at most td+1 + 1 regions.

This result is well known. See Edelsbrunner [20] for a proof. We are now ready
to analyze our algorithm Learn-General-Slopes.

Theorem 3. Let S be a set of slopes. Then Learn-General-Slopes exactly
learns any target concept g from the class of discretized geometric concepts generated
from hyperplanes with slopes from S using time and equivalence queries polynomial in
‖S‖, CS(g), and log n for any constant d.

Proof. The correctness follows trivially since the algorithm returns only a hy-
pothesis h(GH, A) for which Equiv(h(GH, A)) returns “yes,” hence the algorithm is
correct upon returning a hypothesis.

We now analyze the query and time complexity. Let m = CS(g). Recall that ‖S‖
denotes the sum of the logarithms of the absolute values of the integers in S. Thus, by
the definition of ‖S‖, any ai ∈ S can be represented using at most ‖S‖ bits. Thus there
are at most 2‖S‖ possible values for a slope. Also, any example x ∈ N d

n = {1, . . . , n}d
and thus has nd possible values. Let H1, . . . , Hm be a minimum-size set of hyperplanes

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 689

ai yT

ai yT

ai yT

ai yTb =2

.

.

.

u

x

b’ =

b =1

1

v

b =
*

Fig. 5. Here y is a counterexample to the current hypothesis and b1 = aix
T and b2 = aix

T are
the nearest hyperplanes. The hyperplane b′1 = aix

T is added to H by Learn-General-Slopes.

with slopes from S that generate the boundary of the geometric concept g. Since each
hyperplane defining g is of the form b = aix

T , we have that the maximum number of
values that any b can have is

‖bi‖ ≤ ‖aixT ‖ ≤ 2‖S‖ · nd = γ.

At any time during execution of our algorithm, for each of H1, . . . , Hm, there
are two closest hyperplanes in H (one for each side) with the given slope. (At the
beginning of execution, imagine two hyperplanes with each slope outside the domain
and anchored at opposing corners of the domain.) We now show that for every
counterexample that causes H to be modified there exists some Hi (i = 1, . . . ,m) for
which the distance between it and one of its closest hyperplanes is reduced by at least
a factor of 2.

Suppose that y is a counterexample to the current hypothesis h(GH, A) and that
the region r of GH that contains y already contains the point u (otherwise H is not
modified). By the definition of h(GH, A) it follows that g(u) 6= g(y). Therefore the line
segment between y and u must intersect some hyperplane—say, H∗ ≡ (aix

T = b∗)—
of g for ai ∈ S and b∗ ∈ Z. Let b1 = aix

T and b2 = aix
T be the two hyperplanes

with slope ai nearest H∗ in H. Let v = (y + u)/2 be the midpoint between y and
u. Without loss of generality we assume that the hyperplane b′1 = aix

T that passes
through v with slope ai is between b1 = aix

T and b∗ = aix
T as illustrated in Figure 5.

We denote the hyperplane that passes through y (respectively, u) with slope ai by
by = aix

T (respectively, bu = aix
T). Thus we have that b1 ≤ by ≤ b′1 ≤ b∗ ≤ bu ≤ b2.

Let ∆ = b∗ − b1. (Thus ∆ is proportional to the distance between H∗ and b1 =
aix

T .) Observe that Learn-General-Slopes will add the hyperplane b′1 = aix
T to

H, and this will now replace b1 = aix
T as a closest hyperplane of slope ai to H∗. Let

∆′ = b∗−b′1. (Thus ∆′ is proportional to the new distance between H∗ and its closest
hyperplane in H in that direction.) We now show that ∆′ ≤ ∆/2. Observe that

∆′ = b∗ − b′1

690 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

= b∗ −
(

(bu + by)

2

)
≤ b∗ −

(
(b∗ + b1)

2

)
=
b∗ − b1

2
=

∆

2

Thus the distance between H∗ and one of its two nearest hyperplanes is reduced
by a factor of two. Finally, when the distance between H∗ and both of its two nearest
hyperplanes is less than 1, the algorithm has determined the discretized hyperplane
H∗ and no other hyperplanes will be added for H∗.

Since the distance between each ofH1, . . . , Hm with both of its closest hyperplanes
in H is at most γ it follows that the number of counterexamples needed to find one
hyperplane is

2dlog(γ)e = 2dlog(2‖S‖ · nd)e = O(‖S‖+ d log n).

The number of hyperplanes is m = CS(g), and at each iteration we add s = |S| ≤ ‖S‖
hyperplanes to the hypothesis. Therefore the number of hyperplanes generated by our
algorithm is O(ms(‖S‖ + d log n)). Thus by Lemma 2 the number of regions of the
hypothesis is

O(ms(‖S‖+ d log n))d.

The number of iterations that do not add any hyperplanes is bounded by the number
of regions; thus the number of equivalence queries made by Learn-General-Slopes
is

O(ms(‖S‖+ d log n))d,

and clearly the time complexity is also polynomial in m, ‖S‖, and logn for any con-
stant d as desired.

Finally, we note that since any slope in the discretized space N d
n can be defined

by two points from the domain, there are at most n2d possible values for any one of
the s slopes and thus ‖S‖ ≤ 2ds log n.

8. Handling lies in the counterexamples. In this section we consider the
case in which the learner is provided with an l-liar teacher. Recall that an l-liar
teacher is a teacher that can provide incorrect counterexamples as answers to at most
l equivalence queries. This noise is not persistent. That is, if the teacher provides
the same incorrect counterexample twice, then it counts as two lies (even if both were
in response to the same query). Note that our learner in this model is not given
access to a membership oracle. Thus, to learn the true classification of the points
about which the environment has lied, it is necessary for the learner to isolate these
instances. That is, the learner must create a region that consists of the single point
that was the counterexample. This will force the teacher to give, eventually (after
its l lies are exhausted), a correct classification for this instance if it is not already
correctly classified by the hypothesis.

A degenerate region (a region consisting of fewer than d dimensions) is created
whenever our algorithm adds to the hypothesis a hyperplane, passing through a given
point, for each slope in S. We want to isolate the counterexample on which the
lie occurred in a region of dimension 0. Notice, however, that given some set of

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 691

slopes, it is possible that the hyperplanes defined by the slopes, passing through the
counterexample, do not create a 0-dimensional region.

Therefore, to ensure that the 0-dimensional region is created, we include in S
the slopes of the elementary vectors {ei}. Then the faulty points will be bounded
by hyperplanes and at the end the oracle must give their real values. Thus, the
main difference between our algorithm in this model and in the noise free model is
the addition of hyperplanes through the counterexamples. Through the midpoints of
+/− pairs we still add only |S| hyperplanes. It is only through the counterexamples
that we add |S| + d hyperplanes. This changes CS(g) to CS(g) + dl, the number of
slopes to |S|+ d, and the complexity to

O((CS(g) + dl)(|S|+ d)(‖S‖+ d+ d log n))d.

9. A return to learning unions of boxes. Observe that by extending the
hyperplane defined by a +/− pair across the entire domain, our initial algorithm
Learn-With-MQs may unnecessarily split a consistent region into a large number
of smaller regions all of which make the same prediction. The algorithm we present
here is motivated by the goal of reducing this unnecessary splitting by splitting only
the region in which the counterexample is contained. We show that this algorithm
runs in polynomial time for either m or d constant.

We begin by examining how one might measure the complexity of a concept from⋃
≤m boxdn. Observe that the minimum number m of boxes used to form the target

concept is not a good measure of the complexity of the target concept. For example,
consider the two examples shown in Figure 6. While both targets are composed of six
boxes, the first is clearly more complex than the second. Thus the complexity of an
algorithm should depend on some quantity other than just the number of boxes and
dimension of the target concept. We now introduce such a new complexity measure,
σ, to better capture the complexity of the target concept. We define a segment of
the target concept g as a maximal portion of one of the sides of g that lies either
entirely inside or entirely outside of each of the other halfspaces defining the target.
(A halfspace defines the target if it labels some +/− pair consistently with the labeling
given by the target. See the definition of +/− pair in Definition 1.) Note that two
adjacent segments will intersect in a region of dimensionality less than the segments.
We observe that there exist other possible measures of complexity besides σ that
are potentially worthy of study. One example is the number of sides of a target
polyhedron, where a side is a maximal connected set of coplanar boundary points of
the polyhedron such that the interior of the polyhedron is on the same side of the set
of boundary points. Sides (as opposed to segments) have the drawback of being of
varying complexity (at least for polyhedra of more than two dimensions), as well as
being apparently harder to work with. That is, we can have 0, 1, . . . , d−1 dimensional
sides.

For example the target concept shown in Figure 1 has 14 sides. The same target
concept has 22 segments. (The heavy black line defining the target concept is split
into 20 clearly visible segments by the thin lines that correspond to the halfspaces
that define the target concept. The final 2 segments come from the fact that the
points (20, 52) and (49, 52) are segments due to the halfspaces y2 ≥ 52 and y2 ≤ 52.)
The polygon in Figure 6(a) has 60 segments, since each of the long edges of the 6
boxes contributes 4 segments. By contrast the polygon in Figure 6(b) (defined by
the same number of boxes) has 24 segments, since none of the sides of the individual
boxes straddles any of the hyperplanes defining the boxes.

692 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

(a) (b)

Fig. 6. These concepts illustrate why “number of boxes” is an inadequate measure of complexity.
(a) is more complex than (b) because of the large number of intersections of the sides of the boxes.
For (a) σ = 60. For (b) σ = 24.

For a concept g ∈ ⋃≤m boxdn but not in
⋃
≤m−1 boxdn, we let σ denote the number

of segments in the target concept corresponding to g. (In other words, suppose that
m is the minimum number of boxes whose union is g.) First, observe that m ≤ σ
since none of the boxes are contained within the union of the other m − 1 boxes
(which follows from the minimality of m). Furthermore, observe that σ ≤ (2m)d

since there are 2m halfspaces per dimension (one corresponding to each of the 2m
sides per dimension) that can intersect to form at most (2m)d connected regions each
of which would be part of at most one segment. Finally, it then follows that for any
g ∈ ⋃≤m boxdn, the number of segments in g ≤ (2m)d since the minimum number of
boxes whose union is g is at most m.

The hypothesis class we use in this algorithm is a decision tree over the halfspaces
defining the target concept. Namely, each hypothesis T is a rooted binary tree where
each internal node is labeled with a halfspace and in which leaves are labeled from
{0, 1}. We evaluate T recursively by starting at the root and evaluating the left subtree
if the root’s halfspace does not contain the point, and the right subtree otherwise.
When a leaf is reached its label is output. Observe that each node of T corresponds
to a subregion of the domain, with the root corresponding to the entire domain. The
halfspace H associated with each internal node divides its region r into two subregions,
with the left child being the subregion given by H ∩ r and the right child being the
subregion given by H ∩ r. The leaves correspond to a set of nonoverlapping boxes
that cover the entire region where the label for a given region is given by the label for
the corresponding leaf. In Observation 1 we show that the height of the final decision
tree will be at most 2md. Thus the hypothesis can be evaluated in time polynomial
in both m and d.

We now describe our algorithm. It has complexity polynomial in σ and logn as
well as being an efficient algorithm for either m or d constant. We initialize T to be a
single 0 leaf node. (Again we implicitly use the instance space {0, 1, . . . , n, n + 1}d.)
When a counterexample is received, we first search T to find the leaf v containing it.
Let r be the subregion corresponding to v. Then as in Learn-With-MQs we use
a binary search to find a +/− pair contained in r that defines a halfspace H. We

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 693

Alt-Learn-With-MQs
Initialize T to be the single 0-leaf
While Equiv(T) 6= “yes”

Let y be the counterexample
Search in T to find the leaf v corresponding to the region containing y
T ←split-region(T, v, y)

Return T

split-region(T, v, y)
�T is the decision tree that defines the current hypothesis
�y is a counterexample in a region r defined by T
�v is the leaf of T that corresponds to r
Perform binary search between y and a corner of region r
Let H be the hyperplane found
Let vL and vR correspond to the new regions created
Make v an internal node labeled with H and having left child vL and right child vR
Let rL be the region H ∩ r corresponding to vL
Let rR be the region H ∩ r corresponding to vR
For each r′ ∈ {rL, rR}

Let v′ be the leaf corresponding to region r′

Perform a membership query on the upper and lower opposing corners of r′

Call these corners upper and lower
If both corners have classification b ∈ {0, 1} let v′ be a b-leaf of T

Let the predicted label of v′ become b
Else

Let v′ be a leaf of T with v′ having the same classification as lower
split-region(T, v′, upper)

Fig. 7. Alternate algorithm for learning unions of d-dimensional axis-parallel boxes that runs
in polynomial time for either m or d constant. We note that the corner points of regions in the
hypothesis, used throughout the algorithm, are easy to compute given the hypothesis.

replace v with an internal node labeled with H, having left child leaf vL corresponding
to the region given by H ∩ r and right child leaf vR corresponding to the region given
by H ∩ r. At this point we call a procedure that recursively visits all newly created
leaves in a depth-first manner and checks if the corresponding region is a consistent
region. If the region r′ associated with leaf v′ is consistent (a region is consistent if
its opposing corners have the same classification), then the classification field is filled;
otherwise we use a binary search to obtain a halfspace H ′ for r′ and replace v′ with
an internal node labeled with H ′. We generate two new leaves: v′L corresponding to
the region H ′∩ r′ and v′R corresponding to the region H ′∩ r′. Then a recursive call is
made to validate (if necessary) each of these new regions. The algorithm is shown in
Figure 7. One possible final hypothesis that could be constructed by this algorithm,
for the target concept shown in Figure 1, is shown in Figure 8. Figure 9 shows the
decomposition of N d

n that corresponds to the decision tree shown in Figure 8.

9.1. Analysis. We first show that the height of the final decision tree comprising
our hypothesis is at most 2md.

Observation 1. The height of the final decision tree constructed by Alt-Learn-
With-MQs (shown in Figure 7) is at most 2md since each of the at most 2md
halfspaces defining the target polyhedra can appear at most once on any path from

694 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

y < 40
1

2
y < 52

2
y < 61

2
y > 17

1
y > 20

2
y < 89

1
y > 49

2
y > 52

2
y > 17

2
y < 36

1
y < 67

1
y < 49

1
y < 60

0

F

F

F

F F F

FF

F

F

T

T

T

T

TT

TT

T TF

F T

T

0

0

0 1

T

0 1

F

0 0 1

0 1 0 1

Fig. 8. This shows the final decision tree that could be constructed by Alt-Learn-With-MQs
for the target geometric concept shown in Figure 1.

y2

y1

+

36

17

1

52

61

89

100

1 20 40 49 60 67 n=100

+

++

Fig. 9. This shows the decomposition of N dn corresponding to the decision tree shown in Figure 8.

the root to any leaf.
We now give two separate techniques for analyzing this algorithm. The first

method of analysis gives that this algorithm uses queries and time polynomial in σ
and logn (and thus polynomial in m and logn for d constant). The second method
of analysis shows that our algorithm uses queries and time polynomial in d and logn
for m any constant.

Theorem 4. Given any target concept g ∈ ⋃≤m boxdn, the algorithm Alt-
Learn-With-MQs achieves exact identification of g making at most (σ/2+1) equiv-
alence queries, and using O(σ(σ + log n + d)) time and O(σ(log n + d)) membership
queries.

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 695

Proof. Observe that each segment of g causes at most one region to be split. Thus
the number of leaves in the decision tree created will be at most σ + 1.

By Lemma 1 we get that two segments are found as a result of the counterexample
to each equivalence query (here the second halfspace is implicitly found by the call to
split-region). Thus at most σ

2 + 1 equivalence queries will be made.
Furthermore, since there are at most two membership queries made to query the

upper and lower corners of each leaf, and dlog ne+ d membership queries used in the
binary searches for the σ halfspaces, it follows that the number of membership queries
made is at most 2σ + σ(dlog ne+ d) = O(σ(log n+ d)).

Observe that the depth of T is at most σ since any of the halfspaces defined by
the σ segments in the target concept will appear at most once on any path from the
root to a leaf. Thus the time to locate the region to split is O(σ) and it immediately
follows that the time complexity is O(σ(σ + log n+ d)).

Corollary 5. The algorithm Alt-Learn-With-MQs achieves exact identifi-
cation for any g ∈ ⋃≤m boxdn using time and queries polynomial in m and log n for
d constant.

Proof. This follows immediately from Theorem 4 and the observation that σ ≤
(2m)d.

Finally, observe that just as we described in section 5.3, our final hypothesis can
be converted to the union of O(md logm) boxes from boxdn. Recall that the time to
perform the conversion is O((2m)2dmd logm) and thus, this will be efficient only if d
is constant. Also, using the technique of section 6 we can refine this algorithm to use
only equivalence queries.

We now use a different method of analysis to show that Alt-Learn-With-MQs
uses time and queries polynomial in d and logn for m constant.

We begin by examining the number of regions created by this algorithm. Each
region is represented by a single leaf in the hypothesis decision tree. Thus, we can
find the number of regions by finding the number of leaves in our hypothesis. We
now derive a recurrence relation for the number of leaves in the final decision tree.
Let g ∈ ⋃≤m boxdn be the target concept and T be the final decision tree output by

our algorithm. For each internal node of T there is an associated region of N d
n . For

any node r in T , let hr denote the height of the subtree of T rooted at r (we define
the height of a leaf to be 0), and let mr be the minimum number of boxes needed to
cover the part of g contained in the region of N d

n associated with r. Thus, for the
region r corresponding to the root of T we have that mr ≤ m and hr ≤ 2md since,
by Observation 1, the height of T is at most 2md.

Let L(m,h) denote the maximum number of leaves in a decision tree rooted at
a node r with mr = m and hr = h. Then we have that L(m,h) = L(m,h − 1) +
L(m − 1, h − 1), where, for all m ≥ 0, L(m, 0) = 1, and for all h ≥ 1, L(0, h) = 1.
To see this, observe that when we find, while building the hypothesis, a hyperplane
that splits a node, the two subproblems that correspond to the left and right children
both must have at most h − 1 hyperplanes left to find since in the worst case, all
other hyperplanes are split by this one and thus appear on both sides. Finally, since
the hyperplane just found must be the side of one of the m boxes, that box will not
appear in one of the recursive calls. (In the worst case all other boxes will be split).

Consider the “largest possible” decision tree, according to the upper bound L(m,h).
(Note that a tree constructed from a problem instance will generally have fewer leaves.)
Notice that in such a “largest” decision tree, there are no leaves in the decision tree
on levels 0 (i.e., the root level) to m− 1. On each level from m to h there are leaves

696 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

caused by the base case m = 0 of the recurrence. The total number of these leaves is
given by

h∑
j=m

(
j − 1

m− 1

)
since the number of nodes, in the recursion tree, with m = 0 at level j is equal to the
number of nodes with m = 1 at level j − 1. There are also leaf nodes caused by the
other base case of the recurrence, h = 0. Note that this is the last level of the tree.
The number of leaves here is given by

m−1∑
j=0

(
h

j

)
since this gives the number of nodes for each nonzero value of m (the m = 0 nodes on
this level were already counted in the previous expression). Thus, the total number
of leaves is

h∑
j=m

(
j − 1

m− 1

)
+
m−1∑
j=0

(
h

j

)
=

h−1∑
j=m−1

(
j

m− 1

)
+
m−1∑
j=0

(
h

j

)

=

h−1∑
j=0

(
j

m− 1

)
+
m−1∑
j=0

(
h

j

)

=

(
h

m

)
+

m−1∑
j=0

(
h

j

)

=

m∑
j=0

(
h

j

)
.(9.1)

Recall that h ≤ 2md. In the following lemma we show that (2md)m is an upper bound
on the summation in (9.1).

Lemma 3. The number of leaves in any hypothesis decision tree constructed by
Alt-Learn-With-MQs is bounded above by (2md)m for m > 1 and is 2d + 1 for
m = 1.

Proof. Let n = md and k = m for m > 1. Then the expression we have derived
for the number of leaves is

∑k
j=0

(
2n
j

)
. It is easily shown by induction on k that∑k

j=0

(
2n
j

) ≤ (2n)k for n ≥ k > 1, and thus the result follows for m > 1. Finally, for
m = 1 the number of leaves in the hypothesis is 2d+ 1.

We are now ready to prove the running time of our algorithm using this method
of analysis. For ease of exposition we assume m > 1 in the remainder of this paper.

Theorem 6. Given any target concept g ∈ ⋃
≤m boxdn, the algorithm

Alt-Learn-With-MQs achieves exact identification of g, making at most (2md)m

equivalence queries, making O((2md)m · (log n + d)) membership queries, and using
O((2md)m+1 · (log n+ d)) time.

Proof. Observe that the number of counterexamples received by Alt-Learn-
With-MQs is at most the number of internal nodes in our final decision tree. Thus
the number of equivalence queries made by Alt-Learn-With-MQs is at most the
number of leaves in the final decision tree.

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 697

Equation (9.1) shows that L(m,h) =
∑m
j=0

(
h
j

)
, and Lemma 3 proves a bound for

the number of leaves of T of at most
∑m
j=0

(
2md
j

) ≤ (2md)m. Thus it immediately

follows that at most (2md)m equivalence queries are made. Since at most dlog ne+ d
membership queries are used by the binary search procedure when splitting a node,
it follows that the number of membership queries made by Alt-Learn-With-MQs
is O((2md)m · (log n+ d)). Finally, since it takes O(md) time to find the node corre-
sponding to the region containing the counterexample and at most O(log n+ d) time
for each binary search, it follows that the time complexity of Alt-Learn-With-MQs
is O((2md)m+1 · (log n+ d)).

Thus Alt-Learn-With-MQs achieves exact identification for any g ∈ ⋃≤m boxdn
using time and queries polynomial in d and logn for m constant. We note that for
m ≥ 6 we can remove a factor of 2m in the complexity by using the tighter upperbound
that

∑m
j=0

(
2md
m

) ≤ (md)m.

10. Concluding remarks. We have given an efficient algorithm that uses mem-
bership and equivalence queries to exactly identify any concept from

⋃
≤m boxdn for

d constant. Furthermore, this algorithm makes at most md + 1 equivalence queries,
all of which can be formulated as the union of O(md logm) axis-parallel boxes.

We have also shown how to extend our basic algorithm to learn efficiently, us-
ing only equivalence queries, any discretized geometric concept generated from any
number of halfspaces with any number of known (to the learner) slopes in a con-
stant dimensional space. In particular, our algorithm exactly learns (from equivalence
queries only) unions of discretized axis-parallel boxes in constant dimensional space
in polynomial time. Further, this algorithm can be modified to handle a polynomial
number of lies in the counterexamples provided by the environment.

Finally, we have introduced a new complexity measure, σ, that better captures
the complexity of the union of m boxes than simply the number of boxes and the
dimension. We presented an algorithm that uses time and queries polynomial in σ
and logn. In fact, the time and queries (both membership and equivalence) used by
this single algorithm are polynomial for either m or d constant.

A number of important open questions that we have not answered concern the
necessity of membership queries to exactly learn the class

⋃
≤m boxdn (or the more

general class of a discretized geometric concept) in time polynomial in d and logn
when the number of boxes (or defining hyperplanes) is constant.

While we have provided an algorithm to efficiently learn geometric concepts de-
fined by hyperplanes that are not axis parallel, to achieve this goal it was necessary
that the learner be given a priori knowledge as to the slopes of the hyperplanes. An
interesting direction is to explore the learnability (even for fixed dimensions) of ge-
ometric concepts defined by hyperplanes whose exact slopes are not known to the
learner.

Finally, it would be interesting to see if
⋃
≤m boxdn can be efficiently learned

in time polynomial in m and logn for d = O(logm) or in time polynomial in d
and logn for m = O(log d) (i.e., a generalization of the Blum and Rudich [9] result
that O(log n)-term DNF formulas are exactly learnable). Of course, since

⋃
≤m boxdn

generalizes the class of DNF formulas, it seems very unlikely that one could develop
an algorithm for the unrestricted case of

⋃
≤m boxdn that is polynomial in m, log n,

and d. It may be possible, however, to obtain a truly polynomial algorithm for some
subclass of

⋃
≤m boxdn.

698 N. BSHOUTY, P. GOLDBERG, S. GOLDMAN, AND H. MATHIAS

Acknowledgments. We thank Peter Auer and the COLT committee for their
comments. We thank Wolfgang Maass for suggesting we consider the material dis-
cussed in section 5.3. We also thank the anonymous referees whose comments im-
proved this manuscript.

REFERENCES

[1] D. Angluin, Queries and concept learning, Machine Learning, 2 (1988), pp. 319–342.
[2] D. Angluin and M. Krikis, Learning with malicious membership queries and exceptions, in

Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory,
1994, pp. 57–66.

[3] D. Angluin and P. Laird, Learning from noisy examples, Machine Learning, 2 (1988), pp. 343–
370.

[4] E. Arkin, P. Belleville, J. Mitchell, D. Mount, K. Romanik, S. Salzberg, and D.
Souvaine, Testing simple polygons, in Proceedings of the 5th Canadian Conference on
Computational Geometry, 1993, pp. 387–392.

[5] E. Arkin, H. Meijer, J. Mitchell, D. Rappaport, and S. Skiena, Decision trees for geo-
metric models, in Proceedings of the 9th Annual Symposium on Computational Geometry,
1993, pp. 369–378.

[6] P. Auer, On-line learning of rectangles in noisy environments, in Proceedings of the Sixth
Annual ACM Conference on Computational Learning Theory, 1993, pp. 253–261.

[7] P. Belleville and T.C. Shermer, Probing polygons mimimally is hard, Comput. Geom., 2
(1993), pp. 255–265.

[8] A. Blum, Separating distribution-free and mistake-bounded learning models over the Boolean
domain, SIAM J. Comput., 23 (1994), pp. 990–1000.

[9] A. Blum and S. Rudich, Fast learning of k-term DNF formulas with queries, J. Comput.
System Sci., 51 (1995), pp. 367–373.

[10] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the
Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach., 36 (1989), pp. 929–965.

[11] N. Bshouty, Personal communication, University of Calgary, 1994.
[12] N. Bshouty, Z. Chen, and S. Homer, On learning discretized geometric concepts, in 35th

Annual Symposium on Foundations of Computer Science, 1994, pp. 54–63.
[13] N. H. Bshouty, S. A. Goldman, T. R. Hancock, and S. Matar, Asking questions to mini-

mize errors, J. Comput. System Sci., 52 (1996), pp. 268–286.
[14] W. J. Bultman and W. Maass, Fast identification of geometric objects with membership

queries, in Proc. 4th Annual Workshop on Computational Learning Theory, San Mateo,
CA, Morgan Kaufmann, 1991, pp. 337–353.

[15] Z. Chen, Learning unions of two rectangles in the plane with equivalence queries, in Proceed-
ings of the Sixth Annual ACM Conference on Computational Learning Theory, ACM Press,
1993, pp. 243–252.

[16] Z. Chen and S. Homer, The Bounded Injury Priority Method and the Learnability of Inions
of Rectangles, unpublished manuscript, 1994.

[17] Z. Chen and W. Maass, On-line learning of rectangles, Machine Learning, 17 (1994), pp. 23–
50.

[18] V. Chvatal, A greedy heuristic for the set covering problem, Math. Oper. Res., 4 (1979),
pp. 233–235.

[19] J. C. Culberson and R. A. Reckhow, Covering polygons is hard, in 29th Annual Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1988, pp. 601–611.

[20] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
[21] M. Frazier, S. Goldman, N. Mishra, and L. Pitt, Learning from a consistently ignorant

teacher, J. Comput. System Sci., 52 (1996), pp. 472–492.
[22] P. W. Goldberg, S. A. Goldman, and H. D. Mathias, Learning unions of boxes with mem-

bership and equivalence queries, in Proceedings of the Seventh Annual ACM Conference
on Computational Learning Theory, 1994, pp. 198–207.

[23] Y.-B. Jia and M. Erdmann, The complexity of sensing by point sampling, in Proceedings of
the First Workshop of the Algorithmic Foundations of Robotics, 1994.

[24] Y.-B. Jia and M. Erdmann, Geometric sensing of known planar shapes, International Journal
of Robotics Research, 15 (1996), pp. 290–299.

[25] S. Homer and Z. Chen, Fast Learning Unions of Rectangles with Queries, unpublished

EXACT LEARNING OF DISCRETIZED GEOMETRIC CONCEPTS 699

manuscript, 1993.
[26] M. Kearns and M. Li, Learning in the presence of malicious errors, in Proceedings of the

Twentieth Annual ACM Symposium on Theory of Computing, 1988.
[27] P. D. Laird, Learning from Good and Bad Data, Kluwer International Series in Engineering

and Computer Science, Kluwer Academic Publishers, Boston, 1988.
[28] N. Littlestone, Learning when irrelevant attributes abound: A new linear-threshold algo-

rithm, Machine Learning, 2 (1988), pp. 285–318.
[29] P. M. Long and M. K. Warmuth, Composite geometric concepts and polynomial predictability,

in Proceedings of the Third Annual Workshop on Computational Learning Theory, Morgan
Kaufmann, 1990, pp. 273–287.

[30] W. Maass and G. Turán, On the complexity of learning from counterexamples, in 30th Annual
Symposium on Foundations of Computer Science, 1989, pp. 262–267.

[31] W. Maass and G. Turán, Lower bound methods and separation results for on-line learning
models, Machine Learning, 9 (1992), pp. 107–145.

[32] W. Maass and G. Turán, Algorithms and lower bounds for on-line learning of geometrical
concepts, Machine Learning, 14 (1994), pp. 251–269.

[33] W. Maass and G. Turán, How fast can a threshold gate learn?, in Computational Learn-
ing Theory and Natural Learning Systems: Constraints and Prospects, G. Drastal, S. J.
Hanson, and R. Rivest, eds., MIT Press, Cambridge, MA, 1994, pp. 318–414.

[34] W. Maass and M. Warmuth, Efficient learning with virtual threshold gates, in Proceedings of
the 12th International Conference on Machine Learning, Morgan Kaufmann, 1995, pp. 378–
386.

[35] K. Romanik and C. Smith, Testing Geometric Objects, Technical report UMIACS-TR-90-69,
University of Maryland College Park, Department of Computer Science, 1990.

[36] S. Skiena, Problems in geometric probing, Algorithmica, 4 (1989), pp. 599–605.
[37] R. H. Sloan, Four types of noise in data for PAC learning, Information Processing Letters,

54 (1992), pp. 157–162.
[38] L. Valiant, A theory of the learnable, Communications of the ACM, 27 (1984), pp. 1134–1142.

FAST EXPONENTIATION USING DATA COMPRESSION∗

YACOV YACOBI†

SIAM J. COMPUT.

Vol. 28, No. 2, pp. 700–703

Abstract. We present the first exponentiation algorithm that uses the entropy of the source
of the exponent to improve on existing exponentiation algorithms when the entropy is smaller than
(1 + w(S)/l(S))−1, where w(S) is the Hamming weight of the exponent, and l(S) is its length. For
entropy 1 it is comparable to the best-known general purpose exponentiation algorithms.

Key words. fast exponentiation, cryptography, discrete-log, compression

AMS subject classifications. 68P25, 68Q25

PII. S0097539792234974

1. Introduction. Exponentiation with huge numbers is used heavily in modern
cryptography, and the topic is the focus of attention of many researchers who try to
achieve efficient exponentiation algorithms ([1], [2], [3], [4], [12], and many others).
This paper is the first to make use of the entropy of the source of the exponent. In
cases of entropy smaller than (1 +w(S)/l(S))−1, where w(S) is the Hamming weight
of the exponent and l(S) is its length, this method becomes asymptotically faster
than all known general methods. For entropy 1 it is asymptotically comparable to the
best-known general-purpose algorithms. The method is applicable to every repeated
group operation. A preliminary version appeared in [13].

We now present an outline of the paper. Section 2 gives the required elements of
the LZ theory, section 3 applies this theory to fast exponentiation, section 4 is a brief
overview of other exponentiation methods, and the final section gives a cryptographic
viewpoint.

2. The LZ theory. For the sake of completeness we present here the definitions
and theorems of [8], which are needed for the complexity analysis. (The actual com-
pression algorithm is in [9], [10]. The earlier paper, [8], is written more along the lines
of decompression.)

Let A∗ denote the set of all finite-length sequences over a finite alphabet A. Let
l(S) denote the length of S ∈ A∗ and let An = {S ∈ A∗|l(S) = n}, n ≥ 0. The
null sequence χ is in A∗. We use S(i, j) to denote a substring of S that starts at
location i and ends at location j. Let Sπi denote S(1, l(S) − i), i = 0, 1, . . . , l(S).
The vocabulary, v(S), of S is the subset of A∗ formed by all the substrings (words)
of S. When a sequence S is extended by concatenation with one of its words, say
W = S(i, j), the resulting sequence R = SW can be viewed as being obtained from S
through a copying procedure. The same recursive copying procedure could be applied
to generate an extension R = SQ of S which is much longer than warranted by any
word in v(S). The only provision is that Q be an element of v(SQπ).

We use the denotation S ⇒ R if R = SQ can be obtained from S by application
of the above copying procedure, where at the end of the copying process we use “one-
symbol innovation” (any symbol from A, not subject to the copying procedure). This
process is called reproduction, while a single-step copying without innovation is called

∗Received by the editors July 27, 1992; accepted for publication (in revised form) February 20,
1997; published electronically August 4, 1998.

http://www.siam.org/journals/sicomp/28-2/23497.html
†Microsoft, One Microsoft Way, Redmond, WA 98052 (yacov@microsoft.com).

700

FAST EXPONENTIATION USING DATA COMPRESSION 701

production and is denoted S → R. If R cannot be obtained from S by production we
write S 6→ R.

Consider an m-step production process of a sequence S and let S(1, hi), i =
1, 2, . . . ,m, h1 = 1, hm = l(S), be the m states of the process. The parsing of S
intoH(S) = S(1, h1)S(h1+1, h2) · · ·S(hm−1+1, hm) is called the production history of
S, and the m words Hi(S) = S(hi−1 +1, hi), i = 1, 2, . . . ,m, where h0 = 0, are called
the components of H(S). A component Hi(S) and the corresponding reproduction
step S(1, hi−1)⇒ S(1, hi) are called exhaustive if S(1, hi−1) 6→ S(1, hi); a history is
called exhaustive if each of its components, with the possible exception of the last one,
is such. Every nonnull sequence S has a unique exhaustive history (denoted E(S)).

Let cH(S) denote the number of components in a history H(S) of S. The produc-
tion complexity of S is defined as c(S) = min{cH(S)}, where minimization is over all
histories of S. Let cE(S) denote the production complexity of the exhaustive history
of S.

∀ S, c(S) = cE(S).(1)

Let α = |A|. All logarithms are to base α. Let εn = 2(1 + log log(αn))/ log(n). Then

∀ S ∈ An, c(S) < n/((1− εn) log(n)).(2)

Consider an ergodic α-symbol source with normalized entropy h, 0 ≤ h ≤ 1. For
this source we have asymptotically:

c(S) ≤ hn/ log(n).(3)

The previous three results were proved in [8].
While [8] is written along the lines of decompression, the two later papers, [9]

and [10], give an efficient compression algorithm that creates the exhaustive history
of any given sequence.

3. Using the LZ compression method for fast exponentiation. The bi-
nary case is presented for concreteness. The natural many-to-one mapping from
sequences to integers is used, and it is assumed that S(1, 1) is the least significant bit.
S is used to denote both integer and sequence.

Given the exponent S, the computation of any exponentiation xS proceeds as
follows.

Build a binary tree where each path from the root to any node corresponds to
some segment of the exponent S(i, j), and the node contains the result of xS(i,j).
The root contains 1 = x0 (0 corresponds to the string χ). Proceed inductively as
follows. Suppose that the component S(i, j) was already processed; i.e., the tree
already contains a path from the root to some leaf which corresponds to this com-
ponent, and the leaf contains the result of xS(i,j). Traverse the partial tree from the
root according to the new (so far unscanned) bits of S(j + 1, . . .) until you reach a
leaf. Proceed with S having one more symbol. The new component contains now
exactly one new untraversed symbol. Extend the tree according to the new symbol,
and mark the new branch with this symbol. Compute the value of the new leaf. This
simple construction (without the exponentiation) is the heart of the LZ algorithm.
Ziv and Lempel proved that this construction creates the exhaustive history of S,
H(S) = S(1, h1)S(h1 + 1, h2) · · ·S(hm−1 + 1, hm), where each path from the root to
any node corresponds to one of the components of H(S), and hence the number of
nodes in the tree is c(S).

702 YACOV YACOBI

For depth i we need to do one squaring (to compute X2i = (X2i−1

)2), and when-
ever the new bit is 1 we need to multiply that value by the value of the father. For
random exponents we can expect that to happen in half the cases for a total cost of
c(S)/2, and in general, for exponent of length l(S) and expected Hamming weight
w(S), the expected number of cases where the new symbol is 1, is c(S) · w(S)/l(S).

To evaluate the cost of squarings we need to know more about the shape of the
LZ trees. In [7] an analysis is given, showing that the height of the tree has normal
distribution with mean value logα(c(S))/h, where h is the entropy of the source, and
the deviation is rather big: O(logα(c(S))) (big “oh”); i.e., for almost all cases the
squaring component is o(c(S)) (little “oh”).

We combine the partial results (stored in the leaves) using l(S) squarings and c(S)
multiplications in the natural way. The total expected complexity is C(S) = l(S) +
(1 + w(S)/l(S))c(S) + o(c(S)). Plugging in (3) and defining σ(S) = 1 + w(S)/l(S),
1 ≤ σ(S) ≤ 2, we get the asymptotical upper bound

C(S) = l(S) + σ(S) · h · l(S)/ log(l(S)) + o(l(S)/ log(l(S))).(4)

When h < σ(S)−1 the above method wins asymptotically in expected complexity
over all existing general purpose methods.

Applying the algorithm in practice. We improve somewhat on a straightfor-
ward LZ compression, by taking advantage of leading zeros. Leading zeros are not ac-
counted for in the binary tree, thus reducing the tree size. When strings are taken from
a uniform distribution the expected length of the run of zeros is

∑∞
j=1 j · 2−(j+1) = 1,

thus truncating the expected tree height by 1.
To raise an integer x to power S, the bits of S are parsed using an LZ parsing

from least to most significant. Each time a new phrase is started, the leading zeros
are skipped, a root-to-leaf path is traversed (skipping over the corresponding bits),
and a new leaf is formed for the next bit. Stored at this new leaf are its depth, i, a
back pointer to the previous parsed phrase, the number of leading zeros, and a value
which is set to that of its parent if the next bit is zero, or that of its parent times
x2i , if the next bit is 1. After S has been parsed into substrings in this manner we
know the value of x raised to each of the parsed substrings, and the result can then
be combined by following back pointers and successively multiplying by the next term
and then raising to the power of 2 to {the number of leading zeros plus the length of
the next term}. The powers of 2 needed in the above description can be computed
once by successive squaring for all future uses.

4. Concluding remarks: Other methods. The addition-chain method runs
in time n+n/ log(n)+o(n/ log(n)) ([5], [12], [4]), once an optimal addition chain for the
exponent is found; however finding an optimal addition chain is NP-hard. Suboptimal
heuristics exist. The m-ary method [11] (the most popular among practitioners) runs
in time upper bounded by n+n/m+2m−1 +1, where m is an optimization parameter.
For example, for n = 1024, m = 6 is optimal. In the practical range this is comparable
to the complexity of the new method, with h = 1 and w(S)/l(S) = 1/2. Other
heuristics exist [1].

In some applications the exponent is fixed for many bases, in which case it is nat-
ural to partition the operations into two stages: exponent processing and exponentia-
tion. The new method is comparable to optimal addition chains in the exponentiation
phase even for h = 1, and wins when h < 1.

In [2] a method is proposed that optimizes exponentiation complexity when the
base is fixed for many exponents.

FAST EXPONENTIATION USING DATA COMPRESSION 703

Cryptographic viewpoint. For discrete-log–based cryptosystems, when the
modulus is “good,” we can go down with w(S) quite far before the complexity of the
discrete-log problem deteriorates, per the best-known algorithm [6]. Specifically, the
complexity is A1/2, where

A =

(
l(S)
w(S)

)
.

For example, for l(S) = 512 bits, w(S) = 22 gives A1/2 = 264.
When the Hamming weight is very low, the entropy is also low, thus we gain using

the new method. Specifically we have h ≤ l−1 · log2A affecting the second term of
C(S) (in the above example h < 1/4, while σ(S) ≈ 1).

The above numbers are not a recommendation. The discrete-log problem for low-
entropy exponents is not well studied yet (however the method of [6] does not seem to
apply directly to low entropy).

Acknowledgments. I am indebted to Arjen Lenstra for many insightful discus-
sions. I would also like to thank Shimon Even, Rich Graveman, and Stuart Haber
for many helpful comments. Finally I would like to thank two anonymous referees
for numerous helpful comments, and in particular for pointing me to the paper by
P. Jacquet and W. Szpankowski [7].

REFERENCES

[1] J. Bos and M. Coster, Addition chain heuristics, in Proc. Crypto’89, New York, Lecture
Notes in Computer Sci. 435, Springer-Verlag, pp. 400–407, 1990.

[2] E. Brickell, D.M. Gordon, K.S. McCurley, and D. Wilson, Fast exponentiation with
precomputation, in Proc. Eurocrypt’92, New York, Lecture Notes in Computer Sci. 658,
Springer-Verlag, pp. 221–238.

[3] H. Cohen and A.K. Lenstra, Implementation of a new primality test, Math. Comput., 48
(1987), pp. 103–121.

[4] Downey, Leony, and Sethi, Computing sequences with addition chains, SIAM J. Comput., 3
(1981), pp. 638–696.

[5] P. Erdös, Remarks on number theory III, on addition chains, Acta Arith., VI (1960), pp.
77–81.

[6] R. Heiman, A Note on Discrete Logarithms with Special Structure, Bellcore TM-ARH-021448,
1992. Also in Proc. Eurocrypt’92, New York, Lecture Notes in Computer Sci. 658, Springer-
Verlag, pp. 454–457.

[7] P. Jacquet and W. Szpankowski, What can we learn about suffix trees from independent
tries?, in Proc. Algorithms and Data Structures, 2nd workshop, WADS’91, pp. 228–239.

[8] A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Trans. Inform. Theory,
IT-22, (1976),

[9] J. Ziv and A. Lempel, A universal algorithm for data compression, IEEE Trans. Inform.
Theory, IT-23, 1977.

[10] A. Lempel and J. Ziv, Compression of individual sequences via variable rate coding, IEEE
Trans of Inform. Theory, IT-24 (1978), pp. 530–536.

[11] D. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-
Wesley, Reading, MA, 1980, pp. 441–462.

[12] Schönhage, A Lower bound on the length of addition chains, Theoret. Comput. Sci., 1 (1975),
pp. 229–242.

[13] Y. Yacobi, Exponentiating faster with addition chains, in Proc. Eurocrypt’ 90, Springer-Verlag,
New York, Lecture Notes in Computer Sci. 473, pp. 222–229.

A POLYNOMIAL TIME COMPLEXITY BOUND FOR
COMPUTATIONS ON CURVES∗

P. G. WALSH†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 704–708

Abstract. In this paper, we use a recent quantitative version of Eisenstein’s theorem on power
series expansions of algebraic functions to compute a polynomial-time bit complexity bound for the
computation of the genus of an algebraic curve over the rationals. The result is extendable to any
field of characteristic zero which is finitely generated over the rationals.

Key words. algebraic curves, genus, Puiseux expansion, complexity

AMS subject classification. 14H05

PII. S0097539796300969

1. Introduction. In [3] Duval describes a method based on computing Puiseux
expansions for certain computations on curves. These include the computation of the
ramification indices in the projection of a curve on any line, the genus of an algebraic
curve, the construction of rational functions on a curve, and finding the irreducible
components of a curve. An interesting aspect of this work is that it is shown that all
of these computations can be done in polynomial time in the number of arithmetic
operations. The shortcoming of this result is that there is no prior knowledge about
the size of the integers on which these arithmetic operations are performed. In fact,
due to a result of Coates (Lemma 3 of [2]) on the coefficients of algebraic power series,
it is conceivable that Duval’s algorithm would be completely impractical because of
the exponential growth of the size of the integers involved. In this paper we use a
recent result of Schmidt [11] on the coefficients of algebraic power series to prove that
such exponential growth does not occur. As a result, the aforementioned computations
on a curve can be computed in time which is polynomial in the size of the polynomial
defining the curve.

Other work in this direction has been carried out by Chistov [1]. The main dif-
ference here is to compute explicit estimates on the number of bit operations required
to complete the algorithms and show how this polynomial-time complexity depends
entirely on the quantitative version of Eisenstein’s theorem given in [11]. Kozen [6]
has also described an algorithm for the resolution of plane curve singularities which
has polynomial-time complexity in the number of bit operations. The method is based
on passive factorization.

The main point of our paper is to show that the classical method, based on
Puiseux expansion computation, does in fact have polynomial-time complexity in the
number of bit operations, which is contrary to the wide belief that Coates’ algorithm
runs in exponential time. We make no claims as to the practicality of the classical
method over the newer ones. In this regard, it is worth noting that Teitelbaum [12]
also presents an efficient method for the resolution of singularities based on passive
factorization.

∗Received by the editors March 25, 1996; accepted for publication (in revised form) December 19,
1997; published electronically August 4, 1998.

http://www.siam.org/journals/sicomp/28-2/30096.html
†Department of Mathematics, University of Ottawa, 585 King Edward, Ottawa, ON K1N 6N5,

Canada (gwalsh@jeanne.mathstat.uottawa.ca). This research was supported by an NSERC Postdoc-
toral Fellowship.

704

POLYNOMIAL TIME COMPUTATIONS ON CURVES 705

2. Puiseux expansions of algebraic functions. In this section we describe
Puiseux expansions and state a result on the computation of Puiseux expansions of
algebraic functions. The proof can be found in [15].

We recall Puiseux’s theorem (for example, see [4]), which states that at any point
α ∈ C ∪ {∞} there is a factorization

F (x, y) = An(x)
n∏
i=1

(y − yi,α(x)),

where for i = 1, . . . , n

(1) yi, α =
∞∑

k=fi, α

ak, i, α(z1/ei, α
α)k,

with fi, α ∈ Z, ei, α ∈ Z+, ak, i, α ∈ C, afi, α, i, α 6= 0, and zα = (x − α) if α ∈ C,
zα = 1/x if α =∞. The singular part of yi, α is the partial sum

yi, α, T =
T∑

k=fi, α

ak, i, α(z1/ei, α
α)k,

where T is minimal such that yi, α, T distinguishes yi, α from the other n−1 expansions
at α of y. The number ei, α is the ramification index of yi, α and can be obtained by
computing the singular part yi, α, T of yi, α.

The n Puiseux expansions are partitioned into cycles, where the cycle correspond-
ing to the expansion in (1) is the set of ei, α series

y
(j)
i, α =

∞∑
k=fi, α

ak, i, α(ζ(j)
ei, αz

1/ei, α
α)k, j = 0, . . . , ei, α − 1,

where ζei, α denotes a primitive ei, αth root of unity.
Theorem 2.1. Let F (x, y) ∈ Z[x, y] be a square-free polynomial of degree n in

y, m in x, and let h denote the maximum of the absolute values of the coefficients
of F . Then, for any ε > 0, the singular part of a Puiseux expansion at x = 0 of the
algebraic function y defined by F (x, y) = 0 can be computed in

O(n32+εm3+ε log2+ε(h))

bit operations.
The proof of this result is based on Schmidt’s recent quantitative version of Eisen-

stein’s theorem on power series expansions of algebraic functions [11]. Schmidt ex-
ploits the fact that the algebraic function satisfies a linear differential equation and is
able to use this to prove a result which is roughly an order of magnitude smaller than
the corresponding result proved by Coates in Lemma 3 of [2].

3. Computations on curves. In this section we state the main results of the
paper. Throughout this section we let F (x, y) denote a polynomial with integer
coefficients of degree n in y, m in x, and h denotes the maximum of the absolute
values of the coefficients of F , referred to as the height of F and denoted ht(F).

Theorem 3.1. If F is square-free in Q[x, y], then, for any ε > 0, the ramification
indices at all critical places of F and the genus of the algebraic curve defined by
F (x, y) = 0 can be computed in

O(n70m40
(
n2+ε +m2+ε log2+ε(h))

)
bit operations.

706 P. G. WALSH

In this section we describe an algorithm to compute the genus of the curve
F (x, y) = 0. This is accomplished by computing the Puiseux expansions at all places
which correspond to singularities of the algebraic function y defined by F (x, y) = 0
and then applying the Hurwitz genus formula.

The Hurwitz genus formula is

(2) g = 1− n+ (1/2)
∑

(e− 1),

where the sum is the sum of all ramification indices over all places and all cycles at
each place. It is well known (see [4]) that if α is a regular point, then ei, α = 1. As a
result, for computing the genus of the curve, we need only compute the ramification
index for each cycle at each critical place α. Finite critical places α are characterized
by the property that they are zeros of the resultant polynomial R(x) = rest(F, Fy),
where Fy is the derivative of F with respect to y. Note that since F is square-free,
R(x) is a nonzero polynomial.

4. Algorithm to compute the genus of the curve F (x, y) = 0.
1. Compute R(x) = resy(F, Fy).
2. Compute S(x) = R(x)/gcd(R(x), R′(x)).
3. Factor S(x) into irreducibles P1, . . . , Pk in Q(x).
4. For each i = 1, . . . , k, compute Gi(x, y) = rest(Pi(t), F (x+ t, y)).
5. For each i = 1, . . . , k, compute Hi(x, y) = Gi(x, y)/gcd(Gi, (Gi)y).
6. For each i = 1, . . . , k, compute the singular part at x = 0 of the Puiseux

expansions of the algebraic function y defined by Hi(x, y) = 0.
7. Let F∞(x, y) = xmF (1/x, y), and compute the singular part at x = 0 of the

Puiseux expansions of the algebraic function y defined by F∞(x, y) = 0.
8. Use the ramification indices computed in steps 6 and 7 in (1) to compute the

genus.
Before proceeding to the complexity of the algorithm, we first give a justification

for its correctness. The purpose of the algorithm is to compute the singular part of
all of the Puiseux expansions at each place α, where α is a critical place, that is, a
root of R(x) or the infinite place. For a fixed irreducible factor P (x) of R(x) we can
simultaneously compute all of the Puiseux expansions of y at all places corresponding
to the roots of P (x) by computing the Puiseux expansions at x = 0 of the algebraic
function defined by G(x, y) = 0, where G(x, y) =

∏
i F (x + αi, y), and the product

is over all roots αi of P (x). Moreover, this product is the norm of F (x + α, y) from
Q(α) to Q, and hence has rational coefficients. By Theorem 1 of [10], this norm can
be computed as described in step 4 above. By doing this for each of the irreducible
factors of R(x), we obtain the ramification indices corresponding to all cycles of every
finite critical place of the algebraic function y defined by F (x, y) = 0. In step 7 we
obtain the ramification indices of the cycles corresponding to the infinite place, and
thus all of the required data are obtained to use (2).

4.1. Complexity analysis. Computationally, the dominant step in the algo-
rithm is the computation of the singular parts, as described in step 6. To apply
Theorem 2.1 we need to estimate the degree of Hi(x, y) in x and in y and a bound for
the size of its coefficients. We remind the reader that n = degyF , m = degxF , and h
is the height of F .

R(x) is the determinant of a 2n − 1 × 2n − 1 matrix whose coefficients are the
coefficients of F and Fy, regarded as polynomials in y. Thus the determinant has
(2n− 1)! summands, where each summand is the product of n coefficients of Fy and

POLYNOMIAL TIME COMPUTATIONS ON CURVES 707

n−1 coefficients of F . Since the height of the polynomial (1+ · · ·+xm)2n is no larger
than (m+ 1)2n, we deduce that

ht(R) < (2n)2n(nh)nhn(m+ 1)2n,

and degxR(x) < (2n − 1)m. Fix i with 1 ≤ i ≤ k. Since Pi is a factor of R(x), it
follows from Lemma 2 on p. 135 of [5] that ht(Pi) < e(2n−1)mht(R); therefore,

ht(Pi) < 22nmnn(2nh(m+ 1))2n.

Now Gi(x, y) is the determinant of the matrix with coefficients of Pi(t) and F (x+t, y),
the latter regarded as a polynomial in t. Note that degtPi(t) < (2n− 1)m. It is easy
to see that the height of F (x+ t, y), regarded as a polynomial in t, is no larger than
h(m+ 1)(n+ 1)2m, and so a similar argument as above shows that

ht(Gi) < (2n!m)2nm(ht(Pi))
m(h(m+ 1)(n+ 1)2m)2nm((n+ 1)(m+ 1))2nm.

From the definition of Gi, we have that

degxGi < 2nm2, degyGi < 2n2m.

By the aforementioned result of [5], ht(Hi) < e2nm2+2n2mht(Gi), so we deduce finally
that

log(ht(Hi)) < c(nm2 + n2m+ nm2 log(nmh))

for some positive constant c. Moreover,

degxHi < 2nm2, degyHi < 2n2m,

and so by Theorem 2.1, together with the fact that there are at most 2nm polynomials
Hi, we deduce the result in Theorem 3.1.

REFERENCES

[1] A. L. Chistov, Algorithms of Polynomial Complexity for Computational Problems in the
Theory of Algebraic Curves, Lomi preprint 176, Leningrad, 1989 (in Russian).

[2] J. Coates, Construction of rational functions on a curve, Proc. Camb. Phil. Soc., 68 (1970),
pp. 105–123.

[3] D. Duval, Computations on curves, in Proc. Eurosam 84, Lecture Notes in Comput. Sci. 184,
Springer-Verlag, New York, 1984, pp. 100–107.

[4] M. Eichler, Introduction to the Theory of Algebraic Numbers and Functions, Academic Press,
London, 1966.

[5] A. O. Gel’fond, Transcendental and Algebraic Numbers, Dover, New York, 1960.
[6] D. Kozen, Efficient resolution of singularities of plane curves, in Proc. 14th Conf. Foundations

of Software Technology and Theoret. Comput. Sci., 1994, to appear.
[7] A. Lenstra, H.W. Lenstra Jr., and L. Lovasz, Factoring polynomials with rational coeffi-

cients, Math. Ann., 261 (1982), pp. 515–534.
[8] A. Lenstra, Factoring multivariate integral polynomials, Theoret. Comput. Sci., 34 (1984),

pp. 207–213.
[9] A. Lenstra, Factoring polynomials over algebraic number fields, in Proc. Eurocal. 1983, Lec-

ture Notes in Comput. Sci. 162, Springer-Verlag, New York, 1983, pp. 245–254.
[10] R. Loos, Computing in algebraic extensions, in Computer Algebra, 2nd ed., B. Buchberger et

al., eds., Springer-Verlag, Vienna, 1982, pp. 173–187.
[11] W. M. Schmidt, Eisenstein’s theorem on power series expansions of algebraic functions, Acta

Arith., 56 (1990), pp. 161–179.

708 P. G. WALSH

[12] J. Teitelbaum, The computational complexity of the resolution of plane curve singularities,
Math. Comp., 54 (1990), pp. 797–837.

[13] P. G. Walsh, A quantitative version of Runge’s theorem on Diophantine equations, Acta
Arith., 62 (1992), pp. 157–172.

[14] P. G. Walsh, The Computation of Puiseux Expansions and a Quantitative Version of Runge’s
Theorem on Diophantine Equations, Ph.D. Thesis, University of Waterloo, Waterloo, ON,
Canada, 1994.

[15] P.G. Walsh, A polynomial time complexity bound for the computation of a Puiseux expansion
of an algebraic function, Math. Comp., submitted.

[16] P.G. Walsh, Irreducibility testing over local fields, Math. Comp., submitted.

STOCHASTIC CONTENTION RESOLUTION WITH SHORT DELAYS∗

PRABHAKAR RAGHAVAN† AND ELI UPFAL‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 709–719

Abstract. We study contention resolution protocols under a stochastic model of continuous
request generation from a set of contenders. The performance of such a protocol is characterized by
two parameters: the maximum arrival rate for which the protocol is stable and the expected delay
of a request from arrival to service.

Known solutions are either unstable for any constant injection rate or have at least polynomial
(in the number of contenders) expected delay. Our main contribution is a protocol that is stable for
a constant injection rate, while achieving logarithmic expected delay. We extend our results to the
case of multiple servers, with each request being targeted for a specific server. This is related to the
optically connected parallel computer (or OCPC) model. Finally, we prove a lower bound showing
that long delays are inevitable in a class of protocols including backoff-style protocols, if the arrival
rate is large enough (but still smaller than 1).

Key words. contention resolution, randomized algorithms, stochastic analysis

AMS subject classifications. 68Q25, 68Q75, 68M20, 60K30

PII. S0097539795285333

1. Introduction. The subject of this paper is the stochastic analysis of protocols
for contention resolution. The most concrete setting of this problem is that of multiple
access channels, and so the remainder of the paper will use the terminology of this
application. Naturally, our analyses are not specific to this setting and apply whenever
we have several contenders requesting service from shared resources.

There are n senders and m receivers. At each of a series of time steps, one or more
senders may generate a packet. A packet when generated has a destination: a unique
receiver to which it must be delivered. Any sender may attempt to send a packet to
any receiver at any step, but a receiver may only receive one packet in a step. If a
receiver is sent more than one packet in a step (a collision), all packets sent to that
receiver are lost and the senders are notified of the loss. The senders must then try to
send these packets again at a future step. There is no explicit communication between
the senders for coordinating the transmissions the only information that senders have
is the packet(s) they have waiting for transmission and the history of losses. A packet
can only be transmitted directly from its sender to its receiver; intermediate hops are
disallowed.

The case m = 1 is a classical instance of sharing a common resource such as a
bus or an Ethernet channel (the shared bus is modeled by the single “receiver”). The
binary exponential backoff Ethernet protocol [9] is the solution used most commonly
in practice here. The case m = n has received much attention recently under the
name optically connected parallel computer, or OCPC [8]. However, work on the
OCPC model has been restricted to studies in which each sender begins with at most h

∗Received by the editors April 24, 1995; accepted for publication (in revised form) March 28,
1997; published electronically August 4, 1998.

http://www.siam.org/journals/sicomp/28-2/28533.html
†IBM Almaden Research Center, 1650 Harry Rd., San Jose, CA 95120 (pragh@almaden.ibm.com).

A portion of this work was done at the IBM T.J. Watson Research Center, Yorktown Heights, NY
10598.
‡The Weizmann Institute of Science, Israel (eli@wisdom.weizmann.ac.il), and IBM Almaden Re-

search Center, 1650 Harry Rd., San Jose, CA 95120. Work at the Weizmann Institute of Science was
supported in part by the Norman D. Cohen Professorial Chair of Computer Science, a MINERVA
grant, and a grant from the Israeli Academy of Science.

709

710 PRABHAKAR RAGHAVAN AND ELI UPFAL

packets for some positive integer h, with h or fewer packets bound for each receiver. In
our work, we are interested in the more realistic setting in which packets are generated
continuously. To this end, we adopt a stochastic model of packet generation.

1.1. The model. We assume that time is partitioned into intervals of equal
length called steps. The injection distribution is characterized by an n ×m matrix
Λ = (λij), in which

∑
j λij ≤ λ for all i and

∑
i λij ≤ λ for all j. At each step

sender i generates a packet bound for receiver j with probability λij independently
of other senders and time steps. Since a sender can send no more than one packet
per step, and a receiver can receive no more than one packet per step, we require
λ ≤ 1. For the special case m = 1, we use simplified notation: we assume that at
each step sender i generates a packet with probability λi, independently of other steps
and senders. Note that a sender generates at most one packet at a step, but several
senders may generate a packet for a receiver. The reader is referred to the paper by
H̊astad, Leighton, and Rogoff [6] for a detailed account of the relation between these
assumptions and reality.

Each sender uses a protocol to decide when to send a packet and what to do in
the event of a collision. Informally, a protocol is an automaton that uses its state to
remember the past. At each step, based on its state, the packets pending transmission,
and any new packet it generates, it must decide which (if any) packet to transmit. For
example, the binary exponential backoff protocol used in the Ethernet is the following:
store arriving packets in a queue. When a packet reaches the head of the queue for
the first time, transmit it. If there is a collision, retransmit the packet after T steps
where T is selected randomly from {1, 2, 3, . . . , 2min{10,b}}, where b is the number of
times the packet has been involved in a collision.

Of primary interest is whether a protocol can sustain packet arrivals at some rate
without instability: a protocol is unstable for a given arrival rate if the number of
packets pending transmission grows unboundedly with time.1 For stable protocols,
two quantities are of interest: (1) the maximum arrival rate λ that can be sustained
stably, and (2) the delay, defined to be the maximum over all senders of the expected
number of steps from the generation of a packet to its delivery, in the steady state.
Delay is of particular importance in high-speed communications applications such
as video and ATM networks. (We actually prove a stronger result, a bound on the
expected delay of any packet arriving after a polynomial number of steps from the
start of the process.)

In our upper bounds, we do not assume that the sender knows the injection rates
of other senders (i.e., the matrix Λ); we only assume that senders have some upper
bound on the total number of active senders in the system. This bound does not
need to be very accurate, as only the logarithm of this bound figures in the delay
of our protocols. Since the total number of senders in the system is dictated by the
hardware, it is reasonable to assume that this number cannot change very fast and
that each sender has a good estimate of it. Our analysis holds even if the matrix Λ
changes at every time step, subject to the constraints on row and column sums.

Throughout this paper, Pr[E] denotes the probability of an event E .

1.2. Related work. Most previous analysis focused on backoff protocols. The
binary exponential backoff protocol used in the Ethernet was proposed by Metcalfe

1Formally let Bt denote the number of packets generated before time t that were not delivered
until time t. Let Ft denote the distribution of Bt. A protocol is stable if the sequence {Ft | t ≥ 1}
converges in distribution to a limit distribution F that is independent of t.

STOCHASTIC CONTENTION RESOLUTION WITH SHORT DELAYS 711

and Boggs [9]. Aldous [1] showed that for any positive constant λ, binary exponential
backoff is unstable if the number of senders is infinite. Kelly [7] showed that any
polynomial backoff protocol is unstable for infinitely many senders. H̊astad, Leighton,
and Rogoff [6] studied systems with a finite number of senders. They showed that
binary exponential backoff is unstable for λ slightly larger than 0.567 even for a system
with a finite number of senders, and that polynomial backoff protocol is stable for any
λ < 1 and for any finite number of senders. Goldberg and MacKenzie [5] analyzed
the backoff protocol for the multiple servers setting, showing that any superlinear
polynomial backoff protocol is stable for any λ < 1. Our current work is motivated
by the lower bound in H̊astad, Leighton, and Rogoff [6] showing that long delays
are inevitable in backoff-style protocols: they showed that the delay of any stable
exponential or polynomial backoff protocol is at least polynomial in the total number
of contenders. Following our work, Paterson and Srinivasan [11] recently gave a
protocol with O(1) expected delay assuming that the initial clock times of the senders
are within a known bound of each other.

1.3. Our results. We follow the lead of [1, 6] here and make no unproven as-
sumptions about the independence of the state of the system from one time step
to the next, or between senders (many analyses in the queuing-theory literature do
make such assumptions). We assume only that the generation of packets is indepen-
dent between time steps and senders. Even for this case, complex dependencies arise
between the transmissions at different senders and time steps. We focus on protocols
with short packet delay. We first consider the case m = 1. Our main result (Theo-
rem 1) is a protocol that ensures delay logarithmic in n, provided the arrival rate is
no more than a fixed constant λ′. To our knowledge, this is the first protocol with
sublinear delay (under an exact analysis) that is stable for a constant injection rate.
Turning to the case m > 1, we present a protocol that achieves logarithmic delay
provided that arrival rate at each sender and for each receiver is at most a fixed con-
stant λ′ (Theorem 2). Finally, we show (Theorem 3) that if every sender uses a class
of protocols including backoff protocols, there is a fixed constant λ0 < 1 such that if
λ > λ0, the delay must be Ω(n). Thus, in this class of protocols one cannot achieve
full throughput and small delay simultaneously (whereas full throughput alone can
be achieved by the polynomial backoff protocol that belongs to that class [6]).

2. Multiple access to one channel. In this section we consider the casem = 1.
We show that there exists a positive constant λ0 and a contention resolution protocol
that is stable for any 0 < λ ≤ λ0, with delay O(log n).

2.1. The protocol. Each sender in our protocol (Fig. 1) has a transmission
buffer of size O(log n) and a queue. Packets awaiting transmission are stored either
in the buffer or in the queue. Throughout the execution of the protocol a sender is
in one of two states: a normal state or a reset state. Note that in the protocol, a
transmission attempt may fail due to collision. The constants α and µ used in the
protocol are fixed in the proof of Theorem 1 below.

Relation to practical protocols. The use of the queue and especially the reset
state may appear to be somewhat artificial. We use these devices to cater to catas-
trophic events (e.g., every sender generates a packet in every one of n10 consecutive
steps) that occur with extremely low but positive probabilities. In practice, such
catastrophic events are handled by dropping packets: some packets are permanently
erased from the system during such rare events. Rather than drop packets we invoke
the emergency mechanism involving the queues and the reset state, while proving that
the chance of resorting to these measures is extremely small.

712 PRABHAKAR RAGHAVAN AND ELI UPFAL

Count attempts(s) keeps a count of the number of times s tried to transmit a packet
from its buffer in the 4µn logn most recent steps.

Failure counts(s) stores the failure rates in transmission attempts of packets from
the buffer of s in the most recent µ logn attempts.

Random number() is a function that returns a random number uniformly chosen
in the range [0, 1], independent of the outcomes of previous calls to the function.

While in the normal state repeat:

1. Place new packets in the buffer.

2. Let X denote the number of packets in the buffer.

If Random number() ≤ X/8α logn then

(a) Try to transmit a random packet from the buffer.
(b) Update Count attempts(s) and Failure counts(s).

Else

If Random number() ≥ 1− 1/n2 then transmit the packet at the head of
the queue.

3. If (Count attempts(s) ≥ µ logn and Failure counts(s) > 5/8), or If
(X > 2α logn) then

(a) Move all packets in the buffer to the end of the queue.
(b) Switch to the reset state for 4µn2 logn+ γ logn steps.

While in the reset state repeat:

1. Append any new packets to the queue.

2. If Random number() ≤ 1/n2 then transmit the packet at the head of the
queue.

Fig. 1. Communication protocol for sender s.

2.2. Analysis of the protocol. The performance of the protocol is summarized
in the following theorem.

Theorem 1. There is a fixed constant λ0 > 0, such that for any λ ≤ λ0 the
above protocol is stable and the expected delay of each packet is O(log n).

Proof. To simplify the analysis we assume, without loss of generality, that at
each step each sender tries to transmit a packet from the queue with probability 1/n2

even if its queue is empty (in which case it tries to transmit an empty message). This
assumption makes the process of transmitting from the buffers completely independent
of the sizes of the queues at the beginning of that step.

Consider the n-vector of nonnegative integer whose ith component is the number
of packets in the buffer of the ith sender. This vector defines a finite positive recurrent
aperiodic Markov chain, which thus has a stationary distribution. Let Xt be a random
variable counting the total number of packets at time t in all the buffers. By the
condition tested in step 3 of the protocol, Xt ≤ 2αn log n+n for all t. The crux of the
proof is to show that most of the time Xt ≤ 2α log n, which guarantees short delays.

Throughout the analysis we use the following versions of the Chernoff bound [10]:
let Z be the number of successes in k independent Bernoulli trials with probability
p for success in each trial, then for 0 ≤ δ ≤ 1 Pr{Z ≤ (1 − δ)pk} ≤ e−δ

2pk/2, and

Pr{Z ≥ (1 + δ)pk} ≤ e−δ2pk/3. For δ > 1 Pr{Z ≥ (1 + δ)pk} ≤ e−δ ln(1+δ)pk.

STOCHASTIC CONTENTION RESOLUTION WITH SHORT DELAYS 713

Lemma 1. Let T = 4µn2 log n+γ log n (the constant γ is determined in the proof
of Claim 3). For any x ≤ 2αn log n+ n assumed by Xt−T ,

Pr[Xt > 2α log n | Xt−T = x] ≤ 1/n10.

Proof. To prove the lemma, we begin with the following claim.
Claim 1. If Xt−T > 6α log n, then with probability 1 − n−11 there is a step

τ1 ∈ [t− T, t− γ log n] such that Xτ1 ≤ 6α log n.
Proof. We show that as long as the total number of packets in buffers exceeds

6α log n, then in each interval of 4µn log n steps at least one sender is very likely to
switch to the reset state with high probability (and stays in that state for 4µn2 log n
steps).

Consider the interval [τ0, τ0 + 4µn log n− 1] consisting of 4µn log n steps. Let zτ ,
τ ∈ [τ0, τ0 + 4µn log n− 1] be a random variable defined as follows. If Xτ > 6α log n,
then zτ equals the number of transmission attempts at this step; else zτ = n. Clearly
[zτ | zτ0 , zτ0+1, . . . , zτ−1] is stochastically lower-bounded2 by a binomial distribution

with expectation (6α log n)/(8α log n), and
∑τ0+4µn logn−1
τ=τ0

zτ is stochastically (lower-)
bounded by a binomial distribution with expectation

(4µn log n)(6α log n)

8α log n
= 3µn log n.(1)

Thus, by the Chernoff bound, with probability at least

1− e− 2
3µn logn,(2)

either Xτ ≤ 6α log n for some τ in this interval or there were at least µn log n attempts
to transmit packets from buffers and at least one sender was involved in µ log n or
more attempts.

If there were at least 6α log n packets in buffers in a given step, then the success
probability of an attempt at that step is at most(

1− 2α log n

8α log n

)2

≤ 9/16.(3)

(Since no sender has more than 2α log n packets in buffers, the “best” probability is
when 6α log n packets are distributed equally among three senders.)

For a given sender s and given steps τ and τ ′ such that τ ≥ τ ′ ≥ τ0, let yτ
′,s
τ be

a random variable defined as follows: yτ
′,s
τ = 1 if sender s successfully transmitted a

packet at time τ , Xτ > 6α log n, and s had less than µ log n transition attempts in
the interval [τ ′, τ]; else yτ

′,s
τ = 0. Let Hτ describe the state of the system at all times

before step τ . Clearly

Pr[Y τ
′,s

τ | Hτ] ≤ 9

16
,

and Pr[
∑τ0+4µn logn−1
τ=τ ′ yτ

′,s
τ ≥ 5

8µ log n] is upper-bounded by the probability that a
binomial random variable with parameters B(µ log n, 9

16) is at least 5
8µ log n. Thus,

using the Chernoff bound, with probability

1− n(4µn log n)e−
1
3

9
16 (1

9)2µ log n,(4)

2We say that distribution F is stochastically lower- (upper-) bounded by distribution G if for
any x, F (x) ≥ G(x) (respectively, F (x) ≤ G(x)).

714 PRABHAKAR RAGHAVAN AND ELI UPFAL

either Xτ ≤ 6α log n for some τ in that interval or no sender had a success rate of at
least 5

8 in a sequence of µ log n attempts in that interval.
Combining the bounds in (2) and (4) we get that for each interval of 4µn log n

steps, with probability at least

1− e−µ logn − n(4µn log n)e−
1
3

9
16 (1

9)2µ logn ≥ 1− n−12

(for sufficiently large constant µ), either Xτ ≤ 6α log n at some step of the interval
or at least one sender switches to the reset state and moves all its packets from its
buffer to its queue. Thus, with probability 1−n−11, at some step τ1 < t+ 4µn2 log n,
Xτ1 ≤ 6α log n.

Claim 2. Suppose that there is a positive integer L such that if Xτ ∈ [L,L +
2α log n] then the probability that a packet is delivered from a buffer at step τ is at
least p for a constant p > λ. If Xτ1 ≤ L, then

Pr[Xτ ≥ L+ α log n for some step τ ∈ [τ1, τ1 +W]] ≤Wn−13

for a sufficiently large constant α.
Proof. Since at most one message can be delivered from all buffers in each step,

Xτ can decrease by at most one in each step. Thus, it is sufficient to prove that there
is no time interval of length α log n during which Xτ remains above L.

Consider an interval of α log n steps, starting at step τ2 ∈ [τ1, τ1 + W]. Assume
that Xτ2−1 ≤ L. Let ε = (p− λ)/3λ. The probability that more than (1+ε)λα log n <
2α log n packets are placed in buffers in the interval is at most n−13/2.

Let zτ be a 0–1 random variable defined as follows: zτ = 1 if Xτ ≤ L or a packet
is delivered from a buffer in step τ ; else zτ = 0. Clearly, as long as Xτ ≤ L+ 2α log n,
Pr[zτ = 1 | z1, . . . , zτ−1] ≥ p. Let δ = (p− λ)/3p.

Pr

[
τ2+α logn∑
k=τ2

zk < (1− δ)pα log n

]
≤ e− 1

3 δ
2pα logn ≤ n−13/2.

Since (1 + ε)λα log n < (1 − δ)pα log n, the probability that Xτ > L for a given
τ ∈ [τ2, τ2 + α log n] is at most n−13, for any p > λ and a sufficiently large constant
α.

Claim 3. If Xτ1 ≤ 6α log n for some τ1 ∈ [t−T, t−γ log n], then with probability
at least 1− n−11, there is a step τ2 ∈ [τ1, t] such that Xτ2 ≤ α log n.

Proof. As long as Xτ ∈ [α log n, 7α log n] the probability of a successful transmis-
sion from some buffer at time τ is at least p, where

p =

(
Xτ

1

)
1

8α log n

(
1− 1

8α log n

)Xτ−1

− n

n2
≥ Xτ

8α log n
− (

Xτ

8α log n
)2 − n

n2
≥ 1

10
.

Let E1 denote the event: “Xτ1 ≤ 6α log n, and there is a τ ∈ [τ1, τ1 + γ log n] such
that Xτ > 7α log n.”

By Claim 2, Pr[E1] ≤ n−13γ log n for any λ < p and a sufficiently large constant
α.

The expected number of new packets arriving in the time interval [τ1, τ1 +γ log n]
is λγ log n. Let δ = (p− λ)/3λ and let E2 denote the event “More than λγ(1+δ) log n

packets arrived in the interval [τ1, τ1 + γ log n].” Then Pr[E2] ≤ e−δ2λγ logn/3 ≤ n−11

for a sufficiently large γ.

STOCHASTIC CONTENTION RESOLUTION WITH SHORT DELAYS 715

Let ε = (p− λ)/3p and define the event E3: “either Xτ ≤ α log n for some τ ∈
[t− γ log n, t] or at least (1− ε)pγ log n packets were delivered from the buffer at that

interval.” Then Pr[E3 | Ē1] ≥ 1− e−ε2pγ logn/3.
Fix γ such that γ(p− λ)/3 > 6α. Then the probability that there is no τ2 ∈

[τ1, τ1 + γ log n] such that Xτ2 < α log n is at most

n−13γ log n+ e−λγδ
2 logn/3 + e−pγε

2 logn/3 ≤ n−11

for λ < p and γ ≥ max[18α
p−λ ,

39
λδ2 ,

39
pε2].

Claim 4. If Xτ1 ≤ α log n then the probability that there exists τ ∈ [τ1, τ1 + T]
such that Xτ > 2α log n is at most n−11.

Proof. If Xτ ∈ [α log n, 4α log n] then the probability of a successful transmission
from a buffer at time τ is at least

p =

(
Xt

1

)
1

8α log n

(
1− 1

8α log n

)Xt−1

− n

n2

≥ Xt

8α log n
−
(

Xt

8α log n

)2

− n

n2
≥ 1

10
.

Using Claim 2, the probability of having 2α log n packets in buffers in the interval
is at most Tn−13 for any λ < p and a sufficiently large constant α.

To conclude the proof of Lemma 1 we combine the error probabilities of the three
lemmas above to show that for any value x,

Pr[Xt > 2α log n | Xt−T = x] ≤ 3n−11 ≤ n−10.

Comment. The statement of Lemma 1 implies that in the steady state, almost
always Xt ≤ 2α log n. This observation is not used directly in the proof but gives a
good intuition for the long-term behavior of the protocol.

We turn to the analysis of the queues. We focus on the performance of the
protocol after the first T0 = 4µn2 log n + γ log n + 4µn log n steps. We assume that
at time 0 all queues are empty (this assumption affects only the length of the initial
segment T0).

Claim 5. Let t ≥ T0. The probability that any sender switches to the reset state
at step t is at most n−8.

Proof. If Xτ ≤ 2α log n, then the probability of a success in a transmission
attempt at step τ is at least p = 1− (2α log n)/(8α log n)− (n/n2) ≥ 3/4− 1/n.

For a given sender s and given steps τ ≥ τ ′ ≥ t− 4µn log n, let yτ
′,s
τ be a random

variable defined as follows: yτ
′,s
τ = 1 if sender s successfully transmitted a packet at

time τ , Xτ ≤ 2α log n, and s had less than µ log n transition attempts in the interval
[τ ′, τ]; else yτ

′,s
τ = 1. Let Hτ describe the state of the system at all times before step

τ . Clearly

Pr[Y τ
′,s

τ | Hτ] ≤ 1

4
+

1

n
,

and
∑τ0+4µn logn−1
τ=τ ′ yτ

′,s
τ is stochastically upper-bounded by a binomial distribution

with expectation (1
4 + 1

n)µ log n. Thus, by the Chernoff bound with probability

1− n(4µn log n)e−
1
3 (1

4 + 1
n)(1

2)2µ logn,(5)

716 PRABHAKAR RAGHAVAN AND ELI UPFAL

either Xτ > 2α log n for some τ in that interval or no sender had a success rate
less than 5

8 in a sequence of µ log n attempts in that interval. By Lemma 1, Pr[Xτ

> 2α log n] at any time τ ∈ [t−4µn log n, t] is at most 4µn−9(log n+2), which together
with the above bound proves the lemma.

Lemma 2. Consider a packet that was generated at time t ≥ T0.
1. The expected number of steps a given packet spends in a buffer is O(log n).
2. The probability that a given packet is delivered from the buffer is at least

1− n−5.
Proof. Assume that the packet was generated at sender s.
Consider an interval of n steps throughout which (1) s is never in the reset state,

and (2) Xτ ≤ 2α log n. Let p = 1 − (2α log n)/(8α log n) − n/n2 as in the proof of
Claim 5. If the packet was in the buffer of sender s at the start of the interval,
the probability that it is not delivered until the end of the interval is at most (1 −
p/8α log n)n. During the interval the expected number of steps between two attempts
to transmit the packet is 8α log n, and the expected number of attempts until the
packet is delivered is 1/p. Thus, if the packet is delivered during the interval, by
Wald’s identity [2] the expected delay of the packet from the start of that interval is
at most (8α log n)/p.

The probability that the interval [t, t + n] satisfies conditions (1) and (2) is (by
Lemma 1 and Claim 5) at least 1−(4µn2 log n+n)n−8−n−9, and with this probability,
any subsequent interval of 4µn2 log +n steps has a segment of n steps that satisfies
the above conditions. Thus, the expected number of steps a packet spends in the
buffer is at most

8α log n

p
+
∑
k≥1

k(n+ 4µn2 log n)

(
(4µn2 log n+ n)n−8 + n−9 +

(
1− p

8α log n

)n)k

=
8α log n

p
+ o(1).

(The above estimate ignores the possibility that a packet is moved to the queue before
it is delivered from the buffer. This can only decrease the expected number of steps
a packet spends in the buffer.)

The probability that the packet is delivered from the buffer is bounded from below
by the probability that the first n steps following the creation of the packet satisfy
conditions (1) and (2) and the packet is delivered in that time. This probability is at
least

1− (4µn2 log n+ n)n−8 − n−9 −
(

1− p

8α log n

)n
≥ 1− n−5.

Lemma 3. Consider a packet that was generated at time t > T0. Given that
the packet enters the queue, the expected length of time it spends in the queue is
O(n4 log n).

Proof. Assume that the packet was generated at sender s. When a sender switches
to the reset state it moves all the (up to 2α log n + 1) packets in its buffer to its
queue. In addition, all the (up to 4µn2 log n+ γ log n) packets it receives in the next
4µn2 log n + γ log n steps are placed in the queue. Let D = 4µn2 log n + γ log n +
2α log n+ 1.

STOCHASTIC CONTENTION RESOLUTION WITH SHORT DELAYS 717

When a queue is not empty and the total number of packets in all buffers in the
system is at most 2α log n, a sender succeeds in transmitting a packet from its queue
in each step with probability at least

p =
1

n2

(
1− 1

8α log n

)2α logn(
1− 1

n2

)n
≥ 1

2n2
.

Let τ1 be the first step that Xt exceeds 2α log n (i.e., Xτ1−1 ≤ 2α log n and
Xτ1 > 2α log n). Let τi, i > 1, be the first step that Xt exceeds 2α log n after step
τi−1 + T (T = 4µn2 log n + γ log n as defined in Lemma 1). We say that an interval
[τi, τi+1] is good (with respect to sender s) if either the queue of s was empty at some
step in that interval or at least 2D packets were delivered from the queue. Note that
no more than D packets can enter the queue in each interval, since a sender cannot
switch twice to a reset state in the same interval.

By Lemma 1 the probability that an interval does not have a segment of L =
4n2D steps in which Xt ≤ 2α log n, conditioning on all events before that segment is
bounded by Ln−10. The probability that in L steps in which Xt ≤ 2α log n, fewer

than 2D packets are transmitted, is bounded by e−
1
3

1
2n2 L ≤ e−

2D
3 . Thus, in a given

interval the probability that either Zt = 0 at some point in the interval or at least 2D
packets are delivered from the queue is at least 1− Ln−10 − e− 2D

3 ≥ 1− 1
n5 , and for

subsequent intervals these events are independent.
The probability that there are iD packets in the queue at time t is bounded by

the probability that there are fewer than (k− i)/2 good intervals in the k most recent
intervals, for some k ≥ i. This probability is bounded by

∑
k≥i
(

k
(k+i)/2

)
(1
n5)(k+i)/2 ≤

2(e
n5)i, and the expected number of packets in the queue at time t is bounded by∑
i≥0 iD(e

n5)i = O(1). Our packet, however, arrives with another D = O(n2 log n)
packets, and the expected number of steps to send a packet from the head of the
queue is O(n2). Thus, the expected time until all these packets are transmitted is
O(n4 log n).

By Claim 2 the expected time a packet spends in the buffer in O(log n). With
probability O(n−5) the packet is transferred to the queue, where its expected delay
is O(n4 log n). Thus, the expected delay of a given packet is O(log n).

3. The protocol for n senders and m receivers. In our protocol each sender
runs m “one-channel protocols” simultaneously. Each sender keeps a counter of trans-
mission failures for each of the receivers. When this count is too large the sender
switches to the reset state only with respect to packets bound for that receiver.

The “one-channel protocol” requires that if there are X packets in the buffer
of sender s, the sender tries to transmit a packet from the buffer with probability
X/8α log n. To accommodate the m protocols simultaneously in one sender we modify
step 2 in the “one-channel protocol” as follows:

2. Let Y i(s) denote the number of packets with destination i in the buffer of sender
s. Let Y (s) =

∑m
i=1 Y

i(s).
If Y (s) > 2α log n then move all packets to the queue,
else with probability Y (s)/8α log n transmit a random packet from the buffer.

It remains to show that the probability that a sender has more than 2α log n
packets in the buffer is small. Thus, moving them to the queue does not significantly
change the performance of the protocol.

718 PRABHAKAR RAGHAVAN AND ELI UPFAL

Lemma 4. Let Yt(s) denote the total number of packets in the buffer of sender s
at time t. In the stationary distribution,

Pr[∃s such that Yt(s) > 2α log n] ≤ n−7.

Proof. As in the proof of Lemma 1 we show that there exists a constant γ such
that if T = 4µn2 log n+ γ log n, then for any value y of Yt−T (s),

Pr[Yt(s) > 2α log n | Yt−T (s)] = y ≤ n−8.

Let Xi
τ denote the total number of packets with destination i in the buffers of

all senders. Let E denote the event: “For any 1 ≤ i ≤ m and t − β log n ≤ τ ≤ t,
Xi
τ ≤ 2α log n.”

By Lemma 1, regardless of the state of the system at time t−T , Pr[E] ≥ 1−n−9

(since there are no more than n protocols).
The total injection rate of sender s is at most λ. Conditioning on the event E ,

the probability that s successfully delivers a message at time τ , τ ∈ [t − β log n, t]
when Yτ (s) > α log n is at least p = α logn

8α logn (1− 1/8α log n)2α logn(1− 1/n2)n ≥ 1/20.

As in the proof of Claim 3 we show that with probability 1 − n−9 there is a step
τ ∈ [t−β log n, t], such that Yt(s) < α log n, and using Claim 2 we show that once the
number of packets is below α log n the probability that this number reaches 2α log n
before time T is at most n−8.

When a sender has 2α log n packets in its buffer it transfers them to its queue.
Thus, the expected additional contribution to the queue from the modified protocol is
O(n−8 log n) per step. This contribution does not change the delivery time of packets
in the queue or the overall performance of the protocol significantly.

Theorem 2. There is a constant λ0 > 0 such that the above protocol is stable
for any 0 ≤ λ ≤ λ0 and the delay is O(log n).

4. The lower bound. We state and prove the lower bound for the case m = 1;
a similar bound holds for the general case. We consider n senders all running the
same protocol. The protocol running at a sender does not change state unless (1)
it attempts a transmission or (2) it generates a packet. We further assume that
a sender is in a unique idle state when its queue is empty. (Thus, a sender does
not keep information on the state of the channel when it does not have packets to
transmit.) For any such protocol governed by a (probabilistic) automaton we show
that there is a λ0 < 1 such that for any injection rate λ > λ0 the delay is Ω(n). Note
that the class of protocols includes all variants of backoff protocols.

Theorem 3. If all senders follow protocols from the above class, there is a fixed
constant λ0 < 1 such that if λ > λ0, the expected delay is Ω(n).

Proof. Let λi = λ/n for all i. Given a system of senders, we say that Xt = j if
the total number of packets pending transmission at all senders at step t is j. If the
expected delay is bounded then the system has a steady state distribution. Consider
the steady state distribution of Xt. We distinguish between two cases.

Case 1. In the steady state distribution, Pr[Xt] ≥ n/2 ≥ 1/2. Since the system
can transmit no more than one packet per step the expected delay in this case in
clearly Ω(n).

Case 2. In the steady state distribution Pr[Xt] < n/2 > 1/2.
Lemma 5. If Xt < n/2, the probability of a collision at step t+ n/3 is at least a

constant q.

STOCHASTIC CONTENTION RESOLUTION WITH SHORT DELAYS 719

Proof. If Xt < n/2, we have at least n/2 senders having no packets pending
transmission at time t (call these empty senders). A protocol in our class defines a
probability distribution pi on the nonnegative integers i such that when an empty
sender generates a packet at step t, it transmits it at step t + i with probability
pi unless it changes its behavior (due to the generation of a packet) in the interval
[t, t+ i].

An empty sender that generates a packet at time τ does not change the probabil-
ities pi in the interval (τ, τ + n/3] unless it generates another packet in the interval.
The probability that it generates such a packet in the interval (τ, τ + n/3] is at most
(1 − λ/n)n/3, which is at most a constant α. Thus the empty sender does transmit

the packet at time τ + i with probability at least (1−α)pi. Clearly,
∑n/3
i=0 pi must be

at least a constant β (for otherwise the delay is already at least α(1 − β)n/3). If at
least n/2 senders are empty at time t, the probability that any one of them transmits
at time t+ n/3 is thus at least

(1− α)

n/3∑
k=0

λ

n
pk ≥ (1− α)βλ/n.

Then, the probability of a collision at time t+ n/3 is at least a constant q.
Thus, if in the steady state distribution, Pr[Xt] < n/2 > 1/2, then the probability

of a collision in a given step in the steady state is at least a constant q/2. Since the
expected number of new packets arriving in each step is λ and the system can transmit
no more than one packet per step, the system cannot be stable if λ > 1− q/2.

Acknowledgment. We thank Aravind Srinivasan for helpful comments.

REFERENCES

[1] D. Aldous, Ultimate instability of exponential back-off protocol for acknowledgment based
transmission control of random access communication channels, IEEE Trans. Inform. The-
ory, 33 (1987), pp. 219–223.

[2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley,
New York, 1968.

[3] J. Goodman, A.G. Greenberg, N. Madras, and P. March, Stability of binary exponential
backoff, J. Assoc. Comput. Mach., 35 (1988), pp. 579–602.

[4] A.G. Greenberg, P. Flajolet, and R.E. Ladner, Estimating the multiplicities of conflicts
to speed their resolution in multiple access channels, J. Assoc. Comput. Mach., 34 (1987),
pp. 289–325.

[5] L.A. Goldberg and P.D. MacKenzie, Analysis of practical backoff protocols for contention
resolution with multiple servers, in Proceedings of the 7th Annual Symp. on Discrete
Algorithms, SIAM, Philadelphia, 1996, pp. 554–563.

[6] J. Håstad, T. Leighton, and B. Rogoff, Analysis of backoff protocols for multiple access
channels, in Proceedings of the 19th ACM Symp. on Theory of Computing, 1987, pp. 241–
253.

[7] F.P. Kelly, Stochastic models of computer communication systems, J. Roy. Statist. Soc. B,
47 (1985), pp. 379–395.

[8] P.D. MacKenzie, C.G. Plaxton, and R. Rajaraman, On contention resolution protocols and
associated probabilistic phenomena, in Proceedings of the 26th ACM Symp. on Theory of
Computing, 1994, pp. 153–162.

[9] R. Metcalfe and D. Boggs, Ethernet: Distributed packet switching for local computer net-
works, Comm. ACM, 19 (1976), pp. 395–404.

[10] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New
York, 1995.

[11] M. Paterson and A. Srinivasan, Contension resolution with bounded delays, in Proceedings
of the 36th Annual ACM Symp. on Foundations of Computer Science, 1995, pp. 104–113.

ASYMPTOTICALLY OPTIMAL ELECTION ON WEIGHTED RINGS∗

LISA HIGHAM† AND TERESA PRZYTYCKA‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 720–732

Abstract. In a network of asynchronous processors, the cost to send a message can differ
significantly from one communication link to another. In such a setting, it is desirable to factor
the cost of links into the cost of distributed computation. Assume that associated with each link
is a positive weight representing the cost of sending one message along the link, and the cost of an
algorithm executed on a weighted network is the sum of the costs of all messages sent during its
execution. We determine the asymptotic complexity of distributed leader election on a weighted
unidirectional asynchronous ring assuming this notion of cost, by exhibiting a simple algorithm and
a matching lower bound for the problem for any collection of edge weights. As a consequence, we
see that algorithms designed for unweighted rings are not in general efficient for the weighted case.

Key words. distributed election, weighted ring, message complexity, asynchronous network

AMS subject classifications. 68Q22, 68M10

PII. S0097539795288799

1. Introduction. Consider a network of asynchronous processors that commu-
nicate via message passing. The typical measure of the cost of a distributed algorithm
on such a network is the number of messages sent. This measure assumes that the
cost of sending a message along any link is equal to 1. In practice, the cost of sending
a message may depend upon the link that the message traverses. This motivates the
study of distributed algorithms where the cost of transmitting a message over a link
is factored into the communication complexity of the algorithm. Awerbuch, Baratz,
and Peleg [1] called this notion of communication complexity “cost-sensitive analysis.”
A weighted network is a network of processors where each link e of the network has
associated with it a positive weight w(e), which is the cost of sending a message along
link e. The cost of a distributed algorithm for a given weighted network and input is
the maximum, over all message delay patterns, of the sum of the costs of all message
traffic that occurs while executing the algorithm on that input. When designing a
distributed algorithm for a weighted network we try to limit the message traffic over
heavy edges.

In this paper, we study the weighted cost of leader election when the network
topology is an asynchronous unidirectional weighted ring with distinct identifiers. The
leader election problem is to design a distributed algorithm that distinguishes exactly
one processor from among all the processors of the network as a unique processor
called the leader. Leader election on asynchronous unweighted rings has been very
well studied. Early papers by LeLann [8], Chang and Roberts [2], and Hirschberg and
Sinclair [7] solved the unidirectional and bidirectional version for rings with identifiers

∗Received by the editors July 7, 1995; accepted for publication (in revised form) June 10, 1996;
published electronically August 4, 1998.

http://www.siam.org/journals/sicomp/28-2/28879.html
†Department of Computer Science, University of Calgary, Calgary T2N 1N4, AL, Canada

(higham@cpsc.ucalgary.ca). This research was carried out in part while visiting the University of
Odense, Denmark. The support of the Natural Sciences and Engineering Research Council of Canada
is also gratefully acknowledged.
‡Department of Mathematics and Computer Science, Odense University, Denmark. Current ad-

dress: Department of Biophysics, the John Hopkins School of Medicine, Baltimore, MD 21205 (przy-
tyck@grserv.med.jhmi.edu). This research was carried out in part while the author was visiting the
University of Calgary, Canada.

720

OPTIMAL ELECTION ON WEIGHTED RINGS 721

using at most O(n2) and O(n log n) messages, respectively. Then, in 1982, Peterson
[10] and Dolev, Klawe, and Rodeh [3] independently solved the unidirectional version
of the problem using O(n log n) messages. By the results of Pachl, Korach, and Rotem
[9] these algorithms are asymptotically optimal. Some effort has been made to reduce
the constant [10, 3, 6] leading to the constant 1.271 [6]. Research has also established
the possibility and complexity of leader election on rings in which processors lack
distinct identifiers. (In this case, randomization is required.) Also, there has been
substantial work generalizing and strengthing the lower bound for election on rings
and other networks under a variety of assumptions about the model. See [5] for a list
of research that addresses algorithms and lower bounds related to the leader election
problem.

Running an algorithm designed for an unweighted network on a weighted network
will, in general, not be cost efficient. Let W be the sum of the weights of all links of
a weighted ring. Peterson’s classical algorithm [10], when executed on the weighted
ring, will incur a cost of Ω(W log n). In fact, all other known leader election algorithms
have the same bound on complexity. The results of this paper show that this is not
optimal. What is needed is a new technique for breaking the symmetry of the ring
based on the weights of the edges. Such a technique is developed in this paper.

Let R be any ring with ni edges having weight in (2i−1, 2i]. We present an
algorithm for the leader election problem on unidirectional weighted rings that has cost
O(
∑
ni≥1 ni2

i lg(ni+1)) onR. We show that this algorithm is optimal in the following

sense: given a multiset W of weights where ni weights are in the interval (2i−1, 2i] and
a leader election algorithm A, we can design a ring R with edge weights equal to the
set W such that the weighted message cost of A on R is Ω(

∑
ni≥1 ni2

i lg(ni+1)). The
matching lower bound of our cost-sensitive analysis establishes that our algorithm is
optimal in the “universal” sense of Garay, Kutten, and Peleg [4]—that is, that the
algorithm is optimal for any collection of weights. This universality ensures that the
parameters that determine the complexity of election on a unidirectional weighted ring
have been precisely identified. This is the first lower bound that applies in this strong,
universal sense to cost-sensitive analysis of any problem on any weighted network.

Our algorithm for weighted rings is in some sense a generalization of the basic
algorithm for the unweighted case [6]. The perspective of this algorithm facilitates an
extension to the weighted case. However, the analysis in the weighted case requires
completely different techniques. The new contribution of our lower bound is that
it explicitly incorporates the weights into the result. The basic idea to achieve this
bound is derived from the work of Pachl, Korach, and Rotem [9]. However, we need
to adjust the technique to overcome the complications introduced by weighted links.

The optimal algorithm is presented in section 2, its analysis, in section 3, and the
lower bound, in section 4.

2. The leader election algorithm for weighted rings.

2.1. Algorithm description. Although, in the literature, the leader election
algorithms for unweighted rings are presented in a variety of ways, there is a high-level
perspective that can be used to describe them all (see [5]). Initially each processor
creates an envelope containing a label set to its own identifier, a round number (or
sometimes a round parity bit), and possibly additional information, and forwards
the envelope to its neighbor. Upon receipt of an envelope, a processor applies a
casualty test, which compares the contents of the envelope with the processor’s stored
information, to determine whether or not to destroy the envelope. If the receiving

722 LISA HIGHAM AND TERESA PRZYTYCKA

processor determines not to destroy the envelope, it applies a promotion test, to
determine whether or not to increment the round number. It then updates the content
of the envelope and its own information as required and forwards the envelope to its
neighbor. Eventually only one envelope remains and a leader is elected. The various
algorithms differ in four ways: the content of an envelope in addition to label and
round number, the local information stored by each processor, the specification of the
casualty test, and the specification of the promotion test.

In both the basic algorithm [6], which we refer to as the min-max algorithm, and
our algorithm for weighted rings, called weighted elect, the label of an envelope is
never changed. In min-max, each envelope contains only its label and a round number
initialized to 1. Each processor stores the label and the round of the last envelope it
sent. The casualty test is simply: the envelope and the receiving processor have the
same round number and this round number is odd (respectively, even) and the label
of the envelope is larger (respectively, smaller) than that stored by the processor.
The promotion test is simply: the envelope and the receiving processor have the same
round number.

One way to visualize min-max is to imagine that execution proceeds in rounds.
In an odd round any envelope that directly follows an envelope with label smaller
than its own label is destroyed, while in an even round any envelope that directly
follows an envelope with a larger label is destroyed. Notice that in min-max, as well
as in other election algorithms for unweighted rings, in every round (or sometimes in
every second round) message traffic covers every link of the ring. One central idea
in weighted elect is to accelerate processing of envelopes that have travelled a
large weighted distance by promoting them to a higher round as soon as they incur a
sufficient weighted cost. Algorithm weighted elect can be thought of as combining
min-max with this idea of “early promotion by weighted distance.” We will see that
by using early promotion, message traffic does not necessarily cover every link in each
round, thus reducing the weighted distance an envelope travels before the algorithm
terminates.

The intuition is to have a processor p adopt a high round number if it sends
a message over a heavy link. This causes p to destroy envelopes with lower round
number that it later receives, and thus the high cost of those envelopes traveling the
heavy link is avoided. It is safe for p to destroy those envelopes, since the message
that p sends over the heavy link carries with it a high round number, and so can
only be destroyed by processors that have adopted even higher round numbers than
p. Of course, this idea must be combined with some mechanism such as the min-max
algorithm, to take care of the case when many successive links have similar weights.

For algorithm weighted elect, in addition to the label, each envelope contains a
round and a credit. Both are initialized as a function of the weight of the link adjacent
to the processor that creates the envelope. The initial credit is proportional to this
weight and the initial round number is the logarithm of this weight. The label of an
envelope remains unchanged as long as the envelope survives, whereas the round and
credit are adjusted during the course of the algorithm. Throughout the algorithm,
each processor stores the label and the round of the last envelope that it sent. The
casualty test for weighted elect is: the round number of the received envelope is
less than that of the last envelope sent, or the casualty test of min-max holds. If an
envelope is not destroyed then it may be promoted, resulting in an increased credit
and a larger round. The promotion test for weighted elect is: the credit is less
than the weight of the outgoing edge or the promotion test of min-max holds. For

OPTIMAL ELECTION ON WEIGHTED RINGS 723

Processor(proc-id, adj wt):

id ←−proc-id ; p ←−dlg adj wte ; t ←−0 ; cnt ←−2p+1 ;
fwd id ←− −∞ ; fwd p ←− −1 ; fwd t ←− 0 ;

repeat
if not Casualty-test then

if Promotion-test then
t ←−(t+1) mod 4 ;
if t= 0 then p ←−p+1 ;
cnt ←−2p+t+1 ;

fi
fwd id ←−id ; fwd p ←−p ; fwd t ←−t ;
send(id, p, t, cnt − adj wt) ;

fi
receive(id, p, t, cnt) ;

until Leader-test .

Fig. 1. Algorithm weighted elect.

any surviving envelope (whether promoted or not) the processor reduces its credit by
the weight of its adjacent edge before sending the envelope forward.

The complete protocol for weighted elect is given in Figure 1. The protocol
for each processor is parameterized by its identifier (proc-id) and the weight of its
outgoing edge (adj wt). Four consecutive rounds of weighted elect are grouped
together to form a phase; hence round r is represented by an ordered pair (p, t),
where p is the phase number, t ∈ {0, 1, 2, 3}, and r = 4 ∗ p+ t.

The pseudocode assumes the following three tests that are employed when an
envelope containing label id, round (p,t), and credit cnt arrives at a processor that
has recorded a label fwd id and a round (fwd p,fwd t) and has an outgoing edge with
weight adj wt.

Casualty-test
(p < fwd p) or
((p,t) = (fwd p,fwd t) and t ∈ {1, 3} and id > fwd id) or
((p,t) = (fwd p,fwd t) and t ∈ {0, 2} and id < fwd id).

Promotion-test
((p,t) = (fwd p,fwd t) and t ∈ {1, 3} and id < fwd id) or
((p,t) = (fwd p,fwd t) and t ∈ {0, 2} and id > fwd id) or
(p > fwd p and cnt < adj wt) .

Leader-test id = fwd id .

2.2. Correctness of weighted elect. Correctness of weighted elect fol-
lows immediately after establishing:

safety: the algorithm never deletes all message envelopes;
progress: if there is more than one envelope then after a finite number of messages

the number of envelopes is reduced; and
correct termination: the algorithm elects a leader exactly when one envelope re-

mains.

Because the ring is unidirectional and the algorithm is deterministic and message-
driven with messages processed in first-in-first-out order, the messages received by
each processor and the order in which each processor processes its messages is entirely
determined by the initial configuration of identifiers and edge weights. Thus the
scheduler is powerless to influence the outcome of the computation. We emphasize
that for message-driven algorithms on unidirectional rings, correctness and complexity

724 LISA HIGHAM AND TERESA PRZYTYCKA

under any fixed scheduler implies correctness and complexity under all schedulers.
Thus without loss of generality we assume a scheduler that proceeds by the round
number of the envelopes. That is, an envelope with a given round number is not
delivered until there does not exist an envelope of smaller round number. (This round-
driven scheduler exists because weighted elect ensures that the round number of
an envelope never decreases and the casualty test guarantees that the sequence of
envelopes traveling any edge have nondecreasing round number.)

Suppose, contrary to safety, that some execution of weighted elect removes
all envelopes under the round-driven scheduler and let (p, t) be the maximum round
achieved. Suppose t is odd, and let S be the set of identifiers in envelopes that achieve
round (p, t). According to Casualty-test, an envelope in round (p, t) with identifier
i can only be destroyed by meeting a processor that either (1) last forwarded an
envelope with round larger than (p, t), or (2) last forwarded an envelope with round
equal to (p, t) and identifier less than i. Since (p, t) is the maximum round, case (1)
is impossible. Furthermore, in case (2), the envelope in S with minimum identifier
cannot be destroyed. So the envelope will be eventually promoted and its round
increases contradicting that (p, t) was the maximum round. A symmetric argument
applies if t is even.

Suppose, contrary to progress, that after some point, k ≥ 2 envelopes remain
alive under the round-driven scheduler. Then eventually, say, in round (p, t), each of
these envelopes will receive a credit at least as large as the weight of the ring. At this
point each envelope has a large enough credit to allow it to travel to the processor
that promoted the envelope that precedes it. Since all undestroyed envelopes have
the same round number, if t is odd (respectively, even) the envelope with maximum
label (respectively, minimum label) must be destroyed, contradicting that no more
envelopes are destroyed.

The algorithm cannot prematurely elect a leader because a processor will receive
an envelope with id equal to its fwd id if and only if there are no other envelopes,
thus passing the Leader-test and confirming correct termination.

3. Message complexity of weighted elect. We first introduce some def-
initions and notation. The pth phase consists of all the message traffic of envelopes
with round (p, t) for t ∈ {0, 1, 2, 3}. Since algorithm weighted elect never changes
the label of an envelope for the duration of its existence, we use envelope a as an
abbreviation for the envelope with label a. For an envelope a in phase p, let hostp(a)
denote the processor that promoted the envelope to phase p (that is, from round
(p− 1, 3) to round (p, 0)), or the processor that created the envelope if it is initialized
with phase p. The weighted distance from processor x to processor y, denoted δ(x, y),
is the sum of the weights of all links between processor x and processor y, traveling
in the direction of the ring.

As discussed in section 2, the scheduler cannot influence the communication com-
plexity in a message passing unidirectional ring. Therefore, for simplicity, assume as
before the round-driven scheduler, which delivers all envelopes in order of increasing
round number. Under this scheduler, all undestroyed envelopes either participate in
the round, say (p, t), or just exist in round (p, t) because they have been created
with round number (q, 0) where q > p but have not yet been delivered across any
link. Envelope b is the immediate predecessor in phase p of envelope a if, when all
participating envelopes are in round (p, 0) and all existing envelopes are in phase p or
greater, the first envelope encountered after envelope a, traveling in the direction of
the ring, is envelope b. Let envelope b be the immediate predecessor of envelope a in

OPTIMAL ELECTION ON WEIGHTED RINGS 725

phase p and suppose b is in phase q ≥ p. Then the horizon of envelope a in phase p
is δ(hostp(a), hostq(b)).

Let ni be the number of links with weight in (2i−1, 2i] in an asynchronous ring
with distinct identifiers. Let dp denote the number of envelopes that participate in
phase p. An envelope that participates in phase p is sparse in phase p if its horizon
is greater than 2p; otherwise, it is dense. Let sp denote the number of envelopes that
are sparse in phase p. Let J denote the number of phases until there are at most three
remaining envelopes when weighted elect is run on the ring. Notice that after J
phases, there can be at most three more passes of message traffic on the ring, so it
suffices to bound the weighted message complexity for the first J phases.

The next three lemmas allow us to bound the number of sparse envelopes and the
total number of envelopes participating in each phase as a function of the weights on
the ring.

Lemma 3.1. The number sp of sparse envelopes that participate in phase p sat-
isfies sp ≤

∑p
i=0 ni2

i−p.

Proof. In phase p, any processor whose outgoing edge has weight greater than
2p is host of an envelope in a phase q > p. Thus any envelope whose weighted
distance to such a processor is less than 2p cannot be sparse. The total weight of
edges with weight at most 2p is

∑p
1=0 ni2

i. These edges can accommodate at most
(
∑p

1=0 ni2
i)/2p envelopes that are separated by a distance of at least 2p. Thus, the

number of sparse envelopes that participate in phase p is at most
∑p
i=0 ni2

i−p.
We expect each pair of successive rounds in a phase to reduce the number of dense

envelopes by at least one half. This is because in the first round any envelope meeting
a processor in the same round with fwd id smaller than its own id is eliminated, and
in the next round any envelope meeting a processor in the same round with fwd id
larger than its own is eliminated. This is made precise in the next lemma.

Lemma 3.2. For p < J the number dp of envelopes that participate in phase p
satisfies the recurrence:

d0 = n0, dp+1 ≤ dp − sp
4

+ np+1 + sp, p ≥ 0.

Proof. The proof relies on the following observation.

Fact 3.3. Let x be an envelope that exists in phase p + 1. Assume that at
the beginning of phase p, x is immediately followed by k dense envelopes. Then the
min{k, 3} dense envelopes that immediately follow x do not survive to phase p+ 1.

The fact holds because consecutive dense envelopes have enough credit to reach
the host of the next envelope with the same round number. By applying the min-max
comparison for four consecutive rounds it is easily checked that if x survives for four
rounds, the min{k, 3} dense envelopes that follow x must be eliminated.

Consider a maximal chain of dense envelopes in round (p, 0). Suppose there
is a nondense envelope s (a sparse envelope or an envelope with higher phase) that
immediately precedes the leading dense envelope of this chain. If y is a dense envelope
in this chain that survives to phase p + 1 and is followed by at least three dense
envelopes then, by Fact 3.3, we can attribute three eliminated envelopes to y. Suppose
y is followed by fewer than three dense envelopes. If s exists in phase p + 1 then
we attribute to y the three eliminated envelopes that, by Fact 3.3, follow s at the
beginning of phase p. If s does not survive to phase p + 1 then in our count of
surviving envelopes we can count y as eliminated instead of s.

726 LISA HIGHAM AND TERESA PRZYTYCKA

If there is no such s then all exiting envelopes are dense and participating, and the
result again follows immediately from Fact 3.3 as long as dp ≥ 4. Otherwise dp ≤ 3
and hence p ≥ J .

In all cases at most (dp − sp)/4 + sp phase p envelopes survive to phase p+ 1. In
addition, there are np+1 new envelopes that begin in phase p+ 1.

Lemma 3.4. The number dp of envelopes that participate in phase p for p ≤ J
satisfies dp < 4

∑p
i=0 ni2

i−p.
Proof. By Lemma 3.2, dp ≤ (dp−1)/4 + np + sp−1. Thus, by Lemma 3.1, dp <

(dp−1)/4 + np +
∑p−1
i=0 ni2

i−p+1. Solving this recurrence with d0 = n0 yields: dp <
4
∑p
i=0 ni2

i−p.
The bound for dp given by Lemma 3.4 can be less than 1, and since dp is an integer,

it must therefore be zero in this case. This reflects the situation when envelopes
created by processors adjacent to light edges have all been eliminated and envelopes
due to heavy edges are not yet participating. In the following theorem we exploit the
fact that there can be phases with no message traffic by not charging for those phases
of computation when 4

∑p
i=0 ni2

i−p < 1.
Theorem 3.5. Let R be a ring with ni edges having weight in (2i−1, 2i]. Then

the weighted message cost of weighted elect on R is O(
∑
ni≥1 ni2

i lg(ni + 1)).
Proof. Denote the worst-case weighted message cost of weighted elect on ring

R up to phase J by cost(R). It suffices to bound cost(R) since the remaining phases
have complexity O(

∑
ni≥1 ni2

i). There are at most dp envelopes participating in

round (p, t), each of which travels at most a weighted distance of 2p+t+1. Since there
are four rounds per phase, phase p costs less than dp2

p+5. Let n̂i be the least integer
that is a power of 2 and satisfies n̂i ≥ ni. We have:

cost(R) <

J∑
p=0,dp≥1

dp · 2p+5

<
J∑

p=0,dp≥1

4

p∑
i=0

ni2
i−p · 2p+5 by Lemma 3.4

∈ O
 J∑
p=0,dp≥1

p∑
i=0

n̂i2
i

 .

We will now show that S =
∑J
p=0,dp≥1

∑p
i=0 n̂i2

i ∈ O(
∑
ni≥1 n̂i2

i lg(n̂i + 1)), which
implies the theorem.

Let I = max{i : ni ≥ 1}. By Lemma 3.4, when p satisfies I ≤ p ≤ J , the

number of existing envelopes in phase p is at most 4
∑p
i=0 ni2

i−p = 4
∑I
i=0 ni2

i−p ≤
4
∑I
i=0 n̂i2

i−p. Thus J (the number of phases until there are three or fewer envelopes)

is at most the minimum p satisfying (4
∑I
i=0 n̂i2

i)/2p < 4.
Let A be a (J + 1) by (I + 1) matrix defined by A(p, i) = n̂i2

i−p for p ≥ i and
A(p, i) = 0 for p < i. Let Dp = 4

∑p
i=0A(p, i). Then each element of the summation

S can be interpreted as the corresponding element of A multiplied by an appropriate
scaling factor. Specifically, S ≤∑0≤p≤J,Dp≥1,0≤i≤I A(p, i) · 2p. Note that entries for
any p such that Dp < 1 do not contribute to the sum S. Among the remaining entries
of A we consider three types. Entries satisfying A(p, i) ≥ 1 are called whole entries
(denoted W). Other entries are called fractional entries. Among fractional entries
we distinguish heavy entries (denoted H) and light entries (denoted L), to be defined
later.

OPTIMAL ELECTION ON WEIGHTED RINGS 727

Claim 3.6.
∑
A(p,i)∈W A(p, i)2p ∈ O(

∑I
i=0 n̂i2

i lg(n̂i + 1)).

Proof. For any fixed i and p ≥ i, A(p, i) · 2p = n̂i2
i. By definition, the largest

entry in column i is A(i, i) = n̂i, and the smallest whole entry is A(i + lg n̂i, i) = 1.
Therefore, there are lg n̂i+1 whole entries in column i, which, when multiplied by the
corresponding scaling vector, make up exactly those terms included in the summation∑I
i=0 n̂i2

i lg(n̂i + 1).
Therefore, it remains to show that the contribution of the fractional entries in the

summation S is of the same order.
For each i satisfying n̂i > 0, let level(i) be the number k satisfying A(k, i) = 1.

That is, level(i) = i + lg n̂i. Let Tk = {i : level(i) = k} and tk = |Tk|. A fractional
entry A(p, i) is called heavy if p ≤ level(i) + tlevel(i). A fractional entry which is not
heavy is called light.

The next claim states that the contribution of all heavy fractional elements to
the sum S is of the same order as the contribution of whole elements.

Claim 3.7. For any k such that Tk 6= ∅,

∑
i∈Tk

k+tk∑
p=k+1

A(p, i)2p ≤ 3
∑
i∈Tk

n̂i2
i lg n̂i.

Proof. By the definition of Tk, for all i ∈ Tk, n̂i/2
k−i = 1. Thus n̂i · 2i = 2k. So,

i, j ∈ Tk and i 6= j implies n̂i 6= n̂j . Therefore, for all i ∈ Tk the corresponding n̂i are
distinct and are powers of two. Hence

∑
i∈Tk

n̂i · 2i lg n̂i = 2k · lg
(∏
i∈Tk

n̂i

)
≥ 2k · lg(20 · · · · · 2tk−1) > 2k · (tk)2/3.

On the other hand, for any i ∈ Tk and for any row p, A(p, i) · 2p = ni2
i = 2k. Hence

∑
i∈Tk

k+tk∑
p=k+1

A(p, i) · 2p = (tk)22k< 3
∑
i∈Tk

n̂i · 2i lg n̂i.

To complete the proof we estimate the contribution of light fractional elements.
First we show the following claim.

Claim 3.8. For any p, ∑
i,A(p,i)∈L

A(p, i)2p ∈ O(2p).

Proof. ∑
i,A(p,i)∈L

A(p, i)2p =
∑

k,k+tk<p

∑
i∈Tk

A(p, i)2p =
∑

k,k+tk<p

tk2k.

Since k < p we have tk < p−k and thus the last sum is bounded by
∑p−1
k=1(p−k)2k ∈

O(2p).
By Claim 3.8, all light fractional entries that are in the same row as some whole

entry contribute to the sum S approximately the same amount as that whole entry.
Thus we need to take care of light fractional entries that do not belong to the same

728 LISA HIGHAM AND TERESA PRZYTYCKA

row as a whole entry. Note that each row j that contains a whole entry can be directly
followed by at most lgDj rows that do not contain whole entries. (Any further row
p > j+ lgDj that does not contain a whole entry has Dp < 1 and thus is not counted
in the summation.) By Claim 3.8, the contribution of light fractional entries in all

these rows is bounded by
∑j+lgDj
p=j+1 2p ≤ 2j+1+lgDj ∈ O(Dj2

j). Thus the contribution
of light fractional entries that belong to a row that does not contain a whole entry is
dominated by the contribution of the closest row that contains a whole entry. This
concludes the proof of Theorem 3.5.

4. Lower bound for election on weighted rings. Let W be a multiset of
weights with ni weights in the interval (2i−1, 2i] (called weight class i). In this
section we prove that if an algorithm successfully elects a leader for all unidirec-
tional asynchronous weighted rings, then for every set of n distinct identifiers and
every multiset of n weights, there exists an arrangement of these identifiers and
weights on a ring of n processors such that the algorithm has weighted message cost
Ω(
∑
ni≥1 ni2

i max(lg ni, 1)) on this ring. Thus we establish that the message com-
plexity of algorithm weighted elect is asymptotically optimal for asynchronous
unidirectional weighted rings with distinct identifiers.

We assume an asynchronous but reliable model. That is, every message is even-
tually received unaltered, and messages sent over one link arrive in the same order as
they were sent. The proof assumes that no knowledge of ring size is known at the start
of the algorithm. Also, our proof applies to message-driven algorithms only. However,
a well-established argument extends message-driven lower bounds to lower bounds for
algorithms that are not message-driven. See, for example, Pachl, Korach, and Rotem
[9]. Also, we borrow and adapt the notation, techniques, and some terminology from
that paper.

An asynchronous unidirectional weighted ring R with n processors is denoted by
a sequence R = ((id0, w0), . . . , (idn−1, wn−1)), called a labeling sequence, where id i is
the identifier of the ith processor and wi is the weight of the link from the ith to the
(i + 1)st processor. For i 6= j, id i 6= idj , whereas wi may or may not equal wj . An
algorithm A is a leader election algorithm if for every positive integer n and for every
weighted ring R with n processors, when algorithm A is run on R:

(i) all messages travel clockwise around the ring;
(ii) computation halts after a finite number of messages;
(iii) upon termination, exactly one processor is in the state “leader.”

For algorithm A, the cost of A on ring R, denoted costA(R), is the total weighted
cost of all messages sent by A when executed on ring R. Let W be a multiset of
n weights and let I be a set of n distinct identifiers. (Elements of both W and
I are assumed to be positive integers.) Let R(I,W) be the set of all rings R =
((id0, w0), . . . , (idn−1, wn−1)) such that {id0, . . . , idn−1} = I and {w0, . . . , wn−1} =
W . Denote by costA(I,W) the maximum over all rings R ∈ R(I,W) of costA(R). The
cost of leader election for R(I,W) is the minimum over all leader election algorithms
A of costA(I,W). Given these definitions, our goal is to show that for any set I of n
distinct identifiers, and any multiset W of n weights where ni weights are in weight
class i, the cost of leader election for R(I,W) is Ω(

∑
ni≥1 ni2

i max(lg ni, 1)).
Call a ring R with edge weights taken from W well constructed over W if, for each

i, all ni weights in (2i−1, 2i] are on consecutive links. Such a sequence of links with
weights in the same weight class forms a segment. Let R̂(I,W) denote that subset of
R(I,W) that is well constructed over W .

For each ring R in R̂(I,W), imagine barriers inserted between the segments of

OPTIMAL ELECTION ON WEIGHTED RINGS 729

R and run algorithm A on R with these barriers. That is, schedule the messages of
A so that all message traffic from one segment to another segment is delayed at the
receiver arbitrarily while message delay within each segment is just one time unit,
and run A under this scheduler computing the weighted message cost only until all
remaining messages are queued at the barriers. Clearly, this can only decrease the
total cost of the message traffic; we show that the total cost of the messages sent in
only this part of the execution suffices to give the lower bound. Hence, to establish
the lower bound we need only show that the average cost of a segment constructed
from the ni weights in weight class i is bounded below by Ω(ni2

i max(lg ni, 1)).
First observe that every edge of the network must carry at least one message. This

is because, if there is a process that does not send an initial message, then whatever
conditions caused the process to not initiate could be reproduced around the ring and
result in deadlock. So, for each segment with ni = 1, the required bound for that
segment is trivial. To achieve the bound for ni ≥ 2 we examine the expected message
traffic that ensues within a segment. Once this is determined it is a simple matter to
sum these costs, appropriately weighted, over all segments.

Define the trace of a message envelope created by the kth processor when it
arrives at the pth processor to be the sequence (idk, wk), (idk+1, wk+1), . . . , (idp, wp).
Because the ring is unidirectional, the trace of a message captures the maximum
possible information that a message may possess. Notice that a message envelope
with trace (idk, wk), (idk+1, wk+1), . . . , (idp, wp) has contributed a weighted cost of∑p−1
i=k wi to the weighted message cost of the algorithm.

If s is a sequence, then let |s| denotes its length and let C(s) denote the set of
cyclic permutations of s. A sequence t is a subsequence of s if s = utv for some
sequences u and v.

Consider an arbitrary but fixed weight class i. Denote by D the set of all finite
nonempty labelling sequences where all weights are in weight class i. For s ∈ D and
E ⊆ D and positive integer k, define

B(s,E) = |{t : t ∈ E and t is a subsequence of s}| and

Bk(s,E) = |{t : t ∈ E and |t| = k and t is a subsequence of s}| .

A set E ⊆ D is exhaustive if the following two properties hold.
1. Prefix property: if tu ∈ E and |t| ≥ 1 then t ∈ E.
2. Cyclic permutation property: if s ∈ D then C(s) ∩ E 6= ∅.

For any algorithm A for unidirectional rings, define m(s,A) to be the number of
messages sent by A on a segment with labelling sequence s (equivalently, on a ring
labelled with s when a barrier is placed between sn and s1). Define E(A) ⊆ D to be
the set of those t ∈ D for which a message with trace t is sent when executed on a
ring labelled t.

Lemma 4.1. For every leader election algorithm A, the set E(A) is an exhaustive
set satisfying m(s,A) ≥ B(s,E(A)) for every s ∈ D.

Proof. Suppose that s ∈ E(A) and t is a prefix of s and 1 ≤ k = |t| < |s| = n.
Then on a ring R = p1, . . . , pn labelled by s, a message envelope travels from p1 to
pn. Hence on a ring p′1, . . . , p

′
k labelled by t, the envelope created by p′1 travels to p′k.

Thus t ∈ E(A) and the prefix property holds.
Suppose s = s1, . . . , sn ∈ D, and consider a ring labelled with s. Since A is a

leader election algorithm there must be one message envelope that travels the whole

730 LISA HIGHAM AND TERESA PRZYTYCKA

ring because otherwise algorithm A could not successfully elect a leader on rings
labelled with an extension of s. This message envelope has a trace of length at least
n and hence has a prefix of length exactly n. Thus this prefix is a cyclic permutation
of s. So E(A) is exhaustive.

A similar argument confirms that if trace t is sent by A when executed on a ring
labelled with t, then trace t is sent by A when executed on any sequence that contains
t as a subsequence. Therefore, m(s,A) ≥ B(s,E(A)).

Now Lemma 4.1 is used to establish the expected weighted cost of message traffic
within a segment. Let W be a multiset of n weights in (2i−1, 2i]. Let I be a set of n
distinct integer identifiers, and consider R(I,W).

Lemma 4.2. For any leader election algorithm A, the average of m(s,A) over all
labelling sequences s ∈ R(I,W) is bounded below by Hn · n− n.

Proof.

ave{m(s,A)}s∈R(I,W) =
1

|R(I,W)|
∑

s∈R(I,W)

m(s,A)

≥ 1

|R(I,W)|
∑

s∈R(I,W)

B(s,E(A))

≥ 1

|R(I,W)|
n∑
k=1

∑
s∈R(I,W)

Bk(s,E(A)).

For fixed k and a fixed s ∈ R(I,W), there are n−k+1 subsequences of s with length k,
so there are |R(I,W)|(n−k+1) length k subsequences over all s ∈ R(I,W). Partition

these into |R(I,W)|(n−k+1)
k sets, where each set consists of all cyclic permutations of

one sequence. By the cyclic permutation property, each set has at least one element
in common with E(A). Hence:

ave{m(s,A)}s∈R(I,W) ≥ 1

|R(I,W)|
n∑
k=1

|R(I,W)|(n− k + 1)

k

= (n+ 1)
n∑
k=1

1

k
− n

= (n+ 1)Hn − n ∈ Ω(n lg n).

Theorem 4.3. Let I be a set of n distinct identifiers, and let W be a multiset of
weights with ni weights in the interval (2i−1, 2i]. Then the cost of leader election for
R(I,W) is

Ω

∑
ni≥1

ni2
i max(lg ni, 1)

 .

Proof. For any i such that ni = 1, there is at least one initial message sent by the
segment on a link of weight at least 2i−1. If ni ≥ 2, then by Lemma 4.2, on average,
Ω(ni lg ni) messages are sent over the segment formed from the ni elements of W that
are in the weight class i and each message incurs a weighted cost of at least 2i−1.
Hence, the lower bound for each segment is Ω(ni2

i max(lg ni, 1)). Thus, the lower
bound for leader election on weighted rings follows by summing over all segments.

OPTIMAL ELECTION ON WEIGHTED RINGS 731

5. Concluding remarks. Our algorithm and lower bound together establish
the asymptotic communication complexity of leader election on weighted unidirec-
tional rings. The result is quite strong from several perspectives. First, our algorithm
is universally optimal in the sense of Garay, Kutten, and Peleg [4]. That is, our lower
bound is asymptotically tight for every set of identifiers and for every multiset of
weights. Note that for some specially constructed rings (for example, rings with iden-
tifiers arranged in increasing order), there are leader election algorithms that are very
efficient. Therefore, the universality of the lower bound cannot be further generalized
from all possible sets of identifiers and weights to all possible rings. We conclude that
the parameters that determine the complexity of election on a unidirectional weighted
ring are precisely the number of edges in each weight class.

Also, we have shown that it is not possible to specially tune a leader election algo-
rithm to be inexpensive for some chosen collection of weights and identifiers without
it being incorrect for others. Specifically, our lower bound establishes that as long
as an algorithm correctly elects a leader for all unidirectional rings, then, for every
multiset W of weights and every set of identifiers I, it will be at least as expensive
(asymptotically) as weighted elect on R(I,W).

There is one essential constraint on our lower bound. It applies only to those
algorithms that elect a leader for all unidirectional weighted rings. So, for example,
the proof of our lower bound does not apply if an algorithm need only work for a
fixed ring size or total weight. However, having knowledge of ring size or weight while
having no more specific knowledge of the arrangement of the weights on the ring
seems to be an unreasonable assumption. And, as we have observed, if there is some
knowledge of arrangement of weights, then this knowledge could possibly be exploited
to achieve a very efficient algorithm for this arrangement.

The importance of cost-sensitive analysis of distributed algorithms was pointed
out by Awerbuch, Baratz, and Peleg [1]. The cost-sensitive complexity of election
on unidirectional rings is only a first step; it remains to study the cost-sensitive
complexity of other problems and other networks.

Acknowledgments. We are especially grateful to two anonymous referees for
their careful reading of the manuscript, their helpful comments, and their very timely
response.

REFERENCES

[1] B. Awerbuch, A. Baratz, and D. Peleg, Cost-sensitive analysis of communication protocols,
in Proc. 9th Annual ACM Symp. on Principles of Distributed Computing, 1990, pp. 177–
187.

[2] E. Chang and R. Roberts, An improved algorithm for decentralized extrema-finding in cir-
cular configurations of processes, Comm. ACM, 22 (1979), pp. 281–283.

[3] D. Dolev, M. Klawe, and M. Rodeh, An O(n logn) unidirectional distributed algorithm for
extrema finding in a circle, J. Algorithms, 3 (1982), pp. 245–260.

[4] J. A. Garay, S. Kutten, and D. Peleg, A sub-linear time distributed algorithm for minimum
weight spanning trees, in Proc. 34th Annual Symp. on Foundations of Comput. Sci., 1993,
pp. 659–668.

[5] L. Higham and T. Przytycka, A Simple, Efficient Algorithm for Maximum Finding on Rings,
Tech. Report 92/494/32, University of Calgary, Alberta, Canada, 1992.

[6] L. Higham and T. Przytycka, A simple, efficient algorithm for maximum finding on rings,
Inform. Proc. Lett., 58 (1996), pp. 319–324.

[7] D. Hirschberg and J. B. Sinclair, Decentralized extrema-finding in circular configurations
of processes, Comm. ACM, 23 (1980), pp. 627–628.

[8] G. LeLann, Distributed systems — towards a formal approach, in Info. Proc. 77, New York,
1977, Elsevier Science, New York, pp. 155–160.

732 LISA HIGHAM AND TERESA PRZYTYCKA

[9] J. Pachl, E. Korach, and D. Rotem, Lower bounds for distributed maximum finding, J.
Assoc. Comput. Mach., 31 (1984), pp. 905–918.

[10] G. Peterson, An O(n logn) algorithm for the circular extrema problem, ACM Trans. Prog.
Lang. Systems, 4 (1982), pp. 758–762.

THE QUEUE-READ QUEUE-WRITE PRAM MODEL:
ACCOUNTING FOR CONTENTION IN PARALLEL ALGORITHMS∗

PHILLIP B. GIBBONS† , YOSSI MATIAS†‡ , AND VIJAYA RAMACHANDRAN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 733–769

Abstract. This paper introduces the queue-read queue-write (qrqw) parallel random access
machine (pram) model, which permits concurrent reading and writing to shared-memory locations,
but at a cost proportional to the number of readers/writers to any one memory location in a given
step. Prior to this work there were no formal complexity models that accounted for the contention
to memory locations, despite its large impact on the performance of parallel programs. The qrqw
pram model reflects the contention properties of most commercially available parallel machines more
accurately than either the well-studied crcw pram or erew pram models: the crcw model does not
adequately penalize algorithms with high contention to shared-memory locations, while the erew
model is too strict in its insistence on zero contention at each step.

The qrqw pram is strictly more powerful than the erew pram. This paper shows a separa-

tion of
√

logn between the two models, and presents faster and more efficient qrqw algorithms for
several basic problems, such as linear compaction, leader election, and processor allocation. Further-
more, we present a work-preserving emulation of the qrqw pram with only logarithmic slowdown
on Valiant’s bsp model, and hence on hypercube-type noncombining networks, even when latency,
synchronization, and memory granularity overheads are taken into account. This matches the best-
known emulation result for the erew pram, and considerably improves upon the best-known efficient
emulation for the crcw pram on such networks. Finally, the paper presents several lower bound
results for this model, including lower bounds on the time required for broadcasting and for leader
election.

Key words. models of parallel computation, parallel algorithms, pram, memory contention,
work-time framework

AMS subject classifications. 68Q05, 68Q22, 68Q25

PII. S009753979427491

1. Introduction. The parallel random access machine (pram) model of compu-
tation is the most-widely used model for the design and analysis of parallel algorithms
(see, e.g., [40, 39, 58]). The pram model consists of a number of processors operating
in lock-step and communicating by reading and writing locations in a shared memory.
Existing pram models can be distinguished by their rules regarding contention for
shared memory locations. These rules are generally classified into two groups:

• Exclusive read/write: Each location can be read or written by at most one
processor in each unit-time pram step.
• Concurrent read/write: Each location can be read or written by any number

of processors in each unit-time pram step. For concurrent writing, the value
written depends on the write-conflict rule of the model, e.g., in the arbitrary
concurrent-write pram, an arbitrary processor succeeds in writing its value.

∗Received by the editors September 21, 1994; accepted for publication (in revised form) January
8, 1997; published electronically August 4, 1998.

http://www.siam.org/journals/sicomp/28-2/27491.html
†Bell Laboratories, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974 (gibbons@

research.bell-labs.com).
‡Current address: Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel

(matias@math.tau.ac.il).
§Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712 (vlr@

cs.utexas.edu). This author was supported in part by NSF grant CCR-90-23059 and Texas Advanced
Research Projects grants 003658480 and 003658386.

733

734 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

These two rules can be applied independently to reads and writes; the resulting models
are denoted in the literature as the erew, crew, ercw, and crcw pram models.

In this paper, we argue that neither the exclusive nor the concurrent rules accu-
rately reflect the contention capabilities of most commercial and research machines,
and propose a new pram contention rule, the queue rule, that permits concurrent
reading and writing, but at an appropriate cost:

• Queue read/write: Each location can be read or written by any number of
processors in each step. Concurrent reads or writes to a location are serviced
one at a time.

Thus the worst case time to read or write a location is linear in the number of con-
current readers or writers to the same location.

The queue rule more accurately reflects the contention properties of machines
with simple, noncombining interconnection networks1 than either the exclusive or
concurrent rules. The exclusive rule is too strict, and the concurrent rule ignores
the large performance penalty of high-contention steps. Indeed, for most existing
machines, including the Cray T3D, IBM SP2, Intel Paragon, MasPar MP-2 (global
router), MIT J-Machine, nCUBE 2S, Stanford DASH, Tera Computer, and Thinking
Machines CM-5 (data network), the contention properties of the machine are well
approximated by the queue-read, queue-write (qrqw) rule. For the Kendall Square
KSR1, the contention properties can be approximated by the concurrent-read, queue-
write (crqw) rule. Further details are in section 3.

This paper defines the qrqw pram model, a variation on the standard pram
that employs the queue rule for both reading and writing. In addition, the proces-
sors are permitted to each have multiple reads or writes in progress at a time. We
show that the power of the qrqw pram model falls strictly between the crcw and
erew models. We show separation results between the models by considering the
2-compaction problem, the broadcasting problem, and the problem of computing the
or function. To illustrate some of the techniques used to design low-contention al-
gorithms that improve upon the best known zero-contention algorithms, we consider
algorithms for two fundamental problems, leader election and linear compaction, un-
der various scenarios. Finally, this paper extends the work-time framework for parallel
algorithms (see, e.g., [39]) into a qrqw work-time framework that considers the con-
tention at each step, and relates the qrqw pram model to the qrqw work-time
framework.

The qrqw pram, like the other pram models mentioned above, abstracts away
many features of real machines, including the latency or delay in accessing the shared
memory, the cost of synchronizing the processors, and the fact that memory is par-
titioned into modules that service requests serially. A model that incorporates these
features is the bulk-synchronous parallel (bsp) model of Valiant [61]. In its general
form this model is parameterized by its number of processing/memory components p,
throughput g, and periodicity L. A particular case studied by Valiant sets g to be a
constant and L to be Θ(log p); we denote this the standard bsp model. We show in this
paper that the qrqw pram can be effectively emulated on the standard bsp model:
A p-processor qrqw pram algorithm running in time t can be emulated on a p/ log p-

1In a combining network, when two messages destined for the same memory location meet at an
intermediate node in the network, the messages are “combined” so that only one message continues
toward the destination. For example, if two writes meet, then only a single write is sent on. In
a noncombining network, messages are not combined, so that all messages destined for the same
memory location are delivered to the home node for that location.

THE QRQW PRAM MODEL 735

processor standard bsp in O(t log p) time with high probability (w.h.p.). It follows
by Valiant’s simulation of the standard bsp on hypercubes that the qrqw pram can
be emulated in a work-preserving manner on parallel machines with hypercube-type,
noncombining networks with only logarithmic slowdown, even when latency, mem-
ory granularity, and synchronization overheads are taken into account. This matches
the best-known emulation for the erew pram on these networks given in [61]. In
contrast, work-preserving emulations for the crcw pram on such networks are only
known with polynomial slowdown (i.e., O(pε) slowdown, for a constant ε > 0).

Note that the standard Θ(log p) time emulation of crcw on erew (see, e.g., [40])
is not work preserving, in that the erew performs Θ(log p) times more work than
the crcw it emulates. Since we consider work-preserving speedups to be the primary
goal in parallel algorithms, with fast running times the secondary goal, this emula-
tion is unacceptable: The Θ(log p) overhead in work ensures that the algorithms will
not exhibit linear or near-linear speedups. Similarly, the best-known emulations for
the crew pram (or ercw pram) on the erew pram (or standard bsp or hyper-
cube) require logarithmic work overhead for logarithmic slowdown or, alternatively,
polynomial slowdown for constant work overhead.

Since the qrqw pram is strictly more powerful than the erew pram, effectively
emulated on hypercube-type noncombining networks (unlike the crcw, crew, or
ercw pram models), and a better match for real machines, we advocate the qrqw
pram with its queue-contention rule as a more appropriate model for high-level algo-
rithm design than a pram with either the exclusive- or concurrent-contention rules.
The queue-contention rule can also be incorporated into lower-level shared-memory
models, trading model simplicity for additional accuracy in modeling the cost of com-
munication (e.g., explicitly modeling the communication bandwidth). In this initial
paper on the queue-contention rule, we restrict our focus to high-level algorithm design
on pram models.

In addition to the qrqw pram model, we define in this paper the simd-qrqw
pram model, a strictly weaker model suitable for simd machines, in which all pro-
cessors execute in lock-step and each processor can have at most one read/write in
progress at a time. In a subsequent paper [30] we define the qrqw asynchronous
pram model, for general asynchronous algorithms running on mimd machines (see
also [26]).

We present several algorithms and a lower bound for leader election and for com-
puting the or function. The lower bound is Ω(logn/ log log n) time for the determinis-
tic computation of the or function on a crqw pram with arbitrarily many processors.
The algorithms for both problems take linear work and O(log n/ log log n) time with
high probability. In contrast, the or function requires Ω(logn) expected time on a
randomized crew pram with arbitrarily many processors ([17], following [12]). Also
presented is a linear work, O(

√
log n) time w.h.p. algorithm for the linear-compaction

problem. This problem has applications to automatic processor allocation for algo-
rithms that are given in the qrqw work-time presentation. In contrast, the best
linear-compaction algorithm known on the erew pram is the logarithmic time prefix
sums algorithm [42]. On the other hand, for the problem of broadcasting the value of
a bit to n processors, we show that we can do no better on the qrqw pram than the
simple Θ(log n) time erew pram algorithm. Specifically, we show a tight Ω(logn)
expected-time lower bound for the qrqw pram.

Important technical issues arise in designing algorithms for the queue models that
are present in neither the concurrent nor the exclusive pram models. For example,

736 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

much of the effort in designing algorithms for the qrqw is in estimating the maximum
contention in a step; our algorithms for leader election illustrate this point. In the
qrqw, one high-contention step can dominate the running time of the algorithm: we
cannot afford to underestimate the contention significantly.

In a companion paper [29], we present a number of other algorithmic results for
the qrqw pram. Our algorithmic results include linear work, logarithmic or subloga-
rithmic time randomized qrqw algorithms for the fundamental problems of multiple
compaction, load balancing, generating a random permutation, parallel hashing, and
sorting from U(0, 1). These algorithms improve upon the best-known erew algo-
rithms for these problems, while avoiding the high-contention steps typical of crcw
algorithms. Additionally, we present new algorithms for integer sorting and general
sorting.

Most of the results in [29], and some of the results in this paper, are obtained
w.h.p. A probabilistic event occurs w.h.p. if, for any prespecified constant δ > 0, it
occurs with probability 1 − 1/nδ, where n is the size of the input. Thus, we say a
randomized algorithm runs in O(f(n)) time w.h.p. if for every prespecified constant
δ > 0, there is a constant c such that for all n ≥ 1, the algorithm runs in c ·f(n) steps
or less with probability at least 1− 1/nδ.

The rest of this paper is organized as follows. Section 2 defines the qrqw pram
and simd-qrqw pram models. Section 3 gives further motivation for the queue
models, and comparison with related work. Section 4 describes the extension of
the work-time framework to the qrqw models. Section 5 presents our results for
realizing the qrqw pram on feasible networks. Section 6 gives upper and lower
bounds for computing the or and leader election under various scenarios. Section 7
presents our linear-work, sublogarithmic-time algorithm for linear compaction on a
simd-qrqw pram. Section 8 presents tight Ω(logn) expected-time lower bounds on
the qrqw pram for broadcasting and related problems. Concluding remarks appear
in section 9.

The results in this paper appeared in preliminary form in [26, 27, 28].

2. The queue models. This section defines our two qrqw models:
• the simd-qrqw pram, for algorithms running on simd machines, and
• the qrqw pram, for bulk-synchronous algorithms2 running on mimd ma-

chines.
In both of the qrqw models, the time cost for reading or writing a shared location,
x, is proportional to the number of processors concurrently reading or writing x.
This cost measure models machines in which accesses to a location queue up and are
serviced one at a time, i.e., most current commercial and research machines. The
simd-qrqw models machines in which processors synchronize at every step, waiting
for all the queues to clear. The qrqw models machines in which processors syn-
chronize less frequently, waiting for all the queues to clear only at synchronization
points. In a subsequent paper [30] we define the qrqw asynchronous pram model,
for general asynchronous algorithms running on mimd machines (see also [26]). This
model has an asynchronous queue-contention rule in which processors read and write
locations at their own pace, without waiting for the queues encountered by other pro-
cessors to clear. This model allows the asynchronous nature of mimd machines to be
exploited, at the cost of more complexity in the model.

2In a bulk-synchronous algorithm [61, 24, 25], synchronization among the processors is limited to
global synchronization barriers involving all the processors; between such barriers, processors execute
asynchronously using shared-memory values written prior to the preceding barrier.

THE QRQW PRAM MODEL 737

In order to preserve the simplicity of the simd-qrqw pram and qrqw pram
models, neither model incorporates the cost of synchronizing after a step. We note,
however, that our result on a work-preserving emulation of both models on a bsp
shows that the cost of synchronization can be hidden (up to a constant factor) by
using a target machine with a somewhat smaller number of processors.

The complexity metric for the qrqw models will use the notion of maximum
contention, defined as follows.

Definition 2.1. Consider a single step of a pram, consisting of a read substep,
a compute substep, and a write substep. The maximum contention of the step is the
maximum, over all locations x, of the number of processors reading x or the number
of processors writing x. For simplicity in handling a corner case, a step with no reads
or writes is defined to have maximum contention 1.

2.1. The SIMD-QRQW PRAM model.
Definition 2.2. The simd-qrqw pram model is a (synchronous) pram in

which concurrent reads and writes to the same location are permitted, and the time
cost for a step with maximum contention κ is κ. If there are multiple writers to a
location x in a step, an arbitrary write to x succeeds in writing the value present in x
at the end of the step. The time of a simd-qrqw pram algorithm is the sum of the
time costs for its steps. The work is its processor-time product.

This cost measure models, for example, a simd machine such as the MasPar MP-
1 [51] or MP-2, in which each processor can have at most one read/write in progress
at a time, reads/writes to a location queue up and are serviced one at a time, and all
processors await the completion of the slowest read/write in the step before continuing
to the next step. Existing simd machines provide for the required synchronization
of all processors at each step, regardless of the varying contention encountered by
the individual processors. Unlike previous pram models, the work is not the number
of operations, because with the simd-qrqw time metric, operations encountering
nonconstant contention are charged nonconstant time.

If a pram model is to be used to design bulk-synchronous algorithms on mimd
machines, then the simd-qrqw pram is unnecessarily restrictive. A better model for
this scenario is the qrqw pram, defined next.

2.2. The QRQW PRAM model.
Definition 2.3. The qrqw pram model consists of a number of processors,

each with its own private memory, communicating by reading and writing locations in
a shared memory. Processors execute a sequence of synchronous steps, each consisting
of the following three substeps:

1. Read substep: Each processor i reads ri shared-memory locations, where the
locations are known at the beginning of the substep.

2. Compute substep: Each processor i performs ci ram operations involving only
its private state and private memory.3

3. Write substep: Each processor i writes to wi shared-memory locations (where
the locations and values written are known at the beginning of the substep).

Concurrent reads and writes to the same location are permitted in a step. In the case
of multiple writers to a location x, an arbitrary write to x succeeds in writing the value
present in x at the end of the step.

3As in the existing pram models, each processor is assumed to be a sequential random access
machine. See, e.g., [58]. For the qrqw pram, a processor may perform multiple ram operations in a
compute substep, e.g., summing ci numbers stored in its private memory, and is charged accordingly.

738 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

Definition 2.4. Consider a qrqw pram step with maximum contention κ, and
let m = maxi{ri, ci, wi} for the step, i.e., the maximum over all processors i of its
number of reads, computes, and writes. Then the time cost for the step is max{m,κ}.
The time of a qrqw pram algorithm is the sum of the time costs for its steps. The
work of a qrqw pram algorithm is its processor-time product.

This cost measure models, for example, a mimd machine such as the Tera Com-
puter [2], in which each processor can have multiple reads/writes in progress at a
time, and reads/writes to a location queue up and are serviced one at a time. Nei-
ther the erew pram nor the crcw pram model allows a processor to have mul-
tiple reads/writes in progress at a time, as this generalization is unnecessary when
reads/writes complete in unit time. This feature, which distinguishes the qrqw pram
from the simd-qrqw pram as well as the erew pram and crcw pram, enables the
processors to do useful work while awaiting the completion of reads/writes that en-
counter contention. Nevertheless, as we show below, the crcw pram can simulate
the qrqw pram to within constant factors.

The restriction that the processors in a read substep know, at the beginning of the
substep, the locations to be read reflects the intended emulation of the qrqw pram
model on a mimd machine in which the reads are issued in a pipelined manner, to
amortize against the delay (latency) on such machines in reading the shared memory.
Likewise writes in a write substep are to be pipelined in the intended emulation.
On the other hand, each of the local operations performed in a compute substep can
depend on compute operations in the same substep; since these operations are assumed
to take constant time in the intended emulation, there is no need for pipelining (to
within constant factors). The emulation inserts a barrier synchronization among all
the processors between every read and write substep, so that the processors notify
each other when it is safe to proceed with the next substep. This synchronization is
accounted for in the emulation. A formal description of the intended emulation and
its performance appears in section 5.

On existing parallel machines, there are a number of factors that determine the
time to process shared-memory read and write requests, including contention in the
interconnection network and at the memory modules. Often, reads and writes to
distinct shared-memory locations may delay one another. Moreover, issued memory
requests cannot be withdrawn. To reflect these realities of existing machines, the
qrqw pram (as well as the simd-qrqw pram) does not permit processors to make
inferences on the contention encountered based on the delays incurred. In addition,
issued memory requests may not be withdrawn, and an algorithm has not completed
until all issued memory requests have been processed. In this way, the qrqw models,
although explicitly accounting only for the delays resulting from multiple requests
to the same locations, can be efficiently emulated on models that account for these
additional concerns, as shown in section 5.

As with the simd-qrqw pram, the work is not the number of operations, since
operations encountering nonconstant contention may be charged nonconstant time.
(In fact, the only situation where the work is a good reflection of the number of
operations is when pipelining is extensively employed, i.e., when the average over i of
(ri + ci + wi) is Ω(κ).)

Also, as with the simd-qrqw pram, there is no explicit metric for the number
of steps in an algorithm. As we show in section 5, there is no need for such a metric
in the context of the intended emulation. On the other hand, the synchronization at
the end of each bulk-synchronous step is a source of overhead on existing machines,

THE QRQW PRAM MODEL 739

and hence we may wish to include this additional metric when analyzing algorithms
on the qrqw models.

2.3. Relations between models. The primary advantage of the qrqw pram
model over the simd-qrqw pram model is that the qrqw permits processors each to
perform a series of reads and writes in a step while incurring only a single penalty for
the contention of these reads and writes. In the simd-qrqw, a penalty is charged after
each read or write in the series; often the resulting aggregate charge for contention
is far greater than the single charge under the qrqw model. On the other hand, by
adding more processors to the simd-qrqw, we can match the time bounds (but not
the work bounds) obtained for the qrqw.

Observation 2.1. A p-processor qrqw pram algorithm running in time t can
be emulated on a pt-processor simd-qrqw pram in time O(t).

Proof. For each qrqw processor i ∈ [1..p], we assign a team, Ti, of t simd-qrqw
processors, with each team having a leader, li. Each leader li maintains the entire
local state of qrqw processor i during the emulation. For each team Ti, we have
an auxiliary array, Ai, of size t for communications between li and each member of
its team. Consider the jth step of a qrqw pram algorithm, with time cost tj and
maximum contention kj ≤ tj . For each qrqw processor i, let ri, ci, and wi be the
number of reads, ram operations, and writes performed by processor i in this step.
Processor i is emulated as follows. (1) The leader li writes the ri locations to be
read to Ai, one location per cell. (2) Each member of Ti reads its cell in Ai, reads
the designated location (if any) in the shared memory, and then writes the value
read to its cell in Ai. (3) The leader li reads the values in Ai, performs the ci ram
operations, and then writes the wi locations and values to be written to Ai, one per
cell. (4) Finally, each member of Ti reads its cell in Ai, and then writes the designated
value to the designated location (if any) in the shared memory. Step 1 takes O(ri)
time, step 2 takes O(kj) time, step 3 takes O(ri + ci + wi) time, and step 4 takes
O(kj) time. Thus the overall time to emulate the jth qrqw step is O(tj), and the
observation follows.

Note that in fact only p · τ processors are needed in the above emulation, where
τ ≤ t is the maximum time for any one step of the qrqw pram algorithm.

The simd-qrqw pram model permits each processor to have at most one shared-
memory request outstanding at a time, as in the standard pram model. This places
an upper bound on the number of requests that must be handled by the intercon-
nection network of the parallel machine. For most mimd machines, permitting only
one request per processor is artificially restrictive, and the qrqw pram model has no
such restriction. On the other hand, since there is no bound in the qrqw pram on
the number of outstanding requests, there is a danger that qrqw pram algorithms
will flood the network with requests beyond its capacity to efficiently process them.
One approach toward alleviating this potentially serious problem is to divide steps
with many shared-memory requests into a sequence of steps with fewer requests per
step. In general we could indicate, for each qrqw pram algorithm, the maximum
number of requests in any one step of the algorithm. Then when implementing the
algorithm on a given parallel machine, this number could be compared with the max-
imum effective network capacity of the machine to determine if the memory requests
can be efficiently processed by the network.

Let M1 and M2 be two models. We define M1 � M2 to denote that any one
step of M1 with time cost t ≥ 1 can be emulated in O(t) time on M2 using the same
number of processors. For concurrent and queue writes we assume throughout this

740 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

Table 1
Time separation results for the qrqw. Results on problems inducing a time separation of the

qrqw from the erew model and the crcw from the qrqw model, including both deterministic time
(det.) and randomized expected or w.h.p. time (rand.).

Stronger model Weaker model Separation Problem Section

{det.,rand.} simd-qrqw {det.,rand.} erew Ω(
√

logn) 2-compaction 7

det. crcw det. qrqw Ω(logn
log logn

) or function 6.1

{det.,rand.} crcw {det.,rand.} qrqw Ω(logn) broadcasting 8

paper that an arbitrary processor succeeds in the write; however, the relations stated
below hold as long as both machines use the same write-conflict rule.

Observation 2.2. erew pram � simd-qrqw pram � qrqw pram � crcw
pram.

Proof. The observation can be proved by straightforward emulation. For the
crcw emulating a qrqw step of time cost t: (1) for j = 1, . . . ,maxi{ri}, perform
the jth read operation (if any) at each processor in one step using cr; then (2)
for j = 1, . . . ,maxi{ci}, perform the jth compute operation (if any) at each pro-
cessor; then (3) for j = 1, . . . ,maxi{wi}, perform the jth write operation (if any)
at each processor in one step using cw. This takes time maxi{ri} + maxi{ci}+
maxi{wi} ≤ 3t.

Let M1 and M2 be two models such that M1 � M2. A computational problem
P induces a separation of O(f(n)) time with q(n) processors of M2 from M1 if there
exists a function t(n) such that, on inputs of length n, P can be solved on M2 in
time O(t(n)) with q(n) processors, but P requires Ω(t(n) · f(n)) on M1 if only q(n)
processors are available. We say that there is a separation of f(n) time with q(n)
processors of M2 from M1 if there exists a problem that induces such a separation.
Most of the separation results we derive in this paper hold for any q(n) = Ω(n); in
such cases we omit q(n) when stating the result.

Results on problems inducing a separation of the qrqw from the erew model
and the crcw from the qrqw model appear in Table 1.

2.4. A family of queue models. The definitions of simd-qrqw pram and
qrqw pram can be generalized so that the charge for maximum contention κ is f(κ),
a nondecreasing function of κ. When f(κ) = 1 for all κ, both models are equivalent
to the crcw pram. Likewise, when f(1) = 1 and f(κ) = ∞ for κ ≥ 2, both models
are equivalent to the erew pram. Note that the distinction between the simd-qrqw
pram and the qrqw pram arises only when f(κ) > 1 and is finite for some κ.

Another possible cost function is f(κ) = log κ; such a function may occur in a
hypothetical variant of combining networks, but it is not known to be relevant to any
existing machines (there are no known techniques for achieving this cost function for
an arbitrary set of readers/writers). The log cost function may prove to be relevant to
future machines that employ an optical crossbar to interconnect the processors [34, 48].
However, in this paper, we will focus our attention on the cost function, f(κ) = κ, that
reflects the realities of proven technologies. (For some machines that do not handle
contention well, superlinear functions such as f(κ) = κ log κ may be appropriate; such
cost functions are not considered in this paper.) Other possible variants of the model
permit write-conflict rules other than arbitrary; however, we note that the arbitrary
rule reflects the realities of most current commercial and research machines.

As the queue rule can be applied independently to reads or writes, we can also

THE QRQW PRAM MODEL 741

CRCW

↙ ↘
crqw qrcw

↙ ↘ ↙ ↘
crew QRQW ercw

↘ ↙ ↘ ↙
qrew erqw

↘ ↙
EREW

Fig. 1. The relative power of various pram concurrency rules. The same relationships hold
for the simd versions of the queue models. For concurrent write, we assume an arbitrary processor
succeeds in writing. In this figure an arrow denotes that the pram model, M1, at the tail of the arrow
can simulate the pram model, M2, at its head with at most a small constant loss in performance (and
possibly some improvement), i.e., M2 � M1. Our results characterize more precisely the relative
power of some of the concurrency rules.

Table 2
Time separation results for the hybrid queue models, including both deterministic time (det.)

and randomized expected time or w.h.p. time (rand.). All results listed here hold for the simd
versions as well.

Stronger model Weaker model Separation Problem Section

{det.,rand.} erqw {det.,rand.} erew Ω(
√

logn) 2-compaction 7

det. {qr,cr}qw det. {qr,cr}ew Ω(log log n) 2-compaction 7
(with n procs)

rand. crqw rand. crew Ω(log log n) or function 6.3

det. {er,qr,cr}cw det. {er,qr,cr}qw Ω(logn
log logn

) or function 6.1

det. cr{ew,qw} det. qr{ew,qw} Ω(logn) broadcasting
8

rand. cr{ew,qw} rand. qr{ew,qw} Ω(logn) broadcasting

consider models such as the simd-crqw or crqw pram. For each such hybrid model,
the pram version can trivially simulate the simd version with no loss. Figure 1 depicts
the relative power of the various models immediately apparent from the definitions,
extending the results in Observation 2.2 to the hybrid models. Likewise, Table 2
presents additional separation results for the hybrid models.

3. The case for QRQW. The pram model was introduced in 1978 [22], with
the crew contention rule. Since that time, a variety of contention rules has been
proposed and studied, with the most widely studied being the erew, crew, and
crcw rules. Variants of the crcw pram such as arbitrary, collision, common,
priority, robust, and tolerant have been proposed and studied (see, e.g., [52] for
definitions); these differ in their write-conflict rules. Given the plethora of contention
rules already in the literature, it is reasonable to ask if there is a need for yet another
contention rule, and in particular, whether the qrqw pram is an important new
pram model.

The qrqw pram is a fundamental departure from standard pram models because
it is the first pram model to properly account for contention, as reflected in most
current commercial and research machines. By permitting contention, it reflects the
realities of current machines, and enables simpler and more efficient algorithms for
many basic problems. By charging for contention, it reflects the realities of machines
with noncombining networks, e.g., most current commercial and research machines.
In the remainder of this section, we elaborate on these points and then compare

742 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

the qrqw models to related work. We begin with a critique of the exclusive and
concurrent rules.

3.1. EREW is too strict. The exclusive contention rule is almost universally
considered by pram proponents to be a realistic rule for parallel machines. In the
erew pram, it is forbidden to have two or more processors attempt to read or write
the same location in the same step. We know of no existing shared-memory parallel
machine with this restriction on its global communication. Moreover, the exclusive
rule leads to unnecessarily slow algorithms. A simple example is the 2-compaction
problem, in which there are two nonempty cells at unknown positions in an array of
size n, and the contents of these cells must be moved to the first two locations of the
array. An erew pram requires Ω(

√
log n) time to solve the 2-compaction problem;

an n-processor crew pram requires Ω(log log n) time [20]. However, as shown in
section 7, there is a trivial constant-time n-processor qrqw pram algorithm for this
problem.

The exclusive contention rule eliminates many randomized algorithmic techniques.
Randomization used to determine where a processor should read or write (e.g., ran-
dom sampling, random hashing) cannot avoid some small likelihood of concurrent
reading or writing and hence cannot be incorporated directly into erew algorithms.4

Likewise, most asynchronous algorithms cannot avoid scenarios in which concur-
rent reading or writing occurs. Hence existing asynchronous pram models (e.g.,
[11, 24, 54, 50]) do not enforce the exclusive rule, assuming instead a crcw cost
measure.5

3.2. CRCW may be too powerful. At the other extreme, the concurrent-
contention rule may be too powerful. In the crcw pram, each step takes unit time,
independent of the amount of contention in the step. Thus no distinction is made
between low-contention and high-contention algorithms. On parallel machines with
noncombining networks, high-contention read steps or write steps can be quite slow,
as each of the requests for a highly contended location is serviced one by one, creating
a serial bottleneck or “hot spot” [55]. Moreover, intermediate nodes on the path to the
contended destination become congested as well, so a single hot spot can even delay
requests destined for other nodes in the network. If all p processors request the same
location, a common occurrence in crcw pram algorithms, a direct implementation
of the algorithm can incur a p-fold loss in speedup due to contention, sometimes
becoming no better than a sequential algorithm.

An active area of research is how to execute a crcw step that includes high-
contention reads or writes without creating hot spots. Software approaches, e.g.,
using sorting [61], may incur an overhead considered unacceptable in practice, even on
machines that support them. This is arguably true of the MasPar MP-1, for example,
where the concurrent-write primitive provided for the MP-1 is around 20 times slower
than writing according to a random permutation [56]. As indicated in section 1, the
asymptotically best work-preserving emulation known for simulating the crcw pram
on machines with noncombining networks suffers polynomial slowdown [61, 63]. Thus,
the running time on the parallel machine will be a polynomial factor slower than the
running time indicated by the crcw model.

4These techniques can be incorporated into crcw algorithms, and emulated on the erew, but
at logarithmic cost in time and work.

5An exception is the erew variant of Gibbons’ asynchronous pram model [24], which permits
contention in synchronization primitives, at a cost, but enforces the exclusive rule on reads and writes
occurring between synchronization points.

THE QRQW PRAM MODEL 743

Table 3
Contention rules of some existing multiprocessors.

Multiprocessor $/P A/S Contention rule

Cray T3D [41] $ A qrqw
IBM SP2 [38] $ A qrqw
Intel Paragon [5] $ A qrqw
Kendall Square KSR1 [23] $ A crqw
MasPar MP-1 [51], MP-2 $

global router S qrqw
xnet S limited crew

nCUBE 2S [59] $ A qrqw
Thinking Machines CM-5 [44] $

data network A qrqw
control network S fast scan ops

Bus-based machines $ A limited crqw
Fluent [57, 1] P S crcw
MIT J-Machine [15] P A qrqw
Stanford DASH [46] P A qrqw
Tera Computer [2] P A qrqw

Hardware approaches for executing high-contention crcw steps without hot spots
incorporate combining logic into the interconnection network. Ranade’s work [57]
shows that any crcw step can be simulated on certain hypercube-based networks in
the same asymptotic time as an erew step, and development of machines based on his
technique have been reported (e.g., [1, 18]). It is an open question whether the system
cost of supporting crcw efficiently in hardware is justified, particularly on mimd ma-
chines, and work continues in this area (e.g., [16]). Existing commercial machines are
primarily designed to process low-contention steps efficiently; high-contention steps
are slow operations.

Note that the weaknesses of the exclusive- and concurrent-contention rules apply
independently to reading and writing. Thus hybrids such as the crew pram or the
ercw pram are too strict for writing (reading, respectively) and may be too powerful
for reading (writing, respectively).

3.3. Most existing machines are QRQW. Table 3 classifies some existing
multiprocessors according to the concurrent-read and write capabilities of their in-
terprocessor communication. We have included message-passing machines, as well as
shared-memory ones, since they are often used to run (slightly modified versions of)
shared-memory algorithms or programs. The second column indicates commercial
product ($) or working prototype (P). The third column indicates synchronous (S)
or asynchronous (A) machines. In the last column, er or ew denotes that programs
for the machine are forbidden from having multiple requests for a location. qr or qw
denotes that multiple requests to a location may be issued, and requests are generally
serviced one at a time. cr or cw denotes that multiple requests to a location may be
issued, and requests are combined in the network.

A few entries do not quite fit the taxonomy and require further explanation. In
the xnet of the MP-1 and MP-2, processors are limited to reading or writing values
stored at nodes a given distance away in a given compass direction; each processor
may broadcast a value to all intermediate nodes on the path. The control network
of the CM-5 provides fast scan primitives [6]; such primitives provide concurrent
reading and writing and more (only) for well-structured sets of requests that fit the

744 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

segmented-scan paradigm [7]. In bus-based machines, the bus typically services only
one shared-memory location at a time; all processors requesting to read the location
can be serviced at the same time without penalty. Finally, a number of these machines
provide caches that permit fast concurrent rereading of shared-memory locations: once
a set of processors has read a location, they may subsequently reread the location
without incurring a penalty for contention, as long as no processor has written to the
location in the meantime.

As seen from the table, the contention rule for most of these machines, including
the Cray T3D, IBM SP2, Intel Paragon, MIT J-Machine, nCUBE 2S, Stanford DASH,
and Tera Computer, is well approximated by the qrqw rule. For the synchronous
MasPar MP-1 and MP-2, the contention rule is well approximated by the simd-qrqw
rule.

For the Kendall Square KSR1, the contention rule is well approximated by the
crqw rule. The Thinking Machines CM-5 provides a second network that can be
used to perform fast scan operations [6]. An appropriate model for this machine
would be a qrqw model with unit-time scan operations.

Note that each of the asynchronous machines (marked A in Table 3) allows for
general asynchronous algorithms. Thus their contention rule in its full generality
is well approximated by the asynchronous queue-contention rule provided by the
qrqw asynchronous pram [30] (except for the KSR1, which is well approximated
by an asynchronous crqw contention rule). On the other hand, their contention
rule with respect to bulk-synchronous algorithms is well approximated by the (bulk-
synchronous) queue-contention rule provided by the simpler qrqw or crqw pram.

A number of these machines, such as Stanford DASH, provide caches local to each
processor; on reading a shared-memory location, a copy is stored in the processor’s
cache for future reuse. Multiple processors with cached copies of a location may
then request to read the location and will be serviced in parallel from their local
caches. To maintain a single consistent value for a location, these machines typically
invalidate all cached copies of the location before permitting a processor to write to
the location. This fast concurrent rereading of memory locations is not modeled in
the qrqw models due to the following. If the contents of a shared-memory location
are stored in a private-memory location when first read by a processor, then there
is no need to issue a subsequent shared-memory read for this location unless some
other processor may have changed the value: the private copy may be used instead.
Moreover, if some other processor did change the value, then fast rereading is not
possible and there will be a penalty for high contention with or without the caches.
Thus fast rereading of memory locations seems to have only a secondary effect on the
contention encountered in parallel algorithms, and hence has been omitted from the
model, for simplicity.

We have conducted experiments to measure the effect of contention on a 16,384
processor MasPar MP-1. The results of these experiments are given in Figure 2.
The experiments show that the simd-qrqw rule is a far more accurate reflection of
running time on the MasPar MP-1 than a crcw contention rule. Indeed, the overall
time for the read (write) step is dominated by the cost of contention at a fairly small
value for the contention, and then the time grows nearly linearly with the contention.
In contrast, the crcw contention rule would predict that the overall time would
not change with the contention. The differences between the left and right plots in
the figure demonstrate that charging k for contention k, as in the simd-qrqw rule,
becomes an accurate reflection of the running time only when each processor has its

THE QRQW PRAM MODEL 745

MasPar running times (in milliseconds)

contention 1024 processors 16384 processors
in step write read write read

1 0.563 0.518 7.321 6.849
2 0.595 0.554 7.435 6.957
4 0.755 0.703 7.415 6.944
8 1.414 1.332 7.449 6.976

16 2.765 2.589 7.870 7.369
32 5.445 5.090 10.283 9.636
64 10.784 10.116 15.354 14.391

128 21.503 20.167 25.952 24.329
256 42.922 40.271 47.127 44.205
512 85.761 80.459 89.746 84.194

1024 171.441 160.846 175.485 164.635
2048 — — 346.781 325.357
4096 — — 689.218 646.656
8192 — — 1374.849 1289.970

16384 — — 2744.192 2574.748

0

2

4

6

8

0 2 4 6 8 10

write time, 1024 procs
read time, 1024 procs

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

write time, 16384 procs
read time, 16384 procs

Fig. 2. Performance measurements on the MasPar MP-1 for a read or write step, under
increasing contention to a location. Top, timing measurements. Bottom, plot of the measurements
on a log-log scale, showing the running time (y-coordinate) as a function of the contention in the step
(x-coordinate). Results for 210 and 214 processors are shown. In the base experiment (contention
1, x-coordinate 0), each processor reads (writes) according to a random permutation. In the general
experiment (contention 2i, x-coordinate i), the first 2i processors read (write) the same location M ,
while the remaining processors read (write) according to the original random permutation. Shown
are the cumulative times of repeating the experiment on 20 different random permutations. In the
plots, the y-coordinate depicts the base-2 logarithm of the number of milliseconds needed.

The experiments show that high-contention steps are several orders of magnitude slower
than random permutations, and moreover, that doubling the contention nearly doubles the running
time, at least for medium- to high-contention steps. The dependence of the running time on the
contention is more dramatic in the experiments with 1024 processors than with 16,384 processors,
for the following reason. In the 16,384-processor MasPar MP-1, each global router port is shared
by 16 processors, creating an additional serial bottleneck. The experiments with 1024 processors use
only one processor per port, thereby avoiding this serial bottleneck.

own global router port; otherwise, a more complicated metric would be more accurate.
Note that the MasPar MP-2, the successor of the MP-1, provides additional router

746 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

ports to help alleviate the bottleneck in the MP-1 caused by having one port for every
16 processors. Thus we would expect the MP-2 to behave more like the plot on the
left, i.e., more according to the simd-qrqw rule.

3.4. Related work. In an early related work, Greenberg [36] considered broad-
cast communication schemes, such as the Ethernet, that have queues for submitted
messages. More recently, Cypher [14] analyzed the performance of a maximum-finding
algorithm under assumptions similar to the simd-qrqw pram. Dietzfelbinger, Kuty-
lowski, and Reischuk [17] defined the few-write pram, that permits one-step con-
current writing of up to κ writes, where κ is a parameter of the model, as well as
unlimited concurrent reading. Valiant [61] introduced the bsp model (see section 5)
and studied a specialization of the model with logarithmic periodicity and constant
throughput, which we call here the standard bsp model. In [61] it is shown that a
v-processor pram step with contention κ can be simulated on a p-processor standard
bsp in O(v/p + κ log p) time w.h.p. A large number of papers have studied the Dis-
tributed Memory Machine, in which the shared memory is partitioned into modules
such that at most one memory location within each module can be accessed at a
time. Concurrent reads and writes may or may not be allowed depending on the
model. (See [43, 62] and the references therein.) An early example is the Candidate
Type Architecture (CTA) machine model proposed by Snyder [60] which consists of a
set of processors connected by a sparse communication network of unspecified topol-
ogy and linked to a controller. The CTA is parameterized by the number of processors
and the latency of interprocessor communication. Aumann and Rabin [3] showed that
a pram algorithm can be simulated on a very general asynchronous parallel system
that permits O(log n) contention to a location in unit time.

There have been several recent papers presenting independent work in related ar-
eas. Culler et al. [13] proposed the LogP model, a lower-level message-passing model
in which there is limited communication bandwidth: a processor can send or receive
at most one message every g cycles, where g is a parameter of the model. There is
also a limit on the number of messages in the network at the same time. The LogP
model permits general asynchronous algorithms. Liu, Aiello, and Bhatt [47] studied
a message-passing model in which messages destined for the same processor are ser-
viced one at a time in an arbitrary order. Their model permits general asynchronous
algorithms, but each processor can have at most one message outstanding at a time.
Dwork, Herlihy, and Waarts [19] defined an asynchronous shared-memory model with
a stall metric. If several processes have reads or writes pending to a location, v, and
one of them receives a response, then all the others incur a stall. Hence the charge for
contention is linear in the contention, with requests to a location being serviced one
at a time. Their model permits general asynchronous algorithms, but each processor
can have at most one read or write outstanding at a time. Unlike their model, the
qrqw models capture directly how the contention delays the overall running time of
the algorithm, and are proposed as alternatives to other pram models for high-level
algorithm design. Unlike each of these models, the qrqw pram does not explicitly
limit the number of outstanding requests. The simd-qrqw pram, on the other hand,
has the same restriction as the Liu, Aiello, and Bhatt [47] and Dwork, Herlihy, and
Waarts [19] models, namely, one request per processor.

In contrast to many of the models mentioned above, the qrqw model focuses
on the contention to locations, rather than to memory modules or processors. Any
algorithm with high location contention will perform poorly on machines with non-
combining networks, regardless of the number of memory modules; any lower bound

THE QRQW PRAM MODEL 747

on location contention is a lower bound on memory-module contention. By focusing
on locations, the qrqw model is independent of the particular layout of memory on
the machine, e.g., the number of memory modules. Moreover, it is more relevant to
cache-only memory architectures (coma), such as the KSR1, that dynamically map
memory locations to processors as the computation proceeds. Location contention is
also a relevant metric for cache-coherence overhead, since the number of invalidates or
updates that must be sent on a write is often proportional to the number of processors
concurrently accessing the location being written [45]. The qrqw models, like the
standard pram and other similar models, are true shared-memory models, providing
a simple view of the shared memory as a collection of independent cells.

4. Adding contention to the work-time framework. In the work-time pre-
sentation, a parallel algorithm is described in terms of a sequence of steps, where each
step may include any number of concurrent read, compute, or write operations [39].
In this context, the work is the total number of operations, and the time is the number
of steps. This is sometimes the most natural way to express a parallel algorithm, and
forms the basis of many data parallel languages (e.g., nesl [8]). For standard pram
models, Brent’s scheduling principle [10] can often be applied to obtain an efficient
O(work/p+ time) time algorithm for a p-processor pram.

4.1. The QRQW work-time framework. We show here that the work-time
paradigm can be used to advantage for the qrqw pram. It is extended into a qrqw
work-time presentation by adding at each parallel step i the additional parameter ki,
the maximum contention at this step. Given an algorithm A in the qrqw work-time
presentation, define the work to be the total number of operations6 and the time to
be the sum over all steps of the maximum contention ki of each step (as in the simd-
qrqw pram model). We note that one of the useful features of the traditional work-
time presentation is that the time evaluation is independent of the work evaluation.
Perhaps somewhat surprisingly, in the qrqw work-time presentation, too, the time
evaluation (which is based on the contention at each step) is independent of the work
evaluation: there is no benefit or loss in having steps with high contention also have
high work, as long as the total contention and work remain the same. An algorithm
given in the qrqw work-time presentation can be transformed into an efficient qrqw
pram algorithm, as follows.

Theorem 4.1. Assume processor allocation is free. Any algorithm in the qrqw
work-time presentation with x operations and time t (where t is the sum of the max-
imum contention at each step) runs in at most x/p + t time on a p-processor qrqw
pram.

Proof. Let the number of parallel steps in the algorithm be r. Let xi be the number
of operations in the ith parallel step, and let ki ≥ 1 be the maximum contention in
the ith parallel step, 1 ≤ i ≤ r. Hence t =

∑r
i=1 ki. We map the operations in

the ith step uniformly onto the p qrqw pram processors. Thus each qrqw pram
processor will receive at most ni = dxi/pe operations. The maximum contention at
any memory location remains the same as in the original work-time algorithm, i.e.,
at most ki. Hence the time cost for the ith step on a p-processor qrqw pram is

6This contrasts with the work in a qrqw pram or simd-qrqw algorithm, which is the processor-
time product.

748 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

max{ni, ki}. The overall algorithm, therefore, takes time

r∑
i=1

max{dxi/pe, ki} ≤
r∑
i=1

((xi/p) + ki) = x/p+ t.

Thus Brent’s scheduling principle can indeed be extended to the qrqw work-time
framework.

4.2. Automatic processor allocation. The mechanism of translating an al-
gorithm from a work-time presentation into a pram description is not addressed by
Theorem 4.1, which assumes processor allocation is free. If the pram model is ex-
tended to include a unit-time scan operation [6], as may be appropriate for some
machines such as the CM-5, then the processor allocation issue can be resolved with
only small overhead. The rest of this section deals with the standard pram models
that do not incorporate the scan operation.

Traditionally, the processor allocation needed to implement Brent’s scheduling
principle has been devised in an ad hoc manner. However, it is known that in several
common situations an efficient automatic implementation is feasible, especially on the
crcw, often using linear-compaction and load-balancing algorithms as essential tools
(see [52] and references therein). In this section, we adapt these techniques to the
qrqw pram model.

Rather than tracing the details of each technique, it would be helpful to show
that in general the contention parameter on the qrqw does not change the validity
of these crcw techniques. Indeed, the fact that time evaluation and work evaluation
are done independently in the qrqw work-time presentation suggests that scheduling
techniques on the crcw pram should be useful for the qrqw pram as well. Next
we elaborate on this issue.

Let A be a class of algorithms given in the qrqw work-time presentation. A
qrqw scheduling scheme SA for A is a scheme that maps any algorithm A in A into
a qrqw pram algorithm. If algorithm A has work-time bounds of w and t, then SA
will convert A into a p-processor qrqw pram algorithm for some suitable number of
processors p that runs in time τ = t+ tA+ (w+wA)/p and work τ · p, where tA and
wA are the overhead in time and work for the scheduling scheme SA. The scheduling
scheme SA is work preserving if τ · p = O(w).

Similar definitions hold for a scheduling scheme for a class of crcw pram algo-
rithms given in the work-time presentation.

Consider a class of algorithms B given in a crcw work-time presentation, and
let SB be a scheduling scheme that adapts each algorithm B in B into a crcw pram
algorithm B′. Let A be the class of algorithms in the qrqw work-time presentation
corresponding to B. That is, each algorithm A in A is identical to an algorithm B in
B except that the time of each parallel step is taken to be the maximum contention
of that step. Thus algorithms A and B perform the same amount of work, though
the running time of algorithm A could be larger. Let SA be a scheduling scheme
on a qrqw pram corresponding to the crcw pram scheduling scheme SB. That
is, the scheduling scheme SA adapts each algorithm A in A into a qrqw pram
algorithm A′ which, except for the scheduling overhead, is identical in execution (but
not necessarily in time complexity) to the crcw pram algorithm B′ derived by SB
from the algorithm B in B to which algorithm A corresponds.

Lemma 4.2. Let wA, tA and wB, tB be the work-time overhead of SA and SB
respectively. If SB is work preserving on the crcw pram and wA = O(wB) then

THE QRQW PRAM MODEL 749

SA is work preserving on the qrqw pram. In particular, an algorithm A in A with
work-time bounds of w and t will run optimally on a qrqw pram in time O(w/q)
using q processors when q ≤ w/(t+ tA).

Proof. Let A correspond to a crcw work-time algorithm B in B that runs in
time t′ with work w′. Note that t ≥ t′ and w = w′ since A corresponds to B. On a
p-processor crcw pram, SB maps algorithm B to run in time t′ + tB + (w + wB)/p.
Thus p ·(t′+tB+(w+wB)/p) = O(w) for some value of p, since SB is work preserving.
This implies that wB = O(w), and hence wA = O(w).

Now let SA map algorithm A into a qrqw pram algorithm A′ with q ≤ w/(t+tA)
processors. Then algorithm A′ will run in time τ = t + tA + (w + wA)/q on the q-
processor qrqw pram, which gives the desired work-preserving schedule since

q · τ = q · (t+ tA) + w + wA ≤ w + w +O(w) = O(w).

Note that we can always transform a crcw pram scheduling scheme into an
equivalent qrqw pram scheduling scheme simply by viewing the overhead of the
crcw scheduling scheme in the work-time framework and interpreting it as a (possibly
slower) qrqw scheduling scheme with the same work overhead. This leads to the
following corollary to Lemma 4.2.

Corollary 4.3. Let B be a class of algorithms given in a crcw work-time
presentation and let A be a class of algorithms in the qrqw work-time presentation
corresponding to B. Let SB be a crcw scheduling scheme for B and let SA be the
equivalent qrqw scheduling scheme for A. If SB is work preserving on the crcw
pram then SA is work preserving on the qrqw pram.

Corollary 4.3 shows that it is always possible to derive a work-preserving qrqw
scheduling scheme for a class of qrqw work-time algorithms corresponding to a class
of crcw work-time algorithms that have a work-preserving schedule. However, such
a qrqw scheduling scheme can be very slow. In particular if the algorithm for the
crcw scheduling scheme has a read or write with concurrency Θ(wB), where wB is
the work overhead of the crcw scheduling scheme, then the work-preserving qrqw
scheduling scheme degenerates into a sequential algorithm. A more useful way to
apply Lemma 4.2 is to substitute a fast work-preserving qrqw pram algorithm for
the qrqw scheduling scheme in place of the crcw scheduling scheme.

In what follows, we give three examples of general classes of algorithms for which
automatic processor allocation techniques can be applied to advantage: geometric-
decaying algorithms, general task-decaying algorithms, and spawning algorithms.
Processor allocation is done by a scheduling scheme that uses an algorithm for lin-
ear (approximate) compaction. The linear-compaction problem generalizes the 2-
compaction problem as follows. Given k nonempty cells at unknown positions in an
array of size n, with k known, move the contents of the nonempty cells to an output
array of O(k) cells. The linear-compaction problem can be solved by a randomized
crcw pram algorithm in time T ′lc(n) = O(log∗ n) time and linear work w.h.p. [33].
In section 7 (Theorem 7.4) we show that the linear-compaction problem can be solved
by a randomized simd-qrqw pram algorithm in time Tlc(n) = O(

√
log n) and linear

work w.h.p.
Sometimes the linear-compaction algorithm is used under the assumption that the

number of nonempty cells is at most k. An unsuccessful termination of the algorithm
is used to determine that the input consists of more than k nonempty cells. To make
such a determination possible, it is necessary to employ an algorithm for computing
the or function, as well as an algorithm for the broadcasting problem. Furthermore,

750 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

recall that a subtle property of the qrqw models is that unsuccessful steps may turn
out to be overly expensive if they incur (unexpected) high contention. (This is a
rather significant technical issue in the algorithms of section 6.) We assume here that
the number of nonempty cells never exceeds αk for some constant α > 0, where k is
the estimated upper bound. In such cases, the running time of the linear-compaction
algorithm of Theorem 7.4 will increase by at most a constant factor. Let Tlcd(n)
be the running time of a linear-compaction algorithm followed by a determination of
whether the algorithm was successful or not on an n-processor qrqw pram, and let
T ′′lcd(n) be the corresponding running time on a crqw pram.

In section 8 we show that on the qrqw pram broadcasting requires Ω(logn) ex-
pected time. Therefore when it is necessary to determine if a run of linear compaction
was unsuccessful on the qrqw pram, it is best to use a Θ(log n) time erew pram
algorithm for prefix sums [42]. Hence, Tlcd(n) = Θ(logn). Performing a broadcast on
the simd-crqw pram is trivial in constant time. In section 6 (Theorem 6.5) we show
that the or problem can be solved by a simd-crqw pram in time O(log n/ log log n)
and linear work w.h.p. Hence, T ′′lcd(n) = O(log n/ log log n) w.h.p.

Task-decaying algorithms. A task-decaying algorithm (or simply a decaying
algorithm) is one that starts with a collection of unit tasks. Each of these tasks
progresses for a certain number of steps of the algorithm, and then dies. A task is
said to be a live task until it dies. No other tasks are created during the course of the
algorithm. The work load wi is the number of live tasks at step i of the algorithm.

Geometric-decaying algorithms. A decaying algorithm in either the qrqw
or the crcw work-time presentation is geometric-decaying if the sequence of work
loads {wi} is upper bounded by a decreasing geometric series. Typically the work w
of such algorithms is O(n), where n is the problem size.

Let A and B be the class of geometric-decaying algorithms in the qrqw and
crcw work-time presentations respectively. Using techniques from [31, 32, 53] and
Lemma 4.2 we have the following theorem.

Theorem 4.4. Let A be a geometric-decaying algorithm in a qrqw work-time
presentation with time t and work n. Then Algorithm A can be implemented on a p-
processor qrqw pram to run in time O(n/p) when p = O(n/(t+Tlc(n) log(Tlc(n)))).

Proof. Let B be a geometric-decaying algorithm in the crcw work-time presen-
tation to which Algorithm A corresponds. A work-preserving scheduling scheme SB
that can adapt Algorithm B into a p-processor crcw pram algorithm B′ is given
in [53]. The scheduling scheme SB consists of log(n/p) applications of an algorithm
for a linear-compaction problem of size p. On the qrqw pram we will use a schedul-
ing scheme SA corresponding to SB. When mapping into a p-processor qrqw pram,
scheduling scheme SA will consist of log(n/p) applications of a qrqw pram algorithm
for the linear-compaction problem of size p. The time overhead incurred by scheduling
scheme SA is tA = O(Tlc(p) log(n/p)), and the work overhead is p · tA. We observe, as
in [53], that if Tlc(p) log(n/p) ≥ n/p, then log(n/p) = O(log(Tlc(n))), and hence for
p ≤ n/(Tlc(p) log(Tlc(n))), scheduling scheme SA has a work overhead of O(n). There-
fore, by Lemma 4.2, SA maps algorithm A into a p-processor qrqw pram algorithm
A′ to run in time O(n/p) provided p = O(n/(t+ Tlc(p) log(Tlc(n))).

By Theorem 4.4 and the result for linear-compaction shown in section 7 (i.e.,
Theorem 7.4) we obtain the following corollary.

Corollary 4.5. Algorithm A in Theorem 4.4 can be implemented on a p-
processor qrqw pram to run in time O(n/p) w.h.p. when p = O(n/(t+

√
log n log log n)).

General task-decaying algorithms. Recall that in a task-decaying algorithm

THE QRQW PRAM MODEL 751

in either the qrqw or the crcw work-time presentation, the sequence of work loads
{wi} is a monotonically nonincreasing series. Thus, task-decaying algorithms gen-
eralize geometric-decaying algorithms. A task-decaying algorithm is predicted if an
approximate bound on the sequence of work loads {wi} is known in advance; specifi-
cally, if a sequence {w′i} is given such that for all i, w′i ≥ wi and

∑
i w
′
i = O(

∑
i wi).

Let A and B be the class of general task-decaying algorithms in the qrqw and crcw
work-time presentations respectively.

Theorem 4.6. Let A be a task-decaying algorithm in a qrqw work-time presen-
tation with time t and work n. Then Algorithm A can be implemented to run in time
O(n/p) on a p-processor qrqw pram when p = O(n/(t + Tlcd(n) log(Tlcd(n)))) and
on a p-processor crqw pram when p = O(n/(t+ T ′′lcd(n) log(T ′′lcd(n)))). If Algorithm
A is also predicted then it can be implemented on a p-processor qrqw pram to run
in time O(n/p) when p = O(n/(t+ Tlc(n) log(Tlc(n)))).

Proof. Let B be a predicted task-decaying algorithm in a crcw work-time pre-
sentation to which Algorithm A corresponds. A work-preserving scheduling scheme
SB that can adapt Algorithm B into a p-processor crcw pram algorithm B′ is
given in [53]. The scheduling scheme SB is based on several applications of an al-
gorithm for the linear-compaction problem of size p. The analysis in [53] is based
on showing that the cost of all but log(n/p) applications of the linear-compaction
algorithm can be amortized against the execution of Algorithm B, with only a con-
stant factor overhead. Hence the time overhead of SB is tB = O(T ′lc(n) log(n/p)).
As for the geometric-decaying algorithm, the time overhead can be shown to be
tB = O(T ′lc(n) log(T ′lc(n))).

Consider a scheduling scheme SA, corresponding to SB, which adapts Algorithm
A to a p-processor qrqw pram algorithm A′. An amortization argument similar
to the one used for SB implies that the cost of all but log(n/p) applications of the
linear-compaction algorithm can be amortized against the execution of Algorithm A,
with only a constant factor overhead. The time overhead of SA is therefore tA =
O(Tlc(n) log(n/p)), and hence tA = O(Tlc(n) log(Tlc(n))), and the work overhead is
p · tA. Hence for p = O(n/(Tlc(n) log(Tlc(n)))) this schedule has a work overhead of
O(n). By Lemma 4.2 the scheduling scheme SA maps A into a p-processor qrqw
pram in O(n/p) time provided p = O(n/(t+ Tlc(n) log(Tlc(n)))).

If Algorithm B is not predicted then each application of the linear compaction al-
gorithm must be followed by a detection of whether there was a successful termination.
In such a case, the underestimation is by at most a factor of two. Similar arguments
to the above imply that the corresponding algorithm A can be adapted to a qrqw
pram algorithm with running time O(n/p) provided p ≤ n/(t+ Tlcd(n) log(Tlcd(n)))
and to a crqw pram algorithm with running time O(n/p) provided p ≤ n/(t +
T ′′lcd(n) log(T ′′lcd(n)))

By the result stated above we have the following corollary.
Corollary 4.7. Algorithm A in Theorem 4.6 can be implemented to run in

time O(n/p) w.h.p. on a p-processor qrqw pram when p = O(n/(t+ log n log log n))
and on a p-processor crqw pram when p = O(n/(t + log n)). If Algorithm A is
predicted then it can be implemented on a p-processor qrqw pram to run in time
O(n/p) w.h.p. when p = O(n/(t+

√
log n log log n)).

Spawning algorithms. A spawning algorithm starts with a collection of unit
tasks, and at each step of the algorithm, each task can

i. progress to the next step of the algorithm;
ii. progress to the next step of the algorithm and spawn another new task; or

752 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

iii. not progress to the next step and die.
The total number of tasks in a spawning algorithm may increase or decrease in

each step. Thus, the spawning model generalizes the model for task-decaying al-
gorithms. As in the task-decaying model, a spawning algorithm is predicted if an
approximate bound on the sequence of work loads {wi} is known in advance; specifi-
cally, if a sequence {w′i} is given such that for all i, w′i ≥ wi and

∑
i w
′
i = O(

∑
i wi).

Theorem 4.8. Let A be a spawning algorithm in a qrqw work-time presentation
running in time t and work n, and let t′ be the number of parallel steps in A. Then
Algorithm A can be implemented to run in time O(n/p) on a p-processor qrqw pram
when p = O(n/(t+ t′ ·Tlcd(n))) and on a p-processor crqw pram when p = O(n/(t+
t′ · T ′′lcd(n))). If Algorithm A is also predicted then it can be implemented to run in
time O(n/p) on a p-processor qrqw pram when p = O(n/(t+ t′ · Tlc(n))).

Proof. Let B be a predicted spawning algorithm in a crcw work-time presen-
tation to which Algorithm A corresponds. Then the running time of Algorithm B
is t′. A work-preserving scheduling scheme SB that can adapt Algorithm B into a
p-processor crcw pram algorithm B′ is given in [52]. The scheduling scheme SB
consists of applying an algorithm for a linear-compaction problem of size p a con-
stant number of times after each parallel step. The time overhead of SB is therefore
O(t′ · T ′lc(n)).

Consider a scheduling scheme SA, corresponding to SB, which adapts Algorithm
A to a p-processor qrqw pram algorithm A′. The scheduling scheme SA consists of
applying an algorithm for a linear-compaction problem of size p a constant number
of times after each parallel step. The time overhead incurred by SA is thus tA =
O(t′ ·Tlc(n)) and the work overhead is wA = p · tA. Hence by Lemma 4.2 algorithm A′

runs in time O(n/p) on a p-processor qrqw pram provided p = O(n/(t+ t′ ·Tlc(n))).
If Algorithm B is not predicted then, as in the case of the task-decaying algorithm

of Theorem 4.6, each application of the linear-compaction algorithm must be followed
by a detection of whether there was a successful termination. Similar arguments to
the above imply that the corresponding algorithm A can be adapted to a p-processor
qrqw pram algorithm running in time O(n/p) provided p = O(n/(t + t′ · Tlcd(n))),
and to a p-processor crqw pram algorithm running in time O(n/p) provided p =
O(n/(t+ t′ · T ′′lcd(n))).

Corollary 4.9. Algorithm A in Theorem 4.8 can be implemented to run in time
O(n/p) w.h.p. on a p-processor qrqw pram when p = O(n/(t+ t′ · log n)) and on a
p-processor crqw pram when p = O(n/(t + t′ · log n/ log log n)). If Algorithm A is
predicted then it can be implemented to run in time O(n/p) w.h.p. on a p-processor
qrqw pram when p = O(n/(t+ t′ · √log n)).

The spawning model can be further generalized to include a start operation in
which one task may spawn n new tasks to begin in the next time step. This extended
model is called v-pram in [35], where it was suggested. It was shown in [35] that
the work-preserving scheme for the spawning model can be extended to the v-pram
model as well, with the same overhead. Accordingly, Theorem 4.8 and Corollary 4.9
apply to the v-pram model.

A more general type of spawning algorithm, the L-spawning algorithm, is studied
in [29]. In the L-spawning model, each task can spawn up to L − 1 additional tasks
at each step. It is shown in [29] that an L-spawning algorithm with time t, work n,
and t′ parallel steps can be implemented on a p-processor qrqw pram to run in time
O(n/p) w.h.p. when p = O(n/(t+ t′

√
log n log logL+ t′ logL)). This implementation

applies a more general load-balancing algorithm given in [29].

THE QRQW PRAM MODEL 753

5. Realization on feasible networks. The bsp model was introduced by
Valiant [61, 62] as a model of parallel computation that takes into account overheads
incurred by latency, synchronization, and memory granularity. It consists of compo-
nents that can perform local ram computations and communicate with one another
through a router which delivers messages between pairs of components. Messages to
a component are serviced one at a time. The bsp provides facilities for synchronizing
the components at regular intervals. There are three parameters to the model: p,
the number of components, periodicity L, the number of time units between synchro-
nizations, and throughput g, a measure of the bandwidth limitations of the router.
A particular case studied by Valiant is one that sets g to be a constant and L to be
Θ(log p), and has each synchronization involve all the components; we denote this the
standard bsp model.

A standard bsp computation consists of a sequence of supersteps, with each su-
perstep separated from the next by a global synchronization point among all the
components. In each superstep, each component sends messages, receives messages,
and performs local ram steps. Operations at a component (message initiations, mes-
sage receipts, ram operations) are assumed to take constant time. No assumption
is made about the relative delivery times of messages within a superstep, and local
operations may only use data values locally available to the component prior to the
start of the superstep. If the operations in a superstep, including message deliveries,
do not complete in L time units, additional intervals of L time units are allocated to
the superstep until it completes.

The bsp model has been advocated as one that forms a bridge between software
and hardware in parallel machines, that is, between abstract models for algorithm
design and realistic parallel machines. This approach is supported in [61, 62] by
providing a fast, work-preserving emulation of the standard bsp model on hypercube-
type noncombining networks on the one hand, and a fast, work-preserving emulation
of the erew pram on the standard bsp on the other hand. In particular, it is shown
that the erew pram can be emulated in a work-preserving manner with logarithmic
slowdown on the standard bsp, while the standard bsp can be emulated in a work-
preserving manner with constant slowdown on, e.g., the multiport hypercube. In the
multiport hypercube on p nodes, each node can receive a message on each of its log p
incoming wires and route them along the appropriate outgoing wires in constant time,
subject to the constraint that at most one message can be sent along each outgoing
wire. These emulations show that the choice of L = Θ(log p) and g = Θ(1) used
in the standard bsp is sufficient to hide the latency, synchronization, and memory
granularity overheads occurring in the emulations.

Valiant [61] shows that a v-processor pram step with contention κ can be simu-
lated on a p-processor standard bsp in O(v/p+ κ log p) time w.h.p. It follows readily
from this result that a p-processor simd-qrqw pram algorithm running in time t can
be emulated on a (p/ log p)-component standard bsp model in O(t log p) time w.h.p.

In this section we show that the more powerful qrqw pram can also be emulated
in a work-preserving manner with only logarithmic slowdown on the standard bsp as
well as on hypercube-type networks. The proof of this result is complicated by the
fact that a qrqw step with time cost k may have up to 2kp reads and writes, whereas
in the previous emulation results, the pram step being emulated had at most 2p
reads and writes, independent of k. As in the previous emulations of pram models on
the standard bsp given in [61], we apply a random hash function to map the shared
memory of the pram onto the bsp components; this function is assumed to map

754 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

each shared-memory location to a component chosen uniformly and independently at
random.

Theorem 5.1. A p-processor qrqw pram algorithm (or simd-qrqw pram al-
gorithm) running in time t, where t is polynomial in p, can be emulated on a (p/ log p)-
component standard bsp model in O(t log p) time w.h.p.

Proof. As stated above we apply a hash function that maps the shared memory
of the qrqw pram to the bsp components such that each shared-memory location is
mapped on to a bsp component chosen uniformly and independently at random. We
first show that for each qrqw step with time cost k, the number of memory requests
mapped to any bsp component is O(k log p) w.h.p. Then we use this claim to argue
that the time to emulate the step on the bsp is O(k log p) w.h.p., and hence the time
to emulate all the qrqw steps is O(t log p) w.h.p.

Consider the ith step of the qrqw pram algorithm, with time cost ki. For
simplicity of exposition, we assume that each processor has exactly ki shared-memory
accesses, where an access is either a read or a write. Let m1, . . . ,md be the different
memory locations accessed in this step, and let qj be the number of accesses to location
mj , 1 ≤ j ≤ d. For the purpose of this analysis we add δpki memory accesses to
this step, for a constant δ ≥ 23, consisting of accesses with contention ki to locations
md+1, . . . ,md′ , where d′ = d+δp. With this addition, the ith step has vi

′ = (δ+1)pki
concurrent accesses to d′ different memory locations, and the maximum contention is

ki. We set qj = ki for d + 1 ≤ j ≤ d′ and note that v′ =
∑d′

j=1 qj . We now show
that the bound stated in the theorem holds for this augmented problem. Clearly, this
implies that the bound holds for the original problem.

As indicated earlier we assume that the memory has been randomly hashed onto
the p/ log p components of the bsp. Consider a fixed component C. As in [61], we
define a random variable xj , 1 ≤ j ≤ d′, where xj = qj/ki if mj is hashed onto C and

zero otherwise. Let X =
∑d′

j=1 xj . We note that xj = qj/ki with probability log p/p,
and ki ·X is the number of messages sent to C in the ith step. Then

E(xj) = qj log p/(pki), 1 ≤ j ≤ d′ .
Let µ be the mean of the expectations of the xj :

µ =

d′∑
j=1

(qj log p)/(pkid
′) = vi

′ log p/(pkid
′) = (δ + 1)pki log p/(pkid

′) .

So µ = (δ + 1) log p/d′. By Hoeffding’s inequality [37],

Pr(X > (µ+ z)d′) ≤ e−z2d′/3µ ,

provided z < min(µ, 1− µ). Let z = µ/2. Then

Pr (X > 3µd′/2) ≤ e−µd′/12 = e−(δ+1) log p/12 = 1/pΘ(δ) .

Let t = O(pr), and let c > 0 be an arbitrary constant. By choosing δ sufficiently
large, we have that the probability that any component receives more than 3µd′ki/2 =
Θ(ki log p) messages in the ith qrqw step is less than 1/pr+c.

Each bsp component emulates log p qrqw pram processors. It sends O(ki log p)
“read” messages and receives O(ki log p) (w.h.p.) such messages. In the next super-
step, it sends O(ki log p) (w.h.p.) “read reply” messages and receives O(ki log p) such

THE QRQW PRAM MODEL 755

replies. Finally, in the last superstep, it performs O(ki log p) local ram operations,
sends O(ki log p) “write” messages, and receives O(ki log p) (w.h.p.) such messages,
updating the values of the appropriate locations. Since the periodicity L is Θ(log p)
and the gap g is constant, the time taken to complete the ith step on the bsp is
O(ki log p) w.h.p.

Thus, with probability greater than (1− 1/pc) the bsp completes the emulation
of the O(t) time augmented qrqw computation in O(

∑m
i=1 ki log p) time, where m is

the number of steps in the qrqw computation, i.e., the bsp completes the emulation
in O(t log p) time w.h.p.

Note that unlike Valiant’s emulation of the erew pram on the standard bsp,
the emulation above may result in a rather uneven distribution of messages among
the components whenever there is an uneven distribution of contention among the
locations. This raises concerns regarding possible contention in routing the messages
between the components. However, the (standard) bsp model ignores all issues of
routing other than the number of messages sent and received at each component, and
hence the proof of Theorem 5.1 addresses only these same routing issues.

Further issues in routing do arise in emulating the pram or bsp on models such as
the multiport hypercube. Valiant defines the slackness of a parallel algorithm being
emulated to be the ratio of the number of virtual processors in the algorithm to the
number of “physical” processors in the emulating model. In [61], Valiant showed that
a p-component standard bsp algorithm with slackness at least log p and running in
time t can be emulated on a p-node multiport hypercube in O(t) time w.h.p. Since
the slackness in the emulation in Theorem 5.1 is log p, we have the following theorem.

Theorem 5.2. A p-processor qrqw pram algorithm (or simd-qrqw pram
algorithm) running in time t can be emulated on a (p/ log p)-node multiport hypercube
in O(t log p) time w.h.p.

Thus the uneven distribution of messages that may result from emulating a qrqw
pram algorithm on the standard bsp does not prevent a fast, work-preserving emu-
lation of the qrqw pram on the multiport hypercube.

6. Leader election and computing the OR. Given a Boolean array of n bits,
the or function is the problem of determining if there is a bit with value 1 among the
n input bits. The leader election problem is the problem of electing a leader bit from
among the k out of n bits that are 1 (k unknown). The output is the index in [1..n]
of the bit if k > 0, or 0 if k = 0. This generalizes the or function, as long as k = 0 is
possible.

In this section we present several randomized and deterministic algorithms for
solving these problems on queue-write prams. Our main result is a randomized
algorithm for the two problems on the crqw pram that performs linear work and
runs in O(log n/ log log n) time w.h.p. This result is somewhat surprising since it
improves on the best possible time bound (which is Θ(logn)) for any deterministic or
randomized crew pram algorithm for the two problems.

Most of the randomized algorithms we present are of the Las Vegas type, while a
few are of the Monte Carlo type. A Las Vegas algorithm is a randomized algorithm
that always outputs a correct answer and obtains the stated bounds with some stated
probability. A Monte Carlo algorithm, in contrast, is a randomized algorithm that
outputs a correct answer with some stated probability. In the analysis of some of our
randomized algorithms, we apply the Chernoff bound

Pr{X ≥ βE[X]} ≤ e(1−1/β−ln β)βE[X] for all β > 1 ,

756 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

and in particular, its following corollary.
Observation 6.1. Let X be a binomial random variable. For all f = O(log n),

if E[X] ≤ 1/2f , then X = O(log n/f) w.h.p. Furthermore, if E[X] ≤ 1, then X =
O(log n/ log log n) w.h.p.

Proof. Let β = c log n/(fE[X]) for a constant c > max{2, f/ log n} to be de-
termined. Then β > 1/E[X] ≥ 2f , since βE[X] = c log n/f > 1. By the Chernoff
bound,

Pr{X ≥ c log n/f} ≤ e(1−1/β−ln β)·(c/f) log n < e−(c/2f) ln β logn

= e−(c/2f) log β·ln n = 1/n(c/2f) log β < 1/nc/2 .

Hence for any δ > 1, there exists a constant c = max{2δ, f/ log n} such that Pr{X ≥
c log n/f} < 1/nδ.

If E[X] ≤ 1, we take β = c log n/(log log nE[X]), for a constant c > 2 to be
determined. Then log β ≥ log log n − log log logn ≥ 2 log log n/3. By the Chernoff
bound,

Pr{X ≥ c log n/ log log n} ≤ e(1−1/β−ln β)·(c/ log log n) log n < e−(c/2 log log n) ln β logn

= e−(c/2 log log n) log β·ln n = 1/n(c/2 log log n) log β

≤ 1/nc/3 .

Hence for any δ > 1, there exists a constant c = 3δ such that Pr{X ≥ c log n/ log log n}
< 1/nδ.

6.1. Deterministic algorithms. By having each processor whose input bit is 1
write the index of the bit in the output memory cell, we obtain a simple deterministic
simd-erqw pram algorithm for leader election (and similarly for the or function)
that runs in max{1, k} time using n processors, where k is the number of input bits
that are 1 (k unknown). This is a fast algorithm if we know in advance that the value
of k is small. However, for the general leader election problem, a better algorithm
is the natural erew pram algorithm for leader election which uses a parallel prefix
algorithm to compute the location of the first 1 in the input; this takes Θ(logn) time
and Θ(n) work.

We can derive an Ω(log n/ log log n) lower bound for the or function using a
lower bound result of Dietzfelbinger, Kutylowski, and Reischuk [17] for the few-write
pram. Recall that the few-write pram models are parameterized by the number
of concurrent writes to a location permitted in a unit-time step. (Exceeding this
number is not permitted.) Let the κ-write pram denote the few-write pram model
that permits concurrent writing of up to κ writes to a location, as well as unlimited
concurrent reading. We begin by proving a more general result for emulating the
crqw on the few-write pram, and then provide the or lower bound.

Observation 6.2. A p-processor crqw pram deterministic algorithm running
in time t can be emulated on a p-processor t-write pram in time O(t).

Proof. Since the crqw algorithm runs in time at most t on all inputs, then the
maximum write contention is at most t on all inputs. Hence the t-write pram can be
used to emulate each write substep, and the emulation proceeds as was done for the
crcw (Observation 2.2).

Theorem 6.1. Any deterministic algorithm for computing the or function on a
crqw pram with arbitrarily many processors requires Ω(log n/ log log n) time.

Proof. Dietzfelbinger, Kutylowski, and Reischuk [17] proved an Ω(logn/ log κ)
lower bound for the or function on the κ-write pram. Let T be the time for the

THE QRQW PRAM MODEL 757

or function on the crqw pram. Then by Observation 6.2, the or function can
be computed on the T -write pram in O(T) time. Thus T = Ω(log n/ log T), and
hence T log T = Ω(log n). Now if T = o(log n/ log log n), then log T = o(log log n),
contradicting T log T = Ω(log n). Thus T = Ω(log n/ log log n).

Since the ercw pram can compute the or function in constant time, Theorem 6.1
implies the following separation result.

Corollary 6.2. There is an Ω(log n/ log log n) time separation of a determin-
istic {er,qr,cr}cw pram from a deterministic {er,qr,cr}qw pram.

Cook, Dwork, and Reischuk [12] proved that any deterministic algorithm for
computing the or function on a crew pram with arbitrarily many processors requires
Ω(log n) time. Dietzfelbinger, Kutylowski, and Reischuk [17] later proved a similar
lower bound for randomized crew pram algorithms. The difficulty in extending
either of these results to the crqw pram is that in the crqw pram, the running
time of a step may be different on different inputs. Thus in a crqw write step with
contention k for a given input I, the lower bound argument of [12, 17] will allow
processors to gain knowledge about input I as a function of the maximum contention,
K, for the step over all inputs, and K could be much larger than k.

6.2. Randomized algorithms for special cases. In this subsection, we present
a series of randomized leader election algorithms, under various scenarios. First, con-
sider the leader election problem when the value of k is known. On the simd-qrqw
pram, a simple, fast, randomized algorithm for this problem is to have the k proces-
sors whose input bits are 1 write to the output cell with probability 1/k. This runs
in constant time on the simd-qrqw, and, as a low-contention algorithm, will run fast
in practice. The failure probability can be reduced by repeating the algorithm.

Observation 6.3. Consider the problem of electing a leader bit from among the
k out of n bits that are 1, where k is known. There is a (randomized) Monte Carlo
simd-erqw pram algorithm that runs in O(1) expected time and O(n) expected work,
and probability of failure less than 1/e. There is a (randomized) Las Vegas simd-crqw
pram algorithm that runs in O(1) expected time and O(n) expected work.

Proof. The index of each bit whose value is 1 is written into the output cell with
probability 1/k. This has constant expected contention, and the probability that no
value is written is (1− 1/k)k < 1/e. To obtain a Las Vegas algorithm, the write step
is repeated until there is at least one writer. Termination is detected by using the
concurrent-read capability. The expected time is O(1+1/e+1/e2 +1/e3 + · · ·), which
is O(1).

The expected time for this algorithm is constant; however, we are interested in
high-probability results. The next two theorems deal with high-probability random-
ized algorithms for the case when a good estimate for k is known, and the case when
a good upper bound for the value of k is known.

Given a good estimate for k. In the following, we describe a fast leader
election algorithm when the number of bits competing for leadership is known to

within a multiplicative factor of 2
√

logn.
Theorem 6.3. Consider the problem of electing a leader bit from among the k

out of n bits that are 1. Let k̂ be known to be within a factor of 2
√

logn of k, i.e.,

k̂/2
√

logn ≤ k ≤ k̂2
√

logn. There is a Monte Carlo simd-erqw pram algorithm that,
w.h.p., elects a leader in O(

√
log n) time with O(n) work. On the simd-crqw pram,

or if k̂ ≤ 2
√

logn, the same bounds can be obtained for a Las Vegas algorithm.

Proof. We describe the algorithm for n/
√

log n processors. Let p = min(1, 2c
√

logn

k̂
),

758 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

for a constant c ≥ 1 to be determined by the analysis. Let A be an array of size

m = 2(c+2)
√

logn, initialized to all zeros. The input bits are partitioned among the
processors such that each processor is assigned

√
log n bits.

Step 1. Each processor selects a leader from among its input bits that are 1, if
any.

Step 2. Each processor with a leader writes, with probability p, the index of the
leader bit to a cell of A selected uniformly at random.

Step 3. m of the processors participate to select a nonzero index from among
those written to A.

If k̂ ≤ 2
√

logn, then p = 1 and this is a Las Vegas algorithm. Otherwise a Las
Vegas algorithm is obtained by repeating steps 2 and 3 until there is a nonzero index
in A. Termination is detected by using the concurrent-read capability.

Step 1 takes O(
√

log n) time. Since m = 2O(
√

logn), an erew binary fanin ap-
proach can be used to obtain the same time bounds for step 3. For step 2, we will
show that the contention is O(

√
log n) w.h.p. Let Xi be the number of writers to cell

i of A. Then

E[Xi] ≤ kp/m ≤ k2c
√

logn/k̂m ≤ k/k̂22
√

log n ≤ 1/2
√

logn .

It follows from Observation 6.1 that the maximum contention over all cells of A is
O(
√

log n) w.h.p.
It remains to show that w.h.p., there is at least one writer to A (assuming that

k > 0). If k̂ ≤ 2c
√

logn, then p = 1 and hence there will be one writer to A for each

processor that has an input bit that is 1. Otherwise k̂ > 2c
√

logn, and the probability
that there are no writers to A is at most

(1− p)k/
√

logn = ((1− 1/(1/p))1/p)pk/
√

logn < (1/e)pk/
√

logn,

= (1/e)(k/k̂)2c
√

logn/
√

logn ≤ (1/e)2(c−1)
√

logn/
√

logn.

It follows that c can be chosen so that there is at least one writer w.h.p.
Given an upper bound on k. We next consider the case where we only have

an upper bound, kmax, on the number of input bits that are 1; the results we obtain

are not quite as good as when k is known to within a factor of 2
√

logn, but better
than the case when no bound on k (other than n) is known. The algorithm is a
straightforward modification of the previous algorithm (Theorem 6.3).

Theorem 6.4. Consider the problem of electing a leader bit from among k out of
n bits that are 1, given an upper bound, kmax, on k. There is a Las Vegas simd-erqw
pram algorithm that runs in O(log kmax +

√
log n) time with O(n) work w.h.p.

Proof. We describe the algorithm for n/(log kmax +
√

log n) processors. The
input bits are partitioned among the processors such that each processor is assigned
log kmax+

√
log n bits. If kmax = Ω(nε) for some constant 0 < ε ≤ 1, apply the erew

parallel prefix algorithm, as mentioned in section 6.1, to obtain the stated bounds.

Otherwise, let A be an array of size m = kmax · 2
√

log n, initialized to all zeros (note
that m = O(n)). Each processor selects a leader from among its input bits that are
1, if any. Then each processor with a leader writes to a cell of A selected uniformly
at random. Finally, m of the processors participate to select a nonzero index from
among those written to A. The first and third steps take O(log kmax +

√
log n) time.

In the second step, the expected contention to a cell i in A is at most 1/2
√

logn.
It follows from Observation 6.1 that the maximum contention over all cells of A is
O(
√

log n) w.h.p.

THE QRQW PRAM MODEL 759

6.3. A general randomized algorithm. It is shown in [17] that the or func-
tion on n bits requires Ω(logn) time on a randomized crew pram. (This lower
bound is for randomized algorithms that have zero probability of a concurrent write,
and correctly compute the or with probability bounded away from 1/2.) In contrast
to this lower bound, we show in this subsection that a randomized simd-crqw pram
can compute the or function on n bits in O(log n/ log log n) time and linear work
w.h.p.

Theorem 6.5. There is a Las Vegas simd-crqw pram algorithm for the leader
election problem (and the or function) that runs in O(log n/ log log n) time and linear
work w.h.p.

Proof. We first show the time bound using n log log n processors. We describe
the algorithm for the or function, which can be trivially modified to solve the leader
election problem. Since the number, k, of contending 1-bits is unknown, we will
search for the true value of k. We take larger and larger samples until we either find
a sample that contains at least one input bit that is 1, or learn that all input bits are
0. We must ensure that w.h.p. there will be at least one writer (with a 1) prior to the
iteration in which there are too many writers (i.e., the iteration where the contention
would not be O(log n/ log log n)). The new algorithmic result below is a technique for
amplifying probabilities on the simd-qrqw model so that this occurs.

1. Let s = c log n/ log log n, with c ≥ 1 a constant determined by the analysis.
Let A be an array of s2 log log n memory cells, A′ be an array of s log log n
memory cells, and A′′ be an array of log logn memory cells, each initialized
to all zeros. The output is to be written in memory cell x. We assign log log n
processors to each input bit. Each processor reads its input bit. Let p = s2/n.

2. Each processor with input bit 1 is active with probability p. Each such active
processor writes its index to some cell i of A chosen uniformly at random,
and then reads that cell. If the cell contains its index (i.e., no other processor
overwrote it), then it writes its index to cell i′ of A′, i′ = i mod s log log n,
and then reads that cell. If the cell contains its index, then it writes its index
to cell i′′ of A′′, i′′ = i′ mod log logn, and then reads that cell. If the cell
contains its index, then it writes a 1 into memory cell x.

3. Each processor reads x. If x = 0, repeat steps 2 and 3 with p = ps. If p ≥ 1,
repeat one last time with p = 1 and then stop.

Note that x is set to 1 only if there is a processor with a 1. Conversely, each processor
whose input bit is 1 either writes a 1 into x, writes its index in a cell of A in the
iteration that x is set to 1, or stops when x = 1; hence the algorithm always outputs
the correct answer. There are O(log n/ log s) iterations. If no processor writes to A in
an iteration, then the iteration takes O(1) time. Otherwise there is one last iteration
in which writes to A, A′, A′′, and x occur.

We now analyze the contention of these last four write steps. Let pj be the
probability used at iteration j; i.e., pj = sj+1/n. Let k be the number of (original)
input bits that are 1. Since we have a write step, 1 ≤ k ≤ n. Let t ≥ 0 be an integer
such that n/st ≥ k > n/st+1. Consider iteration t + 1 if it occurs. The probability
that no processor writes is at most

(1− pt+1)k log log n < (1/e)pt+1k log log n

= (1/e)ks
t+2 log log n/n

< (1/e)s log log n < (1/e)c logn

= (1/e)c
′· ln n = 1/nc

′

760 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

for some constant c′. Hence, if k > 0, there will be no iteration t+ 2 w.h.p.
Let W be the number of active processors at iteration t+ 1, if it occurs. Then

E[W] = pt+1k log log n = st+2k log log n/n.

By the choice of t, s ≥ st+1k/n > 1, and hence s2 log log n ≥ E[W] > s log log n. Let
Xi be the number of writers to cell i of A in iteration t+ 1. Then

E[Xi] = E[W]/s2 log log n ≤ 1.

By Observation 6.1, and since there are s2 log log n = o(n) cells, the maximum con-
tention for this write is O(log n/ log log n) w.h.p.

This bounds as well the contention of any iteration less than t + 1 in which a
write to A occurs (and hence is the last iteration). Since there is at most one winner
from each cell of A and exactly s cells of A that map to one cell of A′, the maximum
contention to a cell of A′ is s. Likewise, the maximum contention to a cell of A′′ is s
and the maximum contention to cell x is log log n.

It follows that the overall running time is O(log n/ log log n) w.h.p.
Finally, in order to make the algorithm work optimal, we should achieve the

same time bound using only n · log log n/ log n processors. For this we use an initial
computation phase in which we reduce the size of the input from n to n/ log n. For
this we divide the processors into n/ log n groups of log logn processors, and assign
to each group the simple task of finding the or of a block of logn input bits in
O(log n/ log log n) time. We then apply the algorithm described above to the reduced
array of n/ log n bits. This gives us the desired work-optimal randomized algorithm
for the or function on n bits in O(log n/ log log n) time w.h.p.

We note that the only large concurrent read in the previous algorithm is the
reading of x in step 3 of the algorithm.

Corollary 6.6. There is an Ω(log log n) time separation of a randomized simd-
crqw-pram from a randomized crew pram.

7. Linear compaction. Consider an array of size n with k nonempty cells, with
k known, but the positions of the k nonempty cells not known. The k-compaction
problem is to move the contents of the nonempty cells to the first k locations of
the array. The linear-compaction problem is to move the contents of the nonempty
cells to an output array of O(k) cells. The best known erew pram algorithms for
both problems take Θ(logn) time, using parallel prefix sums [42]. Even for the case
k = 2, there is a randomized Ω(

√
log n) expected-time lower bound for the erew

pram ([49], following [20]), and a deterministic lower bound of Ω(log logn) for an
n-processor crew pram [20].

The simple deterministic simd-erqw pram algorithm for leader election discussed
in section 6.1 can be trivially extended to the k-compaction problem as follows.

Observation 7.1. There is a deterministic simd-erqw pram algorithm for the
k-compaction problem that runs in O(k2) time with O(n) work.

Proof. The input is partitioned into subarrays of k2 cells. Each of the n/k2

processors reads the cells in its subarray and creates a linked list of the items in its
nonempty cells. Since there are only k nonempty cells, no processor can have more
than k items in its linked list. The algorithm proceeds in k rounds, in which processors
attempt to place each item on their list. At round i, each processor with an unplaced
item writes its index to cell i of the array. A designated processor then reads the cell,
and if the index found is j, it signals processor j (by writing to a cell designated for

THE QRQW PRAM MODEL 761

j), which then transfers the contents of its current item to the cell and continues to
the next round with its next unplaced item (if any). All other processors continue
with the same item as before. The contention in round i is at most k − i+ 1, so the
algorithm runs in O(k2) time.

By taking k = 2, and recalling the lower bounds mentioned earlier for the erew
and crew pram, we obtain the following two results, which are cited in Table 1 and
Table 2 in section 2.

Corollary 7.1. There is an Ω(
√

log n) time separation of a (deterministic or
randomized) simd-erqw pram from a (deterministic or randomized) erew pram.

Corollary 7.2. There is a separation of Ω(log log n) time with n processors
of a deterministic {qr,simd-qr,simd-cr}qw pram from a deterministic {qr,simd-
qr,cr}ew pram.

In the remainder of this section, we develop a simd-qrqw pram algorithm for
the linear-compaction problem that runs in O(

√
log n) time with linear work w.h.p.

Within our algorithm, we will employ the following well-known technique for k-
compaction, which runs in O(log n) time using only k processors on an erew pram.

Observation 7.2. The k-compaction problem with one processor assigned to
each nonempty cell can be solved by an erew pram algorithm in O(log n) time.

Proof. View the n elements as leaves of a full binary tree. At the ith step we
work at level i above the leaves, and inductively, for each node v at this level, we
have the solution (in the form of a linked list) for the leaves in the subtrees rooted
at the two children of v. To combine these solutions at v we need only to make the
last distinguished element in the subtree of the left child of v as the successor of the
first distinguished element in the right subtree of v. This can be performed by a
constant-time erew computation. Finally we perform list ranking on the linked list
of distinguished elements (using Wyllie’s pointer-jumping approach [40]) and transfer
the elements to their location in the output array.

Note that the input array need not be initialized: since we have an active processor
for each distinguished element, we can detect distinguished elements by a change in
the value of a memory cell.

To prove our simd-qrqw pram result, we start by proving the following lemma,
which shows how to achieve the desired time bound. However, the algorithm performs
superlinear work when k is large. We then show how to use this lemma to obtain a
linear work algorithm with the same time bound.

Lemma 7.3. There is a Las Vegas simd-qrqw pram algorithm for linear com-
paction that runs in O(

√
log n) time w.h.p. if

√
log n processors are assigned to each

nonempty cell.
Proof. Let an item denote a nonempty input cell. Let r =

√
log n, the number of

processors assigned to each item. Let A be an auxiliary array of size m = c1rk2c2
√

log n

for constants c1 ≥ 2, c2 ≥ 1 determined by the analysis. View the array A as

partitioned into k/ log n subarrays of size m′ = c1r2
c2
√

logn log n.
1. For each item, select a subarray of A uniformly at random. Each processor

assigned to the item selects a cell in that subarray uniformly at random and
tries to claim that cell.

2. At this point, between zero and r cells of A have been claimed on behalf of
each item. Denote an item successful if at least one cell of A has been claimed
on its behalf. For each successful item, select one of its cells in A, and mark
the rest as unclaimed.

3. In parallel for all subarrays, compact the claimed cells within each subarray

762 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

using Observation 7.2. We compact within subarrays here since, for large k,
compacting all of A is too slow.

4. View the output array as partitioned into k/ log n subarrays of size c1 log n.
For each j, if there are nj unclaimed cells in subarray j of the output, then
the contents of (up to) nj claimed cells in subarray j of A are transferred to
output subarray j. (In the first pass of the algorithm, nj = c1 log n, but in
any subsequent pass, nj may be smaller.) If there are more than nj claimed
cells in a subarray j, then for i > nj , the item associated with the ith claimed
cell in subarray j of A is denoted unsuccessful.

5. For each unsuccessful item, each of its r processors returns to step 1.
Since the processors assigned to an item repeat the algorithm until at least one

of them has successfully claimed an output cell, this is a Las Vegas algorithm. (Note
that processors may complete their participation in the algorithm at different times,
not knowing when all processors have terminated.) Let Xj be the number of items
selecting subarray j of A in step 1. Then E[Xj] = k/dk/ log ne ≤ log n. By Chernoff
bounds, for c1 ≥ 2 defined above,

Pr{Xj ≥ c1 log n} ≤ e(1−1/c1−ln c1)c1 logn < e/cc1 logn
1 < 1/nc1 .

After step 2, there is at most one claimed cell for each item, so w.h.p., there are at
most c1 log n claimed cells in a subarray. A processor tries to claim a cell in step 1
by first writing its index to the cell, then reading the cell: if it reads its index, it has
claimed the cell, and it writes the contents of its input cell to the claimed cell. For
each subarray j, let Yj,i be the number of processors selecting cell i of subarray j of A

in step 1. Then E[Yj,i] ≤ r ·c1 log n/m′ ≤ 1/2c2
√

logn. It follows from Observation 6.1
that the time for step 1 is O(

√
log n) w.h.p.

Step 2 can be done in O(log r) time. Step 3 applies Observation 7.2, and runs
in O(logm′) time, which is O(

√
log n) time. For step 4, for each j, the current value

of nj , as well as the index of the first unclaimed output cell in subarray j, can be
broadcast in O(log log n) time; the transferring takes constant time.

As for step 5, there are two types of unsuccessful items. As argued above,
w.h.p., there are at most c1 log n claimed cells in a subarray. It follows that the
probability that an item is unsuccessful in step 1 is less than (r · c1 log n/m′)r =

(1/2c2
√

logn)
√

logn < 1/nc2 . Moreover, it follows that, w.h.p., no cells are marked un-
successful in step 4. So w.h.p., all cells are successful in the first pass of the algorithm.

Theorem 7.4. There is a Las Vegas simd-qrqw pram algorithm for linear
compaction that runs in O(

√
log n) time with O(n) work w.h.p.

Proof. We describe the algorithm for n/
√

log n processors. Let an item denote
a nonempty input cell. Note that we make no assumption on the distribution of the
items within the input array.

1. View the n input cells as partitioned into subarrays of size 2 log2 n. Assign
2 log1.5 n processors per subarray. In parallel for all subarrays compact the
items in each subarray, using parallel prefix.

2. For subarrays with at most 2 logn items, we assign
√

log n processors per
item, and apply Lemma 7.3.

3. For subarrays with more than 2 logn items, we view the items as partitioned
into blocks of size log n. There are at most 2 log n such blocks in a subarray, so
we assign

√
log n processors per block. Viewing each block as a “superitem,”

apply Lemma 7.3 to compact the superitems into an array of size O(k/ log n).

THE QRQW PRAM MODEL 763

Then we transfer the items in each block to the output array of size O(k), in
the obvious way.

Each of steps 1–3 takes O(
√

log n) time w.h.p.

8. Broadcasting. Given b ∈ {0, 1} in a single memory location, the broadcast-
ing problem is to copy b into n fixed memory locations. There is a simple linear
work, O(log n) time erew pram algorithm for this problem. In this section we show
that this algorithm is the best possible even for the (randomized) qrqw pram by
providing an Ω(logn) lower bound on the expected running time of any deterministic
or randomized qrqw pram algorithm for this problem.

Our lower bound exploits the fact that the input domain for the broadcasting
problem has only two values. We show that for any problem with an input domain
of size 2, a simd-qrqw pram algorithm is no faster than the best erew pram
algorithm for the problem, and even a qrqw pram algorithm is at most two times
faster than the best erew pram algorithm for the problem. We also show that
a randomized algorithm for the problem is at most two times faster than the best
deterministic algorithm for the problem. These results, in turn, imply our lower
bound for broadcasting and related problems due to a lower bound for broadcasting
on the erew pram given by [4].

Our simulation of the simd-qrqw pram and the qrqw pram on the erew pram
results in a nonuniform algorithm on the erew pram. An algorithm is nonuniform
if it consists of different programs for different input sizes, and the program for a
given input size i cannot be generated easily simply by specifying the value of i. Most
algorithms used in practice are uniform, such that a single program works for all input
sizes. A nonuniform algorithm is not desirable from a practical point of view, since
the time bound for the algorithm is not guaranteed to be achieved on a given input
unless we have already generated the program for that input size. However, the lower
bound of [4] holds for both uniform and nonuniform algorithms (as is the case with
most lower bounds), and hence our simulation result gives the desired lower bound
for the simd-qrqw pram and the qrqw pram.

8.1. Constant-size input domain problems. We first deal with the simd-
qrqw pram. We show that any simd-qrqw pram algorithm for a problem defined
on a domain with only two values that runs in time T can be converted into an erew
pram algorithm that also runs in time T . The erew pram may be nonuniform and
may have a description that is of unbounded size. For an exact definition of the model
see [12].

Lemma 8.1. Let T be the running time for an algorithm A that solves a problem P
with input domain of size 2 on a simd-qrqw pram. Then, there exists an algorithm B
that solves P in time T on an erew pram, using the same number of processors and
the same working space. Algorithm B is nonuniform and its description is of size
O(T) memory locations per processor.

Proof. Assume, without loss of generality, that the input domain is {0, 1}. The
lemma is proved by constructing the erew pram Algorithm B from Algorithm A.
Consider the ith step in Algorithm A, and let κi(b) be the maximum contention in
this step on input b. Let κ′i = min {κi(0), κi(1)} (recall from Definition 2.1 that
κ′i ≥ 1). Step i will be implemented in Algorithm B in at most κ′i substeps, as
described below. Therefore, the running time of algorithm B is at most

∑
i κ
′
i =∑

i min {κi(0), κi(1)} ≤ T . We describe first the construction for the read step.
Let Φi,j,b be the set of processors that read from memory cell j in step i on input

b ∈ {0, 1}. Let Φi,j = Φi,j,0 ∩ Φi,j,1. For processors in each set Φi,j,b \ Φi,j , we can

764 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

prepare a priori copies of the contents of memory cell j, c(i, b), so that they can do
the read operation from their appropriate copies without conflict, as described below.

For processors in each set Φi,j , we serialize their computation by providing an a
priori ranking from [1..|Φi,j |] to all the processors in Φi,j , and scheduling the processors
according to their ranks. The program for Algorithm B includes for each processor
a sequence 〈i,M(i, b), r(i, b), φi, c(i, b)〉, i = 1, . . . , T , b ∈ {0, 1}, where M(i, b) is the
memory cell from which the processor reads in step i on input b; r(i, b) is the rank of
the processor at step i if the processor is in Φi,M(i,b), and is null otherwise; c(i, b) is
the contents at step i of memory cell M(i, b) if the processor is in Φi,M(i,b),b \Φi,M(i,b),
and is null otherwise; and φi = maxj |Φi,j |. (Note that the processor does not need to
know the value of b. If, however, M(i, 0) 6= M(i, 1) or r(i, 0) 6= r(i, 1) then it implicitly
knows the value of b at this stage; this knowledge can be made explicit by replacing the
quintuple above by the sextuple 〈i,M(i, b), r(i, b), φi, c(i, b), b

′〉 where b′ ∈ {0, 1, ∗}.)
This sequence can be specified in O(T) memory locations, and is nonuniform. In
step i, each processor whose r(i, b) is not null will execute its read operation from
memory location M(i, b) in substep r(i, b). Each processor whose r(i, b) is null will
read c(i, b). After a total of φi substeps, all processors proceed to step i+ 1.

It remains to show how to handle the write steps. Consider a memory location j
in step i, and let Φi,j , Φi,j,0, and Φi,j,1 be defined as for the read step. On input b, it
is sufficient to select a priori one processor from Φi,j,b that will do the write step to
location j. If Φi,j is not empty then one of the processors in Φi,j will be arbitrarily
selected. If Φi,j is empty, one of the processors in Φi,j,b will be arbitrarily selected,
unless it is empty. The write operation will be executed by the selected processor at
substep φi. Thus, all the read operations will be completed before the write operation
is executed; moreover, there is no additional time overhead due to the execution of
the write operations.

With this scheme, the ith step of Algorithm A is executed in φi ≤ κ′i steps by
Algorithm B, thus giving the desired result.

We now strengthen the above result for the simd-qrqw pram to work for the
qrqw pram with only a constant factor increase in the running time of the simulating
erew pram algorithm.

Lemma 8.2. Let T be the running time for an algorithm A that solves a problem
P with input domain of size 2 on a qrqw pram. Then, there exists an algorithm B
that solves P in time O(T) on an erew pram, using the same number of processors
and the same working space. Algorithm B is nonuniform and its description is of size
O(T) memory locations per processor.

Proof. We show how to handle the read steps of Algorithm A; write steps are
treated similarly. Consider the ith read step in Algorithm A on input b. Let the time
cost of this step be ti. Let Rk be the set of reads for processor pk, and let Mj be the
set of read requests for memory location mj in step i on input b. Note that ti is the
maximum cardinality of the sets Rk,Mj , over all processor and memory indices k, j.

We construct a bipartite graph Bi,b = (P,M,Ei,b), where P contains a vertex for
each processor, M contains a vertex for each memory location, and there is an edge
(pk,mj) ∈ Ei,b if and only if processor pk reads memory location mj in step i on input
b.

The maximum degree of any vertex in the graph Bi,b is ti. Since Bi,b is bipartite,
it has a proper edge coloring with ti colors (Theorem 6.1 in [9]), i.e., a mapping
c : Ei,b → {1, 2, . . . , ti} such that for any pair of edges e, f incident on the same vertex,
c(e) 6= c(f). Thus for a given input b we can serialize the ith step of Algorithm A into

THE QRQW PRAM MODEL 765

ti exclusive read substeps by performing the read corresponding to the edges colored
l in the lth substep.

Since the input domain is of size 2, b can take on only two values, say 0 and 1, and
each processor can be in at most two different states at a given time step, no matter
what the input is. In Algorithm B for each step, we run the serialization of the step
on input b = 0 followed by the serialization of the step on input b = 1. If processor pk
is in a state that corresponds only to input b̂ ∈ {0, 1} then it performs the read only

in the serialization for b = b̂. If pk is in the same state whether b = 0 or b = 1, then pk
performs the read only in the serialization for b = 1. This results in a (nonuniform)
erew pram algorithm that performs the same computation as Algorithm A, using
the same number of processors and the same working space, and runs in time O(T).
The length of the program is the length of the serialization, which is O(T).

There was no attempt to minimize the constants in the above algorithm. Tech-
niques similar to those applied in the proof of Lemma 8.1 can be used here to reduce
the constants.

We now show that randomization cannot help too much when the input domain
is small.

Lemma 8.3. Let Td be a lower bound on the time required by a deterministic
algorithm to solve a problem P with input taken from a domain of size |I|. Then, for
any randomized algorithm that solves P , the expected running time Tr on any input
is bounded by Tr ≥ Td/|I|.

Proof. Let Ta be the average running time for the uniform-input distribution,
minimized over all possible deterministic algorithms, to solve P . Clearly, since the
number of possible inputs is |I|, Ta ≥ Td/|I|. Further, by a classic result of Yao [64],
Tr ≥ Ta. (Yao’s result is more general; for a short proof of this claim see [21].)
Therefore, Tr ≥ Ta ≥ Td/|I|.

8.2. Lower bounds for broadcasting and related problems. Beame, Kik,
and Kutylowski [4] showed that computing the broadcasting problem on a nonuniform
erew pram with unbounded program size, an unbounded number of processors, and
unbounded space requires Ω(logn) time. The results of the previous subsection give
us the following theorem.

Theorem 8.4. Any deterministic or randomized algorithm that computes the
broadcasting problem into n memory locations on a qrqw pram with an unbounded
number of processors and unbounded space requires expected time Ω(log n).

Proof. The lower bound for deterministic algorithms follows by the lower bound
in [4] and Lemma 8.2 since the size of the input domain for the broadcasting problem
is 2. The lower bound for randomized algorithms follows by Lemma 8.3.

Since a crew pram can broadcast into n memory locations in constant time,
Theorem 8.4 immediately implies the following separation results.

Corollary 8.5. There is an Ω(log n) time separation of a (deterministic or
randomized) {simd-crqw,crqw} pram from a (deterministic or randomized) {simd-
qrqw,qrqw} pram. The same separation result holds of a crew pram from a
queue-read, exclusive-write (qrew) pram.

The following generalization of the broadcasting problem is used in a lower bound
for load balancing given in [29].

Theorem 8.6. Any deterministic or randomized algorithm that broadcasts the
value of a bit to any subset of k processors in a qrqw pram requires expected time
Ω(log k).

Proof. Let Algorithm A be a qrqw algorithm that succeeds in broadcasting the

766 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

value of a bit to some subset of k processors in time t. We use Algorithm A to derive
a (nonuniform) qrqw pram algorithm for the broadcasting problem into k (fixed)
memory locations as follows. We first run Algorithm A to broadcast the value of the
bit to some subset of k processors. We then transmit the value of the bit from the ith
processor in the subset to the ith output memory location, 1 ≤ i ≤ k. This can be
performed in one step with time cost 1 since we can precompute from Algorithm A
the exact indices of the k processors to which the value of the bit will be transmitted.
Thus we can solve the broadcasting problem in t+1 steps. It follows from Theorem 8.4
that t = Ω(log k).

9. Conclusions. This paper has proposed a new model for shared-memory ma-
chines, the qrqw pram model, that takes into account the amount of contention
in memory accesses. This model is motivated by the contention characteristics of
currently available commercial machines. We have presented several results for this
model, including a fast, work-preserving emulation of the qrqw pram on hypercube-
type, noncombining networks, a work-time framework and some automatic processor
allocation schemes for the model, several linear work, sublogarithmic time algorithms
for the fundamental problems of leader election on a crqw pram and linear com-
paction on a qrqw pram, and some lower bounds.

In a companion paper [29], we present many new results for the qrqw pram.
Among the algorithmic results presented are low-contention, fast, work-optimal qrqw
algorithms for multiple compaction, load balancing, generating a random permuta-
tion, and parallel hashing. These results and the results presented in this paper
demonstrate the advantage of the qrqw over the erew. Together with the penalty
in running high-contention crcw or crew algorithms on existing machines, this sup-
ports the qrqw pram as a more appropriate model for high-level algorithm design.

Finally, in a related work [30] we explore the properties of the asynchronous qrqw
pram.

Acknowledgments. Richard Cole, Albert Greenberg, Maurice Herlihy, Honghua
Yang, and the anonymous referees provided useful comments on this work.

REFERENCES

[1] F. Abolhassan, J. Keller, and W. J. Paul, On the cost-effectiveness of PRAMs, in Proc. 3rd
IEEE Symp. on Parallel and Distributed Processing, Dallas, TX, 1991, pp. 2–9.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith, The
Tera computer system, in Proc. 1990 International Conf. on Supercomputing, Amsterdam,
The Netherlands, 1990, pp. 1–6.

[3] Y. Aumann and M. O. Rabin, Clock construction in fully asynchronous parallel systems and
PRAM simulation, in Proc. 33rd IEEE Symp. on Foundations of Computer Science, Pitts-
burgh, PA, 1992, pp. 147–156.

[4] P. Beame, M. Kik, and M. KutyÃlowski, Information broadcasting by exclusive-write PRAMs,
Parallel Process. Lett., 4 (1994), pp. 159–169.

[5] G. Bell, Ultracomputers: A teraflop before its time, Comm. Assoc. Comput. Mach., 35 (1992),
pp. 26–47.

[6] G. E. Blelloch, Scans as primitive parallel operations, IEEE Trans. Comput., C-38 (1989),
pp. 1526–1538.

[7] G. E. Blelloch, Prefix sums and their applications, in A Synthesis of Parallel Algorithms,
J. H. Reif, ed., Morgan-Kaufmann, San Mateo, CA, 1993, pp. 35–60.

[8] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha, Implemen-
tation of a portable nested data-parallel language, in Proc. 4th ACM SIGPLAN Symp. on
Principles and Practices of Parallel Programming, San Diego, CA, 1993, pp. 102–111.

[9] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, New York, 1976.

THE QRQW PRAM MODEL 767

[10] R. P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput.
Mach., 21 (1974), pp. 201–208.

[11] R. Cole and O. Zajicek, The APRAM: Incorporating asynchrony into the PRAM model,
in Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, Santa Fe, NM, 1989,
pp. 169–178.

[12] S. A. Cook, C. Dwork, and R. Reischuk, Upper and lower time bounds for parallel random
access machines without simultaneous writes, SIAM J. Comput., 15 (1986), pp. 87–97.

[13] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken, LogP: Towards a realistic model of parallel computation, in
Proc. 4th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming,
San Diego, CA, 1993, pp. 1–12.

[14] R. Cypher, Valiant’s Maximum Algorithm with Sequential Memory Accesses, Tech. Rep. TR
88-03-08, Department of Computer Science, University of Washington, Seattle, WA, 1988.

[15] W. J. Dally, J. S. Keen, and M. D. Noakes, The J-Machine architecture and evaluation, in
Proc. 1993 IEEE Compcon Spring, San Francisco, CA, 1993, pp. 183–188.

[16] S. R. Dickey and R. Kenner, Hardware combining and scalability, in Proc. 4th ACM Symp.
on Parallel Algorithms and Architectures, San Diego, CA, 1992, pp. 296–305.

[17] M. Dietzfelbinger, M. KutyÃlowski, and R. Reischuk, Exact lower time bounds for comput-
ing boolean functions on CREW PRAMs, J. Comput. System Sci., 48 (1994), pp. 231–254.

[18] R. Drefenstedt and D. Schmidt, On the physical design of butterfly networks for PRAMs,
in Proc. 4th IEEE Symp. on the Frontiers of Massively Parallel Computation, McLean,
VA, 1992, pp. 202–209.

[19] C. Dwork, M. Herlihy, and O. Waarts, Contention in shared memory algorithms, J. Assoc.
Comput. Mach., 44 (1997), pp. 779–805.

[20] F. E. Fich, M. Kowaluk, K. Loryś, M. Kutylowski, and P. Ragde, Retrieval of scat-
tered information by EREW, CREW, and CRCW PRAMs, Computational Complexity, 5
(1995), pp. 113–131.

[21] F. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson, One, two, three,...,
infinity: Lower bounds for parallel computation, in Proc. 17th ACM Symp. on Theory of
Computing, Providence, RI, 1985, pp. 48–58.

[22] S. Fortune and J. Wyllie, Parallelism in random access machines, in Proc. 10th ACM Symp.
on Theory of Computing, San Diego, CA, 1978, pp. 114–118.

[23] S. Frank, H. Burkhardt III, and J. Rothnie, The KSR1: Bridging the gap between shared
memory and MPPs, in Proc. 1993 IEEE Compcon Spring, San Francisco, CA, 1993,
pp. 285–294.

[24] P. B. Gibbons, A more practical PRAM model, in Proc. 1st ACM Symp. on Parallel Algorithms
and Architectures, Santa Fe, NM, 1989, pp. 158–168. Full version in The Asynchronous
PRAM: A Semi-synchronous Model for Shared Memory MIMD Machines, Ph.D. thesis,
U.C. Berkeley, CA, 1989.

[25] P. B. Gibbons, Asynchronous PRAM algorithms, in A Synthesis of Parallel Algorithms, J. H.
Reif, ed., Morgan-Kaufmann, San Mateo, CA, 1993, pp. 957–997.

[26] P. B. Gibbons, Y. Matias, and V. Ramachandran, QRQW: Accounting for Concurrency in
PRAMs and Asynchronous PRAMs, Tech. Rep., AT&T Bell Laboratories, Murray Hill,
NJ, 1993.

[27] P. B. Gibbons, Y. Matias, and V. Ramachandran, Efficient low-contention parallel algo-
rithms, in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, Cape May, NJ,
1994, pp. 236–247.

[28] P. B. Gibbons, Y. Matias, and V. Ramachandran, The QRQW PRAM: Accounting for
contention in parallel algorithms, in Proc. 5th ACM-SIAM Symp. on Discrete Algorithms,
Arlington, VA, 1994, pp. 638–648.

[29] P. B. Gibbons, Y. Matias, and V. Ramachandran, Efficient low-contention parallel algo-
rithms, J. Comput. System Sci., 53 (1996), pp. 417–442. Special issue devoted to selected
papers from the 1994 ACM Symp. on Parallel Algorithms and Architectures.

[30] P. B. Gibbons, Y. Matias, and V. Ramachandran, The queue-read queue-write asynchronous
PRAM model, Theoret. Comput. Sci., 196 (1998), pp. 3–29. Special issue devoted to se-
lected papers from EURO-PAR’96.

[31] J. Gil and Y. Matias, Fast hashing on a PRAM—designing by expectation, in Proc. 2nd
ACM-SIAM Symp. on Discrete Algorithms, San Francisco, CA, 1991, pp. 271–280.

[32] J. Gil and Y. Matias, An effective load balancing policy for geometric decaying algorithms,
J. Parallel Distributed Comput., 36 (1996), pp. 185–188.

[33] J. Gil, Y. Matias, and U. Vishkin, Towards a theory of nearly constant time parallel algo-
rithms, in Proc. 32nd IEEE Symp. on Foundations of Computer Science, San Juan, Puerto
Rico, 1991, pp. 698–710.

768 P. B. GIBBONS, Y. MATIAS, AND V. RAMACHANDRAN

[34] L. A. Goldberg, Y. Matias, and S. Rao, An optical simulation of shared memory, in
Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, Cape May, NJ, 1994,
pp. 257–267.

[35] M. Goodrich, Using approximation algorithms to design parallel algorithms that may ignore
processor allocation, in Proc. 32nd IEEE Symp. on Foundations of Computer Science, San
Juan, Puerto Rico, 1991, pp. 711–722.

[36] A. Greenberg, On the time complexity of broadcast communication schemes, in Proc. 14th
ACM Symp. on Theory of Computing, San Francisco, CA, 1982, pp. 354–364.

[37] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13–30.

[38] IBM Corporation, IBM Scalable POWERparallel Systems 9076 SP2 and Enhancements for
SP1, 1994. Hardware announcement.

[39] J. JáJá, An Introduction to Parallel Algorithms, Addison–Wesley, Reading, MA, 1992.
[40] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in

Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., Elsevier, Ams-
terdam, The Netherlands, 1990, pp. 869–941.

[41] R. E. Kessler and J. L. Schwarzmeier, CRAY T3D: A new dimension for Cray research,
in Proc. 1993 IEEE Compcon Spring, San Francisco, CA, 1993, pp. 176–182.

[42] R. E. Ladner and M. J. Fischer, Parallel prefix computation, J. Assoc. Comput. Mach., 27
(1980), pp. 831–838.

[43] F. T. Leighton, Methods for message routing in parallel machines, in Proc. 24th ACM Symp.
on Theory of Computing, Victoria, British Columbia, Canada, 1992, pp. 77–96. Invited
paper.

[44] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C.R. Feynman, M. N Ganmukhi, J. V.
Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong,
S.-W. Yang, and R. Zak, The network architecture of the Connection Machine CM-5,
in Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, San Diego, CA, 1992,
pp. 272–285.

[45] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, The directory-
based cache coherence protocol for the DASH multiprocessor, in Proc. 17th International
Symp. on Computer Architecture, Seattle, WA, 1990, pp. 148–159.

[46] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam, The Stanford DASH multiprocessor, IEEE Comput., 25
(1992), pp. 63–79.

[47] P. Liu, W. Aiello, and S. Bhatt, An atomic model for message-passing, in Proc. 5th ACM
Symp. on Parallel Algorithms and Architectures, Velen, Germany, 1993, pp. 154–163.

[48] P. MacKenzie and V. Ramachandran, ERCW PRAMs and optical communication, Theo-
ret. Comput. Sci., 196 (1998), pp. 153–180. Special issue devoted to selected papers from
EURO-PAR’96.

[49] P. D. MacKenzie, private communication, Austin, TX, 1994.
[50] C. Martel, A. Park, and R. Subramonian, Work-optimal asynchronous algorithms for

shared memory parallel computers, SIAM J. Comput., 21 (1992), pp. 1070–1099.
[51] MasPar Computer Corporation, MasPar System Overview, document 9300-0100, revision

A3, 749 North Mary Avenue, Sunnyvale, CA 94086, Mar. 1991.
[52] Y. Matias, Highly Parallel Randomized Algorithmics, Ph.D. thesis, Tel Aviv University, Israel,

1992.
[53] Y. Matias and U. Vishkin, Converting high probability into nearly-constant time—with ap-

plications to parallel hashing, in Proc. 23rd ACM Symp. on Theory of Computing, New
Orleans, LA, 1991, pp. 307–316.

[54] N. Nishimura, Asynchronous shared memory parallel computation, in Proc. 2nd ACM Symp.
on Parallel Algorithms and Architectures, Crete, Greece, 1990, pp. 76–84.

[55] G. F. Pfister and V. A. Norton, “Hot spot” contention and combining in multistage inter-
connection networks, IEEE Trans. Comput., C-34 (1985), pp. 943–948.

[56] L. Prechelt, Measurements of MasPar MP-1216A Communication Operations, Tech. Rep.,
Institut für Programmstrukturen und Datenorganisation, Universität Karlsruhe, Karl-
sruhe, Germany, 1992.

[57] A. G. Ranade, Fluent parallel computation, Ph.D. thesis, Department of Computer Science,
Yale University, New Haven, CT, 1989.

[58] J. H. Reif, ed., A Synthesis of Parallel Algorithms, Morgan-Kaufmann, San Mateo, CA, 1993.
[59] M. Schmidt-Voigt, Efficient parallel communication with the nCUBE 2S processor, Parallel

Comput., 20 (1994), pp. 509–530.
[60] L. Snyder, Type architecture, shared memory and the corollary of modest potential, Annual

Review of CS, I (1986), pp. 289–317.

THE QRQW PRAM MODEL 769

[61] L. G. Valiant, A bridging model for parallel computation, Commun. Assoc. Comput. Mach.,
33 (1990), pp. 103–111.

[62] L. G. Valiant, General purpose parallel architectures, in Handbook of Theoretical Computer
Science, Vol. A, J. van Leeuwen, ed., Elsevier, Amsterdam, The Netherlands, 1990, pp. 943–
972.

[63] L. G. Valiant, A Combining Mechanism for Parallel Computers, Tech. Rep. TR-24-92, Har-
vard University, Cambridge, MA, 1992.

[64] A. Yao, Probabilistic computations: Towards a unified measure of complexity, in Proc. 18th
IEEE Symp. on Foundations of Computer Science, Providence, RI, 1977, pp. 222–227.

A CONSTANT-FACTOR APPROXIMATION ALGORITHM FOR THE
GEOMETRIC k-MST PROBLEM IN THE PLANE∗

JOSEPH S. B. MITCHELL† , AVRIM BLUM‡ , PRASAD CHALASANI§ , AND

SANTOSH VEMPALA¶

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 771–781

Abstract. We show that any rectilinear polygonal subdivision in the plane can be converted
into a “guillotine” subdivision whose length is at most twice that of the original subdivision. “Guil-
lotine” subdivisions have a simple recursive structure that allows one to search for “optimal” such
subdivisions in polynomial time, using dynamic programming. In particular, a consequence of our
main theorem is a very simple proof that the k-MST problem in the plane has a constant-factor
polynomial-time approximation algorithm: we obtain a factor of 2 (resp., 3) for the L1 metric, and
a factor of 2

√
2 (resp., 3.266) for the L2 (Euclidean) metric in the case in which Steiner points are

allowed (resp., not allowed).

Key words. minimum spanning trees, k-MST, guillotine subdivisions, quota traveling salesman
problem, prize-collecting salesman problem, bank robber (orienteering) problem, network optimiza-
tion, computational geometry, dynamic programming, approximation algorithms polynomial

AMS subject classifications. 68Q25, 68R10, 68U05

PII. S0097539796303299

1. Introduction. We introduce a new technique that can be used to obtain sim-
ple approximation algorithms for geometric network design problems. The method is
based on the concept of a “guillotine subdivision.” Roughly speaking, a “guillotine
subdivision” is a rectilinear polygonal subdivision with the property that there exists
a horizontal or vertical line (a “cut”) whose intersection with the edge set is connected
and the subdivisions on either side of the line are also guillotines. The connectedness
property allows one to apply dynamic programming to optimize over guillotine sub-
divisions, as there is a succinct specification of how the subdivision interacts with the
“cuts” that make up the boundary of a rectangle that specifies a “subproblem” of the
dynamic program.

Key to our method is a theorem showing that any rectilinear polygonal subdivision
can be converted into a guillotine subdivision by adding a set of edges whose total
length is small (at most that of the original subdivision).

To illustrate the power of the method, we show how it can be used to give a very
simple constant-factor approximation algorithm for the geometric k-MST problem,
obtaining a substantially better factor than previously known. We also apply it to
some related problems (the “quota TSP,” “prize-collecting salesman,” and “bank
robber (orienteering)” problems).

∗Received by the editors May 10, 1996; accepted for publication (in revised form) April 18, 1997;
published electronically September 14, 1998.

http://www.siam.org/journals/sicomp/28-3/30329.html
†Department of Applied Mathematics and Statistics, State University of New York, Stony Brook,

NY 11794-3600 (jsbm@ams.sunysb.edu). This research was supported in part by Hughes Research
Laboratories and NSF grants CCR-9204585 and CCR-9504192.
‡School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891

(avrim@cs.cmu.edu). This research was supported in part by NSF National Young Investigator
grant CCR-9357793 and a Sloan Foundation Research Fellowship.
§Los Alamos National Laboratory, Los Alamos, NM 87544 (chal@lanl.gov).
¶School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891 (svempala@

cs.cmu.edu). This research was supported in part by NSF National Young Investigator grant CCR-
9357793.

771

772 J. MITCHELL, A. BLUM, P. CHALASANI, AND S. VEMPALA

A motivating application. A special case of the “quota TSP” problem is the fol-
lowing: you are a salesman who must sell k items. You can sell one item in each of n
cities (n ≥ k). You want to find a shortest tour that visits at least k cities, so that
you can sell your quota of k items. A solution (exact or approximate) to the k-MST
problem on the n cities immediately gives an approximation to the desired optimal
tour (simply by doubling the tree, in the usual manner).

Related work. In the minimum-weight k-tree, or k-MST, problem, we are given
a graph on n vertices with nonnegative distances on the edges and an integer k ≤ n,
and our goal is to find a tree of least total weight that spans some subset of k vertices.
The k-MST problem was introduced independently by Fischetti et al. [11], Zelikovsky
and Lozevanu [22], and Ravi et al. [21]. In those papers, the problem is shown to be
NP-complete, and Ravi et al. give an approximation algorithm with factor O(

√
k). Al-

gorithms with improved approximation factors have since been discovered: Awerbuch
et al. [2] obtain factor O(log2 k), and Rajagopalan and Vazirani [20] obtain O(log k).
In the time since our work first appeared (in [6] and [18]), there have been further im-
provements in the approximation factors: Blum, Ravi, and Vempala [7] obtain a factor
of 17, and, most recently, Garg [12] obtains a factor of 3. Cheung and Kumar [8] have
also considered the problem, which they call the “quorum-cast” problem and which
arises in communication networks. Note that if k = n, then the k-MST problem is
simply the usual minimum spanning tree problem, which has efficient (polynomial-
time) exact solutions; thus, the complexity of the k-MST problem arises from the fact
that we must find which k vertices to connect with a minimum spanning tree.

In the geometric k-MST problem, the underlying graph is the complete graph
induced by a set of points in the plane, with distances between pairs of points deter-
mined by the underlying metric space (typically, this will be Euclidean (L2) or L1).
Specifically, we are given a set P of n points in the plane, and an integer k ≤ n,
and we are to find a subset of k points of P that has the shortest minimum span-
ning tree. The problem is NP-hard. Ravi et al. [21] give an approximation algorithm
with ratio O(k1/4), which was quickly improved to a factor of O(log k) by Garg and
Hochbaum [13] and Mata and Mitchell [17]. Eppstein [10] has improved the approx-
imation ratio to O(log k/ log log n) and has given general techniques to improve the
running times (as a function of n) of existing algorithms; further, he shows that the
exact k-MST problem can be solved in time 2O(k log k)n+O(n log n), which is simply
O(n log n) for fixed k.

Note that, up to small constant factors in the approximation ratio, the k-MST
problem is equivalent to the problem of finding a shortest path or shortest tour that
visits k points (the k-TSP problem) or a shortest Steiner tree connecting k points.

Our contribution. Our result is a simple proof of an O(1) approximation ratio for
the geometric k-MST problem. We obtain a factor of 2 (resp., 3) (for the L1 metric)
or 2
√

2 (resp., 3.266) (for the Euclidean metric) in the case that Steiner points are
(resp., are not) allowed. Further, we expect that our guillotine subdivision results
may yield similar improvements and simplifications to approximation algorithms for
other geometric network design problems. In section 6, we mention a few applications
of our method to some problems that are related to the k-MST.

This paper represents the contributions from two manuscripts: the work of Blum,
Chalasani, and Vempala [6], based on the notion of a “division tree,” and the im-
provement and simplification to it given by Mitchell [18], based on the notion of
“guillotine subdivisions.” We will briefly describe the original “division tree” method
of Blum et al. but will only give details of the simpler method of Mitchell [18].

GEOMETRIC k-MST APPROXIMATION 773

2. Division trees. In this section we define division trees, and describe a simple
dynamic programming algorithm based on this notion that achieves a constant-factor
approximation to the k-MST problem. The proof of the approximation guarantee
appears in [6]. We do not present the proof here because in the next section we will
describe a more powerful algorithm that achieves a better constant factor, and for
which the proof is significantly simpler.

To define a division tree, we assume for convenience that no two points lie on the
same horizontal or vertical line. In this case, we say that a spanning tree T for a set
of points is a division tree if T satisfies the following recursive property.

There exists some point r (the “root”) such that either the vertical
or the horizontal line through r splits T into two division trees. More
precisely, we require both that (A) this line does not intersect any
edges of T , and (B) the trees T1 and T2 induced by the points on
either side of the line including r should be division trees. For the
base case, if there are just two points, then the single edge is a division
tree.

Given any set of n points, the following simple dynamic programming algorithm
finds the subset of k points having a division tree of minimum weight.

The algorithm is most easily viewed in a recursive “memoizing” form. It returns
both the desired set of k points and the cost of the associated division tree. The
algorithm takes as input a set of points P , an integer k, and also up to four additional
constraints. For each of the four sides of the bounding box of P the algorithm may
be told that the point on that bounding side is “required” and must be in any set
of k points the algorithm produces. At the outer loop there are no required points.
Given these inputs, the algorithm considers each vertical and horizontal line that
passes through some point in P and does not coincide with an edge of the bounding
box. For a given such line—let p be the point in P that the line passes through—the
algorithm constructs the bounding boxes B1 and B2 of the points on the two sides,
considering p to be on both sides. It then calls itself recursively k − 1 times for each
of the two boxes Bi: in each call passing down the set of points in Bi, a new integer
k′ ∈ [2, k], and the set of required points it was originally given (only considering
those that lie in the box Bi) including the new point p. Once the algorithm receives
its k − 1 answers from each side, it simply compares to find the pair 〈k′, k − k′ + 1〉
whose costs sum to the least amount (the reason for the “+1” is that point p lies on
both sides). In the base case k = 2, the algorithm just returns the cost of the single
edge.

Because there are at most n4 different bounding boxes, k different possibilities
for the desired number of points, and 16 different settings for the “required points,”
the memoized procedure (or, equivalently, dynamic program) will run in polynomial
time. Also, it is not too hard to see that this algorithm finds the set of k points
with the lightest division tree. What is shown in [6] is that for any set of points,
the division tree of minimum weight is only a constant factor more costly than the
minimum spanning tree.

3. Guillotine subdivisions. We now turn to guillotine subdivisions, and our
main theorem that any rectilinear subdivision of the plane can be approximated by
one that is guillotine.

Consider a rectilinear polygonal subdivision S that is induced by a finite set of
noncrossing horizontal and vertical (closed) line segments in the plane, whose union,

774 J. MITCHELL, A. BLUM, P. CHALASANI, AND S. VEMPALA

E, comprises the edges of S. We can assume (without loss of generality) that S
is restricted to the unit square B (i.e., E ⊂ int(B)). Then each facet (2-face) is a
bounded rectilinear polygon, possibly with holes. The length of S is the sum of the
lengths of the edges of S.

A closed, axis-aligned rectangle W is a window if W ⊆ B. In the following
definitions, we fix attention on a given window W .

A line ` is a cut for E with respect to W if `∩int(W) 6= ∅. The intersection `∩(E∩
int(W)) of a cut ` with E∩int(W), the restriction of E to the window W , consists of a
discrete (possibly empty) set of subsegments of `. (Some of these “segments” may be
points, where ` crosses an edge.) The endpoints of these subsegments are called the
endpoints along ` (with respect to W). (The two points where ` crosses the boundary
of W are not considered to be endpoints along `.) Let ξ be the number of endpoints
along `, and let the points be denoted by p1, . . . , pξ in order along `.

We define the span σ(`) of ` (with respect to W) as follows. If ξ = 0, then
σ(`) = ∅; otherwise, σ(`) is defined to be the (possibly zero-length) line segment p1pξ.

A line ` is a perfect cut with respect to W if σ(`) ⊆ E (which implies that ξ = 2,
or ξ = 1 in case σ(`) is a single point).

Finally, we say that S is a guillotine subdivision with respect to window W if either
(1) E ∩ int(W) = ∅; or (2) there exists a perfect cut `, with respect to W , such that
S is guillotine with respect to windows W ∩ H+ and W ∩ H−, where H+, H− are
the closed halfplanes induced by `. We say that S is a guillotine subdivision if S is
guillotine with respect to the unit square B.

See Figure 3.1 for an example of a guillotine subdivision, where we illustrate the
entire tree of perfect cuts. (Each perfect cut is indicated with a small arrow.)

Note that, in contrast with guillotine rectangular subdivisions (see [9, 17]), the
guillotine subdivisions we study here are not restricted to have rectangular faces;
rather, the faces of a guillotine subdivision are rectilinear polygons. In fact, it is
precisely this distinction that permits us to get constant-factor approximations, while
the previous method of [17] obtained logarithmic factors. For example, in order to
transform a “staircase” (rectilinear) polygon into a guillotine rectangular subdivision,
we must increase its total edge length by a factor of Ω(log n); in contrast, a staircase
polygon is already a guillotine subdivision according to our definition.

4. The main theorem. We now show that any rectilinear subdivision can be
converted into a guillotine subdivision without increasing its length by much (at most
doubling it). Our proof is inspired by the proof in [9] that any subdivision of a box
(in <2) into rectangles can be converted into a “guillotine” rectangular subdivision
of at most twice the length by adding a new set of edges whose total length is small
(charged off to the original edges of the subdivision).

Theorem 4.1. Let S be a rectilinear subdivision of length L with edge set E.
Then there exists a guillotine subdivision SG of length at most 2L whose edge set EG
contains E.

Proof. We will convert S into a guillotine subdivision SG by adding to E a new
set of horizontal or vertical edges whose total length is at most L. The construction is
recursive; at each stage, we show that there exists a cut ` with respect to the current
window W (which initially is the box B) such that we can afford to add the span σ(`)
to E, while appropriately charging off the length of σ(`). (Once we add σ(`) to E, `
becomes a perfect cut with respect to W .)

GEOMETRIC k-MST APPROXIMATION 775

Fig. 3.1. An example of a guillotine subdivision. Each perfect cut is indicated with a small
arrow; bounding boxes (windows) are indicated with dashed rectangles.

776 J. MITCHELL, A. BLUM, P. CHALASANI, AND S. VEMPALA

Fig. 4.1. Subsegment pq ⊂ ` is dark; its length is charged to the subsegments of E that lie above
or below.

In fact, we will restrict ourselves to a special discrete set of horizontal or vertical
cuts, namely, those determined by the x- or y-coordinates of original vertices V of the
subdivision, or by the midpoints between consecutive x- or y-coordinates of V .

First, note that if a perfect cut (with respect to W) exists, then we can simply use
it and proceed recursively on each side of the cut. Thus, we assume that no perfect
cut exists with respect to a given window, W .

We say that a point p on a cut ` is dark with respect to ` and W if, along
`⊥ ∩ int(W), there is at least one endpoint (strictly) on each side of p, where `⊥ is
the line through p that is perpendicular to `.1 We say that a subsegment of ` is dark
(with respect to W) if all points of the segment are dark with respect to ` and W .

The important property of dark points along ` is the following: assume, without
loss of generality, that ` is horizontal. Then if all points on subsegment pq of ` are
dark, then we can charge the length of pq off to the bottoms of the subsegments
E+ ⊆ E of edges that lie above pq and are vertically visible to pq, and the tops of the
subsegments E− ⊆ E of edges that lie below pq and are vertically visible to pq (since
we know that there is at least one edge “blocking” each point of pq from the top or
bottom of W). We charge pq’s length half to E+ (charging E+ from below, with 1

2
units of charge) and half to E− (charging E− from above, with 1

2 units of charge). In
Figure 4.1 we illustrate how a dark subsegment pq has its length charged off.

We call a cut ` favorable if the dark portion of ` is at least as long as the span σ(`).
Lemma 4.2 below shows that a favorable cut always exists (even one in the special
discrete set). For a favorable cut `, we add its span to the edge set (charging off its
length, as above) and recurse on each side of the cut in the two new windows. After a
portion of E has been charged on one side, due to a cut `, it will be vertically visible
to the boundary of the windows on either side of ` and, hence, will be vertically visible
to the boundary of any future windows, found deeper in the recursion, that contain
the portion. Thus, no portion of E will ever be charged more than once from each
side (top and bottom), so no portion of E will ever pay more than its total length
in charge (1

2 from each side). Also, the new edges added (the spans σ(`)) are never
themselves charged, since they lie on window boundaries and cannot therefore serve
to make a portion of some future cut dark.

1We can think of the edges E as being “walls” that block light; then p on a line ` is dark if p is
not illuminated when light is shone in from the boundary of W along the direction of `⊥.

GEOMETRIC k-MST APPROXIMATION 777

Note too that in order for a cut ` to be favorable, but not perfect, there must be
at least one segment of E parallel to ` in each of the two open halfplanes induced by
`; thus, the recursion must terminate in a finite number of steps.

Since the total length of all spans for all favorable cuts is at most L, and the total
length of all spans for all perfect cuts is at most L, we are done.

We now prove our key lemma, which guarantees the existence of a favorable cut
when there is no perfect cut. The proof of the lemma uses a particularly simple
argument based on elementary calculus (reversing the order of integration).

Lemma 4.2. For any subdivision S, and any window W , there must be a favorable
cut.

Proof. We show that there must be a favorable cut that is either horizontal or
vertical.

Let f(x) denote the length of the span (with respect to W) of the vertical line

through x. Then
∫ 1

0
f(x)dx is simply the area Ax of the (x-monotone) region Rx of

points of B that are dark with respect to horizontal cuts. Similarly, define g(y) to be

the length of the span of the horizontal line through y, and let Ay =
∫ 1

0
g(y)dy.

Assume without loss of generality that Ax ≥ Ay. We claim that there exists
a horizontal favorable cut; i.e., we claim that there exists a horizontal cut ` such
that the length of its dark portion is at least as large as the length of its span σ(`).
To see this, note that Ax can be computed by switching the order of integration,

“slicing” the region Rx horizontally, rather than vertically; i.e., Ax =
∫ 1

0
h(y)dy,

where h(y) is the length of the intersection of Rx with a horizontal line through y;
i.e., h(y) is the length of the dark portion of the horizontal line through y. Thus,

since Ax ≥ Ay, we get that
∫ 1

0
h(y)dy ≥ ∫ 1

0
g(y)dy ≥ 0. Thus, it cannot be

that for all values of y ∈ [0, 1], h(y) < g(y), so there exists a y = y∗ for which
h(y∗) ≥ g(y∗). The horizontal line through this y∗ is a cut satisfying the claim of the
lemma. (If, instead, we had Ax ≤ Ay, then we would get a vertical cut satisfying the
claim.)

Finally, we note that, in the rectilinear case, f , g, and h are piecewise constant,
with discontinuities corresponding to vertices V of S. Then we can always select y∗

to be at a discontinuity or at a midpoint between two discontinuities.
Remark. It is interesting to consider whether or not the factor of 2 in the theorem

can be improved. We have not been able to find an example of a subdivision that
cannot be made into a guillotine subdivision by the addition of edges whose total
length is less than half that of the original subdivision. We conjecture that the factor
2 can be improved to a factor of 3/2.

5. An application to the k-MST. One application of our theorem is that it
yields an algorithm along with a simple proof that it achieves a (small) constant-factor
approximation of the geometric k-MST problem.

Corollary 5.1. The geometric k-MST problem has a polynomial-time approx-
imation algorithm with approximation factor 2 (allowing Steiner points) or 3 (not
allowing Steiner points) in the L1 metric. In the Euclidean metric, the approximation
factors become 2

√
2 (Steiner) or 4

√
6/3 = 3.266 (non-Steiner).

Proof. Let P be a set of n points in the plane. Assume that no two points of
P lie on a common vertical or horizontal line (otherwise, we can perturb the points
or slightly rotate the coordinate system). Let TR be a minimum-length rectilinear
Steiner k-MST for P , and let L∗R denote its total (Euclidean) length. We can assume
that TR lies on the grid of horizontal or vertical lines through P , since TR can easily
be modified to lie on the grid, without increasing its overall length. Clearly, the length

778 J. MITCHELL, A. BLUM, P. CHALASANI, AND S. VEMPALA

L∗R of TR is the optimal length for the L1 Steiner k-MST and is at most
√

2 times the
length, L∗, of an optimal Euclidean Steiner k-MST.

By Theorem 4.1, there exists a guillotine subdivision SG, with edge set EG, of
length at most 2L∗R (at most 2

√
2L∗), such that TR ⊆ EG. Thus, there exists a

perfect cut ` (inducing closed halfplanes H̄+ and H̄−) for EG such that ` ∩ EG is
connected (a segment). When we select a favorable cut, whose existence is shown in
Lemma 4.2, we can always select the cut either to pass through a point of P or to
pass through, say, the midpoint of some x- or y-interval determined by consecutive
coordinates of points of P ; thus, the cuts will have coordinates from a discrete set
determined by P . Proceeding recursively on each side of `, we can build a tree T of
perfect cuts.

The bounding boxes corresponding to each node of this tree have the special
property that the intersection of EG with each side of a box is connected; thus, we can
partition the problem into subproblems, each having constant-size (discrete) specifi-
cation, and can easily apply dynamic programming to search for an optimal guillotine
subdivision that visits k of the points P and has a connected set of edges E. This
yields a (rectilinear) Steiner tree connecting k points of total Euclidean length at most
2L∗R. If our goal is a Steiner k-MST approximation, then we are done. Otherwise, at
the end we compute and output a minimum spanning tree for this subset of k points.
The worst-case length of the final tree is obtained by multiplying by the Steiner ratio
(3/2 for L1, 2

√
3/3 for L2). Thus, we get an approximation factor of 2 · (3/2) = 3 (for

L1 metric) or of 2
√

2 · (2√3/3) = 4
√

6/3 = 3.266 (for L2 metric). We give details of
the dynamic programming algorithm below.

A dynamic programming algorithm. Let x1 < x2 < · · · < x2n−1 (resp.,
y1 < y2 < · · · < y2n−1) denote the sorted x (resp., y) coordinates of the n points P ,
as well as the n − 1 midpoints of the intervals determined by these coordinates. We
now give a dynamic programming algorithm, which is based on solving the following
subproblems.

Input.
1. An integer k′ ≤ k;
2. a rectangle R(i, i′, j, j′), defined by xi, xi′ (xi′ > xi), yj , and yj′ (yj′ > yj);
3. four “boundary segments,” σl, σr, σb, and σt, which are (possibly empty

or zero-length) subsegments of the four sides (left, right, bottom, top) of
R(i, i′, j, j′), each of which has endpoints determined by coordinates xi, yj ;
and,

4. a partition P of the set {σl, σr, σb, σt} of boundary segments.
Objective. Compute a minimum-length guillotine subdivision S∗G determined by

some set E∗G of horizontal or vertical line segments not lying on the boundary of rect-
angle R(i, i′, j, j′), such that E∗G covers at least k′ points of P (interior to R(i, i′, j, j′))
and the edges E∗G connect the boundary segments, according to the partition P.

Note that there are O(k · n4 · (n2)4) = O(kn12) possible inputs (subproblems).
Note too that an optimal solution S∗G will necessarily be a forest, since any cycle
that is formed can be broken without violating the connectivity requirements (given
by P).

The optimal value V of the above problem is 0 if k′ = 0 and all connections
among boundary segments specified by P are vacuously satisfied (i.e., the boundary
segments that need to be connected are already connected at their endpoints (corners
of the boundary box)). Otherwise, we can compute the value V recursively by adding

GEOMETRIC k-MST APPROXIMATION 779

the values of the two subproblems obtained by splitting the problem and optimizing
over all choices associated with a split:

1. O(k) choices of how to partition k′ among the two new subproblems;
2. O(n) choices of a cut by a horizontal or vertical line (determined by some xi

or yj);
3. O(n2) choices of new boundary segment σ on the cut; and
4. O(1) choices of partitions for the two sets of boundary segments on the two

new subrectangles determined by the cut subject to these partitions being
consistent with the partition P.

The polynomial time bound for solving the above recursions has a rather high ex-
ponent — O(n15k2). One approach to improving this is to apply the following lemma
of Eppstein [10], which is obtained by doing a simple nearest-neighbor clustering.

Lemma 5.2 (see [10]). If we have a time bound T (n, k) for an exact or approxi-
mate geometric k-MST problem, we can solve the same problem in time O(n log n +
nT (k2, k)/k2).

A direct application of the above yields a time bound of O(n log n+nk30), which
is an improvement when k is small compared with n.

Remark. Awerbuch et al. [2] discuss both “rooted” and “unrooted” versions of
the k-MST problem. In the “rooted” version of the problem, we are given a specified
point r, and we must use r as one of the k points in the MST. They prove that their
O(log2 k)-approximation method applies to both problems, but the approximation
ratio may increase by 1 for the rooted case. It is easy to see that our dynamic
programming algorithm allows us also to obtain a rooted solution that is within the
same factor of optimal as in the unrooted case, simply by specifying the appropriate
constraint in the input to the dynamic program.

6. Other applications. Our methods also apply to three other problems that
are related to the k-MST, and for which approximation algorithms for the graph
versions have been given by Awerbuch et al. [2].

1. In the quota-driven salesman problem, each point of P has an associated
integral value wi, and a salesman has a given integer quota R. The objective
is to find a shortest possible route (or tour) such that the sum of the values for
the cities visited is at least R. It is immediate that our k-MST approximation
gives an approximation for this problem too: simply replace each point of P
by wi copies of itself, at the same location in the plane. Now, simply compute
an approximate solution to the k-MST, with k = R, and then double the tree
to obtain a path or a tour.
This algorithm runs in time polynomial in n and R. One open problem is to
extend the algorithm to run in time polynomial in n and logR, which holds
for the algorithm of Awerbuch et al. [2].

2. In the prize collecting salesman problem (or, PCTSP), as studied by Balas [3]
(see also [4]), the setup is the same as in the quota-driven salesman problem,
except that, in addition to “values” wi, there are nonnegative penalties asso-
ciated with each point of P , and the objective function is now to minimize
the sum of the distances traveled plus the sum of the penalties on the points
not visited subject to satisfying the quota R. (Thus, if all penalties are 0,
we simply get the quota-driven salesman problem.) As mentioned in [2],
an approximation of PCTSP follows immediately from concatenating a tour
obtained for the quota-driven salesman, with the 2-approximation tour given

780 J. MITCHELL, A. BLUM, P. CHALASANI, AND S. VEMPALA

by the algorithm of Goemans and Williamson [15] (which considers the effect
of penalties but does not use the quota constraint).

3. In the bank robber (orienteering) problem, we are faced with essentially the
dual of the quota-driven salesman problem: given a gas tank that allows one
to travel a distance d, maximize the total value R of all points visited. As
in [2], we can obtain an approximation for this problem, based on “guessing”
the value of R, running the approximation for the quota-driven salesman for
quota R, breaking the path into subpaths of length d/2, and then picking the
subpath of highest value.
This reduction holds only for the unrooted version of this problem. For the
rooted version (one has a fixed root and a given distance d, and the goal is to
visit as many points as possible and return to the root without running out
of gas) it is unclear how to obtain any nontrivial approximation.

4. In the minimum latency problem (MLP), also known as the deliveryman prob-
lem and the traveling repairman problem, we are given a set of points and must
find a tour that minimizes the sum of the “latencies” of all points, where the
latency of a point p is the length of the tour from the starting point to the
point p. (Thus, the latency of a point measures how long a job at that point
must wait before being served by the repairman/deliveryman that is traveling
along the tour.) Blum et al. [5] have given an approximation algorithm with
a constant-factor bound of 128; this bound has recently been improved by
Goemans and Kleinberg [14] to 29. By a direct application of Theorem 2
of [5], which states that a c-approximation for the k-MST implies an 8c-
approximation for the MLP, we see that our results immediately imply a 24-
approximation algorithm for the L1 metric MLP and a 26.13-approximation
algorithm for the L2 metric MLP for points in the plane.

In a recent application of our guillotine subdivision results, Mata and Mitchell [16]
have obtained a constant-factor approximation algorithm for the following red-blue
separation problem: given n points in the plane, each colored red or blue, find a
shortest simple polygon separating red from blue. This problem is known to be NP-
hard and previously had an O(log n) approximation algorithm [17].

7. Conclusion. In conclusion, we mention some of the exciting developments
that have happened in the time since this paper was written. In the spring of 1996,
Arora [1] announced a remarkable result—he had found a polynomial-time approx-
imation scheme (PTAS) for the Euclidean traveling salesperson problem (TSP) as
well as other geometric optimization problems such as the Steiner tree problem, the
k-MST problem, etc.2 Then, some weeks later, Mitchell [19] discovered that, in fact,
a very minor variation of the method and proof given in his earlier work [18], and
contained in this paper, also gives a particularly simple PTAS for geometric instances
of the TSP, the k-MST, the Steiner tree problem, etc. All that must be modified
is the definition of “span,” from “span” to “m-span” (which links the mth endpoint
with the mth-from-the-last endpoint along a cut `), and, in the proof of Theorem 4.1,
the notion of “darkness,” from “darkness” to “m-darkness” (p is m-dark with respect
to ` and W if, along `⊥ ∩ int(W), there are at least m endpoints (strictly) on each
side of p). Here, we gave the case of m = 1. By allowing m to be any positive
integer, the exact same proof goes through, resulting in the following extension to

2This means that for any fixed ε > 0 there exists a polynomial-time algorithm that gets within
a factor (1 + ε) of optimal.

GEOMETRIC k-MST APPROXIMATION 781

Theorem 4.1: for any rectilinear subdivision S with edge set E of length L and for
any positive integer m, there exists an m-guillotine rectilinear subdivision SG of length
at most (1+ 1

m)L whose edge set EG contains E. (The same proof also applies to gen-
eral (nonrectilinear) subdivisions, resulting in an m-guillotine subdivision of length

at most (1 +
√

2
m)L.) See [19] for further details of the application of this extension.

Acknowledgments. We thank D. Eppstein, M. Held, S. Khuller, and C. Mata
for comments and suggestions that improved this paper.

REFERENCES

[1] S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric
problems, in Proc. 37th Ann. IEEE Sympos. Found. Comput. Sci., 1996, pp. 2–12.

[2] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, Improved approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen, in Proc. 27th Ann. ACM Sympos.
Theory Comput., 1995, pp. 277–283.

[3] E. Balas, The prize collecting traveling salesman problem, Networks, 19 (1989), pp. 621–636.
[4] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson, A note on the prize

collecting traveling salesman problem, Math. Programming, 59 (1993), pp. 413–420.
[5] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan,

The minimum latency problem, in Proc. 26th Ann. ACM Sympos. Theory Comput., 1994,
pp. 163–171.

[6] A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation for the k-MST
problem in the plane, in Proc. 27th Ann. ACM Sympos. Theory Comput., 1995, pp. 294–
302.

[7] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for the k-
MST problem, in Proc. 28th Ann. ACM Sympos. Theory Comput., 1996, pp. 442–448.

[8] S. Y. Cheung and A. Kumar, Efficient quorumcast routing algorithms, in Proc. IEEE INFO-
COM ’94 Conference on Computer Communications, 2 (1994), pp. 840–847.

[9] D.-Z. Du, L.-Q. Pan, and M.-T. Shing, Minimum Edge Length Guillotine Rectangular Par-
tition, Report 02418-86, Math. Sci. Res. Inst., Univ. California, Berkeley, CA, 1986.

[10] D. Eppstein, Faster geometric k-point MST approximation, Comput. Geom., 8 (1997), pp. 231–
240.

[11] M. Fischetti, H. W. Hamacher, K. Jørnsten, and F. Maffioli, Weighted k-cardinality
trees: Complexity and polyhedral structure, Networks, 24 (1994), pp. 11–21.

[12] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in Proc. 37th Ann.
IEEE Sympos. Found. Comput. Sci., 1996, pp. 302–309.

[13] N. Garg and D. S. Hochbaum, An O(log k) approximation algorithm for the k minimum
spanning tree problem in the plane, in Proc. 26th Ann. ACM Sympos. Theory Comput.,
1994, pp. 432–438.

[14] M. Goemans and J. Kleinberg, An improved approximation ratio for the minimum latency
problem, in Proc. 7th ACM-SIAM Sympos. Discrete Algorithms, 1996, pp. 152–158.

[15] M. Goemans and D. Williamson, General approximation technique for constrained forest
problems, in Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, 1992, pp. 307–315.

[16] C. Mata and J. S. B. Mitchell, A Constant Factor Approximation Algorithm for the Red-
Blue Separation Problem, Dept. of Computer Science, SUNY, Stony Brook, NY, 1995,
manuscript.

[17] C. Mata and J. S. B. Mitchell, Approximation algorithms for geometric tour and network
design problems, in Proc. 11th Ann. ACM Sympos. Comput. Geom., 1995, pp. 360–369.

[18] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple new
method for the geometric k-MST problem, in Proc. 7th ACM-SIAM Sympos. Discrete
Algorithms, 1996, pp. 402–408.

[19] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems,
SIAM J. Comput., to appear.

[20] S. Rajagopalan and V. Vazirani, Logarithmic Approximation of Minimum Weight k Trees,
manuscript, 1995.

[21] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning trees
short and small, in Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 546–555.

[22] A. Zelikovsky and D. Lozevanu, Minimal and bounded trees, in Tezele Cong. XVIII Acad.
Romano-Americane, Kishinev, 1993, pp. 25–26.

SOLVABILITY OF CONSENSUS: COMPOSITION BREAKS DOWN
FOR NONDETERMINISTIC TYPES∗

PRASAD JAYANTI†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 782–797

Abstract. Consensus, which requires processes with different input values to eventually agree
on one of these values, is a fundamental problem in fault-tolerant computing. We study this problem
in the context of asynchronous shared-memory systems. Prior research on consensus focused on its
solvability using shared objects of specific types. In this paper, we investigate the following general
question: Let T and T ′ be any two types. Consider the consensus problem among N processes.
Suppose that this problem is unsolvable if processes may use only objects of any one type (T or T ′)
for communication. Does it follow that the problem is unsolvable even if processes may use objects
of both types? Recent results imply that the answer is positive if T and T ′ are both deterministic
types. We prove that the answer is negative even if one of T and T ′ is nondeterministic.

Key words. asynchronous distributed computation, consensus, wait-free algorithms, nondeter-
ministic object type

AMS subject classifications. 68Q10, 68Q22

PII. S0097539795280081

1. Introduction.

1.1. Background. In an asynchronous system, processes progress at indepen-
dent and arbitrarily varying speeds. Consequently, the view that a process holds of
(any aspect of) the global state of the computation does not necessarily coincide either
with the reality or with the view of another process. Thus it often becomes necessary
for processes to reconcile their differences and arrive at a mutually acceptable com-
mon view. The desirable requirements of such a reconciliation are captured by the
consensus problem, which may be stated as follows. Each process is initially given a
binary input and each noncrashing process is required to eventually decide a value
such that (i) no two processes decide different values, and (ii) the decision value is
the input of some process.

In this paper we study the consensus problem in the shared-memory model, where
asynchronous processes communicate via linearizable typed shared objects [10]. An
object’s type specifies the operations that may be invoked and its sequential behavior :
one or more legal sequences of responses corresponding to each sequence of nonover-
lapping operations. (The type is nondeterministic if there is more than one legal
sequence of responses for some sequence of operations.) register, queue, test&set,
and compare&swap are some examples of types. (We will use the typewriter font for
types. Thus queue refers to the type and queue refers to an object of this type.)

In most systems, simple shared objects, such as registers and test&set objects, are
supported in hardware, but more complex objects, such as queues and sets, must be
implemented in software. Consequently there has been much research on implement-
ing objects of one type from objects of other types. Early implementations were based

∗Received by the editors January 18, 1995; accepted for publication (in revised form) March 14,
1996; published electronically September 14, 1998. The result in this paper appeared without proof in
Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing, August
1993. This work was supported by NSF grants CCR-9102231 and CCR-9410421, and Dartmouth
College Startup grant.

http://www.siam.org/journals/sicomp/28-3/28008.html
†6211 Sudikoff Laboratory for Computer Science, Dartmouth College, Hanover, NH 03755

(prasad@cs.dartmouth.edu).

782

SOLVABILITY OF CONSENSUS 783

on critical sections (for example, see [6]), which are poorly suited to asynchronous sys-
tems: if one process is delayed in the critical section of an implemented object, the
other processes will simply have to wait; even worse, if a process crashes in a critical
section, the other processes are permanently disabled from accessing the object. To
overcome this problem, Lamport advocated wait-free implementations [13]. A wait-
free implementation has the property that every process can complete every operation
on the implemented object in a finite number of its own steps, regardless of the speeds
of the remaining processes.

The importance of the consensus problem became explicit when Herlihy discov-
ered the following fundamental connection between consensus and wait-free implemen-
tations: given (i) a wait-free protocol that (repeatedly) solves the consensus problem
among N processes and (ii) an unbounded array of registers, it is possible to have a
wait-free implementation of an object of any type, where the implemented object can
be shared by up to N processes [9]. Thus a consensus protocol can be regarded as a
“universal” primitive.

The solvability of the consensus problem has been extensively researched. To
succinctly describe these results, we use the following notation: we say that a set
S of types solves consensus for N processes if there is a wait-free protocol P that
solves the consensus problem among N processes such that all objects used in P
for communication between processes are of types in S. (There is no limit on the
number of objects that P may use. We only require that each object be of a type in
S.) If such a protocol does not exist, we say that S does not solve consensus for N
processes. If S is a singleton set {T}, we write “T solves consensus” instead of “{T}
solves consensus.”

Dolev, Dwork, and Stockmeyer [7]; Loui and Abu-Amara [14]; and Chor, Israeli,
and Li [4] proved that register does not solve consensus even for two processes.
(These and most other impossibility results relating to consensus are proved using the
bivalency technique introduced by Fischer, Lynch, and Paterson [8].) Loui and Abu-
Amara proved that neither {test&set, register} nor 2-valued read-modify-write

solves consensus for three processes, but each solves consensus for two processes [14].
They also exhibited a simple protocol to show that 3-valued read-modify-write

solves consensus for N processes for all N . Finally, Herlihy considered a host of com-
mon types—queue, stack, fetch&add, move, compare&swap, etc.—and analyzed, for
each type T , the maximum number of processes for which {T, register} can solve
consensus [9].

1.2. The main result. As described above, the ability of specific types to solve
consensus has been well studied. In this paper we ask a general question: can we de-
duce the ability of a set of types to solve consensus simply from knowing the abilities of
the individual types in the set? More specifically, consider the following compositional
property of types T and T ′.

propN (T, T ′). If neither T nor T ′ solves consensus for N processes, then
{T, T ′} does not solve consensus for N processes.

For all types T , T ′ studied in the literature, propN (T, T ′) holds (for all N). The
natural question follows.

question. Does propN (T, T ′) hold for all types T , T ′?
We prove that the answer is a strong no. Specifically, we exhibit a nondetermin-

istic type called DAD(∞) with the following two properties:
1. DAD(∞) does not solve consensus for two processes;
2. {DAD(∞), register} solves consensus for N processes for any N .

784 PRASAD JAYANTI

From this and the known result that register does not solve consensus for two
processes [4, 7, 14], it follows that propN (DAD(∞), register) is false for all N ≥ 2.

1.3. Related results. Research relating the ability of a set of types to the
abilities of the individual types in the set began with our work [11] and the work of
Kleinberg and Mullainathan [12]. In [11], it is proved that the maximum number of
processes for which {T, register} solves consensus is reduced in general if any limit
is imposed on the number of type T objects that may be used in the solution. Both
[11] and [12] prove that the maximum number of processes for which a type T solves
consensus is reduced in general if any limit is imposed on the number of type T objects
that may be used in the solution. [11] also presents the result in this paper without
proof.

Borowsky, Gafni, and Afek [2]; Peterson, Bazzi, and Neiger [16]; Chandra et al. [3]
study the following question posed in [11]: If neither {T, register} nor {T ′, register}
solves consensus for N processes, does it follow that {T, T ′, register} does not solve
consensus for N processes? For deterministic types T and T ′, [2] and [16] prove
that the answer is yes. If types are nondeterministic and each process may bind
to at most one “port” of each object, [3] proves that the answer is no in general.
[3] also proves that if {T, register} does not solve consensus for N processes, then
{T, register, (N − 1)−consensus} does not solve consensus for N processes. Bazzi,
Neiger, and Peterson prove that if either T is deterministic or T solves consensus for
two processes, then the following holds: if T does not solve consensus for N processes
then {T, register} does not solve consensus for N processes [1]. Cori and Moran [5]
prove a result similar to the one in [12].

2. Model and definitions.

2.1. Type. A type is a tuple (OP,RES, Q, δ), where OP is a set of operations,
RES is a set of responses, Q is a set of states, and δ ⊆ Q×OP×Q×RES is a relation
known as the sequential specification of the type. Intuitively, if (σ, op, σ′, res) ∈ δ it
means the following: applying the operation op to an object in state σ can cause the
object to move to state σ′ and return the response res. δ is required to satisfy the
following two properties.

1. Totality. For all σ ∈ Q and op ∈ OP, there is at least one pair (σ′, res) such
that (σ, op, σ′, res) ∈ δ. (This condition ensures that it is legitimate to apply any
operation in any state.)

2. Computability. There is a Turing machine M such that M halts on all inputs,
and on input (σ, op) (σ ∈ Q, op ∈ OP), M computes at least one pair (σ′, res) such
that (σ, op, σ′, res) ∈ δ. (This condition ensures that a sequential implementation,
one that is accessed by a single process, is feasible.)

A type is deterministic if, for all σ ∈ Q and op ∈ OP, there is exactly one
pair (σ′, res) such that (σ, op, σ′, res) ∈ δ. Thus for deterministic types δ can be
regarded as a function δ : Q×OP→ Q×RES. A type is nondeterministic if it is not
deterministic.

2.2. Concurrent system. We define a concurrent system informally. A formal
definition, using I/O automata [15], was given in [9].

A concurrent system is specified by a finite set of processes {P1, P2, . . . , PN} and
a finite/infinite set of objects {O1, O2, . . .}, where the following hold.

• Processes and objects have distinct names. (All names are known to all
processes.)

SOLVABILITY OF CONSENSUS 785

• Each object has two attributes: a type and an initial value. (The initial
value is a state of the object’s type.)

• Each process is specified by a deterministic program. Some internal variables
are distinguished as input variables and some are distinguished as write-once output
variables (output variables are initialized to ⊥). Each instruction of the program
specifies which object to access, what operation to apply on the object, and how the
object’s response should alter the values of the internal variables of the program. We
denote such a concurrent system as (P1, . . . , PN ;O1, O2, . . .).

A configuration of a concurrent system is a tuple of process and object states.
Notice that the initial configuration is uniquely fixed by an assignment of values
to input variables of processes. An execution of a concurrent system is a sequence
C0, C1, C2, . . . of configurations such that C0 is an initial configuration, and Ci+1 is
the configuration that results when some process P executes a single instruction of
its program in configuration Ci. We refer to the change of configuration from Ci to
Ci+1 as a step and associate this step with process P .

2.3. Consensus protocol. A (binary) consensus protocol for processes
P1, . . . , PN is a concurrent system (P1, . . . , PN ;O1, O2, . . .), where each Pi has a binary
input variable proposali and an output variable decisioni such that every infinite
execution Σ has the following properties.

• Wait-freedom. If a process Pi has infinitely many steps in Σ = C0, C1, C2, . . .
then Pi decides in Σ; that is, there is a configuration Ck such that decisioni has a
non-⊥ value in Ck. (We refer to this non-⊥ value as Pi’s decision value in Σ, and
refer to the value of the input variable proposali in C0 as Pi’s proposal in Σ.)

• Agreement. If Pi and Pj decide in Σ, then their decision values are the same.
• Validity. If Pi decides in Σ, then its decision value is the proposal of some

process.
Definition 2.1. Let S be a set of types. We say S solves consensus for N

processes if there is a consensus protocol (P1, . . . , PN ;O1, O2, . . .) such that the type
of each object Oi is in S.

Definition 2.2. We say S solves consensus for ∞ processes if, for all N ≥ 1, S
solves consensus for N processes.

We let consensus(Pi, vi,P) denote process Pi’s program in consensus protocol
P when Pi’s proposal is vi.

3. Specification of the type DAD(k). In this section we specify a family of
types DAD(k), k ∈ {2, 3, 4, . . .}∪{∞}. In the next two sections, we prove the following
properties.1

1. For k <∞, {DAD(k), register} solves consensus for k processes but not for
k + 1 processes. {DAD(∞), register} solves consensus for ∞ processes.

2. For all k ∈ {2, 3, 4, . . .} ∪ {∞}, DAD(k) does not solve consensus for two
processes.

The type DAD(k) is specified in Figure 1. In this specification, choose(S) is as-
sumed to pick an element from set S nondeterministically and return it. Notice that
the variables upset and ahead [i] are stable: once true, they remain true. Similarly,
once the variable decision assumes a binary value, its value does not subsequently
change. The following is an informal description of DAD(k). This description is in-

1DAD stands for “disciplined-access demanding,” a name that captures the fact that an object of
this type does not return useful responses to processes unless processes show certain discipline in
how they access the object.

786 PRASAD JAYANTI

S1. OP , the set of operations, is {op(0), op(1)} ∪ {give-decision(i, b) | i ∈ {0, 1}, b ∈
{true, false}}.

S2. RES , the set of responses, is {0, 1, ack}.
The response for op(0) or op(1) is always ack . The response for give-decision(−,−) is
either 0 or 1.

S3. Q, the set of states, is represented by the variables n0, n1, ngd : integer; decision ∈
{⊥, 0, 1}; ahead [0..1], upset : boolean. The state corresponding to (n0 = n1 = ngd = 0;
decision = ⊥; ahead [0..1] = upset = false) is known as the fresh state. The states of DAD(k)
are only those that are reachable from the fresh state by the sequential specification given
in S4.

Informally, n0, n1, ngd count the number of applications of op(0), op(1), and
give-decision, respectively. The variable ahead [i] is set to true if ni > 0 and nı = 0
when give-decision(i,−) is applied. The variable upset is set to true if one of the fol-
lowing happens: (i) op(1) is applied more than once (op(0) may be applied any num-
ber of times), (ii) the total number of times that all give-decision(−,−) operations
are applied is more than k, (iii) give-decision(i,−) is applied with no prior applica-
tion of op(i), (iv) give-decision(i, true) is applied with no prior application of op(ı), (v)
give-decision(i, false) is applied and ahead [ı] = true. If upset, a DAD(k) object returns 0
or 1 nondeterministically to an invocation of give-decision. If not upset, it sets decision
irrevocably and nondeterministically (if not already set) to 0 or 1 such that ndecision > 0,
and returns decision.

S4. δ, the sequential specification, is described as follows:

op(i) /* i ∈ {0, 1} */
ni := ni + 1
if n1 > 1 then upset := true
return(ack)

give-decision(i, other-is-ahead) /* i ∈ {0, 1}, other-is-ahead : boolean */
ngd := ngd + 1
if (ni > 0 ∧ nı = 0) then ahead [i] := true
if (ngd > k) ∨ (ni = 0) ∨ (ahead[ı] ∧ ¬other-is-ahead) ∨ (nı = 0 ∧ other-is-ahead) then
upset := true

if upset then
return(choose({0, 1}))

else if decision = ⊥ then
decision := choose({j | nj > 0})

return(decision)

Fig. 1. The type DAD(k).

tended only as an intuitive guide to, and not as a substitute for, the formal specifica-
tion in Figure 1.

A DAD(k) object supports three types of operations: op(0), op(1), and
give-decision(−,−). (The first parameter of give-decision is a 0 or 1, and the
second parameter is either true or false.) The response to op(0) or op(1) is always
ack . The response to give-decision(−,−) is either 0 or 1. A DAD(k) object requires
that certain rules be observed in accessing it. If these rules are violated, the object
becomes “upset.” Once upset, the object remains upset forever. Below we explain (i)
the conditions under which an object becomes upset and (ii) how an object computes
the response (0 or 1) to a give-decision operation.

We say that op(0) is ahead of op(1) if, before op(1) is applied for the first time,
both op(0) and give-decision(0,−) are applied and are applied in that order. (It
is not necessary that give-decision(0,−) be applied immediately after op(0)). The
definition of “op(1) is ahead of op(0)” is symmetric. Notice that once the proposition
“op(i) is ahead of op(ı)” becomes true, it remains true forever.

SOLVABILITY OF CONSENSUS 787

A DAD(k) object becomes upset if any of the following conditions is met. Further-
more, once upset, an object will remain upset forever.

1. op(1) is invoked more than once.
2. The total number of times that all give-decision(−,−) operations are in-

voked is more than k.
3. For i ∈ {0, 1}, give-decision(i,−) is invoked, but op(i) has never been

previously invoked (by any process).
4. For i ∈ {0, 1}, give-decision(i, false) is invoked and op(ı) is ahead of op(i).
5. For i ∈ {0, 1}, give-decision(i, true) is invoked and op(ı) has never been

previously invoked (by any process).
Conditions 1 and 2 are easy to comprehend. Condition 3 states that op(i) must

be invoked before give-decision(i,−) can be invoked. Condition 4 states that if
op(ı) is ahead of op(i), then in any invocation of give-decision(i, flag), flag must
be true. By itself, this condition is trivial to meet: whenever a process invokes
give-decision(−,−), it can always supply true as the second parameter. Condi-
tion 5 prevents processes from adopting such a trivial strategy. It states that if
give-decision(i, true) is invoked, then it must be the case that op(ı) has been pre-
viously invoked.

The operations op(0) and op(1) always get ack as their response. The response
to an invocation inv of the give-decision operation is computed using the following
rules in the order they are specified .

1. If the object was already upset or the current invocation inv upsets the
object, the object returns 0 or 1 nondeterministically.

2. If some give-decision(−,−) operation has previously completed and the
object returned a response res to that operation, then the object returns res.

3. If op(0) has been previously invoked and op(1) has not been previously in-
voked, the object returns 0. Similarly, if op(1) has been previously invoked and op(0)
has not been previously invoked, the object returns 1.

4. If op(0) and op(1) have both been previously invoked (and, because of rule
2, a give-decision operation has never been previously invoked), the object returns
0 or 1 nondeterministically.

The above is a complete set of rules. In particular, we do not need a rule 5 for the
case when neither op(0) nor op(1) was previously invoked. This is because if neither
op(0) nor op(1) was previously invoked, then the current invocation inv will upset
the object, making rule 1 applicable.

The motivation for this involved specification is as follows. Consider the name-
consensus problem for two processes P0 and P1 [9]. Informally, this problem requires
two processes P0 and P1 to agree which, between them, is the winner. The non-
triviality condition is that the winner must have taken at least one step. Consider
the following protocol for this problem. Process Pi (i ∈ {0, 1}) applies op(i) on O,
a DAD(k) object. Pi then applies give-decision(i, f lagi) on O (for some flagi)
and, if the response is j, it decides Pj to be the winner. This protocol is correct
only if each process ensures that the second parameter flagi supplied while invok-
ing give-decision does not upset O. Thus, intuitively, DAD(k) objects are useful in
solving consensus only if processes ensure that they do not upset these objects while
accessing them. We have carefully specified DAD(k) so that, while solving consensus,
processes can usefully access DAD(k) objects, without upsetting them, only when reg-
isters are also available. This will help us show that DAD(k) does not solve consensus
but {DAD(k), register} does.

788 PRASAD JAYANTI

Odad: DAD(k) object, initialized to the fresh state
R[0..1]: binary registers (arbitrarily initialized)
R′[0..1]: boolean registers, initialized to false

internal variables of process Pi
proposali ∈ {0, 1}
decisioni ∈ {⊥, 0, 1}, initialized to ⊥
di, winneri ∈ {0, 1} (arbitrarily initialized)
other-aheadi: boolean (arbitrarily initialized)

consensus(Pi, proposali,Pkn) (for 1 ≤ i ≤ n− 1) consensus(Pn, proposaln,Pkn)

1. di := consensus(Pi, proposali,Pkn−1) dn := proposaln
2. R[0] := di R[1] := dn
3. Apply(Pi, op(0), Odad) Apply(Pn, op(1), Odad)
4. R′[0] := true R′[1] := true
5. other-aheadi := R′[1] other-aheadn := R′[0]
6. winneri := winnern :=

Apply(Pi, give-dec(0, other-aheadi), Odad) Apply(Pn, give-dec(1, other-aheadn), Odad)
7. decisioni := R[winneri] decisionn := R[winnern]

Fig. 2. Pkn, consensus protocol for processes P1, . . . , Pn.

4. {DAD(k), register} solves consensus for k processes. In this section, we
exhibit a consensus protocol for k processes using only DAD(k) objects and registers.
Our protocol is recursive. Let Pkn (n ≤ k) denote a consensus protocol for processes
P1, P2, . . . , Pn that uses only DAD(k) objects and registers. The base case is to derive
Pk1 , a consensus protocol for a single process P1, and is trivial. The recursive step of
deriving Pkn from Pkn−1 (for all n > 1) is presented in Figure 2.

The protocol Pkn works as follows. Processes P1 . . . Pn split into two groups: G0

and G1. Group G0 has P1 . . . Pn−1, and group G1 has just Pn. Processes P1 . . . Pn−1

do consensus among themselves (recursively) and announce the outcome in R[0]. Pro-
cess Pn announces its input value in R[1]. The rest of the protocol resolves which
of the two groups is the winner. If G0 wins, every process decides the value in R[0].
Similarly, if G1 wins, every process decides the value in R[1]. The object Odad is used
to determine the winner of the two groups. Processes P1 . . . Pn−1 perform the opera-
tion op(0) on Odad. Then they set the register R′[0] to inform process Pn that op(0)
has been applied on Odad. Process Pn, on the other hand, performs op(1) on Odad,
and then sets R′[1] to inform processes in G0 that op(1) has been applied. Processes
then perform the give-decision operation. The return value determines the win-
ning group. For this strategy to work correctly, the arguments of the give-decision

operation must be such that the object Odad does not get upset. We urge the reader
to understand how the registers R′[0..1] are used to ensure that Odad does not get
upset. (This will be clear when we prove below that the protocol is correct.) Finally,
if Odad returns v, a process assumes that the group Gv won and decides the value in
R[v].

Lemma 4.1. For 2 ≤ n ≤ k, the protocol Pkn in Figure 2 is a correct consensus
protocol for processes P1, P2, . . . , Pn.

Proof. The proof is by induction. Assume that Pkn−1 is correct. Consider an
execution E of the consensus protocol Pkn in Figure 2. The key claim is that Odad
does not get upset in E. This claim follows from the following simple observations.

SOLVABILITY OF CONSENSUS 789

1. op(1) is executed only once.
2. For v ∈ {0, 1}, op(v) is executed before executing give-decision(v,−).
3. The total number of times that all give-decision(−,−) operations are

executed is no more than n. Since n ≤ k, the total number of times that all
give-decision(−,−) operations are executed is no more than k.

4. Suppose op(v) is ahead of op(v). That is, the operations op(v) and then
give-decision(v,−) are completed before the first invocation of op(v). Then the
use of the registers R′[0..1] in the protocol guarantees that when a process invokes
give-decision(v, other-ahead), the second parameter, namely, other-ahead, is true.

5. Suppose no process completes the operation op(v) before some process in-
vokes give-decision(v, other-ahead). Then the use of the registers R′[0..1] in the
protocol guarantees that the second parameter, namely, other-ahead, is false.

So far we have argued that Odad is not upset, in E. Since Odad is not upset, by
the specification of DAD(k) we have the following.

1. Every give-decision operation on Odad returns the same binary response.
Let winner ∈ {0, 1} denote this response.

2. Some process Pj invokes op(winner) before Odad returns winner for the first
time to a give-decision operation.

From the protocol, it is clear that Pj writes the value dj in R[winner] before
invoking op(winner). Furthermore, once a value is written by a process into a register
R[0] or R[1], the value of that register never subsequently changes. For R[0] this
follows from the agreement property of Pkn−1, and for R[1] this follows from the fact
that only Pn writes R[1] and writes it only once.

The above implies that, for all i, 1 ≤ i ≤ n, consensus(Pi, proposal i,Pkn) returns
dj . Thus the protocol Pkn satisfies agreement. If j = n, then dj = dn = proposaln.
If j 6= n, since Pkn−1 satisfies validity, dj ∈ {proposal1, proposal2, . . . , proposaln−1}.
Thus Pkn satisfies validity. It is obvious that Pkn is wait-free. This concludes the proof
of correctness.

Corollary 4.2. For k ∈ {2, 3, . . .}∪{∞}, {DAD(k), register} solves consensus
for k processes.

In fact, as the next lemma states, it is impossible to solve consensus for k + 1
processes using only DAD(k) objects and registers. This lemma is however not essential
for establishing our main result. The proof is therefore presented in the appendix.

Lemma 4.3. For k <∞, {DAD(k), register} does not solve consensus for k + 1
processes.

Proof. It is proved by a standard bivalency argument. See the appendix.

4.1. DAD(k) does not solve consensus for even two processes. In this sec-
tion, we prove that it is impossible to solve consensus even between two processes if
we may only use DAD(k) objects for process communication.

Impossibility results such as these are typically proved using bivalency arguments
[8]. However, bivalency arguments did not appear helpful in proving this result. This
is due to the fact that DAD(k) objects are not entirely powerless: after all, as we
showed in the previous section, it is possible to solve consensus using DAD(k) objects
if registers are also available. Our proof is based on exhibiting two indistinguishable
scenarios in which processes are required to act differently. The nondeterminism of
DAD(k) is exploited in keeping the scenarios indistinguishable. The details are rather
involved since arguments concerning nondeterministic objects are subtle and warrant
a careful treatment.

We begin with a simple lemma that will be useful later. The lemma states that it

790 PRASAD JAYANTI

op(i) give-decision(i, b)

return(ack) if σ[decision] ∈ {0, 1} then
return(σ[decision])

else if (σ[upset] ∨ σ[n0] > 0) then
return(0)

else return(1)

Fig. 3. Simulating the responses of a DAD(k) object whose initial state σ is a nonfresh state.

is trivial to simulate the responses of a DAD(k) object whose initial state is not fresh.
More specifically, if the initial state of a DAD(k) object O is not fresh, every process
can determine the response from O to every operation locally, without invoking any
operation on O or any other shared object. In the following, let σ[v] denote the value
of state variable v in state σ.

Lemma 4.4. Let σ be any state of DAD(k) different from the fresh state. Let O be
a DAD(k) object whose initial state is σ. The responses from O to operations can be
(trivially) simulated using the code in Figure 3.

Proof. If σ is different from the fresh state, then it is easy to verify that
(σ[decision] ∈ {0, 1}) ∨ (σ[n0] > 0) ∨ (σ[n1] > 0) ∨ σ[upset]. From this and the
specification of DAD(k), it is obvious that the responses are correct.

Corollary 4.5. Suppose there is a consensus protocol P = (P1, P2;O1, O2, . . .)
where each Oi is a DAD(k) object. Then there is a consensus protocol P ′ =
(P1, P2;O′1, O

′
2, . . .) where each O′i is a DAD(k) object initialized to the fresh state.

Proof. The protocol P ′ is the same as P with one exception: if P employs Oi and
Oi’s initial state is not fresh, then P ′ does not employ Oi; instead, in P ′, each process
determines the response of Oi locally, as described in the proof of Lemma 4.4.

The next lemma states that it is impossible to solve consensus between two pro-
cesses using only DAD(k) objects. The proof exploits the fact that DAD(k) objects are
so weak that a process cannot use these objects to leave its “footprints” behind. Thus
if a process P0 runs to completion and decides a value before the second process P1

even begins to run, P1 cannot figure out that P0 had already run and decided upon
a value. This can cause P1 to decide upon a value that is not consistent with the de-
cision of P0. The formal proof below elaborates this argument. However, the details
are complex. We therefore present the proof in a series of easily verifiable claims.

At some places in the proof, we refer to the type det-DAD(k). The specification
of det-DAD(k) is obtained by replacing every occurrence of “choose(S)” in Figure 1
by the function “min(S).” (min(S) is the minimum element in set S.) Notice that
this modification makes det-DAD(k) a deterministic type.

Lemma 4.6. For all k ∈ {2, 3, . . .} ∪ {∞}, DAD(k) does not solve consensus for
two processes.

Proof. The proof is by contradiction. Let (P0, P1;O1, O2, . . .) be a consensus
protocol P, where each Oi is of type DAD(k). By Corollary 4.5, we can assume,
without loss of generality, that the initial state of each Oi is fresh.

Recall our notation that consensus(Pi, vi,P) denotes process Pi’s program in
protocol P when Pi’s proposal is vi. In the following, we present two scenarios, S0

SOLVABILITY OF CONSENSUS 791

Scenario S0
P0 executes

consensus(P0, 0,P)

P1 executes

consensus(P1, 1,P)

consensus(P1, 1,P)

P1 executes
Scenario S1

T I M E

Fig. 4. Scenarios S0 and S1.

and S1, which are indistinguishable to P1 but require P1 to take different actions.
In Scenario S0, P0 executes consensus(P0, 0,P) to completion. Assume that,

during this execution of consensus(P0, 0,P), every object Oi (i ≥ 1) behaves like
a det-DAD(k) object. We will refer to this as Assumption A1. Since P satisfies
validity, at the completion of consensus(P0, 0,P), P0 decides 0. Of O1, O2, . . . let S
be the set of objects that are in the fresh state in scenario S0 at the completion of
consensus(P0, 0,P).

We now do two things: (i) we continue scenario S0 by letting P1 execute
consensus(P1, 1,P), and (ii) we start a new scenario, call it scenario S1, by let-
ting P1 execute consensus(P1, 1,P). (See Figure 4 for a depiction of scenarios S0
and S1.) Assume that, in both scenarios, each object in S behaves deterministically,
consistent with the type det-DAD(k). We will refer to this as Assumption A2.

We prove the following statement by induction on i: the objects in
{O1, O2, . . .} − S can choose among the nondeterministic alternatives (when appli-
cable) such that for all i ≥ 0, P1 cannot distinguish scenario S0 from scenario S1 in its
first i steps. The base case for i = 0 is trivial. To prove the induction step, assume
the hypothesis for i ≤ m.

Consider the (m+ 1)th step. Let oper be the operation that P1 performs in this
step in scenario S0, and let O be the object on which it performs oper. From the
induction hypothesis and the fact that the protocol P is deterministic, it follows that
P1 performs oper on O in its (m+ 1)th step in scenario S1 also.

Suppose oper ∈ {op(0), op(1)}. Then the response is ack in either scenario. Thus
S0 and S1 remain indistinguishable to P1 after m+ 1 steps. Hence the induction step
is proved.

Suppose instead that oper is give-decision(−,−). We make a case analysis to
prove the induction step.

Case 0. O ∈ S.
We claim that O is in the fresh state in both S0 and S1 just before P1 begins

executing consensus(P1, 1,P). For S0, this follows from the definition of S; and for

792 PRASAD JAYANTI

S1, this follows from the fact that every object is initialized to the fresh state. By
Assumption A2, O behaves deterministically (consistent with the type det-DAD(k)) in
both scenarios. The above facts, together with induction hypothesis, guarantee that
O is in the same state in both scenarios at the end of m steps of P1 and, therefore,
O returns the same response to oper in both scenarios. Thus S0 and S1 remain
indistinguishable to P1 after m+ 1 steps. Hence the induction step is proved.

Case 1. Case 0 does not apply and the following holds: in at least one of S0
and S1, O is upset in the first m+ 1 steps of P1.

Let Si be a scenario in which O is upset in the first m + 1 steps of P1. By the
specification of DAD(k), O is free to return 0 or 1 to oper in scenario Si. Suppose that
O uses this freedom and returns the same response to oper in Si as it does in Sı. Then
S0 and S1 remain indistinguishable to P1 after m+ 1 steps. Hence the induction step
is proved.

Case 2. Neither Case 0 nor Case 1 applies. In other words, O is not in the
fresh state in scenario S0 just before P1 calls consensus(P1, 1,P) and, in both S0 and
S1, O is not upset at the end of m+ 1 steps of P1.

Our proof that the induction step holds for this case proceeds as follows. First, we
make claims (C1 to C11 below) and show that the induction step holds if any of the
claims is false. Then we show that if all of claims C1 to C11 are true, the induction
step must hold.

Let σk0 and σk1 denote the state of O at the end of k steps of P1 in scenarios S0
and S1, respectively.

C1. σm1 [ngd] = 0.2 In other words, P1 does not apply a give-decision operation
on O in its first m steps in scenario S1.

Suppose that the claim is false. Let k ≤ m be the smallest integer such
that σk1 [ngd] = 1. That is, give-decision is applied on O for the first time
by P1 in its kth step in scenario S1. Since O is not upset in S1, it follows
that σk1 [decision] ∈ {0, 1}, and this value is the response from O in the kth
step of P1 in scenario S1. Let d = σk1 [decision]. By inductive hypothesis, the
response from O in the kth step of P1 in scenario S0 is also d. Since O is not
upset in scenario S0, this implies that σk0 [decision] = d. From the specification
of DAD(k), it is clear that once the state variable decision assumes a non-⊥
value, its value does not subsequently change. Thus we have σm0 [decision] = d
and σm1 [decision] = d. From this and the fact that O is not upset in either
scenario, we conclude that the response from O to oper is d in both scenarios.
Thus S0 and S1 remain indistinguishable to P1 after m+ 1 steps. Hence the
induction step is proved.

C2. There is a v ∈ {0, 1} such that σm1 [nv] > 0 and σm1 [nv] = 0. In other words,
P1 applies op(v) but not op(v) in its first m steps in S1. (This v is fixed in
the remainder of this proof.)

Assume that the claim is false. Then either σm1 [n0] = σm1 [n1] = 0 or
σm1 [n0] > 0 and σm1 [n1] > 0. Suppose σm1 [n0] = σm1 [n1] = 0. Then by the
specification of DAD(k), when P1 applies oper ≡ give-decision(−,−) in the
(m+1)th step in S1, it upsets O. This contradicts the case we are considering.

Suppose σm1 [n0] > 0 and σm1 [n1] > 0. Since σm1 [ngd] = 0 (by C1), by the
specification of DAD(k), O is free to return either 0 or 1 in S1. Suppose that
O uses this freedom and returns the same response to oper in S1 as it does in
S0. Then S0 and S1 remain indistinguishable to P1 after m + 1 steps. Thus
the induction step holds.

2Recall our notation that σ[v] denotes the value of the state variable v in state σ.

SOLVABILITY OF CONSENSUS 793

C3. P1 applies op(v) on O at least once in its first m steps in S0.
This claim follows from C2 and the induction hypothesis.

C4. oper ≡ give-decision(v, false).
Suppose oper ≡ give-decision(v,−) or oper ≡ give-decision(v, true).

Since σm1 [nv] = 0 (by C2), O will be upset in S1 when oper is invoked in the
(m+ 1)th step. This contradicts the case we are considering.

So far we made the following claims for the case in consideration (Case 2): there is
some v ∈ {0, 1} such that, in both S0 and S1, P1 applies op(v) on O but not op(v) in
its first m steps and applies give-decision(v, false) in its (m+ 1)th step.

C5. σm0 [ahead[v]] = false.
Suppose σm0 [ahead[v]] = true. Then when P1 applies oper ≡

give-decision(v, false) (guaranteed by C4) in its (m + 1)th step in S0, it
upsets O. This contradicts the case we are considering.

C6. v = 1 implies σ0
0 [ngd] = 0. In other words, if v = 1, then P0 never applied a

give-decision operation on O in S0.
Suppose v = 1 and P0 applied give-decision(1,−) on O in S0. Since

O is not upset in S0, it follows that P0 applied op(1) on O before applying
give-decision(1,−). By C3 and the assumption that v = 1, P1 applied
op(1) in S0. Thus op(1) was applied at least twice on O in S0. By the
specification of DAD(k), O would be upset in S0. This contradicts the case we
are considering.

Suppose v = 1 and P0 applied give-decision(0,−) on O in S0. Since
O is not upset in S0, it follows that P0 applied op(0) on O before applying
give-decision(0,−). By C5 and the assumption that v = 1, σm0 [ahead[0]] =
false. This implies that P0 applied op(1) on O before applying give-

decision(0,−). By C3 and the assumption that v = 1, P1 applied op(1)
in S0. Thus op(1) was applied at least twice on O in S0. By the specifica-
tion of DAD(k), O would be upset in S0. This contradicts the case we are
considering.

C7. v = 0.
Suppose v = 1. Then we can infer the following: (1) σm1 [ngd] = 0 (by C1);

(2) σm0 [ngd] = 0 (by C1, induction hypothesis, and C6); (3) σm1 [n1] > 0 (by
C2); (4) σm0 [n1] > 0 (by C3). These four facts, together with the specification
of DAD(k), imply that O is free to return 1 to oper in both S0 and S1. Suppose
that O does this. Then S0 and S1 remain indistinguishable to P1 after m+ 1
steps. Thus the induction step holds.

The claims made so far assert that, in both S0 and S1, P1 applies op(0) on O, but not
op(1), in its first m steps, and applies give-decision(0, false) in its (m + 1)th step.
Furthermore, op(1) is not ahead of op(0) in scenario S0.

C8. O returns 0 to oper (in the (m+ 1)th step of P1) in scenario S1.
Claims C2 and C7 imply that σm1 [n0] > 0 and σm1 [n1] = 0. Further, by

the case we are considering, O is not upset in the first m + 1 steps of P1 in
scenario S1. The above facts imply that the only legal response that O can
return to oper is 0.

C9. If P0 applied give-decision(1,−) on O (in S0), it did so only after applying
op(0) on O.

Suppose P0 applied give-decision(1,−) on O (in scenario S0). Since O
is not upset in S0, this implies that P0 applied op(1) on O before applying
give-decision(1,−). If P0 did not apply op(0) before applying give-

794 PRASAD JAYANTI

decision(1,−), then this application of give-decision(1,−) would set ahead[1]
to true. This, together with the fact that ahead[1] is stable, implies that
σm0 [ahead[1]] = true. This contradicts the conjunction of C5 and C7.

C10. Every application of the operation give-decision(−,−) on O by P0 in sce-
nario S0 gets the response 0.

Consider the earliest application e of give-decision(w,−) on O by P0

in S0. If w = 1, C9 implies that P0 applies op(0) before e. If w = 0, the fact
that O is not upset in S0 implies that P0 applies op(0) before e. Thus we
conclude that P0 applies op(0) before e. This, together with Assumption A1,
implies that e returns 0. From this and the fact that O is not upset in S0,
it follows that every application of give-decision(−,−) on O in S0 returns
the response 0.

C11. P0 never applies give-decision(−,−) on O (in S0).
Suppose that the claim is false. Then, from C10 and the fact that O is

not upset in S0, it follows that O returns 0 to oper in the (m+1)th step of P1

in scenario S0. Thus, by C8, S0 and S1 remain indistinguishable to P1 after
m+ 1 steps. Hence the induction step is proved.

From the above claims we deduce the following facts: (F1) σm1 [n0] > 0. This
follows from C2 and C7. (F2) σm0 [n0] > 0. This follows from F1 and induction
hypothesis. (F3) σm0 [ngd] = 0. This follows from C1, induction hypothesis, and C11.
From F2, F3, and the specification of DAD(k), it is clear that O is free to return 0 to
oper (in the (m+ 1)th step of P1) in scenario S0. Suppose that it does. Then, by C8,
S0 and S1 remain indistinguishable to P1 after m+ 1 steps. Thus the induction step
holds. This completes the proof of the induction step for Case 2.

We have proved the induction step for all cases. We therefore conclude that no
matter how many steps P1 takes, scenarios S0 and S1 can remain indistinguishable to
P1.

Since P is a wait-free protocol, consensus(P1, 1,P) terminates in S0 after a
finite number of steps, with P1 deciding some value val ∈ {0, 1}. Since S0 and S1
are indistinguishable to P1, consensus(P1, 1,P) terminates in S1 after exactly the
same number of steps, with P1 deciding val. If val = 0, the protocol does not satisfy
the validity property in S1. If val = 1, the protocol does not satisfy the agreement
property in S0. Thus P is not a correct consensus protocol. This completes the proof
of the lemma.

We conclude this section with some observations on Lemma 4.6 and its proof
above. Nondeterminism occurs at two different places in the specification of DAD(k)(see
the choose statement on lines 6 and 8 of the give-decision procedure in Figure 1).
The proof of Lemma 4.6 exploits both occurrences, the first occurrence in proving the
induction step for Case 1 and the second occurrence in proving the induction step for
Case 2 (see the proofs of claims C2 and C7 and the conclusion of Case 2).

Is it possible to eliminate either occurrence of nondeterminism from the specifica-
tion of DAD(k) and still prove Lemma 4.6? The answer appears to be no. Specifically,
if either occurrence of the choose function is replaced with the deterministic function
min (or max), it can be shown that Lemma 4.6 does not hold.

Lemma 4.6 states that the binary consensus problem for two processes is not
solvable using DAD(k) objects. It is easy to show that binary consensus for N processes
is solvable using objects of type T if and only if name-consensus for N processes is
solvable using objects of type T . (The name-consensus problem is described earlier in
section 3.) It follows that the name-consensus problem for two processes is also not
solvable using DAD(k) objects alone.

SOLVABILITY OF CONSENSUS 795

5. The main theorem and conclusion. Recall from section 1.2 the property
propN defined for pairs of types. From Lemma 4.6, Corollary 4.2, and the fact that
register does not solve consensus for two processes [4, 7, 14], we conclude that, for
N ≥ 2, propN (DAD(∞), register) is false. Thus we have Theorem 5.1.

Theorem 5.1. For N ≥ 2, propN is not a property of all types.
The type DAD(∞), which we have used to prove the above theorem, is nonde-

terministic. It is natural to ask if there are deterministic types T and T ′ for which
propN (T, T ′) is false (for some N). Interestingly, the answer is negative. This follows
from two recent results, as we explain below.

For all deterministic types T , T ′ and for all N ≥ 2, if neither {T, register}
nor {T ′, register} solves consensus for N processes, then {T, T ′, register} does
not solve consensus for N processes [2, 16]. For all types T , if T is deterministic
or T solves consensus for two processes, the following is true: if T does not solve
consensus for N processes (for some N), then {T, register} does not solve consensus
for N processes [1]. Together, these two results have the following straightforward
implications.

1. If propN (T, T ′) is false, then at least one of T and T ′ is nondeterministic.
2. If propN (T, T ′) is false and one of T and T ′ is register, then the other

type does not solve consensus for two processes.
Thus it is not surprising that the type DAD(∞) identified in this paper both is

nondeterministic and does not solve consensus for two processes.

Appendix A. We prove that it is impossible to solve consensus for k + 1 pro-
cesses using only DAD(k) objects and registers. This impossibility result follows from a
straightforward bivalency argument. The intuition behind why consensus is impossi-
ble for k+1 processes, but not for k processes, is as follows. As we have seen, a DAD(k)
object supports two kinds of operations: op and give-decision. The operation op(i)
does not return any useful information to the invoking process. This is due to the fact
that the response of op(i) is always ack. The operation give-decision does return
useful information but only to the first k invocations of the operation. Thereafter,
its response is nondeterministic and hence is not helpful. Thus k processes may gain
useful information from a DAD(k) object but k+ 1 processes cannot. We now proceed
to give a formal proof of impossibility.

Let det-DAD(k) be the type obtained by replacing every occurrence of “choose(S)”
in Figure 1 by the function “min(S).” (min(S) is the minimum element in set S.) Thus
det-DAD(k) is a deterministic restriction of DAD(k). We prove below that det-DAD(k)
objects and registers do not suffice to solve consensus for k+1 processes. This trivially
implies that DAD(k) objects and registers do not suffice to solve consensus for k + 1
processes.

As mentioned, the proof uses a simple bivalency argument. Since bivalency ar-
guments are standard, our definitions and the proof are informal. A configuration
C of a consensus protocol is v-valent (for v ∈ {0, 1}) if there is no execution from
C in which v is decided upon by some process. In other words, once the protocol
is in configuration C, no matter how processes are scheduled, no process decides v.
A configuration is monovalent if it is either 0-valent or 1-valent. A configuration is
bivalent if it is not monovalent. If E is a finite execution of a consensus protocol P
started in configuration C, E(C) denotes the configuration at the end of the execution
E.

Lemma A.1. For all k ∈ {2, 3, . . .}, {det-DAD(k), register} does not solve
consensus for k + 1 processes.

796 PRASAD JAYANTI

Proof. Suppose that there is a consensus protocol P = (P1, . . . , Pk+1;O1, O2, . . .),
where each Oi is either a det-DAD(k) object or a register. Let C0 be an initial configu-
ration of P such that, for some processes Pl and Pm, proposall = 0 and proposalm = 1.

When Pl runs by itself from C0, the validity and the wait-freedom properties of
P require that Pl decides proposall = 0. Similarly, when Pm runs by itself from C0, it
decides proposalm = 1. Thus C0 is bivalent. Let E be a finite execution from C0 such
that (1) Ccrit = E(C0) is bivalent; and (2) for all Pi, if Pi takes a step from Ccrit,
the resulting configuration is monovalent. (If such E does not exist, it is easy to see
that there is an infinite execution E′ in which no process decides. Thus some process
takes infinitely many steps in E′ without deciding, contradicting the fact that P is a
wait-free protocol.) Let Sv be the set of processes whose step from Ccrit results in a v-
valent configuration. Since Ccrit is bivalent, neither S0 nor S1 is empty. Furthermore,
S0 ∩ S1 = ∅ and |S0 ∪ S1| = k + 1 ≥ 3 (since k ≥ 2). Without loss of generality,
assume that |S0| ≥ 2 and |S1| ≥ 1. In particular, let S0 = {P 0

1 , P
0
2 , . . . , P

0
r } and

S1 = {P 1
1 , P

1
2 , . . . , P

1
s }, where r ≥ 2 and s ≥ 1.

By a standard argument, the enabled step of every process in configuration Ccrit
must be on the same object O. Furthermore, again by a standard argument, O is
not a register. Thus the enabled step of every process in configuration Ccrit is on O,
an object of type det-DAD(k). Let s0

2 and s1
1 denote the enabled steps of P 0

2 and P 1
1 ,

respectively, in configuration Ccrit. Consider the following scenarios S0 and S1, each
starting from the configuration Ccrit.

• In scenario S0, P
0
2 takes the step s0

2. Then P 1
1 takes a step. Let D0 be the

resulting configuration. Clearly D0 is a 0-valent configuration.
• In scenario S1, P

1
1 takes the step s1

1. Then P 0
2 takes a step. Let D1 be the

resulting configuration. Clearly D1 is a 1-valent configuration.
Processes P 0

2 and P 1
1 have to distinguish scenario S0 from scenario S1, since they

must decide 0 in (every extension of) S0, and decide 1 in (every extension of) S1.
Observe that unless the operation applied by P 0

2 (resp., P 1
1) in step s0

2 (resp., s1
1) is

a give-decision operation, it must eventually apply a give-decision operation on
O in order to distinguish S0 from S1. Thus we extend scenarios S0 and S1, currently
in configurations D0 and D1, respectively, as follows.

1. First, if the operation applied by P 0
2 on O in step s0

2 is not a give-decision

operation, run P 0
2 (in both scenarios) exactly until P 0

2 completes a step in which it
applies a give-decision operation on O.

2. Then if the operation applied by P 1
1 on O in step s1

1 is not a give-decision

operation, run P 1
1 (in both scenarios) exactly until P 1

1 completes a step in which it
applies a give-decision operation on O.

A process P ∈ {P1, . . . , Pk+1} − {P 0
1 , P

0
2 , P

1
1 } has to distinguish scenario S0 from

scenario S1, since P must decide 0 in (every extension of) S0, and decide 1 in (every
extension of) S1. Observe, however, that P cannot distinguish S0 from S1 until it
applies a give-decision operation on O. Thus we extend scenarios S0 and S1 as
follows.

• For each P ∈ {P1, . . . , Pk+1} − {P 0
1 , P

0
2 , P

1
1 }, run P (in both scenarios)

exactly until P completes a step in which it applies a give-decision operation on
O.

We make the following observations: (1) the process P 0
1 is in the same state in

scenarios S0 and S1; (2) every object except O is in the same state in S0 and S1; (3)
in both S0 and S1, a give-decision operation is applied on O at least k times (once
by each process in {P1, . . . , Pk+1} − {P 0

1 }). The third observation, together with the

SOLVABILITY OF CONSENSUS 797

specification of det-DAD(k), implies that every subsequent give-decision operation
on O returns 0 in either scenario. Extend scenarios S0 and S1 by letting P 0

1 run by
itself. By the above observations, P 0

1 cannot distinguish S0 from S1, no matter how
many steps it takes. Yet it must decide 0 in S0, and 1 in S1. This is impossible. Hence
the lemma is proved.

Acknowledgment. I am grateful to an anonymous referee for providing a long
list of comments that helped improve the presentation.

REFERENCES

[1] R. Bazzi, G. Neiger, and G. Peterson, On the use of registers in achieving wait-free con-
sensus, in Proc. 13th Annual ACM Symposium on Principles of Distributed Computing,
1994, pp. 354–362.

[2] E. Borowsky, E. Gafni, and Y. Afek, Consensus power makes (some) sense, in Proc. 13th
Annual ACM Symposium on Principles of Distributed Computing, August 1994, pp. 363–
372.

[3] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg, Wait-freedom vs. t-resiliency and
the robustness of wait-free hierarchies, in Proc. 13th Annual ACM Symposium on Princi-
ples of Distributed Computing, 1994, pp. 334–343.

[4] B. Chor, A. Israeli, and M. Li, Wait-free consensus using asynchronous hardware, SIAM J.
Comput., 23 (1994), pp. 701–712.

[5] R. Cori and S. Moran, Exotic behaviour of consensus numbers, in Proc. 8th Workshop on
Distributed Algorithms, Terschelling, The Netherlands, September–October 1994, pp. 101–
115; Lecture Notes in Computer Science 857, Springer-Verlag, New York.

[6] P. Courtois, F. Heymans, and D. Parnas, Concurrent control with readers and writers,
Comm. Assoc. Comput. Mach., 14 (1971), pp. 667–668.

[7] D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronism needed for dis-
tributed consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77–97.

[8] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed consensus with one
faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[9] M. Herlihy, Wait-free synchronization, ACM Trans. Programming Languages and Systems,
13 (1991), pp. 124–149.

[10] M. Herlihy and J. Wing, Linearizability: A correctness condition for concurrent objects,
ACM Trans. Programming Languages and Systems, 12 (1990), pp. 463–492.

[11] P. Jayanti, Robust wait-free hierarchies, J. Assoc. Comput. Mach., 44 (1997), pp. 592–614.
[12] J. Kleinberg and S. Mullainathan, Resource bounds and combinations of consensus objects,

in Proc. 12th Annual ACM Symposium on Principles of Distributed Computing, August
1993, pp. 133–143.

[13] L. Lamport, Concurrent reading and writing, Comm. Assoc. Comput. Mach., 20 (1977),
pp. 806–811.

[14] M. Loui and H. Abu-Amara, Memory requirements for agreement among unreliable asyn-
chronous processes, Adv. Comput. Res., 4 (1987), pp. 163–183.

[15] N. Lynch and M. Tuttle, An Introduction to Input/Output Automata, Tech. Report
MIT/LCS/TM-373, MIT Laboratory for Computer Science, MIT, Cambridge, MA, 1988.

[16] G. Peterson, R. Bazzi, and G. Neiger, A gap theorem for consensus types, in Proc. 13th
Annual ACM Symposium on Principles of Distributed Computing, August 1994, pp. 344–
353.

A LOWER BOUND FOR INTEGER MULTIPLICATION WITH
READ-ONCE BRANCHING PROGRAMS∗

STEPHEN PONZIO†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 798–815

Abstract. We prove that read-once branching programs computing integer multiplication re-
quire size 2Ω(

√
n). This is the first nontrivial lower bound for multiplication on branching programs

that are not oblivious. By the appropriate problem reductions, we obtain the same lower bound for
other arithmetic functions.

Key words. multiplication, read-once, branching programs, BDD, verification

AMS subject classifications. 68Q05, 68Q25, 68M15

PII. S0097539795290349

1. Introduction and background. It is well known that many functions, some
of them very simple, cannot be computed by read-once branching programs of poly-
nomial size [We88, Za84, Du85, We87, BHST87, Ju88, Kr88]. Interest in whether
integer multiplication can be so computed has been created by recent developments
in the field of digital design and hardware verification.

1.1. Hardware verification and branching programs. The central prob-
lem of verification is to check whether a combinational hardware circuit has been
correctly designed. One approach to verification often employed today is to indepen-
dently convert both the circuit description and the function specification to a common
intermediate representation and then test whether the two representations are equiv-
alent (e.g., [We94]). The use of restricted branching programs as the intermediate
representation has made this approach feasible and very popular—several software
packages are available for implementing this very strategy [Kr94, Br92].

Definition 1. A branching program is a directed acyclic graph with a distin-
guished root node and two sink nodes. The sink nodes are labeled 1 and 0 and each
nonsink node is labeled with an input variable xi, i ∈ {1, . . . , n}, and has two outgoing
edges labeled 0 and 1.

A branching program computes a Boolean function f : {0, 1}n → {0, 1} in the
natural manner: each assignment of Boolean values to the variables xi defines a unique
path through the graph from the root to one of the sinks; the label of that sink defines
the value of the function on that input. The size of a branching program is its number
of nodes.

The hardware circuit to be verified is assumed to be an ordinary combinational
single-output circuit, built up from a standard basis of Boolean functions such as
{∧,∨,¬}. The typical algorithm for constructing the intermediate representation from
the circuit is to work bottom-up through the circuit, from the inputs to the output,
combining the representations appropriately at each gate. Thus, the algorithm need
only compute a representation for f ∧ g, f ∨ g, and ¬f , when given representations
for f and g. In the literature, these are called the “synthesis operations.”

∗Received by the editors August 14, 1995; accepted for publication (in revised form) October 23,
1996; published electronically September 14, 1998.

http://www.siam.org/journals/sicomp/28-3/29034.html
†Institute of Computer Science, Hebrew University, Jerusalem 91904, Israel. The work of this

author was done at the MIT Laboratory for Computer Science.

798

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 799

1.2. Ordered binary decision diagrams (OBDDs) and multiplication.
Because it is NP-complete to determine whether two general branching programs
are equivalent, the intermediate representation is chosen to be a restricted class of
branching programs for which both the synthesis operations and the equivalence test
are tractable.1 The chosen class, which has led to the success of this verification
technique, is oblivious read-once branching programs also known as ordered binary
decision diagrams, or OBDDs.

Definition 2. A branching program is read-once if on every path from the source
to a sink, each variable appears at most once as the label of a vertex.

Definition 3. A branching program is oblivious if on every path from the source
to a sink, the variables appear in the same order.

Thus, any oblivious branching program may be leveled so that all nodes at a given
level are labelled with the same variable. An OBDD will have n levels, with a variable
ordering that is a permutation of the variables.

It is easy to verify that two OBDDs obeying the same ordering of the variables are
easily tested for equivalence: Construct an OBDD to compute their exclusive-or using
standard finite automata product constructions for conjunction and disjunction; then
test for a path from source to sink. (In general, there do not exist polynomial-size
constructions for conjunction and disjunction if the two OBDDs do not obey the same
ordering—see section 1.4.)

Although OBDDs are easily manipulated, they are clearly a very weak model
of computation. For the purposes of hardware verification, however, they are usually
powerful enough: OBDDs can compute in polynomial size integer addition, symmetric
Boolean functions, and many of the benchmark functions [BF85] used by the verifica-
tion community. But multiplication is a very important exception—for this function
Byrant [Br91] proved that exponential size is required.

Definition 4. Integer multiplication is the Boolean function MULT : {0, 1}2n →
{0, 1} that computes the middle bit in the product of two n-bit integers. That is,
MULT(x, y) = zn−1 where x = xn−1 · · ·x0 and y = yn−1 · · · y0 and xy = z =
z2n−1 · · · z0.

(The middle bit is the “hardest” bit, in the sense that if it can be computed by
read-once branching programs (or circuits, etc.) of size s(n), then any other bit can
be computed with size at most s(2n).) This is a serious limitation to the usefulness
of OBDDs, since the hardware to be tested typically contains circuits that perform
multiplication. Today, the largest multipliers that can be checked using this method
have 12-bit inputs; ideally, circuit designers would like to check multipliers of 32 or
even 64 bits.

1.3. Other oblivious models: Extensions to OBDDs. Thus, despite the
success of this approach, there has also been great effort expended to find another
model that is likewise manipulated but with greater computational power [SDG94,
SW95, e.g.]. For example, the various extensions to OBDDs that have been considered
include

• “k-OBDDs,” where the variable ordering is a single permutation repeated k
times consecutively [BSSW93, BHR95, Kr91];

1Of course efficient (polynomial time) algorithms for the individual synthesis operations do not
imply that the resulting bottom-up algorithm for computing a representation is efficient. Despite
this problem, researchers have been content with the bottom-up algorithm as long as each synthesis
operation can be performed efficiently.

800 STEPHEN PONZIO

• “k-IBDDs,” where the variable ordering is k consecutive permutations, possi-
bly different [JABFA92, BSSW95];
• OBDDs with various kinds of nondeterministic branching nodes (∨-nodes, ∧-

nodes, ⊕-nodes) [Me89, SDG94, Ge94, and others].

Recently proposed alternative models include “graph-driven BDDs” [SW95] and “bi-
nary moment diagrams” [BC94]. The latter are not branching programs and do not
compute a function, but they do allow polynomial-size representation of multiplica-
tion. Also, in [AM88] lower bounds are proved for any oblivious programs of linear
length, regardless of the order in which variables are read.

From the proof of Bryant’s lower bound for OBDDs [Br91], it follows by a simple
communication complexity argument that MULT cannot be computed in polynomial-
size by k-OBDDs [Kr91, BSSW93] or the various nondeterministic OBDDs [Ge94].
Incorporating results from [AM88], [Ge94] extends the lower bound to arbitrary linear-
length oblivious programs. Indeed, all of these oblivious models have been found
too weak to compute MULT in polynomial size. It is therefore natural to consider
nonoblivious programs, the simplest of these being read-once programs.

1.4. Nonoblivious programs. Unfortunately, (nonoblivious) read-once pro-
grams are not as easily manipulated as OBDDs. It is not known how to test equiva-
lence in polynomial time, though there is a randomized (co-RP) algorithm [BCW80].
(There is also a deterministic algorithm to test the equivalence of an OBDD and a read-
once program [FHS78].) Moreover, the synthesis operations are provably intractable—
there exist functions f and g that each have polynomial-size read-once programs but
whose conjunction f ∧ g requires exponential-size read-once programs. For exam-
ple, determining whether a 0, 1-matrix is a permutation matrix requires exponential-
size read-once programs (even nondeterministic) [KMW91], whereas the rowwise and
columnwise criteria (that each has one 1) are each computable with small OBDDs.
Despite their relative recalcitrance, read-once programs have been considered by some
researchers for possible use in hardware verification [GM94]. Very little was known
about the complexity of multiplication.

There has been great success in proving lower bounds on the size of read-once
programs, even for some very simple functions [Ma76, Du85, Za84, We87, SS93]. For
example, it was proved in [Za84] (see also [We87]) that determining whether a graph
on n nodes is an n/2-clique (with no further edges) requires size 2Ω(n). Until the time
of this writing, the only asymptotically optimal lower bound was found in [BHST87],

which proves a bound of 2Ω(n2) for computing the parity of the number of triangles
in a graph on n nodes. Very recently, Savicky and Zak [SZ96] proved a lower bound
of 2n−3

√
n, the best to date. Exponential lower bounds for explicit functions have

also been proved for nondeterministic read-once branching programs [Ju89, KMW91,
BRS93]. Lower bounds for read-k-times programs (where each variable appears at
most k times on each path)2 are proved in [Ok91, BRS93, Ju92].

1.5. The decision problem. Although it is not directly related to the issue
of verification, another Boolean function that has been considered is the decision
problem DMULT(x, y, z) = 1 if xy = z. Note that it is not readily apparent which
problem is “harder”, MULT or DMULT: On the one hand, DMULT seems to require

2These are often called “syntactic” read-k-times, an apparently (though not proven) more severe
restriction than “semantic” read-k-times where the limitation applies only to paths from source to
sink that are traversed by some input—that is, paths that contain no contradictory literals along
them. No superpolynomial bounds are known for semantic read-k-times programs for any k ≥ 2.

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 801

practically computing all the bits of xy; however, an algorithm for DMULT has the
advantage of inspecting all the bits of z, the putative product. (An easy reduction in
[FSS84] shows MULT 6∈ AC0, but is was not until [Bu92] that DMULT 6∈ AC0 was
proved.)

A simple argument [We94] shows that computing DMULT with read-once pro-
grams is as hard as factoring: To factor a given integer n, instantiate it as z in the
read-once branching program and construct a factor by instantiating the bits of x one
at a time, maintaining the satisfiability (source-to-sink connectivity) of the branching

program. Jukna [Ju94] proves a lower bound of 2n
1/4/k2k

for DMULT on nondeter-
ministic read-k-times branching programs, but this does not yield results for MULT.

1.6. Our results. In this paper, we prove that any read-once branching pro-
grams for MULT have size 2Ω(

√
n). This is the first superpolynomial lower bound for

multiplication on nonoblivious branching programs.
We begin by describing in section 2 a paradigm for read-once lower bounds,

recognized and distilled by Simon and Szegedy [SS93], in Lemma 1. For ease of
presentation we first prove a lower bound of 2Ω(3

√
n) in section 3 and then extend the

proof to achieve 2Ω(
√
n) in section 4. In section 5, we define read-once reductions3 in

order to deduce similar lower bounds for other arithmetic functions.

2. A paradigm for read-once lower bounds. Let f be a Boolean function,
f : {0, 1}n → {0, 1}, and let X = {x0, . . . , xn−1} be its n binary input variables. Let
F be a filter on X. (That is, F ⊆ 2X and F is closed upward—if S ∈ F , then all
supersets of S are in F .)4 The filter F gives us a way of partitioning 2X into “large”
sets (in F) and “small” sets (not in F). A subset B ⊂ X is said to be in the boundary
of F if B 6∈ F but B ∪ {xi} ∈ F for some xi. By setting the values of B = X \B, we
naturally induce a function on B, the unset bits of X. The lemma is stated below in
the form we will need it; it appears in [SS93] in slightly more generalized form.

Lemma 1 (see [SS93]). If for any B in the boundary of F at most 2|B|/L set-
tings to B induce the same subfunction on B, then any read-once branching program
computing f has size at least L.

For completeness, we now provide a proof of this lemma.
Proof. The idea is that F defines a “frontier” of edges in the branching program—

a cut containing exactly one edge from each source-to-sink path—in which every edge
allows only a fraction 1/L of the inputs in {0, 1}n to pass through it. Since the path
of every input passes through some frontier edge, there must be at least L such edges.
Having fan-out 2 and only one root, the program also has at least L nodes (the frontier
edges lead to the leaves of an embedded binary tree which has L− 1 distinct internal
nodes, not counting the two sinks of the program).

In order to define the frontier, we first associate with each node of the program
the set of variables appearing in the subprogram rooted there—that is, those variables
appearing on nodes that are reachable from the given node. Clearly, moving down
any path, the variable-sets of later nodes are subsets of the variable-sets of earlier
nodes. The frontier is defined to be those edges leading from nodes with “large” sets
of variables to nodes with “small” sets. “Large” sets are those that are in the filter F
and “small” are not. Clearly there is exactly one frontier edge on each source-to-sink
path, since the root has the variable-set X ∈ F (assuming f depends on all variables)

3Similar reductions have recently been considered also in [BW95].
4This differs from the usual definition of filter for infinite sets because we do not require that

(S ∈ F) ∧ (T ∈ F) =⇒ (S ∩ T) ∈ F .

802 STEPHEN PONZIO

and the sinks have the variable-set ∅ 6∈ F (for proper filters F). Each frontier edge is
thus naturally associated with a set B ⊂ X in the boundary of F .

Suppose boundary set B is associated with a given frontier edge. Because the
program is read-once, these variables do not appear on any path from the root to this
edge. In fact, the inputs x ∈ {0, 1}n that reach this edge are characterized exactly by
their settings to B. Each setting to B that reaches this edge clearly induces the same

subfunction on B, as defined by the subprogram rooted there. Since at most 2|B|/L
settings to B give the same subfunction on B, at most (2|B|/L) · 2|B| = 2n/L inputs
in {0, 1}n may pass through this frontier edge. The lower bound follows.

3. A lower bound of 2Ω(3√n). In this section, we prove a weaker bound with
an easier proof that includes the main ideas.

Theorem 1. Read-once branching programs for MULT require size 2Ω(3
√
n).

Proof. Let m = 3
√
n/4 and let X and Y denote the sets of variables X =

{x0, . . . , xn−1} and Y = {y0, . . . , yn−1}. Define the filter

F = {V ⊂ (X ∪ Y) : |V ∩X| > n−m and |V ∩ Y | > n−m}.

The resulting “frontier” of the branching program (as defined in Lemma 1) roughly
speaking marks the threshold where at most m bits of X and at most m bits of Y
have been read. (In order for this notion to be strictly correct, “have been read” must
be interpreted to mean “appear on any path from the root.”)

We will show that for any B in the boundary of F , at most 2|B|−m settings to
B give the same subfunction on B. By Lemma 1, this gives the desired lower bound
of 2m. Fix any B in the boundary of F and let S = B. Think of S as being the
variables already read by the branching program. Since B is in the boundary of F ,
either |S∩X| = m or |S∩Y | = m (but not both). We will show that there is a subset
S′ ⊂ S of size at least m such that if two settings to S differ on S′ then they induce
different subfunctions on S = B. Thus at most 2|S|−m settings to S = B induce
the same subfunction on S = B, as desired. We will show that the two subfunctions
are different by explicitly demonstrating a single setting to the bits of S where the
induced subfunctions of MULT differ.

Suppose without loss of generality that |S ∩X| = m (and therefore |S ∩Y | < m).
Let i ∈ {0, . . . , n− 1} be the smallest index such that yi 6∈ S. Let

S′ = {y0, . . . , yi−1} ∪
(
S ∩ {x0, . . . , xn−1−i}

)
.

Note that because {y0, . . . , yi−1} ⊆ S and |S ∩X| = m, we have |S′| ≥ m.
Let us adopt the following notation for the integers obtained from partial settings

to the variables. For a setting α to W ⊆ X ∪ Y (i.e., α : W → {0, 1}), let xα denote
the integer that is represented in binary when the variables of X ∩W have the value
given by α and the variables of X ∩W are each 0. Define yα similarly. For a single
variable z 6∈ W , let “α + z” denote the setting to W ∪ {z} that further sets z = 1.
For two settings α and τ to disjoint subsets W and V , let “α ∪ τ” denote the setting
equal to α on W and to τ on V . Finally, let (x)i denote the ith bit in the binary

representation of integer x, so x =
∑n−1
i=0 (x)i 2i.

Let α and β be two settings to S that differ on some bit in S′. Our goal is thus
to find a setting τ to the bits of S so that (xα∪τyα∪τ)n−1 6= (xβ∪τyβ∪τ)n−1.

We proceed in two stages, according to Lemmas 2 and 3. First we ensure, by
setting to 1 (if necessary) a single variable z of S, that the two products xα+zyα+z

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 803

0≡ 2n

2n−m−3

xαyα

�

xβyβ

?

xβ+yk
yβ+yk

xα+yk
yα+yk

�

+

2kxβ

2kxα

Fig. 1. The integers modulo 2n. In order for xβ+ykyβ+yk and xα+ykyα+yk to fall into different

segments, we must choose k so that 2k(xα − xβ) has large magnitude.

and xβ+zyβ+z differ in a “high-order” bit—a bit position in the range [n−m−3, n−1]
(we aren’t concerned with bit positions higher than the middle). In the second stage,
we set to 1 a pair of variables of S, one in X and one in Y , so that the resulting product
differs in a higher high-order bit position. We iterate this second stage, repeatedly
setting a pair of variables until the resulting products differ in bit position n − 1. It
follows that α and β induce different subfunctions on S—the subfunctions differ when
S has z and the pairs from the second stage all set to 1 and the remaining bits of S
set to 0.

Lemma 2. If for all i ∈ [n−m− 3, n− 1] we have (xαyα)i = (xβyβ)i, then there
is a single variable z ∈ S such that

(xα+zyα+z)i 6= (xβ+zyβ+z)i

for some i ∈ [n−m− 3, n− 1].
Lemma 3. Let T ⊂ X ∪ Y , and α and β be two settings to T . Let d be the

greatest index in [0, n − 2] such that (xαyα)d 6= (xβyβ)d. If d ≥ n − m − 3 and

max (|T ∩X|, |T ∩ Y |) = t ≤ 3m, then there are two variables, xu ∈ X ∩ T and
yv ∈ Y ∩ T , such that

(xα′yα′)d+1 6= (xβ′yβ′)d+1

where α′ = α+ xu + yv and β′ = β + xu + yv.
Theorem 1 now follows from these lemmas as outlined above. Notice that Lemma 3

is first applied with t ≤ m + 1, and since we must apply Lemma 3 at most m + 3
times, each time setting one more variable of X and Y , we maintain t ≤ 2m+4 ≤ 3m
as required.

We now give the proofs of Lemmas 2 and 3.
Proof of Lemma 2. The settings α and β differ on S′ ⊆ S; suppose first that they

differ in a bit of S′ ∩X.
The proof is most easily explained by picturing the integers modulo 2n on a

circle. Partition the circle into 2m+3 equal-sized segments according to the values

804 STEPHEN PONZIO

of the m + 3 highest bits, so each segment contains 2n−m−3 consecutive integers, as
depicted in Figure 1. The hypothesis of the lemma is that xαyα and xβyβ fall into the
same segment. If we set bit yk ∈ S ∩ Y to 1, we obtain the products xα+ykyα+yk =
xαyα + xα2k and xβ+ykyβ+yk = xβyβ + xβ2k. The product xα+ykyα+yk is obtained
by a translation of 2kxα along the circle from xαyα, and xβ+ykyβ+yk is obtained by
a translation of 2kxβ from xβyβ . If, modulo 2n, their difference 2k(xα − xβ) is at
least 2n−m−2, or two segments long, and at most 2n − 2n−m−2, or “negative two”
segments long, then it is clear that the translates xα+ykyα+yk and xβ+ykyβ+yk fall
into different segments. It follows that the products xα+ykyα+yk and xβ+ykyβ+yk

differ in a high-order bit position.
It only remains to show how to choose yk ∈ S∩Y so that 2n−m−2 ≤ 2k(xα−xβ) ≤

2n − 2n−m−2 modulo 2n. Let x = xα − xβ . It is useful now to think in terms of the
table generated by the usual grade-school algorithm for multiplying x by y, as shown
in Figure 2.

j

= x∗

n−
1

∗

n−
1−
i

∗

n−
1−
m |

···1 0 0 0 0 0 0 0

i : yi 6∈S

(n−1)−m

(n−1)−j

(n−1)−j−m }
choose
k : yk 6∈S

j

Fig. 2. The table generated by the grade-school algorithm for multiplying x = xα − xβ by y.
We choose a bit yk to set to 1 so that the least significant 1 in x is shifted into a “high-order” bit
position.

In this table, the rows are the partial products, indexed by y0, . . . , yn−1. The
diagonals are indexed by xn−1, . . . , x0. Since α and β differ in a bit of S′ ∩ X ⊆
{x0, . . . , xn−1−i}, the difference x = xα−xβ must have a 1 somewhere in the range of
bit positions [0, n− 1− i]. Let j be the position of the least significant 1 in x, so that
either there is a 0 in position j−1, or j = 0. We now choose any variable of S∩Y with
index k in the range [(n− 1)− j−m, (n− 1)− j]. This range must contain a variable
yk ∈ S ∩Y because if (n−1)− j−m ≥ 0, the range has at least m+ 1 elements while
|S ∩ Y | < m; if, however, (n − 1) − j −m < 0, we may choose k = i (by definition
yi 6∈ S), which lies in the range [0, n−1− j] since j ≤ n− i−1. This ensures that 2kx
has a 1 in position j+k and a 0 in position j+k−1, where n−1−m ≤ j+k ≤ n−1.
It follows that modulo 2n, we have 2n−m−1 ≤ 2kx ≤ 2n − 1 − 2n−m−2 (the upper
bound attained if all bits except bit j + k − 1 are 1’s and j + k = n − 1 −m). This
satisfies the desired bounds.

If α and β differ in a bit of S′ ∩ Y ⊆ {y0, . . . , yi−1} the proof is essentially the
same. We have to choose xk ∈ S ∩X so that 2n−m−2 ≤ 2k(yα − yβ) ≤ 2n − 2n−m−2

modulo 2n. In this case, we know y = yα − yβ has a 1 in the range [0, i − 1]. Again

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 805

xu

yv︸︷︷︸︸ ︷︷ ︸
Choose u and v
so these bits are
all 0’s.

∗ 1 1 1 1 0 ··· = xαyα∗
n−1 d i

2vxα

2 u
y
α

Fig. 3. In Lemma 3, we choose xu and yv to set to 1 so that u + v = d and also so that the
products 2uyα and 2vxα have 0’s in bit positions d− 1, . . . , i− 1 so that when added to xαyα + 2d,
they do not cause a carry to propagate into position d+ 1.

letting j be the least significant 1 of y in this range, we simply choose k anywhere in
the range [(n− 1)− j−m,n− 1− j]. Now for sure (n− 1)− j−m ≥ 0 and the range
always has m+ 1 elements, since j ≤ i− 1 ≤ m = 3

√
n/4. It follows as before that 2ky

satisfies the desired inequality. This completes the proof.
We restate Lemma 3 for convenience.
Lemma 3. Let T ⊂ X ∪ Y , and α and β be two settings to T . Let d be the

greatest index in [0, n − 2] such that (xαyα)d 6= (xβyβ)d. If d ≥ n − m − 3 and

max (|T ∩X|, |T ∩ Y |) = t ≤ 3m, then there are two variables xu ∈ X ∩ T and
yv ∈ Y ∩ T such that

(xα′yα′)d+1 6= (xβ′yβ′)d+1

where α′ = α+ xu + yv and β′ = β + xu + yv.
Proof of Lemma 3. We will consider all pairs of variables (xu, yv) such that

u+ v = d. We want (xα′yα′)d+1 6= (xβ′yβ′)d+1, where

xα′yα′ = (xα + 2u) (yα + 2v)

=
(
xαyα + 2d

)
+ (2vxα + 2uyα) ,

and xβ′yβ′ = (xβ + 2u) (yβ + 2v)

=
(
xβyβ + 2d

)
+ (2vxβ + 2uyβ) .

Since d is the highest bit in which xαyα and xβyβ differ, clearly
(
xαyα + 2d

)
d+1
6=(

xβyβ + 2d
)
d+1

. We will choose u and v so that the addition of the cross terms

2vxα + 2uyα to xαyα + 2d does not affect bits d or d+ 1 of xαyα + 2d (and similarly
for β). In order to do this, we choose u and v so that the cross terms have 0’s in bit
positions d and d + 1 and, furthermore, in the addition of the two integers, there is
no carry bit into position d.

To accomplish this, we first find the largest bit position i less than d where xαyα
has a 0 (so positions i+ 1 through d− 1 are all 1’s). We will choose u and v so that
2vxα and 2uyα each has 0’s in positions i− 1 through d+ 1. It follows that their sum

806 STEPHEN PONZIO

then has 0’s in positions i through d+ 1, and so, when added to xαyα + 2d which has
a 0 in position i, causes no carry into any position i+ 1 through d (see Figure 3). We
will choose u and v so that the same conditions hold for β as well.

A simple counting argument now shows that there exist u and v as desired.
First, we claim that xαyα (and xβyβ) has 1’s in at most t2 bit positions, so that
i ≥ (d − 1) − t2. In general, if the binary representations of integers p and q have
w(p) and w(q) 1’s in them, respectively, then clearly p + q has at most w(p) + w(q)
1’s in it. Recall α sets at most t bits in X or Y . We may therefore view xαyα as the
addition of at most t shifts of xα, and the claim follows.

We require (2vxα)j = (2vxβ)j = 0 in at most t2+4 positions j: j = d+1, d, d−1,
. . . , i, i− 1. There are at most t bit positions in which either xα or xβ has a 1, and
for each such 1, there are at most t2 + 4 “bad” values of v ∈ [0, n − 1] that shift
the 1 to a position we require to be 0. Thus, xα and xβ rule out at most t(t2 + 4)
values of v. Furthermore, there are up to t variables of Y that are in T , making a
total of t(t2 + 4) + t values of v that we may not choose. Similarly, a total of at most
t(t2 + 4) + t values of u are ruled out by yα, yβ , and T . The number of pairs (xu, yv)
in which either xu or yv has been ruled out is thus at most

2(t3 + 5t) ≤ 2
(
27m3 + 15m

) ≤ 2

(
27n

64
+

15 3
√
n

4

)
since t ≤ 3m and m = 3

√
n/4. There are at least d+ 1 ≥ n−m− 2 pairs (xu, yv) such

that u+ v = d. Thus we retain at least

n−
3
√
n

4
− 2−

(
54

64
n+

30

4
3
√
n

)
= Ω(n)

good pairs satisfying the desired requirements for xu and yv.

4. Improving the bound to 2Ω(
√
n). We can improve the lower bound to

2Ω(
√
n) by analyzing more closely how we iterate Lemma 3 in the proof of the theorem.

There we needed m = O(3
√
n), because in Lemma 3 we used t2 = O(m2) as an upper

bound on the number of consecutive 1’s to the right of position d in xαyα or xβyβ .
We then required 0’s in these O(m2) positions in the cross terms 2vxα + 2uyα and
2vxβ + 2uyβ . Since each of the O(m) 1’s in xα may then rule out O(m2) values of
v, we needed O(m3) < n in order not to rule out all values of v. In order to allow
m = O(

√
n), we will reduce to O(m) the number of positions in which we require 0’s

in the cross terms. For the rest of this section, we let m =
√
n/3.

Depending on exactly what xαyα and xβyβ look like, we may not need to require
more than a few 0’s in the cross terms. For example, if xαyα and xβyβ look like5

xαyα = · · · 1
d

0 · · ·
xβyβ = · · · 0

d
0 · · · ,

then we need to require 0’s in the cross terms in only four positions: d + 1 through
d−2. This is sufficient to ensure that the addition of 2vxα+2uyα to xαyα+2d does not
generate a carry into position d and does not affect bits d or d+ 1 of xαyα + 2d. The
same holds for β and we get (xα′yα′)d+1 6= (xβ′yβ′)d+1. With only these four positions

5Here and henceforth, “· · ·” denotes an arbitrary string of 0’s and 1’s; thus xαyα = · · · 1
d

0 · · ·
has a 1 in bit d, a 0 in bit d− 1, and may have any values in other bit positions.

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 807

required to be 0’s, the total number of v’s ruled out by xβ and xα is proportional to
the number of 1’s they contain, which is O(m). Similarly, the cases

xαyα = · · · 1
d

1 · · ·
xβyβ = · · · 0

d
0 · · · and

xαyα = · · · 1
d

1 · · ·
xβyβ = · · · 0

d
1 · · ·

can be handled with only a few constraints by choosing u + v = d − 1 (this will be
proved in Lemma 6). In fact, there is really only one case in which we need to require
(2vxβ + 2uyβ) or (2vxα + 2uyα) to have many 0’s, which follows.

Definition 5. Let d be the greatest index less than n in which (xαyα)d 6= (xβyβ)d.
We say that xαyα and xβyβ are k-bad if d ≥ n−m− 4 and the products look like

xαyα = · · · 1
d

0 · · · · · ·
xβyβ = · · · 0

d
1 1 1 1

↑
n−m−6

1 1 1 1 1 1︸ ︷︷ ︸
k

· · ·

or vice versa (exchanging α and β).
In this case, say xβyβ = · · · 0

d
1 1 1 1

↑
n−m−6

1 1 1 1 1 1︸ ︷︷ ︸
k

· · ·, we must require 2vxβ + 2uyβ to

be 0 in the positions of each of these 1’s in order to prevent a carry into position d+1
when we add it to xβyβ + 2d. In order to allow m = O(

√
n), we will ensure that the

products are not k-bad for k > m + 4. Then the number of v’s ruled out by each 1
of xα and xβ is 2m + 10, and as long as the number of 1’s in xα or xβ is O(m), the
total number of v’s ruled out is O(m2).

We will first show that we may begin with products that differ in a high-order
bit but are not 1-bad and then prove a version of Lemma 3 in which each application
allows the “badness” to grow by at most 1.

Lemma 5. For any two settings α and β to S that differ on a bit of S′, there
are three (or fewer) variables xu, yv, z ∈ S (xu ∈ X and yv ∈ Y) such that for
α′ = α+ xu + yv + z and β′ = β + xu + yv + z, the products xα′yα′ and xβ′yβ′ differ
in a high-order bit (in the range [n−m− 4, n− 1]) and, moreover, are not 1-bad.

Lemma 6. Let T ⊂ X ∪ Y , and let α and β be two settings to T . Let d be the
greatest index in [0, n− 2] such that (xαyα)d 6= (xβyβ)d. Suppose d ≥ n−m− 4 and
max (|T ∩X|, |T ∩ Y |) = t ≤ 2m + 5 and also that xαyα and xβyβ are not k-bad for
some k ≤ m + 4. Then there are two variables, xu, yv ∈ T (xu ∈ X and yv ∈ Y),
such that

(xα′yα′)d+1 6= (xβ′yβ′)d+1

for α′ = α+ xu + yv and β′ = β + xu + yv, and, moreover, xα′yα′ and xβ′yβ′ are not
(k + 1)-bad.

We now have Theorem 2.
Theorem 2. Read-once branching programs for MULT require size 2Ω(

√
n).

Proof. The proof is exactly the same as the proof of Theorem 1 except for the
lemmas. We start with products that differ in a high-order bit but are not 1-bad, as
provided by Lemma 5. The number of variables in X or Y set in these products is
at most m + 2. We obtain a difference in bit n − 1 by iterating Lemma 5 at most
m + 3 times, each time setting at most one variable in X and in Y . This maintains
t ≤ (m+ 2) + (m+ 3) and k ≤ 1 + (m+ 3) as required.

We now give the proofs of Lemmas 5 and 6.

808 STEPHEN PONZIO

Proof of Lemma 5. Either xαyα and xβyβ differ (modulo 2n) by at least 2n−m−3

or they do not. If they do, then they must differ in a high-order bit (in the range
[n −m − 4, n − 1]). If not, we proceed just as in Lemma 2 to find a variable z such
that xα+zyα+z and xβ+zyβ+z differ by at least 2n−m−3. In order to avoid overly
cumbersome notation, let us abuse notation slightly by calling these products xαyα
and xβyβ , even though they should possibly be called xα+zyα+z and xβ+zyβ+z.

Now that we know the products differ in a high-order bit, it remains to ensure
that they are not 1-bad. Assume they are. Let d be the greatest index less than n of
a bit position in which xαyα and xβyβ differ.

First, we claim that if the products are 1-bad, then in fact d ≥ n−m−2. Because
if, say, d = n−m− 3, then the products look like6

xαyα = · · · 1 0 · · ·
xβyβ = · · · 0

d
1 1 1

↑
n−m−6

1 · · ·

and therefore they differ modulo 2n by at most 2n−m−4 +2n−m−7−1 (since they agree
in bits d+1 through n−1), but we know they differ by at least 2n−m−3. Furthermore,
by the same reasoning, not only is d ≥ n −m − 2, but xαyα must have a 1 in some
position between d− 2 and n−m− 4 inclusive (note that (xαyα)d−1 = 0 or else the
products are not 1-bad). For otherwise, the products look like

xαyα = · · · 1
d

0 0 0 0 0 · · ·
xβyβ = · · · 0

d
1 1 1 1 1 1 1

↑
n−m−6

1 · · ·

and again they differ modulo 2n by at most 2n−m−4 + 2n−m−7 − 1, a contradiction.
So we are reduced to the case that the products are 1-bad, differ in position

d ≥ n−m− 2, and xαyα has a 1 in some position between d− 2 and n−m− 4. Let `
be the highest index of a 1 in this range: xαyα = · · · 1

d
0 0 0 1

`
· · ·. We will find a pair of

variables (xu, yv) with u+v = n−m−6 so that the cross terms 2vxα, 2
vxβ , 2

uyα, 2
uyβ

all have 0’s in positions n −m − 8 through n − 1. Then (2u+v + 2vxα + 2uyα) and
(2u+v + 2vxβ + 2uyβ) both look like · · · 0

↑
n−1

0 0 0 0 0 0 1
↑

n−m−6

0 · · ·. We see that xα′yα′ looks

like either · · · 1
d

0 0 0 1
`
· · · or · · · 1

d
0 0 1 0

`
· · ·, depending on whether there is a carry into

position ` when 2u+v + 2vxα + 2uyα is added to xαyα. Meanwhile,

xβ′yβ′ =

· · · 0
d

1 1 1 1 1 1 1 1 · · ·
+ · · · 0 0 0 0 0 0 0 1 0 · · ·

looks like · · · 1
d

0 0 0 0 0 0 0
↑

n−m−6

· · · or · · · 1
d

0 0 0 0 0 0 1
↑

n−m−6

· · · depending on whether there is a

carry into position n−m− 6 in this addition.
Since xβ′yβ′ has 0’s in positions ` (≤ d− 2) and `− 1 (≥ n−m− 5), we see that

xα′yα′ and xβ′yβ′ look like

xα′yα′ = · · · 1
d

0 0 0 0 1
d′
· · ·

xβ′yβ′ = · · · 1
d

0 0 0 0 0
d′

0 · · · ,

6Without loss of generality, let us assume that in position d, xαyα has a 1 and xβyβ has a 0.

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 809

where d′ is either ` or ` + 1. Furthermore, the products agree in all higher bits up
to n − 1 because by the definition of d, xαyα and xβyβ agree in bits d + 1 through
n − 1, and we chose xu and yv so that the cross terms have 0’s in these positions.
Since ` ≥ n −m − 4, it follows that xα′yα′ and xβ′yβ′ differ in a high-order bit and
are not even 1-bad.

A counting argument like that for Lemma 3 shows that we may choose xu and yv
as needed. We require the cross terms to have 0’s in at most m + 8 positions. Since
at most m + 1 bits are set to 1 in xα or xβ , the total number of values v that we
may not choose is (m+ 1)(m+ 8) + (m+ 1). The same number of values u are ruled
out, making a total of at most 2(m+ 1)(m+ 9) = 2n9 +O(

√
n) pairs (xu, yv) that are

ruled out. Since there are n − m − 5 pairs to choose from initially, we retain Ω(n)
pairs.

Proof of Lemma 6. We have four possible cases (up to switching α and β):

xαyα =
xβyβ =

(1) · · · 1
d

0 · · ·
· · · 0

d
0 · · ·

(2) · · · 1
d

1 · · ·
· · · 0

d
0 · · ·

(3) · · · 1
d

1 · · ·
· · · 0

d
1 · · ·

(4) · · · 1
d

0 · · ·
· · · 0

d
1 1 1 1 1 0 · · ·

Case 1. xαyα = · · · 1
d

0 · · ·
xβyβ = · · · 0

d
0 · · · .

It is sufficient to choose (xu, yv) so that u + v = d and each of the cross terms
2vxβ , 2uyβ , 2vxα, and 2uyα has 0’s in positions d− 3 through d+ 1. Then the sums
2vxβ + 2uyβ and 2vxα + 2uyα have 0’s in positions d− 2 through d+ 1. Adding these
to xαyα and xβyβ , respectively, therefore, causes no carry into position d and thus
the addition of 2u+v = 2d causes a carry into bit d+1 for α but not for β. Since xαyα
and xβyβ agree in bits d+ 1 through n− 1, this carry bit causes them to differ in bit
d+ 1 and possibly higher bits as well.

We now verify that xα′yα′ and xβ′yβ′ are not 1-bad. We know that 2u+v+2vxβ+
2uyβ looks like · · · 0 1

d
0 0 · · ·. Thus

xβ′yβ′ =

· · ·0
d

0 · · ·
+ · · · 0 1 0 0 · · ·

looks like either · · · 1
d

0 · · · or · · · 1
d

1 0 · · ·, depending on whether there is a carry into

position d − 1. Thus xβ′yβ′ does not have a string of 1’s extending past position
d−1 ≥ n−m−5 and cannot make the products even 1-bad. Since the products differ
in position d + 1 or higher and xα′yα′ has a 0 in position d, the products cannot be
1-bad due to a string of 1’s in xα′yα′ .

To prove that we can choose (xu, yv) as desired, we argue as in the proof of
Lemma 3. The number of positions required to be 0 is 5, ruling out 5t values of v. Of
the d+ 1 = n−O(

√
n) pairs (xu, yv) such that u+ v = d, the number of pairs ruled

out is at most 2(5t+ t) = 12t ≤ 12(2m+ 5) = O(
√
n), so there are n−o(n) remaining

pairs to choose from.
Case 2. xαyα = · · · 1

d
1 · · ·

xβyβ = · · · 0
d

0 · · ·
Case 3. xαyα = · · · 1

d
1 · · ·

xβyβ = · · · 0
d

1 · · ·

810 STEPHEN PONZIO

It is sufficient to choose (xu, yv) as in Case 1 except that u+ v = d− 1. Adding 2d−1

will cause a carry to propagate into position d+ 1 for α but not for β, causing them
to differ in bit d + 1 and possibly higher bits as well. The counting argument for
choosing (xu, yv) is exactly the same as in Case 1 except that there is one fewer pair
(xu, yv) with u+ v = d− 1.

It only remains to show that in fact xα′yα′ and xβ′yβ′ are not 1-bad. Now
2u+v + 2vxα + 2uyα looks like · · · 0 0

d
1 0 · · · and so does 2u+v + 2vxβ + 2uyβ . Thus

xα′yα′ =

· · ·1
d

1 · · ·
+ · · · 0 0 1 0 · · · ,

and we see that it has a 0 in bit d.
Looking now at xβ′yβ′ , we see that in Case 2,

xβ′yβ′ =

· · ·0
d

0 · · ·
+ · · · 0 0 1 0 · · ·

looks like either · · · 0
d

1 · · · or · · · 1
d

0 · · ·, depending on whether there is a carry into

position d− 1. In Case 3,

xβ′yβ′ =

· · ·0
d

1 · · ·
+ · · · 0 0 1 0 · · ·

looks like either · · · 1
d

0 · · · or · · · 1
d

1 0 · · ·, depending on whether there is a carry into

position d − 1. In any case, xβ′yβ′ does not have a string of 1’s extending past
d− 2 ≥ n−m− 6, and so xα′yα′ and xβ′yβ′ are not even 1-bad.

Case 4. xαyα = · · · 1
d

0 · · · ,

xβyβ = · · · 0
d

1 1 1 1
↑

n−m−6

k−1︷ ︸︸ ︷
1 1 1 1 0 · · · .

Without loss of generality, let us say that xβyβ contains the maximum number, k−1,
of consecutive 1’s extending past position n − m − 6. We choose (xu, yv) so that
u + v = d and the cross terms 2vxα, 2uyα, 2vxβ , and 2uyβ have 0’s in positions
(n −m − 6) − (k + 2) through n − 1. This will ensure that from 2d we get a carry
into position d + 1 for α′ but not for β′, causing the products to differ in bit d + 1
and possibly higher bits as well.

The sum 2vxβ + 2uyβ has 0’s in positions (n−m− 6)− (k+ 1) through n− 1, so

xβ′yβ′ =

· · ·0
d

1 1 1 1

k−1︷ ︸︸ ︷
1 1 1 1 0 · · ·

+ · · · 0 1 0 0 0 0 0 0 0 0 0 0 · · ·

looks like either

· · · 1
d

1 1 1 1

k−1︷ ︸︸ ︷
1 1 1 1 0 · · · or · · · 1

d
1 1 1 1

k−1︷ ︸︸ ︷
1 1 1 1 1 0 · · · ,

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 811

depending on whether there is a carry into position (n−m− 6)− k. So xβ′yβ′ has at
most k 1’s extending past position n−m− 6. The pair of products cannot be worse
than k-bad due to a longer string of 1’s in xα′yα′ since the products differ in position
d+ 1 or higher and xα′yα′ has a 0 in position d. Thus xα′yα′ and xβ′yβ′ are at worst
k-bad.

The number of positions in which we require 2vxα or 2uxβ to be 0 is m+6+k+2 ≤
2m+ 12. Together, xα and xβ may rule out t(2m+ 12) values v in addition to the t
variables yv already in T . Taking into account the same number of values u ruled out
by yα and yβ , there are at most 2(t(2m + 12) + t) pairs (xu, yv) that could be ruled
out. Of the d + 1 = n − O(

√
n) possible pairs (xu, yv) with u + v = d, a total of at

most

2(2m+ 5)(2m+ 13) = 8
n

9
+O(

√
n)

pairs are ruled out, leaving n
9 −O(

√
n) = Ω(n) pairs to choose from.

5. Problem reductions. With the suitable reductions, we may deduce similar
lower bounds for other Boolean functions. Clearly a read-once program for a function
g will yield a read-once program for f if there is an appropriate one-to-one substitution
of the variables of f for the variables of g. This substitution need not be onto the
entire set of g’s variables—some of them may be fixed to 0 or 1. This is exactly a
one-to-one projection reduction, which we shall call a read-once reduction as discussed
in the following definitions.

Definition 6 (see [SV81]). A function f is projection reducible to a function
g, written f ≤proj g, if for all n there is a polynomially bounded function p(n) and a
mapping σn : {y1, . . . , yp(n)} → {0, 1, x1, . . . , xn, x1, . . . , xn} such that

fn(x1, . . . , xn) = gp(n)(σ(y1), . . . , σ(yp(n))).

In other words, f ≤proj g if any algorithm (circuit or branching program) for
g(y1, . . . , yp(n)) can be used as a black box for f simply by substituting the inputs to
f (and 0, 1) for the inputs to g so that the output of the algorithm is that of f . These
reductions were used in the study of constant-depth reducibility [CSV84]—clearly,
given that f ≤proj g, if g ∈ AC0 then f ∈ AC0.

Definition 7. A function f is read-once reducible to a function g, written
f ≤r-o g, if there is a projection reduction σ from f to g such that for all k and i 6= j,

σ(yi) ∈ {xk, xk} =⇒ σ(yj) 6∈ {xk, xk} .

That is, each of f ’s inputs xi is substituted for no more than one input yj of g.
It follows that a polynomial-size read-once branching program for f(x1, . . . , xn) is
obtained by relabeling and reducing the nodes of a polynomial-size read-once program
for g(y1, . . . , yp(n)). We remark that the same holds for read-once formulas (e.g.,
[KLNSW93, Gu77]).

5.1. Reductions to other arithmetic functions. Projection reductions have
been used to deduce tight lower bounds on the depth of polynomial-size threshold
circuits. It was originally proved in [HMPST93] that INNER-PRODUCT-MODULO-
2 cannot be computed in polynomial-size by threshold circuits of depth 2. It was also
noted there that the projection reduction to multiplication (first given in [FSS84],
from PARITY to MULT) shows that MULT obeys the same lower bound. Wegener
[We93] gives projection reductions from MULT to squaring and inversion in order

812 STEPHEN PONZIO

to show that these functions also require depth 3 polynomial-size threshold circuits.
Our lower bound for the middle bit of multiplication implies a lower bound for the
appropriate bit of these two functions. We will phrase the reductions of [We93] in
terms of the following Boolean functions:

• SQUARING : {0, 1}n → {0, 1}; computes “the” middle bit (here, bit n rather
than bit n− 1, which we chose for MULT) in the square of an n-bit integer:

SQUARING(z) = (z2)n.

• INVERSION : {0, 1}n → {0, 1}; computes the ones’ bit in the reciprocal of
an n-bit number between 0 and 1:

INVERSION(x) = y0,

where x represents the number 0 . x1x2 · · ·xn =
∑
i xi2

−i and y = yn · · · y0 =∑
i yi2

i is the integral part of 1/x. (Note that 1 < y ≤ 2n.) Define the
function to be 0 if all xi are 0.

Wegener actually shows that

MULT ≤proj SQUARING ≤proj INVERSION,

except that the reductions are given for all bits of multiplication, squaring, and in-
version. We provide the reductions here in order to verify that each reduction is in
fact read-once and also because we are working instead with Boolean versions of these
functions. The polynomial p(n) of the reduction is linear in both cases, implying that
if each bit of the function is computable with a read-once program of size f(n), then
MULT is computable with a read-once program of size f(cn) for some constant c.
This gives the following corollaries to Theorem 2.

Corollary 1. Read-once branching programs for SQUARING require size
2Ω(
√
n).
Proof. The reduction MULT ≤r-o SQUARING is given by mapping the n-bit

inputs x, y (of MULT) to the (3n+ 2)-bit input z = x22(n+1) +y (of SQUARING), so
that z2 = x224(n+1) + xy22(n+1)+1 + y2. The middle bit of the product xy is found in
the middle bit of z2: (xy)n−1 = (z2)3n+2. It is clear that the mapping σ is injective
since

σ(zi) =

 yi if 0 ≤ i < n,
0 if n ≤ i < 2(n+ 1),
xi−2(n+1) if 2(n+ 1) ≤ i < 2(n+ 1) + n.

Corollary 2. Read-once branching programs for INVERSION require size
2Ω(
√
n).
Proof. The reduction SQUARING≤r-o INVERSION essentially reduces the prob-

lem of computing the square of an n-bit integer m to the problem of computing
1/(1− x) = 1 + x+ x2 + x3 + · · · where

1− x = 1−m 2−4n − 2−10n,

which is a 10n-bit number slightly less than 1. The proof in [We93] shows that the
product m2 lies in bit positions −6n − 1 through −8n in 1/(1 − x), its middle bit
being in position −7n. By instead computing the inverse of 2−7n(1 − x), a 17n-bit
number, we find the middle bit of m2 in position 0.

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 813

For example, working in decimal, we may compute 52 (so n = 1) by calculating

10−7(1− 5 · 10−4 − 10−10)−1 = 10005002.50225 · · ·

from which we may recover the middle digit, 2, of 25 in position in position 0.

To see that the mapping σ is injective, simply notice that 1−x = 1−2−10n−m 2−4n

has 1’s in all positions −1 through −10n, except in positions −3n− 1 through −4n,
where it has exactly the complements of the bits of m. The number 2−7n(1 − x) is
similar, with extra 0’s on the left.

6. Further work. We doubt that 2Θ(
√
n) is the true read-once complexity of

MULT (Bryant’s lower bound for OBDDs is 2n/8 [Br91]), but the simple counting
technique used in our proof seems limited to this lower bound. It is curious that
many of the lower bounds for read-once programs achieve only 2Ω(

√
n) if n is the

number of input bits—only the lower bounds of [BHST87] and [SZ96] achieve a fully
exponential lower bound of 2Ω(n). This limitation is most likely an artifact of the
proofs, but it is not well understood. In addition to improving the bound, it may
also be possible to extend the argument using the framework of [BRS93] to show that
a similar bound holds for nondeterministic read-once programs or for read-k-times
programs.

Acknowledgments. Thanks to Mikael Goldmann for pointing out the reduc-
tions in [We93], to Mauricio Karchmer and Ravi Sundaram for discussions, and to
Allan Borodin for his seminar in which I learned of this problem. Thanks also to the
referees for catching several small errors in the first version.

REFERENCES

[AGD91] P. Ashar, A. Ghosh, and S. Devadas, Boolean satisfiability and equivalence checking
using general binary decision diagrams, in Proc. Int’l. Conference on Computer De-
sign, Boston, 1991, IEEE, pp. 259–264.

[AM88] N. Alon and W. Maass, Meanders and their applications in lower bounds arguments, J.
Comput. System Sci., 37 (1988), pp. 118–129.

[BC94] R. Bryant and Y. Chen, Verification of Arithmetic Functions with Binary Moment
Diagrams, Tech. report CMU-CS-94-160, Carnegie Mellon University, Pittsburgh,
PA, 1994.

[BCW80] M. Blum, A. Chandra, and M. Wegman, Equivalence of free boolean graphs can be
decided probabilistically in polynomial time, Inform. Process. Lett., 10 (1980), pp. 80–
82.

[BF85] F. Brglez and H. Fujiwara, A neutral netlist of 10 combinational circuits, in Proc.
1985 IEEE Int’l. Symposium on Circuits and Systems.

[BHR95] Y. Breitbart, H. B. Hunt, III, and D. Rosenkrantz, On the size of binary decision
diagrams representing Boolean functions, Theoret. Comput. Sci., 145 (1995), pp. 45–
69.

[BHST87] L. Babai, A. Hajnal, E. Szemeredi, and G. Turan, A lower bound for read-once
branching programs, J. Comput. System Sci., 37 (1988), pp. 153–162.

[Br91] R. Bryant, On the complexity of VLSI implementations and graph representations of
Boolean functions with applications to integer multiplication, IEEE Trans. Comput.,
40 (1991), pp. 205–213.

[Br92] R. Bryant, Symbolic boolean manipulation with ordered binary decision diagrams, ACM
Computing Surveys, 24 (1992), pp. 293–318.

[BRS93] A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-k-times
branching programs, Comput. Complexity, 3 (1993), pp. 1–18.

[BSSW93] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, Read-k-times Ordered Binary
Decision Diagrams—Efficient Algorithms in the Presence of Null Chains, Tech. re-
port 474, Univ. Dortmund, 1993.

814 STEPHEN PONZIO

[BSSW95] B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener, Hierarchy theorems
for kOBDDs and kIBDDs, Theoret. Comput. Sci., submitted; also available via
http://www.eccc.uni-trier.de/eccc/ as TR94-026 (1994).

[BW95] B. Bollig and I. Wegener, Read-Once Projections and formal Circuit Verification with
Binary Decision Diagrams, Electronic Colloquium on Computational Complexity,
TR95-042, 1995, http://www.eccc.uni-trier.de/eccc/.

[Bu92] S. Buss, The graph of multiplication is equivalent to counting, Inform. Process. Lett., 41
(1992), pp. 199–201.

[CSV84] A. Chandra, L. Stockmeyer, and U. Vishkin, Constant depth reducibility, SIAM J.
Comput., 13 (1984), pp. 423–439.

[Du85] P. E. Dunne, Lower bounds on the complexity of 1-time only branching programs, Lecture
Notes in Comput. Sci. 199, Springer-Verlag, New York, 1985, pp. 90–99.

[FHS78] S. Fortune, J. Hopcroft, and E. M. Schmidt, The complexity of equivalence and
containment for free single variable program schemes, Lecture Notes in Comput. Sci.
62, Springer-Verlag, New York, 1978, pp. 227–240.

[FSS84] M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hierar-
chy, Math. Systems Theory, 17 (1984), pp. 13–27.

[Ge94] J. Gergov, Time-space tradeoffs for integer multiplication on various types of input-
oblivious sequential machines, Inform. Process. Lett., 51 (1994), pp. 265–269.

[GM94] J. Gergov and C. Meinel, Efficient Boolean manipulations with OBDD’s can be ex-
tended to FBDD’s, IEEE Trans. Comput., 43 (1994), pp. 1197–1209.

[Gu77] V. A. Gurvich, On the normal form of positional games, Uspekhi Mat. Nauk, 32 (1977),
pp. 183–184 (in Russian).

[HMPST93] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán, Threshold circuits
of bounded depth, J. Comput. System Sci., 46 (1993), pp. 129–154.

[JABFA92] J. Jain, M. Abadir, J. Bitner, D. Fussell, and J. Abraham, IBDD’s: An efficient
functional representation for digital circuits, in Proceedings of the European Confer-
ence on Design Automation, 1992, pp. 440–446.

[Ju88] S. Jukna, Entropy of contact circuits and lower bounds on their complexity, Theoret.
Comput. Sci., 47 (1988), pp. 113–129.

[Ju89] S. Jukna, The effect of null-chains on the complexity of contact schemes, in Proc. FCT,
Lecture Notes in Comput. Sci. 380, Springer-Verlag, New York, 1989, pp. 246–256.

[Ju92] S. Jukna, A note on read-k-times branching programs, RAIRO Theoret. Inform. Appl.,
29 (1995), pp. 75–83.

[Ju94] S. Jukna, The Graph of Multiplication is Hard for Read-k-Times Networks, Tech. report
95-10, University of Trier, Trier, Germany, 1995.

[KLNSW93] M. Karchmer, N. Linial, I. Newman, M. Saks, and A. Wigderson, Combinatorial
characterization of read-once formulae, Discrete Math., 114 (1993), pp. 275–282.

[KMW91] M. Krause, C. Meinel, and S. Waack, Separating the eraser Turing machine classes
Le, NLe, co-NLe, and Pe, Theoret. Comput. Sci., 86 (1991), pp. 267–275.

[Kr88] M. Krause, Exponential lower bounds on the complexity of real time and local branching
programs, J. Inform. Processing and Cybernetics (EIK), 24 (1988), pp. 99–110.

[Kr91] M. Krause, Lower bounds for depth-restricted branching programs, Inform. and Comput.,
91 (1991), pp. 1–14.

[Kr94] S. Krischer, FANCY, version 1.1, http://www.informatik.uni-trier.de/∼krischer/.
Universität Trier, Germany, November 1994.

[KW91] M. Krause and S. Waack, On oblivious branching programs of linear length, Inform.
Comput., 94 (1991), pp. 232–249.

[Ma76] W. Masek, A Fast Algorithm for the String-Editing Problem and Decision Graph Com-
plexity, SM Thesis, MIT, Cambridge, MA, 1976.

[Me89] C. Meinel, Modified branching programs and their computational power, Lecture Notes
in Comput. Sci. 370, Springer-Verlag, New York, 1989.

[Ok91] E. A. Okolnishnikova, Lower bounds for branching programs computing characteristic
functions of binary codes, Metody Diskret. Anal., 51 (1991), pp. 61–83 (in Russian).

[Po95] S. Ponzio, Restricted Branching Programs and Hardware Verification, Ph.D. thesis,
MI Technology, Cambridge, MA, August 1995; Tech. report MIT/LCS/TR-663,
http://www.lcs.mit.edu/ and http://www.eccc.uni-trier.de/eccc/.

[SDG94] A. Shen, S. Devadas, and A. Ghosh, Probabilistic manipulation of boolean functions
using free boolean diagrams, IEEE Trans. Computer-Aided Design, 14 (1995), pp. 87–
95.

[SS93] J. Simon and M. Szegedy, A new lower bound theorem for read-only-once branching
programs and its applications, in Advances in Computational Complexity Theory, J.
Cai, ed., DIMACS Series, Vol. 13, AMS, Providence, RI, 1993, pp. 183–193.

A READ-ONCE LOWER BOUND FOR MULTIPLICATION 815

[SV81] S. Skyum and L. G. Valiant, A complexity theory based on Boolean algebra, J. Assoc.
Comput. Mach., 32 (1985), pp. 484–502.

[SW95] D. Sieling and I. Wegener, Graph driven BDD’s—A new data structure for boolean
functions, Theoret. Comput. Sci., 141 (1995), pp. 283–310.

[SZ96] P. Savicky and S. Zak, A large lower bound for 1-branching programs, Electronic
Colloquium on Computational Complexity, TR96-036, 1996, http://www.eccc.-

uni-trier.de/eccc/.
[We87] I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner Series in Computer

Science, New York, Stutggart, 1987.
[We88] I. Wegener, On the complexity of branching programs and decision trees for clique func-

tions, J. Assoc. Comput. Mach., 35 (1988), pp. 461–471.
[We93] I. Wegener, Optimal lower bounds on the depth of polynomial-size threshold circuits for

some arithmetic functions, Inform. Process. Lett., 46 (1993), pp. 85–87.
[We94] I. Wegener, Efficient data structures for boolean functions, Discrete Math., 136 (1994),

pp. 347–372.
[Za84] S. Zak, An exponential lower bound for one-time-only branching programs, in Proc. 11th

MFCT, Lecture Notes in Comput. Sci. 176, Springer-Verlag, New York, 1984, pp. 562–
566.

TOTAL COLORING WITH ∆ + poly(log ∆) COLORS∗

HUGH HIND† , MICHAEL MOLLOY‡ , AND BRUCE REED§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 816–821

Abstract. We provide a polynomial time algorithm which finds a total coloring of any graph
with maximum degree ∆, ∆ sufficiently large, using at most ∆ + 8 log8 ∆ colors. This improves the
best previous upper bound on the total chromatic number of ∆ + 18∆1/3 log(3∆).

Key words. total coloring, algorithms, probabilistic method

AMS subject classifications. 05C15, 05C70, 0C85

PII. S0097539795294578

1. Introduction. A total coloring of a graph G is an assignment of colors to
its vertices and edges so that no two adjacent vertices have the same color, no two
adjacent edges have the same color, and no edge has the same color as one of its
endpoints. A k total coloring is a total coloring which uses at most k colors. The
total chromatic number, χ

′′
(G), is the least number of colors required for a total

coloring of G.
This concept was introduced independently by Behzad [3] and Vizing [15], who

each conjectured that any graph with maximum degree ∆ has a ∆ + 2 total coloring.
Note that if it is true, this conjecture is tight because every such graph requires at
least ∆ + 1 colors and there are some graphs such as K∆+1, ∆ odd, which require
∆ + 2 colors. Kilakos and Reed [11] have shown that the fractional total chromatic
number of such a graph is at most ∆ + 2.

The first ∆ + o(∆) bound on the total chromatic number of such a graph was
∆ + 2

√
∆, due to Hind [7]. More recently, Häggkvist and Chetwynd (see [10]) have

reported a bound of ∆ + 18∆1/3 log(3∆). In this paper we tighten the bound to
∆ + 8 log8 ∆ (all logarithms have base e).

Theorem 1. For sufficiently large ∆, if G has maximum degree ∆ then χ
′′
(G) ≤

∆ + 8 log8 ∆.
Our proof is probabilistic and makes use of the Lovász local lemma. The proof

can be made constructive, providing an O(n3 logO(1) n) randomized algorithm and a
polytime deterministic algorithm to find such a total coloring.

The total chromatic number conjecture is reminiscent of Vizing’s theorem which
states that if G has maximum degree ∆ then the edge chromatic number of G, χ

′
(G)

is either ∆ or ∆ + 1. It is also reminiscent of the list coloring conjecture. In fact,
a slightly weaker form of the total coloring conjecture follows from the list coloring
conjecture.

The list edge chromatic number of a graph G, χ
′
`(G), is the minimum number r

with the following property: for any mapping f : E(G) → S where S is a collection
of sets of colors each of size r, G has a proper edge coloring where for each edge e,

∗Received by the editors November 3, 1995; accepted for publication (in revised form) January 3,
1997; published electronically September 14, 1998. The second and third authors were supported by
NATO Collaborative Research grant CRG950235.

http://www.siam.org/journals/sicomp/28-3/29457.html
†Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada.
‡Department of Computer Science, University of Toronto, Toronto, Canada (molloy@

cs.toronto.edu).
§Equipe Combinatoire, CNRS, Université Pierre et Marie Curie, Paris, France (reed@lug.ecp6.

jussieu.fr).

816

TOTAL COLORING WITH ∆ + poly(log ∆) COLORS 817

the color of e lies in f(e). The list coloring conjecture is that χ
′
`(G) = χ

′
(G).

Recall that for any graph G, χ(G) ≤ ∆ + 1. Now consider any ∆ + 1 coloring
c : V (G) → {1, . . . ,∆ + 1}. For each edge e = (u, v) define f(e) to be the set
{1, . . . ,∆ + 3} − {c(u), c(v)}. Now the size of f(e) is ∆ + 1 for each e, and so if the
list coloring conjecture holds, then we can use such a coloring to provide a ∆+3 total
coloring of G. Therefore, the list coloring conjecture implies χ

′′
(G) ≤ ∆ + 3.

Inspired by this implication, we say that a proper vertex coloring is extendible
to a t total coloring if there is a total coloring of size t whose restriction to V (G) is
that vertex coloring. Thus, we have seen that the list coloring conjecture implies that
every ∆ + 1 vertex coloring of G is extendible to a ∆ + 3 total coloring of G. Hind
[8] has shown that there exist graphs that have a ∆ + 1 vertex coloring which is not
extendible to a ∆ + 2 total coloring.

In [9] we define a proper vertex coloring to be β-frugal if no vertex has more than
β members of any color class in its neighbourhood. We prove the following theorem.

Theorem 2. Every graph G with maximum degree ∆ ≥ ∆0 = e107

has a log5 ∆-
frugal (∆ + 1) vertex coloring.

In this paper, we show that every log5 ∆-frugal (∆+1) vertex coloring is extendible
to a ∆ + 8 log8 ∆ total coloring, thus proving Theorem 1.

The idea behind our proof is simple. We begin by presenting the basic ideas. For
ease of exposition, let us assume for now that G is ∆-regular. Consider any log5 ∆-
frugal (∆ + 1) vertex coloring of G with color classes S1, . . . , S∆+1. If we could find
an edge disjoint sequence of matchings M1, . . . ,M∆+1 such that Mi misses all of Si
and covers all of V (G)−Si (i.e., Mi is a perfect matching of G−Si), then this would
give us a ∆ + 1 total coloring. (Note that since every vertex is missed by exactly one
matching here, then ∪Mi = E(G).) Of course, this is not always possible as there are
some graphs with χ

′′ ≥ ∆ + 2. For example, we will fail if |V (G)− Si| is odd for any
i. Thus we will have to allow our matchings to miss a few more vertices. Essentially,
we will show that we can find sets X1, . . . , X∆+1 with the following two properties:

1. each vertex lies in at most log8 ∆ of these sets; and
2. for each 1 ≤ i ≤ ∆ + 1, we can find a matching Mi in Gi = G−∪1≤j≤i−1Mi

which misses all of Si and meets all of V (G)− Si −Xi.
Therefore, the color classes Ci = Si ∪Mi will provide a total coloring of all but

E(G∆+2). By condition 1, G∆+2 has maximum degree at most log8 ∆ and so it can
be edge colored with at most log8 ∆ + 1 colors thus providing a ∆ + log8 ∆ + 2 total
coloring of G.

We have oversimplified things here. In fact, our argument is more intricate. In
the next section we will fill in the details, including the manner in which we choose
our sets Xi. For now, we will simply say that we choose them randomly and make use
of the following two tools. The first is due to Lovász and appears in [4]. The second
can be found in [6].

The local lemma. Suppose A = A1, . . . , An is a list of random events such that
for each i, Pr(Ai) ≤ p and Ai is mutually independent of all but at most d other
events in A. If ep(d+ 1) < 1 then Pr(∧ni=1Āi) > 0.

The Chernoff bounds. Suppose B(n, p) is the sum of n independent Bernoulli
variables each equal to 1 with probability p. Then for any 0 < a < 1

6np we have the
following:

Pr(B(n, p)− np > a) < e−a
2/3np

818 HUGH HIND, MICHAEL MOLLOY, AND BRUCE REED

and

Pr(B(n, p)− np < −a) < e−a
2/2np.

For the remainder of this paper, we assume ∆ ≥ e107

. For each vertex v, N(v)
denotes the neighbourhood of v. We usually omit all b, c and d, e signs.

2. The details. Our main task will be to prove the following.
Lemma 3. Suppose G is a graph with maximum degree at most D ≥ 8 log8 ∆.

Suppose further that we are given S1, S2, . . . , SD
2
⊆ V (G) such that for all v ∈

V (G), 1 ≤ i ≤ D
2 , |N(v) ∩ Si| ≤ log5 ∆. Then there exists a sequence of edge-disjoint

matchings in G, M1, . . . ,MD
2

such that
1. Mi misses Si;

2. G
′

= G− ∪D2i=1Mi has maximum degree at most D
2 + 2 log7 ∆.

Repeated iterations of Lemma 3 will prove Theorem 1.
Proof of Theorem 1. Take S1, . . . , S∆+1 to be the color classes of any log5 ∆-

frugal ∆ + 1 coloring of G, as guaranteed by Theorem 2. Set G0 = G, ∆0 = ∆,
and repeatedly apply Lemma 1 until ∆j < 8 log8 ∆, setting Gj+1 = G

′
, ∆j+1 =

∆j/2 + 2 log7 ∆ ≤ ∆
2j + 4 log7 ∆, and choosing S

(j)
1 , . . . , S

(j)
∆j/2

from previously unused

members of {S1, . . . , S∆+1}, all the while forming color classes from the pairs Si∪Mi.
As there are at most log ∆ iterations,

∑
∆i/2 ≤ ∆−4 log8 ∆+log ∆(4 log7 ∆) < ∆+1,

and so we will have produced fewer than ∆ + 1 color classes. Therefore, an 8 log8 ∆
edge coloring of the final G

′
will provide our ∆ + 8 log8 ∆ total coloring.

We prove Lemma 3 by choosing random sets Xi, which we allow Mi to miss as
described in the introduction. As mentioned earlier, it is important that no vertex
appears in very many sets Xi, as that will cause its degree in G

′
to be too high. In

order to ensure this, we will divide {1, . . . , D/2} into log7 ∆ subsequences, and we
will insist that no vertex falls into two sets from the same subsequence.

Specifically, we set αj = bj × D
log7 ∆

c, j = 0, . . . , d 1
2 log7 ∆e, and we set Aj =

{αj−1 +1, . . . , αj}. We will choose X1, . . . , XD/2 such that for i1, i2 ∈ Aj , Xi1∩Xi2 =
∅.

For i ∈ Aj , we define Di = D − (i − 1) + 2(j − 1). We set G1 = G, and for
1 ≤ i ≤ D/2 we will find a matching Mi in Gi = G− ∪i−1

j=1Mi such that
1. Mi misses Si;
2. Mi meets every vertex of degree at least Di in V (G)− Si −Xi.

We will see how to find Xi and Mi later, but first note that this will be enough
to prove Lemma 3.

Claim 1. For each i ≥ 2, if Mi−1 exists, then Gi has maximum degree at most
Di + 2.

Proof. In what follows, we only discuss k ≤ i and j such that αj−1 ≤ i. Consider
any vertex v. We denote by degk(v) the degree of v in Gk. We will see by induction
on j that degαj−1+1(v) ≤ Dαj−1+1 and that for all k with αj−1 + 1 ≤ k ≤ αj ,
degk(v) ≤ Dk + 2. The first condition holds for j = 1. To see that for each j, the first
condition implies the second condition as well as the first condition for j+ 1, consider
the first (if any) k ∈ Aj such that degk(v) = Dk, and note that degk′(v) ≥ Dk′ for

all k ≤ k
′ ≤ αj , and so v can be missed by at most two matchings Mk1

,Mk2
before

αj + 1, corresponding to v ∈ Xk1
and v ∈ Sk2

. Therefore, degk′(v) ≤ Dk′ + 2 for each

k ≤ k′ ≤ αj , and degαj+1(v) ≤ Daj+1 as Daj+1 = Daj + 1.

Therefore, GD/2 has maximum degree at most DD/2 + 2 ≤ D/2 + 2 log7 ∆ as
required.

TOTAL COLORING WITH ∆ + poly(log ∆) COLORS 819

It only remains to choose Xi and Mi. This is done via the following two lemmas.
Lemma 4. Suppose Gi has maximum degree at most Di + 2 where Di ≥ log8 ∆,

and suppose further that there exists a set R ⊆ V (G) such that for any v ∈ V (G),
|N(v) ∩R| ≤ 3D

log ∆ . Then there exists Xi ⊆ V (G)−R such that for all v ∈ V (G),

1. |N(v)−Xi| ≤ Di − log6 ∆;
2. |N(v) ∩Xi| ≤ 3 log6 ∆.

Lemma 5. Suppose Gi has maximum degree at most Di + 2 and suppose further
that we have Si, Xi ⊆ V (G) such that for each v ∈ V (G),

1. |N(v) ∩ Si| ≤ log5 ∆;
2. |N(v)−Xi| ≤ Di − log6 ∆;
3. |N(v) ∩Xi| ≤ 3 log6 ∆.

Then there exists a matching Mi such that
1. Mi misses Si;
2. Mi meets every vertex of degree at least Di in V (G)− Si −Xi.

Using these lemmas, along with Claim 1, it is now straightforward to prove Lemma
3 in the manner discussed earlier.

Proof of Lemma 3. For i = 1, . . . , D/2, we choose Xi via Lemma 4 by setting
R = ∪k∈Aj ,k<iXk where i ∈ Aj , noting that |N(v) ∩R| ≤ |Aj |×3 log6 ∆ ≤ 3D

log ∆ , and
we choose Mi via Lemma 3. The result now follows as in the earlier discussion.

We now complete the proof of Theorem 1 by proving Lemmas 4 and 5.
Proof of Lemma 4. We will choose Xi randomly. For each v ∈ V (G)−R, we place

v in Xi with probability pi = 2 log6 ∆
Di+2 . For each v ∈ V (G) define Ev to be the event

that v violates one of the required conditions. Note that by the Chernoff bounds,

Pr(Ev) ≤ Pr(|B(Di + 2, pi)− 2 log6 ∆| > 1
3 log6 ∆)

+Pr(|B(Di − 3D
log ∆ , pi)− pi × (Di − 3D

log ∆)| > 1
6 log6 ∆)

≤ 2e− log6 ∆/54 + 2e− log6 ∆/108

< ∆−3.

Furthermore, each event Ev is mutually independent of all but at most ∆2

other events. Therefore, our result follows from the local lemma as e∆−3(∆2 + 1)
< 1.

Proof of Lemma 5. Suppose that such a matching does not exist. Then by a
well-known extension of Tutte’s theorem, there exist disjoint T,Q ⊂ V (Gi)− Si with
T ∩Xi = ∅ such that each v ∈ T has degree at least Di in G; the subgraph induced
by T has at least |Q|+ 1 odd components C1, C2, . . . , C|Q|+1; and there are no edges

from T to G− (Q ∪ Si). (One way to see this is form G
′
i by deleting Si from Gi and

then adding an edge between every pair of nonadjacent vertices that each have degree
less than Di in Gi. If |G′i| is odd, then add a vertex that is adjacent to every vertex

of degree less than Di in Gi. Now apply Tutte’s theorem (see, e.g., [12]) to G
′
i.)

For any disjoint A,B ⊆ V (Gi), denote by E(A,B) the set of edges with one
endpoint in each of A,B.

Claim 2. For each 1 ≤ i ≤ |Q|+ 1, |E(Ci, Q)| ≥ Di − log5 ∆.
Proof.
Case 1. |Ci| ≤ Di/3.

|E(Ci, Q ∪ Si)| ≥ Di|Ci| −
(|Ci|

2

)
, and |E(Ci, Si)| ≤ |Ci| log5 ∆. Therefore,

|E(Ci, Q)| ≥ |Ci|(Di − log5 ∆)− (|Ci|
2

) ≥ Di − log5 ∆.

820 HUGH HIND, MICHAEL MOLLOY, AND BRUCE REED

Case 2. |Ci| > Di/3.
For each v ∈ Ci, |E({v}, Xi)| ≥ log6 ∆ and |E({v}, Si)| ≤ log5 ∆. Therefore,

|E(Ci, Q)| ≥ |Ci|(log6 ∆− log5 ∆) ≥ Di − log5 ∆.
Claim 3. For each v ∈ Q, |E({v}, T)| ≤ Di − log6 ∆.
Proof. This follows from the fact that T ∩Xi = ∅.
Therefore, we have (|Q|+ 1)(Di − log5 ∆) ≤ |E(T,Q)| ≤ |Q|(Di − log6 ∆). Thus

Di ≤ log5 ∆ which contradicts D ≥ 8 log8 ∆.

3. An efficient algorithm. We note here that our proof can be made algorith-
mic using the techniques developed by Beck [2], at the price of increasing our lower
bound on ∆. Set n = |V (G)|.

In [9] the present authors provide an O(n3 logO(1) n) randomized algorithm and a
polytime deterministic algorithm to find a log5 ∆-frugal (∆ + 1)-coloring of G. After
doing this, we must find the set Xi guaranteed by Lemma 2 and the matching Mi

guaranteed by Lemma 3 fewer than ∆ times, and finally we must find the 8 log8 ∆
edge coloring used in the proof of Theorem 1. The latter step can be done in O(n4)
steps, or we can find a 16 log8 ∆ edge coloring in O(n2) steps. Each Mi can be found
in O(n2.5) steps, as in [5] or [13]. It only remains to find Xi.

This can be done in O(n2 logO(1) n) steps using an algorithm essentially the same
as that in section 4 of [2]. The only modification required is to allow for sampling
with probability pi here rather than with probability 1

2 as in [2]. This can be done in
a straightforward manner as described in [9].

Thus we have a O(n2.5 logO(1) n)-time randomized algorithm and a polytime de-
terministic algorithm for finding a ∆ + 16 log8 ∆ total coloring of G.

4. Remarks. It is worth noting that by being more careful with our calculations,
both here and in [9], and raising our lower bound on ∆, we can find a log3 ∆-frugal
(∆ + 1)-coloring for any graph with maximum degree ∆ sufficiently large, and we
can find a ∆ + log4 ∆ total coloring. However, these techniques do not appear to be
sufficient to get a bound any lower than ∆ + poly(log ∆).

Alon [1] has shown how to modify the technique of [2] to produce parallel algo-
rithms. This does not seem to apply here.

Recently, Molloy and Reed [14] have improved the upper bound on the total
chromatic number to ∆ +C for a large constant C. The proof uses a different, much
more complicated technique and does not appear to yield an efficient algorithm for
finding such a coloring.

Acknowledgments. We would like to thank two anonymous referees for several
improvements.

REFERENCES

[1] N. Alon, A parallel algorithmic version of the local lemma, Random Structures Algorithms, 2
(1991), pp. 367–378.

[2] J. Beck, An algorithmic approach to the Lovász local lemma, Random Structures Algorithms,
2 (1991), pp. 343–365.

[3] M. Behzad, Graphs and Their Chromatic Numbers, Ph.D. thesis, Michigan State University,
East Lansing, 1965.

[4] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, in Infinite and Finite Sets Colloq. Math. Soc. János Bolyai 11, A. Hajnal et al.,
eds., North–Holland, Amsterdam, 1975, pp. 609–627.

TOTAL COLORING WITH ∆ + poly(log ∆) COLORS 821

[5] S. Even and O. Kariv, An O(n2.5) algorithm for maximum matching in general graphs,
Proceedings of the 16th Annual Symposium on the Foundations of Computer Science,
1975, pp. 100–112.

[6] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New
York, 1966.

[7] H. Hind, An improved bound for the total chromatic number of a graph, Graphs Combin., 6
(1990), pp. 153–159.

[8] H. Hind, Recent developments in total colouring, Discrete Math., 125 (1994), pp. 211–218.
[9] H. Hind, M. Molloy, and B. Reed, Colouring graphs frugally, Combinatorica, to appear.

[10] T. Jensen and B. Toft, Graph Colouring Problems, Wiley, New York, 1995.
[11] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica, 13 (1993),

pp. 435–440.
[12] L. Lovász and M. Plummer, Matching Theory, Ann. Discrete Math. 29, North–Holland,

Amsterdam, 1986.

[13] S. Micali and V. Vazirani, An O(
√
|V ||̇E|) algorithm for finding maximum matching in gen-

eral graphs, Proceedings of the 21st Annual Symposium on the Foundations of Computer
Science, 1980, pp. 17–27.

[14] M. Molloy and B. Reed, A bound on the total chromatic number, Combinatorica, to appear.
[15] V. Vizing, Some unsolved problems in graph theory, Russian Math. Surveys, 23 (1968), pp. 125–

141.

COMPUTING COMPONENTS AND PROJECTIONS OF CURVES
OVER FINITE FIELDS∗

JOACHIM VON ZUR GATHEN† AND IGOR SHPARLINSKI‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 822–840

Abstract. This paper provides an algorithmic approach to some basic algebraic and combinato-
rial properties of algebraic curves over finite fields: the number of points on a curve or a projection,
its number of absolutely irreducible components, and the property of being “exceptional.”

Key words. curves over finite fields, computational algebraic geometry, approximation algo-
rithms

AMS subject classifications. 11G20, 14H25, 68Q40

PII. S009753979427741X

1. Introduction. Let Fq be a finite field with q elements, f ∈ Fq[x, y] a bivariate
polynomial of total degree n over Fq, and C = {f = 0} = {(u, v) ∈ F 2

q : f(u, v) = 0} ⊆
F 2
q the plane curve defined by f over Fq. In this paper we present some algorithms

to compute approximations to the curve size #C and to the number r∗i of points
with exactly i preimages under the projection to a coordinate axis. Since this task
generalizes Weil’s estimate of #C, it might be called a “computational Weil estimate.”

In [7], a “strip-counting” method was introduced. It is based on the general
principle that the behavior of a curve can be deduced from its behavior over a wide
enough vertical strip.

To be specific, let S ⊆ Fq, i ∈ N, and C(S) be the set of (u, v) ∈ S × Fq with
f(u, v) = 0. Furthermore, Ri(S) is the set of u ∈ S for which there are exactly
i values v ∈ Fq with f(u, v) = 0, ri(S) = #Ri(S), M(S) is the number of triples
(u, v, w) ∈ S2 × Fq with f(u− v, w) = 0, and ti(S) is the number of pairs (u, v) ∈ S2

for which there are exactly i values w ∈ Fq satisfying f(u− v, w) = 0.
The basic idea now is that for some properties of curves, we can find reasonably

small sets S such that the above parameters are not too hard to compute, and give
information about some of the global parameters we are interested in.

A completely different approach, pioneered in [19], leads to deterministic algo-
rithms for computing the size of C ⊆ F 2

p with time polynomial in log p (and expo-
nential in the degree); see [17], [11]. A method for higher-dimensional varieties is
in [12].

If the set S is given in some reasonable sense, e.g., if we have an efficient way to
enumerate all elements of S, then we can compute #C(S) and all ri(S) for 0 ≤ i ≤ n
in time O (̃|S|n log q) (see Lemma 2.5 below). Thus #C and r∗i may be computed in
exponential time of order O (̃nq) by this “brute force” algorithm. Here, we use the
“soft-Oh” notation: A = O (̃B) if and only if A = B(logB + 2)O(1).

Continuing the work in [7], we show that for certain small sets S, the numbers
q#C(S)/#S or qM(S)/#S2, and qri(S)/#S or qti(S)/#S2 are rather good approx-

∗Received by the editors November 18, 1994; accepted for publication (in revised form) February
26, 1997; published electronically September 14, 1998. An extended abstract of this paper has
appeared in Proc. ISAAC ’94, Beijing, P. R. China, Ding-Zhu Du and Xiang-Sun Zhang, eds.,
Lecture Notes in Comput. Sci. 834, Springer-Verlag, New York, 1994, pp. 297–305.

http://www.siam.org/journals/sicomp/28-3/27741.html
†Fachbereich Mathematik-Informatik, Universität-GH Paderborn, D-33098 Paderborn, Germany

(gathen@uni-paderborn.de).
‡School of MPCE, Macquarie University, Sydney, NSW 2109, Australia (igor@mpce.mq.edu.au).

822

COMPONENTS AND PROJECTIONS 823

imations to the curve size #C and the projection statistics r∗i , respectively. (The
quality of these approximations is described in detail below.) In particular, to esti-
mate #C, this is true for random sets of cardinality of order n3, for any set of size
of order n2q1/2, and for a random shift of any set of size of order n4. The latter is
a positive answer to Question 7.2 of [7] and is an example of reducing the number
of random choices required in probabilistic algorithms. These results motivate the
strip-counting terminology, in that it is sufficient to count points in the strip S × Fq
over S.

We consider mainly the case of finite prime fields, but we also show how some re-
sults can be generalized to the case of general finite fields, and outline some difficulties
that do not allow us to generalize all results.

From ri(S) and ti(S) for 0 ≤ i ≤ n (or their approximations) we can compute (or
estimate) the numbers #C(S) and M(S), respectively, as

#C(S) =
∑

1≤i≤n
ri(S)i, M(S) =

∑
1≤i≤n

ti(S)i.(1.1)

A connection in the opposite direction is given in Lemma 2.2 below.
The more general problem about the number of u ∈ Fq for which the polynomial

f(u, y) ∈ Fq[y] has a given “factorization pattern” can be reduced to calculating
analogues of r∗i in extensions of the ground field Fq.

For a curve of the form f(x, y) = x− h(y), with h(y) ∈ Fq[y], r∗0 = 0 is equivalent
to h being a permutation polynomial over Fq.

Throughout the paper, we use the following terminology. Let K be an algebraic
closure of Fq and X ⊆ Km+1 be an algebraic curve over K, defined over Fq, and
C = X ∩ Fm+1

q the Fq-rational points on X . Since we are only interested in set-
theoretic (counting) properties of C (and not sheaf-theoretic ones), we assume that
X is reduced and without embedded points; X may be reducible and have singular
points. Most of our results deal with the case m = 1, where we assume that C (and X)
are given by some polynomial f ∈ Fq[x, y], as C = {f = 0}. Since the curve is reduced,
f is squarefree. In the proofs, certain fiber products of C occur. A further assumption,
without loss of generality, is that C ⊆ F 2

q contains no vertical lines; this is defined in
section 2. We denote by σ the number of absolutely irreducible components, i.e., the
number of irreducible components of C over K that are defined over Fq, and we use
parameters λi defined in (2.3), via the fiber power of the curve. Lemmas 2.1 and 2.3
show that we automatically get approximations of order O(q1/2) (for n fixed) to #C
and r∗i , respectively, from approximations to σ and λi. So we shall mainly concentrate
on algorithms to compute the latter parameters. Moreover, it also follows from those
lemmas that in order to determine σ and r∗i , it is enough to get approximations to #C
and to r∗i with absolute errors less than q/2 and q/2n!, respectively. We consider the
following three important special cases: σ = 0 (“exceptional curves”), σ = 1 (“almost
absolutely irreducible curves”), and λ0 = 0 (“almost permutation curves”).

Our algorithms address a fairly difficult problem and have the following properties:
• they are easy to state and implement;
• their proofs of correctness rely on deep results from arithmetical algebraic

geometry.
Table 1 below summarizes our algorithmic results.

2. Some general results. We start by collecting some facts about curves over
finite fields. The following inequality is a consequence of the famous Weil result and
Lemma 2.2 of [7], which gives a bound for the number of points on intersections

824 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

Table 1
Computing various parameters for a curve in F 2

q of degree n: absolutely irreducible components,
λi (see (2.3)), exceptional, one component, and λ0 = 0. The time is the number of operations in
Fq, and random the number of random elements; both in the O -̃sense. If random is 0, we have a
deterministic algorithm. For all probabilistic algorithms, the error probability is at most δ, and q ≥
indicates the lower bound on q, in the O -̃sense. The condition is either Condition A from section
4, or that the field size be a prime p.

parameter time random q ≥ cond alg

comp n4 log δ−1 log q n3 log δ−1 n4 3.2
comp n5δ−2 log q 1 n4 4.9

comp n3q1/2 0 n4 A 4.7
λi (n!)2 log δ−1 log q n!2 log δ−1 (n!)2n4n 3.8
λi (n!)2n4nδ−1 log p 1 (n!)2n4n p 4.13

λi n!n2np1/2 0 (n!)2n4n p 4.11
except n3 log δ−1 log q n2 log δ−1 n4 3.4

one comp n3 log δ−1 log q n2 log δ−1 n4 3.6
λ0 = 0 n! log δ−1 log q n! log δ−1 (n!)2n4n 3.10

of absolutely irreducible curves and for the number of points on irreducible but not
absolutely irreducible curves.

Lemma 2.1. Let C ⊆ Fm+1
q be a curve of degree n over Fq with σ absolutely

irreducible components defined over Fq. Then∣∣#C − σq∣∣ ≤ n2q1/2.

Proof. Let C1, . . . , Cτ be the irreducible components of C over Fq, with Ci absolutely
irreducible if and only if i ≤ σ. From the proof of Lemma 2.2 in [7], we find

|#C − σq| ≤
∣∣∣∣#C − ∑

1≤i≤σ
#Ci

∣∣∣∣+
∑

1≤i≤σ

∣∣∣#Ci − q∣∣∣
<

∑
1≤i<j≤σ

ninj +
∑
σ<i≤τ

n2
i /4 + q1/2 +

∑
1≤i≤σ

n2
i

≤
(∑

1≤i≤τ
ni

)2

q1/2 ≤ n2q1/2.

Let C ⊂ Fm+1
q be a curve. Throughout this paper, we assume that C is without

vertical components, i.e., no absolutely irreducible component of C is contained in a
hyperplane {a} × Fmq , for some a ∈ Fq. For a plane curve C = {f = 0}, with f =∑
i fiy

i ∈ Fq[x, y] and all fi ∈ Fq[x], this is the case if and only if gcd(f0, f1, . . .) = 1.
In that case, we also say that C is without vertical lines. For the computational
problems we consider, the general case is easily reduced to this (slightly) restricted
one.

Furthermore, let i ∈ N and S ⊆ Fq. We consider the difference map δ:S2 → Fq
with δ(u1, u2) = u1−u2, and denote by id the identity on Fmq . We define the following:

C(S) = C ∩ (S × Fmq) = {(u, v): (u, v) ∈ C, u ∈ S} ⊆ Fm+1
q ,

Ri(S) = {u ∈ S: #C({u}) = i},
ri(S) = #Ri(S),

Cδ(S) = (δ × id)−1(C) = {(u1, u2, v): (u1 − u2, v) ∈ C, u1, u2 ∈ S},

COMPONENTS AND PROJECTIONS 825

M(S) = #Cδ(S),

ti(S) = #δ−1(Ri(S)).

We also set r∗i = ri(Fq) and t∗i = ti(Fq). All these definitions coincide with the ones in
the introduction if C is a plane curve. For a plane curve C given by f ∈ Fq[x, y] and
1 ≤ k ≤ n, we define the curve Ck ⊆ F k+1

q as the closure of

Sk = {(u, v1, . . . , vk) ∈ F k+1
q :

f(u, v1) = · · · = f(u, vk) = 0, vi 6= vj for 1 ≤ i < j ≤ k}.(2.1)

To define this closure of Sk, we take the set X of all points in Kk+1 satisfying the
equations and inequalities in (2.1), its (Zariski-) closure X (i.e., all points satisfying
all polynomials over K that vanish on X), and then Ck = X ∩ F k+1

q . The geometry
of C2 and the equations defining it as a complete intersection are described in detail
in [8] and an example is given below. Ck is the k-fold fiber power of C along the first
projection; it may be empty. Applying Bézout’s theorem to the equations in (2.1),
we find deg Ck ≤ nk; in fact, deg Ck ≤ n(n − 1) · · · (n − k + 1). It can, of course,
also be defined for curves in Fm+1

q with m > 1. The following statement is essentially
Lemma 3.2 of [7].

Lemma 2.2. For a plane curve C ⊆ F 2
q without vertical lines and of degree n,

S ⊆ Fq, and 0 ≤ i ≤ n, we have

ri(S) =
1

i!

∑
i≤k≤n

(−1)i+k #Ck(S)

(k − i)! ,(2.2)

ti(S) =
1

i!

∑
i≤k≤n

(−1)i+k #Cδk(S)

(k − i)! .

In view of these expressions, we consider the number σk of absolutely irreducible
components defined over Fq of Ck, with σ0 = 1, and for 0 ≤ i ≤ n set

λi =
1

i!

∑
i≤k≤n

(−1)i+kσk
(k − i)! ∈ Q.(2.3)

Lemma 2.3. Let C ⊆ F 2
q be a curve without vertical lines given by f ∈ Fq[x, y] of

degree n, and λ0, . . . , λn as above. Then for 0 ≤ i ≤ n, we have n!λi ∈ Z, and

|r∗i − λiq| ≤ 2n2nq1/2.(2.4)

Proof. Noting that Ck is of degree at most nk and using σk as above, we find from
Lemmas 2.1 and 2.2 that∣∣∣r∗i − qλi∣∣∣ =

1

i!

∣∣∣∣ ∑
i≤k≤n

(−1)i+k(#Ck − σkq)
(k − i)!

∣∣∣∣
≤ q1/2

i!

∑
i≤k≤n

n2k

(k − i)! ≤
q1/2(n2)n+1 − 1

n2 − 1
≤ 2n2nq1/2

for n ≥ 2; the case n = 1 is trivial. Furthermore i!(k − i)! divides n! for all 0 ≤ i ≤
k ≤ n.

826 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

1R

3R

2R0R

y

x

Fig. 1. The elliptic curve y2 = x3 − x over R, the sets R0 and R2 for the first projection, and
the sets R1 and R3 for the second projection.

Example 2.4. We take the (irreducible) elliptic curve C = {f = 0} of degree
n = 3 given by f = y2 − x3 + x ∈ Fq[x, y], where q = 1019 is prime. Figure 1 gives
the picture over R. Then C2 is given by the equations

−u3 + u = v2
1 , v1 + v2 = 0.

The latter equation comes from eliminating u and dividing the result v2
1−v2

2 by v1−v2.
Thus C2 is isomorphic to C and irreducible, and σ2 = 1. Furthermore, C3 = Ø and
σ3 = 0, so that

λ0 =
1

2
, λ1 = 0, λ2 =

1

2
, λ3 = 0.

For the two sets S1 = Fq and S2 = {0, 1, 2, . . . , 49} we find

i ri(S1) = r∗i #Ci(S1) r∗i − λiq ri(S2) #Ci(S2)

0 508 1019 −1.5 26 50
1 3 1019 3 2 2
2 508 1016 −1.5 22 22
3 0 0 0 0 0

Of course, (2.2) could have been used to predict the r∗i approximately. The pes-
simistic bound (2.4) actually holds with the error term 3 < 46,541.95 ≈ 2n2nq1/2. As
expected from the picture of the curve {y2 = x3 − x} over R, there are (almost) no
points with 1 or 3 preimages under the first projection. The other two possibilities, of
0 or 2 preimages, occur equally often. The three points with one preimage are 0, 1,−1.

It is instructive to also look at the projection of C onto the y-axis. To preserve
terminology, we thus take f = x2 − y3 + y. Then C2 is

C2 = {(u, v1, v2) ∈ F3
q : f(u, v1) = 0, v2

1 + v1v2 + v2
2 − 1 = 0}.(2.5)

COMPONENTS AND PROJECTIONS 827

C2 is irreducible, and σ2 = 1. For C3, we have to add the equation

v1 + v2 + v3 = 0

to those in (2.5); thus C3 ∼= C2 and σ3 = 1. We find

λ0 =
1

3
, λ1 =

1

2
, λ2 = 0, λ3 =

1

6
,

and with S1 and S2 as above, we have

i ri(S1) = r∗i #Ci(S1) r∗i − λiq ri(S2) #Ci(S2)

0 340 1019 0.33 14 50
1 508 1019 −1.5 24 60
2 2 1020 2 0 72
3 169 1020 −0.83 12 72

Again, (2.4) holds with the bound 2 < 46,541.95. This example shows how the λi’s
comprise in a concise way reasonably good information about the projection statistics
of the curve. Note that in the picture over R the set corresponding to R0 is empty.

We denote by M(n) the Boolean complexity of multiplication of two n-bit num-
bers. The currently best estimate [18] of this function is

M(n) = O(n log n loglog n).

As in the proof of Lemma 2.5 of [7], we find the following result.
Lemma 2.5. Let C ⊆ F 2

q be without vertical lines and given by f ∈ Fq[x, y] of
degree n, and u ∈ Fq. Then #C({u}) can be computed with O(M(n) log(nq)) arithmetic
operations in Fq.

3. Counting with random elements. Throughout this section, C is a plane
curve without vertical lines. We extend our notions C(S), Ri(S), ri(S) to a se-
quence S = (s1, . . . , sh) of elements of Fq in the obvious way, e.g., we set #C(S) =∑

1≤i≤h #C({si}). In particular, when S is a sequence of random elements of Fq,
#C(S) and ri(S) are random variables. We state our algorithms in this section for
a sequence of h random elements, because for a computer implementation such a se-
quence is slightly more natural than a random subset of size h; the results also hold
for such a random subset.

The following bound on the difference between a sample mean and the true ex-
pected value is a direct consequence of the general result of [13] (see also Theorem
7.2 of [7]) and the trivial bounds #C ≤ nq and r∗i ≤ q.

Lemma 3.1. Let S be a sequence of h independently and uniformly distributed
random elements of Fq, 0 ≤ i ≤ n, and δ > 0. Then the following hold with probability
at least 1− δ:

|#C − q#C(S)h−1| ≤ (2n(n+ 1)q#C log(2n/δ)h−1
)1/2

≤ nq (2(n+ 1) log(2n/δ)h−1
)1/2

,

|r∗i − qri(S)h−1| ≤ 2
(
qr∗i log(2/δ)h−1

)1/2 ≤ 2q
(
log(2/δ)h−1

)1/2
.

828 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

Algorithm 3.2. Components.
Input: f ∈ Fq[x, y] of degree n, and δ > 0.
Output: An estimate of the number of absolutely irreducible components of C =
{f = 0} defined over Fq.

1. Set h = d72n2(n+ 1) log(2n/δ)e.
2. Choose a sequence S of h random independently uniformly distributed ele-

ments of Fq.
3. Compute #C(S).
4. Return the nearest integer to #C(S)/h.

Theorem 3.3. Assume that q ≥ 36n4. Then Algorithm 3.2 outputs the num-
ber σ of absolutely irreducible components correctly with probability at least 1 − δ.
It uses O(n3 log(n/δ)) random elements and O(n3M(n) log(n/δ) log(nq)) arithmetic
operations in Fq.

Proof. The cost bound follows from Lemma 2.5, and Lemmas 2.1 and 3.1 show
that

|σ −#C(S)h−1| ≤ n2q−1/2 + n
(
2(n+ 1) log(2n/δ)h−1

)1/2 ≤ 1/6 + 1/6 = 1/3

with probability at least 1− δ.
We call a curve C over Fq exceptional (over Fq) if and only if none of the irreducible

components of C defined over Fq is absolutely irreducible. In particular, a plane curve
C = {f = 0} with f ∈ Fq[x, y] is exceptional if and only if none of the irreducible
factors of f over Fq is absolutely irreducible. This notion plays a central role in the
study of permutation polynomials: g ∈ Fq[x] is a permutation polynomial if and only
if (g(x)− g(y))/(x− y) is exceptional provided that q ≥ 16(deg g)4 [4], [5].

Algorithm 3.4. Exceptional test.
Input: f ∈ Fq[x, y] of degree n, and δ > 0.
Output: YES if f is exceptional, and NO otherwise.

1. Set h = d16n(n+ 1) log(2n/δ)e.
2. Choose a sequence S of h random independently uniformly distributed ele-

ments of Fq.
3. Compute #C(S).
4. If #C(S) ≤ n2/4 then return YES else return NO.

Theorem 3.5. Assume that q ≥ 4n4. If f is exceptional, Algorithm 3.4 answers
correctly. If f is not exceptional, Algorithm 3.4 answers correctly with probability at
least 1− δ. It uses O(n2 log(n/δ)) random elements and O(n2M(n) log(n/δ) log(nq))
arithmetic operations in Fq.

Proof. Let σ be the required number of components. If σ = 0, then #C ≤ n2/4;
see Lemma 5.2(ii) of [7] for an example. Thus the algorithm answers correctly in this
case. It is sufficient to estimate the probability that #C(S) ≤ n2 when σ ≥ 1. From
Lemma 2.1 we get

#C ≥ q − n2q1/2 ≥ q/2.
Assuming that δ ≤ 1, Lemma 3.1 implies that with probability at least 1− δ we

have

#C(S) ≥ h#C
q
− h

q

(
2n(n+ 1)q#C log(2n/δ)h−1

)1/2
≥ h#C

q

(
1−

(
q

#C ·
1

8

)1/2)
≥ h

2

(
1−

(
1

4

)1/2)
=

h

4
> n2.

COMPONENTS AND PROJECTIONS 829

Algorithm 3.6.
Input: f ∈ Fq[x, y] of degree n, and δ > 0.
Output: YES if C = {f = 0} has exactly one absolutely irreducible component defined
over Fq, and NO otherwise.

1. Return NO if f is exceptional, using Algorithm 3.4 with input (f, δ/2).
2. Set h = d90n(n+ 1) log(4n/δ)e.
3. Choose a sequence S of h random independent uniformly distributed elements

of Fq.
4. Compute #C(S).
5. If #C(S) ≤ 17h/12 then return YES else return NO.

Theorem 3.7. Let q ≥ 16n4. With probability at least 1−δ, Algorithm 3.6 decides
correctly whether C has exactly one absolutely irreducible component defined over Fq.
It uses O(n2 log(n/δ)) random elements and O(n2M(n) log(n/δ)log(nq)) arithmetic
operations in Fq.

Proof. Let σ be the number of components. The cost estimate follows from
Lemma 2.5. We may assume that σ ≥ 1, and have to bound the error probability. If
σ = 1, then we get from Lemma 2.1 that

#C ≤ q + n2q1/2 ≤ 5q/4,

and from Lemma 3.1 that

#C(S) ≤ h#C/q +
h

q

(
2n(n+ 1)q#C log(4n/δ)h−1

)1/2
≤ 5h

4
+ h

(
5

4 · 45

)1/2

=
17h

12

with probability at least 1− δ/2. Otherwise,

7q/4 ≤ 2q − n2q1/2 ≤ #C ≤ 2q + n2q1/2 ≤ 9q/4,

and with probability at least 1− δ/2

#C(S) ≥ h#C
q
− h

q

(
2n(n+ 1)q#C · log(4n/δ)h−1

)1/2
≥ 7h

4
− h ·

(
9

4 · 45

)1/2

=
(35− 2

√
5)h

20
>

17h

12
.

Our next algorithm computes the rational numbers λ0, . . . , λn. In view of (2.3),
this is equivalent to calculating σ0, . . . , σn up to a triangular system of linear equa-
tions; we do not know a direct easy way to compute these σi’s.

Algorithm 3.8.
Input: f ∈ Fq[x, y] of degree n, and δ > 0.
Output: The parameters λ0, . . . , λn of C = {f = 0} as defined in (2.3).

1. Set h = d144(n!)2 log(2/δ)e.
2. Choose a sequence S of h random independently uniformly distributed ele-

ments of Fq.
3. For i = 1, . . . , n do steps 4, 5, 6.
4. Compute ri(S).
5. Compute the nearest integer Λi to n!ri(S)/h.
6. Return Λi/n!.

830 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

Theorem 3.9. If q ≥ 144n4n(n!)2, then Algorithm 3.8 computes the parame-
ters λ0, . . . , λn of C = {f = 0} correctly with probability at least 1 − δ. It uses
O((n!)2 log(δ−1)) random elements, and O((n!)2M(n) log(δ−1) log(nq)) arithmetic op-
erations in Fq.

Proof. From Lemmas 2.3 and 3.1, we find that with probability at least 1− δ

|λi − ri(S)h−1| ≤ 2n2nq−1/2 + 2
(
log(2/δ)h−1

)1/2
< 1/6n! + 1/6n! < 1/3n!,

and in this case the output is correct. The cost estimate follows from Lemma 2.5.

Together with Lemma 2.3, this gives an estimate for the ri’s, and, with (1.1) for
S = Fq, also for #C.

Let us now consider the special case of testing if λ0 = 0. For a curve of the form
f = y − g(x) with g ∈ Fq[x], the condition λ0 = 0 implies r0 = 0 (at least for q large
enough), i.e., that h is a permutation polynomial (see [5] for details).

Algorithm 3.10.
Input: f ∈ Fq[x, y] of degree n, and δ > 0.
Output: YES if λ0 = 0 for C = {f = 0}, else NO.

1. Set h = d256(n!)2 log(2/δ)e.
2. Choose a sequence S of h random independently uniformly distributed ele-

ments of Fq.
3. Compute #C(S).
4. Return YES if #C(S) ≤ h/4n!, else NO.

Theorem 3.11. If q ≥ 256n4n(n!)2, then the output of Algorithm 3.10 is cor-
rect with probability at least 1 − δ. It uses O(n! log(δ−1)) random elements and
O(n!M(n) log(δ−1) log(nq)) arithmetic operations in Fq.

Proof. The cost estimate follows from Lemma 2.5. To bound the error probability,
we have from Lemma 2.3 that

λ0q − q/8n! ≤ λ0q − 2n2nq1/2 ≤ r∗0 ≤ λ0q + 2n2nq1/2 ≤ λ0q + q/8n!.

If λ0 = 0, then we find from Lemma 3.1 that with probability at least 1− δ

r0(S) ≤ hr∗0/q + 2
(
h log(2/δ)

)1/2 ≤ h/8n! + h/8n! = h/4n!.

Now suppose that λ0 6= 0. Then |λ0| ≥ 1/n!. Furthermore, λ0 < 0 would imply that
0 ≤ r∗0 ≤ −q/n! + q/8n! < 0. Thus λ0 ≥ 1/n!, and with probability at least 1− δ

r0(S) ≥ hr∗0/q − 2
(
h log(2/δ)

)1/2 ≥ 7h/8n!− h/8n! = 3h/4n!.

4. Counting in additive strips. In this section, we continue to study proper-
ties of curves in additive strips. Our main tool is the bound from [1] on exponential
sums along a curve. The various estimates we obtain give methods for approximating
#C and the ri’s, at least when q is large relative to n.

For integers a and h, we denote by A(a, h) the interval

A(a, h) = {(a+ j) mod p: 0 ≤ j < h} ⊆ Fq,

where p = charFq, and for a curve C ⊆ Fm+1
q , we write

C(a, h) = C(A(a, h)), ri(a, h) = ri(A(a, h)),

COMPONENTS AND PROJECTIONS 831

M(a, h) = M(A(a, h)), ti(a, h) = ti(A(a, h)).

It follows from Lemma 2.1 of [7] that if x is not a constant along any absolutely
irreducible component of C and n = deg C, then for any integers a and h ≤ p,∣∣#C(a, h)− h#C/p∣∣ ≤ 2n2p1/2 log p.(4.1)

Let K be an algebraic closure of Fq. We will repeatedly use the following assump-
tion on a curve C ⊆ Fm+1

q , which arises in Bombieri’s work.
Hypothesis A. For every absolutely irreducible component D of C and every

rational function g on Km+1, x is different from gp − g on D, where p = char Fq.
In general, given the equations for C, it seems not easy to check whether C satisfies

Hypothesis A. If x = gp − g =
∏
u∈Fp(g − u), then each g − u has the same poles as

x, and in particular the degree of the pole divisor of x is divisible by p. Thus

deg C < p =⇒ C satisfies Hypothesis A;(4.2)

see also Lemma 4 of [2].
Below we show that for the parameter #Cδ(S) a slightly stronger result than (4.1)

holds for an arbitrary set S ⊆ Fq.
Lemma 4.1. Let C = Fm+1

q be a curve without vertical components and of degree
n satisfying Hypothesis A, S ⊆ Fq, and h = #S. Then∣∣#Cδ(S)− h2#C/q∣∣ < 2n2hq1/2.

Proof. Let χ be a nontrivial additive character of Fq. Then∣∣#Cδ(S)
∣∣ =

1

q

∑
(a,b)∈C

∑
u,v∈S

∑
λ∈Fq

χ
(
λ(a− u+ v)

)
= h2#C/q + t/q,

where a ∈ Fq and b ∈ Fmq in the sum, and

t =
∑
λ∈F×q

∑
(a,b)∈C

χ(λa)
∑
u,v∈S

χ(λ(u− v)).

The bound of [1, Theorem 6] implies that for λ ∈ F×q ,∣∣∣∣ ∑
(a,b)∈C

χ(λa)

∣∣∣∣ ≤ (n2 − n)q1/2 + n2 < 2n2q1/2.

Therefore

t < 2n2q1/2

∣∣∣∣ ∑
λ∈F×q

∑
u,v∈S

χ(λ(u− v))

∣∣∣∣
= 2n2q1/2

∣∣∣∣ ∑
u,v∈S

∑
λ∈Fq

χ
(
λ(u− v)

)− h2

∣∣∣∣.
Since the inner sum equals 0 when u 6= v and q otherwise, we get

t < 2n2hq3/2.

832 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

We note that this lemma is nontrivial for sets of cardinality h ≥ 2n2q1/2, while
the above-mentioned result from [7] works only in case of a prime field Fq = Fp and
needs h ≥ 2n2p1/2 log p.

For w ∈ Fq and S ⊆ Fq, we denote by Sw the w-shift of S:

Sw = {w + u : u ∈ S}.
The following lemma shows that q#C(Sw)/h is a good approximation to #C for almost
all w-shifts of any set S ⊆ Fq with #S � n3.

Lemma 4.2. Let C ⊆ Fm+1
q be a curve without vertical components and of degree

n satisfying Hypothesis A, w ∈ Fq, S ⊆ Fq, h = #S, and

s =
1

q

∑
w∈Fq

(
#C(Sw)− h#C/q)2.

Then s ≤ 4n4h, and if q ≥ n2, then s ≤ n4h.
Proof. Let χ be a nontrivial additive character on Fq. We have, as in the proof of

the previous lemma,

#C(Sw)− h#C/q =
1

q

∑
λ∈F×q

∑
(a,b)∈C

χ(λa)
∑
u∈S

χ
(−λ(w + u)

)
,

where a ∈ Fq and b ∈ Fmq . Hence∑
w∈Fq

∣∣#C(Sw)− h#C/q∣∣2 = tq−2,

where

t =
∑
w∈Fq

∣∣∣∣ ∑
λ∈F×q

∑
(a,b)∈C

χ(λa)
∑
u∈S

χ
(−λ(w + u)

)∣∣∣∣2
=

∑
λ1,λ2∈F×q

∑
(a1,b1),(a2,b2)∈C

χ(λ1a1 − λ2a2)
∑

u1,u2∈S
χ(−λ1u1 + λ2u2)

×
∑
w∈Fq

χ
(
w(−λ1 + λ2)

)
.

Since the last sum equals 0 when λ1 6= λ2 and q otherwise, we find from Theorem 6
of [1] that

t = q
∑
λ∈F×q

∑
(a1,b1),(a2,b2)∈C

χ
(
λ(a1 − a2)

) ∑
u1,u2∈S

χ
(
λ(−u1 + u2)

)
= q

∑
λ∈F×q

∣∣∣∣ ∑
(a,b)∈C

χ(λa)

∣∣∣∣2 ∑
u1,u2∈S

χ
(
λ(−u1 + u2)

)
≤ q((n2 − n)q1/2 + n2

)2 ∑
λ∈F×q

∑
u1,u2∈S

χ
(
λ(u1 − u2)

)
≤ 4n4q2

∣∣∣∣ ∑
λ∈Fq

∑
u1,u2∈S

χ(λ(u1 − u2))− h2

∣∣∣∣.

COMPONENTS AND PROJECTIONS 833

We can replace 4 by 1 if n2 ≤ q. The sum is zero when u1 6= u2 and q otherwise, so
that

t ≤ 4n4q2(qh− h2) ≤ 4n4hq3.

Corollary 4.3. Let C ⊆ Fm+1
q be a curve without vertical components and of

degree n satisfying Hypothesis A, δ > 0, S ⊆ Fq, and h = #S. Then∣∣#C(Sa)− h#C/q∣∣ ≤ 2δ−1/2n2h1/2

holds with probability at least 1− δ for random a ∈ Fq.
Lemma 4.4. Let p be a prime, C ⊆ F 2

p be a plane curve without vertical lines of
degree n satisfying Hypothesis A, 0 ≤ i ≤ n, p > nn, and a, h ∈ N with h ≤ p. Then

|ti(a, h)− h2r∗i /p| ≤ 3n2nhp1/2,

|ri(a, h)− hr∗i /p| ≤ 3n2np1/2 log p.

Proof. For 1 ≤ k ≤ n, we have deg Ck ≤ nk < p, and thus Ck satisfies Hypothesis
A, by (4.2). Lemma 4.1 implies that∣∣#Cδk(a, h)− h2#Ck/p

∣∣ ≤ 2n2khp1/2.

Let 0 ≤ i ≤ n. From Lemma 2.2, we have

|ti(a, h)− h2t∗i /p| ≤
1

i!

∑
i≤k≤n

∣∣#Cδk(a, h)− h2#Ck/p
∣∣

(k − i)!

≤ 1

i!

∑
i≤k≤n

2n2khp1/2

(k − i)! ≤ 2n2nhp1/2 n2

n2 − 1
≤ 3n2nhp1/2.

Using (4.1), the second bound follows in a similar way.
We next show that for almost all a a much stronger bound than the second

estimate in Lemma 4.4 holds.
Lemma 4.5. Let p > nn be a prime, C ⊆ F 2

p a plane curve without vertical lines
and of degree n, 0 ≤ i ≤ n, and h ≤ p. Then

1

p

∑
0≤a<p

(
ri(a, h)− hr∗i /p

)2 ≤ 8n4nh.

Proof. For 0 ≤ k ≤ n, we have deg Ck ≤ nk < p, and Ck satisfies Hypothesis A
by (4.2). Using Lemma 4.2, we find∑

0≤a<p

(
ri(a, h)− hr∗i /p

)2 ≤ 1

i!2

∑
0≤a<p

(∑
i≤k≤n

(
#Ck(a, h)− h#Ck/p

)
(k − i)!

)2

≤
∑
i≤k≤n

∑
0≤a<p

(
#Ck(a, h)− h#Ck/p

)2
≤ 4ph

∑
i≤k≤n

n4k ≤ 8n4nph.

Corollary 4.6. Let p > nn be a prime, C ⊆ F 2
p a plane curve without vertical

lines and of degree n, 0 < δ < 1, and h ≤ p. Then

|ri(a, h)− hr∗i /p| ≤ n2n(8hδ−1)1/2

834 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

holds with probability at least 1− δ for a random element a ∈ Fp.
It was proved in [7] that the number of absolutely irreducible components of

a plane curve C ⊆ F 2
p of degree n can be determined with O(n2M(n)p1/2 log2 p)

arithmetic operations in Fp. A similar result is true for ri, namely, we can find the
parameters λi as in (2.3) with O(n!n2nM(n)p1/2 log2 p) arithmetic operations in Fp.
Indeed, choose

h = d18n!n2np1/2 log pe.
Setting Λi = λin! ∈ Z, we find from Lemmas 4.4 and 2.3

|n! ri(0, h)h−1 − Λi| ≤ n!h−1|ri(0, h)− hr∗i p−1|+ n!p−1|r∗i − λip|
≤ n!h−1 · 3n2np1/2 log p+ n!p−1 · 2n2np1/2

≤ 1/6 + 1/6 = 1/3,

if p ≥ 144n4n(n!)2. Thus we may determine Λi as the nearest integer to n!ri(0, h)h−1.
Below we show how to improve this method and partially generalize it to the case

of arbitrary finite fields.
Algorithm 4.7. Deterministic components.

Input: f ∈ Fq[x, y] of degree n ≤ q1/4/4, and a basis ω1, . . . , ωk of Fq over Fp, where
p = char Fq and q = pk.
Output: The number of absolutely irreducible components of C = {f = 0} defined over
Fq.

1. Set H = d12n2q1/2e.
2. Compute integers l, h0, and h such that

pl−1 ≤ H < pl, (h0 − 1)pl−1 ≤ H < h0p
l−1, h = min{(p− 1)/2, h0}.

3. Set

S = {a1ω1 + · · ·+ alωl: a1, . . . , al−1 ∈ Fp, al ∈ A(0, h)}.
4. Compute M(S).
5. Return the nearest integer to M(S)/#S2.

Theorem 4.8. Let q > 256n4, and C ⊆ F 2
q be a plane curve without vertical lines

and of degree n satisfying Hypothesis A. Algorithm 4.7 correctly computes the num-
ber of absolutely irreducible components of C. It uses O(n2M(n)q1/2 log q) arithmetic
operations in Fq.

Proof. Since H ≤ 8n2q1/2 + 1 < 16n2q1/2 ≤ q, we have l ≤ k. Using δ:S2 → Fq,
and that l ≥ 1, h0 ≥ 2, we find

H/2 ≤ #S ≤ #δ(S2) ≤ 2#S ≤ 4H,

and for any a = a1ω1 + · · ·+ alωl ∈ δ(S2), with −h < al < h, the number #δ−1({a})
of (u1, u2) ∈ S2 with a = u1 − u2 is equal to pl−1(h− |cl|). Using Lemma 2.5, we can
compute M(S) in O(M(n)#S · log q) or O(n2M(n)q1/2 log q) arithmetic operations in
Fq. From Lemmas 2.1 and 4.1, we get∣∣σ −M(S)/#S2

∣∣ ≤ |σ −#C/q|+ ∣∣#C/q −M(S)/#S2
∣∣

< n2q−1/2 + 2n2q1/2/#S ≤ 1/16 + 1/3 = 19/48 < 1/2.

COMPONENTS AND PROJECTIONS 835

Algorithm 4.9. Components.
Input: A curve C ⊆ F 2

q without vertical lines, given by f ∈ Fq[x, y] of degree n satisfying
Hypothesis A, and δ > 0.
Output: An estimate of the number of absolutely irreducible components of C defined
over Fq.

1. Set H = d288 δ−2n4e.
2. Determine the set S ⊆ Fq as in Algorithm 4.7.
3. Choose a ∈ Fq at random.
4. Compute #C(Sa).
5. Return the nearest integer to #C(Sa)/#S2.

Theorem 4.10. If q > 36n4, then Algorithm 4.9 computes the number of abso-
lutely irreducible components of C correctly with probability at least 1− δ. It uses one
random element and O(n4M(n)δ−2 log q) arithmetic operations in Fq.

Proof. The cost estimate follows from the fact that #C(Sa) can be computed in
O(M(n)#S · log q) or O(δ−2n4M(n) log q) arithmetic operations in Fq. Corollary 4.3
implies that ∣∣#C(Sa)−#S ·#C/q∣∣ ≤ 2δ−1n2(#S)1/2

with probability at least 1− δ. From Lemma 2.1 we obtain∣∣σ −#C(Sa)/#S
∣∣ ≤ |σ −#C/q|+ ∣∣#C/q −#C(Sa)/#S

∣∣
≤ n2q−1/2 + 2δ−1n2(#S)−1/2 ≤ 1/6 + 1/6 = 1/3

with probability at least 1− δ.
Algorithm 4.11. Parameters λi.

Input: A curve C ⊆ F 2
q without vertical lines and given by f ∈ Fp[x, y] of degree n,

and δ > 0.
Output: The parameters λi for 0 ≤ i ≤ n.

1. Set h = d12!n2np1/2e.
2. For 0 ≤ i ≤ n, compute ti(0, h).
3. For 0 ≤ i ≤ n, let Λi be the nearest integer to ti(0, h)n!/h2, and return
λi = Λi/n!.

Theorem 4.12. Let p > 576(n!)2n4n be a prime. Then Algorithm 4.11 computes
λi for 0 ≤ i ≤ n. It uses O(n!n2nM(n)p1/2 log p) arithmetic operations in Fp.

Proof. Set S = A(0, h), and let 0 ≤ i ≤ n. It follows from Lemmas 2.3 and 4.4
that ∣∣λi − ti(0, h)/h2

∣∣ ≤ |λi − r∗i /p|+ ∣∣r∗i /p− ti(0, h)/h2
∣∣

≤ 2n2np−1/2 + 3n2np1/2h−1

< 1/24n! + 1/4n! = 7/(24n!).

Thus the algorithm works correctly. Since 12n!n2np1/2 < p/2, we have h ≤ (p+ 1)/2,
and for −h < a < h the number of u1, u2 ∈ N with a = u1 − u2 and 0 ≤ u1, u2 < h
is equal to h − |a|. Using this fact and Lemma 2.5, we can compute ti(0, h) in
O(M(n)h log p) or O(n!n2nM(n)p1/2 log q) arithmetic operations in Fp.

Algorithm 4.13. Parameters λi.
Input: A curve C ⊂ F 2

q without vertical lines and given by f ∈ Fq[x, y] of degree n,
and δ > 0.
Output: An estimate of the parameters λi for 0 ≤ i ≤ n.

836 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

1. Set h = d288(n!)2n4nδ−1e.
2. Choose a ∈ Fp at random.
3. For 0 ≤ i ≤ n, compute ri(a, h) and the nearest integer Λi to n!ri(a, h)/h,

and return λi = Λi/n!.
Theorem 4.14. Let p > 144(n!)2n4n be a prime, C ⊆ F 2

p a plane curve of
degree n without vertical lines, and δ > 0. Algorithm 4.13 computes λi for 0 ≤
i ≤ n correctly with probability at least 1 − δ. It uses one random element and
O((n!)2n4nM(n)δ−1 log p) arithmetic operations in Fp.

Proof. The algorithm uses O(M(n)h log p) or O((n!)2n4nM(n)δ−1 log p) arithmetic
operations in Fp. Let 0 ≤ i ≤ n. It follows from Corollary 4.6 that

|ri(a, h)− hr∗i /p| ≤ n2n(8hδ−1)1/2

with probability at least 1− δ. If this inequality holds, we find from Lemma 2.3 that

|λi − ri(a, h)/h| ≤ |λi − r∗i /p|+ |r∗i /p− ri(a, h)/h|
≤ 2n2np−1/2 + n2n(8/hδ)1/2

≤ 1/6n! + 1/6n! = 1/3n!.

Then λi = Λi/n! is the correct answer.

5. Distribution of points in multiplicative strips. In the previous sections
we did not succeed in computing the projection distribution parameters ri in an
arbitrary finite field, as we have to know the behavior of x along absolutely irreducible
components of the fiber product curves Ck. Instead of additive strips, we consider in
this section multiplicative strips that may help us in some cases.

Our main tool is the bound from [15] on multiplicative character sums along an
algebraic curve, rather than Bombieri’s bound that we used before.

For λ ∈ F×q and integers a and h, we denote by M(λ, a, h) the multiplicative
interval

M(λ, a, h) = {λa+t: 1 ≤ t ≤ h} ⊆ F×q ,
and given a curve C ⊆ Fm+1

q , we let

C(λ, a, h) = C(M(λ, a, h)).

We prove some analogues of Lemma 2.1 of [7] and Lemma 4.2 of this paper. The
following condition on a curve C ⊆ Fm+1

q is used in Perel’muter’s theorem.
Hypothesis B. The first coordinate function x is not a power ge of a rational

function g on any absolutely irreducible component of C, where g is defined over an
algebraic closure of Fq, and e ≥ 2 is an integer.

Theorem 5.1. Let C ⊆ Fmq be a curve of degree n without vertical components
and satisfying Hypothesis B, λ ∈ F×q be of order τ , and a and h ≤ τ be integers. Then∣∣#C(λ, a, h)− h#C/q∣∣ ≤ 2n2q1/2 log q.

Proof. Let θ ∈ Fq be a primitive element such that λ = θ(q−1)/τ .
Denote by ind u the index of u ∈ F×q in base θ, i.e., the smallest nonnegative

integer t with u = θt, so that

ind(λa+t) ≡ (q − 1)(a+ t)τ−1 mod (q − 1).

COMPONENTS AND PROJECTIONS 837

Then

#C(λ, a, h) =
1

q − 1

∑
(u,v)∈C

∑
1≤t≤h

∑
0≤s≤q−2

exp

(
2πis(ind u− (q − 1)(a+ t)τ−1)

q − 1

)
=

1

q − 1

∑
0≤s≤q−2

∑
(u,v)∈C

χs(u)
∑

1≤t≤h
exp(−2πis(a+ t)/τ),

where u ∈ Fq and v ∈ Fmq in the sums. For 0 ≤ s ≤ q − 2, define a multiplicative
character χs on Fq by

χs(u) = exp[2πis ind u/(q − 1)],

for u ∈ F×q , and set χs(0) = 0. Separating the term corresponding to s = 0 we get

#C(λ, a, h) =
h

q − 1
(#C − E)

+
1

q − 1

∑
1≤s≤q−2

∑
(u,v)∈C

χs(u)
∑

1≤t≤h
exp(−2πis(a+ t)/τ),

(5.1)

where

E =
∑

(0,v)∈C
1 = #(C ∩ {x = 0}) ≤ n,

by Bézout’s theorem. Theorem 2 of [15] implies that for any s∣∣∣∣ ∑
(u,v)∈C

χs(x)

∣∣∣∣ ≤ (n2 − 3n)q1/2 + n2.

Since h ≤ q − 1, we have∣∣#C(λ, a, h)− h#C/(q − 1)
∣∣

≤ hn

q − 1
+

(n2 − 3n)q1/2 + n2

q − 1

∑
1≤s≤q−2

∣∣∣∣ ∑
1≤t≤h

exp(2πis(a+ t)/τ)

∣∣∣∣
≤ n+

(n2 − 3n)q1/2 + n2

τ

∑
1≤s<τ

∣∣∣∣ ∑
1≤t≤h

exp(−2πist/τ)

∣∣∣∣.
Using the well-known inequality∑

1≤s<τ

∣∣∣∣ ∑
1≤t≤h

exp(2πist/τ)

∣∣∣∣ ≤ τ log τ,

we get ∣∣#C(λ, a, h)− h#C/(q − 1)
∣∣ ≤ n+

(
(n2 − 3n)q1/2 + n2

)
log τ.

Taking into account that #C ≤ nq and thus∣∣∣∣h#C

q − 1
− h#C

q

∣∣∣∣ =
h#C

q(q − 1)
≤ n,(5.2)

838 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

we obtain finally that∣∣#C(λ, a, h)− h#C/q∣∣ ≤ n+ n+
(
(n2 − 3n)q1/2 + n2

)
log τ

≤ 2n+
(
(n2 − 3n)q1/2 + n2

)
log τ

≤ 2n2q1/2 log q.

Theorem 5.2. Let C ⊆ Fmq be a curve without vertical components and of degree
n ≥ 2 satisfying Hypothesis B, λ ∈ F×q be of order τ , and h ≤ τ . Then∑

0≤a≤q−2

(
#C(λ, a, h)− h#C/q)2 ≤ 8n4qh.

Proof. Using the notation of the previous proof, we have

(q − 1)

∣∣∣∣#Cq − #C − E
q − 1

∣∣∣∣ =

∣∣∣∣−#C
q

+ E

∣∣∣∣ ≤ n,
∑

0≤a≤q−2

(
#C(λ, a, h)− h#C/q)2

≤ 2
∑

0≤a≤q−2

[
#C(λ, a, h)− h(#C − E)

q − 1

]2

+ 2
∑

0≤a≤q−2

[
h#C
q
− h(#C − E)

q − 1

]2

≤ 2W + 2n2h2/(q − 1),

where

W =
∑

0≤a≤q−2

[
#C(λ, a, h)− h(#C − E)

q − 1

]2

= (q − 1)−2
∑

0≤a≤q−2

∣∣∣∣ ∑
1≤s≤q−2

∑
(u,v)∈C

χs(u)
∑

1≤t≤h
exp(2πis(a+ t)/τ)

∣∣∣∣2,
by (5.1). Using |α|2 = αᾱ for α ∈ C, we have

W = (q − 1)−2
∑

1≤s1,s2≤q−2

∑
(u1,v1),(u2,v2)∈C

χs1(u1)χs2(u−1
2)

·
∑

1≤t1,t2≤h
exp(2πi(s1t1 − s2t2)/τ)

∑
0≤a≤q−2

exp(2πia(s1 − s2)/τ).

Noting that the inner sum equals 0 when s1 6= s2 and q − 1 otherwise, we get

W = (q − 1)−1
∑

1≤s≤q−2

∑
(u1,v1),(u2,v2)∈C

χs(u1u
−1
2)

∑
1≤t1,t2≤h

exp(2πis(t1 − t2)/τ)

= (q − 1)−1
∑

1≤s≤q−2

∣∣∣∣ ∑
(u,v)∈C

χs(u)

∣∣∣∣2∣∣∣∣ ∑
1≤t≤h

exp(2πist/τ)

∣∣∣∣2.
Theorem 2 of [15] yields

W ≤
(
(n2 − 3n)q1/2 + n2

)2
q − 1

∑
1≤s≤q−2

∣∣∣∣ ∑
1≤t≤h

exp(2πist/τ)

∣∣∣∣2.

COMPONENTS AND PROJECTIONS 839

Taking into account the equality

∑
0≤s≤q−2

∣∣∣∣ ∑
1≤t≤h

exp(2πist/τ)

∣∣∣∣2 =
∑

1≤t1,t2≤h

∑
0≤s≤q−2

exp(2πis(t1 − t2)/τ) = h(q − 1),

we obtain

W ≤
(
(n2 − 3n)q1/2 + n2

)2
q − 1

· (h(q − 1)− h2
)
,

∑
0≤a≤q−2

(
#C(λ, a, h)− h#C/q)2 ≤ 2n2h2/(q − 1) + 2

(
(n2 − 3n)q1/2 + n2

)2
h

≤ 2n2h
(
1 + ((n− 3)q1/2 + n)2

) ≤ 2n2h(nq1/2 + n)2 ≤ 8n4hq.

We now show that Hypothesis B is not a severe restriction, in that it is satisfied
after a generic linear transformation. This is most naturally shown for a projective
curve over an algebraically closed field K.

So let X ⊆ Pm+1
K be a reduced curve of degree n, possibly reducible or singular,

H ∼= Pm+1
K the space of hyperplanes in Pm+1

K , and for H ∈ H, let lH be the rational
linear function whose zero set is H. We say that H ∈ H intersects X transversally if
and only if #(X ∩H) = n. The following facts are well known.

Fact 5.3. Let X be as above, and H ∈ H.

(i) If no component of X is contained in H, then #(X ∩H) ≤ n.
(ii) If H does not contain a tangent line to X or a singular point of X , then H

intersects X transversally.
(iii) There is a proper closed subvariety E ⊆ H of degree at most n(n − 1) such

that H intersects X transversally if H ∈ H \ E.
(iv) If H intersects X transversally, then lH is not a power ge of a rational function

g on any absolutely irreducible component of X , with e ≥ 2.

For a plane curve, (iii) follows from, e.g., Proposition 5.2.2 of [3]. For a curve C ⊆
Fm+1
q , Fact 5.3 implies that almost all linear transformations of C satisfy Hypothesis

B. We only make this explicit for m = 1. We need the fact that there exists a line
(over K) through the origin which is not a tangent to C; this is true for all curves
except the “strange” conic in characteristic two (see [10, Theorem IV.3.9]).

Proposition 5.4. Let f ∈ Fq[x, y] be squarefree of degree n, with either n 6= 2
or charFq 6= 2, and for α ∈ Fq, let

Cα = {f(x, y + αx) = 0} = {(a, b) ∈ F 2
q : f(a, b+ αa) = 0}.

Then there exists E ⊆ Fq with #E ≤ n(n − 1) and such that Cα satisfies Hypothesis
B for all α ∈ Fq \ E.

In order to design algorithms from the above results, we have to construct wide
enough multiplicative strips or, equivalently, to find elements λ ∈ F∗q of sufficiently
large order, as in [9]; certainly a primitive root is sufficient. Results about the con-
struction, distribution, and density of primitive roots can be found in [14]; see [22] for
a survey and also [6], [16], [20], [21] for the currently best results in this area.

840 JOACHIM VON ZUR GATHEN AND IGOR SHPARLINSKI

Acknowledgments. Part of the first author’s work was done on a visit to Mac-
quarie University and during a sabbatical visit to the Institute for Scientific Compu-
tation at ETH Zürich, whose hospitality is gratefully acknowledged. The research was
also supported by the Information Technology Research Centre and the Natural Sci-
ences and Engineering Research Council of Canada. Part of the second author’s work
was done during a sabbatical visit to Universität Paderborn, which was supported by
Deutsche Forschungsgemeinschaft. We thank Gerhard Frey and Henning Stichtenoth
for pointing out (4.2).

REFERENCES

[1] E. Bombieri, On exponential sums in finite fields, Amer. J. Math., 88 (1966), pp. 71–105.
[2] E. Bombieri and H. Davenport, On two problems of Mordell, Amer. J. Math., 88 (1966), pp.

61–70.
[3] E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser-Verlag, Basel, Switzer-

land, 1986.
[4] S. D. Cohen, The distribution of polynomials over finite fields, Acta Arith., 17 (1970), pp.

255–271.
[5] J. von zur Gathen, Values of polynomials over finite fields, Bull. Austral. Math. Soc., 43

(1991), pp. 141–146.
[6] J. von zur Gathen and M. Giesbrecht, Constructing normal bases in finite fields, J. Sym-

bolic Comput., 10 (1990), pp. 547–570.
[7] J. von zur Gathen, M. Karpinski, and I. E. Shparlinski, Counting curves and their pro-

jections, Comput. Complexity, 6 (1996), pp. 64–99.
[8] J. von zur Gathen and I. E. Shparlinski, Finding points on curves over finite fields, in Proc.

36th Ann. IEEE Symp. on Foundations of Computer Science, 1995, pp. 284–292.
[9] J. von zur Gathen and I. E. Shparlinski, Orders of Gauss periods in finite fields, Appl.

Algebra Engrg. Comm. Comput., 9 (1998), pp. 15–24.
[10] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[11] M.-D. Huang and D. Ierardi, Counting rational points on curves over finite fields, in Proc.

34th Ann. IEEE Symp. on Foundations of Computer Science, Palo Alto, CA, 1993, pp.
616–625.

[12] M.-D. Huang and Y.-C. Wong, Solving systems of polynomial congruences modulo a large
prime, in Proc. of 1996 IEEE Symp. on Foundations of Computer Science, 1996, pp. 115–
124.

[13] R. M. Karp, M. Luby, and N. Madras, Monte-Carlo approximation algorithms for enumer-
ation problems, J. Algorithms, 10 (1989), pp. 429–448.

[14] R. Lidl and H. Niederreiter, Finite fields, in Encyclopedia of Mathematics and Its Applica-
tions 20, Addison-Wesley, Reading, MA, 1983.

[15] G. I. Perel’muter, Ocenka summy vdol algebraiqeskoi krivoi (Bounds on sums along
algebraic curves), Mat. Zametki, 5 (1969), pp. 373–380.

[16] G. I. Perel’muter and I. E. Shparlinski, O raspredelenii nervoobraznyh kornei v koneq-
nyh pol�h (On the distribution of primitive roots in finite fields), Uspekhi Mat. Nauk, 45
(1990), pp. 185–186.

[17] R. Pila, Frobenius maps of Abelian varieties and finding roots of unity in finite fields, Math.
Comput., 55 (1990), pp. 745–763.

[18] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing, 7 (1971),
pp. 281–292.

[19] R. J. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. Comput., 44 (1985), pp. 483–494.

[20] V. Shoup, Searching for primitive roots in finite fields, Math. Comp., 58 (1992), pp. 369–380.
[21] I. E. Shparlinski, On primitive elements in finite fields and on elliptic curves, Math. USSR

Sbornik, 71 (1992), pp. 41–50.
[22] I. E. Shparlinski, Computational and Algorithmic Problems in Finite Fields, Math. Appl. 88.,

Kluwer Academic Publishers, Norwell, MA, 1992.

BIPARTITE EDGE COLORING IN O(∆m) TIME∗

ALEXANDER SCHRIJVER†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 841–846

Abstract. We show that a minimum edge coloring of a bipartite graph can be found in O(∆m)
time, where ∆ and m denote the maximum degree and the number of edges of G, respectively. It is
equivalent to finding a perfect matching in a k-regular bipartite graph in O(km) time.

By sharpening the methods, a minimum edge coloring of a bipartite graph can be found in
O((pmax(∆) + log ∆)m) time, where pmax(∆) is the largest prime factor of ∆. Moreover, a perfect
matching in a k-regular bipartite graph can be found in O(pmax(k)m) time.

Key words. bipartite, edge-coloring, complexity, timetabling, perfect, matching

AMS subject classifications. Primary: 68R10, 90C27; Secondary: 05C70, 05C85

PII. S0097539796299266

1. Introduction. In a classical paper, König [9] showed that the edges of a
bipartite graph G can be colored with ∆(G) colors, where ∆(G) is the maximum
degree of G. (In this paper, “coloring” edges presumes that edges that have a vertex
in common obtain different colors.)

König’s proof is essentially algorithmic, yielding an O(nm) time algorithm (n and
m denote the numbers of vertices and edges, respectively, of the graph). As was shown
by Gabow [4], the O(

√
nm) bipartite matching algorithm of Hopcroft and Karp [8]

implies an O(
√
nm log ∆) bipartite edge-coloring algorithm. This was improved by

Cole and Hopcroft [1] to O(m logm) by extending methods of Gabow and Kariv [5],
[6].

Fixing the maximum degree ∆, the methods found as yet are superlinear (albeit
slightly). In this paper we give a linear-time method for fixed or bounded ∆. More
precisely, we give an O(∆m) method for bipartite edge coloring. It implies (in fact,
is equivalent to) finding a perfect matching in a k-regular bipartite graph in O(km)
time.

Ultimately one would hope for an O(m log k) (or even O(m)) algorithm finding a
perfect matching in a k-regular bipartite graph and for an O(m log ∆) algorithm for
bipartite edge coloring (the first algorithm implies the second, by a method of Gabow
[4] — see below). We did not find such algorithms, although our methods can be
extended to obtain some supporting results.

In particular, define, for any natural number k,

φ(k) :=

t∑
i=1

pi∏i−1
j=1 pj

,(1)

where p1 ≤ · · · ≤ pt are primes with k = p1 · . . . · pt. We give an O((φ(∆) +
log ∆)m) bipartite edge-coloring algorithm. Note that in φ(∆) + log ∆, the term
φ(∆) dominates if ∆ is prime, while log ∆ dominates if ∆ is a power of 2. Note also
that φ(∆) ≤ 2pmax(∆), where pmax(∆) denotes the largest prime factor in ∆. So

∗Received by the editors February 26, 1996; accepted for publication (in revised form) February
16, 1997; published electronically September 22, 1998.

http://www.siam.org/journals/sicomp/28-3/29926.html
†CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and Department of Mathemat-

ics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
(lex@cwi.nl).

841

842 ALEXANDER SCHRIJVER

fixing the maximum prime factor of ∆, there is an O(m log ∆) bipartite edge-coloring
algorithm.

Moreover, we give an O(φ(k)m) algorithm finding a perfect matching in a k-
regular bipartite graph. So bounding the maximum prime factor of k, there is a
linear-time perfect matching algorithm for k-regular bipartite graphs.

The proof idea is an extension of the following idea of Gabow [4] to find a perfect
matching in a 2t-regular bipartite graph G in linear time. First find an Eulerian
orientation of G (taking O(m) time), and consider those edges that are oriented from
vertex-color class I to vertex-color class II (in the 2-vertex coloring of G). This gives
a 2t−1-regular subgraph of G. Repeating this, we end up with a 1-regular subgraph
of G, being a perfect matching in G. The time is O(m+ 1

2m+ 1
4m+ · · ·) = O(m).

One can similarly find a 2t-edge coloring in O(tm) time. In extending this method
to prime factors other than 2 we use some techniques of [10] for estimating the number
of perfect matchings and edge colorings of bipartite graphs.

In this paper, all graphs may have multiple edges.

2. Some practical motivation. As is well known, bipartite edge coloring can
be applied in timetabling. A pure instance of timetabling consists of a set of teachers,
a set of classes, and a list L of pairs (t, c) of a teacher t and a class c, indicating that
teacher t has to teach class c during a time slot (say, an hour) within the time span of
the schedule (say, a week). A pair (t, c) may occur several times in the list, indicating
the number of hours the pair t, c should meet weekly.

A timetable then is an assignment of the pairs in the list to hours, from a set H
of possible hours, in such a way that no teacher t and no class c occurs in two pairs
that are assigned to the same hour. This clearly is a bipartite edge-coloring problem,
and by König’s theorem, there is a timetable if and only if |H| is not smaller than the
number of times that any teacher t or any class c occurs in L. So by the result of Cole
and Hopcroft [1] a timetable can be found in O(|L| log |L|) time, and by our theorem,
it can be found also in O(|H| · |L|) time. (In practice, several additional constraints
are put on a timetable, making the problem usually NP-complete—cf. Even, Itai, and
Shamir [3].)

In many countries, schools are merging, yielding an increase in size, including in
numbers of teachers and of classes. So the list L grows. However, the number of hours
during a week does not grow. This gives that, in this interpretation, the algorithm is
linear in the size of the school.

Moreover, often H is built up from smaller units (say, days), implying that |H|
does not have large prime factors. (|H| typically has prime factors 2, 3, and 5 only,
and sometimes 7.) This gives that applying the O(φ(|H|+log |H|)|L|)-time algorithm
can be fruitful. Similarly, the method is not very sensitive to doubling or tripling the
time span (say to two or three weeks).

3. An O(∆m) bipartite edge-coloring algorithm. Basic in the edge-color-
ing algorithm (as in [4]) is a subroutine finding a matching that covers all maximum-
degree vertices, and that hence can serve as our first color. To this end we show
Theorem 1.

Theorem 1. A perfect matching in a k-regular bipartite graph can be found in
O(km) time.

Proof. Let G = (V,E) be a k-regular bipartite graph. For any function w :
E −→ Z+, let Ew be the set of edges with w(e) > 0. For any F ⊆ E, denote
w(F) :=

∑
e∈F w(e) and let χF be the incidence vector of F .

BIPARTITE EDGE COLORING IN O(∆m) TIME 843

Initially set w(e) := 1 for each edge e. Next apply the following iteratively:

Find a circuit C in Ew. Let C = M ∪ N for matchings M and N with
w(M) ≥ w(N). Reset w := w + χM − χN .

(2)

Note that, at any iteration, the equality w(δ(v)) = k is maintained for all v ∈ V
(where δ(v) is the set of edges incident with v).

To see that the process terminates, first note that at any iteration the sum∑
e∈E

w(e)2(3)

increases by

(4) ∑
e∈M

((w(e) + 1)2 − w(e)2) +
∑
e∈N

((w(e)− 1)2 − w(e)2)

= 2w(M) + |M | − 2w(N) + |N |,
which is at least |C| (as w(M) ≥ w(N)). Moreover, (3) is bounded, since w(e) ≤ k
for each edge e. So the process terminates.

At termination, we have that the set Ew is a forest and hence is a perfect matching
(since w(e) = k for each end edge e of Ew). This implies that at termination the sum
(3) is equal to 1

2nk
2 = km.

Now by depth first search we can find a circuit C in (2) in O(|C|) time on average.
Indeed, keep a path P of edges e with 0 < w(e) < k. Let v be the last vertex of P .
Choose an edge e = vu incident with v but not in P . If u does not occur in P , we
reset P := P ∪ {e} and iterate. If u does occur in P , let C be the circuit in P ∪ {e},
and apply (2) to C. Next reset P := P \ C, and iterate.

If P = ∅, choose any edge e with 0 < w(e) < k, and set P := {e}. If no such edge
e exists, we are done.

For k smaller than
√

log n, the O(km) bound is asymptotically better than the
O(m+n log n(log k)2) bound proved by Cole and Hopcroft [1]. (An algorithm related
to, but different from, the algorithm described in Theorem 1 was proposed by Csima
and Lovász [2], giving an O(n2k log k) time bound.)

By applying a technique of Gabow [4], one can derive from Theorem 1 the fol-
lowing stronger statement:

COROLLARY 1a. A k-edge coloring of a k-regular bipartite graph can be found in
O(km) time.

Proof. If k is odd, first find a perfect matching M , remove M from G, and apply
recursion (M will serve as color).

If k is even, find an Eulerian orientation of G. Let k′ = 1
2k. Then split G into two

k′-regular graphs G1 = (V,E1) (with E1 the set of edges oriented from vertex-color
class I to vertex-color class II) and G2 = (V,E2) (with E2 := E\E1). Find recursively
k′-edge colorings of G1 and G2. The union of the two colorings is a k-edge coloring
of G.

The time is bounded as follows. Starting with G, we can find M (if k is odd), find
the Eulerian orientation, and split G into G1 and G2, in time ckm for some constant
c. Then the whole recursion takes time 2ckm. This can be shown inductively, as
2ckm = ckm+ 2ck′m′ + 2ck′m′, where m′ = |E(G1)| = |E(G2)| = 1

2m.
This implies the sharper statement as shown in Corollary 1b.

844 ALEXANDER SCHRIJVER

COROLLARY 1b. A ∆(G)-edge-coloring of a bipartite graph G = (V,E) can be
found in O(∆(G)m) time.

Proof. Let k := ∆(G). First iteratively merge any two vertices in the same color
class of G if each has degree at most 1

2k. The final graph H will have at most two
vertices of degree at most 1

2k, and moreover, ∆(H) = k and any k-edge coloring of H
yields a k-edge coloring of G. Next make a copy H ′ of H, and join each vertex v of
H by k − dH(v) parallel edges with its copy v′ in H ′ (where dH(v) is the degree of v
in H). This gives the k-regular graph G′, with |E(G′)| = O(|E(G)|). By Corollary 1a
we can find a k-edge coloring of G′ in O(k|E(G′)|) time. This gives a k-edge coloring
of H and hence a k-edge coloring of G.

4. Toward an O(m log ∆) method. The results of section 3 can be sharpened
by using divisibility properties of ∆(G). First we sharpen Corollary 1a. We repeat
the definition of φ(k) for any natural number k:

φ(k) :=

t∑
i=1

pi∏i−1
j=1 pj

,(5)

where p1 ≤ · · · ≤ pt are primes with k = p1 · . . . · pt.
Theorem 2. A k-edge coloring of a k-regular bipartite graph G = (V,E) can be

found in O((φ(k) + log k)m) time.

Proof. Let k = pk′ with p prime. Split each vertex v into k′ new vertices
v1, . . . , vk′ , and distribute the edges incident with v over v1, . . . , vk′ in such a way
that each vertex vi is incident with exactly p edges. This gives the p-regular graph G̃.
Find a p-edge-coloring of G̃. The colors give a partition of E into classes E1, . . . , Ep
in such a way that each graph Gj = (V,Ej) is k′-regular. Next find a k′-edge coloring
of Gp, yielding perfect matchings M1, . . . ,Mk′ .

Now we apply the following iteratively. We have a partition of E into perfect
matchings M1, . . . ,Mαk′ and k′-regular graphs E1, . . . , Ep−α. (Initially, α = 1.) Let
q := min{α, p−α}. Choose r such that qk′+ r is a power of 2 and such that r ≤ qk′.
Let E′ := M1∪ · · ·∪Mr ∪E1∪ · · ·∪Eq. Then G′ := (V,E′) is a qk′+ r-regular graph.
Next qk′ + r-edge-color G′, yielding colors N1, . . . , Nqk′+r. Now replace M1, . . . ,Mr

by N1, . . . , Nqk′+r and E1, . . . , Ep−α by Eq+1, . . . , Ep−α and iterate. We stop if α = p.

So at any iteration, α is replaced by α + q. Moreover, at any iteration except
possibly the last iteration, we have q = α. So at any iteration except possibly the last
one, q is twice as large as at the previous iteration.

By [4], the work in the iteration takes time O(|E′| log(qk′ + r)) = O(|E′| log k),
since qk′ + r is a power of 2 and since qk′ + r ≤ k. Since |E′| = 1

2 (qk′ + r)n ≤ qk′n,
over all iterations the work is O((1 + 2 + 22 + · · ·+ 2log p)k′n log k) = O(pk′n log k) =
O(m log k).

To this time bound we must add the time needed to obtain G1, . . . , Gp, which
takes O(pm) time by Corollary 1b, since it amounts to p-edge coloring the p-regular
graph G̃, having m edges, and the time needed to edge color Gp, which takes (by
induction) O((φ(k′) + log k′)m′) time, where m′ = m/p is the number of edges of Gp.
Since φ(k) = p+ φ(k′)/p, we have the required time bound.

This gives Corollary 2a.

COROLLARY 2a. A ∆(G)-edge coloring of a bipartite graph G can be found in
O((φ(∆(G)) + log ∆(G))m) time.

Proof. It is proved directly from Theorem 2 by the method of Corollary 1b.

BIPARTITE EDGE COLORING IN O(∆m) TIME 845

Note that

φ(k) ≤ 2pmax(k)(6)

(where pmax(k) is the largest prime factor of k). This follows inductively, since if
k = pk′, with p the smallest prime factor of k, then φ(k) = p + φ(k′)/p ≤ pmax(k) +
(2pmax(k′)/p) ≤ 2pmax(k). This implies Corollary 2b.

COROLLARY 2b. A ∆(G)-edge coloring of a bipartite graph G can be found in
O((pmax(∆(G)) + log ∆(G))m) time.

Proof. The proof follows directly from Corollary 2a with (6).
Note that in performing this method one does not need to apply deep number-

theoretic algorithms to find the prime factorization of k. Indeed, the factors p1, . . . , pt
can be found in O(φ(k)k) time, since the smallest prime factor p can be found in time
O(pk) by trying i = 2, 3, . . . as divisor of k (for each i taking O(k) time), until we
reach p. Next we can apply recursion to k′ := k/p, taking recursively O(φ(k′)k′) time.
This gives O(φ(k)k) time overall, since φ(k) = p+ φ(k′)/p.

A sharpening can be obtained also for finding perfect matchings in k-regular
bipartite graphs.

Theorem 3. A perfect matching in a k-regular bipartite graph G can be found
in O(φ(k)m) time.

Proof. Write k = pk′ with p the smallest prime factor of k. Make the graph G̃
as in the proof of Theorem 2. So G̃ is p-regular. Find a perfect matching M in G̃.
It gives a k′-regular subgraph G′ = (V,E′) of G. In G′ we find recursively a perfect
matching.

Finding perfect matching M in G̃ takes time O(pm) by Theorem 1. Finding
matching N in G′ takes time O(φ(k′)m/p) by induction (as G′ is k′-regular and has
m/p edges). Since φ(k) = p+φ(k′)/p, the whole process takes O(φ(k)m) time.

COROLLARY 3a. A matching covering all maximum-degree vertices in a bipartite
graph can be found in O(φ(∆)m) time.

Proof. The proof follows directly from Theorem 3, using the technique of Corollary
1b.

By (6), Theorem 3 can be stated in a weaker form as Corollary 3b.
COROLLARY 3b. A perfect matching in a k-regular bipartite graph can be found

in O(pmax(k)m) time.
Proof. The proof follows directly from Theorem 3, using (6).

5. Some open questions. It would be surprising if divisibility properties of
the maximum degree ∆(G) of a bipartite graph G would determine the complexity
of edge coloring G. However, our results are blocked by the primes. If ∆(G) is a
prime, we do not have anything better than an O(∆(G)m)-time algorithm. So the
main problem is to “break” a prime. More precisely,

Is there an O(m log k) algorithm for finding a perfect matching in a k-
regular bipartite graph?

(7)

The method of Cole and Hopcroft [1] gives an O(m+n log n log2 k) algorithm to find
a perfect matching in any k-regular bipartite graph. If there would be an O(m log k)
perfect matching algorithm for k-regular bipartite graphs, there exists an O(m log ∆)
bipartite edge-coloring algorithm (by methods like in Theorem 2 above), thus answer-
ing our second question:

Is there an O(m log ∆) algorithm for bipartite edge coloring?(8)

846 ALEXANDER SCHRIJVER

Similar methods as used for proving Theorem 2 give an approximative method,
namely, a bipartite (∆ + blog(∆ − 1)c)-edge-coloring algorithm, with time bound
O(m log ∆). Indeed, let G = (V,E) be a bipartite graph of maximum degree ∆.
In O(m) time we can split E into E′ and E′′ such that both G′ = (V,E′) and
G′′ = (V,E′′) have maximum degree at most ∆′ := d 1

2∆e. We may assume that
|E′| ≤ 1

2m. Let t := ∆′ + blog(∆′ − 1)c. Then t-edge color G′ recursively, giving
colors M1, . . . ,Mt. Choose s ≤ t such that ∆′+ s is a power of 2. Next (∆′+ s)-edge
color the graph H made by M1 ∪ · · · ∪Ms ∪ E′′. With the remaining Ms+1, . . . ,Mt

it gives an edge coloring of G with

(∆′ + s) + (t− s) = 2∆′ + blog(∆′ − 1)c ≤ ∆ + blog(∆− 1)c(9)

colors. Since the number of edges in G′ is at most 1
2m and since edge coloring H

takes O(m log(∆′ + s)) = O(m log ∆) time, this gives an O(m log ∆) time bound.
The nonbipartite case is NP-complete, by the well-known result of Holyer [7]: it is

NP-complete to decide if a 3-regular graph can be 3-edge colored. However, it is not
difficult to see that a 3-regular graph can be 4-edge colored in linear time. Actually,
any graph of maximum degree 3 can be 4-edge colored in O(m) time.

By Vizing’s theorem, each simple graph G can be (∆(G) + 1)-edge colored. (If
∆(G) ≤ 3 we can delete the condition that G be simple.) This prompts the question:

Is there an O(∆m)-time (∆+1)-edge coloring algorithm for simple graphs?(10)

Of course, the stronger question is to ask for an O(m log ∆) algorithm.

REFERENCES

[1] R. Cole and J. Hopcroft, On edge coloring bipartite graphs, SIAM J. Comput., 11 (1982),
pp. 540–546.

[2] J. Csima and L. Lovász, A matching algorithm for regular bipartite graphs, Discrete Appl.
Math., 35 (1992), pp. 197–203.

[3] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput., 5 (1976), pp. 691–703.

[4] H. N. Gabow, Using Euler partitions to edge color bipartite multigraphs, Internat. J. Comput.
Inform. Sci., 5 (1976), pp. 345–355.

[5] H. N. Gabow and O. Kariv, Algorithms for edge coloring bipartite graphs, in Conference
Record of the Tenth Annual ACM Symposium on Theory of Computing, 10th STOC,
San Diego, CA, May 1–3, 1978, Association for Computing Machinery, New York, 1978,
pp. 184–192.

[6] H. N. Gabow and O. Kariv, Algorithms for edge coloring bipartite graphs and multigraphs,
SIAM J. Comput., 11 (1982), pp. 117–129.

[7] I. G. Holyer, The NP-completeness of edge-colouring, SIAM J. Comput., 10 (1981), pp. 718–
720.

[8] J. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs,
SIAM J. Comput., 2 (1973), pp. 225–231.

[9] D. König, Graphok és alkalmazásuk a determinánsok és a halmazok elméletére, Mathematikai

és Természettudományi Értesitö, 34 (1916), pp. 104–119 (in Hungarian); Über Graphen
und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann., 77 (1916),
pp. 453–465 (in German).

[10] A. Schrijver, On the number of edge-colourings of regular bipartite graphs, Discrete Math.,
38 (1982), pp. 297–301.

ROW-MAJOR SORTING ON MESHES∗

JOP F. SIBEYN†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 847–863

Abstract. In all recent near-optimal sorting algorithms for meshes, the packets are sorted with
respect to some snake-like indexing. In this paper we present deterministic algorithms for sorting
with respect to the more natural row-major indexing.

For 1-1 sorting on an n× n mesh, we give an algorithm that runs in 2 · n+ o(n) steps, matching
the distance bound, with maximal queue size five. It is considerably simpler than earlier algorithms.
Another algorithm performs k-k sorting in k · n/2 + o(k · n) steps, matching the bisection bound.

Furthermore, we present uniaxial algorithms for row-major sorting. We show that 1-1 sorting
can be performed in 2 1

2
· n + o(n) steps. Alternatively, this problem is solved with maximal queue

size five in 4 1
3
· n steps, without any additional terms.

Key words. parallel computation, meshes, sorting, row-major indexing, uniaxial routing

AMS subject classification. 68Q22

PII. S009753979427011X

1. Introduction. Various models for parallel machines have been considered.
One of the best-studied machines with a fixed interconnection network is the mesh.
In this model the processing units (PUs) form an array of size n×n and are connected
by a two-dimensional grid of communication links.

Problems. The problems concerning the exchange of packets among the PUs are
called communication problems. The packets must be sent to their destinations such
that at most one packet traverses any wire during a single step. Quality measures are
run time, which is the maximum number of steps T a packet may need to reach its
destination, and queue size Q, the maximum number of packets any PU may have to
store.

Routing is the basic communication problem. In this problem the packets have
a known destination. The routing problem in which every PU is the source and
destination of k packets is called the k-k routing problem. 1-1 routing is commonly
known as permutation routing.

Sorting is, next to routing, one of the most considered communication problems.
Several variants of the problem have been studied. In the 1-1 sorting problem, each
PU initially holds a single packet, where each packet contains a key drawn from a
totally ordered set. The packets have to be rearranged such that the packet with the
key of rank i is moved to the PU with index i for all i. In the k-k sorting problem,
each PU is the source and destination of k packets.

Scattering is a weak variant of sorting: the packets should be rearranged such
that as few as possible packets with the same key stand in the same column. It is a
subroutine of many deterministic algorithms for other communication problems, and
often their queue size linearly depends on the quality of the scattering algorithm.
Scattering can be performed by sorting the packets in row-major order.

∗Received by the editor June 22, 1994; accepted for publication (in revised form) January 21,
1997; published electronically September 22, 1998.

http://www.siam.org/journals/sicomp/28-3/27011.html
†Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany (jopsi@mpi-

sb.mpg.de, http://www.mpi-sb.mpg.de/∼jopsi).

847

848 JOP F. SIBEYN

Table 1
Run times for k-k sorting in row-major order. For large n, the lower-order terms are omitted.

Uniaxial Biaxial
k All n Large n Large n

1 4
1/3 · n 2

1/2 · n 2 · n
2 5

1/4 · n 3 · n 2
1/2 · n

k (7/4 · k + 6) · n k · n k/2 · n

Models and indexings. The model in which the PUs can communicate with
all their neighbors at the same time, sending and receiving up to four packets in a
single step, is called the MIMD model. Alternatively the PUs may send only in a
specific direction during any step. This is called the SIMD model. In a half-MIMD
all PUs can either send and receive packets along the horizontal or along the vertical
connections. Algorithms running on a half-MIMD are called uniaxial. Algorithms for
the MIMD will be called biaxial.

If MIMD algorithms are directly run on an SIMD, they are slowed down by a factor
of four. Half-MIMD algorithms are slowed down by a factor of two only. Because
in many cases half-MIMD algorithms are hardly slower than MIMD algorithms, it
may be advantageous to design half-MIMD algorithms. Another feature is that on an
MIMD two of these algorithms can be perfectly overlapped. This is a basic observation
underlying many algorithms involving some kind of “coloring” [12, 10, 21, 6].

Several recent sorting algorithms [2, 11, 8] were designed for (blocked) snake-like
row-major indexings. However, in many cases it is desirable to have the packets in the
more natural row-major or column-major order. Furthermore, sorting in snake-like
order is unsuitable for scattering.

In the “one-packet” model considered by Schnorr and Shamir [18], the best-known
upper bound for row-major sorting is higher than for sorting in snake-like row-major
order. In our model a PU may hold a constant number of packets and packets may be
copied. The results of this paper demonstrate that in this model, sorting in row-major
order is not substantially harder than sorting in snake-like order.

Results. This paper gives numerous new results for row-major sorting, summa-
rized in Table 1. The queue sizes for 1-1 and 2-2 sorting range between four and nine,
and in the k-k sorting from k to k + 2.

Theoretically the results for large n are the most appealing. So far, the fastest
biaxial row-major sorting algorithm has T = 21

4 · n + o(n) and Q = O(1). It was
recently designed by Krizanc and Narayanan [9]. However, this algorithm works
only for the subproblem that all the keys are 0 or 1 (though some extension seems
possible). The first near-optimal sorting algorithm,1 T = 2 · n+ o(n), was presented
by Kaklamanis and Krizanc [2]. The algorithm is randomized and sorts the packets
in blocked snake-like row-major order. Kaufmann, Sibeyn, and Suel [8] came up with
a deterministic version. These algorithms are considerably more involved than the
algorithm of this paper, and have queue sizes around 20. The best uniaxial row-major
sorting algorithm so far appears to be a modification of the algorithm of Schnorr and
Shamir [18]. It takes 4·n+o(n) steps. The first near-optimal algorithm for k-k sorting
was discovered by Kaufmann and Sibeyn [7]. Then in [11] by Kunde and slightly later
also in [8], deterministic versions of this randomized algorithm were described. All

1An algorithm is called near-optimal if its time consumption equals a lower-bound plus lower-
order terms.

ROW-MAJOR SORTING ON MESHES 849

these algorithms use blocked snake-like row-major indexings. In this paper we present
the first near-optimal algorithm for k-k sorting in row-major order.

Most current communication algorithms strive for T = α · n + o(n), with α as
small as possible. This completely neglects the fact that actual meshes tend to be
of fairly moderate sizes, for which the o(n) often dominates. In this paper we also
aim for algorithms with a routing time without hidden terms. A sorting time that
can be expressed as T ≤ α · n for all n also has theoretical relevance in recursive or
divide-and-conquer algorithms, where the effective size of the network decreases, and
this α may be decisive for the overall performance [21].

The remainder of the paper is organized as follows. In section 3 we give the
algorithms for uniaxial row-major sorting for all n. Then we introduce in section 4
the “desnakification” of the k-k sorting algorithm for large n. This powerful technique
is then applied in section 5 and culminates in the near-optimal 1-1 sorting algorithm.

2. Preliminaries.

Basics of routing and sorting. We speak of edge contention when several
packets residing in a PU have to be routed over the same connection. Contentions
are resolved using a priority scheme. We apply the farthest-first strategy, which gives
priority to the packet that has to go farthest. For one-dimensional sorting we apply a
suitable variant of an odd-even transposition sort. For the analysis of the routing on
higher-dimensional meshes we need the “routing lemma” for routing a distribution of
packets on a one-dimensional mesh [15, 7], and the corresponding result on sorting.
Define for a given distribution of packets over the PUs hright(i, j) = #{packets passing
from left to right through both Pi and Pj}, where Pi denotes the PU with index i.
Define hleft(j, i) analogously.

Lemma 1. Routing a distribution of packets on a linear array with n PUs, using
the farthest-first strategy, takes maxi<j{max{hright(i, j), hleft(j, i)}+ j − i− 1} steps.
This bound is sharp. When the packets are evenly distributed, then the same bound
can be achieved for sorting.

Because of the distance a packet may have to go, 2 · n− 2 steps is a lower bound
for any general routing or sorting problem on the two-dimensional mesh. We call this
the distance bound. Because of the number of packets that may have to pass from one
half of the mesh into the other half over only n connections, k · n/2 steps is a lower
bound for any k-k routing or sorting problem. This is called the bisection bound.

A 0-1 distribution is a distribution of packets that all have key 0 or 1. In a 0-1
distribution a row is called dirty if it contains both zeros and ones. In our analysis we
frequently use the “0-1 lemma” (see [13]), which states that under light conditions a
sorting algorithm is correct if it sorts any 0-1 distribution.

Indexings. The PU at position (i, j) is denoted Pi,j . Here 0 ≤ i, j ≤ n− 1, and
position (0, 0) lies in the upper-left corner. In the row-major indexing, Pi,j has index
i · n + j; in the column-major indexing, it has index i + j · n; and in the reversed
row-major indexing, it has index i ·n+ (n− j). In the snake-like row-major indexing,
the indexing of the odd rows is reversed. For a given indexing the PU with index i,
0 ≤ i ≤ n2 − 1, is denoted Pi. A row i is said to be sorted rightward if the packets
stand in increasing order from Pi,0 to Pi,n−1. Analogously, rows can be sorted leftward
and columns downward or upward.

For k-k sorting there are several natural ways to index the k · n2 destination
locations. In a layered indexing, location r in Pi has index r · n2 + i. Our default is a
nonlayered indexing, under which location r in Pi, 0 ≤ r < k, 0 ≤ i < n2, has index

850 JOP F. SIBEYN

0 16 1 17 2 18 3 19

4 20 5 21 6 22 7 23

8 24 9 25 10 26 11 27

12 28 13 29 14 30 15 31

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Fig. 1. Row-major indexings, for k = 2, n = 4: layered, nonlayered, and semilayered, respectively.

row-bundle

� m submeshes -

� m sections -

n

s

s

1s

s

Fig. 2. Subdivisions for the case s = n/6, m = 6.

k ·i+r. A nonlayered row-major indexing is an indexing as if we have an n×k ·n mesh
with row-major indexing. In our row-major sorting we use a semilayered indexing,
under which location Pi,j has index (i+ r) · n+ j. This is as if we have an n× k · n
mesh with row-major indexing. These indexings are illustrated in Figure 1.

Definition 1. An indexing is continuous if for all i, 0 ≤ i ≤ n−2, Pi is adjacent
to Pi+1 in the mesh. An indexing is piecewise continuous with parameter s if for every
i, 0 ≤ i < n2, there is an interval Ii ⊂ [0, n2 − 1], with i ∈ Ii and #Ii ≥ s, such that
Pj is adjacent to Pj+1 for all j, j + 1 ∈ Ii.

The row-major indexing is piecewise continuous with parameter n, but not con-
tinuous. The snake-like row-major indexing is continuous. One of the achievements
of this paper is to show that for near-optimal sorting a piecewise-continuous indexing
suffices.

Subdivisions. The mesh is divided into regular s× s submeshes. Let m = n/s.
The submeshes Bi,j , 0 ≤ i, j ≤ m−1, are indexed as the PUs starting with (0, 0) in the
upper-left corner. Row-bundle i consists of the PUs in ∪m−1

j=0 Bi,j . Column-bundle j

consists of ∪m−1
i=0 Bi,j . Section l, Sl, 0 ≤ l ≤ m ·n−1, consists of the PUs with index in

{s · l, . . . , s · (l+ 1)− 1}. Under a row-major indexing the sections regularly subdivide
the rows and the submeshes. All subdivisions are depicted in Figure 2.

Definition 2. An m-way merge is a procedure that turns m2 sorted submeshes
into a sorted n× n mesh.

3. Uniaxial sorting for small n. This section is practically the most impor-
tant. We present a variety of sorting algorithms that have no additional terms in their
time consumptions.

3.1. Powers of two.
Lemma 2. On 2× 2 meshes, uniaxial sorting in arbitrary order takes three steps,

with queue size two.
Proof. Perform gossiping (all-to-all routing) along rows and then along columns.

This takes three steps. The PUs that finally should hold the packets with rank 0 and

ROW-MAJOR SORTING ON MESHES 851

1 need to conserve only the two smallest packets, the other PUs only the two largest
packets.

3.1.1. Larger n. For n = 2l, l > 1, we use an optimized merge-sort algorithm
combining several recent techniques and adding some new ideas. The first merge-
sort algorithm with the optimal time order was given by Thompson and Kung [19].
Initially we have four sorted n/2×n/2 submeshes: those in the left half in row-major
order; those in the right half in reversed row-major order. Then we perform the
following.

Algorithm merge.
1. In the left half, shift the packets n/4 steps to the right. In the right half, shift
the packets n/4 steps to the left.
2. In the central n/2 columns, sort the packets downward.
3. Copy the smallest packet in every Pi,j , 0 < i ≤ n− 1, n/4 ≤ j ≤ 3/4 · n− 1, to
Pi−1,j . Copy the largest packet in every Pi,j , 0 ≤ i < n− 1, n/4 ≤ j ≤ 3/4 · n− 1,
to Pi+1,j .
4. In every row, sort the section of the row that lies in the central n/2 columns. If
this submesh is going to be the right half of a larger mesh in the next merge, then
the sorting is leftward, otherwise rightward.
5. Throw away the packets in Pi,j with j ∈ [n/4, 3/8 · n− 1]∪ [5/8 · n, 3/4 · n− 1].
For any Pi,j , with 3/8 ·n ≤ j ≤ 5/8 ·n− 1, send the packet with rank r, 0 ≤ r ≤ 3,
to Pi,4·(j−3/8·n)+r.

We analyze the routing time and the correctness of merge. Step 1 takes n/4 steps,
step 2 can be performed in n steps, and step 3 takes a single step. This step can easily
be made to coincide with the last step of the sorting. Its purpose is expressed by the
following lemma.

Lemma 3. After step 2 all packets that actually should be in a row can be found
either in the row itself, or among the smallest packets of the row below, or among the
largest packets of the row above.

Proof. First we consider a modified problem. Suppose that initially four n/2×n/2
submeshes stand above each other in an 2 · n × n/2 mesh. Two of these submeshes
are sorted in row-major order, the other two in reversed row-major order. Consider a
0-1 distribution. It is easy to check that after sorting the columns of this mesh, there
are at most two dirty rows. These dirty rows can be resolved as follows: copy every
row to the row above and the row below; sort the rows; spread the packets from the
central n/3 columns. In the real problem every two rows of the high and narrow mesh
are compressed in one row in which every PU in the center holds two packets.

Lemma 4. Step 4 can be performed in 3/4 · n steps.
Proof. For the number of required steps we analyze the worst possible 0-1 distri-

butions after step 2. These are of the form given on the left in Figure 3. After step 3
this gives a distribution as on the right in Figure 3. According to Lemma 1, sorting
this row takes 3/4 · n steps.

Finally, step 5 takes 3/8 · n steps.

Lemma 5. merge takes at most 2
3/8 · n steps.

3.1.2. Improvement by overlapping. In merge, steps 4 and 5 involve routing
along the same axis. So, we might overlap these steps, without impairing the uni-
axiality of the algorithm. The central observation is that the packets to throw away
are known well before the end of step 4. After throwing them away, we can proceed
with a combination of odd-even transposition sort and routing packets outward: in

852 JOP F. SIBEYN

1
1

1 0
1 0

0
0

�
n/2

-

�n/4-

row i+ 1

row i

row i− 1

1
1 0
1 0

0

�
n/2

-

�n/4-

row i

Fig. 3. Left: worst case distribution after step 2; right: situation after step 3.

the same step that we are sure which packets to throw away, we also know the largest
surviving packet. One step later we know the second largest, and so on. Without
further comparison these packets can be routed to their destinations, reducing the
maximal distance the packets may have to travel after the end of the sorting.

Lemma 6. In step 4 all packets that will be thrown away have reached their
destination region in 5/8 · n steps.

Proof. We consider the packets that will be thrown away on the high side in some
row i. Assume that the sorting is rightward. If there are more than n/2 candidates
(because a critical key occurs more than once), then some of these packets stand more
to the right than necessary. So, let there be precisely n/2 packets with key 1, while
all the others have key 0. According to Lemma 1 we must analyze how far the ones
can stand to the left. Notice that a row that holds both zeros and ones is a dirty row.
There are at most two dirty rows. This gives the following worst case:

...

...

...

...

...

...

.

1 0
1 0

0
0

�
n/2

-

�n/8-

row i .

It takes n/8 +n/2 steps until all ones have drifted into the region on the right.
After t = 5/8 · n we would like to discard in every row i the packets that do not

belong in it. Suppose that the sorting is rightward. P = Pi,5/8·n−1 is the rightmost
PU that preserves its packets, and P ′ = Pi,5/8·n is the leftmost PU of the section in
which the the largest packets are thrown away. If the transposition sort works without
making copies, the packets continue to move back and forth. In that case Lemma 6
guarantees only that all packets to throw away have reached their destination regions,
not that they actually reside there! Thus, P ′ has to operate carefully, to prevent it
throwing away the wrong packets. A solution is to let P ′ throw away its largest packet
after step t−1. Then in step t it keeps a copy of its smallest packet p′, which it sends
to P . After step t P ′ throws away all its packets, except for p when it has a smaller
key than p′.

Notice that the smaller of p and p′, p′ say, is the largest of all surviving packets:
the destination of p′ is in Pi,n−1. Thus, p′ can be sent toward its destination, while the
sorting in the central part of the row continues. It is easy to check that the second,
third, . . . , largest packet ultimately arrives in P in step t + 1, t + 2, . . . (consider a
worst case distribution in which the largest surviving packets reside as far to the left
as possible). So, P continues to send its largest packets to the right without receiving
packets from there. It sends its smallest packets leftward as long as it holds more than
one packet. After this its left neighbor takes over its role of “frontier” PU. After the
sorting has finished, all packets are routed as in step 5 of merge-m. This concludes
our description of the modified steps 4 and 5. We summarize the main points:

4′. For all i, 0 ≤ i < n, until step 5/8 ·n, sort the packets in the central n/2 PUs of

ROW-MAJOR SORTING ON MESHES 853

row i. Throw away the packets that stand outside the central n/4 columns. A PU
that holds more than one packet continues to sort. A PU in the left (right) half
that holds only one packet sends this packet leftward (rightward).

5′. Route the packets in row i to their destinations.

Step 4′ takes as long as before: the sorting is influenced in no way by the action
going on in the periphery. On the other hand, step 5′ is substantially cheaper than
step 5.

Lemma 7. Step 5′ can be performed in n/4 steps.

Proof. Suppose that the sorting is rightward. In step 4′, the packets that do not
belong in some row i are thrown away after 5/8 · n steps. The remaining packets
stand concentrated in the central n/4 PUs. From now on the packets spread out of
this region without delay until the end of the sorting after 3/4 · n steps. Then the
situation is as follows (omitting factors n):

row i
after

step 4′

0 1
4

5
12

7
12

3
4

1

.

Because the packets are properly arranged by now, none of them still has to travel
farther than n/4 steps.

Combining Lemma 7 with the earlier results gives the following.

Lemma 8. The improved version of merge takes at most 2
1/4·n steps. The queue

size is at most four.

3.1.3. Sorting. Starting with sorted 2×2 meshes, merge can be used repeatedly
for sorting on an n×n mesh. Call this algorithm sort. We have the following result.

Theorem 1. For all n = 2l, sort performs row-major sorting on an n×n mesh

in 4
1/2 · n steps. sort is uniaxial, and the queue size is four.

Proof. Summing the number of steps required for all merges, we find that the

sorting takes less than 3 + 2
1/4 · (4 + 8 + · · ·+ n) < 21/4 · n ·∑i=0 2−i steps.

3.2. Powers of two, three, We derived an efficient 1-1 sorting algorithm
for n = 2l. However, in practice, processor networks may not have different side
lengths. Furthermore, some algorithms in which sorting is used as a subroutine, e.g.,
the algorithms of [21], specifically require that n = ml for some m 6= 2. In principle
we could use sort by rounding n up to the nearest power of 2. But this might give
sorting times that are almost twice as large as necessary. In this section we present
m-way merge algorithms, which perform well for m ≤ 5. By combining them, we can
efficiently sort n× n meshes for arbitrary n.

m × m meshes. The following algorithm efficiently sorts an m × m mesh in
row-major order:

1. In all rows i, concentrate the packets in Pi,bm/2c.
2. Sort the packets in column bm/2c downwards.

3. In all rows i, spread the packets over the row.

Lemma 9. Uniaxial sorting on m × m meshes can be performed in m2/2 + m
steps, for m even, and m · (m+ 1)/2 steps, for m odd. The queue size is m.

Proof. Steps 1, 2, and 3 take bm/2c, m · bm/2c, and bm/2c steps, resp-
ectively.

854 JOP F. SIBEYN

Table 2
Run times and queue sizes of uniaxial row-major sorting algorithms for n = 2 ·ml.

m 2 3 4 5 6
Q 2 5 6 9 10

T 5
1/2 · n 4

1/3 · n 4
1/2 · n 4.61 · n 4.65 · n

-
-
-
-
-

-
-
-
-
-

�
�
-
-
-

�
�
�
�
�

�
�
�
�
�

Fig. 4. For merging 25 sorted submeshes, the rightward (leftward) arrows indicate submeshes
that are sorted in (reversed) row-major order.

Larger n. For performing an m-way merge for m ≥ 3, we can proceed as in
merge: wipe all submeshes together, sort the columns, etc. However, for algorithms
of this type the number of dirty rows equals dm2/2e, which leads to long queues, and
rapidly growing time to resolve them with increasing m. It is better to first sort the
row-bundles, then to merge the sorted row-bundles. In this way the number of dirty
rows is limited to dm/2e. For m ≥ 3 this approach is faster. Proceeding along these
lines, we get the following theorem.

Theorem 2. For all n = 2 ·ml, uniaxial row-major sorting on n×n meshes can
be performed with the time consumptions and queue sizes given in Table 2.

Proof. For numbers of the form 2 · ml, first the 2 × 2 submeshes are sorted,
then we repeatedly perform an m-way merge. At the start of an m-way merge the
n/m × n/m submeshes are appropriately sorted. For even m, in every row-bundle
m/2 submeshes are sorted in row-major order and m/2 in reversed row-major order.
For odd m, dm/2e submeshes are sorted in row-major order in the highest dm/2e
row-bundles, and bm/2c in the lowest bm/2c row-bundles. The other submeshes are
sorted in reversed row-major order. See Figure 4 for an example. Then we sort the
row-bundles and subsequently the column-bundles. The complete algorithm and its
analysis can be found in [20]. Again a reduction of the routing time is achieved by
overlapping the phases, as was done in section 3.1.2.

Sorting on n×n meshes for arbitrary n can be performed by approximating n by
the closest number of the form 2l2 · 3l3 · 5l5 , and then using the basic two-, three-, and
five-way merges in the optimal order, performing the most efficient ones in the final
merges, when the submeshes are large. In this way we get the following result.

Theorem 3. Uniaxial row-major sorting on n × n meshes can be performed in
less than 4.75 · n steps for all n. The queue size is at most nine.

Proof. The result follows by estimating the maximum factor between n and the
smallest n′ > n that can be written as n′ = 2l2 · 3l3 · 5l5 · 7l7 ≥ n. Here l7 ≤ 1, and if
l2 = 0, then l5 + l7 ≤ 1. The sorting is performed in the time required for an n′ × n′
mesh. Details are given in [20].

3.3. k-k sorting. We present an algorithm for uniaxial k-k sorting in row-major
order. Asymptotically optimal performance is achieved by the uniaxial version of the
algorithm of section 4, which requires max{4·n, k·n}+O((k·n)5/6). But the algorithm
presented here is far better for small n. We assume that n = 2l.

Four n/2× n/2 submeshes are sorted in semilayered row-major order on the left,

ROW-MAJOR SORTING ON MESHES 855

Table 3
Run times and queue sizes for uniaxial k-k sorting in row-major order.

k T Q

2 5
1/4 · n 4

3 7 · n 5

4 8
2/3 · n 6

k (7/4 · k + 6) · n k + 2

and semilayered reversed row-major order on the right. The merging is almost the
same as merge of section 3.1.

Algorithm kkmerge.
1. Pi,j , 0 ≤ i, j < n, sends its packets with rank r, 0 ≤ r < k, such that odd(k ·
i+ r + j), to Pi,(j+n/2) mod n.
2. In all columns, sort the packets downward.
3. In every Pi,j , 0 < i ≤ n− 1, 0 ≤ j ≤ n− 1, copy the smallest packet to Pi−1,j .
In every Pi,j , 0 ≤ i < n− 1, 0 ≤ j ≤ n− 1, copy the largest packet to Pi+1,j .
4. Sort the rows. If this submesh is going to be the left half of a larger mesh in
the next merge, then the sorting is rightward, otherwise leftward.
5. In every row, throw away the n packets with the smallest and the n packets
with the largest indices. If this is the final merge step, then spread the remaining
k · n packets that stand in every row. Else route the packets to the destinations as
given by step 1 of the next merge, and continue with step 2.

Analyzing the algorithm step by step, and partially overlapping step 4 and step 5, we
obtain (see [20]) the following lemma.

Lemma 10. An intermediate application of kkmerge can be performed in (5 ·
k2 + 14 · k+ 4−min{k2, 2 · k+ 8})/(4 · k+ 8) · n and the final application in (2 · k2 +
12 · k + 4)/(4 · k + 8) · n steps.

Let kksort1 be the k-k sorting algorithm based on kkmerge.
Theorem 4. For all k ≥ 2, kksort1 performs uniaxial k-k sorting in row-major

order on n× n meshes in (7 · k2 + 26 · k + 8−min{k2, 2 · k + 8})/(4 · k + 8) · n steps,
with queue size k + 2.

Proof. We start with sorted PUs. It takes k/2 steps to obtain the situation at
the beginning of step 2 of the merge in 2× 2 meshes. Thus, the general estimate for
k-k sorting on n× n meshes is k/2 + (5 · k2 + 14 · k+ 4−min{k2, 4 · k+ 12})/(4 · k+
8) · (2 + 4 + · · ·+ n/2) + (2 · k2 + 12 · k + 4)/(4 · k + 8) · n.

From Theorem 4 we computed the results in Table 3. For small n they are
extremely competitive, even though asymptotically uniaxial k-k sorting can be per-
formed almost twice as fast. Applying kkmerge for k = 1 gives a good alternative
for n = 2l: T = 5 · n and Q = 2.

3.4. Minimizing the queue sizes. It may be desirable to have minimal queue
size even at the expense of slightly more routing steps. For example, if in an algorithm,
which has Q = q for some structural reason, some local sorting operations are used as
subroutines, then we do not want to take Q larger just because of this sorting (see [5]).
In this section we give a general idea for minimizing the queue sizes of the presented
algorithms.

General idea. The core of all presented algorithms consists of steps of the fol-
lowing type:

1. Rearrange the packets within the rows.

856 JOP F. SIBEYN

2. Sort (sections of) the columns.
3. Copy the q smallest packets of every PU to its upper neighbor, and the q largest
to its lower neighbor.
4. Sort sections of width s of the rows. Throw away the q · s smallest and largest
packets.

The queue size depends on the degree of concentration c after step 1, and the number
q: Q = c+ 2 · q. The degree of concentration is an essential feature of the algorithm
and was chosen carefully to minimize its run time. q equals the number of dirty rows
minus one. However, there is no need to clean away all dirt in a single operation.
Repeating the following steps instead of steps 3 and 4, we can obtain Q = c. An
additional advantage is that no packets are copied anymore. We assume that the
sorting is rightward.

3′. In every section, spread the s/2 smallest packets over the leftmost s/2 PUs,
and the s/2 largest packets over the s/2 rightmost PUs. Call these packets active.
Compensate for the concentration in the middle by pushing the packets that follow
(precede) the actives in rank rightward (leftward). Shift the actives in the right
half one row down.
4′. Sort the actives in every section. Shift the rightmost s/2 actives one row up.
Sort the sections.

The number of iterations of steps 3′ and 4′ follows from the distribution that arises
after step 2. Before the first application the packets in every row should be sorted.
As the algorithm is given we get Q = c+ 1 in the right halves of the sections in row 0.
In order to get Q = c, we should shift one nonactive packet up from every PU in the
right half of row 0 at the end of step 3′. These are returned in step 4′.

Lemma 11. One iteration of steps 3′ and 4′ on a section of length s in which
every PU holds c packets takes 3/2 · s− s/c+ 3 steps.

Proof. The spreading in step 3′ takes s/2− s/(2 · c) steps. For sorting the actives
it is essential that the packets in each half are already sorted. Therefore it can be
performed in s/2 + 1 steps with an ordinary odd-even transposition sort without
making copies (if this is desirable), and with one step fewer if copying is allowed.
Sorting the sections takes as much as the spreading: no packet has to travel more
than s/2− s/(2 · c), and no connection is heavily loaded.

k-k sorting. For the k-k merge, it can be shown that steps 3′ and 4′ need to be
performed only once. This means that at little extra cost, the queue size of the k-k
sorting algorithm can be reduced to k.

1-1 sorting. In our machine model a packet that only passes a PU is not inserted
into its queue but transferred directly from its in-buffer to its out-buffer. In addition, it
is possible to compare a buffered packet with a queued one, and to exchange them. In

such a model the given algorithm can be applied for 1-1 sorting with T = 5
1/2·n+log n

and Q = 1. Alternatively, the algorithm can be applied for sorting in the one-
packet model in which every PU holds one packet at all times and the connections act
as comparators. The algorithm of Schnorr and Shamir [18] requires approximately
4 · n+ 20 · n2/3 steps for sorting in row-major order. For all mesh sizes smaller than
1000× 1000, our result gives a significant improvement over this.

Lemma 12. For k = 1, the queue size of mergekk can be reduced to 1. An

intermediate application takes 3
1/4 · n+ 1, the final application 2

1/4 · n+ 1 steps.
Proof. Because the packets within the submeshes are already sorted, step 2 takes

only 3/4 · n steps. Sorting the sections takes n − 1, steps 3′ 1, and Step 4′, without

ROW-MAJOR SORTING ON MESHES 857

the final sorting, n/2 + 1 steps. In the final merge no more steps are needed. In an
intermediate merge packets still may travel a distance n.

Theorem 5. kksort1 performs uniaxial 1-1 sorting in row-major order on n×n
meshes in 5

1/2 · n+ log n steps with queue size 1.
Applying a technique called “vibration” [1, 14], the same bound can be achieved

for “hot-potato” sorting (a paradigm in which no queuing is allowed). The hot-potato
routing algorithms in [3, 4] apply such a sorting as a subroutine.

4. k-k sorting for large n. Earlier algorithms for k-k sorting [7, 11, 8] work
according to the following basic scheme:

1. Route all packets to random destinations.
2. Estimate the ranks of the packets by local comparisons.
3. Route all packets to their preliminary destinations.
4. Rearrange the packets locally to bring them to their final destinations.
In the version of [8], the mesh is divided into s×s submeshes with s = n2/3/k1/3,

and the randomization of step 1 is replaced by sorting the packets in the submeshes
and unshuffling them regularly over the submeshes. Step 2 is performed by sorting
within the submeshes. Step 4 is performed by sorting pairs of adjacent submeshes.
On an MIMD the total sorting time is k · n/2 + O(k2/3 · n2/3). As the algorithm is
given, step 4 requires that the indexing is continuous. In this section we introduce a
novel technique, desnakification, to handle the final local sorting such that piecewise-
continuous indexings are allowed.

The continuity of the indexing is required for sorting together pairs of submeshes
with consecutive indices. Sorting such pairs of submeshes is necessary because the
estimate of the rank in step 2 is accurate only up to one submesh. So, it may happen
that after step 3, a packet with destination in submesh Bi actually resides in the
preceding submesh Bi−1 or the succeeding submesh Bi+1. However, this is easy to
overcome: send for all packets p, of which the destination submesh is not uniquely
determined, a copy to both submeshes in which its destination may lie. Now it is
sufficient to sort within the submeshes. If for Bi the numbers cl of packets that
actually belong in Bi−1 and ch of packets that belong in Bi+1 are exactly known,
then the smallest cl and largest ch packets in Bi are thrown away, and the remaining
packets are redistributed within Bi. All this is very similar to the way dirty rows are
resolved in the algorithms of section 3. The only possible problem is that routing the
copies might slow down the algorithm.

We work the desnakification out in detail for biaxial sorting. In order to bound
the number of copies, we must take the submeshes larger than in [8]. The optimal
choice is s = n5/6/k1/6 and m = n/s = k1/6 · n1/6. We suppose that the indexing is
piecewise continuous with parameter s. For the sake of a simple exposition we assume
that the mesh is divided into sections of length s, each of which is fully contained in
a single submesh. The algorithm proceeds as follows.

Algorithm kksort2.
1. In each submesh, sort the packets. The intermediate destination of a packet p
with rank r, 0 ≤ r < k · s2, lies in submesh r mod m2. If r mod (2 ·m2) < m2, then
color p white, else black.
2. In each submesh rearrange the white (black) packets such that those with in-
termediate destinations in column-bundle l (row-bundle l), 0 ≤ l < m, stand in the
columns (rows) [l · s/m, (l + 1) · s/m− 1] of the submesh.
3. From column-bundle j, 0 ≤ j < m, route the white packets with intermediate
destinations in column-bundle l, 0 ≤ l < m, as a block to the columns [j · s/m, (j+
1) · s/m− 1] of column-bundle l. Route the black packets analogously.

858 JOP F. SIBEYN

4. In each submesh rearrange the white (black) packets such that those with in-
termediate destinations in row-bundle l (column-bundle l), 0 ≤ l < m, stand in the
rows (columns) [l · s/m, (l + 1) · s/m− 1] of the submesh.

5. From row-bundle i, 0 ≤ i < m, route the white packets with intermediate
destinations in row-bundle l, 0 ≤ l < m, as a block to the rows [i·s/m, (i+1)·s/m−1]
of row-bundle l. Route the black packets analogously.

6. In each submesh, sort the packets. The preliminary destination of a packet
p with rank r, 0 ≤ r < k · s2, lies in section Sl, with l = br · m2/(s · k)c. If
b(r ·m2−m4)/(s ·k)c = l−1, then create a copy p′ of p with preliminary destination
in Sl−1. If b(r ·m2 +m4)/(s ·k)c = l+1, then create a copy p′ of p with preliminary
destination in Sl+1. If r is even, then color p (and p′) white, else black.

7, 8, 9, 10. Like steps 2, 3, 4, and 5, respectively, for the preliminary destinations.

11. Route the packets within the submeshes to the sections of their preliminary
destinations.

12. In each section, sort the packets.

13. In each section Sl, 0 ≤ l ≤ m · n − 1, throw away the m4 packets with the
smallest keys (except for S0), and the m4 packets with the largest keys (except for
Sm·n−1). Redistribute the remaining k · s packets within Sl.

If packets have the same key, then special care should be taken not to throw away
both copies of a packet, while keeping both copies of another packet. A solution is to
take the index of the PU where a packet started as an additional comparison criterion,
to assure that all packets have different keys. The algorithm can be made uniaxial by
leaving out the coloring, and applying only uniaxial local operations.

Theorem 6. Let s = n5/6/k1/6. kksort2 performs biaxial k-k sorting with
respect to a piecewise-continuous indexing with parameter s in max{4 · n, k · n/2} +
O(k · s) steps. The queue size is k + 2.

Proof. The following facts imply the correctness of kksort2. In step 6, the
estimate of the global rank of a packet p with rank r within its submesh, r ·m2, is
accurate up to m4. Hence, the index of the destination PU of p is accurate up to
m4/k. Thus after step 11, a (copy of a) packet resides in its destination section. After
step 11 there are m4 packets in Sl, 0 < l ≤ m ·n−1, that belong in Sl−1, because from
each of the m2 submeshes precisely m2 copies of packets with estimated destination
in Sl−1 are sent to Sl. Likewise there are m4 packets in Sl, 0 ≤ l < m · n − 1, that
belong in Sl+1.

For the time analysis, only the four main steps, steps 3, 5, 8, and 10, are of
importance. The other steps can be performed in O(k · s) = O(k5/6 · n5/6) steps.
Step 3 and step 5 are very regular. It is easy to check that no connection has to
transfer more than k · n/8 packets, and that packets travel less than n steps. At the
beginning of step 8, there are in every submesh exactly m3 packets and 2 ·m2 copies
of packets with destination in any section Sl, 0 < l < m · n − 1 (m2 copies for l = 0
or l = m · n − 1). Because the sections are fully contained in the submeshes, this
implies that every submesh holds m3 · n packets and 2 ·m2 · n copies of packets with
destination in any column-bundle. This means that step 7 can be performed such
that the PUs in the columns [l · s/m, (l + 2 · k/m) · s/m − 1] all hold k + 1 packets
and the PUs in all other columns hold exactly k packets. Clearly step 8 now takes
(1 + 2/m) · k · n/8 = k · n/8 + s/4. Performing step 9 appropriately, the same bound
can be shown for step 10.

A PU never holds more than k/2 packets and one copy of both colors, and thus
Q ≤ k + 2.

ROW-MAJOR SORTING ON MESHES 859

5. 1-1 sorting for large n. We start with a uni-axial algorithm for 1-1 sorting

in row-major order. It runs in 2
1/2 ·n+ o(n) steps. Asymptotically this is much faster

then the algorithms of section 3. This algorithm is obtained by combining our new
insight in merge sorting and the desnakification technique, with old knowledge about
sorting with splitters. In section 5.2 it is turned into a near-optimal biaxial algorithm.
Without loss of generality, we assume that all packets have different keys.

5.1. Uniaxial sorting. The mesh is divided into s × s submeshes. In the al-
gorithm of this section s = n5/6, and m = n/s = n1/6. We distinguish packets and
splitters. The splitters are copies of a small subset of the packets. They are broad-
cast and the packets estimate their ranks by comparison with the splitters. This
widely known idea (going back to work of Reischuck [16] and Reif and Valiant [17])
has been used for randomized [15, 7, 2] and deterministic [8] sorting on meshes. In
the k-k sorting algorithm of section 4 we do not need splitters because the packets
are fully distributed over the mesh, and thus reliable estimates of the ranks of the
packets can be obtained by local comparison among the packets themselves. In the
case of 1-1 sorting this does not lead to efficient algorithms. The splitters allow us
to spread the necessary information rapidly, while the packets are involved in more
useful operations.

Algorithm. First we give the algorithm for selecting and routing the splitters.
Algorithm splitter-route.

1. In every submesh, sort the packets. Copy the packets with ranks i ·m2, 0 ≤ i ≤
s2/m2 − 1. These are the splitters.
2. In every submesh Bi,j , 0 ≤ i, j < m, rearrange the splitters such that they
stand in the positions (i′, j′) of Bi,j , with i · s/m ≤ i′ < (i+ 1) · s/m and j · s/m ≤
j′ < (j + 1) · s/m.
3. Send the splitters along the rows. A splitter starting in position (i′, j′) of Bi,j
drops copies in the positions (i′, j′) of Bi,l, for all 0 ≤ l < m.
4. Send the splitters along the columns. A splitter starting in position (i′, j′) of
Bi,j drops copies in the positions (i′, j′) of Bl,j for all 0 ≤ l < m.

Lemma 13. splitter-route takes 2 ·n+O(s) steps to complete. No connection
has to transfer more than O(s) packets. Finally, each PU holds precisely one splitter,
and all splitters are available in every s× s submesh.

Proof. Step 1 and step 2 take O(s) steps, step 3 and step 4 take less than n steps.
The rearrangement is such that the splitters inBi,j stand in “subsubmesh” (i, j). After
the broadcast these splitters occupy the subsubmeshes (i, j) in all submeshes: the
splitters from different submeshes fit perfectly next to each other. This arrangement
also assures that during step 3 and step 4 a connection has to transfer at most m/2 ·
s/m = s/2 splitters.

When splitters and packets want to use the same connection, priority is given to
the splitters. By the lemma this delays the packets by at most O(s). For the packets
we perform a kind of m-way merge algorithm.

Algorithm 11sort.
1. In every submesh, sort the packets in row-major order.
2. In every submesh Bi,j , 0 ≤ i, j < m, shift the packets in row l, 0 ≤ l < s, to
row l of Bi,(j+l) mod (m/2), and copies to row l of Bi,(j+l) mod (m/2)+m/2.
3. In all columns, sort the packets downward.
4. In every submesh, determine for every packet its “rank,” the number r, 0 ≤
r ≤ s2, of splitters that are smaller. The preliminary destination of a packet p with

860 JOP F. SIBEYN

rank r lies in section Sl, with l = br ·m2/sc. If b(r ·m2−m4)/sc = l−1, then create
a copy p′ of p with preliminary destination in Sl−1. If b(r ·m2 +m4)/sc = l+1, then
create a copy p′ of p with preliminary destination in Sl+1. Discard the splitters
and the (copies of) packets that have preliminary destination in the other half of
the mesh.
5. In every submesh, sort the packets in column-major order on their preliminary
destination column-bundles.
6. In every row, route the packets to the first PUs in their preliminary destination
column-bundles that hold less than two packets.
7. In each submesh, sort the packets in row-major order on their preliminary des-
tination section.
8. In every column, route the packets to the sections of their preliminary destina-
tions.
9. In every section, sort the packets.

10. In every section Sl, 0 < l ≤ m · n − 1, throw away the m4 packets with the
smallest keys, and in each Sl, 0 ≤ l < m · n − 1, throw away the m4 packets with
the largest keys. Redistribute the remaining k · s packets within Sl.

After step 3, there are in a 0-1 distribution at most m2 dirty rows. For a general
distribution this means that a packet resides at most m2 − 1 rows away from its
destination row. These three steps take 2 ·n+O(s) steps, just as in splitter-route.
So, we may assume that after step 3 the splitters are available in the submeshes.
Step 4, . . . , step 10 resemble the final steps of kksort2 for k = 1.

Analysis. As the algorithm is given, it is not entirely correct. It is not true
that, as in kksort2, exactly m4 packets must be thrown away on both sides of every
section: 11sort orders the packets, but the sections do not necessarily hold exactly s
packets. Fortunately, the numbers of packets that must be thrown away in a section
on the low and high sides, respectively, can be determined.

Consider some section S and the sections from which it may receive packets after
step 3:

s s s s s

?
m2 − 1

6

?
m2 − 1

6

�
n/2

-

S .

(2·m2−1)·n/2 packets are stored in these sections, among which are the s packets with
destination in S. After step 8, these s packets all reside in S, but also some packets
that do not belong in S. How can we figure out which packets to keep, and which
packets to throw away? Suppose that S is the lth section, (m2−1)·n/s ≤ l < m2 ·n/s,
in the involved (whole) rows. Then finally S should hold the packets with ranks r,
l · s ≤ r < (l + 1) · s, from among the (2 ·m2 − 1) · n packets. Analogously to the
merge algorithms of section 3, we could copy all packets to S, sort them, and throw
away the smallest l · s packets and the largest (2 · m2 − 1) · n − (l + 1) · s packets.
This gives a correct but very inefficient algorithm. However, it is not necessary to
copy all packets to S. It is sufficient, if for each contributing section i, the counters,
the numbers underS,i and overS,i of packets that are not sent to S because they are
definitely too small or definitely too large, respectively, are known in S. The counters
can easily be determined in step 4. They can be transferred to S during the subsequent

ROW-MAJOR SORTING ON MESHES 861

steps, in parallel with the packets. As every section sends and receives only O(m3)
counters in total, they can be routed without causing substantial delay. The numbers
UnderS =

∑
i underS,i and OverS =

∑
i overS,i can be computed in step 9. Finally, in

step 10, the smallest l·s−UnderS packets and the largest (2·m2−1)·n−(l+1)·s−OverS
packets in S are thrown away, leaving exactly the s packets belonging in S. Now we
get the following result.

Theorem 7. Uniaxial 1-1 sorting in row-major order can be performed in 2
1/2 ·

n+O(n5/6) steps. The queue size is five.
Proof. Let s = n5/6. For the routing time and correctness, we only have to prove

that step 6 can be performed in n/2 +O(s) steps. All other steps can be performed
in O(s) steps.

The estimate of the rank of a packet, r ·m2, is accurate up to m4. This means
that for some section Sl, only a packet (or its copy) with actual destination in some
PU Pk, with k ∈ [l · s− 2 ·m4, (l+ 1) · s+ 2 ·m4], may get preliminary destination in
Sl. Hence, at most s2 + 4 ·m4 ·s packets have preliminary destination in any submesh
Bi,j . By the sorting in step 5, they are distributed almost optimally over the rows
of row-bundle i: at most s + O(m4) packets stand in any row. The m2 · s packets
with destination in Bi−1,j and Bi+1,j that may stand in row-bundle i have no serious
influence. This shows that step 6 can be performed as specified: no PU in Bi,j has to
receive more than two packets.

We consider the routing time of step 6. For a rightward-moving packet p, residing
in some PU Pi,j and moving to column l, with j, l < n/2, we are interested in the
number hl of packets within row i that go to some column k, with k ≥ l. By the
above analysis, we know that hl ≤ n/2− l+O((n/2− l)/s ·m4) ≤ n/2− l+O(s). p
is delayed at most hl times, and hence p finishes step 6 within n/2 +O(s) steps.

A PU may hold up to four (copies of) packets during step 4 and step 5. In addition
step 4 can be organized such that a PU holds at most one splitter or counter. Hence,
Q ≤ 5.

Other indexings. The algorithm is not suited for sorting with respect to any
piecewise-continuous indexing: it is essential that after step 3 the packets do not
have to make another long vertical move. However, the algorithm is correct for any
piecewise indexing in which the pieces are scrambled within the rows.

2-2 sorting. For uniaxial 2-2 sorting, only step 2 has to be modified: the packets
are not copied, but distributed evenly over the rows. For biaxial 2-2 sorting, we
essentially apply two orthogonal versions of 11sort. This gives the following theorem
(details are provided in [20]).

Theorem 8. Uniaxial 2-2 sorting in row-major order can be performed in 3 ·n+

O(n5/6) steps. The queue size is five. Biaxially it takes 2
1/2 · n+O(n5/6) steps, with

a queue size of nine.

5.2. Near-optimal biaxial sorting. Essentially 11sort consists of three main
routing phases: horizontal, vertical, and horizontal (step 2, step 3, and step 6). These
phases take n, n, and n/2 steps, respectively. The connections between the left and
right halves are not used anymore after step n/2. Thus it may happen that a packet
p1 that stands in column 0 after phase 1 is routed to a preliminary destination in
column n/2− 1 in phase 3. This is unnecessary: a copy of p1 stands in column n/2.
In a uniaxial algorithm this observation does not lead to a faster algorithm: there
may be a packet p2, after phase 1 in column n/2−1 and with preliminary destination
in column 0, which has to travel n/2 steps in phase 3. On the other hand, in a

862 JOP F. SIBEYN

biaxial algorithm, it is possible to coalesce the phases. Then p2 can start phase 3
after 3/2 · n+O(s) steps, and will reach its preliminary destination after 2 · n+O(s)
steps.

We work out these ideas. Only step 4 is changed: instead of discarding the packets
that have their destinations in the other half, we now perform the following.

In all columns j, 0 ≤ j < n/2, discard the (copies of) packets that have prelim-
inary destination in some column j′, with j′ ≥ 2 · j. For n/2 ≤ j < n, discard the
packets with j′ < 2 · j − n.

Notice that by this rule again exactly one of the copies of a packet reaches every
possible destination section. The steps are coalesced. Most importantly, this means
that step 3 begins in column j after n/2 + |n/2− j| steps, and step 6 after 3/2 · n+
|n/2− j| steps.

Theorem 9. Biaxial 1-1 sorting in row-major order can be performed in 2 · n+
O(n5/6) steps. The queue size is five.

Proof. A packet that starts step 6 after 2 ·n−d+O(s) steps has to travel at most
d steps to reach the column-bundle of its preliminary destination. We check this for
a packet p that is routed in step 2 to some column j, with j < n/2. p starts step 6
after 2 ·n− j+O(s) steps. In step 4 the preliminary destination of p is determined. p
survives only when it goes to some column l, with l < 2 · j: p has to travel at most j
steps. By a refinement of the analysis in the proof of Theorem 7, it can be shown that
p is not delayed more than 2 · j − l times. Hence, step 7 can start in all submeshes
after 2 · n+O(s) steps.

In fact this algorithm is still locally uniaxial: every PU uses only horizontal or
vertical connections.

6. Conclusion. We presented novel uniaxial and biaxial row-major algorithms
for sorting on two-dimensional meshes. A tremendous improvement is our near-
optimal algorithm for 1-1 sorting: it is much simpler than the earlier algorithm,
it is suited for more useful indexings, it is locally uniaxial, and it has queue size five.

Future research could address (1) the optimality of the uniaxial sorting algorithm
with run time 21

2 ·n+ o(n) steps; (2) a further development of the merge-sort idea to
obtain even faster sorting for all n.

REFERENCES

[1] U. Feige and P. Raghavan, Exact analysis of hot-potato routing, in Proc. 33rd Symp. on
Foundations of Computer Science, IEEE, 1992, pp. 553–562.

[2] C. Kaklamanis and D. Krizanc, Optimal sorting on mesh-connected processor arrays, in
Proc. 4th Symp. on Parallel Algorithms and Architectures, ACM, 1992, pp. 50–59.

[3] C. Kaklamanis, D. Krizanc, and S. Rao, Hot-potato routing on processor arrays, in Proc.
5th Symp. on Parallel Algorithms and Architectures, ACM, 1993, pp. 273–282,.

[4] M. Kaufmann, H. Lauer, and H. Schröder, Fast deterministic hot-potato routing on meshes,
in Proc. 5th International Symp. on Algorithms and Computation, Lecture Notes in Com-
put. Sci. 834, Springer-Verlag, New York, 1994, pp. 333–341.

[5] M. Kaufmann, U. Meyer, and J. F. Sibeyn, Towards practical permutation routing on
meshes, in Proc. 6th Symp. on Parallel and Distributed Processing, IEEE, 1994, pp. 664–
671; Computers and Artificial Intelligence, 16 (1997), pp. 107–140.

[6] M. Kaufmann, U. Meyer, and J. F. Sibeyn, Matrix transpose on meshes: theory and practice,
in Proc. 11th International Parallel Processing Symp., IEEE, 1997, pp. 315–319.

[7] M. Kaufmann and J. F. Sibeyn, Randomized multipacket routing and sorting on meshes,
Algorithmica, 17 (1997), pp. 224–244.

[8] M. Kaufmann, J. F. Sibeyn, and T. Suel, Derandomizing algorithms for routing and sorting
on meshes, in Proc. 5th Symp. on Discrete Algorithms, ACM-SIAM, 1994, pp. 669–679.

ROW-MAJOR SORTING ON MESHES 863

[9] D. Krizanc and L. Narayanan, Zero-one sorting on the mesh, Parallel Process. Lett., 5
(1995), pp. 149–155.

[10] M. Kunde, Concentrated regular data streams on grids: sorting and routing near to the bi-
section bound, in Proc. 31st Symp. on Foundations of Computer Science, IEEE, 1991, pp.
141–150.

[11] M. Kunde, Block gossiping on grids and tori: deterministic sorting and routing match the
bisection bound, in Proc. European Symp. on Algorithms, Lecture Notes in Comput. Sci.
726, Springer-Verlag, New York, 1993, pp. 272–283.

[12] T. Leighton, F. Makedon, and Y. Tollis, A 2n− 2 step algorithm for routing in an n× n
array with constant size queues, Algorithmica, 14 (1995), pp. 291–304.

[13] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays-Trees-Hypercubes,
Morgan-Kaufmann, San Mateo, CA, 1992.

[14] I. Newman and A. Schuster, Hot-potato worm routing via store-and-forward packet routing,
J. Parallel Distributed Comput., 30 (1995), pp. 76–84.

[15] S. Rajasekaran, k-k routing, k-k sorting, and cut-through routing on the mesh, J. Algorithms,
19 (1995), pp. 361–382.

[16] R. Reischuk, Probabilistic parallel algorithms for sorting and selection, SIAM J. Comput., 14
(1985), pp. 396–411.

[17] J. Reif and L. G. Valiant, A logarithmic time sort for linear size networks, J. ACM, 34
(1987), pp. 68–76.

[18] C. P. Schnorr and A. Shamir, An optimal sorting algorithm for mesh connected computers,
in Proc. 18th Symp. on Theory of Computing, ACM, 1986, pp. 255–263.

[19] C. D. Thompson and H. T. Kung, Sorting on a mesh-connected parallel computer, Comm.
ACM, 20 (1977), pp. 263–271.

[20] J. F. Sibeyn, Desnakification of Mesh Sorting Algorithms, Tech. Rep. MPI-I-94-102, Max-
Planck Institut für Informatik, Saarbrücken, Germany, 1994.

[21] J. F. Sibeyn, B. S. Chlebus, and M. Kaufmann, Deterministic permutation routing on
meshes, J. Algorithms, 22 (1997), pp. 111–141.

ROBUST PROXIMITY QUERIES: AN ILLUSTRATION OF
DEGREE-DRIVEN ALGORITHM DESIGN∗

GIUSEPPE LIOTTA† , FRANCO P. PREPARATA‡ , AND ROBERTO TAMASSIA‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 864–889

Abstract. In the context of methodologies intended to confer robustness to geometric algo-
rithms, we elaborate on the exact-computation paradigm and formalize the notion of degree of a
geometric algorithm as a worst-case quantification of the precision (number of bits) to which arith-
metic calculation have to be executed in order to guarantee topological correctness. We also propose
a formalism for the expeditious evaluation of algorithmic degree. As an application of this paradigm
and an illustration of our general approach where algorithm design is driven also by the degree,
we consider the important classical problem of proximity queries in two and three dimensions and
develop a new technique for the efficient and robust execution of such queries based on an implicit
representation of Voronoi diagrams. Our new technique offers both low degree and fast query time
and for 2D queries is optimal with respect to both cost measures of the paradigm, asymptotic number
of operations, and arithmetic degree.

Key words. geometric computing, robustness, arithmetic precision, proximity queries

AMS subject classifications. 68U05, 65Y25

PII. S0097539796305365

1. Introduction. The increasing demand for efficient and reliable geometric
software libraries in key applications such as computer graphics, geographic informa-
tion systems, and computer-aided manufacturing is stimulating a major renovation
in the field of computational geometry. The inadequacy of the traditional simplified
framework has become apparent, and it is being realized that, in order to achieve an
effective technology transfer, new frameworks and models are needed to design and
analyze geometric algorithms that are efficient in a practical realm.

The real-RAM model with its implicit infinite-precision requirement has proved
unrealistic and needs to be replaced with a realistic finite-precision model where ge-
ometric computations can be carried out either exactly or with a guaranteed error
bound. This has motivated a great deal of research on the subject of robust computa-
tional geometry (see, e.g., [4, 12, 11, 19, 27, 28, 31, 36, 34, 39, 48, 54, 58, 21, 30, 32]).
For an early survey of the different approaches to robust computational geometry the
reader is referred to [38].

To a first, rough approximation, robustness approaches are of two main types:
perturbing and nonperturbing. Perturbing approaches transform the given problem
into one that is intended not to suffer from well-identified shortcomings; nonperturbing
approaches are based on the notion of “exact” (rather than “approximate”) compu-
tations, with the assumption that (bounded-length) input data are error-free. In this
category falls the exact geometric computation paradigm independently advocated by

∗Received by the editors June 19, 1996; accepted for publication (in revised form) January 17,
1997; published electronically September 22, 1998. This research was supported in part by U.S. Army
Research Office grant DAAH04–96–1–0013, National Science Foundation grant CCR–9423847, the
N.A.T.O.-C.N.R. Advanced Fellowships Programme, and EC ESPRIT Long Term Research Project
ALCOM-IT contract 20244.

http://www.siam.org/journals/sicomp/28-3/30536.html
†Dipartimento di Informatica e Sistemistica, Universitá di Roma “La Sapienza”, Via Salaria 113,

Roma I-00198, Italy. The work of this author was performed in part while he was with the Center
for Geometric Computing at Brown University (liotta@dis.uniroma1.it).
‡Center for Geometric Computing, Department of Computer Science, Brown University, 115

Waterman Street, Providence, RI 02912-1910 (franco@cs.brown.edu, rt@cs.brown.edu).

864

ROBUST PROXIMITY QUERIES 865

Yap [59] and by the Saarbrücken school [10], and so does our approach. Within this
paradigm, we introduce the notion of degree of an algorithm, which describes, up to
a small additive constant, the arithmetic precision (i.e., number of bits) needed by
the exact-computation paradigm. Namely, if the coordinates of the input points of a
degree-d geometric algorithm are b-bit integers, then, as we shall substantiate below,
the algorithm may be required in some instances to perform arithmetic computations
with bit precision d(b+O(1)).

Theoretical analysis and experimental results show that multiprecision numerical
computations take up most of the CPU time of exact geometric algorithms (see, e.g.,
[41, 49]). Thus, we believe that, in defining the efficiency of a geometric algorithm,
the degree should be considered as important as the asymptotic time complexity and
should correspondingly play a major role in the design stage. In fact, the principal
thrust of this paper is to present algorithm degree as a major design criterion for
geometric computation. Research along these lines involves reexamining the entire
rich body of computational geometry as we know it today.

In this paper, we consider as a test case a problem area, geometric proximity,
which plays a major role in several applications and has recently attracted considerable
attention because, due to its demands of high precision for exact computation, it
is particularly appropriate in assessing effectiveness of robust approaches (see, e.g.,
[9, 11, 20, 29, 31, 27, 55, 32]). In particular we shall illustrate the role played by
the degree criterion if one wishes to comply with the standard exact-computation
paradigm.

To illustrate the approach, we recall that Voronoi diagrams are the search struc-
tures which permit answering a proximity query without evaluating all query/site
distances. Therefore, given the set of sites, their Voronoi diagram is computed and
supplied as a planar subdivision to a point location procedure. Assuming that the
coordinates of all input data (also called primitive points) are b-bit integers, the coor-
dinates of the points computed by the algorithm (referred to here as derived points,
e.g., the vertices of a Voronoi diagram of points and segments) must be stored with
a representation scheme that supports rational or algebraic numbers as data types
(through multiprecision integers). Specifically, the coordinates (x, y) of a Voronoi
vertex are rational numbers given by the ratio of two determinants (of respective
orders 3 and 2) whose entries are integers of well-defined maximum modulus. The
fundamental operation used by any point location algorithm is the point-line discrim-
ination, which consists of determining whether the query point q is to the left or to
the right of an edge between vertices v1 and v2. For the case of the Voronoi diagram
V (S), this is equivalent to evaluating the sign of a 3× 3 determinant whose rows are
the homogeneous coordinates of q, v1, and v2, a computation that needs about 6b
bits of precision. This should be compared with the O(n)-time brute-force method
that computes the (squares of the) distances from q to all the sites of S, and executes
arithmetic computations with only 2b bits of precision (which is optimal).

Guided by the low-degree criterion, in this paper we present a technique—com-
plying with the exact-computation paradigm—which uses a new point location data
structure for Voronoi diagrams, such that the test operations executed in the point
location procedure are distance comparisons, and are therefore executed with opti-
mal 2b bits of precision. Hence, our approach reconciles efficiency with robustness
and supports an object-oriented programming style where access to the geometry of
Voronoi diagrams in point location queries is encapsulated in a small set of geometric
test primitives. It must be pointed out that distance comparisons have already been
used nontrivially for proximity search (extremal-search method [26]). However, we
shall show that the latter method fails to achieve optimal degree because the search

866 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

Table 1
Comparison of the degree and time of algorithms for some fundamental proximity query prob-

lems. An * denotes optimality. The new technique introduced in this paper (point location in an
implicit Voronoi diagram) always outperforms previous methods and is optimal for 2D queries.

Query Method Degree Time

brute-force distance comparison 2 * O(n)
Nearest neighbor point location in explicit Voronoi diagram 6 O(log n) *

extremal-search method 4 O(log n) *
point location in implicit Voronoi diagram 2 * O(log n) *

k-nearest neighbors brute-force distance comparison 2 * O(n)
and point location in explicit order-k Voronoi diagram 6 O(log n+ k) *

circular range search point location in implicit order-k Voronoi diagram 2 * O(log n+ k) *

Nearest neighbor among brute-force distance comparison 6 O(n)
points and segments point location in explicit Voronoi diagram 64 O(log n) *

point location in implicit Voronoi diagram 6 O(log n) *

brute-force distance comparison 2 * O(n)
3D nearest neighbor point location in explicit 3D Voronoi diagram 8 O(log2 n)

point location in implicit 3D Voronoi diagram 3 O(log2 n)

is based on predicates requiring 4b bits of precision; moreover, the high overhead of
the search technique (which uses the hierarchical polytope representation [22]) casts
some doubts on the practicality of the method.

The main results of this work are summarized in Table 1. Considering, for the time
being, the degree as a measure of complexity, we show that previous methods exhibit
a sharp tradeoff between degree and query time. Namely, low degree is achieved by
the slow brute-force search method, while fast algorithms based on point location in
a preprocessed Voronoi diagram or on the extremal-search method have high degree.
Our new technique gives instead both low degree and fast query time and is optimal
with respect to both cost measures for queries in sets of 2D point sites.

The rest of this paper is organized as follows. In section 2, the concept of degree
of a geometric algorithm is defined and a simple formalism to compute such degree is
introduced. Such formalism is used in section 3 to analyze the performance of basic
proximity primitives. In section 4, we consider the following fundamental proxim-
ity queries for a set of point sites in the plane: nearest neighbor search, k-nearest
neighbors search, and circular range search. We show that the existing methods
for efficiently answering such queries have degree either 6 (point location in explicit
Voronoi diagram) or 4 (extremal-search method), and we present our new technique,
based on implicit Voronoi diagrams, which achieves optimal degree 2. In sections 5–6,
we extend our approach to nearest neighbor search queries in a set of 3D point sites
and in a set of point and segment sites in the plane, respectively. Practical improve-
ments are presented in section 7. Finally, further research directions are discussed in
section 8.

2. Degree of geometric algorithms and problems. The numerical compu-
tations of a geometric algorithm are basically of two types: tests (predicates) and
constructions. The two types of computations have clearly distinct roles. Tests are
associated with branching decisions in the algorithm that determine the flow of con-
trol, whereas constructions are needed to produce the output data of the algorithm.

Approximations in the execution of constructions are acceptable, since approx-
imate results are perfectly tolerable, provided that the error magnitude does not
exceed the resolution required by the application. On the other hand, approxima-
tions in the execution of tests may produce an incorrect branching of the algorithm.
Such event may have catastrophic consequences, giving rise to structurally incorrect
results. The exact-computation paradigm therefore requires that tests be executed
with total accuracy.

ROBUST PROXIMITY QUERIES 867

We shall therefore characterize geometric algorithms on the basis of the complex-
ity of their test computations. Any such computation consists of evaluating the sign
of an algebraic expression over the input variables, constructed using an adequate set
of operators such as {+,−,×,÷, 2

√, . . .}. As we shall show below, the expressions
under consideration are equivalent to multivariate polynomials.

Here we make the reasonable assumption that input data be dimensionally consis-
tent, i.e., that if an entity with the physical dimension of a length is represented with
b bits, then one with the dimension of an area be represented with 2b bits, and so on.
Under the hypothesis of dimensional consistency (where point coordinates are b-bit
entries), a polynomial expressing a test is homogeneous because all of its monomials
must have the same physical dimension.

A primitive variable is an input variable of the algorithm and has conventional
arithmetic degree 1. The arithmetic degree of a polynomial expression E is the com-
mon arithmetic degree of its monomials. The arithmetic degree of a monomial is the
sum of the arithmetic degrees of its variables.

Definition 1. An algorithm has degree d if its test computations involve the
evaluation of multivariate polynomials of arithmetic degree at most d. A problem Π
has degree d if any algorithm that solves Π has degree at least d.

Remark 1. Recently, Burnikel [9] has independently defined the notion of precision
of an algorithm, which is equivalent to our notion of degree of an algorithm. Also, our
definition of degree is related to that of depth of derivation proposed by Yap [58, 59].
Given a set of numbers, any number x of the set has depth 0. A number has depth
at most d if it can be obtained by executing a rational operation on numbers with
depth d− 1 or it is the result of a root extraction from a degree-k polynomial whose
coefficients have depth at most d − k. An algorithm has depth d if it performs only
rational operations such that all the intermediate computed numbers have depth of
derivation at most d with respect to the set of input numbers. Clearly, d is the
least possible integer such that all the intermediate computed values have depth of
derivation at most d. A problem has depth d if it can be solved by an algorithm with
rational bounded depth d. Despite the relatedness of the notions of depth and degree,
the latter seems more appropriate to our analysis, where we aim at minimizing the
number of bits needed for computing an exact value, independently of its (possibly
very high) depth.

Motivated by a standard feature of geometric algorithms, we also make the as-
sumption that every multivariate polynomial of degree d used in tests depends upon a
set of size s (a small constant) of primitive variables. Therefore, a multivariate poly-
nomial has O(sd) distinct monomials with bounded integer coefficients, so that the
maximum value of the multivariate polynomial is expressible with at most db+d log s
bits. A consequence of Definition 1 and of the above assumption is the following
fact, which justifies our use of the degree of an algorithm to characterize the precision
required in test computations.

Lemma 1. If an algorithm has degree d and its input variables are b-bit integers,
then all the test computations can be carried out with d(b+O(1)) bits.

Typically the support of a geometric test is not naturally expressed by a multi-
variate polynomial but, rather, by a pair (E1, E2) of expressions involving the four
arithmetic operations, powering, and the extraction of square roots, and the test con-
sists of comparing the magnitudes of E1 and E2. Such expressions always have a
physical dimension (a length, an area, a volume, etc.), so that if they have the form
of ratios, the degree of the numerator exceeds that of the denominator.

Expressions such as E1 and E2 can be viewed as a binary tree, whose leaves
represent input variables and whose internal nodes are of two types: binary nodes,

868 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

which are labeled with an operation from the set {+,−,×,÷}, and unary nodes,
which are labeled either with a power or with a square root extraction (notice that we
restrict ourselves to this type of radical). If no radical appears in the trees of E1 and
E2, then the test is trivially equivalent to the evaluation of the sign of a polynomial,
since Ei is a rational function of the form Ni

Di
(i = 1, 2, Ni, Di are not both trivial

polynomials and Di 6= 0) and

E1 ≥ E2 ⇐⇒ (−1)σ(D1)+σ(D2)(N1D2 −N2D1) ≥ 0,

where σ(E) = 1 if E < 0 and σ(E) = 0 if E ≥ 0. (Note that the above predicate
implies the inductive assumption that the signs of lower-degree expressions N1,N2,
D1, and D2 are known.) Suppose now that at least one of the trees of E1 and E2

contains radicals. We prune the tree so that the pruned tree contains no radicals
except at its leaves (notice that pruned subtrees may themselves contain radicals).
Then Ni and Di (i = 1, 2) can be viewed as polynomials whose variables are the
radicals and whose coefficients are (polynomial) functions of nonradicals. Given a
polynomial E in a set of radicals, for any radical R in this set, we can express E as
E = E′′R+ E′ where neither E′′ nor E′ contains R. Then

E ≥ 0⇐⇒ E′′R ≥ −E′.

The resulting expression (E′′2R2−E′2) does not contain R. Therefore, by this device,
referred to as segregate and square, we can eliminate one radical. This shows that by
the four rational operations we can reduce the sign test to the computation of the
signs of a collection of multivariate polynomials.

We now present a very simple, but useful, formalism that enables us to rapidly
evaluate the degree of the multivariate polynomial which uniquely determines the sign
of the original algebraic expression.

The terms involved in the formal manipulations are of two types: generic and
specific. Generic terms have the form αs (for a formal variable α and an integer
s), representing an unspecified multivariate polynomial of degree s over primitive
variables. Specific terms have the form ρj , for some integer index j, representing a
specified expression involving the operators {+,−,×,÷,√ }. The terms are members
of a free commutative semiring; i.e., addition and multiplication are associative and
commutative, addition distributes over multiplication, and specific terms can be fac-
tored out. Besides these conventional algebraic rules, we have a set of rewriting rules
of the form A → B, meaning that the sign of A is unambiguously determined by the
sign of B and by the signs of terms in A, which are inductively assumed to be known.
This induction is either on the degree of the terms or, in case of addition of (same
degree) terms, on the number of the latter.

We have seven rules, whose correctness can be proved with elementary algebra.
Rule 1 performs genericization, i.e., a specific term ρj , which is known to be a poly-
nomial of degree s over primitive variables, can be rewritten as αs. Rules 2–4 involve
generic terms, which reflect the fact that the only relevant feature of a polynomial
is its degree. Finally, rules 5–7 concern specific terms. The role of specific terms is
that we wish to keep track of their structure (that is, their definition) in order to
exploit it when computing least common multiples or multiplying radicals together.
Again, the R.H.S. of a rule gives the highest degree of the polynomials whose signs
unambiguously determine the sign of the L.H.S. Recall that the stated hypothesis of
nonnegative dimensionality implies that the degree of a numerator is never smaller

ROBUST PROXIMITY QUERIES 869

than that of its denominator. The rules are

(1) ρj −→ αs

(2) αsαr −→ αs+r

(3) αs + αs −→ αs

(4) −αs −→ αs

(5)
ρj
ρi
± ρh

ρi
−→ ρj ± ρh

(6)
ρj
ρi
± ρh

ρk
−→ ρjρk ± ρiρh

(7) ρi ± ρj −→ ρ2
i − ρ2

j .

A discussion on how to compute the sign of an algebraic expression of the type
considered by rule (7) can also be found in [57].

The preceding discussion establishes the following theorem.
Theorem 1. Rules (1)–(7) are adequate to evaluate the degree of multivariate

polynomials whose sign, collectively, unambiguously determines the sign of an arbi-
trary algebraic expression involving square roots.

While the above rules represent an adequate formalism for obtaining an upper
bound to the degree of an algorithm, more subtle is the corresponding lower-bound
question. In other words, given a predicate P that is essential to the solution of
a given problem, what is the inherent degree of P? Suppose that predicate P is
expressed by a polynomial P of degree d, and we must decide whether the value of P
is positive, negative, or zero. Can we answer this question by computing a discrete
(ternary) function f of analogous evaluations of irreducible polynomials P1, . . . , Pk
of maximum degree smaller than d? Clearly, f changes value only when some Pj
changes sign (exactly, when the value of Pj passes by 0). Thus, a 0 of P corresponds
to a 0 of some Pj . Moreover, as the arguments of Pj vary while Pj remains 0, so does
f and hence P . Therefore, P vanishes at all points for which Pj vanishes and, for a
well-known theorem of polynomial algebra (see, e.g., [8, pp. 212–216]), we conclude
that Pj is a factor of P . This is summarized as follows.

Theorem 2. The degree of the problem of evaluating a predicate expressed by a
polynomial P is the maximum arithmetic degree of the factors of P that change sign
over their domain.

3. Basic proximity queries. In this section we use the formalism introduced
above to analyze the degree of some geometric tests that answer basic proximity
queries. We end the section by establishing a lower bound on the degree of the
nearest neighbor search problem. In the proofs, we assume that a line r is represented
by the coefficients of its equation. However, the results still hold if line r is represented
by two of its points.

We start with the point-to-lines distance test; i.e., given two lines r1 and r2 on the
plane and a query point q, determine whether q is closer to r1 than to r2.

Lemma 2. The point-to-lines distance test can be solved with degree 6.
Proof. Let the equation of ri be aix+ biy + ci = 0 (i = 1, 2) and let q ≡ (xq, yq).

Then the test is to study the sign of
|a1xq+b1yq+c1|√

a2
1+b21

− |a2xq+b2yq+c2|√
a2

2+b22
. By using the

proposed notation, and with obvious meaning for ρ1 and ρ2, this test becomes (each
arrow being superscripted with the rules used)

α2

ρ1
− α2

ρ2
−→(6) α2ρ2 − α2ρ1 −→(7) α4ρ2

2 − α4ρ2
1 −→(1)

α4α2 − α4α2 −→(4,3) α6.

The following lemmas describe the degree of other proximity primitives that will
be useful in the rest of the paper. We omit the proofs of such lemmas, since they

870 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

are either straightforward or have been already proved in [9]. However, it is worth
mentioning that the proofs in [9] can be substantially simplified by using the proposed
notation.

Let p be a point and r a line in the plane. The point-to-point-line distance test
determines whether a query point q is closer to p or to r.

Lemma 3. The point-to-point-line distance test can be solved with degree 4.
Let p1 and p2 be two distinct points of the plane and let q be a query point. The

point-to-points distance test determines whether q is closer to p1 or to p2.
Lemma 4. The point-to-points distance test can be solved with degree 2.
The above lemma can be easily extended to any space of dimension d.
Another fundamental proximity primitive is the incircle test, that is, testing

whether the circle determined by three distinct sites (points and/or segments) of
the plane contains a given query site. The incircle test is a basic operation for many
algorithms that construct the Voronoi diagram of the sites (see, e.g., [37, 41, 33, 3]).
The degree of the incircle test has been extensively studied by Burnikel [9] and by
Burnikel, Mehlhorn, and Schirra [11]. Following the notation of Burnikel [9], an incir-
cle test is conveniently expressed as a quadruple (a1, a2, a3; a4), where each ai ∈ {p, l}
(i = 1, . . . , 4) is either a point or a line on the plane (a segment is seen by Burnikel
as given by the pair of its endpoints and by the underlying line) and we test whether
a4 intersects the circle determined by a1,a2, and a3.

The following lemma is proved observing that the incircle test (p1, p2, p3; p4) can
be answered by determining the sign of a 4 × 4 determinant that is an arithmetic
degree-4 multivariate polynomial.

Lemma 5 (see [9]). The incircle test (p1, p2, p3; p4) can be solved with degree 4.
Lemma 5 can be easily extended to any dimension d > 2. We describe such a test

as (p1, . . . , pd+1; pd+2), where points p1, . . . , pd+1 determine a d-dimensional sphere
and pd+2 is the query point.

Lemma 6. The insphere test (p1, . . . , pd+1; pd+2) in any fixed dimension d ≥ 2
can be solved with degree d+ 2.

For the construction of the Voronoi diagram of a set of points and segments in the
plane Burnikel shows that the most demanding test in terms of degree is the incircle
test (l1, l2, l3; l4) [9].

Lemma 7 (see [9]). The incircle test (l1, l2, l3; l4) can be solved with degree 40.
While the above lemmas provide an upper bound on the degree of a proximity

problem, the next theorem gives a lower bound.
Theorem 3. The nearest neighbor search problem for a point set has degree 2 in

any fixed dimension d ≥ 2.
Proof. We show the proof for the case d = 2. The proof for any other values

of d is analogous. Let p1 ≡ (x1, y1), p2 ≡ (x2, y2), and q ≡ (xq, yq) be three points
in the plane. In order to determine which of p1 and p2 is the point nearest to q, a
point-to-points distance test must be performed.

This is equivalent to the evaluation of the sign of the difference d(p1, q)−d(p2, q),
which, in turn, is equivalent to the evaluation of the sign of the polynomial d2(p1, q)−
d2(p2, q). This shows that this computation has degree at most 2. On the basis of
Theorem 2, for the degree to be less than 2, polynomial d2(p1, q) − d2(p2, q) should
be factorable as the product of two degree-1 polynomials. We show below that this
is not possible.

Suppose, for a contradiction, that there exist constants a′, a′′, b′, b′′, c′, c′′, d′, d′′, e,
e′′, f ′, f ′′ such that

d2(p1, q)− d2(p2, q) = x2
1 + y2

1 − x2
2 − y2

2 − 2x1xq + 2x2xq − 2y1yq + 2y2yq
= (a′x1 + b′y1 + c′x2 + d′y2 + e′xq + f ′yq) · (a′′x1 + b′′y1 + c′′x2 + d′′y2 + e′′xq + f ′′yq).

ROBUST PROXIMITY QUERIES 871

The above equality implies e′e′′ = 0, since there cannot be a term e′e′′x2
q. How-

ever, e′ and e′′ are not simultaneously 0, because there are nonzero terms having xq
as a factor. Assume w.l.o.g. that e′′ 6= 0. Observe that d′e′′ = 0 because there is no
term d′e′′y2yq; this implies d′ = 0. However, we must also have d′d′′ = −1 because of
the term −y2

2 , a contradiction.
Observe that an optimal degree algorithm for the nearest neighbor search prob-

lem in a planar point set can be easily obtained with the brute-force approach, where
one computes all the distances between the query point and all other points and
reports the point at minimum distance. However, such algorithm is both computa-
tionally inefficient (it requires quadratic time) and does not support repetitive-mode
queries. In section 4 we present an optimal degree algorithm, complying with the
exact-computation paradigm, whose query time and space are optimal.

4. Proximity queries for point sites in the plane. In this section, under
our standard assumption that all input parameters — such as coordinates of sites and
query points — are represented by b-bit integers, we consider the following proximity
queries on a set S of point sites in the plane:

nearest neighbor search: given query point q, find a site of S whose Euclidean
distance from q is less than or equal to that of any other site;
k-nearest neighbors search: given query point q, find k sites of S whose Euclidean
distances from q are less than or equal to that of any other site;
circular range search: given query points q and r, find the sites of S that are
inside the circle with center q passing through r.
It is well known that such queries are efficiently solved by performing point lo-

cation in the Voronoi diagram (possibly of higher order) V (S) of the sites [51]. For
nearest neighbor search, the alternative extremal-search method [26] also exists.

We begin by examining in section 4.1 the geometric test primitives used by the the-
oretically optimal and practically efficient point location methods. We identify three
fundamental geometric test primitives for accessing the geometry of a planar map,
and we introduce the concepts of “native” and “ordinary” point location methods.
In section 4.2, we show that the “conventional” approach of accessing the explicitly
computed Voronoi diagram V (S) of the sites causes point location queries, and hence
proximity queries, to have degree at least 6. We also analyze the extremal-search
method and show that it has degree 4. In sections 4.3–4.4, we describe our new im-
plicit representation of Voronoi diagrams for point sites in the plane, which allows us
to perform proximity queries with optimal degree 2.

4.1. Test primitives and methods for planar point location. The chain
method [44], the bridged-chain method [25], the trapezoid method [50], the subdivi-
sion refinement method [42], and the persistent search tree method [53] are popular
deterministic techniques for point location in a planar map that combine theoretical
efficiency with good performance in practice (see, e.g., [24, 51]). Namely, denoting
with n the size of the map, all the above point location methods require O(n log n)
preprocessing time. The query time is O(log2 n) for the chain method and O(log n) for
the other methods. The space used is O(n log n) for the trapezoid method and O(n)
for the other methods. For monotone maps, the preprocessing time is O(n) for the
chain method and the bridged-chain method, and O(n log n) for the other methods.
The randomized-incremental method [35] also exists. Such a method is specialized
for point location in Voronoi diagrams, uses expected space O(n), and has expected
query time O(log2 n).

By a careful examination of the query algorithms used in the point location meth-
ods presented in the literature, it is possible to clearly separate the primitive opera-

872 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

tions that access the geometry of the map from those that access only the topology.
We say that a point location method is native for a class of maps if it performs point
location queries in a map M of the class by accessing the geometry of M exclusively
through the following three geometric test primitives that discriminate the query point
with respect to the vertices and edges of M :

above-below(q, v) determine whether query point q is vertically above or below
vertex v.
left-right(q, v) determine whether query point q is horizontally to the left or to the
right of vertex v.
left-right(q, e) determine whether query point q is to the left or to the right of
edge e; this operation assumes that edge e is not horizontal and its vertical span
includes q.
Test primitive left-right(q, v) is typically used only in degenerate cases (e.g., in

the presence of horizontal edges).
Some point location methods work on modified versions of the original subdivi-

sion by means of auxiliary geometric objects introduced in the preprocessing (e.g.,
triangulation or regularization edges). We say that a point location method is ordi-
nary for a class of maps if it performs point location queries in a map M of the class
by accessing the geometry of M through the three geometric test primitives described
above for the native methods and through left-right(q, e) tests such that e is a fictitious
edge connecting two vertices of M .

Now, we analyze the chain method [44] for point location in a monotone map M .
A binary tree represents a balanced recursive decomposition of map M by means of
vertically monotone polygonal chains covering the edges of M , called separators. A
point location query consists of traversing a root-to-leaf path in this tree, where at
each node we determine whether the query point q is to the left or to right of the
separator associated with the node. The discrimination of point q with respect to a
separator σ is performed in two steps:

1. we find the edge e of σ whose vertical span includes point q by means of binary
search on the y coordinates of the vertices of σ, which consists of performing
a sequence of a logarithmic number of above-below(q, v) tests;

2. we discriminate q with respect to σ by performing test left-right(q, e).
In the special case that separator σ has horizontal edges, the discrimination of

point q with respect to σ uses also test primitive left-right(q, v). Hence, the chain
method is native for monotone maps. For a map M that is not monotone, fictitious
“regularization” edges are added to M and the point location in M is reduced to point
location in the resulting refinement M ′ of M . Hence, the chain method is ordinary
for general maps.

In the bridged-chain method [25], the technique of fractional cascading [17, 18] is
applied to the sets of y-coordinates of the separators. Fractional cascading establishes
“bridges” between the separator of a node and the separators of its children such that
there are O(1) vertices between any two consecutive bridges. Hence, except for the
separator of the root, step 1 can be executed with O(1) above-below(q, v) tests for the
vertices between two consecutive bridges. The bridged-chain method is ordinary for
general maps and native for monotone maps.

A similar analysis shows that all efficient point-location methods described in
the literature are ordinary for general maps. More specifically, we have the following
lemma.

Lemma 8. The trapezoid method and the persistent search tree method are native
for general maps. The chain method and the bridged-chain method are ordinary for
general maps and native for monotone maps. The subdivision refinement method

ROBUST PROXIMITY QUERIES 873

q
a

b

c

d

v1

v2

Fig. 1. Illustration for Lemma 9.

is ordinary for general maps. The randomized-incremental method is ordinary for
Voronoi diagrams.

Hence, all the known planar point location methods described in the literature
are ordinary for Voronoi diagrams.

4.2. Explicit Voronoi diagrams. Let S be a set of n point sites in the plane,
where each site is a primitive point with b-bit integer coordinates. The Voronoi
diagram V (S) of S is said to be explicit if the coordinates of the vertices of V (S)
are computed and stored with exact arithmetic, i.e., as rational numbers (pairs of
integers).

Lemma 9. The left-right(q, e) test primitive in an explicit Voronoi diagram of
point sites in the plane has degree 6.

Proof. Let e ≡ (v1, v2) be a Voronoi edge such that v1 ≡ (x1, y1) is equidistant
from three sites a ≡ (xa, ya), b ≡ (xb, yb), c ≡ (xc, yc) and v2 ≡ (x2, y2) is equidistant
from three sites b ≡ (xb, yb), c ≡ (xc, yc), and d ≡ (xd, yd). See Figure 1. In an
explicit Voronoi diagram, test primitive left-right(q, e) that determines whether query
point q ≡ (xq, yq) is to the left or to the right of edge e ≡ (v1, v2) is equivalent to
evaluating the sign of the following determinant:

∆ =

∣∣∣∣∣∣
xq yq 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
xq yq 1
X1

2W1

Y1

2W1
1

X2

2W2

Y2

2W2
1

∣∣∣∣∣∣ = 1
4W1W2

∣∣∣∣∣∣
xq yq 1
X1 Y1 2W1

X2 Y2 2W2

∣∣∣∣∣∣ = ∆′
4W1W2

,

where

X1 =

∣∣∣∣∣∣
x2
a + y2

a ya 1
x2
b + y2

b yb 1
x2
c + y2

c yc 1

∣∣∣∣∣∣ , Y1 =

∣∣∣∣∣∣
xa x2

a + y2
a 1

xb x2
b + y2

b 1
xc x2

c + y2
c 1

∣∣∣∣∣∣ , W1 =

∣∣∣∣∣∣
xa ya 1
xb yb 1
xc yc 1

∣∣∣∣∣∣
and X2, Y2, and W2 have similar expressions obtained replacing in the above determi-
nants xc with xd and yc with yd. Evaluating the sign of ∆ is equivalent to evaluating
the signs of W1, W2 and of ∆′.

By using the notation introduced in section 2, we can rewrite Xi and Yi as α3,
and Wi as α2 (i = 1, 2). Hence, ∆′ is a degree-6 multivariate polynomial since it can
be rewritten as

α(α3α2 − α3α2)− α(α3α2 − α3α2) + α3α3 − α3α3 −→(2,3,4) α6 + α6 −→(3) α6.

874 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

Although the explicit representation approach leads to Lemma 9, it should be noted
that determinant ∆ is a reducible polynomial,1 one factor being the (always positive)
incircle test polynomial of degree 4 for the four sites.

An algorithm for proximity queries on a set S of point sites in the plane is said
to be conventional if it computes the explicit Voronoi diagram V (S) of S and then
performs point location queries on V (S) with an ordinary method. Note that the class
of conventional proximity query algorithms includes all the efficient algorithms pre-
sented in the literature. A conventional proximity query algorithm needs to perform
test primitive left-right(q, e). Thus, by Lemma 9 we have the following theorem.

Theorem 4. Conventional algorithms for the following proximity query problems
on a set of point sites in the plane have degree at least 6:

• nearest neighbor query,
• k-nearest neighbor query,
• circular range query.

We observe that a degree-6 algorithm implies that a k-bit arithmetic unit can
handle with native precision queries for points in a grid of size at most 2k/6 × 2k/6.
For example, if k = 32, the points that can be treated with single-precision arithmetic
belong to a grid of size at most 64× 64.

The extremal-search method [26], also designed for proximity queries, reduces the
nearest neighbor search problem for a set S of 2D point sites to the following extremal-
search problem. Let P be the paraboloid with equation z = x2 + y2, and let S′ be
the set of 3D points obtained by lifting S to P. Given a query point q in the plane,
let ~r be the unit vector orthogonal to the plane tangent to P at the lifted query point
q′ ≡ (xq, yq, x

2
q + y2

q). The extremal-search problem for S′ and query vector ~r consists
of determining the first site s′ of S′ hit by a plane orthogonal to ~r translating from
infinity toward S′. Projecting s′ down onto the xy-plane gives the nearest neighbor s
of q in S.

The extremal-search method makes use of 3D geometric primitives that guide
the search through a data structure embodying the Dobkin–Kirkpatrick hierarchical
representation [22] of the convex hull of S′. Such 3D geometric primitives in turn can
be reduced to the following 2D geometric primitives:

• point-to-points distance test for q and a site of S, which has degree 2;
• the identification of suitably defined “extremal edges” of the Delaunay trian-

gulation of a subset of S with respect to q.
The second primitive evaluates the sign of determinants of the type

∆ =

∣∣∣∣∣∣
xa ya x2

a + y2
a

xb yb x2
b + y2

b

xq yq x2
q + y2

q

∣∣∣∣∣∣ ,
where a ≡ (xa, ya) and b ≡ (xb, yb) are sites of S. By using the methodology intro-
duced in section 2, we can show that ∆ is a degree-4 multivariate polynomial. Thus,
we have Theorem 5.

Theorem 5. The extremal-search method for the nearest neighbor query problem
on a set of point sites in the plane has degree at least 4.

4.3. Implicit Voronoi diagrams. Let S be a set of n point sites in the plane,
and recall our assumption that each site or query point is a primitive point with b-bit
integer coordinates. We say that a number s is a semi-integer if it is a rational number
of the type s = m/2 for some integer m. The implicit Voronoi diagram V ∗(S) of S
is a representation of the Voronoi diagram V (S) of S that consists of a topological

1K. Mehlhorn suggested that ∆ was likely to be reducible.

ROBUST PROXIMITY QUERIES 875

component and of a geometric component. The topological component of V ∗(S) is
the planar embedding of V (S), represented by a suitable data structure (e.g., doubly
connected edge lists [51] or the data structure of [37]). The geometric component
of V ∗(S) stores the following geometric information for each vertex and edge of the
embedding:

• For each vertex v of V (S), V ∗(S) stores semi-integers x∗(v) and y∗(v) that
approximate the x- and y-coordinates y(v) of v. We provide the definition of
y∗(v) below. The definition of x∗(v) is analogous.

y∗(v) =

y(v), 0 ≤ y(v) ≤ 2b − 1, y(v) integer,

by(v)c+ 1
2 , 0 ≤ y(v) ≤ 2b − 1, y(v) not integer,

2b − 1
2 , y(v) > 2b − 1,

0, y(v) < 0.

Note that semi-integers x∗(v) and y∗(v) can be stored with (b+ 1)-bits.
• For each nonhorizontal edge e of V (S), V ∗(S) stores the pair of sites `(e) and
r(e) such that e is a portion of the perpendicular bisector of `(e) and r(e),
and `(e) is to the left of r(e).

Equipped with the above information, the three test primitives for point location
can be performed in the implicit Voronoi diagram V ∗(S) as follows:

above-below(q, v) compare the y-coordinate of q with y∗(v);
left-right(q, v) compare the x-coordinate of q with x∗(v);
left-right(q, e) compare the Euclidean distances of point q from sites `(e) and r(e).
Since the query point q is by assumption a primitive point whose coordinates are

b-bit integers, we have that y(q) ≤ y(v) if and only if y(q) ≤ y∗(v), where testing
the latter inequality has degree 1. Similar considerations apply to testing x(q) ≤
x(v). This proves the correctness of our implementation of above-below(q, v) and
left-right(q, v).

The correctness of the above implementation of test left-right(q, e) follows directly
from the definition of Voronoi edges. Thus, in an implicit Voronoi diagram, test
left-right(q, e) can be implemented with a point-to-points distance test that has degree 2
(Lemma 4).

Hence, we obtain the following lemmas.
Lemma 10. Test primitives above-below(q, v) and left-right(q, v) in an implicit

Voronoi diagram of point sites in the plane can be performed in O(1) time and with
degree 1.

Lemma 11. Test primitive left-right(q, e) in an implicit Voronoi diagram of point
sites in the plane can be performed in O(1) time and with degree 2.

In order to execute a native point location algorithm in an implicit Voronoi dia-
gram, we only need to redefine the implementation of the three test primitives. By
having encapsulated the geometry in the test primitives, no further modifications are
needed. Hence, by Lemmas 10–11 we obtain Lemma 12.

Lemma 12. For any native method on a class of maps that includes Voronoi dia-
grams, a point location query in an implicit Voronoi diagram has optimal degree 2 and
has the same asymptotic time complexity as a point location query in the corresponding
explicit Voronoi diagram.

In order to compute the implicit Voronoi diagram V ∗(S), we begin by constructing
the Delaunay triangulation of S, denoted DT (S), by means of the O(n log n)-time
algorithm of [37], which has degree 4 because its most expensive operation in terms of
the degree is the incircle test (see Lemma 5). The topological structure of V (S) and
the sites `(e) and r(e) for each edge e of V (S) are immediately derived from DT (S)

876 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

by duality. Next, we compute the approximations x∗(v) and y∗(v) for each vertex v of
V (S) by means of integer division. For effective procedures that perform the integer
division, see, e.g., LEDA [46]. Let a, b, and c be the three sites of S that define vertex
v. Adopting the same notation as in the proof of Lemma 9, the y-coordinate y(v) of
v is given by the ratio y(v) = Y1

2W1
, where Y1 is a polynomial of degree 3 and W1 is a

polynomial of degree 2, and similarly for x(v). Hence, the computation of x∗(v) and
y∗(v) involves an integer represented by at most 3(b+O(1)) bits. We summarize the
above analysis as follows.

Lemma 13. The implicit Voronoi diagram of n point sites in the plane can be
computed in O(n log n) time, O(n) space, and with degree 4.

Theorem 6. Let S be a set of n point sites in the plane. There exists an O(n)-
space data structure for S, based on the implicit Voronoi diagram V ∗(S), that can be
computed in O(n log n) time with degree 5, and supports nearest neighbor queries in
O(log n) time with optimal degree 2.

Proof. We perform point location in the implicit Voronoi V ∗(S) diagram of S
using a native method for monotone maps with optimal space and query time such as
the bridged-chain method or the persistent search tree method. The space requirement
and the query degree and time follow from the performance of these methods and from
Lemma 12.

Regarding the preprocessing time, by Lemma 13, the construction of the implicit
Voronoi V ∗(S) takes O(n log n) time with degree 4. In order to construct the point
location data structure, we also need an additional test primitive that consists of
comparing the y-coordinates of two Voronoi vertices. For example, this primitive is
used to establish bridges in the bridged-chain method (see section 4.1) and to sort the
vertices by y-coordinate in the persistent location method. By using the same notation
as in Lemma 9, comparing the y-coordinates of the Voronoi vertices is equivalent to
evaluating the sign of multivariate polynomials of the form Yi

2Wi
− Yj

2Wj
, where Yi

2Wi
and

Yj
2Wj

represent the y-coordinates of two different Voronoi vertices. Such multivariate

polynomials have degree 5, since they can be rewritten as

ρi
ρj
− ρh

ρk
−→(6) ρiρk − ρhρj −→(1) α3α2 − α3α2 −→(2,3,4) α5.

Remark 2. It must be pointed that for the problem under consideration similar
results could be obtained by carrying out tests with limited accuracy, and therefore
risking to mistakenly select a Voronoi site adjacent to the correct one in critical situa-
tions (when the query point is very close to the separating edge): such indeterminacy
could be remedied by an additional test comparing the distances of the query point
from the two competing sites. Although effective, such ad hoc solution would not fit
the exact-computation paradigm, whereas our method fully complies with it.

4.4. Implicit higher-order Voronoi diagrams. In this section, we introduce
implicit higher-order Voronoi diagrams for point sites in the plane, and we extend the
results of section 4.3 to k-nearest neighbors and circular range search queries.

The definition of the implicit order-k Voronoi diagram V ∗k (S) of set S of point
sites in the plane is analogous to that given in section 4.3 for Voronoi diagrams. A
vertex v of Vk(S) is represented by its approximate coordinates x∗(v) and y∗(v), and
a nonhorizontal edge e of Vk(S) stores the pair of sites `(e) and r(e) such that e is a
portion of the perpendicular bisector of `(e) and r(e), and `(e) is to the left of r(e).

Lemmas 10–11 immediately hold also for Vk(S), and we obtain Lemma 14.
Lemma 14. For any native method for monotone maps, a point-location query in

an implicit order-k Voronoi diagram has optimal degree 2 and has the same asymptotic
time complexity as a point location query in an explicit order-k Voronoi diagram.

ROBUST PROXIMITY QUERIES 877

The order-k Voronoi diagram Vk(S) for a set S of n point sites has O(k(n − k))
vertices, edges, and faces and can be obtained from the order k − 1 implicit Voronoi
diagram Vk−1(S) by intersecting each face of Vk−1(S) with the (order-1) Voronoi
diagram of a suitable subset of the vertices of S [43]. As shown in [43, 16], Vk(S)
can be computed in O(k(n − k)

√
n log n) time. Since the construction is based on

iteratively computing Voronoi diagrams by using the incircle test, which is the most
expensive operation in terms of degree, the overall degree of the preprocessing is 4
(Lemma 5). Hence, we obtain Lemma 15.

Lemma 15. The implicit order-k Voronoi diagram of n point sites in the plane
can be computed in O(k(n− k)

√
n log n) time, O(k(n− k)) space, and with degree 4.

Point location in the order-k Voronoi diagram solves k-nearest neighbors queries.
Hence, by Theorem 3 and Lemmas 14–15, we obtain Theorem 7.

Theorem 7. Let S be a set of n point sites in the plane and k an integer with
1 ≤ k ≤ n− 1. There exists an O(k(n− k))-space data structure for S, based on the
implicit order-k Voronoi diagram V ∗k (S), that can be computed in O(k(n−k)

√
n log n)

time with degree 5 and supports k-nearest neighbors queries in O(log n+ k) time with
optimal degree 2.

Circular range search queries in a set S of n point sites can be reduced to a se-
quence of 2i-nearest neighbors queries in V2i(S), i = 0, . . . , log n [7]. This approach
yields a data structure withO(n3) space and preprocessing time, andO(log n log log n+
k) query time, where k is the size of the output. Hence, with analogous reasoning as
above, we obtain the following theorem.

Theorem 8. Let S be a set of n point sites in the plane. There exists an O(n3)-
space data structure for S, based on implicit order-k Voronoi diagrams, that can be
computed in O(n3) time with degree 5 and supports circular range search queries in
O(log n log log n+ k) time with optimal degree 2.

The space and preprocessing time of Theorems 7–8 and the query time of Theo-
rem 8 can be improved while preserving the same degree bounds by more complicated
procedures along the lines suggested in [1, 2, 15].

5. Proximity queries for point sites in 3D space. In this section, we con-
sider the following proximity query on a set S of point sites in 3D space:

nearest neighbor search: given query point q, find a site of S whose Euclidean
distance from q is less than or equal to that of any other site.
We recall our assumption that the sites and query points are primitive points

represented by b-bit integers.
As for the 2D case, such a query is efficiently answered by performing point

location in the 3D Voronoi diagram of S. Test primitives and methods for spatial
point location are described in section 5.1. Section 5.2 shows that “conventional”
algorithms require degree 8. A degree-3 algorithm based on “implicit” 3D Voronoi
diagrams is then given in section 5.3.

5.1. Test primitives and methods for spatial point location. There are
only two known efficient spatial point location methods for cell-complexes that are
applicable to 3D Voronoi diagrams: the separating surfaces method [14, 56], which
extends the chain method [44], and the persistent planar location method [52], which
extends the persistent search tree method [53]. Let N be the number of facets of a
cell-complex C. The query time is O(log2N) for both methods. The space used is
O(N) for the separating surfaces method and O(N log2N) for the persistent planar
location method. Both methods are restricted to convex cell-complexes. The separat-
ing surfaces method is further restricted to acyclic convex cell-complexes, where the
dominance relation among cells in the z-direction is acyclic.

878 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

As in section 4.1, we can separate the primitive operations that access the ge-
ometry of the cell-complex from those that access only the topology. We say that a
point location method is native for a class of 3D cell-complexes if it performs point
locations queries in a cell-complex C of the class by accessing the geometry of C ex-
clusively through the following three geometric test primitives that discriminate the
query point with respect to the vertices and edges of C:

above-below(q, v) compares the z-coordinate of the query point q with the z-
coordinate of vertex v.
left-right(q, v) compares the x-coordinate of the query point q with the x-coordinate
of vertex v.
front-rear(q, v) compares the y-coordinate of the query point q with the y-coordinate
of vertex v.
left-right(qxy, exy) compares the xy-projection qxy of the query point q with the
xy-projection of edge exy. This operation assumes that exy is not parallel to the
x-axis and its y-span includes qxy.
above-below(q, f) determines whether query point q is above or below a facet f ;
this operation assumes that facet f is not parallel to the z-axis and that the
xy-projection of f contains the xy-projection of q.
Test primitives above-below(q, v) and left-right(q, v) are used only in degenerate

cases (e.g., in the presence of facets parallel to the z-axis and in cases where exy is
horizontal).

Now, we analyze the separating surfaces method for spatial point location [14, 56]
in acyclic cell-complexes. Separating surfaces are the 3D analogue of separators of
monotone maps. Their existence is guaranteed by the acyclicity of the cell-complex.
Thus, a point location query consists of traversing a root-to-leaf path in the separating
surface tree, where at each node we determine whether the query point q is to above
or below the separating surface associated with the node. The discrimination of point
q with respect to a separating σ is performed in two steps:

1. By means of a planar point location query for the xy-projection qxy of q in
the xy projection of σ, we find the facet f of σ whose xy projection contains
qxy. If an ordinary point location method is used, this step uses primitives
front-rear(q, v), left-right(q, v), and left-right(qxy, exy).

2. We discriminate q with respect to σ by performing test above-below(q, f).
In the special cases that cell-complex C has facets parallel to the z-axis, the

discrimination of point q with respect to σ uses also test primitives above-below(q, v).
Thus, the separating surfaces method is native for acyclic convex cell-complexes.

A similar analysis shows that also the persistent planar location method is native
for convex cell-complexes. More specifically, we have Lemma 16.

Lemma 16. The separating surfaces method is native for acyclic convex cell-
complexes. The persistent planar location method is native for convex cell-complexes.

Hence, all the known spatial point location methods described in the literature
are native for 3D Voronoi diagrams.

5.2. Explicit Voronoi diagrams. Let S be a set of n point sites in 3D, where
each site is a primitive point with b-bit integer coordinates. The 3D Voronoi diagram
V (S) of S is said to be explicit if the coordinates of the vertices of V (S) are computed
and stored with exact arithmetic, i.e., as rational numbers (pairs of integers).

Lemma 17. The left-right(qxy, exy) test primitive in an explicit Voronoi diagram
of point sites in 3D space has degree 8.

Proof. The reasoning is the same as in the proof of Lemma 9. Let ex,y ≡ (v1, v2),
where v1 and v2 are the xy-projections of two adjacent vertices u and v of V (S); let u
be equidistant from the four primitive sites a ≡ (xa, ya), b ≡ (xb, yb), c ≡ (xc, yc), and

ROBUST PROXIMITY QUERIES 879

d ≡ (xd, yd), and v from a ≡ (xa, ya), b ≡ (xb, yb), c ≡ (xc, yc), and h ≡ (xh, yh). In
an explicit Voronoi diagram, test primitive left-right(qxy, exy) that determines whether
query point q ≡ (xq, yq) is to the left or to the right of edge e ≡ (v1, v2) is equivalent
to evaluating the sign of the following determinant:

∆ =

∣∣∣∣∣∣
xq yq 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
xq yq 1
X1

2W1

Y1

2W1
1

X2

2W2

Y2

2W2
1

∣∣∣∣∣∣ = 1
4W1W2

∣∣∣∣∣∣
xq yq 1
X1 Y1 2W1

X2 Y2 2W2

∣∣∣∣∣∣ = ∆′
4W1W2

,

where

X1 =

∣∣∣∣∣∣∣∣
x2
a + y2

a + z2
a ya za 1

x2
b + y2

b + z2
b yb zb 1

x2
c + y2

c + z2
c yc zc 1

x2
d + y2

d + z2
d yd zd 1

∣∣∣∣∣∣∣∣ , Y1 =

∣∣∣∣∣∣∣∣
xa x2

a + y2
a + z2

a za 1
xb x2

b + y2
b + z2

b zb 1
xc x2

c + y2
c + z2

c zc 1
xd x2

d + y2
d + z2

d zd 1

∣∣∣∣∣∣∣∣ ,

W1 =

∣∣∣∣∣∣∣∣
xa ya za 1
xb yb zb 1
xc yc zc 1
xd yd zd 1

∣∣∣∣∣∣∣∣ ,
and X2, Y2, and W2 have similar expressions obtained replacing in the above deter-
minants xd with xh, yd with yh, and zd with zh.

Evaluating the sign of ∆ is equivalent to evaluating the signs of W1, W2 and of
∆′.

By using the notation introduced in section 2, we can rewrite Xi and Yi as α4,
and Wi as α3 (i = 1, 2). Hence, ∆′ is a degree-8 multivariate polynomial since it can
be rewritten as

α(α4α3−α4α3)−α(α4α3−α4α3)+α4α3−α4α4 −→(2,3,4) α8+α8 −→(3) α8.

An algorithm for nearest neighbor queries on a set S of point sites in 3D space
is said to be conventional if it computes the explicit 3D Voronoi diagram V (S) of S
and then performs point location queries on V (S) with a native method. Recall that
the class of conventional nearest neighbor query algorithms includes the two efficient
algorithms presented in the literature. A conventional proximity query algorithm
needs to perform test primitive left-right(qxy, exy). Thus, by Lemma 17, we have
Theorem 9.

Theorem 9. Conventional algorithms for the nearest neighbor query problem on
a set of point sites in 3D space have degree at least 8.

5.3. Implicit Voronoi diagrams. The definition of the implicit 3D Voronoi
diagram V ∗(S) of a set of S of point sites in 3D space is a straightforward extension
of the definition for 2D Voronoi diagrams given in section 4.3. Namely, V ∗(S) stores
the topological structure of the 3D Voronoi diagram V (S) of S (e.g., the data structure
of [23]) and the following geometric information for each vertex and facet:

• For each vertex v of V (S), V ∗(S) stores the semi-integer (b+ 1)-bit approxi-
mations x∗(v), y∗(v), and z∗(v) of the x-, y-, and z-coordinates of v.
• For each facet f of V (S) that is not parallel to any of three Cartesian planes,
V ∗(S) stores the pair of sites `(f) and r(f) such that f is a portion of the
perpendicular bisector of `(f) and r(f), and `(f) is below r(f).

The tests above-below(q, v), left-right(q, v), front-rear(q, v) can be implemented
comparing the x-, y-, and z-coordinate of query point q with x(v)∗, y(v)∗, and z(v)∗,
respectively. With the same reasoning as for the 2D case (see section 4.3), it is easy
to see that such implementations are correct.

880 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

Lemma 18. Test primitives above-below(q, v), left-right(q, v), front-rear(q, v) in
an implicit Voronoi diagram of 3D point sites can be performed in O(1) time and with
degree 1.

Test primitive above-below(q, f) is implemented by comparing the Euclidean dis-
tances of point q from the two sites `(e) and r(e) of which f is the perpendicular
bisector with a point-to-points distance test. The implementation is correct by the
definition of Voronoi facet. Thus, by Lemma 4, we have Lemma 19.

Lemma 19. Test primitive above-below(q, f) in an implicit Voronoi diagram of
3D point sites can be performed in O(1) time and with degree 2.

Finally, test left-right(qxy, exy) is implemented by determining the sign of the
equation of the line that contains edge exy when computed at point qxy.

Lemma 20. Test primitive left-right(qxy, exy) in an implicit Voronoi diagram of
3D point sites can be performed in O(1) time and with degree 3.

Proof. The line containing the oriented edge exy is the projection on the xy-plane
of the intersection of two planes containing two facets of the 3D Voronoi diagram. Let
aix+ biy + ciz + di = 0 be the equation of one such plane (i = 1, 2). The projection
of their intersection on the xy-plane is∣∣∣∣ a1 c1

a2 c2

∣∣∣∣x+

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ y +

∣∣∣∣ d1 c1
d2 c2

∣∣∣∣ = 0.

Test left-right(qxy, exy) consists of determining the sign of∣∣∣∣ a1 c1
a2 c2

∣∣∣∣xq +

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ yq +

∣∣∣∣ d1 c1
d2 c2

∣∣∣∣ ,
which is a multivariate polynomial having arithmetic degree 3, since it can be rewritten
as

αα2 + αα2 + α3 −→(2,3) α3.

In order to execute a native point location algorithm in an implicit 3D Voronoi
diagram, we only need to redefine the implementation of the five test primitives. By
having encapsulated the geometry in the test primitives, no further modifications are
needed. Hence, by Lemmas 18–20 we obtain Lemma 21.

Lemma 21. For any native method on a class of cell-complexes that includes
3D Voronoi diagrams, a point location query in an implicit 3D Voronoi diagram has
degree 3 and has the same asymptotic time complexity as a point location query in an
explicit 3D Voronoi diagram.

The Voronoi diagram of n point sites in 3D space is an acyclic convex cell-complex
with N = O(n2) facets. Hence, using the separating surfaces method on the implicit
3D Voronoi diagram yields the following result.

The implicit Voronoi diagram V ∗(S) of a set S of n points in 3D space can
be constructed by computing the 3D Delaunay triangulation with the incremental
algorithm by Joe [40], whose time complexity and storage is O(n2) (see also [49]).
Since the most demanding operation of the algorithm in terms of degree is the 3D
insphere test, from Lemma 6 we have that the degree of the algorithm that computes
V (S) is 5. As in the planar case, the topological structure of V (S) and the sites `(f)
and r(f) for each edge e of V (S) are immediately derived from DT (S) by duality. We
then compute the approximations x∗(v), y∗(v), and z∗(v) for each vertex v of V (S)
by means of integer division. Let a, b, c, and d be the four sites of S that define vertex
v. Adopting the same notation as in the proof of Lemma 17, the x-coordinate x(v)
of v is given by the ratio x(v) = Y1

2W1
, where X1 is a variable of arithmetic degree 4

ROBUST PROXIMITY QUERIES 881

and W1 is a variable of arithmetic degree 3; this is similar for y(v) and z(v). We
summarize the above analysis as follows.

Lemma 22. The implicit Voronoi diagram of a set of n point sites in 3D space
can be computed in O(n2) time and space and with degree 5.

Lemmas 21 and 22 lead to the following theorem.
Theorem 10. Let S be a set of n point sites in 3D space. There exists an

O(n2)-space data structure for S that can be computed in O(n2) time with degree 7
and supports nearest neighbor queries in O(log2 n) time with degree 3.

Proof. We perform point location in the implicit Voronoi V ∗(S) diagram of S
using the separating surfaces method. The space requirement and the query degree
and time follow from the performance of these methods and from Lemma 21.

Regarding the preprocessing time, by Lemma 22, the construction of the implicit
Voronoi V ∗(S) takes O(n2) time with degree 5. In order to construct the point-
location data structure, we also need an additional test primitive that consists of
comparing the y-coordinates of two Voronoi vertices. For example, this primitive is
used to establish bridges between the vertices of the different separating chains if
the bridged-chain method (see section 4.1) is applied to locate the xy-projection of
the query point into the xy-projection of a separating surface. Comparing the y-
coordinates of the Voronoi vertices is equivalent to evaluating the sign of multivariate
polynomials of the form Yi

2Wi
− Yj

2Wj
, where Yi

2Wi
and

Yj
2Wj

represent the y-coordinates

of two different Voronoi vertices (see also the proof of Lemma 17). Such multivariate
polynomials have degree 7, since they can be rewritten as

ρi
ρj
− ρh

ρk
−→(6) ρiρk − ρhρj −→(1) α4α3 − α4α3 −→(2,3,4) α7.

Although the algorithm for nearest neighbor queries proposed in this section has
nonoptimal degree 3, it is a practical approach for the important application scenario
where the primitive points are pixels on a computer screen. On a typical screen with
about 210× 210 pixels, our nearest neighbor query can be executed with the standard
integer arithmetic of a 32-bit processor.

6. Proximity queries for point and segment sites in the plane. In this
section, we consider the following proximity query on a set S of point and segment
sites in the plane:

nearest neighbor search: given query point q, find a site of S whose Euclidean
distance from q is less than or equal to that of any other site.
As for the other queries studied in the previous sections, such a query is efficiently

solved by performing point location in the Voronoi diagram of the set of point and
segment sites [51].

The test primitives needed by such an approach are described in section 6.1.
Section 6.2 shows that the “conventional” approach requires degree 64. A degree-6
algorithm based on “implicit” Voronoi diagrams is then given in section 6.3.

6.1. Test primitives and methods. The Voronoi diagram V (S) of a set S
of point and segment sites is a map whose edges are either straight-line segments
or arcs of parabolas. Hence, in general V (S) is neither convex nor monotone. In
order to perform point location in V (S), we refine V (S) into a map with monotone
edges as follows. If edge e of V (S) is an arc of parabola whose point p of maximum
(or minimum) y-coordinate is not a vertex, we split e into two edges by inserting a
fictitious vertex at point p. We call the resulting map the extended Voronoi diagram
V ′(S) of S.

The persistent search tree method and the trapezoid method can be used as native
methods on the extended Voronoi diagram, where the test primitives are the same as

882 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

q

v1

v2

1s

s2

s4

s3

Fig. 2. Illustration for Lemma 24.

those defined in section 4.1 for point sites. If we want to use the chain method or the
bridged-chain method, we need to do a further refinement that transforms the map
into a monotone map by adding vertical fictitious edges emanating from the fictitious
vertices previously inserted along the parabolic edges.

Lemma 23. The trapezoid method and the persistent search tree method are
native, and the chain method and the bridged-chain method are ordinary for extended
Voronoi diagrams of point and segment sites.

6.2. Explicit Voronoi diagrams. Let S be a set of n points and segment sites.
The extended Voronoi diagram V ′(S) of S is said to be explicit if the coordinates of
the vertices of V ′(S) are computed and stored with exact arithmetic, i.e., as algebraic
numbers [10, 59].

In the following lemma, we analyze the degree of test primitive left-right(q, e) for
a straight-line edge e of an explicit extended Voronoi diagram.

Lemma 24. The left-right(q, e) test primitive for a straight-line edge e in an ex-
plicit extended Voronoi diagram of point and segment sites in the plane has degree 64.

Proof. Let e ≡ (v1, v2), such that v1 ≡ (x1, y1) is equidistant from three segments
s1, s2, and s3 and v2 is from three segments s1, s2, and s4. See Figure 2.

We show that the test left-right(q, e) for determining whether the query point
q ≡ (xq, yq) is to the left or to the right of (v1, v2) has degree 64. Namely, let
aix+ biy+ ci = 0 (i = 1, 2, 3, 4) be the equation of the line containing segment si. In
an explicit Voronoi diagram, test primitive left-right(q, e), determines whether query
point q ≡ (xq, yq) is to the left or to the right of edge e ≡ (v1, v2), is equivalent to
evaluating the sign of the following determinant:

∆ =

∣∣∣∣∣∣
xq yq 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
xq yq 1
X1

W1

Y1

W1
1

X2

W2

Y2

W2
1

∣∣∣∣∣∣ = 1
W1W2

∣∣∣∣∣∣
xq yq 1
X1 Y1 W1

X2 Y2 W2

∣∣∣∣∣∣ = ∆′
W1W2

,

where

X1 =

∣∣∣∣∣∣
b1 c1

√
a2

1 + b21
b2 c2

√
a2

2 + b22
b3 c3

√
a2

3 + b23

∣∣∣∣∣∣ , Y1 =

∣∣∣∣∣∣
a1 c1

√
a2

1 + b21
a2 c2

√
a2

2 + b22
a3 c3

√
a2

3 + b23

∣∣∣∣∣∣ ,

W1 =

∣∣∣∣∣∣
b1 a1

√
a2

1 + b21
b2 a2

√
a2

2 + b22
b3 a3

√
a2

3 + b23

∣∣∣∣∣∣ ,

ROBUST PROXIMITY QUERIES 883

and X2, Y2, and W2 have similar expressions obtained by substituting in the above
determinants a3 with a4, b3 with b4, and c3 with c4. Evaluating the sign of ∆ is
equivalent to evaluating the signs of W1, W2 and of ∆′. In the rest of this proof
we show that evaluating the sign of ∆′ is a computation with degree 64. By using
the same technique, one can easily see that evaluating the signs of W1 and W2 is a
computation with degree 12.

We have

∆′ = xq(Y2W1 − Y1W2)− yq(X1W2 −X2W1) + (X2Y1 −X1Y2).(1)

By using the notation introduced in section 2, we can rewrite X1, and Y1 as
α3ρ1 + α3ρ2 + α3ρ3, W1 as α2ρ1 + α2ρ2 + α2ρ3, X2 and Y2 as α3ρ1 + α3ρ2 + α3ρ4,
and W2 as α2ρ1 +α2ρ2 +α2ρ4, where ρi =

√
a2
i + b2i (i = 1, . . . , 4). Considering that

xq and yq are expressions of type α and applying repeatedly Rules (1) and (2), we
obtain the expression

α8 + α6ρ1ρ2 + α6ρ1ρ3 + α6ρ1ρ4 + α6ρ2ρ3 + α6ρ2ρ4 + α6ρ3ρ4.

By means of the rewriting rules of section 2 we have

α8 + α6ρ1ρ2 + α6ρ1ρ3 + α6ρ1ρ4 + α6ρ2ρ3 + α6ρ2ρ4 + α6ρ3ρ4 −→(7)

(α8 + α6ρ2ρ3 + α6ρ2ρ4 + α6ρ3ρ4)2 − (α6ρ1ρ2 + α6ρ1ρ3 + α6ρ1ρ4)2 −→(1,2,3,4)

α16 + α14ρ2ρ3 + α14ρ2ρ4 + α14ρ3ρ4 −→(7)

(α16 + α14ρ2ρ3)2 − (α14ρ2ρ4 + α14ρ3ρ4)2 −→(1,2,3,4)

α32 + α30ρ2ρ3 −→(7)

α64 − α64 −→(3,4)

α64.

An algorithm for proximity queries on a set S of point and segment sites in
the plane is said to be conventional if it computes the explicit extended Voronoi
diagram V ′(S) of S and then performs point location queries on V ′(S) with a native
method. Note that the class of conventional proximity query algorithms includes all
the efficient algorithms presented in the literature. A conventional proximity query
algorithm needs to perform test primitive left-right(q, e). Thus, by Lemma 24 we
conclude Theorem 11.

Theorem 11. Conventional algorithms for the nearest neighbor query problem
on a set of point and segment sites in the plane have degree at least 64.

Our analysis shows that performing point location in an explicit Voronoi diagram
of points and segments is not practically feasible due to the high degree.

6.3. Implicit Voronoi diagrams. The definition of the implicit Voronoi dia-
gram V ∗(S) of a set of S of point and segment sites is a straightforward extension of
the definition for Voronoi diagrams of point sites given in section 4.3. Namely, V ∗(S)
stores the topological structure of the extended Voronoi diagram V ′(S) of S (e.g., the
data structure of [23]) and the following geometric information for each vertex and
edge:

• For each vertex v of V ′(S), V ∗(S) stores the semi-integer (b+ 1)-bit approx-
imations x∗(v) and y∗(v) of the x- and y-coordinates of v.
• For each nonhorizontal edge e of V ′(S), V ∗(S) stores the pair of sites `(e)

and r(e) such that e is a portion of the bisector of `(e) and r(e), and `(e) is
to the left of r(e).

In the implicit Voronoi diagram V ∗(S) of S, test left-right(q, e) is implemented
by comparing the distances of query point q from sites `(e) and r(e) with one of the

884 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

following tests, depending on the type (point or line) of sites `(e) and r(e): point-
to-lines distance test, point-to-point-line distance test, or point-to-points distance test.
Thus, by Lemmas 2–4, we have Lemma 25.

Lemma 25. For any native method on a class of maps that includes extended
Voronoi diagrams of point and segment sites in the plane, a point location query in an
implicit Voronoi diagram has degree 6 and has the same asymptotic time complexity
as a point location query in an explicit Voronoi diagram.

The implicit Voronoi diagram can be constructed in O(n log n) expected running
time by using the randomized incremental algorithm of [11]. The most demanding
operation is incircle test for three segments, which has degree 40 by Lemma 7 (see
also [9]). By a similar analysis as the one shown in sections 4 and 5, it is not hard to
show that both the y-ordering of the vertices of V (S) and the semi-integer approxima-
tion of the vertex coordinates can be performed without affecting the computational
cost and the degree of the computation of V (S).

Lemma 26. The implicit Voronoi diagram of a set of n point and segment sites
in the plane can be computed in O(n log n) expected time, O(n) space, and degree 40.

Lemmas 25 and 26 lead to the following theorem.
Theorem 12. Let S be a set of n point and segment sites in the plane. There

exists an O(n)-space data structure for S that can be computed in O(n log n) expected
time with degree 40 and supports nearest neighbor queries in O(log n) time with de-
gree 6.

7. Simplified implicit Voronoi diagrams. In this section, we describe a mod-
ification of implicit Voronoi diagrams of point sites that allows us to reduce the degree
of the preprocessing task from 5 to 4 when the sites are in the plane (see Theorems 6–
8), and from 7 to 5 when the sites are in 3D space (see Theorem 10). This modification
also has a positive impact on the space requirement of the data structure and on the
running time of point location queries.

Let V (S) be the Voronoi diagram of a set S of point sites in the plane. We recall
our standard assumption that all input parameters — such as coordinates of sites and
query points — are represented as b-bit integers.

An island of V (S) is a connected component of the map obtained from V (S)
by removing all the vertices with integer y-coordinate and all the edges containing
a point with integer y-coordinate. Note that for any two vertices v1 and v2 of an
island, y∗(v1) = y∗(v2) = m + 1

2 for some integer m, where y∗(v) is the semi-integer
approximation defined in section 4.3.

The simplified implicit Voronoi diagram V ◦(S) of S is a representation of the
Voronoi diagram V (S) of S that consists of a topological component and a geometric
component. The topological component of V ◦(S) is the planar embedding obtained
from V (S) by contracting each island of V (S) into an alias vertex. The geometric
component of V ◦(S) stores the following geometric information for each vertex and
edge of the embedding:

• For each vertex v that is also a vertex of V (S), V ◦(S) stores the (b + 1)-bit
semi-integers approximations x∗(v) and y∗(v).
• For each alias vertex a, which is associated with an island of V (S), V ◦(S)

stores semi-integer y∗(a) such that y∗(a) = y∗(v) for each vertex v of the
island.
• For each nonhorizontal edge e that is also an edge of V (S), V ◦(S) stores the

pair of sites `(e) and r(e) such that e is a portion of the perpendicular bisector
of `(e) and r(e), and `(e) is to the left of r(e).

The space requirement of the simplified implicit Voronoi diagram is less than
or equal to that of the implicit Voronoi diagram, since each island is represented

ROBUST PROXIMITY QUERIES 885

by a single alias vertex storing only its semi-integer y-approximation. We can show
examples where the simplified implicit Voronoi diagram of n point sites has O(n)
fewer vertices and edges than the corresponding implicit Voronoi diagram.

The following lemmas extend Lemmas 12–13 and can be proved with similar
techniques.

Lemma 27. For any native method on a class of maps that includes monotone
maps, a point location query in a simplified implicit Voronoi diagram has optimal
degree 2 and executes a number of operations less than or equal to a point location
query in the corresponding explicit Voronoi diagram.

Lemma 28. The simplified implicit Voronoi diagram of n point sites in the plane
can be computed in O(n log n) time, O(n) space, and with degree 4.

The main advantage of the simplified implicit Voronoi diagram with respect to the
degree cost measure is that the additional test primitive needed in the preprocessing
that consists of comparing the y-coordinates of two Voronoi vertices (see the proof of
Theorem 6) is now reduced to the comparison of two (b + 1)-bit semi-integers, and
thus has degree 1. Hence, the preprocessing for point location using a native method
for monotone maps has degree 1.

By the above discussion and Lemmas 27–28, we obtain the following theorem that
improves upon Theorem 6.

Theorem 13. Let S be a set of n point sites in the plane. There exists an O(n)-
space data structure for S, based on the simplified implicit Voronoi diagram V ◦(S),
that can be computed in O(n log n) time with degree 4 and supports nearest neighbor
queries in O(log n) time with optimal degree 2.

Using a similar approach, we can define simplified implicit order-k Voronoi dia-
grams for point sites in the plane and simplified implicit Voronoi diagrams for point
sites in 3D space. This reduces the degree of the preprocessing from 5 to 4 in Theo-
rems 7–8 and from 7 to 5 in Theorem 10.

8. Further research directions. Within the proposed approach, this paper
only addresses the issue of the degree of test computations and illustrates its impact
on algorithmic design in relation to a central problem in computational geometry.
However, several important related problems need further investigation and will be
reported on in the near future.

First, the methodological framework described in section 2 should be extended
to the computation of the degree of other classes of geometric primitives. Recently,
motivated in part by a preliminary version of this paper [45], Burnikel et al. [13] have
presented a new separation bound for arithmetic expressions involving square roots.

Also, since the degree of an algorithm expresses worst-case computational require-
ment occurring in degenerate or near-degenerate instances, special attention must be
devoted to the development of a methodology that reliably computes the sign of an
expression with the least expenditure of computational resources. This involves the
use of “arithmetic filters,” possibly families of filters, of progressively increasing power
that, depending upon the values of primitive variables, carefully adjust the computa-
tional effort (see, e.g., [4, 11, 29, 41]).

Next, one should carefully analyze the precision adopted in executing construc-
tions, so that the outputs are within the precision bounds required by the application.
In addition, each construction algorithm should be accompanied by a verification algo-
rithm, which not only checks for topological compliance of the output with the generic
member of its class (as, e.g., a Voronoi diagram must have the topology of a convex
map) as illustrated in [54] but more specifically verifies its topological agreement with
the structure emerging from the tests executed by the algorithm [47].

886 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

c

p2

l1

p3c’ c’
c

l 1

p2

1p

p3

c’

c

l 1

1p

p2

p3

c’

c

l 1

1p

p2

p3

(a) (b)

(c) (d)

1p

Fig. 3. Different cases for test (p1, p2, l1; p3).

Beyond these general methodological issues, the investigation reported in these
pages leaves some interesting open problems such as answering nearest neighbor
queries in subquadratic time and optimal degree for a set of points in 3D space or
improving the efficiency of the preprocessing stage in computing the implicit Voronoi
diagram of a set of sites.

We mention, in this respect, how the degree can impact the design of geometric
primitives adopted in existing algorithms for Voronoi diagrams of point and segment
sites. Let (a1, a2, a3; a4), with ai either a point or a segment, denote the incircle
test, where a4 is tested for intersection with circle(a1, a2, a3). Specifically, consider
(p1, p2, l1; p3), which can be answered with degree 12 [9]. We show that it can be
more efficiently executed as follows. First perform the test (p1, p2, p3; l1). Let c and
c′ be the centers of circle(p1, p2, l1) and circle(p1, p2, p3), respectively. Two cases are
possible: either circle(p1, p2, p3) intersects l1 or it does not. In the first case, p3

is inside circle(p1, p2, l1) if and only if c′ and p3 lie on opposite sides of line p1p2

through p1 and p2 (see Figures 3(a) and 3(b)). In the second case the answer to test
(p1, p2, l1; p3) depends on which side of p1p2 point p3 lies (see Figures 3(c) and 3(d)).
Thus, test (p1, p2, l1; p3) is reduced to test (p1, p2, p3; l1) that can be executed with
degree 8 (see [9]) and at most two other left-right tests of lower degree.

Finally, an important issue for future research deals with the experimental com-
parison between point location algorithms in implicit Voronoi diagrams and traditional
point location algorithms in explicit Voronoi diagrams. We are currently implement-
ing GeomLib, an object-oriented library for robust geometric computing that will

ROBUST PROXIMITY QUERIES 887

be accessible through the world wide web by using the architectural framework of
Mocha [6, 5].

Acknowledgment. The authors wish to thank the referees for several useful
suggestions.

REFERENCES

[1] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for computing
the Voronoi diagram of a convex polygon, Discrete Comput. Geom., 4 (1989), pp. 591–604.

[2] A. Aggarwal, M. Hansen, and T. Leighton, Solving query-retrieval problems by compacting
Voronoi diagrams, in Proc. 22nd Annu. ACM Sympos. Theory Comput., 1990, Association
for Computing Machinery, New York, pp. 331–340.

[3] F. Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure,
ACM Comput. Surv., 23 (1991), pp. 345–405.

[4] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec, Evaluating
Signs of Determinants Using Single-Precision Arithmetic, Research Report 2306, INRIA,
BP93, 06902 Sophia-Antipolis, France, 1994.

[5] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia, The Mocha algorithm animation
system, ACM Comput. Surv., 27 (1995), pp. 568–572.

[6] J. E. Baker, I. F. Cruz, G. Liotta, and R. Tamassia, Animating geometric algorithms over
the Web, in Proc. 12th Annu. ACM Sympos. Comput. Geom., Association for Computing
Machinery, New York, 1996, pp. C3–C4.

[7] J. L. Bentley and H. A. Maurer, A note on Euclidean near neighbor searching in the plane,
Inform. Process. Lett., 8 (1979), pp. 133–136.

[8] M. Bocher, Introduction to Higher Algebra, Macmillan, New York, 1907.
[9] C. Burnikel, Exact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D

thesis, Universität des Saarlandes, Mar. 1996.
[10] C. Burnikel, J. Könnemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig, Exact

geometric computation in LEDA, in Proc. 11th Annu. ACM Sympos. Comput. Geom.,
Association for Computing Machinery, New York, 1995, pp. C18–C19.

[11] C. Burnikel, K. Mehlhorn, and S. Schirra, How to compute the Voronoi diagram of line
segments: Theoretical and experimental results, in 2nd Annual European Symp. on Algo-
rithms, Lecture Notes Comput. Sci. 855, Springer-Verlag, Berlin, 1994, pp. 227–239.

[12] C. Burnikel, K. Mehlhorn, and S. Schirra, On degeneracy in geometric computations, in
Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 16–23.

[13] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra, A strong and easily computable
separation bound for arithmetic expressions involving square roots, in Proc. ACM-SIAM
Symposium on Discrete Algorithms, 1997.

[14] B. Chazelle, How to search in history, Inform. Control, 64 (1985), pp. 77–99.
[15] B. Chazelle, R. Cole, F. P. Preparata, and C. K. Yap, New upper bounds for neighbor

searching, Inform. Control, 68 (1986), pp. 105–124.
[16] B. Chazelle and H. Edelsbrunner, An improved algorithm for constructing kth-order

Voronoi diagrams, IEEE Trans. Comput., C-36 (1987), pp. 1349–1354.
[17] B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring technique, Algo-

rithmica, 1 (1986), pp. 133–162.
[18] B. Chazelle and L. J. Guibas, Fractional cascading: II. Applications, Algorithmica, 1 (1986),

pp. 163–191.
[19] K. L. Clarkson, Safe and effective determinant evaluation, in Proc. 33rd Ann. IEEE Sympos.

Found. Comput. Sci., IEEE Press, Piscataway, NJ, 1992, pp. 387–395.
[20] T. K. Dey, K. Sugihara, and C. L. Bajaj, Delaunay triangulations in three dimensions with

finite precision arithmetic, Comput. Aided Geom. Design, 9 (1992), pp. 457–470.
[21] D. P. Dobkin, Computational geometry and computer graphics, in Proc. IEEE, 80 (1992),

pp. 1400–1411.
[22] D. P. Dobkin and D. G. Kirkpatrick, Fast detection of polyhedral intersection, Theoret.

Comput. Sci., 27 (1982), pp. 241–253.
[23] D. P. Dobkin and M. J. Laszlo, Primitives for the manipulation of three-dimensional subdi-

visions, Algorithmica, 4 (1989), pp. 3–32.
[24] M. Edahiro, I. Kokubo, and T. Asano, A new point-location algorithm and its practical

efficiency: Comparison with existing algorithms, ACM Trans. Graph., 3 (1984), pp. 6–109.
[25] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone sub-

division, SIAM J. Comput., 15 (1986), pp. 317–340.

888 G. LIOTTA, F. P. PREPARATA, AND R. TAMASSIA

[26] H. Edelsbrunner and H. A. Maurer, Finding extreme points in three dimensions and solving
the post-office problem in the plane, Inform. Process. Lett., 21 (1985), pp. 39–47.

[27] H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms, ACM Trans. Graph., 9 (1990), pp. 66–104.

[28] S. Fortune, Stable maintenance of point set triangulations in two dimensions, in Proc. 30th
Ann. IEEE Sympos. Found. Comput. Sci., IEEE Press, Piscataway, NJ, 1989, pp. 494–505.

[29] S. Fortune, Numerical stability of algorithms for 2-d Delaunay triangulations, Internat. J.
Comput. Geom. Appl., 5 (1995), pp. 193–213.

[30] S. Fortune, Polyhedral modeling with multiprecision integer arithmetic, Comput. Aided De-
sign, to appear.

[31] S. Fortune and C. J. Van Wyk, Efficient exact arithmetic for computational geometry, in
Proc. 9th Annu. ACM Sympos. Comput. Geom., Association for Computing Machinery,
New York, 1993, pp. 163–172.

[32] S. Fortune and C. V. Wyk, Static analysis yields efficient exact integer arithmetic for com-
putational geometry, ACM Trans. Graphics, 15 (1996), pp. 223–248.

[33] S. J. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), pp. 153–
174.

[34] D. H. Greene and F. F. Yao, Finite-resolution computational geometry, in Proc. 27th Ann.
IEEE Sympos. Found. Comput. Sci., IEEE Press, Piscataway, NJ, 1986, pp. 143–152.

[35] L. J. Guibas, D. E. Knuth, and M. Sharir, Randomized incremental construction of Delau-
nay and Voronoi diagrams, Algorithmica, 7 (1992), pp. 381–413.

[36] L. J. Guibas, D. Salesin, and J. Stolfi, Epsilon geometry: Building robust algorithms from
imprecise computations, in Proc. 5th Ann. ACM Sympos. Comput. Geom., Association for
Computing Machinery, New York, 1989, pp. 208–217.

[37] L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Trans. Graph., 4 (1985), pp. 74–123.

[38] C. M. Hoffmann, The problems of accuracy and robustness in geometric computation, IEEE
Computer, 22 (1989), pp. 31–41.

[39] C. M. Hoffmann, J. E. Hopcroft, and M. T. Karasick, Robust set operations on polyhedral
solids, IEEE Comput. Graph. Appl., 9 (1989), pp. 50–59.

[40] B. Joe, Construction of three-dimensional Delaunay triangulations using local transforma-
tions, Comput. Aided Geom. Design, 8 (1991), pp. 123–142.

[41] M. Karasick, D. Lieber, and L. R. Nackman, Efficient Delaunay triangulations using ra-
tional arithmetic, ACM Trans. Graph., 10 (1991), pp. 71–91.

[42] D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983),
pp. 28–35.

[43] D. T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput., C-31
(1982), pp. 478–487.

[44] D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applica-
tions, SIAM J. Comput., 6 (1997), pp. 594–606.

[45] G. Liotta, F. P. Preparata, and R. Tamassia, Robust Proximity Queries in Implicit Voronoi
Diagrams, Technical Report CS-96-16, Center for Geometric Computing, Comput. Sci.
Dept., Brown Univ., Providence, RI, 1996.

[46] K. Mehlhorn and S. Näher, LEDA: A platform for combinatorial and geometric computing,
Comm. ACM, 38 (1995), pp. 96–102.

[47] K. Mehlhorn, S. Näher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and C. Uhrig,
Checking geometric programs or verification of geometric structures, in Proc. 12th Ann.
ACM Sympos. Comput. Geom., Association for Computing Machinery, New York, 1996,
pp. 159–165.

[48] V. J. Milenkovic, Verifiable implementations of geometric algorithms using finite precision
arithmetic, Artif. Intell., 37 (1988), pp. 377–401.

[49] E. Mücke, Detri 2.2: A robust implementation for 3d Triangulations, manuscript,
http://www.geom.umn.edu:80/software/cglist/lowdvod.html (1996).

[50] F. P. Preparata, A new approach to planar point location, SIAM J. Comput., 10 (1981),
pp. 473–482.

[51] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

[52] F. P. Preparata and R. Tamassia, Efficient point location in a convex spatial cell-complex,
SIAM J. Comput., 21 (1992), pp. 267–280.

[53] N. Sarnak and R. E. Tarjan, Planar point location using persistent search trees, Comm.
ACM, 29 (1986), pp. 669–679.

[54] K. Sugihara and M. Iri, Construction of the Voronoi diagram for ‘one million’ generators
in single-precision arithmetic, Proc. IEEE, IEEE Press, Piscataway, NJ, 80 (1992),
pp. 1471–1484.

ROBUST PROXIMITY QUERIES 889

[55] K. Sugihara, Y. Ooishi, and T. Imai, Topology-oriented approach to robustness and its
applications to several Voronoi-diagram algorithms, in Proc. 2nd Canad. Conf. Comput.
Geom., 1990, pp. 36–39.

[56] R. Tamassia and J. S. Vitter, Optimal cooperative search in fractional cascaded data
structures, Algorithmica, 15 (1996), pp. 154–171.

[57] C. Yap and T. Dubé, A Basis for Implementing Exact Geometric Algorithms, manuscript,
http://simulation.nyu.edu/projects/exact/references.html (1993).

[58] C. K. Yap, Symbolic treatment of geometric degeneracies, J. Symbolic Comput., 10 (1990),
pp. 349–370.

[59] C. K. Yap, Toward exact geometric computation, Comput. Geom., 7 (1997), pp. 3–23.

FAILURE DETECTION AND RANDOMIZATION:
A HYBRID APPROACH TO SOLVE CONSENSUS∗

MARCOS KAWAZOE AGUILERA† AND SAM TOUEG†

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 890–903

Abstract. We present a consensus algorithm that combines unreliable failure detection and ran-
domization, two well-known techniques for solving consensus in asynchronous systems with crash
failures. This hybrid algorithm combines advantages from both approaches: it guarantees deter-
ministic termination if the failure detector is accurate, and probabilistic termination otherwise. In
executions with no failures or failure detector mistakes, the most likely ones in practice, consensus
is reached in only two asynchronous rounds.

Key words. algorithms, reliability, agreement problem, asynchronous systems, Byzantine gen-
erals’ problem, consensus problem, crash failures, failure detection, fault-tolerance, message passing,
processor failures, randomized algorithms

AMS subject classifications. 68Q22, 68M15

PII. S0097539796312915

1. Introduction.

1.1. Motivation. A well-known result by Fischer, Lynch, and Paterson [14] is
that consensus cannot be solved in asynchronous systems with failures, even if com-
munication is reliable; at most one process may fail, and it can only fail by crashing.
Since this seminal paper, there has been intense research seeking to “circumvent” this
negative result (e.g., [4, 5, 6, 7, 10, 13, 22]).

One promising approach is the use of unreliable failure detection [2, 3, 6, 7, 11,
16, 17, 18, 19, 20, 21, 23]. Roughly speaking, this approach assumes that each process
has access to a local failure detector module that gives some (possibly inaccurate)
information on which processes may have failed. It turns out that consensus can be
solved with unreliable failure detectors that make an infinite number of mistakes,
provided that they satisfy some minimum properties [6, 7].

In particular, [7] presents a consensus algorithm with the following features. Even
if the information provided by the failure detectors is completely wrong, the algorithm
never violates safety; i.e., no two processes ever decide differently. During “good”
periods, when the failure detectors are reasonably accurate, processes reach consensus
within few asynchronous rounds; on the other hand, when a “bad” period occurs, i.e.,
when failure detectors lose their accuracy, the consensus algorithm may stop making
progress until the bad period is over. Such an algorithm is useful because, in practice,
good periods tend to be long while bad ones tend to be rare and short. However,
long bad periods do occasionally occur, and each time this happens the consensus
algorithm of [7] can be delayed for a long time.

In this paper, we seek an algorithm that terminates quickly when failure detec-
tion is accurate (i.e., during good periods) and that makes progress and terminates,
albeit more slowly, even if failure detection is inaccurate (i.e., during bad periods). We

∗Received by the editors November 27, 1996; accepted for publication (in revised form) March
4, 1998; published electronically December 23, 1998. This research was partially supported by NSF
grants CCR-9402896 and CCR-9711403, ARPA/ONR grant N00014-96-1-1014, and an Olin Fellow-
ship.

http://www.siam.org/journals/sicomp/28-3/31291.html
†Computer Science Department, Cornell University, Ithaca, NY 14853-7501 (aguilera@

cs.cornell.edu, sam@cs.cornell.edu).

890

A HYBRID APPROACH TO SOLVE CONSENSUS 891

achieve this goal by combining failure detection with randomization—another tech-
nique that was used to solve consensus in asynchronous systems [4]. In this hybrid
approach, randomization “kicks in” as a back-up to failure detection when failure
detectors are inaccurate. Further discussion of the relative merits of failure detection,
randomization, and this hybrid approach is postponed until section 7.

The idea of combining randomization and failure detection to solve consensus in
asynchronous systems first appeared in [12]. A related idea, namely, combining ran-
domization and deterministic algorithms to solve consensus in synchronous systems,
was explored in [15, 25]. A brief comparison with our results is given in section 8.

1.2. Main result. We focus on two of the major techniques to circumvent the
impossibility of consensus in asynchronous systems: randomization and unreliable
failure detection. The first one assumes that each process has a local random number
generator (denoted R-oracle) that provides random bits [4]. The second technique
assumes that each process has a local failure detector module (denoted FD-oracle)
that provides a list of processes suspected to have crashed [7]. Each approach has some
advantages over the other, and we seek to combine advantages from both.

With a randomized consensus algorithm, every process can query its local R-oracle
and use the oracle’s random bit to determine its next step. With such an algorithm,
termination is achieved with probability 1, within a finite expected number of steps
(for a survey of randomized consensus algorithms see [8]).

With a failure detector based consensus algorithm, every process can query its
local FD-oracle (which provides a list of processes that are suspected to have crashed)
to determine the process’s next step. Consensus can be solved with FD-oracles that
make an infinite number of mistakes. In particular, consensus can be solved with
FD-oracles that satisfy two properties, strong completeness and eventual weak accu-
racy . Roughly speaking, the first property states that every process that crashes is
eventually suspected by every correct process, and the second one states that some
correct process is eventually not suspected. These properties define the weakest class
of failure detectors that can be used to solve consensus [6].

In this paper we describe a hybrid consensus algorithm with the following proper-
ties. Every process has access to both an R-oracle and an FD-oracle. If the FD-oracle
satisfies the above two properties, the algorithm solves consensus (no matter how
the R-oracle behaves). If the FD-oracle loses its accuracy property but the R-oracle
works, the algorithm still solves consensus, albeit “only” with probability 1. In exe-
cutions with no failures or failure detector mistakes, the most likely ones in practice,
an optimized version of this algorithm reaches consensus in only two asynchronous
rounds.

2. Informal model. Our model of asynchronous computation is patterned after
the one in [14] and its extension in [6]. We only sketch its main features here. We
consider asynchronous distributed systems in which there is no bound on message
delay, clock drift, or the time necessary to execute a step. To simplify the presentation
of our model, we assume the existence of a discrete global clock. This is merely a
fictional device: the processes do not have access to it. We take the range T of the
clock’s ticks to be the set of natural numbers N.

The system consists of a set of n processes, Π = {p0, p1, . . . , pn−1}. Every pair
of processes is connected by a reliable communication channel. Up to f processes
can fail by crashing. A failure pattern indicates which processes crash, and when
they crash during an execution. Formally, a failure pattern F is a function from N
to 2Π, where F (t) denotes the set of processes that have crashed through time t.

892 MARCOS AGUILERA AND SAM TOUEG

Once a process crashes, it does not “recover”; i.e., ∀t : F (t) ⊆ F (t + 1). We define
crashed(F) =

⋃
t∈N F (t) and correct(F) = Π− crashed(F). If p ∈ crashed(F) we say

p crashes (in F) and if p ∈ correct(F) we say p is correct (in F).
Each process has access to two oracles: a failure detector, henceforth denoted the

FD-oracle, and a random number generator, henceforth denoted the R-oracle. When
a process queries its FD-oracle, it obtains a list of processes.1 When it queries its
R-oracle, it obtains a bit. The properties of these oracles are described in the two
next sections.

A distributed algorithm A is a collection of n deterministic automata (one for
each process in the system) that communicates by sending messages through reliable
channels. The execution of A occurs in steps as follows. For every time t ∈ T , at
most one process takes a step. Each step consists of receiving a message, querying the
FD-oracle, querying the R-oracle, changing state, and optionally sending a message
to one process. We assume that messages are never lost. That is, if a process does not
crash, it eventually receives every message sent to it.

A schedule is a sequence {sj}j∈N of processes and a sequence {tj}j∈N of strictly
increasing times. A schedule indicates which processes take a step and when they take
a step; for each j, process sj takes a step at time tj . A schedule is consistent (with
respect to a failure pattern F) if a process does not take a step after it has crashed
(in F). A schedule is fair (with respect to a failure pattern F) if each process that is
correct (in F) takes an infinite number of steps. We consider only schedules that are
consistent and fair.

2.1. FD-oracles. Every process p has access to a local FD-oracle module that
outputs a list of processes that are suspected to have crashed. If some process q
belongs to such list, we say that p suspects q.2 FD-oracles can make mistakes: it is
possible for a process p to be suspected by another even though p did not crash or for
a process to crash and never be suspected. FD-oracles can be classified according to
properties that limit the extent of such mistakes. We focus on one of the eight classes
of FD-oracles defined in [7], namely, the class of eventually strong failure detectors,
denoted �S. An FD-oracle belongs to �S if and only if it satisfies two properties:

Strong completeness. Eventually every process that crashes is permanently sus-
pected by every correct process (formally, ∃t ∈ T ,∀p ∈ crashed(F),∀q ∈
correct(F),∀t′ ≥ t : p ∈ FDt′

q , where FDt′
q denotes the output of q’s FD-

oracle module at time t′).
Eventual weak accuracy. There is a time after which some correct process is never

suspected by any correct process (formally, ∃t ∈ T ,∃p ∈ correct(F),∀t′ ≥
t,∀q ∈ correct(F) : p 6∈ FDt′

q).
It is known that �S is the weakest class of FD-oracles that can be used to solve

consensus [6].

2.2. R-oracles. Each process has access to a local R-oracle module that outputs
one bit each time it is queried. We say that the R-oracle is random if it outputs an
independent random bit for each query. For simplicity, we assume a uniform distribu-
tion; i.e., a random R-oracle outputs 0 and 1, each with probability 1/2.

2.3. Adversary power. When designing fault-tolerant algorithms, we often as-
sume that an intelligent adversary has some control on the behavior of the system;

1In general, the output of a failure detector is not restricted to be a list of processes [6, 1].
2In general, processes do not have to agree on the list of suspects at any one time or ever.

A HYBRID APPROACH TO SOLVE CONSENSUS 893

e.g., the adversary may be able to control the occurrence and the timing of process
failures, the message delays, and the scheduling of processes. Adversaries may have
limitations on their computing power and on the information that they can obtain
from the system. Different algorithms are designed to defeat different types of adver-
saries [8].

We now describe the adversary that our hybrid algorithm defeats. The adversary
has unbounded computational power and full knowledge of all process steps that
already occurred. In particular, it knows the contents of all past messages, the internal
state of all processes in the system,3 and all the previous outputs of both the R-oracle
and FD-oracle. With this information, at any time in the execution, the adversary
can dynamically select which process takes the next step, which message this process
receives (if any), and which processes (if any) crash. The adversary, however, operates
under the following restrictions: the final schedule must be consistent and fair, every
message sent to a correct process must be eventually received, and at most f processes
may crash over the entire execution.

In addition to the above power, we allow the adversary to initially select one of
the two oracles to control and possibly corrupt. If the adversary selects to control
the R-oracle, it can predict and even determine the bits output by that oracle. For
example, the adversary can force some local R-oracle module to always output 0 or
it can dynamically adjust the R-oracle’s output according to what the processes have
done so far.

If the adversary selects to control the FD-oracle, it can ensure that the FD-oracle
does not satisfy eventual weak accuracy. In other words, at any time the adversary
can include any process (whether correct or not) in the output of the local FD-oracle
module of any process. The adversary, however, does not have the power to disrupt
the strong completeness property of the FD-oracle. This is not a limitation in practice;
most failure detectors are based on time-outs and eventually detect all process crashes.

If the adversary does not control the R-oracle, then the R-oracle is random. If the
adversary does not control the FD-oracle, then the FD-oracle is in �S. We stress that
the algorithm does not know which one of the two oracles (FD-oracle or R-oracle) is
controlled by the adversary.

3. The consensus problem. In the uniform binary consensus problem, every
process p has some initial value vp ∈ {0, 1} and must decide on a value such that we
have the following:

Uniform agreement. If processes p and p′ decide v and v′, respectively, then v =
v′;

Uniform validity. If some process decides v, then v is the initial value of some
process;

Termination. Every correct process eventually decides some value.
For probabilistic consensus algorithms, Termination is weakened to the following:
Termination with probability 1. With probability 1, every correct process eventu-

ally decides some value.

4. Hybrid consensus algorithm. The hybrid consensus algorithm shown in
Figure 4.1 combines Ben-Or’s algorithm [4] with failure-detection and the rotating
coordinator paradigm used in [7]. With this paradigm, we assume that all processes
have a priori knowledge that during phase k, one selected process, namely, pk mod n,

3This is in contrast to the assumptions made by several algorithms, e.g., those that use crypto-
graphic techniques.

894 MARCOS AGUILERA AND SAM TOUEG

Every process p executes the following:

0 procedure consensus(vp) {vp is the initial value of process p}
x← vp {x is p’s current estimate of the decision value}
k ← 0

while true do
k ← k + 1 {k is the current phase number}

5 c← pk mod n {c is the current coordinator}
send (R, k, x) to all processes

wait for messages of the form (R, k, ∗) from n− f processes {“∗” can be 0 or 1}
if received more than n/2 (R, k, v) with the same v
then send (P, k, v) to all processes

10 else send (P, k, ?) to all processes

wait for messages of the form (P, k, ∗) from n− f processes {“∗” can be 0, 1 or ?}
if received at least f + 1 (P, k, v) with the same v 6= ? then decide v
if at least one (P, k, v) with v 6= ? then x← v else x← ?
send (S, k, x) to c

15 if p = c then
wait for messages of the form (S, k, ∗) from n− f processes
if received at least one (S, k, v) with v 6= ?
then send (E, k, v) to all processes
else

20 random bit← R-oracle {query R-oracle}
send (E, k, random bit) to all processes

wait until receive (E, k, v coord) from c or c ∈ FD-oracle {query FD-oracle}
if received (E, k, v coord)
then x← v coord

25 else if x = ? then x← R-oracle {query R-oracle}

Fig. 4.1. Hybrid consensus algorithm.

is the coordinator. The algorithm works under the assumption that a majority of
processes are correct (i.e., n > 2f). It is easy to see that this requirement is necessary
for any algorithm that solves consensus in asynchronous systems with crash failures,
even if all processes have access to a random R-oracle and an FD-oracle that belongs
to �S.

In the hybrid algorithm, every message contains a tag (R, P , S, or E), a phase
number, and a value which is either 0 or 1 (for messages tagged P or S, it could
also be “?”). Messages tagged R are called reports; those tagged with P are called
proposals; those with tag S are called suggestions (to the coordinator); and those with
tag E are called estimates (from the coordinator). When p sends (R, k, v), (P, k, v),
or (S, k, v), we say that p reports, proposes, or suggests v in phase k, respectively.
When the coordinator sends (E, k, v), we say that the coordinator sends estimate v
in phase k.

Each execution of the while loop is called a phase, and each phase consists of
four asynchronous rounds. In the first round (lines 4 to 7), processes report to each
other their current estimate (0 or 1) for a decision value.

In the second round (lines 8 to 13), if a process receives a majority of reports
for the same value then it proposes that value to all processes, otherwise it proposes
“?”. Note that it is impossible for one process to propose 0 and another process to
propose 1 in the same phase. At the end of the second round, if a process receives

A HYBRID APPROACH TO SOLVE CONSENSUS 895

f + 1 proposals for the same value different than ?, then it decides that value. If
it receives at least one value different than ?, then it adopts that value as its new
estimate, otherwise it adopts ? for an estimate.

In the third round (lines 14 to 16), processes suggest their estimates to the current
coordinator.

In the fourth round (lines 17 to 25), if the coordinator receives a value different
than ?, then it sends that value as its estimate. Otherwise, the coordinator queries
the R-oracle and sends the random value that it obtains as its estimate. Processes
wait until they receive the coordinator’s estimate or until their FD-oracle suspects the
coordinator. If a process receives the coordinator’s estimate, it adopts it. Otherwise,
if its current estimate is ?, it adopts a random value obtained from its R-oracle.

To simplify the presentation, the algorithm in Figure 4.1 does not include a halt
statement. Moreover, once a correct process decides a value, it will keep deciding the
same value in all subsequent phases. However, it is easy to modify the algorithm so
that every process decides at most once and halts at most one round after deciding.

5. Proof of correctness. The hybrid algorithm shown in Figure 4.1 always
satisfies the safety properties of consensus. This holds no matter how the FD-oracle
or the R-oracle behaves, that is, even if these oracles are totally under the control
of the adversary. On the other hand, the algorithm satisfies liveness properties only
if the FD-oracle satisfies strong completeness. Strong completeness is easy to achieve
in practice: most failure detectors use time-out mechanisms, and every process that
crashes eventually causes a time-out and, therefore, a permanent suspicion.

Assume that there is a majority of correct processes (i.e., n > 2f). We show the
following theorem.

Theorem 5.1.

(Safety) The hybrid algorithm always satisfies uniform validity and uniform
agreement.

(Liveness) Suppose that the FD-oracle satisfies strong completeness.
• If the FD-oracle satisfies eventual weak accuracy, i.e., it is in �S, then the

algorithm satisfies termination.
• If the R-oracle is random, then the algorithm satisfies termination with

probability 1.

Proof. We say that process p starts phase k if process p completes at least k − 1
iterations of the while loop. We say that process p reaches line n in phase k if process
p starts phase k and p executes past line n − 1 in that phase. We say that v is k-
locked if every process that starts phase k does so with its variable x set to v. When
ambiguities may arise, a local variable of a process p is subscripted by p; e.g., xp is
the local variable x of process p.

We first show the safety properties.

Lemma 5.2. Suppose k > 0. Then (1) it is impossible for a process to propose 0
and another one to propose 1 in the same phase k; and (2) it is impossible for a
process to suggest 0 and another to suggest 1 in the same phase k.

Proof. We prove (1) by contradiction: suppose that two processes p and q pro-
pose 0 and 1, respectively, in phase k. Thus, p received more than n/2 reports for 0
and q received more than n/2 reports for 1 in phase k. But then there is a process
that reports 0 to p and 1 to q in phase k, and this is impossible. This proves (1).

Now (2) follows from (1) since if a process suggests v 6= ? in phase k, then v was
proposed in phase k.

896 MARCOS AGUILERA AND SAM TOUEG

Lemma 5.3. If some process decides v in phase k > 0, then v is (k + 1)-locked.
Proof. Suppose some process p decides v in phase k > 0 (note that v 6= ?), and

let q be any process that starts phase k + 1. From the algorithm, p receives at least
f + 1 proposals for v in phase k (line 12). Let r be any process that suggests a value
in line 14 of phase k. Before suggesting (line 14), r waits for n−f proposals in line 11.
Because p receives f + 1 proposals for v, r must have received at least one proposal
for v. Moreover, by Lemma 5.2, r does not receive any proposals for v̄.4 So r sets xr
to v in line 13 and suggests v in phase k. Thus, (1) q sets xq to v in line 13, and
(2) the coordinator of phase k can only receive suggestions for v. In particular, the
coordinator does not receive ?. So, if the coordinator sends an estimate in phase k
(line 18), that estimate is also v. If q receives that estimate (line 22), then q resets xq
to v in line 24. Otherwise q does not modify xq (because xq is different than ?). In
either case, q starts phase k + 1 with xq = v.

Lemma 5.4. If a value v is k-locked for some k > 0, then every process that
reaches line 13 in phase k decides v in phase k.

Proof. Suppose v is k-locked for some k > 0. Then all reports sent in line 6 of
phase k are for v. Since n−f > n/2, every process that proposes some value in phase k
proposes v in line 9. Consider a process p that reaches line 13 in phase k. Clearly, p
receives n − f proposals (line 11) for v in phase k. Since n − f ≥ f + 1, p decides v
in phase k.

Corollary 5.5. If some process decides v in phase k > 0, then every process
that reaches line 13 in phase k + 1 decides v in phase k + 1.

Proof. The corollary is proved by Lemmas 5.3 and 5.4.
Corollary 5.6. (uniform agreement). If some processes p and p′ decide v and

v′ in phase k > 0 and k′ > 0, respectively, then v = v′.
Proof. For k = k′ the result follows from Lemma 5.2 and the fact that a process

can decide a value in a phase only if that value was proposed in the same phase.
Assume that k < k′. Since p′ decides in phase k′, then p′ reaches line 13 in ev-
ery phase r, k < r ≤ k′. Since p decides v in phase k, by Corollary 5.5, p′ decides v
in phase k + 1 ≤ k′. By additional applications of Corollary 5.5, we conclude
that p′ decides v in phase k′. Each process can decide at most once per phase,
so v = v′.

Corollary 5.7. (uniform validity). If some process p decides v, then v is the
initial value of some process.

Proof. Note v ∈ {0, 1}. If the initial values of all processes are not identical,
then v is clearly the initial value of some process. Now, suppose all processes have the
same initial value w. Thus, w is 1-locked. From Lemma 5.4, p decides w, and from
Corollary 5.6, w = v.

From now on we assume that the FD-oracle satisfies strong completeness, and
proceed to prove the liveness properties.

Lemma 5.8. Every correct process starts every phase k > 0.
Proof. The detailed proof is by a simple but tedious induction on k. We describe

only the central idea here. In each phase, there are four wait statements that can
potentially block processes (lines 7, 11, 16, 22). It is not possible for a correct process
to be blocked forever in any of the first three wait statements because at least n− f
processes are correct and send the messages that this process is waiting for. Consider
the fourth wait statement. Either the coordinator c sends its estimate to all processes
or c crashes. In the first case, every correct process receives this estimate. In the

4We denote by v̄ the binary complement of bit v.

A HYBRID APPROACH TO SOLVE CONSENSUS 897

function FavorableToss(r, u): bit {evaluated only at time u ≥ τk where k = 2r}
k ← 2r {k is the first phase in epoch r}
if some value v ∈ {0, 1} is k-major at time τk then return v

if by time u no process received n− f proposals in phase k + 1 then return 0 {u < τk+1}
if before time τk+1: {here u ≥ τk+1}

(a) 1 is k-major, and
(b) less than n/2 processes R-got a value in phase k, and
(c) the coordinator did not query the R-oracle in line 20 of phase k

then return 1
else return 0

Fig. 5.1. Favorable coin toss algorithm.

second case, c eventually appears on the list of suspects; i.e., c ∈ FD-oracle (because
the FD-oracle satisfies strong completeness). So no correct process waits forever at
the fourth wait statement of a phase.

Corollary 5.9. If a value v is k-locked for some k > 0, then every correct
process decides v in phase k.

Proof. The corollary is proved immediately from Lemmas 5.4 and 5.8.

Corollary 5.10. If some process decides v in phase k > 0, then every correct
process decides v in phase k + 1 (and thus in all subsequent phases).

Proof. The corollary is proved immediately from Corollary 5.5 and Lemma
5.8.

Lemma 5.11 (termination). If the FD-oracle satisfies eventual weak accuracy,
then every correct process decides.

Proof. If the FD-oracle satisfies eventual weak accuracy, then there is a time t0
after which (1) some correct process pm is never suspected by any correct process
and (2) only correct processes take steps (faulty ones crash before t0). Let ki be the

value of variable k of process pi at time t0. Let k̂ be the smallest phase after maxi{ki}
such that pm is the coordinator of phase k̂. Let q and r be arbitrary processes that
start phase k̂ + 1. Note that this occurs after time t0, so neither q nor r suspect the
coordinator pm in phase k̂. Thus, q and r set xq and xr to pm’s estimate in line 24.

Since this estimate is different from ? and unique for phase k̂, we have xq = xr = v

for some v 6= ? at the beginning of phase k̂ + 1. So v is (k̂ + 1)-locked. Therefore, by

Corollary 5.9, all correct processes decide v in phase k̂ + 1.

We now proceed to show that if the R-oracle is random, then the algorithm
satisfies termination with probability 1. For k > 0, let τk be the first time that any
process receives n− f proposals in phase k. From Lemma 5.8, for every k > 0, some
process receives n − f proposals in phase k, so τk is well defined. Note that in our
algorithm no process queries the R-oracle in phase k before time τk.

A process starts a phase with its variable x set to either 0 or 1 (never to ?). For
each k > 0, we say that a value v ∈ {0, 1} is k-major at time t if by time t more than
n/2 processes have started phase k with their variable x set to v. Clearly, for each
k > 0 and all times t and t′, it is impossible for 0 to be k-major at t and 1 to be
k-major at t′.

We say that a process p R-gets v in phase k at time t if either

1. in phase k at time t, p obtains v from the R-oracle in line 25 and sets xp to
v; or

898 MARCOS AGUILERA AND SAM TOUEG

2. in phase k, the coordinator obtains v from the R-oracle in line 20 and sends v
as its estimate to all processes, and p receives this estimate and sets xp to v in line 24
at time t.

Intuitively, a process p R-gets v if p sets xp to v, and p obtained v from an R-oracle
query (directly, or indirectly through the coordinator).

Lemma 5.12. For every k ≥ 1, if at time t a process p starts phase k+ 1 with xp
set to some value v ∈ {0, 1}, then v is k-major at time t or p R-gets v in phase k.

Proof. Consider phase k. Suppose p did not R-get v. Let t′ be the last time p
updates xp in phase k. Note that t′ < t. Then, at time t′, either (a) p receives the
estimate from the coordinator and the coordinator obtained that estimate from one
of its non-? suggestions; or (b) p sets xp in line 13. In both cases, more than n/2
processes must have reported v in phase k before time t′. Therefore, more than n/2
processes have started phase k by time t′ (and thus by time t) with their variable x
set to v.

An immediate consequence of Lemma 5.12 is that for every k ≥ 1, if v is never
k-major and no process R-gets v in phase k, then v̄ is (k + 1)-locked.

For the rest of the proof, we group pairs of phases into epochs as follows: epoch r
consists of phases 2r and 2r+ 1.5 We will define the concept of a “lucky” epoch—one
in which processes toss coins that cause the termination of the algorithm (no matter
what the adversary does). To do so, we first define function FavorableToss(r, u), given
in Figure 5.1. We say that epoch r is lucky if, for every process p and any time u, if p
queries the R-oracle in epoch r at time u, then p obtains FavorableToss(r, u) from the
R-oracle. Note that if p queries the R-oracle in epoch r at time u, this occurs after at
least one process receives n− f proposals in phase 2r. Thus, τ2r ≤ u, so the value of
FavorableToss(r, u) depends only on what occurred in the system up to time u.

Lemma 5.13. If the R-oracle is random, then the probability that some epoch is
lucky is 1.

Proof. The result is immediate from the following observation: for every r ≥ 1,
(a) the probability that epoch r is lucky is at least 2−(2n+2) (because in each phase
there are at most n+ 1 queries to the R-oracle, and the R-oracle is random), and (b)
for any r′ 6= r, the events “epoch r is lucky” and “epoch r′ is lucky” are independent
(because epochs r and r′ consist of disjoint sets of phases).

Lemma 5.14. For every r ≥ 1, if epoch r is lucky, then some value is (2r + 1)-
locked or (2r + 2)-locked.

Proof. Throughout the proof of this lemma, fix some arbitrary r ≥ 1 and assume
that epoch r is lucky. Let k = 2r; recall that epoch r consists of phases k and k + 1.
Since epoch r is lucky, if any process R-gets a value v at time t and in phase j = k
or j = k + 1, then v = FavorableToss(r, u) for some time u, τj ≤ u ≤ t (value v was
obtained either directly from the R-oracle or indirectly through the coordinator).

Case 1. Suppose some value v is k-major at time τk. By the definition of Fa-
vorableToss, for any u such that τk ≤ u, FavorableToss(r, u) = v. So, if a process
R-gets a value in phase k, that value is v. Note that v̄ is not k-major at any time. By
Lemma 5.12, v is (k + 1)-locked.

Case 2. Now assume that no value is k-major at time τk.
Case 2.1. Suppose that no value is k-major before time τk+1. Then for any u,

τk ≤ u, we have FavorableToss(r, u) = 0. By Lemma 5.12, every process p that starts
phase k+1 before time τk+1 does so with xp set to some value that p R-got in phase k,
and such value can only be 0. So all reports (and thus all proposals) sent in phase k+1

5Phase 1 is not part of any epoch.

A HYBRID APPROACH TO SOLVE CONSENSUS 899

before time τk+1 are for 0. From the definition of τk+1, there are at least n− f such
proposals for 0 in phase k + 1. By an argument similar to the one in the proof of
Lemma 5.3, value 0 is (k + 2)-locked.

Case 2.2. Now assume some value v is k-major before time τk+1.

Case 2.2.1. Suppose v = 0. Since 1 is never k-major, then for any time u such
that τk ≤ u, we have FavorableToss(r, u) = 0. So all processes that R-get a value in
phase k R-get 0. By Lemma 5.12, value 0 is (k + 1)-locked.

Case 2.2.2. Now assume v = 1. For any time u, τk ≤ u < τk+1, we have
FavorableToss(r, u) = 0. Let S be the processes that R-get a value in phase k be-
fore time τk+1; clearly, all processes in S R-get 0.

Case 2.2.2.1. Suppose |S| ≥ n/2. Then, for any time u, τk ≤ u,
FavorableToss(r, u) = 0. So, all processes that R-get in phase k + 1 R-get 0. Note
that |S| ≥ n/2 implies that 1 can never be (k + 1)-major. By Lemma 5.12, value 0 is
(k + 2)-locked.

Case 2.2.2.2. Now assume that |S| < n/2.

Case 2.2.2.2.1. Suppose that the coordinator of phase k does not query the R-
oracle in line 20 of phase k before time τk+1. Then, for any u such that τk+1 ≤ u, we
have FavorableToss(r, u) = 1. So, if the coordinator queries the R-oracle in line 20 of
phase k, it obtains 1 from the R-oracle. Therefore, all processes that R-get a value at
or after time τk+1 in phase k R-get 1. Thus, exactly |S| < n/2 processes R-get 0 in
phase k. Since 1 is k-major, from Lemma 5.12 we conclude that value 0 can never be
(k + 1)-major. Since no process queries the R-oracle in phase k + 1 before time τk+1,
all processes that R-get a value in phase k + 1 R-get 1. By Lemma 5.12, value 1 is
(k + 2)-locked.

Case 2.2.2.2.2. Now assume that the coordinator of phase k queries the R-oracle
in line 20 of phase k before time τk+1. Then the coordinator obtains 0 from the R-
oracle. So, for any u ≥ τk, we have FavorableToss(r, u) = 0. Since the coordinator
queries the R-oracle in line 20, it received n− f suggestions for ? in line 16, and this
occurred before time τk+1. Thus, n − f processes have set their variable x to ? in
line 13 in phase k before time τk+1. Note that if any such process starts phase k + 1,
then it R-gets a value in phase k and that value is 0, and thus, any such process starts
phase k + 1 with its variable x set to 0. Therefore, at most n − (n − f) = f < n/2
processes start phase k + 1 with their variable x set to 1. So 1 can never be (k + 1)-
major. All processes that R-get in phase k + 1 R-get 0. By Lemma 5.12, value 0 is
(k + 2)-locked.

Lemma 5.15 (termination with probability 1). If the R-oracle is random, then
the probability that all correct processes decide is 1.

Proof. The lemma is proved immediately from Lemmas 5.13 and 5.14 and Corol-
lary 5.9.

The proof of Theorem 5.1 is now complete: Uniform validity and uniform agree-
ment were shown in Corollaries 5.7 and 5.6, respectively. Termination was proved in
Lemma 5.11, and termination with probability 1 was shown in Lemma
5.15.

From the proof of Lemma 5.13, it is easy to see that the expected number of rounds
for termination is O(22n). However, it can be shown that, as in [4], termination is
reached in constant expected number of rounds if f = O(

√
n). In section 7, we outline

a similar hybrid algorithm that terminates in constant expected number of rounds,
even for f = O(n).

900 MARCOS AGUILERA AND SAM TOUEG

c← p0 {p0 is the first coordinator}
if p = c then send (E, 0, vp) to all processes {if p is the first coordinator}
wait until receive (E, 0, v coord) from c or c ∈FD-oracle {query FD-oracle}
if received (E, 0, v coord)
then send (P, 0, v coord) to all processes
else send (P, 0, ?) to all processes

wait for messages of the form (P, 0, ∗) from n− f processes {“∗” can be 0, 1 or ?}
if received at least f + 1 (P, 0, v) with the same v 6= ? then decide v
if received at least one (P, 0, v) with v 6= ? then x← v

Fig. 6.1. Optimization for the hybrid algorithm.

6. An optimization. The algorithm in Figure 4.1 was designed to be simple
rather than efficient, because our main goal here is to demonstrate the viability of a
“robust” hybrid approach (one in which termination can occur in more than one way:
by “good” failure detection or by “good” random draws). The following optimization
suggests that such hybrid algorithms can also be efficient in practice.

In many systems, failures are rare, and failure detectors can be tuned to seldom
make mistakes (i.e., erroneous suspicions). The algorithm in Figure 4.1 can be op-
timized to perform particularly well in such systems. The optimized version ensures
that all correct processes decide by the end of two asynchronous rounds when the first
coordinator does not crash and no process erroneously suspects it.6

This optimization is obtained by inserting some extra code between lines 2 and 3
of the hybrid algorithm. This code, given in Figure 6.1, consists of a phase (phase 0)
with two asynchronous rounds. In the first round, p0 sends a message to all processes;
in the second round, every process sends a message to all processes. We claim that
(1) the optimization code preserves the correctness of the original algorithm; and (2)
processes decide quickly in the absence of failures and erroneous suspicions. To see
(1), note the following:

1. No correct process blocks during the execution of the optimization code
(phase 0); i.e., all correct processes start phase 1.

2. Any process p that starts phase 1 does so with xp set to the initial value of
some process.

3. If some process decides v in phase 0, then v is 1-locked. Thus, (by Corol-
lary 5.9) all correct processes decide v in phase 1.

To see (2), note that if p0 is correct and no process suspects p0, then all processes
wait for its estimate v and propose v in phase 0; so every process receives n − f
proposals for v and, thus, decides v in phase 0. Thus, we have the following theorem.

Theorem 6.1. Theorem 5.1 holds for the optimized hybrid algorithm. Moreover,
in executions with no crashes or false suspicions, all processes decide in two rounds.

7. Discussion. In practice, many systems are well behaved most of the time:
few failures actually occur, and most messages are received within some predictable
time. Failure detector based algorithms (whether “pure” ones like in [7] or hybrid
ones like in this paper) are particularly well suited to take advantage of this: (time-
out based) failure detectors can be tuned so that the algorithms perform optimally

6Actually, decision occurs in two rounds even if up to n − 2f − 1 processes erroneously sus-
pect it.

A HYBRID APPROACH TO SOLVE CONSENSUS 901

when the system behaves as predicted, and performance degrades gracefully as the
system deviates from its “normal” behavior (i.e., if failures occur or messages take
longer than expected). For example, the optimized version of our hybrid algorithm
solves consensus in only two asynchronous rounds in the executions that are most
likely to occur in practice, namely, runs with no failures or erroneous suspicions.

The above discussion suggests that using this hybrid approach is better than
using the randomized approach alone. In fact, randomized consensus algorithms for
asynchronous systems tend to be inefficient in practical settings.7 Typically, their
performance depends more on “luck” (e.g., many processes happen to start with the
same initial value or happen to draw the same random bit) than on how “well behaved”
the underlying system is (e.g., on the number of failures that actually occur during
execution). The fact that randomized algorithms are extremely “robust,” i.e., they do
not depend on how the system behaves, may also be an inherent source of inefficiency.

Note that our hybrid algorithm terminates with probability 1 even if the FD-
oracle is completely inaccurate (in fact, even if every process suspects every other
process all the time). So it is more robust than algorithms that are simply failure
detector based.

An important remark is now in order about the expected termination time of our
hybrid algorithm. We developed this algorithm by combining Ben-Or’s randomized
algorithm [4] with the failure detection ideas in [7]. We selected Ben-Or’s algorithm
because it is the simplest and thus the most appropriate to illustrate this approach,
even though its expected number of rounds is exponential in n for f = O(n). By
starting from an efficient randomized algorithm, due to Chor, Merritt, and Shmoys
[9], we can obtain a hybrid algorithm that terminates in constant expected number
of rounds, as we now briefly explain.

Roughly speaking, the randomized asynchronous consensus algorithm in [9] is
obtained from Ben-Or’s algorithm by replacing each coin toss with the toss of a
“weakly global coin” computed by a coin toss procedure. We can do exactly the
same: replace the coin tosses of the algorithm in Figure 4.1 with those obtained by
using the coin toss procedure. More precisely, in each phase, every process (a) invokes
this procedure between the second and third rounds (i.e., between lines 13 and 14) to
obtain a random bit, and (b) uses this random bit rather than querying the R-oracle
(in lines 20 and 25).8

As in [9], this modified hybrid algorithm terminates9 in constant expected number
of rounds for f ≤ n (3 − √5) / 2 ≈ 0.38n. But also as in [9], and in contrast to
the algorithm in section 4, it assumes that the adversary cannot see the internal state
of processes or the content of messages. With the optimization of Figure 6.1, this
modified hybrid algorithm also terminates in two rounds in failure-free and suspicion-
free runs.

8. Related work. The idea of combining randomization with a deterministic
consensus algorithm appeared in [15] and was further developed in [25]. These works,
however, assume that the system is synchronous and do not use failure detectors.

Dolev and Malki were the first to combine randomization and unreliable failure

7Algorithms that assume that processes a priori agree on a long sequence of random bits [22, 24]
are more efficient than others. But this assumption may be too strong for some systems.

8As in [9], another simple modification is necessary: the addition of a “synchronization round”
just before the coin toss procedure. In this round, processes broadcast “wait” messages, then wait
until n− f such messages are received.

9Provided, of course, that the FD-oracle satisfies strong completeness.

902 MARCOS AGUILERA AND SAM TOUEG

detection to solve consensus in asynchronous systems with process crashes [12]. That
work differs from ours in many respects:

1. In contrast to our algorithm, those in [12] require that both R-oracle and
FD-oracle always work correctly.

2. In our hybrid algorithm, safety is always preserved; even if the failure detector
continuously misbehaves, no two processes ever decide differently. In contrast, with the
hybrid algorithms given in [12], if at any point the failure detector loses its accuracy
property, processes may decide differently.

3. Our goal is to use randomization to improve failure detector based algorithms.
We use randomization as a “back-up” to ensure termination in the occasional “bad”
periods when the failure detector loses its accuracy property.

Two goals of [12] are to use failure detection to increase the resiliency of random-
ized consensus algorithms, and to ensure their deterministic termination. The hybrid
consensus algorithms given in [12] achieve the first goal by increasing the resiliency
from f < n/2 to f < n, but not the second one. It is stated, however, that a future
version of the paper will give an algorithm that achieves both goals.

4. The two hybrid algorithms in [12] use failure detectors that are stronger
than �S (the failure detector that we use). The first algorithm—which supposes that
the same sequence of random bits is shared by all the processes, as in [22]—assumes
that some correct process is never suspected by any process. The second algorithm—
which drops the assumption of a common sequence of bits—assumes that Ω(n) correct
processes are never suspected by any process. Both algorithms reach consensus in
constant expected time.

Acknowledgments. We are grateful to Vassos Hadzilacos; some of our proofs
are based on his lecture notes. We would also like to thank the anonymous referees
for their valuable comments.

REFERENCES

[1] M. K. Aguilera, W. Chen, and S. Toueg, Heartbeat: A timeout-free failure detector for qui-
escent reliable communication, in Proc. of the 11th International Workshop on Distributed
Algorithms, Lecture Notes in Comput. Sci., Springer-Verlag, New York, 1997, pp. 126–140.
A full version is also available as Tech. report 97-1631, Department of Computer Science,
Cornell University, Ithaca, NY, 1997.

[2] M. K. Aguilera, W. Chen, and S. Toueg, Quiescent Reliable Communication and Quies-
cent Consensus in Partitionable Networks, Tech. report 97-1632, Department of Computer
Science, Cornell University, Ithaca, NY, 1997; revised version to appear in Theoret. Com-
put. Sci. as Using the heartbeat failure detector for quiescent reliable communication and
consensus in partitionable networks.

[3] O. Babaoğlu, R. Davoli, and A. Montresor, Failure Detectors, Group Membership and
View-synchronous Communication in Partitionable Asynchronous Systems (Preliminary
Version), Tech. report UBLCS-95-18, Department of Computer Science, University of
Bologna, Bologna, Italy, 1995.

[4] M. Ben-Or, Another advantage of free choice: Completely asynchronous agreement protocols,
in Proc. of the Second ACM Symposium on Principles of Distributed Computing, ACM,
New York, 1983, pp. 27–30.

[5] G. Bracha and S. Toueg, Resilient consensus protocols, in Proc. of the Second ACM Sym-
posium on Principles of Distributed Computing, ACM, New York, 1983, pp. 12–26. An
extended and revised version appeared as Asynchronous consensus and broadcast proto-
cols, J. Assoc. Comput. Mach., 32 (1985), pp. 824–840.

[6] T. D. Chandra, V. Hadzilacos, and S. Toueg, The weakest failure detector for solving
consensus, J. Assoc. Comput. Mach., 43 (1996), pp. 685–722.

[7] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable distributed systems,
J. Assoc. Comput. Mach., 43 (1996), pp. 225–267.

A HYBRID APPROACH TO SOLVE CONSENSUS 903

[8] B. Chor and C. Dwork, Randomization in Byzantine agreement, Adv. Comput. Res., 4 (1989),
pp. 443–497.

[9] B. Chor, M. Merritt, and D. B. Shmoys, Simple constant-time consensus protocols in real-
istic failure models, J. Assoc. Comput. Mach., 36 (1989), pp. 591–614.

[10] D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronism needed for dis-
tributed consensus, J. Assoc. Comput. Mach., 34 (1987), pp. 77–97.

[11] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi, Failure Detectors in Omission Failure
Environments, Tech. report TR96-1608, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, 1996.

[12] D. Dolev and D. Malki, Consensus Made Practical, Tech. report CS94-7, The Hebrew Uni-
versity of Jerusalem, 1994.

[13] C. Dwork, N. A. Lynch, and L. Stockmeyer, Consensus in the presence of partial synchrony,
J. Assoc. Comput. Mach., 35 (1988), pp. 288–323.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of distributed consensus with
one faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[15] O. Goldreich and E. Petrank, The best of both worlds: Guaranteeing termination in fast
randomized Byzantine agreement protocols, Inform. Process. Lett., 36 (1990), pp. 45–49.

[16] R. Guerraoui and A. Schiper, Non blocking atomic commitment with an unreliable failure
detector, in Proc. of the 14th IEEE Symposium on Reliable Distributed Systems, Bad
Neuenahr, Germany, IEEE Computer Society Press, Los Alamitos, CA, 1995, pp. 41–50.

[17] R. Guerraoui and A. Schiper, Consensus service: A modular approach for building agree-
ment protocols in distributed systems, in Proc. of the 26th IEEE International Symposium
on Fault-Tolerant Computing, IEEE Computer Society Press, Los Alamitos, CA, 1996,
pp. 168–177.

[18] M. Hurfin, A. Mostefaoui, and M. Raynal, Consensus in Asynchronous Systems Where
Processes Can Crash and Recover, Tech. report 1144, Institut de Recherche en Informa-
tique et Systèmes Aléatoires, Université de Rennes, 1997; Proc. 17th IEEE Symposium
on Reliable Distributed Systems (SRDS ’98), IEEE Computer Society Press, Washington,
DC, to appear.

[19] W.-K. Lo and V. Hadzilacos, Using failure detectors to solve consensus in asynchronous
shared-memory systems, in Proc. of the Eighth International Workshop on Distributed
Algorithms, Springer-Verlag, New York, 1994, pp. 284–295.

[20] D. Malkhi and M. Reiter, Unreliable intrusion detection in distributed computations, in Proc.
of the 10th IEEE Computer Security Foundations Workshop, IEEE Computer Society
Press, Los Alamitos, CA, 1997, pp. 116–124.

[21] R. Oliveira, R. Guerraoui, and A. Schiper, Consensus in the Crash-Recover Model,
Tech. report 97-239, Département d’Informatique, Ecole Polytechnique Fédérale, Lausanne,
Switzerland, 1997.

[22] M. Rabin, Randomized Byzantine generals, in Proc. of the 24th Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1983, pp. 403–409.

[23] A. Schiper, Early consensus in an asynchronous system with a weak failure detector, Distrib.
Comput., 10 (1997), pp. 149–157.

[24] S. Toueg, Randomized Byzantine agreements, in Proc. of the Third ACM Symposium on
Principles of Distributed Computing, ACM, New York, 1984, pp. 163–178.

[25] A. Zamsky, A randomized Byzantine agreement protocol with constant expected time and guar-
anteed termination in optimal (deterministic) time, in Proc. of the Fifteenth ACM Sym-
posium on Principles of Distributed Computing, ACM, New York, 1996, pp. 201–208.

AVERAGE PROFILE OF THE GENERALIZED DIGITAL SEARCH
TREE AND THE GENERALIZED LEMPEL–ZIV ALGORITHM∗

GUY LOUCHARD† , WOJCIECH SZPANKOWSKI‡ , AND JING TANG§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 904–934

Abstract. The goal of this research is threefold: (i) to analyze generalized digital search trees,
(ii) to derive the average profile (i.e., phrase length) of a generalization of the well-known parsing
algorithm due to Lempel and Ziv, and (iii) to provide analytic tools to analyze asymptotically
certain partial differential functional equations often arising in the analysis of digital trees. In the
generalized Lempel–Ziv parsing scheme, one partitions a sequence of symbols from a finite alphabet
into phrases such that the new phrase is the shortest substring seen in the past by at most b − 1
phrases (b = 1 corresponds to the original Lempel–Ziv scheme). Such a scheme can be analyzed
through a generalized digital search tree in which every node is capable of storing up to b strings.
In this paper, we investigate the depth of a randomly selected node in such a tree and the length of
a randomly selected phrase in the generalized Lempel–Ziv scheme. These findings and some recent
results allow us to compute the average redundancy of the generalized Lempel–Ziv code and compare
it to the ordinary Lempel–Ziv code, leading to an optimal value of b. Analytic techniques of (precise)
analyses of algorithms are used to establish most of these conclusions.

Key words. generalized Lempel–Ziv parsing scheme, generalized digital search trees, average
redundancy, partial differential functional equations, singularity analysis, asymptotic expansions,
depoissonization, Mellin transform

AMS subject classifications. 68Q25, 68P05

PII. S0097539796301811

1. Introduction. The heart of several universal data compression schemes is
the parsing algorithm due to Lempel and Ziv [23] (e.g., it is used in the UNIX
compress command and in a CCITT standard for data compression for modems).
It is a dictionary-based algorithm that partitions a sequence into phrases (blocks) of
variable sizes such that a new block is the shortest substring not seen in the past
as a phrase. Such a new phrase is coded by giving the location of the prefix (that
occurred before as a phrase) and the value of the last symbol; that is, the Lempel–
Ziv code consists of pairs (pointer, symbol) (details can be found in many text-
books, e.g., [3, 36]). For example, the sequence ababbababaaaaaaaaac is parsed into
(a)(b)(ab)(ba)(bab)(aa)(aaa)(aaaa)(c), and its code becomes 0a0b1b2a4b1a6a7a0c

(e.g., the pair 6a indicates that this phrase (aaa) consists of the sixth phrase as a prefix
that occurred before, appended by a). Observe that there is no need for a separator
between phrases. Let us compute the length of this code in bits, assuming a ternary
alphabet Σ = {a, b, c}. There are nine phrases; thus we need up to four (= dlog2 9e)
bits to code each pointer. Every terminal symbol requires two (= dlog2 3e) bits and
there are nine phrases in the code; hence the total length of the code is 9 ·4+9 ·2 = 54
bits.

∗Received by the editors April 2, 1996; accepted for publication (in revised form) May 7, 1997;
published electronically January 29, 1999. This research was partially supported by NSF grant NCR-
9206315 and NATO collaborative grant CRG.950060.

http://www.siam.org/journals/sicomp/28-3/30181.html
†Département d’Informatique, Université Libre de Bruxelles, B-1050 Brussels, Belgium

(louchard@ulb.ac.be).
‡Department of Computer Science, Purdue University, W. Lafayette, IN 47907 (spa@cs.

purdue.edu). The research of this author was additionally supported by NSF grants NCR-9415491,
CCR-9201078, and C-CR-9804760.
§Microsoft Co., One Microsoft Way, 1/2061 Redmond, WA 98052 (gcneta@microsoft.com).

904

ANALYSIS OF b-DST 905

It is known that the original Lempel–Ziv scheme does not cope very well with
some sequences; e.g., those containing a long string of repeated symbols. To somewhat
remedy this situation, Louchard and Szpankowski [27] introduced a generalization of
the Lempel–Ziv parsing scheme: It parses a sequence into phrases such that the
next phrase is the shortest phrase seen in the past by at most b − 1 phrases (b = 1
corresponds to the original Lempel–Ziv algorithm). For example, the sequence above
is parsed with b = 2 as follows: (a)(b)(a)(b)(ba)(ba)(baa)(aa)(aa)(aaa)(c), which has
seven distinct phrases and eleven phrases. The code for this new algorithm consists
of either (i) (pointer, symbol) when pointer refers to the first previous occurrence
of the prefix of the phrase and symbol is the value of the last symbol of this phrase
or (ii) just (pointer) if the phrase has occurred as a whole previously (i.e., it is the
second, third, . . . , or bth occurrence of this phrase). For example, the code for the
previously parsed sequence becomes, for b = 2, 0a0b122a33a1a55a0c (e.g., the phrase
2a occurs for the first time as a new phrase hence 2 refers to the second distinct phrase
appended by a, while code 5 represents a phrase that has its second occurrence as
the fifth distinct phrase). Observe that this code is of length 47 bits since there are
11 phrases, each requiring up to dlog2 7e = 3 bits, and seven symbols needing 14
additional bits (i.e., 47 = 11 · 3 + 7 · 2 = 47). We saved 7 bits! But the reader may
verify that the same sequence requires only 46 bits for b = 3 (so only 1 additional bit
is saved), while for b = 4 the bit count increases again to 52. This example suggests
that b = 3 is (at least local) optimum for the above sequence. Can one draw similar
conclusions “on average” for a typical sequence (i.e., generated randomly)? We shall
provide an answer to this and other questions in this paper.

Our goal is to investigate the probabilistic behavior of a typical phrase length,
that is, the length of a randomly selected phrase. As already observed in Louchard
and Szpankowski [26] (cf. [15]), the Lempel–Ziv algorithm can be modeled in two
ways, namely, as a digital tree model or a Lempel–Ziv model. In the former, one
constructs the Lempel–Ziv sequence from m (probabilistically) independent strings (of
possibly infinite lengths). For example, let m = 4 sequences be given: X1 = 0000 . . . ,
X2 = 1010 . . . , X3 = 1111 . . . , and X4 = 0101 Then, for b = 1 the Lempel–Ziv
sequence (0)(1)(11)(01) is of length L4 = 6 and a typical (i.e., randomly selected)
phrase is of average length 11

2 . In the Lempel–Ziv model there is only one sequence
of fixed length, say, n, and one partitions the sequences according to the Lempel–Ziv
algorithm as described above. Clearly, these models are related as already observed
in [15, 26]. We shall study both models in this paper.

Let us have a closer look at the digital tree model (cf. [26] for a more detailed
description). To justify its name we shall show how the Lempel–Ziv parsing (of m
strings) can be constructed by building an associated digital search tree (cf. [6, 20, 29]).
In this case, we consider an extension of digital search trees called b-digital search tree,
or (for short) b-DST (cf. [8, 29]) which is built from a fixed number, say, m, of strings.
Hereafter, we consider only the binary alphabet Σ = {0, 1}, but an extension to any
finite alphabet is straightforward. This tree is constructed as follows: In addition to
m given strings, we consider b empty strings that are stored in the root of the tree.
The remaining m strings are stored in an available space in a node which is not full,
i.e., containing less than b strings. The search for an available space follows the prefix
structure of a string. The rule is simple: if the next symbol in a string is 1 we move
to the left; otherwise we move to the right until either we find a node with less than
b strings or, if all nodes are full on this path, we create a new node. The details of
such a construction can be found in [8, 20, 29].

906 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

(1)
(1)

(11)

(0)
(0)

(10)
(10)

(01) (00)
(00)

(100)

Fig. 1. A 2-digital search tree representation of the generalized Lempel–Ziv parsing for the
string 1100101000100010011.

Now, we briefly discuss the Lempel–Ziv model. We recall that now we deal with
a single sequence of fixed length n which is partitioned according to the Lempel–
Ziv algorithm. As already discussed in [1, 26, 15], digital trees also can be used to
construct the Lempel–Ziv parsing. Indeed, let us first append the string with b empty
phrases that are stored in the root of the associated b-digital search tree. All other
phrases are stored in internal nodes and they are constructed on-line in the course
of building the associated b-DST. When a new phrase is created, the search starts at
the root and proceeds down the tree as directed by the input symbols of the string
exactly in the same manner as in the b-digital tree construction until either we find
a node with less than b phrases or we create a new node. In Figure 1 we show the
2-DST constructed from the sequence 1100101000100010011. Observe that for a fixed
length string, the number of nonroot nodes in the associated digital tree is a random
variable that is equal to the number of distinct phrases of the generalized Lempel–Ziv
scheme.

In this paper, we study both models in a probabilistic framework in which every
string is generated according to the Bernoulli model; that is, symbols are generated
in an independent manner with 0 and 1 occurring, respectively, with probability p and
q = 1−p. If p = q = 0.5, the Bernoulli model is symmetric; otherwise it is asymmetric.

Digital trees appear in a variety of computer and communications applications
including searching, sorting, dynamic hashing, codes, conflict resolution protocols for
multiaccess communications, and data compression (cf. [6, 8, 20, 29, 26, 27, 15, 39]).
Thus, better understanding of their behavior is desirable and could lead to some
algorithmic improvements. One parameter that is of interest to these applications
is the depth of a randomly (uniformly) selected node (i.e., the length of the path
from the root to the chosen node). It can represent the search time for a key word
or the length of a phrase in the generalized Lempel–Ziv algorithm (cf. Figure 1). In
this paper, we fully characterize the probabilistic behavior of the depth in a b-digital
search tree under the digital tree model. We derive asymptotic expansions for the
mean and the variance, as well as for large deviations and the limiting distribution
of the depth. In particular, we prove that the depth appropriately normalized is
asymptotically normally distributed in the asymmetric Bernoulli model.

ANALYSIS OF b-DST 907

The Lempel–Ziv model is somewhat more intricate since there is some unpleasant
dependency between consecutive phrases. Fortunately, Louchard and Szpankowski
[26] proved that this dependency is not too strong (cf. (24) in section 2 of this paper),
and one can infer the probabilistic behavior of the length of a randomly selected
phrase from the depth of a randomly selected node in a b-DST built from a fixed
number of nodes (i.e., in the digital tree model). In addition, using another recent
finding of Louchard and Szpankowski [28] (concerning redundancy of the ordinary
Lempel–Ziv code, i.e., for b = 1; cf. Savari [35]), we are able to compute the average
redundancy of the generalized Lempel–Ziv code. The average redundancy measures
how far the code is from being optimal for a given source of information (thus it
requires a precise asymptotic expansion for the average length of the Lempel–Ziv
sequence in the digital tree model). This allows us to determine theoretically the
optimal value of b that minimizes the average length of the generalized Lempel–Ziv
code (cf. Theorem 2.3 and the discussion thereafter).

We believe our contribution is also of a methodological nature: We establish
our results in a consistent manner by a technique that belongs to the toolkit of the
analytic analysis of algorithms. More precisely, Flajolet and Richmond [8] had already
observed that b-digital trees are harder to analyze than ordinary (b = 1) digital search
trees. The difficulty boils down ultimately to a solution of the following general
recurrence in xn. Let x1, . . . , xb be given. Then, for a given sequence an and a
constant u,

xn+b = an + u
n∑
k=0

(
n

k

)
pk(1− p)n−k(xk + xn−k), n ≥ 0(1)

(cf. recurrence (4) in section 2), which can be reduced to the following partial differ-
ential functional equation in terms of the Poisson generating function of xn defined
as X̃(z) =

∑
n≥0 xn

zn

n! e
−z:

b∑
i=0

(
b

i

)
∂iX̃(z)

∂zi
= Ã(z) + u(X̃(pz) + X̃(qz)),(2)

where q = 1− p (cf. (6) in section 2 and (30) and(31) in section 3).
The above recurrence can be solved exactly for b = 1 (cf. [38]), but attempts at

extensions to b > 1 have partially failed. Flajolet and Richmond [8] (cf. also [12]) used
a new technique to solve this recurrence for p = 1/2 (i.e., symmetric Bernoulli model).
Unfortunately, this technique seems to be restricted to the symmetric Bernoulli model
since some sums involved in the asymmetric Bernoulli model (i.e., p 6= 1/2) cease to
be harmonic sums. To circumvent this difficulty we devise another approach that is
asymptotic in nature. In order to accomplish this, we use some other techniques such
as analytical poissonization and depoissonization, singularity analysis, and Mellin
transforms.

In passing, we should mention that differential functional equations such as (2)
were discussed as early as 1924 by Flamant [10], who provided an iterative solution.
Our approach is completely different, and we present an asymptotic solution as z →∞
(which suffices to obtain an asymptotic solution of the original recurrence). Finally,
during the course of the analysis we face a problem of numerical evaluation of some
constants involving Mellin transforms. These constants are somewhat important since
they carry the information about the dependence of b on the final solution. We propose
here a method to evaluate numerically such constants (cf. section 3.3) that is of its

908 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

own interest and can be applied to other problems. We should mention that similar
numerical problems can be encountered in other analyses (cf. [18]).

Digital search trees for b = 1 have been analyzed in the past in the case of a
fixed number of independent strings (cf. [6, 14, 19, 20, 21, 24, 31, 32, 33, 38, 39]).
Much less is known about b-digital search trees. As mentioned, the first nontrivial
analysis of the size of such trees for the symmetric Bernoulli model was proposed by
Flajolet and Richmond [8]. The variance of the size and the internal path length—
still for the symmetric model—was discussed by Hubalek [12]. To the best of our
knowledge, b-DST have not yet been analyzed for the asymmetric Bernoulli model.
In a companion paper, Louchard [25] presents an alternative probabilistic approach
to obtain some of our results. He gets the limiting distribution (without the rate of
convergence) but not the large deviation results and precise evaluation of the moments
(see section 4.2 for the derivation of the asymptotic distribution in the symmetric case
using this approach). In [25] Louchard also evaluates the average number of nodes in
a b-digital search tree, thus directly extending the Flajolet and Richmond result [8]
to the asymmetric Bernoulli model.

For the original Lempel–Ziv parsing algorithm (b = 1) mostly only first-order
asymptotics (e.g., leading terms in almost sure convergence) have been analyzed (cf.
[41, 22, 23]), with exceptions being the work by Aldous and Shields [1] and recent
works of Louchard and Szpankowski [26] and Jacquet and Szpankowski [14] (see also
[30, 35, 39]). Finally, Gilbert and Kadota [11] analyzed numerically the number of
possible messages composed of m parsed phrases, as well as the length of a phrase in
the digital tree model.

The paper is organized as follows: In the next section, we present our main results
concerning the digital tree model and the generalized Lempel–Ziv scheme. Proofs are
deferred to sections 3 and 4, where in the former we treat the asymmetric Bernoulli
model and in the latter the symmetric case. The proofs are analytic with the exception
of the distribution in the symmetric Bernoulli model discussed in section 4.2.

2. Main results. We consider a b-digital tree built over m statistically indepen-
dent words. Let Dm(i) = Di(i) be the depth of the ith string (of infinite length) in
such a tree, that is, the length of a path from the root to a node containing the ith
string. In a variety of applications, one is interested in the typical depth Dm, defined
as the depth of a randomly selected string; that is,

Pr{Dm = k} =
1

m

m∑
i=1

P{Dm(i) = k}.(3)

As argued in Louchard and Szpankowski [26], the depth Dm is closely related
to the length of a randomly selected phrase in the generalized Lempel–Ziv parsing
scheme. We denote it DLZ

n , where n is the length of the string to be parsed. Our goal
is to study moments and distribution of Dm and DLZ

n and their dependence upon
parameter b.

2.1. Digital tree model. We now concentrate on the depth Dm in a b-DST
built over a fixed number, say, m, of independent strings generated according to an
asymmetric Bernoulli model (with 0 and 1 occurring, respectively, with probability p
and q = 1−p). Let Bkm be the expected number of strings on level k of a randomly built
b-digital search tree. From the above we immediately obtain Pr{Dm = k} = Bkm/m;
thus one can alternatively study the average Bkm, which is further called the average
profile. Let Bm(u) =

∑
k≥0B

k
mu

k be the generating function of the average profile.

ANALYSIS OF b-DST 909

A digital tree is a recursive structure. Suppose that there are m + b strings to
store. The root of such a tree contains b strings, and the remaining m strings are
split between the left subtree and the right subtree. If i strings go to the left subtree,
then its average profile is characterized by uBi(u), while uBm−i(u) is the generating
function for the right subtree. Finally, the probability that i strings end up in the
left subtree is equal to the probability that i out of m strings start with 0, and this is
equal to

(
m
i

)
piqm−i. Thus we have the following recurrence for m ≥ 0:

Bm+b(u) = b+ u
m∑
i=0

(
m

i

)
piqm−i (Bi(u) +Bm−i(u))(4)

with initial conditions

Bi(u) = i for i = 0, 1, . . . , b− 1.(5)

For b = 1 the above recurrence can be solved exactly as discussed in [37] (cf.
[26]). Unfortunately, for b > 1 the recurrence becomes too complicated and no exact
solution is known. This had been noted by Flajolet and Richmond [8] who developed
a special technique to deal with such recurrences for b > 1. Unfortunately again,
the technique of [8] was designed for the symmetric Bernoulli model and becomes
very intricate for the asymmetric Bernoulli models. The reason is that some sums
occurring in the solution of (4) cease to become harmonic sums in the asymmetric
case.

In view of this, we approach the general recurrence (4) from a different “angle.”
First of all, we “poissonize” the model; that is, we introduce the Poisson transform
(or Poisson generating function) as

B̃(u, z) =

∞∑
i=0

Bi(u)
zi

i!
e−z.

Then, the recurrence becomes a slightly more manageable differential functional equa-
tion, namely, (

1 +
∂

∂z

)b
B̃(u, z) = b+ u

(
B̃(u, pz) + B̃(u, qz)

)
,(6)

where (1 + ∂
∂z)bf(z)

def
=
∑b
i=0

(
b
i

)∂if(z)
∂zi . We shall study B̃(u, z) for z → ∞ in a cone

around the real axis and u in a compact set around u = 1. This will suffice to recover
asymptotics of Bm(u), as discussed in section 3.2.

In passing, we should point out that B̃(u, z) represents the average profile in
the so-called Poisson model in which the fixed number of strings is replaced by a
random number of strings according to a Poisson distribution with mean z. To take
full advantage of this new model, however, we shall postulate that z is a complex
variable. After “depoissonization” (cf. section 3.2) we expect that Bm(u) ∼ B̃(u,m).

In the next section, we use the Mellin transform [9], singularity analysis [7], and
the depoissonization lemma [16, 34] to solve (6) and to prove the following main result.
Below, we write log for natural logarithm.

910 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

Theorem 2.1 (asymmetric Bernoulli model).
(i) Let Dm be the typical depth in a b-digital tree built over m statistically inde-

pendent strings under the asymmetric Bernoulli model. Then

EDm =
1

h1
logm+

1

h1

(
h2

2h1
+ γ − 1−Hb−1 −∆(b, p) + δ1(m, b)

)
(7)

+ O

(
logm

m

)
,

Var Dm =
h2 − h2

1

h3
1

logm+O(1),(8)

where h1 = −p log p − q log q is the entropy of the Bernoulli(p) distribution, h2 =

p log2 p+q log2 q, and γ = 0.577 . . . is the Euler constant, while Hb−1 =
∑b−1
i=1

1
i , H0 =

0 are harmonic numbers. The constant ∆(b, p) can be computed as follows (see Table 1,
section 3.3, for numerical values):

∆(b, p) =

∞∑
n=2b+1

f̄n

b∑
i=1

(i+ 1)b!

(b− i)!n(n− 1) . . . (n− i− 1)
<∞,(9)

where f̄n is given recursively by
fm+b = m+

m∑
i=0

(
m

i

)
piqm−i(fi + fm−i), m > 0,

f0 = f1 = · · · = fb = 0,
f̄m+b = fm+b −m > 0, m ≥ 1.

Finally, δ1(x, b) is a fluctuating function with a small amplitude (cf. (48)) when
(log p)/(log q) is rational, and for any fixed b limx→∞ δ1(x, b) = 0 otherwise.

(ii) Let Gm(u) be the probability generating function of Dm (i.e., Gm(u) = EuDm),
µm = EDm, and σm =

√
Var Dm. Then, for complex τ ,

e−τµm/σmGm(eτ/σm) = e
τ2

2

(
1 +O

(
1√

logm

))
.(10)

Thus, the limiting distribution of Dm−µmσm
is normal, and it converges in moments (i.e.,

in mean of any order) to the appropriate moments of the standard normal distribution.
Also, there exist positive constants A and α < 1 (that may depend on p and b) such
that, uniformly in k for large m,

Pr

{∣∣∣∣Dm − c1 logm√
c2 logm

∣∣∣∣ > k

}
≤ Aαk,(11)

where c1 = 1/h1 and c2 = (h2 − h2
1)/h3

1.
The symmetric Bernoulli model must be treated differently since we shall prove

below that Var Dm = O(1), and hence a central limit theorem may not hold. We use
the Flajolet and Richmond [8] technique to establish an asymptotic distribution in
this case (cf. section 4.1). Using a probabilistic approach we also establish the exact
distribution of Dm (cf. section 4.2). Both results are summarized in Theorem 2.2
below.

ANALYSIS OF b-DST 911

Before we present our findings, we must introduce some additional notation. Let

Q(t) =

∞∏
k=0

(1 + t2−k),(12)

and for integer s and complex z we define

H(s) =
∂s

∂zs

(
1

Qb(−z)
)∣∣∣∣

z=1

;(13)

Ri(s) = − ∂s

∂zs

(
i∏

k=1

(1− z2k)−b
)∣∣∣∣∣

z=1

, R0(s) = −1.(14)

Theorem 2.2 (symmetric Bernoulli model).
(i) Let us consider the symmetric Bernoulli model (with p = q = 1/2). The mean

value EDm is given by (7), while the variance becomes

Var Dm =
1

12
+

1

L2

(
1 +

π2

6

)
+

1

L2

(
J ′′(0)− (J ′(0))2

)
(15)

+
1

L
δ2(log2m)− [δ2

1]0 +O

(
log2m

m

)
,

where L = h1 = log 2. Then

J ′(0) =

∫ 1

0

(
1

Q(t)b
− 1

)
dt

t
+

∫ ∞
0

1

Q(t)b
dt

t
(16)

and

J ′′(0) = −π
2

3
+ 2

∫ 1

0

(
1

Q(t)b
− 1

)
log t

t
dt+ 2

∫ ∞
0

1

Q(t)b
log t

t
dt,(17)

where J(s) is defined in (68) of section 4.1, δ2(·) is a periodic function with mean 0
and period 1, and [δ2

1]0 is a very small constant (e.g., [δ2
1]0 ≤ 10−10 for b = 1). More

precisely, as in Hubalek [12] with χk = 2kπi/L for k = ±1,±2, . . . ,

[δ2
1]0 =

1

L2

∑
k 6=0

I(χk)I(−χk)

Γ(2 + χk)Γ(2− χk)
,

where Γ(·) is Euler’s gamma function, and

I(χk) =
1

χk
+

∫ 1

0

(
Q−b(t)− 1

)
tχk−1dt+

∫ ∞
1

Q−b(t)tχkdt,

where I(s) is defined in (67) of section 4.1.
(ii) The exact distribution of Dm is given by

(18)

mPr{Dm ≤ j} = b− 1

(b− 1)!

j∑
k=1

(1− 2k)−b

× ∂b−1

∂zb−1

 z2b

(z − 1)2
(z−b − z−m)

∏
1≤`≤j:` 6=k

(
2−`z

1− (1− 2−`)z

)b∣∣∣∣∣∣
z=(1−2−k)−1

for any positive integer j.

912 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

(iii) Now let j = blog2mc+κ for a fixed integer κ, and define {log2m} = log2m−
blog2mc. Then the “asymptotic distribution” of Dm can be expressed as

lim
m→∞ | Pr{Dm ≤ blog2mc+ κ} −

∑
`+s+t=b−1

`,s,t ≥ 0

(s+ 1)

`!

∞∑
i=0

Ki(t)e
−2−(κ−{log2 m}−i)

2−(`−1)(i−(κ−{log2 m})

−
∑

s+t=b−1

(s+ 1)
∞∑
i=0

Ki(t)
(
e−2−(κ−{log2 m}−i) − 1

)
2κ−{log2 m}−i

∣∣∣∣∣ = 0,

where Ki(t) =
∑
s1+s2=t

(−1)t

s1!s2!Ri(s2)H(s1). Observe that the limiting distribution of
Dm does not exist due to the term {log2 n}.

In passing it should be noted that the “asymptotic distribution“ established in
part (iii) above resembles a “mixture” of double exponential distributions (i.e., e−2−x),
as in the case b = 1. An intuitive explanation for different behavior in the symmetric
case is given in [26], but this follows basically from the fact that Var Dm = O(1).
We should also point out that numerical values of J ′(0) and J ′′(0) can be found in
Hubalek [12].

2.2. Lempel–Ziv model. The situation is similar, but not the same, in the
Lempel–Ziv model, in which a sequence of fixed length n is parsed into random number
of phrases. Let Mn denote the number of full phrases produced by the algorithm (the
last incomplete phrase is ignored). We should mention that for b > 1 the number of
full distinct phrases, M ′n, is not equal to the total number of full phrases Mn. Also let
DLZ
n (i) be the length of the ith phrase in the Lempel–Ziv model, where 1 ≤ i ≤Mn.

By the typical phrase length DLZ
n we mean the length of a randomly selected phrase

(i.e., conditioned on Mn each phrase has probability 1/Mn of being selected).
The typical depth DLZ

n in the Lempel–Ziv model can be estimated as follows (cf.
[26]):

Pr{DLZ
n = k} =

mU∑
m=mL

Pr{DLZ
n = k|Mn = m}Pr{Mn = m},(19)

where mL and mU are lower and upper bounds for the number of phrases. It is easy to
see that there exist constants α1 > 0 and α2 <∞ such that mL = α1

√
n/b ≤Mn ≤

α2(n/b)/ log2(n/b) = mU . Indeed, the minimum number of phrases occurs only for

two strings: either all 0s or all 1s, and then n =
∑Mn

i=1D
LZ
n (i) ≤ b∑Mn

i=1 i, whence the

lower bound mL = Ω(
√
n/b). For the upper bound, we consider a complete binary

tree with the internal path length equal to n. Naturally, the number of nodes in such
a tree is O((n/b)/ log2(n/b)).

To estimate the probabilities appearing in (19) one seeks the limiting distribution
of Mn. This is a difficult problem even for b = 1, and only recently Jacquet and
Szpankowski [14] “cracked” it by showing that Mn appropriately normalized weakly
converges to the standard normal distribution. The case b > 1 is still unsolved;
however, the technique of [14] can handle this case, too. To see this, we first reduce the
problem to another one on the digital tree model. Indeed, observe that the following
relationship between Mn (Lempel–Ziv model) and Lm =

∑m
i=1Dm(i) (digital tree

model) takes place:

Mn = max

{
m : Lm =

m∑
i=1

Dm(i) ≤ n
}
,

ANALYSIS OF b-DST 913

which immediately implies

Pr{Mn ≥ m} = Pr{Lm ≤ n}.(20)

The above relationship is known as the renewal equation, and from Theorem 17.3 of
[2], we conclude the central limit theorem for Mn knowing it holds for Lm. The latter
is easier to handle but far from trivial; see [14] for details.

One finds a similar situation for the case b > 1; thus a central limit theorem
for the internal path length Lm should hold. The exponential generating function
L(z, u) =

∑∞
m=0Eu

Lm zm

m! of the probability generating function of Lm satisfies the
following partial-functional differential equation:

∂bL(z, u)

∂zb
= L(pzu, u)L(qzu, u).(21)

The arguments from [14] can be extended to b > 1, after some tedious labor, and one
can solve (21) asymptotically . We formulate our conclusions in a form of a fact that
follows from [14] but without providing any detailed derivation.

Fact 1. Consider the asymmetric Bernoulli model. Let c1 = 1/h1 and c2 =
(h2 − h2

1)/h3
1.

(i) The path length Lm in a b-digital search tree possesses the following limiting dis-
tribution

Lm − ELm√
Var Lm

→ N(0, 1),(22)

where N(0, 1) denotes the standard normal distribution, ELm = mEDm, Var Lm =
c2m logm+O(m), and the convergence is also in moments.

(ii) The number of phrases Mn of the generalized Lempel–Ziv parsing scheme
satisfies the following

Mn − EMn√
Var Mn

→ N(0, 1),(23)

where EMn ∼ nh1/ log n and Var Mn ∼ c2h3
1n/ log2 n. Moreover, all moments of Mn

converge to the appropriate moments of the normal distribution.
Having settled this, we can return to evaluating the limiting distribution of the

phrase length DLZ
n . According to (19), one needs to estimate the conditional proba-

bility Pr{DLZ
n = k|Mn = m}. It is tempting to assume that it is equal to Pr{Dm = k}

(the latter refers to the probability distribution of the depth in the digital tree model).
But this is untrue due to the fact that in the Lempel–Ziv model we consider only those
digital search trees whose internal path length is fixed and equal to n. Clearly, this
restriction affects the depth of a randomly selected phrase. A mathematical form of
this dependency is actually written down in (20). We can use exactly the same ar-
guments as in Louchard and Szpankowski [26] (cf. section III-B of [26]) to show that,
for b > 1,

Pr{DLZ
n = k|Mn = m} =

(
1 +O

(√
(log n)/n

))
Pr{Dm = k}(24)

holds as long as k = O(EDm) = O(logm). This would particularly imply (using Fact
1(ii)) that, for complex ϑ,

EeϑD
LZ
n ∼ EeϑDnh1/ logn

asymptotically as n→∞ (cf. [26] for details).

914 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

In summary, the second main result concerning the Lempel–Ziv model is presented
below (for simplicity we formulate it only for the asymmetric case).

Theorem 2.3. Consider the asymmetric Bernoulli model. Let DLZ
n be the length

of a randomly selected phrase in the generalized Lempel–Ziv scheme that partitions a
string of length n. Then

DLZ
n − c1 log(nh1/ log n)√

c2 log(nh1/ log n)
→ N(0, 1).(25)

More precisely, for complex ϑ,

e−ϑc1
√

log(nh1/ logn)E
(
eϑD

LZ
n /
√

log(nh1/ logn)
)

= ec2ϑ
2/2
(

1 +O
(

1/
√

log(n/ log n)
))

.

(26)
Furthermore, there exist two positive constants A′ and α1 < 1 such that

Pr

{∣∣∣∣∣DLZ
m − c1 log(nh1/ log n)√

c2 log(nh1/ log n)

∣∣∣∣∣ > k

}
≤ A′αk1(27)

uniformly in k for large m, where c1 = 1/h1 and c2 = (h2 − h2
1)/h3

1 as before.
The symmetric Bernoulli model can be handled in a similar manner, but its

formulation is too complicated to be presented in a compact form. It is described by a
similar formula as for the digital tree model with m replaced by n/ log2 n. Naturally,
the limiting distribution does not exist as such but some limiting theorem can be
formulated, as in the case of the digital tree model (cf. Theorem 2.2(iii)).

Finally, in order to find an optimal b that possibly asymptotically minimizes the
generalized Lempel–Ziv code length, we shall deal with the average redundancy r̄n
defined as

r̄n =
E`n − nh1

n
,

where `n is the length of the generalized Lempel–Ziv code and the expectation is
taken with respect to the underlying probability measure. As explained in section 1,
the data compression code for the generalized Lempel–Ziv scheme consists of pairs of
numbers, one being a pointer to the previous occurrence of the prefix of the phrase
and the second number either containing the last symbol of a new phrase in the case
it is the first phrase among b identical phrases or otherwise being empty. Clearly, the
length `n of such a code depends on two parameters, namely, the number of phrases
Mn and the number of distinct phrases M ′n, and it can be computed (for a binary
alphabet) as

`n = Mn logM ′n + log 2 ·
Mn∑
i=1

Ii,(28)

where Ii is equal to 1 if the ith phrase consists of a previously occurring prefix and an
additional symbol and 0 otherwise (in the case of a general alphabet Σ of size |Σ| the
log 2 factor in the second term of (28) should be replaced by log |Σ|). In the above,
for simplicity of presentation, the length `n is expressed in nats instead of bits since
we use natural logarithm logM ′n instead of log2M

′
n. We should also point out that

a particular implementation of the algorithm may lead to a slightly different formula

ANALYSIS OF b-DST 915

for `n but here we ignore these differences, concentrating only on the mathematical
analysis.

It is not difficult to see (especially, if one considers the associated digital tree, as
discussed in section 1), that

E

Mn∑
i=1

Ii = EM ′n.

Thus, `n = E(Mn logM ′n)+log 2·EM ′n. But, as in [28], we notice thatE(Mn logM ′n) =
(EMn) logEM ′n +O(1/ log n). To estimate EMn we observe that it is related to the
internal path length in the associated digital tree, and ELm = mEDm (cf. (20)).
As in Louchard and Szpankowski [28], we conclude that EMn ∼ xn, where xn is a
solution of ELxn = n; that is,

xn =
nh1

log n

(
1 +

log log n

log n
+
A− log h1

log n
+O

(
(log log n)2

log2 n

))
.

Here −A is h1 times the Θ(1) term in (7) of Theorem 2.1(i); that is,

A = 1 +Hb−1 + ∆(b, p)− h2

2h1
− γ − δ1(m, b).

In a similar fashion we can estimate EM ′n; however, one should observe that M ′n
is related to the size of the associated b-DST. More precisely, if Sm is the size of a
b-DST built from m strings, then M ′n = SMn

−1 (since we count only nonroot nodes).
However, according to Flajolet and Richmond [8] (symmetric case) and Louchard [25]
(asymmetric case),

ESm = m (q0(b) + δ2(m, b)) +O(1),

where q0(b) is a constant that can be computed explicitly. For example, Flajolet and
Richmond [8] proved that

q0(b) =
1

log 2

∫ ∞
0

(
1 + t

Q(t)

)b
dt

1 + t
,

where, as in (12), Q(t) =
∏∞
j=0(1 + t2−j). In particular, q0(1) = 1, and the authors

of [8] computed q0(2) = 0.5747, q0(3) = 0.4069, and so on. For large b, one derives
that q0(b) ∼ 1/(b log 2). In summary, EM ′n ∼ xn(q0(b) + δ2(n, b)).

Putting everything together, and using the approach from [28], we finally arrive
at the following formula for the average redundancy of the generalized Lempel–Ziv
code:

r̄n(b) = h1

1− γ − h2

2h1
+ ∆(b, p) +Hb−1 + q0(b) log 2 + log q0(b)− δ(n, b)

log n

+O

(
log log n

log2 n

)
,

where δ(·) is a fluctuating function with a small amplitude, and the other quantities
are defined as above.

916 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

It may be interesting to compare the average redundancy for different values of
b hoping that there exists an optimal value of b. For example, for the symmetric
Bernoulli model with a binary alphabet, we obtain

r̄n(1) =
2.27 + δ(n)

log2 n
+O

(
log log n

log2 n

)
,

r̄n(2) =
1.98 + δ(n)

log2 n
+O

(
log log n

log2 n

)
,

r̄n(3) =
1.89 + δ(n)

log2 n
+O

(
log log n

log2 n

)
,

r̄n(∞) =
1.71 + δ(n)

log2 n
+O

(
log log n

log2 n

)
.

Furthermore, some recent preliminary experimental results (cf. [13]) carried out on
structured ASCII files indicate that a practical saving can be achieved for b > 1,
and this is particularly true for large alphabets (e.g., image), as already indicated in
section 1. We should point out that these experimental findings are very sensitive
to implementation issues. For example, a particular implementation can add Ω(Mn)
bits which contribute Ω(1/ log n) to the expected redundancy r̄n. Observe that the
leading term of r̄n is only of order Ω(1/ log n).

3. Analysis of the asymmetric Bernoulli model. In this section, we prove
Theorem 2.1 concerning the digital tree model in the asymmetric Bernoulli model.
After establishing recurrences for the mean and variance, we proceed to derive the
asymptotics of these quantities. We first deal with the Poisson model (section 3.1), and
then depoissonize the results (section 3.2). Special attention is devoted to computing
a certain constant arising in the analysis (section 3.3). Finally, we show how to derive
the limiting distribution for Dm (section 3.4).

3.1. Analysis of moments in the Poisson model. As defined in section 2.1,
Bm(u) is the generating function of the average profile Bkm. Observe that Bm(1) = m,
and EDm = B′m(1)/m, and B′′m(1)/m = E{Dm(Dm−1)} = VarDm−EDm+(EDm)2.
Thus,

Var Dm =
B′′m(1)

m
+
B′m(1)

m
−
(
B′m(1)

m

)2

.(29)

We will use the above formulas to derive asymptotics of EDm and Var Dm as m→∞.
Our approach is analytic, and as mentioned in the previous section, we first derive

the mean and the second factorial moment of the average profile in the Poisson model,
that is, the first and the second derivative with respect to u at u = 1 of B̃(u, z). Since

B̃(u, z) is analytic (jointly in u and z), one immediately obtains(
1 +

∂

∂z

)b
B̃u(u, z) =

(
B̃(u, pz) + B̃(u, qz)

)
+ u

(
B̃u(u, pz) + B̃u(u, qz)

)
,(

1 +
∂

∂z

)b
B̃uu(u, z) = 2

(
B̃u(u, pz) + B̃u(u, qz)

)
+ u

(
B̃uu(u, pz) + B̃uu(u, qz)

)
.

Let B̃u(1, z) = X̃(z), B̃uu(1, z) = W̃ (z), which suffice to compute the mean and
the variance of Dm, as previously indicated. Then

ANALYSIS OF b-DST 917(
1 +

∂

∂z

)b
X̃(z) = z + X̃(pz) + X̃(qz),(30) (

1 +
∂

∂z

)b
W̃ (z) = 2

(
X̃(pz) + X̃(qz)

)
+
(
W̃ (pz) + W̃ (qz)

)
.(31)

Our goal is now to solve (30) and (31) asymptotically (as z → ∞ in a cone
around <(z) > 0). It is well known that equations like these are amiable to attack
by the Mellin transform. To recall, for a function f(x) of real x, we define its Mellin
transform F (s) as

F (s) =M[f(t); s] =

∫ ∞
0

f(t)ts−1dt.

In some of our arguments (e.g., depoissonization in section 3.2 and singularity analysis
in section 4.1), we could use either Mellin transform of a complex variable function
f(z) or an analytic continuation argument. It is known (cf. [5, 16]) that as long
as arg(z) belongs to some cone around the real axis, the Mellin transform F (s) of a
function f(x) of a real argument and its corresponding function of a complex argument
is the same. Therefore, we work most of the time with the Mellin transform of a
function of real variable as defined above.

Now let

X(s) =M[X̃(t); s] = Γ(s)γ(s),(32)

Y (s) =M[W̃ (t); s] = Γ(s)β(s),(33)

where Γ(s) is the classical gamma function, and we aim to compute γ(s) and β(s).
They exist in a proper strip as proved in the following lemma.

Lemma 3.1. The following is true: (i) X(s) exists for <(s) ∈ (−b− 1,−1), and
Y (s) is defined for <(s) ∈ (−2b− 1,−1).

(ii) Furthermore, γ(−1 − i) = 0 for i = 1, . . . , b − 1, γ(−1 − b) = (−1)b+1, and
β(−1− i) = 0 for i = 1, . . . , b, and γ(s) has simple poles at s = −1, 0, 1, . . .

Proof. By recurrence (4), we have Bi(u) = i for i = 0, 1, . . . , b and thus Bi(u) =

b + (i − b)u for i = 1 + b, . . . , 2b. Taking derivatives, we obtain ∂Bi(u)
∂u = 0 for

i = 0, 1, . . . , b and ∂Bi(u)
∂u = i − b for i = b, 1 + b, . . . , 2b. Furthermore, the second

derivative becomes ∂2Bi(u)
∂u2 = 0 for i = 0, 1, . . . , 2b. Hence, for z → 0,

X̃(z) =
(
z(b+1)/(b+ 1)! + 2z(b+2)/(b+ 2)! + 3z(b+3)/(b+ 3)! +O(zb+4)

)
e−z

= z(b+1)/(b+ 1)! +O(zb+2) as z → 0,

W̃ (z) = O(z2b+1) as z → 0.

However, for z → ∞ we conclude from (30) and (31) that X̃(z) = O(z log z) and

W̃ (z) = O(z log2 z). Thus, the first part of the lemma is proven. Part (ii) follows
directly from the lemma below and (38).

Lemma 3.2. Let {fn}∞n=0 be a sequence of real numbers, and suppose that its Pois-

son generating function F̃ (z) =
∑∞
n=0 fn

zn

n! e
−z is an entire function. Furthermore,

let its Mellin transform F (s) have the factorization F (s) = M[F̃ (z); s] = Γ(s)γ(s),
and assume that F (s) exists for <(s) ∈ (−2,−1) while γ(s) is analytic for <(s) ∈
(−∞,−1). Then

918 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

γ(−n) =
n∑
k=0

(
n

k

)
(−1)kfk for n ≥ 2.(34)

Proof. Let a sequence {gn}∞n=0 be such that F̃ (z) =
∑∞
n=0 gn

zn

n! , that is (cf. [8]),

gn =

n∑
k=0

(
n

k

)
(−1)n−kfk, n ≥ 0.

Now define, for some fixed N ≥ 2, the function F̃N (z) =
∑N−1
n=0 gn

zn

n! . Due to our
assumptions, we can analytically continue F (s) to the whole complex plane except
s = −2,−3, . . . In particular, for <(s) ∈ (−N,−N + 1), we have

F (s) =M[F̃ (z)− F̃N (z); s].

(The above is true since a polynomial in z such as F̃N (z) can only shift the fundamental
strip of the Mellin transform but cannot change its value [9].) As s → −N , due to
the assumed factorization F (s) = Γ(s)γ(s), we have

F (s) =
1

s+N

(−1)N

N !
γ(−N) +O(1);

thus, by the inverse Mellin transform, we have

F̃ (z)− F̃N (z) =
(−1)N

N !
γ(−N)zN +O(zN+1) as z → 0.(35)

But

F̃ (z)− F̃N (z) =
∞∑
i=N

gn
zn

n!
= gN

zN

N !
+O(zN+1).(36)

Thus, by comparing (35) and (36), we prove that

γ(−N) = (−1)NgN =

N∑
k=0

(
N

k

)
(−1)kfk for N ≥ 2.

Now we are in a position to compute the Mellin transforms of X̃(z) and W̃ (z).
From (30) and (31), after taking Mellin transforms and using (32) and (33), we obtain

b∑
i=0

(
b

i

)
(−1)iγ(s− i) = (p−s + q−s)γ(s),

b∑
i=0

(
b

i

)
(−1)iβ(s− i) = 2(p−s + q−s)γ(s) + (p−s + q−s)β(s),

and, by Lemma 3.1, γ(s) exists at least in <(s) ∈ (−b − 1,−1), while β(s) is well
defined in the strip <(s) ∈ (−2b− 1,−1). To simplify the above equations, we define,
for any function g(s),

ĝ(s) =

b∑
i=1

(
b

i

)
(−1)i+1g(s− i),(37)

ANALYSIS OF b-DST 919

provided g(s− 1), . . . , g(s− b) exist. Then

γ(s) =
1

1− p−s − q−s
b∑
i=1

(
b

i

)
(−1)i+1γ(s− i) =

1

1− p−s − q−s γ̂(s),(38)

β(s) =
1

1− p−s − q−s
b∑
i=1

(
b

i

)
(−1)i+1β(s− i) +

2(p−s + q−s)
1− p−s − q−s γ(s)(39)

=
1

1− p−s − q−s β̂(s) +
2(p−s + q−s)

(1− p−s − q−s)2
γ̂(s).

Now let sk, k = 0,±1,±2, . . . , be roots of 1 − p−s − q−s = 0. Observe that
s0 = −1. Actually, sk were studied quite intensively in the past, and the following is
well known (e.g., see [15] for further references).

Lemma 3.3. Let sk for k = . . . ,−2,−1, 0, 1, 2, . . . all be solutions of 1 − p−s −
q−s = 0.

(i) Then

−1 ≤ <(sk) ≤ σ0,

where σ0 is a positive solution of 1 + q−s = p−s.
(ii) If <(sk) = −1 and =(sk) 6= 0, then (log p)/(log q) must be rational. Further-

more, if log p
log q = r

t , where gcd(r, t) = 1 for integers r, t, then

sk = −1 +
2krπi

log p

for all integers k.

Observe now that at s = sk we have

1

1− p−s − q−s = − 1

h(sk)

1

s− sk +
h2(sk)

2h2(sk)
+O(s− sk),(40)

where

h(t) = −p−t log p− q−t log q,(41)

h2(t) = p−t log2 p+ q−t log2 q.(42)

Expanding Γ(s)γ̂(s) around s = sk, we find

Γ(s)γ̂(s) = Γ(sk)γ̂(sk) + (Γ(sk)γ̂′(sk) + Γ′(sk)γ̂(sk)) (s− sk) +O((s− sk)2).

Therefore, since X(s) = Γ(s)γ(s) = 1
1−p−s−q−sΓ(s)γ̂(s), we derive around s = sk 6=

−1 to obtain

X(s) = − 1

s− sk
Γ(sk)

h(sk)
γ̂(sk) +

h2(sk)

2h2(sk)
Γ(sk)γ̂(sk)

− 1

h(sk)
(Γ(sk)γ̂′(sk) + Γ′(sk)γ̂(sk)) +O(s− sk).(43)

920 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

In a similar manner, from (39) we have

Y (s) = − 1

s− sk
Γ(sk)

h(sk)
β̂(sk) + 2Γ(sk)

(
1

h2(sk)

1

(s− sk)2
− h2(sk)− h2(sk)

h3(sk)

1

s− sk

)
× (γ̂(sk) + (s− sk)γ̂′(sk)) +

2Γ′(sk)γ̂(sk)

h2(sk)

1

s− sk +O(1)

=
2Γ(sk)γ̂(sk)

h2(sk)

1

(s− sk)2
+

(
2Γ′(sk)γ̂(sk)

h2(sk)
− Γ(sk)

h(sk)
β̂(sk)

− 2Γ(sk)
h2(sk)− h2(sk)

h3(sk)
γ̂(sk)− 2Γ(sk)γ̂′(sk)

h2(sk)

)
1

s− sk +O(1).(44)

However, from (40) and (38) at s = s0 = −1, we find

γ(s) =

(
− 1

h1

1

s+ 1
+

h2

2h2
1

)
(γ̂(−1) + (s+ 1)γ̂′(−1)) +O(s+ 1)

= − 1

h1

1

s+ 1
+

h2

2h2
1

− γ̂′(−1)

h1
+O(s+ 1),(45)

β(s) =

(
− 1

h1

1

s+ 1
+

h2

2h2
1

)(
β̂(−1) + (s+ 1)β̂′(−1)

)
+ 2

(
1

h2
1

1

(s+ 1)2
− h2 − h2

1

h3
1

1

s+ 1

)
(γ̂(−1) + (s+ 1)γ̂′(−1)) +O(1)

=
2

h2
1

1

(s+ 1)2
+

(
−2

h2 − h2
1

h3
1

+ 2γ̂′(−1)
1

h2
1

)
1

s+ 1
+O(1).(46)

In the above equation, we used the fact that γ̂(−1) = 1 and β̂(−1) = 0, which follows
directly from Lemma 3.1. Observe now that Γ(s) = − 1

s+1 + (γ− 1) +O(s+ 1); hence
the Laurent expansion of X(s) at s = −1 is

X(s) = Γ(s)γ(s) =
1

h1

1

(s+ 1)2
−
(
h2

2h2
1

− 1

h1
γ̂′(−1) +

γ − 1

h1

)
1

s+ 1
+O(1).

(47)

In order to derive the asymptotic expansion of X̃(z) for large z, we use well-known
arguments (cf. [4, 6, 9, 14, 26, 29]) of the inverse Mellin transform; that is,

X̃(z) =
1

2πi

∫ − 3
2 +i∞

− 3
2−i∞

X(s)z−sds.

(The evaluation of this integral is quite standard (e.g., see [29]): we extend the line of
integration to a big rectangle right to the integration line, and observe that bottom and
top lines contribute negligibly because the gamma function decreases exponentially
with the increase in the magnitude of the imaginary part, and the right side positioned
at, say, d, contributes x−d for d→∞.) However, to estimate the error term we must
note, as observed in Lemma 3.1, that γ(s) has additional simple poles at s = 0, 1,
The pole at s = 0 is a double pole of X(s) = Γ(s)γ(s), and thus its contribution to

X̃(z) is O(log z). Putting everything together, we finally arrive at

ANALYSIS OF b-DST 921

X̃(z) =
1

h1
z log z +

(
h2

2h2
1

− 1

h1
γ̂′(−1) +

γ − 1

h1

)
z(48)

+
∑
k 6=0

Γ(sk)γ̂(sk)

h(sk)
z−sk +O(log z).

Similarly, at s = −1,

Y (s) = − 2

h2
1

1

(s+ 1)3
+

2

h1

(
h2 − h2

1

h2
1

− 1

h1
γ̂′(−1) +

γ − 1

h1

)
1

(s+ 1)2
+O

(
1

s+ 1

)
.

In addition, there is a double pole at s = 0; hence, by the inverse Mellin transform
and Lemma 3.3, we obtain

W̃ (z) =
1

h2
1

z log2 z +
2

h1

(
h2 − h2

1

h2
1

− 1

h1
γ̂′(−1) +

γ − 1

h1

)
z log z

+ 2
∑
k 6=0

Γ(sk)γ̂(sk)

h2(sk)
z−sk log z +O(z)

for z → ∞, where O(z) comes from the term O((s + 1)−1). This formula will allow
us to infer asymptotics of the variance of Dm.

3.2. Depoissonization. The above asymptotic formulas concern the behavior
of the Poisson mean and the second factorial moment as z →∞. More precisely, we
must restrict the growth of z to a cone Sθ = {z : | arg(z)| ≤ θ} for some |θ| < π/2.
But our original goal was to derive asymptotics of the mean EDm and the variance
Var Dm in the Bernoulli model. To infer Bernoulli model behavior from its Poisson
model asymptotics, we must apply the so-called depoissonization lemma. This lemma
basically says that mEDm ∼ X̃(m) and mEDm(Dm − 1) ∼ W̃ (m) under some weak
conditions that are easy to verify in our case. The reader is referred to [16, 34] for
more details about the depoissonization lemma. For completeness, however, we review
some depoissonization results that are useful for our problem.

Let us consider a more general problem: For a random variable Xn, we define
gn as a functional of the distribution of Xn (e.g., gn = EXn or gn = EX2

n, etc.) or,
in general, we assume that gn is a sequence of n. We may also need to consider the
generating function Gn(u) = EuXn for a complex u, which can be viewed as such a
gn (with a parameter u belonging to a compact set). Define the Poisson transform

of gn as G̃(z) =
∑∞
n=0 gn

zn

n! e
−z (or, more generally, G̃(z, u) =

∑∞
n=0Gn(u) z

n

n! e
−z for

u in a compact set). Assume that we know the asymptotics of G̃(z) for z large and
belonging to a cone Sθ = {z : | arg(z)| ≤ θ} for some |θ| < π/2. How can we infer

asymptotics of gn from G̃(z)? One possible answer is given in the depoissonization
lemma below (cf. [16, 34]):

Lemma 3.4 (depoissonization lemma).

(i) Let G̃(z) be the Poisson transform of a sequence gn that is assumed to be an
entire function of z. We postulate that for 0 < |θ| < π/2 the following two conditions
simultaneously hold for some numbers A,B, ξ > 0, β, and α < 1 :
(I) For z ∈ Sθ,

|z| > ξ ⇒ |G̃(z)| ≤ B|z|βΨ(|z|),(49)

where Ψ(z) is a slowly varying function (e.g., Ψ(z) = logd z for some d > 0).

922 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

(O) For z /∈ Sθ,

|z| > ξ ⇒ |G̃(z)ez| ≤ A exp(α|z|).(50)

Then, for large n,

gn = G̃(n) +O(nβ−1Ψ(n))(51)

or, more precisely,

gn = G̃(n)− 1

2
G̃′′(n) +O(nβ−2Ψ(n)).

(ii) If conditions (I) and (O) hold for G̃(z, u) for u belonging to a compact set U , then

Gn(u) = G̃(n, u) +O(nβ−1Ψ(n))(52)

for large n and uniformly in u ∈ U .
To apply the above lemma to X̃(z) and W̃ (z), one must check conditions (I)

and (O). But condition (I) inside the cone Sθ is automatically satisfied due to the

asymptotics of X̃(z) and W̃ (z) just derived. Formally, we must use either complex

variable Mellin transform or analytic continuation to establish X̃(z) = O(z log z) and

W̃ (z) = O(z log2 z). Thus, it suffices to check condition (O) outside the cone1 (in
fact, the arguments below work fine also for verifying condition (I)).

We consider only X̃(z) since W̃ (z) can be treated in a similar manner. Let

X(z) = X̃(z)ez. Then, functional equation (30) transforms into

X(b)(z) = X(zp)ezq +X(zq)ezp + zez,

where X(b)(z) denotes the bth derivative of X(z). Observe that the above equation
can be represented alternatively as

X(z) =

∫ z

0

∫ w1

0

· · ·
∫ wb−1

0︸ ︷︷ ︸
b times

(53)

+ (X(w1p))e
w1q +X(w1q)e

w1p + w1e
w1) dwb · · · dw2dw1,

where the integration is along lines in the complex plane.
We now prove |X(z)| ≤ eα|z| for z /∈ Sθ for α < 1. We use induction over the

so-called increasing domains defined as follows (cf. [16, 29]): For all positive integers
m ≥ 1 and constants ξ, δ > 0, let

Fm = {z = ρeiϑ : ρ ∈ [ξδ, ξν−m], 0 ≤ ϑ < 2π},

where max{p, q} ≤ ν < 1 and δ ≤ min{p, q}. The point to observe is that if z ∈
Fm+1 −Fm, then zp, zq ∈ Fm, provided |z| ≥ ξ, which is assumed to hold.

To carry out the induction, we first define F̄m = Fm∩S̄θ, where S̄θ denotes points
in the complex plane outside Sθ. Since X(z) is bounded for z ∈ F̄1, the initial step
of induction holds. Let us now assume that for some m > 1 and for z ∈ F̄m we have

1Recently, Jacquet and Szpankowski [17] proved that if an analytic continuation of gn has a
polynomial growth, then condition (O) from Lemma 3.4 is automatically satisfied.

ANALYSIS OF b-DST 923

|X(z)| ≤ eα|z| with α < 1. We intend to prove that |X(z)| ≤ eα|z| for z ∈ F̄m+1.
Indeed, let z ∈ F̄m+1. If also z ∈ F̄m, then the proof is completed. So let us now
assume that z ∈ F̄m+1 − F̄m. Then since zp, zq ∈ F̄m, we can use our induction
hypothesis together with the integral equation (53) to obtain the following estimate
for |z| > ξ where ξ is large enough:

|X(z)| ≤ |z|b+1
(
e|z|(pα+q cos θ) + e|z|(qα+p cos θ) + e|z| cos θ

)
.

Let us now define 1 > α > cos θ such that the following three inequalities are simul-
taneously fulfilled:

|z|be|z|(pα+q cos θ) ≤ 1

3
eα|z|,

|z|be|z|(qα+p cos θ) ≤ 1

3
eα|z|,

|z|b+1e|z| cos θ ≤ 1

3
eα|z|.

Then for z ∈ F̄m+1 we have |X(z)| ≤ eα|z|, as needed to verify condition (O) of the
depoissonization lemma.

Hence we can apply the depoissonization lemma to X̃(z), and using our previous

asymptotics on X̃(z), we immediately obtain

EDm =
X̃(m)

m
+O

(
logm

m

)
=

1

h1
logm+

h2

2h2
1

− 1

h1
γ̂′(−1) +

γ − 1

h1
+
∑
k 6=0

Γ(sk)γ̂(sk)

h(sk)
m−1−sk +O

(
logm

m

)
.

Another application of the depoissonization lemma leads to a formula on the
second factorial moment:

EDm(Dm − 1) =
W̃ (m)

m
+O(1) =

1

h2
1

log2m

+ 2
1

h1

(
h2 − h2

1

h2
1

− 1

h1
γ̂′(−1) +

γ − 1

h1

)
logm

+ 2
∑
k 6=0

Γ(sk)γ̂(sk)

h2(sk)
m−1−sk logm+O(1).

Finally, after computing (EDm)2 we arrive at

Var Dm = EDm(Dm − 1) + EDm − (EDm)2

=
h2 − h2

1

h3
1

logm+ 2
∑
k 6=0

Γ(sk)γ̂(sk)

h(sk)

(
1

h(sk)
− 1

h1

)
m−1−sk logm+O(1).

If <(sk) = −1 for all k, then by Lemma 3.3 one can prove that h(sk) = h1 (cf. [15]).

If <(sk) > −1, then m−1−sk logm = o(1). Therefore, Var Dm =
h2−h2

1

h3
1

logm+O(1).

From Lemma 3.3 we know that <(sk) = −1 whenever (log p)/(log q) is rational;
otherwise <(sk) > −1. In summary, to complete the proof of Theorem 2.1(i) we must
evaluate the constant γ̂′(−1), which we discuss next.

924 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

3.3. Evaluation of some constants. In several applications (e.g., the compu-
tation of the average code redundancy discussed at the end of section 2) the second-
order term of EDm (i.e., the leading term of EDm−h−1

1 logm) plays a very important
role. Therefore, knowing its value, or providing a numerical algorithm to compute it,
is of prime interest. In the previous subsection, we showed that the value of this term
depends on γ̂′(−1), which can be also expressed as

γ̂′(−1) =
b∑
i=1

(
b

i

)
(−1)i+1γ′(−1− i),

where γ(s)Γ(s) = M[X̃(t); s] and X̃(z) =
∑∞
n=0 fn

zn

n! e
−z. We recall from Theorem

2.1 that fn is defined as
fm+b = m+

m∑
i=0

(
m

i

)
piqm−i(fi + fm−i), m ≥ 0,

f0 = f1 = · · · = fb = 0,
f̄m+b = fm+b −m, m ≥ 1.

Clearly, f̄i > 0 for any i > b+ 1 since fi ≥ i− b for i ≥ b.
To compute γ̂′(−1) we must find γ(s) in terms of computable quantities such as

fn. We proceed as follows:

γ(s) =
1

Γ(s)
M
[∞∑
n=b+1

fn
zn

n!
e−z; s

]
=

∞∑
n=b+1

fn
n!

Γ(s+ n)

Γ(s)

=

∞∑
n=b+1

fn
n!
s(s+ 1) . . . (s+ n− 1).(54)

We assume above that <(s) ∈ (−b − 1,−1) to ensure the existence of the Mellin
transform and the convergence of the series. Then one easily derives

γ′(s) =
∞∑

n=b+1

fn
n!
s(s+ 1) · · · (s+ n− 1)

n−1∑
i=0

1

s+ i
, s /∈ {−2,−3, . . . ,−b}.

(55)

After some algebra, we arrive at the following:

γ′(−k) = (−1)k
∞∑

n=b+1

fn
n!
k!(n− k − 1)! for k = 2, . . . , b,

γ′(−b− 1) = (−1)bHb+1 + (−1)b+1
∞∑

n=b+2

fn
n!

(b+ 1)!(n− b− 2)!.

Let us first assume that b > 1. Then, to estimate γ̂′(−1), we proceed as follows:

γ̂′(−1) =
b∑
i=1

(
b

i

)
(−1)i+1γ′(−i− 1)

= −Hb+1 +
1

b+ 1

b−1∑
i=1

i+ 1

b− i +
b∑
i=1

(
b

i

) ∞∑
n=b+2

fn
n!

(i+ 1)!(n− i− 2)!

ANALYSIS OF b-DST 925

= −Hb+1 −Hb−1 − b− 1

b+ 1
+

∞∑
n=b+2

(n− b+ f̄n)
b∑
i=1

(i+ 1)b!

(b− i)!n(n− 1) . . . (n− i− 1)

= −1

b
− b

b+ 1
+A+ ∆(b, p),

where

∆(b, p) =

∞∑
n=b+2

f̄n

b∑
i=1

(i+ 1)b!

(b− i)!n(n− 1) . . . (n− i− 1)
,

A =

∞∑
n=b+2

(n− b)
b∑
i=1

(i+ 1)b!

(b− i)!n(n− 1) . . . (n− i− 1)
.

The above series converge since the summands are O(log n/n2). Finally, observe that
f̄m+b = 0 for m = 1, 2, . . . , b and f̄i > 0 for i > 2b; hence

∆(b, p) =

∞∑
n=b+2

f̄n

b∑
i=1

(i+ 1)b!

(b− i)!n(n− 1) . . . (n− i− 1)

=

∞∑
n=2b+1

f̄n

b∑
i=1

(i+ 1)b!

(b− i)!n(n− 1) . . . (n− i− 1)
.

After a long and tedious algebra (cf. [40]), we can prove that A = Hb+b(1+b)−1.
Hence γ̂′(−1) = Hb−1 + ∆(b, p) as presented in Theorem 2.1, and this completes the
proof of part (i) of Theorem 2.1 for b > 1.

For b = 1 we have

γ̂′(−1) = γ′(−2) = −H2 + ∆(1, p) +
∑
n=3

2

n(n− 2)
= ∆(1, p),

since the above series is equal to 3/2, which is canceled by −H2 = −3/2. Thus
Theorem 2.1 is also proved for b = 1. Actually, in this case we may also conclude
from [38] that

∆(1, p) = −
∞∑
k=1

pk+1 log p+ qk+1 log q

1− pk+1 − qk+1
.

In Table 1 we present numerical values of ∆(b, p) and EDm− 1
h1

(logm− δ(m, b))
as a function of b. While ∆(b, p) is relatively easy to compute numerically, we must
point out that the rate of convergence for this series is only O(logN/N), where N is
the cutoff value of the series computation.

3.4. Limiting distribution. In this section, we will prove part (ii) of Theorem

2.1; that is, we establish the central limit theorem for Dm. We recall that B̃(u, z) =∑∞
i=0Bi(u) z

i

i! e
−z and that(

1 +
∂

∂z

)b
B̃(u, z) = b+ u

(
B̃(u, pz) + B̃(u, qz)

)
.(56)

926 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

Table 1
Numerical values of ∆(b, p) and EDm − 1

h1
logm for p = 0.3

b ∆(b, p) EDm − 1
h1

(logm− δ(m, b))
1 1.25 − 2.04
2 0.96 − 3.20
3 0.91 − 3.94
5 0.83 − 4.76
8 0.76 − 5.48
20 0.60 − 6.78
50 0.36 − 7.91
90 0.12 − 8.49

For some function ω(u, s), let the Mellin transform of B̃(u, z) be given by

Z(u, s) =M
(
B̃(u, z)− z; s

)
= Γ(s)ω(u, s).(57)

The existence of the Mellin transform Z(u, s) is proved in the lemma below.
Lemma 3.5. (i) The Mellin Z(u, s) exists for <(s) ∈ (−b− 1,−1).

(ii) For i = 1, . . . , b− 1 we have ω(u,−1− i) = 0 and ω(u,−1− b) = (−1)b+1(u− 1).
Proof. The proof uses the same arguments as in Lemma 3.1. In particular,

B̃(u, z) =
(
z + z2 + z3/2! + · · ·+ zb/(b− 1)! + (u+ b)zb+1/(b+ 1)! +O(zb+2)

)
e−z

= z + (u− 1)zb+1/(b+ 1)! +O(zb+2).

Thus as z → 0 one obtains B̃(u, z) − z = O(z(b+1)). For fixed u, we also have

B̃(u, z) = O(z log z) for z → ∞. Therefore, part (i) is proved. Part (ii) follows from
Lemma 3.2.

The plan for this section is similar to the previous one. We first use the Mellin
transform technique to derive asymptotics of B̃(z, u) − z for z → ∞ in a cone Sθ
and then depoissonize this result by Lemma 3.4. We start with taking the Mellin
transform to (56). After some algebra, we obtain

b∑
i=0

(
b

i

)
(−1)iω(u, s− i) = u(p−s + q−s)ω(u, s),

which further leads to

ω(u, s) =
1

1− u(p−s + q−s)
ω̂(u, s).

Now let sk(u), k = 0,±1,±2, . . . , be the roots of the equation 1 − u(p−s + q−s) = 0
for fixed u. Then, for s = sk(u),

1

1− u(p−s + q−s)
=

1

s− sk(u)

u−1

−h(sk(u))
.

In addition, one must consider two poles of the gamma function Γ(s) at s−1 = −1
and s0 = 0. The latter pole contributes O(1), and the former −zω(u,−1). But, by
Lemma 3.5, we know that ω(u,−1) = 1; thus the total contribution of these two poles
is −z +O(1).

ANALYSIS OF b-DST 927

Summing up, we have

B̃(u, z)7 =
u−1

h(s0(u))
Γ(s0(u))ω̂(u, s0(u))z−s0(u)

+
∑
k 6=0

u−1

h(sk(u))
Γ(sk(u))ω̂(u, sk(u))z−sk(u) +O(1).

We now set u = et for complex t in the vicinity of 0. Algebra similar to that in [14, 26]
leads to the following for t→ 0:

s0(t) = −1− t

h1
− αt2

2
+O(t3),(58)

Γ(s0(t)) =
h1

t
+O(t2),

e−t

h(s0(t))
=

1

h1
+O(t),

ω̂(t, s0(t)) = et − 1 +O(t2) = t+O(t2).

The rest is a matter of depoissonization. But the depoissonization conditions
(I) and (O) of Lemma 3.4 are easy to verify for u belonging to a compact set around

u = 1, as we already showed in the case of X̃(z). Thus, an application of (52) provides
the following estimate:

Bm(t) =
1

h1

h

t
ω̂(t, s0(t))m−s0(t) + e−t

∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))m−sk(t)

+ O(logm),

since B(z, u) = O(z log z). Then the generating function Gm(t) = EetDm becomes

Gm(t) =
Bm(t)

m

=
1

t
ω̂(t, s0(t))m−1−s0(t) + e−t

∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))m−1−sk(t)

+ O

(
logm

m

)
=

1

t
(t− 1)m−1−s0(t) + e−t

∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))m−1−sk(t)

+ O

(
logm

m

)
= m−1−s0(t) + e−t

∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))m−1−sk(t) +O

(
logm

m

)
.

As the final step, we set t = τ
σm

for some fixed τ and σm = Var Dm. Then, using

(58) m−1−s0(t) = eτµm/σm+τ2/2, as well as

928 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

e−τµm/σmGm(eτ/σm) = e−τµm/σm

×
1

t
teτµm/σm+ τ2

2 + e−tm−1−s0(t)
∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))ms0(t)−sk(t) +O

(
logm

m

)
= e

τ2

2

1 +O

∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))ms0(t)−sk(t)

= e

τ2

2

(
1 +O

(
1√

logm

))
since, as in [14], we prove that (cf. [40])

∑
k 6=0

1

h(sk(t))
Γ(sk(t))ω̂(u, sk(t))ms0(t)−sk(t) = O(t) = O

(
1√

logm

)

for t = τ/σm = O(1/
√

logm).

To complete the proof of part (ii) of Theorem 2.1, we must show that the above
expression implies the convergence of moments. But this is standard (cf. [16]) and
can be argued as follows: Let D′m = (Dm − µn)/σm. We just proved that Gm(t) =

E(etD
′
m) → et

2/2 on t belonging to a real interval around t = 0. Hence Gm(t)
is bounded in the vicinity of t = 0 since |E(etD

′
m)| ≤ E(e<(t)D′m), which further

implies that Gm(t) is uniformly bounded around t = 0. By Ascoli’s theorem we
can select a subsequence from Gm(t) that converges to a continuous function which

must be analytic and equal to et
2

inside the real interval (by uniqueness of analytic
continuation). Since analytic functions that are uniformly bounded on a compact set
must have all derivatives, we conclude the convergence in moments of D′m, as desired.
In summary, part (ii) of Theorem 2.1 and hence the theorem as a whole is proven.

4. Analysis of the symmetric Bernoulli model. In this section we prove
Theorem 2.2 concerning the asymptotic behavior of a b-digital search tree in the
unbiased (symmetric) Bernoulli model.

4.1. The variance. The average value EDm follows directly from (7). But,
in the symmetric case, h2 = h2

1 = log 2, and therefore from (8) we deduce that
Var Dm = O(1). Our goal is to compute it precisely. In this case, an extension of a
Flajolet and Richmond technique [8] works fine, and we apply it in this subsection. We
follow Hubalek [12] to derive our results. We omit most of the detailed calculations,
which can be found in [8, 12].

First, we observe that (6), our differential functional equation, in this case be-
comes (

1 +
∂

∂z

)b
B̃(u, z) = b+ 2uB̃(u, z/2).

The coefficients of B̃(u, z) can be computed by solving a linear recurrence of type
(1). Unfortunately, there is no easy way to solve such a recurrence unless b = 1 (cf.
[20, 38]). To circumvent this difficulty, Flajolet and Richmond [8] reduced it to a
certain functional equation on an ordinary generating function that is easier to solve.
We proceed along this path.

ANALYSIS OF b-DST 929

Let B̃(u, z) =
∑∞
k=0 gk(u) z

k

k! , and G(u, z) =
∑∞
k=0 gk(u)zk. We also define an

ordinary generating function of Bk(u) as F (u, z) =
∑∞
k=0Bk(u)zk. Observe that

Bn(u) =
∑n
k=0

(
n
k

)
gk(u); hence as in [8] we obtain

F (u, z) =
1

1− zG
(
u,

z

1− z
)
.(59)

Indeed,

1

1− zG
(
u,

z

1− z
)

=
∞∑
m=0

gm(u)zm
1

(1− z)m+1
=
∞∑
m=0

gm(u)zm
∞∑
j=0

(
m+ j

j

)
zj

=
∞∑
n=0

zn
n∑
k=0

(
n

k

)
gk(u) = F (u, z).

Certainly, (59) further implies that

F (n)
u (u, z) =

1

1− zG
(n)
u

(
u,

z

1− z
)
,

where f
(k)
u (z, u) denotes the kth derivative of f(z, u) with respect to u. Then

G(u, z)(1 + z)b = z(1 + z)b − zb+1 + 2uzbG
(
u,
z

2

)
,(60)

G′u(u, z)(1 + z)b = 2zbG
(
u,
z

2

)
+ 2uzbG′u

(
u,
z

2

)
,(61)

G′′u(u, z)(1 + z)b = 4zbG′u
(
u,
z

2

)
+ 2uzbG′′u

(
u,
z

2

)
.(62)

In order to compute the variance, we compute L1(z) := G′u(u, z)|u=1 and L2(z) :=
G′′u(u, z)|u=1 and then use (59). From (61) and (62) we immediately obtain

L1(z)(1 + z)b = zb+1 + 2zbL1
(z

2

)
,

L2(z)(1 + z)b = 4zbL1
(z

2

)
+ 2zbL2

(z
2

)
.

Iterating these equations we easily find (cf. [8, 12])

L1(z) =
∞∑
k=0

(2zb)(2(z2)b) · · · (2(z
2k

)b)(
(1 + z)(1 + z

2) · · · (1 + z
2k

)
)b z

2k+1
,(63)

L2(z) =
∞∑
k=0

(2zb)(2(z2)b) · · · (2(z
2k

)b)(
(1 + z)(1 + z

2) · · · (1 + z
2k

)
)b 2L1(

z

2k+1
).(64)

The next step is to transform the above sums (63) and (64) into certain harmonic
sums (cf. [9]). For this, we set z = 1/t and define Q(t) =

∏∞
k=0(1 + t

2k
). Then (63)

and (64) become

tL1(1
t)(

Q(t2)
)b =

∞∑
k=0

1

(Q(2kt))
b
,(65)

tL2(1
t)(

Q(t2)
)b = 2

∞∑
k=0

2k+1tL1(1
2k+1t

)(
Q(2k+1t

2)
)b .(66)

930 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

Both sums are of the form
∑
k≥0 λkf(µkx) for some function f(·) and sequences

λk, µk; that is, they are the so-called harmonic sums (cf. [9]). It is well known that
the Mellin transform of such a sum is F (s)

∑
k≥0 λkµ

−s
k (where F (s) is the Mellin

transform of f). In our case, we have

M
[
tL1(1

t)

Qb(t2)
; s

]
=

1

1− 2−s
I(s),

M
[
tL2(1

t)

Qb(t2)
; s

]
=

21−s

(1− 2−s)2
I(s),

where

I(s) =

∫ ∞
0

ts−1

Qb(t)
dt =

π

sinπs
J(s),(67)

J(s) =
1

2πi

∫
H

(−t)s−1

Qb(t)
dt(68)

with H being the Hankel contour (cf. [9, 12]).
The rest is easy. Applying standard arguments of the inverse Mellin transform

we can derive asymptotic expansions of L1(1
t) and L2(1

t) as t→ 0. We find

L1(
1

t
) =

1

t
k(t) + bk(t) +O(t log t−1),

L2(
1

t
) =

1

t
K(t) + bK(t) +O(t log2 t−1),

where

k(t) =
1

L
log

1

t
+

1

2
+
J ′(0)

L
− 1

L

∑
k=0

I(sk)

sk
t−sk ,

K(t) =
1

L2
log2 1

t
+

2J ′(0)

L2
log

1

t
−
(

1

6
+
J ′′(0)

L2
− π2

3L2

)
+ 8bt

− 2

L2

∑
k=0

I(sk)

sk
t−sk log

1

t
+

2

L2

∑
k=0

(
I(sk)

s2
k

− I ′(sk)

sk

)
t−sk ,

with sk = 2πik/ log 2 for k = 0,±1, . . . being the roots of 1− 2−s = 0, and L = log 2.
Finally, applying the singularity analysis of Flajolet and Odlyzko [7], after somewhat
tedious algebra we prove (15).

4.2. Exact and limiting distribution. We need another approach to establish
exact and asymptotic distributions in the symmetric case since, as shown above,
Var Dm = O(1). We also point out that—even if it is possible in principle—using
recurrence (5) or functional equation (6) may be quite troublesome. Therefore we
devised another, more combinatorial and probabilistic approach.

Let us fix j ≥ 1, and consider a particular path, say, P, from the root to a node at
level j on P. Let Tj,r be the number of strings needed to be added to the tree (after
the first b) to ensure that a node at level j contains exactly r strings (1 ≤ r ≤ b).
Since the first b strings are stored in the root, we observe the following:

Pr{Tj,r ≤ m− b} =

Pr{node at level j contains at least r strings when m strings are in the tree}.

ANALYSIS OF b-DST 931

Note that P [j, r] := Pr{exactly r strings are in a node at level j when m strings are
added} = Pr{Tj,r ≤ m− b} − Pr{Tj,r+1 ≤ m− b}.

Then the distribution of Dm can be computed as

Pr{Dm = j} =
2j

m

b∑
r=1

P [j, r] · r =
2j

m

b∑
r=1

Pr{Tj,r ≤ m− b}.(69)

In view of the above equation, to compute the exact distribution of Dm one needs
the distribution of Tr,j . But the number of strings, say, Xi, that one must insert into
the tree in order to fill up a node at level i < j on the path P (when the node on
P at level i − 1 is full) is distributed as the sum of b independent random variables
geometrically distributed with success probability π(i) = 2−i. Let Xi(z) = EzXi be
the probability generating function. Then

Xi(z) =

(
π(i)z

1− (1− π(i))z

)b
for i < j.

Similarly, the probability generating function for the number of strings needed to get
exactly r strings in a given node at level j (when the node on P at level j − 1 is full)
is given by

Xj(z) =

(
π(j)z

1− (1− π(j))z

)r
.

Summing up, the probability generating function Tj,r(z) of Tj,r is

Tj,r(z) = Xj(z)

j−1∏
i=1

Xi(z).(70)

To compute the required probabilities, we first use the Cauchy formula,

Pr{Tj,r = `} =
1

2πi

∮
Tj,r(z)

z`+1
dz,

and then the residue theorem. The calculations are rather straightforward but quite
tedious. We find

mPr{Dm ≤ j} = b− 1

(b− 1)!

j∑
k=1

(
π(k)

π(k)− 1

)b
∂b−1

∂z(b−1)

 z2b

(z − 1)2
(z−b − z−m)

×
j∏

v=1,v 6=k

(
π(v)z

1− (1− π(v))z

)b
z=z∗(k)

,(71)

where z∗(k) = (1− π(k))−1. This leads to (18) for the exact distribution for Dm.
The asymptotic formula of part (iii) of Theorem 2.2 follows from the above

after some algebra that we summarize below. We set throughout this derivation
j = log2m+ η, with η = O(1), and k = j+O(1), which we justify. After substituting
η = κ− {log2m}, we prove part (iii) of Theorem 2.2.

Let us now analyze (71). The term involving z−m in (71) becomes

H1 :=
πb(k)

m(b− 1)!(π(k)− 1)b
∂b−1

∂zb−1

(
z−(m−2b)(z − 1)−2ϕ1(z)ϕ2(z)

)
|z=z∗(k) ,

932 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

where

ϕ1(z) =
k−1∏
v=1

(
π(v)z

1− (1− π(v))z

)b
,

ϕ2(z) =

j∏
v=k+1

(
π(v)z

1− (1− π(v))z

)b
.

After using Leibniz’s rule for differentiation, we obtain∑
`+s+s1+s2=b−1

(
b− 1

`, s, s1, s2

)(
(−1)`+s−bπb(k)(m− 2b)`(−1)s(s+ 1)!(1− π(k))m−3b+`+2+s

(m(b− 1)!π(k))2+s

)

×
(
ϕ

(s1)
1 (z)ϕ

(s2)
2 (z)

)
|z∗(k) ,(72)

where f (k)(z) denotes the kth derivative of f(z), and (m)` = m(m−1) · · · (m− `+1).
Now let j = log2m+ η and i = j − k where i = O(1). We obtain

(π(k))`−1(m− 2b)`
m

∼ (mπ(k))`−1 =
2i(`−1)

2η(`−1)
(73)

and

(1− π(k))m−3b+`+2+s ∼ e−2−(η−i)
.

To compute the derivatives of ϕ1(z) and ϕ2(z), we observe, for example, that for
any integer r,

Y :=
∂r

∂zr

(
π(v)

1− (1− π(v))z

)b
=

(π(v))b(1− π(v))r(b)r
1− (1− π(v)z)b+r

.

Setting z = z∗(k) and v = k +O(1), we find

Y ∼ (b)r
(π(k))r(1− 2−u)b+r2ur

in the ϕ1 case,(74)

where u = k − v > 0, and

Y ∼ (b)r2
ur

(π(k))r(1− 2u)b+r
in the ϕ2 case.(75)

To deal with expressions like (74) or (75), we define

H(s) =
∂s

∂zs

∞∏
k=1

(
1

1− π(k)z

)b
|z=1 ,

and with R(0, s) = −1,

R(i, s) = − ∂s

∂zs

i∏
k=1

(
1

1− z
π(k)

)b∣∣∣∣∣∣
z=1

,

which are (13) and (14) from section 2.

ANALYSIS OF b-DST 933

These expressions are the b-equivalent of Q−1(t) (cf. (12)) and function |Ri| used
in [24, 26] (cf. (30) of [26]) parametrized by s. Clearly R(i, s) decreases exponentially
with i and H(s) is uniformly bounded, which justifies our choice k = j + O(1) for
asymptotic analysis. Moreover, any term (1− π(v))r (v < k) leads to a contribution
(1− 2u−k)r2−ur(1− 2−u)−r. The sum of all these contributions is O(1), which shows
that we can asymptotically take (1− π(v)) ∼ 1.

Let us return to (71). We can extract a term (π(k))b−2−s−s1−s2 = (π(k))`−1 and,
with (73), after summing over k we obtain

H1 ∼
∑

l+s+s1+s2=b−1

(−1)s1+s2

l!s1!s2!

∞∑
i=0

(s+ 1)R(i, s2)H(s1)
2i(`−1)

2η(`−1)
e−2−(η−i)

.

Similar analysis is valid for the term at z−b of (71). Finally, after substituting
η = κ − {log2m}, we prove part (iii) of Theorem 2.2, which completes the proof of
Theorem 2.2.

Acknowledgment. We thank Philippe Jacquet (INRIA, France) and Helmut
Prodinger (TU Wien) for many valuable comments regarding this research. We are
particularly obliged to one of the referees whose very careful reading of the paper
allowed us to eliminate some inaccuracies and led to a better presentation of our
results.

REFERENCES

[1] D. Aldous and P. Shields, A diffusion limit for a class of random-growing binary trees,
Probab. Theory Related Fields, 79 (1988), pp. 509–542.

[2] P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, New York, 1968.
[3] T.M. Cover and J.A. Thomas, Elements of Information Theory, John Wiley & Sons, New

York, 1991.
[4] B. Davies, Integral Transforms and Their Applications, Springer-Verlag, New York, 1985.
[5] G. Doetsch, Handbuch der Laplace Transformation, Birkhäuser Verlag, Basel, 1950.
[6] P. Flajolet and R. Sedgewick, Digital search trees revisited, SIAM J. Comput., 15 (1986),

pp. 748–767.
[7] P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Disc.

Meth., 3 (1990), pp. 216–240.
[8] P. Flajolet and B. Richmond, Generalized digital trees and their difference—differential

equations, Random Structures Algorithms, 3 (1992), pp. 305–320.
[9] P. Flajolet, X. Gourdon, and P. Dumas, Mellin transforms and asymptotics: Harmonic

sums, Theoret. Comput. Sci., 144 (1995), pp. 3–58.
[10] P. Flamant, Sur une equation différentielle fonctionelle linéaire, Rend. Circ. Mat. Palermo,

XLVIII (1924), pp. 135–208.
[11] E. Gilbert and T. Kadota, The Lempel–Ziv algorithm and message complexity, IEEE Trans.

Inform. Theory, 38 (1992), pp. 1839–1842.
[12] F. Hubalek, Beiträge zur Analyse Verallgemeinerter Digitaler Suchbäume, Ph.D. thesis, Tech-

nische Universität Wien, Vienna, 1994.
[13] K. Hummelsheim and C. Kleiner, Project in CS 543: Analysis of a data compression algo-

rithm, Department of Computer Science, Purdue University, West Lafayette, IN, 1996.
[14] P. Jacquet and W. Szpankowski, Analysis of digital trees with Markovian dependency, IEEE

Trans. Inform. Theory, 37 (1991), pp. 1470–1475.
[15] P. Jacquet and W. Szpankowski, Asymptotic behavior of the Lempel–Ziv parsing scheme

and digital search trees, Theoret. Comput. Sci., 144 (1995), pp. 161–197.
[16] P. Jacquet and W. Szpankowski, Analytical depoissonization lemma and its applications,

Theoret. Comput. Sci., 201 (1998), pp. 1–62.
[17] P. Jacquet and W. Szpankowski, Entropy computations via analytic depoissonization,, IEEE

Trans. Inform. Theory, 1999, to appear.
[18] S. Janson and W. Szpankowski, Analysis of an asymmetric leader election algorithm, Elec-

tron. J. Combin., 4 (1997), Research Paper 17, (electronic).

934 GUY LOUCHARD, WOJCIECH SZPANKOWSKI, AND JING TANG

[19] P. Kirschenhofer, H. Prodinger, and W. Szpankowski, Digital search trees again revisited:
The internal path length perspective, SIAM J. Comput., 23 (1994), pp. 598–616.

[20] D. Knuth, The Art of Computer Programming. Sorting and Searching. Vol. 3, Addison-Wesley,
Reading, MA, 1973.

[21] A. Konheim and D.J. Newman, A note on growing binary trees, Discrete Math., 4 (1973), pp.
57–63.

[22] A. Lempel and J. Ziv, A universal algorithm for sequential data compression, IEEE Trans.
Inform. Theory, 23 (1977), pp. 337–343.

[23] A. Lempel and J. Ziv, Compression of individual sequences via variable-rate coding, IEEE
Trans. Inform. Theory, 24 (1978), pp. 530–536.

[24] G. Louchard, Exact and asymptotic distributions in digital and binary search trees, RAIRO
Theoretical Inform. Appl., 21 (1987), pp. 479–495.

[25] G. Louchard, Digital search trees revisited, Cahiers Centre Études Rech. Oper., 36 (1995),
pp. 259–278.

[26] G. Louchard and W. Szpankowski, Average profile and limiting distribution for a phrase size
in the Lempel–Ziv parsing algorithm, IEEE Trans. Inform. Theory, 41 (1995), pp. 478–488.

[27] G. Louchard and W. Szpankowski, Generalized Lempel–Ziv parsing scheme and its prelim-
inary analysis of the average profile, in Proc. Data Compression Conference, Snowbird,
UT, 1995, pp. 262–271.

[28] G. Louchard and W. Szpankowski, On the average redundancy rate of the Lempel–Ziv code,
IEEE Trans. Inform. Theory, 43 (1997), pp. 2–8.

[29] H. Mahmoud, Evolution of Random Search Trees, John Wiley & Sons, New York, 1992.
[30] D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform.

Theory, 39 (1993), pp. 78–83.
[31] B. Pittel, Asymptotic growth of a class of random trees, Ann. Probab., 13 (1985), pp. 414–427.
[32] H. Prodinger, Approximate counting via Euler transform, Math. Slovaca, 44 (1994), pp. 569–

574.
[33] H. Prodinger, Digital search trees and basic hypergeometric functions, EATCS Bulletin, 56

(1995), pp. 112–115.
[34] B. Rais, P. Jacquet, and W. Szpankowski, A limiting distribution for the depth in

PATRICIA tries, SIAM J. Discrete Math., 6 (1993), pp. 197–213.
[35] S. Savari, Redundancy of the Lempel–Ziv incremental parsing rule, IEEE Trans. Information

Theory, 43 (1997), pp. 9–21.
[36] J. Storer, Data Compression: Methods and Theory, Computer Science Press, Rockville, MD,

1988.
[37] W. Szpankowski, The evaluation of an alternating sum with applications to the analysis of

some data structures, Inform. Process. Lett., 28 (1988), pp. 13–19.
[38] W. Szpankowski, A characterization of digital search trees from the successful search view-

point, Theoret. Comput. Sci., 85 (1991), pp. 117–134.
[39] W. Szpankowski, A generalized suffix tree and its (un)expected asymptotic behaviors, SIAM

J. Comput., 22 (1993), pp. 1176–1198.
[40] J. Tang, Probabilistic Analysis of Digital Search Trees, Ph.D. thesis, Purdue University, West

Lafayette, IN, 1996.
[41] A. Wyner and J. Ziv, Some asymptotic properties of the entropy of a stationary ergodic data

source with applications to data compression, IEEE Trans. Inform. Theory, 35 (1989), pp.
1250–1258.

THE MAXIMUM PARTITION MATCHING PROBLEM WITH
APPLICATIONS∗

CHI-CHANG CHEN† AND JIANER CHEN‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 935–954

Abstract. Let S = {C1, C2, . . . , Ck} be a collection of pairwise disjoint subsets of U =

{1, 2, . . . , n} such that
⋃k

i=1
Ci = U . A partition matching of S consists of two subsets {a1, . . . , am}

and {b1, . . . , bm} of U together with a sequence of distinct partitions of S: (A1,B1), . . . , (Am,Bm)
such that ai is contained in a subset in the collection Ai and bi is contained in a subset in the
collection Bi for all i = 1, . . . ,m. An efficient algorithm is developed that constructs a maximum
partition matching for a given collection S. The algorithm can be used to construct optimal parallel
routing between two nodes in interconnection networks.

Key words. maximum matching, greedy algorithm, star network, parallel routing

AMS subject classifications. 05A18, 05D15, 68M07, 68M10, 68Q25, 68R05

PII. S009753979630012X

1. Introduction. Matching is one of the most extensively studied areas in com-
puter science, since it is interesting from a combinatorial point of view and has wide
applications as well. Examples of matching are the maximum graph matching prob-
lem [15], maximum graph adjacency matching problem [7], stable marriage problem
[10], and three-dimensional matching problem [9].

In this paper, we introduce a new maximum matching problem, study its compu-
tational complexity, and demonstrate its applications in interconnection networks. Let
S = {C1, C2, . . . , Ck} be a collection of subsets of the universal set U = {1, 2, . . . , n}
such that

⋃k
i=1 Ci = U and Ci ∩ Cj = φ for all i 6= j. A partition matching (of order

m) of S consists of two ordered subsets L = {a1, a2, . . . , am} and R = {b1, b2, . . . , bm}
of m elements of U (the subsets L and R may not be disjoint), together with a se-
quence of m distinct partitions of S: (A1,B1), (A2,B2), . . . , (Am,Bm) such that for all
i = 1, . . . ,m, ai is contained in a subset in the collection Ai and bi is contained in a
subset in the collection Bi. The maximum partition matching problem is to construct
a partition matching of order m for a given collection S with m maximized.

The maximum partition matching problem can be formulated in terms of the
three-dimensional matching problem as follows: given an instance S = {C1, C2, . . . , Ck}
of the maximum partition matching problem, we construct an instance M for the
three-dimensional matching problem such that a triple (a, b, P) is contained in M if
and only if a and b are elements in U , and P = (A,B) is a partition of S such that a
is contained in a set in A and b is contained in a set in B. Unfortunately, the number
of partitions of the collection S can be as large as 2n; thus the above reduction is
not polynomial-time bounded. Moreover, the three-dimensional matching problem is
NP-hard [9].

∗ Received by the editors March 1, 1996; accepted for publication (in revised form) June 17, 1997;
published electronically January 29, 1999.

http://www.siam.org/journals/sicomp/28-3/30012.html
†Information Engineering Department, I-Shou University, Kaohsiung County, Taiwan, Republic of

China (ccchen@mail.isu.edu.tw). The research of this author was supported in part by an Engineering
Excellence Award from Texas A&M University, College Station, TX.
‡Department of Computer Science, Texas A&M University, College Station, TX 77843-3112

(chen@cs.tamu.edu). The research of this author was supported in part by the National Science
Foundation under grants CCR-9110824 and CCR-9613805.

935

936 CHI-CHANG CHEN AND JIANER CHEN

We will present an algorithm of running time O(n2 log n) that solves the maximum
partition matching problem. We first show that when the number of subsets in the
collection S is sufficiently large, a maximum partition matching can be constructed
from a simpler “prematching” on the elements in U . For the case that the number of
subsets in the collection S is small, we develop a greedy algorithm that uses a “chain
justification” technique and finds a maximum partition matching. A sophisticated
combinatorial analysis is given to prove the correctness of the algorithm.

The maximum partition matching problem arises in connection with the parallel
routing problem in interconnection networks. We show how the above algorithm
can be applied to construct an optimal parallel routing in star networks, which have
received considerable attention recently and have been shown to be an attractive
alternative to the widely used hypercube networks [1]. In particular, we present an
efficient algorithm that constructs between two arbitrary nodes in the n-dimensional
star network a maximum number of node-disjoint shortest paths, which can be further
used to construct between the two nodes n− 1 node-disjoint paths of minimum bulk
length (the bulk length of n−1 node-disjoint paths between two nodes is defined to be
the length of the longest path among the n− 1 paths). Note that these two problems
on general graphs are NP-hard [8, 9]. These results significantly improve the previous
parallel routing results in star networks [6, 11, 13, 14].

We introduce necessary terminology that is used in the rest of our discussion.
Let M = 〈L,R, (A1,B1), . . . , (Am,Bm)〉 be a partition matching of the collection

S, where L = {a1, . . . , am} and R = {b1, . . . , bm}. We will say that the partition
(Ai,Bi) left-pairs the element ai and right-pairs the element bi. An element a is
said to be left-paired if it is in the set L. Otherwise, the element a is left-unpaired.
Similarly, we define right-paired and right-unpaired elements. The collections Ai and
Bi are called the left-collection and right-collection of the partition (Ai,Bi). The
partition matching M may also be written as M [(a1, b1), . . . , (am, bm)] if the partitions
(A1,B1), . . . , (Am,Bm) are implied. The partition matching M [(a1, b1), . . . , (am, bm)]
is maximum if m is the largest among all partition matchings of S.

A permutation u = a1a2 · · · an of the elements in the set U = {1, 2, . . . , n} can
be given by a product of disjoint cycles [2], which will be called the cycle structure of
the permutation. A π[1, i] transposition on u is to exchange the positions of a1 and
ai in u. More specifically, π[1, i](u) = aia2a3 · · · ai−1a1ai+1 · · · an. It is sometimes
more convenient to write the transposition π[1, i](u) as π[ai](u) to indicate that the
transposition exchanges the position of the first symbol and the symbol ai in u. Let
us consider how a transposition changes the cycle structure of a permutation. Write
u in its cycle structure

u = (a
(1)
1 · · · a(1)

n1
1)(a

(2)
1 · · · a(2)

n2
) · · · (a(k)

1 · · · a(k)
nk

).

Now suppose we apply the transposition π[1, i] on u. There are two cases.
If ai is not in the cycle containing the symbol 1, then π[1, i] “merges” the cycle

containing 1 with the cycle containing ai. More precisely, suppose that ai = a
(2)
1

(note that each cycle can be cyclically permuted and the order of the cycles is not
important). Then the permutation π[1, i](u) will have the cycle structure

π[1, i](u) = (a
(2)
1 · · · a(2)

n2
a

(1)
1 · · · a(1)

n1
1)(a

(3)
1 · · · a(3)

n3
) · · · (a(k)

1 · · · a(k)
nk

).

If ai is in the cycle containing the symbol 1, then π[1, i] “splits” the cycle. More

precisely, suppose that ai = a
(1)
j , j > 1 (note that a

(1)
1 = a1 and we assume i > 1).

PARTITION MATCHING WITH APPLICATIONS 937

Algorithm. Prematching

input: The collection S = {C1, . . . , Ck} of subsets of U , with 2k ≥ 2n.
output: A partition matching M in S.

1. T = S;
2. while T contains more than one set

but does not consist of exactly three singular sets do
Pick two sets C and C′ of largest cardinality in T ;
Pick an element a in C and an element a′ in C′;
Pick two unused partitions of S of the forms (A ∪ {C},B ∪ {C′}), and
(B ∪ {C′},A ∪ {C}), where A ∪ B = S − {C,C′};
Use the partition (A ∪ {C},B ∪ {C′}) to left-pair a and right-pair a′;
Use the partition (B ∪ {C′},A ∪ {C}) to left-pair a′ and right-pair a;
C = C − {a}; C′ = C′ − {a′};
If any of the sets C and C′ is an empty set now, then delete it from the
collection T ;

3. if T consists of exactly three singular sets C1 = {a1}, C2 = {a2}, and
C3 = {a3}

then Pick three unused partitions of S of the forms (A1 ∪ {C1},B1 ∪ {C2}),
(A2∪{C2},B2∪{C3}), and (A3∪{C3},B3∪{C1}) to left-pair a1 and right-pair
a2, left-pair a2 and right-pair a3, and left-pair a3 and right-pair a1, respect-

ively.

Fig. 2.1. The algorithm Prematching.

Then π[1, i](u) will have the cycle structure

π[1, i](u) = (a
(1)
1 · · · a(1)

j−1)(a
(1)
j · · · a(1)

n1
1)(a

(2)
1 · · · a(2)

n2
) · · · (a(k)

1 · · · a(k)
nk

).

Note that if a symbol ai is in a single symbol cycle in a cycle structure of a
permutation u = a1a1 · · · an, then the symbol is in its “correct” position, i.e., ai = i,
and that if a symbol is in a cycle containing more than one symbol, then the symbol
is not in its correct position. Denote by ε the identity permutation ε = 12 · · ·n.

2. Partition matching via element prematching. For the rest of this paper,
we assume that U = {1, 2, . . . , n} and that S = {C1, C2, . . . , Ck} is a collection of

pairwise disjoint subsets of U such that
⋃k
i=1 Ci = U .

A necessary condition for two subsets {a1, a2, . . . , am} and {b1, b2, . . . , bm} of U
to form a partition matching for the collection S is that ai and bi belong to differ-
ent subsets in the collection S for all i = 1, 2, . . . ,m. This motivates the following
definition.

Definition 2.1. Two subsets {a1, a2, . . . , am} and {b1, b2, . . . , bm} of U form an
element prematching P = {(ai, bi) | 1 ≤ i ≤ m} if ai and bi do not belong to the
same subset in the collection S for all i = 1, 2, . . . ,m. The element prematching P is
maximum if m is the largest among all element prematchings of S.

The following lemma follows directly from Definition 2.1.
Lemma 2.2. Let {a1, a2, . . . , am} and {b1, b2, . . . , bm} be a maximum element

prematching of S. If the subsets {a1, a2, . . . , am} and {b1, b2, . . . , bm} also form a
partition matching M of S, then M is a maximum partition matching.

We show in this section that when the number of subsets in the collection S
is sufficiently large, a maximum partition matching in S can be constructed via a
maximum element prematching. Consider the algorithm Prematching in Figure 2.1.
We say that a set is singular if it consists of a single element.

The rest of this section is for a proof of correctness and complexity analysis of
the algorithm Prematching.

938 CHI-CHANG CHEN AND JIANER CHEN

Lemma 2.3. Let P = {(ai, bi) | 1 ≤ i ≤ m} be the set of pairs constructed by the
algorithm Prematching. Then P forms a maximum element prematching for the
collection S.

Proof. Since for each pair (ai, bi) constructed by the algorithm Prematching,
the elements ai and bi are from different sets in S, the set P forms an element
prematching. We show that this element prematching P is maximum.

Denote by |Ci| the cardinality of the set Ci. Without loss of generality, we assume
|C1| ≥ |C2| ≥ · · · ≥ |Ck|. There are two cases.

Case 1. |C1| > n/2. Because in an element prematching each pair (a, b) must
have either a ∈ ∪ki=2Ci or b ∈ ∪ki=2Ci, a maximum element prematching can have at

most 2
∑k
i=2 |Ci| pairs.

On the other hand, in case |C1| > n/2 the algorithm Prematching actually

constructs 2
∑k
i=2 |Ci| pairs: Since |C1| >

∑k
i=2 |Ci|, in each execution of the body

of the while loop in step 2 the set C1 always has the largest cardinality. Thus, the
algorithm always picks an element a in C1 and an element b in

⋃k
i=2 Ci and then

makes the pairs (a, b) and (b, a). The loop will stop when all elements in
⋃k
i=2 Ci have

been used, which results in exactly 2
∑k
i=2 |Ci| pairs. Thus, the lemma is true for this

case.
Case 2. |C1| ≤ n/2. In this case we show that the algorithm Prematching

always constructs an element prematching with n pairs (thus maximum).
If S consists of only two sets C1 and C2, then since |C1| ≥ |C2|, |C1| ≤ n/2, and

|C1| + |C2| = n, we must have |C1| = |C2|. Now it becomes trivial to verify in this
case that the algorithm Prematching constructs a maximum element prematching
with n pairs.

Thus we assume that the collection S contains at least three sets. We prove the
lemma for this case by induction on the size n of the universal set U . When n = 3,
the collection S consists of exactly three singular sets, and step 3 of the algorithm
shows how an element prematching with three pairs can be constructed. Now assume
that n > 3. Note that after the first execution of the body of the while loop in step
2, the collection T becomes

T ′ = {C ′1, C ′2, C3, . . . , Ck},

where C ′1 = C1−{a}, C ′2 = C2−{a′}, and |C ′1|+ |C ′2|+ |C3|+ · · ·+ |Ck| = n− 2. We
show that the largest set in T ′ contains at most (n− 2)/2 elements.

If C ′1 is still the largest set, then from |C1| ≤ n/2 we have |C1| ≤
∑k
i=2 |Ci|.

Consequently, |C ′1| ≤ |C ′2| + |C3| + · · · + |Ck|, i.e., |C ′1| ≤ (n − 2)/2. On the other
hand, if C ′1 is no longer the largest set, then C3 must be the largest set in T ′, and before
the first execution of the body of the while loop in step 2 we have |C1| = |C2| = |C3|.
Thus, |C3| ≤ n/3. Note that |C3| is an integer; thus |C3| ≤ n/3 implies |C3| ≤ (n−2)/2
for all n > 3.

Thus, the collection T ′ consists of k subsets of the universal set U − {a, a′} of
n − 2 elements, and the largest set in T ′ contains no more than (n − 2)/2 elements.
Note that the algorithm Prematching applies the same strategy on the collection
T ′. By the inductive hypothesis, the algorithm constructs an element prematching
P ′ with n − 2 pairs for the collection T ′. Combining this with the pairs (a, a′) and
(a′, a) constructed in the first execution of the body of the while loop in step 2, we
obtain an element prematching with n pairs for the collection S.

Combining all these analyses, we conclude with the lemma.

PARTITION MATCHING WITH APPLICATIONS 939

To complete the correctness proof for the algorithm Prematching, we need
only to show that for each pair (a, a′) constructed by the algorithm, there is always
a distinct partition of S that implements the pairing. By the assumption of the
algorithm, we have 2k ≥ 2n.

We first consider step 2 of the algorithm Prematching. Suppose that at some
moment the algorithm needs a partition to left-pair an element a ∈ C and right-pair
an element a′ ∈ C ′. Note that each execution of the body of the while loop uses
two partitions of the forms (A,B) and (B,A). Thus each execution of the body of
the while loop can use at most one partition whose left-collection contains C and
whose right-collection contains C ′. Consequently, less than bn/2c partitions whose
left-collection contains C and whose right-collection contains C ′ have been used. Since
2k ≥ 2n and there are 2k−2 ≥ n/2 partitions of S whose left-collection contains C
and whose right-collection contains C ′, we conclude that there is always an unused
partition P that can be used to left-pair the element a and right-pair the element a′.

The proof proceeds similarly for step 3. For example, suppose we want to left-pair
the element a3 ∈ C3 and right-pair the element a1 ∈ C1. There are 2k−2 ≥ n/2 total
partitions of S whose left-collection contains C3 and whose right-collection contains
C1, of which at most (n−3)/2 have been used (by step 2). Also note that no partition
that is used to left-pair a1 and right-pair a2 or left-pair a2 and right-pair a3 in step 3
has C3 in its left-collection and C1 in its right-collection. Therefore, there is always
an unused partition that can be used to left-pair a3 and right-pair a1.

This shows that the algorithm Prematching constructs a partition matching in
the collection S. Combining this with Lemmas 2.2 and 2.3, we have the following
theorem.

Theorem 2.4. Let S = {C1, C2, . . . , Ck} be a collection of nonempty subsets

of the universal set U = {1, 2, . . . , n} such that
⋃k
i=1 Ci = U and Ci ∩ Cj = φ for

i 6= j. If 2k ≥ 2n, then the algorithm Prematching constructs a maximum partition
matching in S.

The algorithm Prematching can be implemented to have running time O(n2).
For this, we represent each partition of S by a binary number of k bits and assume
that simple arithmetic operations on k-bit binary numbers take constant time. With
this representation, testing whether a set Ci is in the left-collection or in the right-
collection of a partition P takes constant time. We keep a list L for the used partitions,
sorted by their k-bit binary representations. When a pair (Ci, Cj) of sets is given and
we need to find a partition whose left-collection contains Ci and whose right-collection
contains Cj (this kind of partitions will be called “partitions pairing (Ci, Cj)” in the
following description), we go through the list L to identify all used partitions pairing
(Ci, Cj) in L. Let L′ be the (sorted) sublist containing all used partitions pairing
(Ci, Cj) in L. Note that given a partition P pairing (Ci, Cj), we can construct the
“next” partition pairing (Ci, Cj) by a special “adding 1” operation on P ; this adding
1 operation first deletes the ith bit bi and the jth bit bj from P , then adds 1 to the
resulting number, and finally reinserts the bits bi and bj back into the ith and jth
positions, respectively. The adding 1 operation can be implemented by a constant
number of arithmetic operations; thus it takes constant time. Therefore, by going
through the sublist L′ we can find a “gap” between two consecutive partitions P1 and
P2 in L′; i.e., P2 is not the partition pairing (Ci, Cj) next to the partition P1, so the
partition pairing (Ci, Cj) next to the partition P1 is unused. However, if there is no
gap between any two consecutive partitions in L′, the partition pairing (Ci, Cj) next
to the last partition in L′ is unused. In any case, the constructed unused partition is

940 CHI-CHANG CHEN AND JIANER CHEN

used to pair (Ci, Cj) and is added to the list L (by scanning the list L and inserting
the partition into a proper position in L). In conclusion, in time O(n) we can find an
unused partition to pair two given elements and update the list L. Consequently, the
algorithm Prematching runs in time O(n2).

3. Maximum partition matching: General case. According to Theorem 2.4,
we only have to investigate maximum partition matchings for collections of k subsets
in U such that 2k < 2n. We shall show in this section that a maximum partition
matching for such collections can be constructed by a greedy strategy.

Suppose we have constructed a partition matching M = M [(a1, b1), . . . , (ah, bh)]
and want to expand this matching. The partitions of the collection S then can be
classified into two classes: h of the partitions are used to pair the h pairs (ai, bi),
i = 1, . . . , h, and the remaining 2k − h partitions are unused. Now if there is an
unused partition P = (A,B) such that there is a left-unpaired element a in A and a
right-unpaired element b in B, then we simply pair the element a with the element b
using the partition P , thus expanding the partition matching M .

Now suppose that there is no such unused partition; i.e., for all unused partitions
(A,B), either A contains no left-unpaired elements or B contains no right-unpaired
elements. This case may not necessarily imply that the current partition matching
is the maximum. For example, suppose that (A,B) is an unused partition such that
there is a left-unpaired element a in A but no right-unpaired elements in B. Assume
further that there is a used partition (A′,B′) that pairs elements (a′, b′) such that
the element b′ is in B and there is a right-unpaired element b in B′. Then we can
let the partition (A′,B′) pair the elements (a′, b) and let the partition (A,B) pair the
elements (a, b′), thus expanding the partition matching M . An explanation of this
process is that the used partitions have been incorrectly used to pair elements; thus,
to construct a maximum partition matching, we must re-pair some of the elements.
To further investigate this relation, we need to introduce a few notations.

For a used partition P of S, we underline a set in the left-collection (respectively,
the right-collection) of P to indicate that an element in the set is left-paired (respec-
tively, right-paired) by the partition P . The sets will be called the left-paired set and
the right-paired set of the partition P , respectively.

Definition 3.1. A used partition P is directly left-reachable from a partition
P1 = (A1,B1) if the left-paired set of P is contained in A1 (the partition P1 can
be either used or unused). The partition P is directly right-reachable from a parti-
tion P2 = (A2,B2) if the right-paired set of P is contained in B2. A partition Ps
is left-reachable (respectively, right-reachable) from a partition P1 if there are parti-
tions P2, . . . , Ps−1 such that Pi is directly left-reachable (respectively, directly right-
reachable) from Pi−1 for all i = 2, . . . , s.

The left-reachability and the right-reachability are transitive relations.

Let P1 = (A1,B1) be an unused partition such that there are no left-unpaired
elements in A1, and let Ps = (As,Bs) be a partition left-reachable from P1 and there
is a left-unpaired element as in As. We show how we can use a chain justification to
make a left-unpaired element for the collection A1.

By Definition 3.1, there are used partitions P2, . . . , Ps−1 such that Pi is directly
left-reachable from Pi−1 for i = 2, . . . , s. We can further assume that Pi is not directly
left-reachable from Pi−2 for i = 3, . . . , s—otherwise we simply delete the partition
Pi−1 from the sequence. Thus, these partitions can be written as

PARTITION MATCHING WITH APPLICATIONS 941

P1 = ({C1} ∪ A′1,B1), P2 = ({C1, C2} ∪ A′2,B2),

P3 = ({C2, C3} ∪ A′3,B3), . . . ,

Ps−1 = ({Cs−2, Cs−1} ∪ A′s−1,Bs−1),

Ps = ({Cs−1, Cs} ∪ A′s,Bs),
where A′1, . . . ,A′s are subcollections of S without an underlined set.

We can assume that the left-unpaired element as in As = {Cs−1, Cs} ∪ A′s is in
a nonunderlined set Cs in As—otherwise, we consider the sequence P1, P2, . . . , Ps−1

instead. We modify the partition sequence into

P1 = ({C1} ∪ A′1,B1), P2 = ({C1, C2} ∪ A′2,B2),

P3 = ({C2, C3} ∪ A′3,B3), . . . ,

Ps−1 = ({Cs−2, Cs−1} ∪ A′s−1,Bs−1),

Ps = ({Cs−1, Cs} ∪ A′s,Bs).
The interpretation is as follows: We use the partition Ps to left-pair the left-unpaired
element as (the right-paired element in the right-collection Bs is unchanged). Thus,
the element as−1 in the set Cs−1 the partition Ps used to left-pair becomes left-
unpaired. We then use the partition Ps−1 to left-pair the element as−1 and leave an
element as−2 in the set Cs−2 left-unpaired. Then we use the partition Ps−2 to left-pair
as−2, At the end, we use the partition P2 to left-pair an element a2 in the set C2

and leave an element a1 in the set C1 left-unpaired. Therefore, this process makes an
element in the left-collection A1 = {C1} ∪ A′1 of the partition P1 left-unpaired.

The above process will be called a left-chain justification. Thus, given an unused
partition P1 = (A1,B1) in which the left-collection A1 has no left-unpaired elements
and given a used partition Ps = (As,Bs) left-reachable from P1 such that the left-
collection As of Ps has a left-unpaired element, we can apply the left-chain justi-
fication that keeps all used partitions in the partition matching M and makes a
left-unpaired element for the partition P1. A process called right-chain justification
for right-collections of the partitions can be described similarly. This motivates the
algorithm Greedy Expanding in Figure 3.1.

Theorem 3.2. The algorithm Greedy Expanding runs in time O(n2 log n).
Proof. For each set Ci, we keep a counter for the number of left-unpaired elements

in Ci and a counter for the number of right-unpaired elements in Ci, so that checking
whether a partition has an unpaired element can be done in time O(k).

To test left-reachabilities in each execution of Cases 1–4, we let vi be the collection
of all used partitions whose left-paired set is Ci, for i = 1, . . . , k. Note that if a
partition in vi is directly left-reachable from a partition P , then the left-collection
of P contains Ci; thus all partitions in vi are left-reachable from P . If vi contains a
used partition whose left-collection contains a left-unpaired element, then we “label”
vi by such a partition (if there is more than one such partition, pick any one of them).
We construct a directed graph G whose vertices are v1, . . ., vk. There is an edge
from vertex vi to vertex vj in G if and only if all partitions in vj are directly left-
reachable from a partition in vi. The graph G contains at most O(k2) edges and can
be constructed in time O(nk) by scanning the partitions in each vertex in G.

For each set Ci in S, in time O(k2) we can find all vertices vj in the graph G
such that there is a path in G from vi to vj . If any vj of these vertices is labeled by
a partition, then we associate the set Ci with the vertex vj (if there is more than one
such vertex, pick any one of them).

942 CHI-CHANG CHEN AND JIANER CHEN

Algorithm. Greedy Expanding

input: A collection S = {C1, . . . , Ck} of pairwise disjoint subsets of U , with 2k < 2n.
output: A partition matching Mexp in S.

Start with Mexp = ∅ and repeat the following steps until no more changes.
1. Case 1. There is an unused partition P = (A,B) that has a left-unpaired
element a in A and a right-unpaired element b in B
Then pair the two elements (a, b) by the partition P and add P to the matching
Mexp;
2. Case 2. There is an unused partition P = (A,B) that has a right-unpaired
element b in B but no left-unpaired elements in A, and there is a used partition
P ′ = (A′,B′) left-reachable from P and the collection A′ has a left-unpaired
element
Then use the left-chain justification to make a left-unpaired element a for the
collection A, pair the two elements (a, b) by the partition P , and add P to the
matching Mexp;
3. Case 3. There is an unused partition P = (A,B) that has a left-unpaired
element a in A but no right-unpaired elements in B, and there is a used partition
P ′ = (A′,B′) right-reachable from P and the collection B′ has a right-unpaired
element
Then use the right-chain justification to make a right-unpaired element b for the
collection B, pair the two elements (a, b) by the partition P , and add P to the
matching Mexp;
4. Case 4. There is an unused partition P = (A,B) that has no left-unpaired
elements in A and no right-unpaired elements in B, and there are two used par-
titions P ′ = (A′,B′) left-reachable from P and P ′′ = (A′′,B′′) right-reachable
from P such that A′ has a left-unpaired element and B′′ has a right-unpaired
element
Then use the left-chain justification to make a left-unpaired element a for A, and
use the right-chain justification to make a right-unpaired element b for B, then
pair the two elements (a, b) by the partition P , and add P to the matching Mexp.

Fig. 3.1. The algorithm Greedy Expanding.

The above preprocessing takes time O(nk + k3).
Let P = {A,B} be an unused partition. It is easy to verify that for any collection

vj , all partitions in vj are left-reachable from P if and only if there is a set Ci in A
such that there is a path from vi to vj in the graph G. In particular, a used partition
whose left-collection contains a left-unpaired element is left-reachable from P if and
only if a set Ci in A is associated with a vertex vj in G labeled by a used partition
P ′ = {A′,B′}, where A′ contains a left-unpaired element. Therefore, the conditions
in Cases 1–4 in the algorithm Greedy Expanding for each unused partition P can
be tested in time O(k). When a set Ci in A is associated with a vertex vj labeled
by a used partition P ′ = {A′,B′}, the actual left-reachability path from P to P ′ can
be constructed by first finding a path p in the graph G from vertex vi to vertex vj
and then searching the partitions in each of the vertices on the path p. Thus such
a left-reachability path from the unused partition P to the used partition P ′ can be
constructed in time O(nk + k2).

The right-reachability can be handled similarly.
Since there are at most 2k < 2n partitions, we conclude that each execution of the

loop (Cases 1–4) takes time bounded by O(nk + k3) = O(n log n) since k = O(log n).
Since each execution of the loop adds at least one partition to the partition matching
Mexp, the total running time of the algorithm Greedy Expanding is bounded by
O(n2 log n).

After execution of the algorithm Greedy Expanding, we obtain a partition
matching Mexp. For each partition P = (A,B) not included in Mexp, either A has no

PARTITION MATCHING WITH APPLICATIONS 943

left-unpaired elements and no used partition left-reachable from P has a left-unpaired
element in its left-collection or B has no right-unpaired elements and no used partition
right-reachable from P has a right-unpaired element in its right-collection.

Definition 3.3. Define Lfree to be the set of partitions P not used by Mexp such
that the left-collection of P has no left-unpaired elements and no used partition left-
reachable from P has a left-unpaired element in its left-collection, and define Rfree
to be the set of partitions P ′ not used by Mexp such that the right-collection of P ′

has no right-unpaired elements and no used partition right-reachable from P ′ has a
right-unpaired element in its right-collection.

According to the algorithm Greedy Expanding, each partition not used by
Mexp is either in the set Lfree or in the set Rfree. The sets Lfree and Rfree may not
be disjoint.

Definition 3.4. Define Lreac to be the set of partitions in Mexp that are left-
reachable from a partition in Lfree, and define Rreac to be the set of partitions in
Mexp that are right-reachable from a partition in Rfree.

According to Definition 3.3 and Definition 3.4, if a used partition P is in the set
Lreac, then all elements in its left-collection are left-paired, and if a used partition P
is in the set Rreac, then all elements in its right-collection are right-paired.

We first show that if Lreac and Rreac are not disjoint, then we can construct a
maximum partition matching from the partition matching Mexp constructed by the
algorithm Greedy Expanding.

Lemma 3.5. If the sets Lreac and Rreac contain a common partition and the
partition matching Mexp has less than n pairs, then there is a set C0 in S, |C0| ≤ n/2
such that either all elements in each set C 6= C0 are left-paired and every used partition
whose left-paired set is not C0 is contained in Lreac or all elements in each set C 6= C0

are right-paired and every used partition whose right-paired set is not C0 is contained
in Rreac.

Proof. Let the partition P = (A,B) be in the intersection of Lreac and Rreac.
Therefore, all elements in A are left-paired and all elements in B are right-paired.
Since there are totally n elements in A∪B, one of A and B has at least n/2 elements.

Suppose that A has at least n/2 elements, which are all left-paired. Since Mexp

has less than n pairs, there is a set C0 that contains left-unpaired elements. In
particular, C0 is not contained in the collection A. Thus, |C0| ≤ n/2.

Let P1, . . . , Pt be the partitions in Mexp that are used to left-pair the elements
in A. Thus, t ≥ n/2. Since the left-paired set of each Pi is also contained in A, by
Definition 3.1 Pi is directly left-reachable from P = (A,B). Now P ∈ Lreac. Thus, we
also have Pi ∈ Lreac for i = 1, . . . , t. In particular, all elements in the left-collection
of each Pi have been left-paired. Consequently, the set C0 is not contained in the
left-collection of any of these partitions P1, . . . , Pt.

Suppose that there is another set C 6= C0 in S that also is not contained in the
left-collection of any of the partitions P1, . . . , Pt. Then, since the total number of
partitions whose left-collections do not contain the sets C0 and C is 2k−2, we get
2k−2 ≥ t. However, this would contradict the facts that t ≥ n/2 and 2k < 2n.

Therefore, the set C0 is the only set in S that is not contained in the left-collection
of any of the partitions P1, . . . , Pt. In particular, the set C0 is the only set that contains
left-unpaired elements. All elements in each set C 6= C0 are left-paired.

Now let P ′ be a used partition whose left-paired set C 6= C0. Since the set
C must be contained in the left-collection of some partition Pi among {P1, . . . , Pt},
by the definition of the left-reachability, the partition P ′ is left-reachable from the

944 CHI-CHANG CHEN AND JIANER CHEN

partition Pi. Since the partition Pi is in Lreac, we conclude that the partition P ′ is
also in Lreac.

Thus, we have proved that if the left-collection A of the partition P = (A,B) in
the intersection of Lreac and Rreac has at least n/2 elements, then there is a set C0

in S, |C0| ≤ n/2, such that all elements in each set C 6= C0 are left-paired and every
used partition whose left-paired set is not C0 is in the set Lreac.

In case the right-collection B of the partition P has at least n/2 elements, we
can prove in a completely similar way that there is a set C0 in S, |C0| ≤ n/2, such
that all elements in each set C 6= C0 are right-paired and every used partition whose
right-paired set is not C0 is in Rreac.

Now we are ready for the following theorem.
Theorem 3.6. If Lreac and Rreac have a common partition, then the collection S

has a maximum partition matching of n pairs, which can be constructed in linear time
from the partition matching Mexp constructed by the algorithm Greedy Expanding.

Proof. If Mexp has n pairs, then Mexp is already a maximum partition matching.
Thus we assume that Mexp has less than n pairs. According to Lemma 3.5, we can
assume, without loss of generality, that all elements in each set Ci, i = 2, . . . , k, are
left-paired and that every used partition whose left-paired set is not C1 is in Lreac.
Moreover, |C1| ≤

∑k
i=2 |Ci|.

Let t =
∑k
i=2 |Ci| and d = |C1|. Then we can assume that Mexp consists of the

partitions

P1, . . . , Pt, Pt+1, . . . , Pt+h,

where P1, . . . , Pt are used by Mexp to left-pair the elements in ∪ki=2Ci, and Pt+1, . . . ,
Pt+h are used by Mexp to left-pair the elements in C1, h < d. Moreover, all partitions
P1, . . . , Pt are in the set Lreac. Thus, the set C1 must be contained in the right-
collection in each of the partitions P1, . . . , Pt.

We ignore the partitions Pt+1, . . . , Pt+h and use the partitions P1, . . . , Pt to con-
struct a maximum partition matching of n pairs. Note that {P1, . . . , Pt} also forms a
partition matching in the collection S.

Consider the algorithm Partition Flipping given in Figure 3.2, where flipping
a partition (A,B) gives the partition (B,A).

We must prove that the algorithm Partition Flipping correctly constructs a
partition matching with n pairs.

Step 1 of the algorithm is always possible: Since C1 is contained in the right-
collection of each partition Pi, i = 1, . . . , t, and t ≥ d for each right-unpaired element
b in C1, we can always pick a partition Pi that right-pairs an element in ∪ki=2Ci and
let Pi right-pair the element b. We keep doing this replacement until all d elements
in C1 get right-paired. At this point, the number of partitions in {P1, . . . , Pt} that
right-pair elements in ∪ki=2Ci is exactly t− d.

Step 3 is always possible since the partitions P1, . . . , Pt left-pair all elements in
∪ki=2Ci.

Now we verify that the sequence {P1, . . . , Pt, P
′
1, . . . , P

′
d} is a partition matching

in S.
No two partitions Pi and Pj can be identical since {P1, . . . , Pt} is supposed to be

a partition matching in S. No two partitions P ′i and P ′j can be identical since they
are obtained by flipping two different partitions in {P1, . . . , Pt}. No partition Pi is
identical to a partition P ′j because Pi has C1 in its right-collection whereas P ′j has C1

in its left-collection. Therefore, the partitions P1, . . . , Pt, P
′
1, . . . , P

′
d are all distinct.

PARTITION MATCHING WITH APPLICATIONS 945

Algorithm. Partition Flipping

input: A partition matching {P1, . . . , Pt} that left-pairs all elements in ∪ki=2Ci,

t =
∑k

i=2
|Ci|, and the set C1 is contained in the right-collection of each partition

Pi, i = 1, . . . , t, d = |C1| ≤ t.
output: A maximum partition matching in S with n pairs.

1. If not all elements in the set C1 are right-paired by P1, . . . , Pt, replace a
proper number of right-paired elements in ∪ki=2Ci by the right-unpaired
elements in C1 so that all elements in C1 are right-paired by P1, . . . , Pt;

2. Suppose that the partitions P1, . . . , Pt−d right-pair t − d elements
b1, . . . , bt−d in ∪ki=2Ci, and that Pt−d+1, . . . , Pt right-pair the d elements
in C1;

3. Suppose that P 1, . . . , P t−d are the t − d partitions in {P1, . . . , Pt} that
left-pair the elements b1, . . . , bt−d;

4. Flip each of the d partitions in {P1, . . . , Pt} − {P 1, . . . , P t−d} to get d
partitions P ′1, . . . , P

′
d to left-pair the d elements in C1. The right-paired

element of each P ′i is the left-paired element before the flipping;
5. {P1, . . . , Pt, P ′1, . . . , P

′
d} is a partition matching in S with n pairs.

Fig. 3.2. The algorithm Partition Flipping.

Each of the partitions P1, . . . , Pt left-pairs an element in ∪ki=2Ci, and each of the
partitions P ′1, . . . , P

′
d left-pairs an element in C1. Thus, all elements in the universal

set U get left-paired in {P1, . . . , Pt, P
′
1, . . . , P

′
d}.

Finally, the partitions P1, . . . , Pt right-pair all elements in C1 and the elements
b1, . . . , bt−d in ∪ki=2Ci. Now, by our selection of the partitions, the partitions P ′1, . . . , P

′
d

precisely right-pair all the elements in ∪ki=2Ci − {b1, . . . , bt−d}. Thus, all elements in
U also get right-paired in {P1, . . . , Pt, P

′
1, . . . , P

′
d}.

This leads to the conclusion that the sequence {P1, . . . , Pt, P
′
1, . . . , P

′
d} is a maxi-

mum partition matching in the collection S.

The running time of the algorithm Partition Flipping is obviously linear.

Now we consider the case when Lreac and Rreac have no common partitions.

Theorem 3.7. If Lreac and Rreac have no common partitions, then the partition
matching Mexp constructed by the algorithm Greedy Expanding is a maximum
partition matching.

Proof. Let Wother be the set of used partitions in Mexp that belong to neither
Lreac nor Rreac. Then

Lfree ∪Rfree ∪ Lreac ∪Rreac ∪Wother

is the set of all partitions of the collection S, and

Lreac ∪Rreac ∪Wother

is the set of partitions contained in the partition matching Mexp. Since all sets Lreac,
Rreac, and Wother are pairwise disjoint, the number of partitions in Mexp is precisely

|Lreac|+ |Rreac|+ |Wother|.

Now consider the set WL = Lfree ∪ Lreac. Let UL be the set of elements that
appear in the left-collection of a partition in WL. We have the following situations:

1. Every P ∈ Lreac left-pairs an element in UL.
2. Every element in UL is left-paired.

946 CHI-CHANG CHEN AND JIANER CHEN

Algorithm. General Maximum Partition Matching

input: A collection S = {C1, . . . , Ck} of pairwise disjoint subsets of U = {1, 2, . . . , n}.
output: A maximum partition matching M in S.

1. Case 1. 2k ≥ 2n
call the algorithm Prematching to construct a maximum partition match-
ing;

2. Case 2. 2k < 2n
call the algorithm Greedy Expanding to construct a partition matching
Mexp; compute Lreac and Rreac;
if Lreac and Rreac have a common partition
then call the algorithm Partition Flipping to construct a maximum
partition matching
else Mexp is a maximum partition matching.

Fig. 3.3. The algorithm General Maximum Partition Matching.

3. If an element a in UL is left-paired by a partition P , then P ∈ Lreac. (Proof.
Let the element a be in the set C. Then the set C is the left-paired set of the
partition P . Since the element a is in UL, the set C is also contained in the
left-collection of a partition P ′ that is in either Lfree or Lreac. The partition
P is left-reachable from P ′; thus, it must be in Lreac.)

Therefore, the partitions in Lreac precisely left-pair the elements in UL. This gives
|Lreac| = |UL|. Since there are only |UL| elements that appear in the left-collections
in partitions in Lfree ∪ Lreac, we conclude that the partitions in WL = Lfree ∪ Lreac
can be used to left-pair at most |UL| = |Lreac| elements in any partition matching in
the collection S.

Similarly, the partitions in the set WR = Rfree ∪Rreac can be used to right-pair
at most |Rreac| elements in any partition matching in the collection S.

Therefore, any partition matching in the collection S can include at most |Lreac|
partitions in the set WL, at most |Rreac| partitions in the set WR, and at most
all partitions in the set Wother. Consequently, a maximum partition matching in S
consists of at most

|Lreac|+ |Rreac|+ |Wother|
partitions. Since the partition matching Mexp constructed by the algorithm Greedy
Expanding contains just this many partitions, Mexp is a maximum partition matching
in the collection S.

We summarize all the discussions above into the following theorem.
Theorem 3.8. The maximum partition matching problem can be solved in time

O(n2 log n).
Proof. The problem is solved by the algorithm General Maximum Partition

Matching given in Figure 3.3. The correctness of the algorithm has been proved
by Theorems 2.4, 3.6, and 3.7. To construct the sets Lreac and Rreac, we use an
algorithm similar to the one described for the algorithm Greedy Expanding. That
is, we first compute all the used partitions reachable from each set Ci and then use this
information to examine each unused partition. This can be done in time O(n2 log n),
and we leave the detailed verification to interested readers.

4. Parallel routing in star networks. In this section, we show an application
of maximum partition matching in parallel routing in star networks.

The star network [1] has received considerable attention from researchers recently
as a graph model for interconnection networks. It has been shown to be an attractive

PARTITION MATCHING WITH APPLICATIONS 947

alternative to the widely used hypercube model. Like the hypercube, the star network
has rich structural and symmetric properties as well as fault tolerant characteristics.
Moreover, it has a smaller diameter and degree while being comparable to a hypercube
with the same number of vertices.

Formally, the n-dimensional star network (or simply the n-star network) is an
undirected graph consisting of n! nodes labeled with the n! permutations on symbols
1, 2, . . . , n. There is an edge between a node u to a node v if and only if there is a
transposition π[1, i], 2 ≤ i ≤ n, such that π[1, i](u) = v. The n-star network is an
(n− 1)-connected and vertex symmetric Cayley graph [1].

Parallel routing, i.e., finding parallel node-disjoint paths between two nodes in a
star network, has been investigated recently [6, 11, 13, 14]. Since the n-star network is
vertex symmetric, a parallel routing between two arbitrary nodes can be mapped to a
parallel routing between a node and the identity node ε. Let dist(u) define the distance
from the node u to ε. Day and Tripathi [6] and Jwo, Lakshmivarahan, and Dhall [11]
have shown that for any node u there are n− 1 node-disjoint paths connecting u and
ε such that no path has length larger than dist(u) + 4. An algorithm was described
in [11] to construct the maximum number of node-disjoint paths of length dist(u)
between the nodes u and ε. Unfortunately, the algorithm runs in exponential time in
the worst case. Moreover, the algorithm seems to contain a serious bug. For example,
the algorithm always constructs an even number of shortest paths from a node u to
ε, whereas a star network may have an odd number of node-disjoint shortest paths
between a node u and ε (see our discussion in the next section).

Let u = a1a2 · · · an be a node in the n-star network (i.e., u is a permutation on
1, . . . , n). Suppose that the cycle structure of u is u = c1 · · · cke1 · · · em, where ci are

cycles of length at least 2 and ej are cycles of length 1. If we further let l =
∑k
i=1 |ci|,

then the shortest distance from u to the identity node ε is given by the formula [1]

dist(u) =

{
l + k, if a1 = 1,
l + k − 2, if a1 6= 1.

From this formula, we can derive an upper bound on the number of node-disjoint
shortest paths from u to ε. We distinguish two cases. Recall that π[1, i] is the
transposition on permutations that exchanges the positions of the first symbol and
the ith symbol and that π[a] is the transposition on permutations that exchanges the
positions of the first symbol and the symbol a.

Suppose a1 = 1 in the node u = a1a2 · · · an with cycle structure c1 · · · cke1 · · · em.
If a 6= 1 is in a single symbol cycle ei, then by the discussion in section 1 and the
above formula, it is not hard to show that dist(π[a](u)) = dist(u) + 1; i.e., the edge
from u to π[a](u) does not lead to a shortest path from u to ε. Thus, in this case the

total number of node-disjoint shortest paths from u to ε is bounded by l =
∑k
i=1 |ci|.

It is also easy to see that if a is in a cycle ci of length of at least 2, then dist(π[a](u)) =
dist(u)− 1.

Suppose a1 6= 1. We further assume that in the cycle structure c1 · · · cke1 · · · em of

u, we have c1 = (a
(1)
1 a

(1)
2 · · · a(1)

d), where a1 = a
(1)
1 and a

(1)
d = 1. Let a be an element

in the cycle c1 such that a 6= a1 and a 6= a
(1)
2 . Then by the discussion in section 1 and

the above formula, dist(π[a](u)) = dist(u) + 1; i.e., the edge from u to π[a](u) does
not lead to a shortest path from u to ε. Similarly, if a is in a single symbol cycle ej ,
then the edge from u to π[a](u) does not lead to a shortest path from u to ε. Thus,
in this case the total number of node-disjoint shortest paths from u to ε is bounded

948 CHI-CHANG CHEN AND JIANER CHEN

by 1 +
∑k
i=2 |ci|. It is also easy to see that if a = a

(1)
2 or if a is in a cycle ci of length

at least 2, i > 1, then dist(π[a](u)) = dist(u)− 1.

We summarize the above discussion in the following lemma.

Lemma 4.1. Let u = a1a2 · · · an be a node in the n-star network with a cycle
structure u = c1 · · · cke1 · · · em, where ci are cycles of length at least 2 and ej are
cycles of length 1.

If a1 = 1, then the number of node-disjoint paths of length dist(u) from u to ε is

bounded by
∑k
i=1 |ci|.

If a1 6= 1, then the number of node-disjoint paths of length dist(u) from u to ε is

bounded by 1 +
∑k
i=2 |ci| (we assume that the symbol 1 is contained in cycle c1).

The above discussion also tells us that on a shortest path from a node v to ε, from
each node u = a1a2 · · · an on the path, with a cycle structure u = c1 · · · cke1 · · · em, to
the next node on the path, we must perform one of the following two operations:

Rule 1. If a1 = 1, then merge the single symbol cycle {1} into a cycle ci of length
at least 2. This corresponds to applying a transposition π[a] with a ∈ ci.

Rule 2. In the case a1 6= 1, assume that c1 = (a
(1)
1 a

(1)
2 · · · a(1)

d), where a1 = a
(1)
1

and a
(1)
d = 1. Then either merge the cycle c1 with a cycle ci, i > 1 (this

corresponds to applying the transposition π[a], where a ∈ ci), or delete the

symbol a1 from cycle c1 (this corresponds to applying the transposition π[a
(1)
2]

and putting a1 in a single symbol cycle).

Remark. Thus, a transposition π[a] is never applied along the shortest path if
a 6= 1 is in a single symbol cycle. Consequently, once a symbol a 6= 1 is in a single
symbol cycle, it will stay in the single symbol cycle forever along the shortest path.

Now we are ready to discuss parallel routing on the n-star network. Again suppose
that u = a1a2 · · · an is a node of the n-star network and we want to construct a
maximum number of node-disjoint shortest paths from the node u to the identity
node ε in the n-star network.

If a1 = 1, then by the above analysis there are at most l =
∑k
i=1 |ci| node-disjoint

shortest paths. In fact, it is not very hard to construct l node-disjoint shortest paths
from such a node u to ε [6, 11]. We will not discuss this case here. Interested readers
are referred to [6, 11].

We will concentrate on the other case, which is more difficult.

Problem A (parallel routing (hard case)). Given a node u = a1a2 · · · an in the
n-star network, where a1 6= 1, with a cycle structure c1 · · · cke1 · · · em, where c1 =

(a
(1)
1 · · · a(1)

d), a
(1)
1 = a1, and a

(1)
d = 1, construct a maximum number of node-disjoint

shortest paths (of length dist(u)) in the n-star network from the node u to the identity
node ε.

We first derive another upper bound for the number of node-disjoint shortest
paths from the node u to ε in terms of the maximum partition matching of the cycles
c2, . . . , ck, regarding c2, . . . , ck as sets of symbols.

Lemma 4.2. Let u be the node described in Problem A. Then the number of
node-disjoint shortest paths from u to ε cannot be larger than 2 plus the number of
partitions of a maximum partition matching in S = {c2, . . . , ck}.

Proof. Let P1, . . . , Ps be s node-disjoint shortest paths from u to ε. For each path
Pi, let ui be the first node on Pi such that the symbol 1 is in the first position in the
permutation ui. The node ui is obtained by repeatedly applying Rule 2, starting from
the node u. It is easy to prove by induction that for any node v from u to ui on the
path Pi, the only possible cycle of length larger than 1 in v that is not in {c2, . . . , ck}

PARTITION MATCHING WITH APPLICATIONS 949

is the one that contains the symbol 1. In particular, the node ui must have a cycle
structure of the form

ui = c′1 · · · c′kie′1 · · · e′mi ,

where c′i are cycles of length at least 2, e′j are cycles of length 1, and Bi = {c′1, . . . , c′ki}
is a subcollection of S = {c2, . . . , ck}.

Assume that the first edge on Pi is from u to π[bi](u). By the discussion of

Lemma 4.1, bi is either a
(1)
2 or one of the symbols in ∪ki=2ci. Moreover, by Rule 2,

once bi is contained in the cycle containing the symbol 1, it will stay in the cycle
containing the symbol 1 until it is put into a single symbol cycle. In particular, the
symbol bi is not in the set ∪kij=1c

′
j .

Now consider the last edge on the path Pi, which must be from a node wi with
cycle structure (di1) to the identity node ε. Since the symbol di is in a cycle of length
larger than 1 in wi, by the remark, di is also in a cycle of length larger than 1 in the

node ui; that is, di ∈ ∪kij=1c
′
j . The only exception is di = a

(1)
d−1 (in this case ui = ε).

Now we let Ai = S − Bi. Then we can conclude that except at most two paths
P1 and P2, each Pi, i ≥ 3, of the other paths P3, . . . , Ps must start with an edge
{u, π[bi](u)}, where bi is in Ai, and end with an edge {wi, ε}, where wi has a cycle
structure (di1) and di ∈ Bi (the two exceptional paths P1 and P2 may start with

the edge {u, π[a
(1)
2](u)} or end with the edge {w, ε}, where w has a cycle structure

(a
(1)
d−11)).

Now since the s paths P1, . . . , Ps are node-disjoint, the symbols b3, . . . , bs are all
pairwise distinct, and the symbols d3, . . . , ds are also pairwise distinct. Moreover,
since all nodes u3, . . . , us are pairwise distinct, the collections B3, . . . ,Bs of cycles
are also pairwise distinct. Consequently, the partitions (A3,B3), . . ., (As,Bs) form a
partition matching of the collection S = {c2, . . . , ck}.

This leads us to conclude that s cannot be larger than 2 plus the number of
partitions in a maximum partition matching of the collection S = {c2, . . . , ck}, thus
proving the lemma.

Now we show how we construct a maximum number of node-disjoint shortest
paths from the node u to the identity node ε in the n-star network. We first show
how to route a single shortest path from u to ε, given a partition (A,B) of the collection
S = {c2, . . . , ck} and a pair of symbols b and d, where b is in A and d is in B. We also

allow b to be a
(1)
2 —in this case, d must be in ∪ki=2ci, and A = φ and B = S. Similarly,

we allow d to be a
(1)
d−1—in this case, b must be in ∪ki=2ci, and B = φ and A = S.

Consider the algorithm Single Routing given in Figure 4.1. Since the algorithm
Single Routing starts with the node u and applies only transpositions described in
Rules 1 and 2, we conclude that the algorithm Single Routing constructs a shortest
path from the node u to the node ε.

Now we are ready to describe the final algorithm. Consider the algorithm Opti-
mal Parallel Routing given in Figure 4.2.

Theorem 4.3. Algorithm Optimal Parallel Routing constructs a maximum
number of node-disjoint shortest paths from the node u to the identity node ε in time
O(n2 log n).

Proof. From Lemmas 4.1 and 4.2, we know that the number of shortest paths
constructed by the algorithm Optimal Parallel Routing matches the maximum
number of node-disjoint shortest paths from u to ε. What remains is to show that all
these paths are node-disjoint.

950 CHI-CHANG CHEN AND JIANER CHEN

Algorithm. Single Routing

input: A partition (A,B) of S = {c2, . . . , ck}, and two symbols b in A and d in B. b

can be a
(1)
2 with A = φ, and d can be a

(1)
d−1

with B = φ.

output: A shortest path from u to ε starting with the edge {u, π[b](u)} and ending
with the edge {w, ε}, where w has a cycle structure (d1).

1. if b 6= a
(1)
2

apply π[b] to u to merge the cycle in A that contains b into the cycle c1;
then merge in an arbitrary order the rest of the cycles in A into the cycle
containing the symbol 1;

2. repeatedly delete symbols in the cycle containing the symbol 1 until the
symbol 1 is put into a single symbol cycle;

3. if d 6= a
(1)
d−1

suppose that the cycle C containing d in B is (d′ · · · d). Apply π[d′] to merge
(d′ · · · d) with the single symbol cycle {1}; then merge in an arbitrary order
the rest of the cycles in B into the cycle containing the symbol 1;

4. repeatedly delete symbols in the cycle containing the symbol 1 until you
reach the node ε.

Fig. 4.1. The algorithm Single Routing.

Algorithm. Optimal Parallel Routing

input: The node u in the n-star network, as described in Problem A.
output: A maximum number of node-disjoint shortest paths from u to ε.

1. Construct a maximum partition matching M [(b1, d1), . . . , (bs, ds)] in the
collection S = {c2, . . . , ck} with the partitions (A1,B1), . . ., (As,Bs) of S;

2. if s =
∑k

i=2
|ci|

then construct s+ 1 node-disjoint shortest paths as follows.
2.1. Call the algorithm Single Routing with the partition (φ,S) of S and

the symbol pair (a
(1)
2 , d1);

2.2. Call the algorithm Single Routing with the partition (S, φ) of S and

the symbol pair (b1, a
(1)
d−1

);
2.3. For i = 2 to s, call the algorithm Single Routing with the partition
(Ai,Bi) of S and the symbol pair (bi, di);

3. if s <
∑k

i=2
|ci|

then construct s+ 2 node-disjoint shortest paths as follows.
3.1. Let b0 be a left-unpaired symbol and d0 be a right-unpaired symbol
in the partition matching constructed in step 1.
3.2. Call the algorithm Single Routing with the partition (φ,S) of S and

the symbol pair (a
(1)
2 , d0);

3.3. Call the algorithm Single Routing with the partition (S, φ) of S and

the symbol pair (b0, a
(1)
d−1

);
3.4. For i = 1 to s, call the algorithm Single Routing with the partition
(Ai,Bi) of S and the symbol pair (bi, di).

Fig. 4.2. The algorithm Optimal Parallel Routing.

Suppose that the algorithm Optimal Parallel Routing constructs h shortest
paths P1, P2, . . ., Ph from node u to node ε, where h = s+ 1 or h = s+ 2 depending
on whether s =

∑k
i=2 |ci|, and suppose that the path Pi is constructed by calling

the algorithm Single Routing on partition (Ai,Bi) of S and symbol pair (bi, di)

for all i = 1, . . . , h. Note that if Ai = φ, then we have bi = a
(1)
2 , and if Bi = φ,

then we have di = a
(1)
d−1. Now fix an i and consider the path Pi, which is constructed

from the partition (Ai,Bi) and the symbol pair (bi, di). Let Ai = {c(i)2 , . . . , c
(i)
l } and

Bi = {c(i)l+1, . . . , c
(i)
k }, where if Ai 6= φ, then the cycle c

(i)
2 is of form c

(i)
2 = (bi ∗ ∗ b′i),

PARTITION MATCHING WITH APPLICATIONS 951

and if Bi 6= φ, then the cycle c
(i)
l+1 is of form c

(i)
l+1 = (∗ ∗ di), where we use “∗ ∗” to

represent the irrelevant part of a cycle structure. Finally, recall that the cycle c1 has

the form c1 = (a
(1)
1 ∗ ∗ a(1)

d−11).

The interior nodes of the path Pi can be split into three segments: I
(i)
1 , I

(i)
2 ,

and I
(i)
3 . The first segment I

(i)
1 corresponds to nodes constructed in step 1 of the

algorithm Single Routing that first merges cycle c
(i)
2 into cycle c1, obtaining a

cycle of the form (bi ∗ ∗ b′ia(1)
1 ∗ ∗ a(1)

d−11), and then merges cycles c
(i)
3 , . . . , c

(i)
l into the

cycle containing symbol 1. Therefore, all nodes in this segment are of the form

(∗ ∗ bi ∗ ∗ b′ia(1)
1 ∗ ∗ a(1)

d−11) ∗ ∗.

The second segment I
(i)
2 corresponds to the nodes constructed by step 2 of the algo-

rithm Single Routing that deletes symbols in the cycle containing the symbol 1.
All nodes in this segment are of the form

(∗ ∗ 1)c
(i)
l+1 · · · c(i)k ∗ ∗.

The third segment I
(i)
3 corresponds to the nodes constructed by steps 3 and 4 of the

algorithm Single Routing, which first merges the cycle c
(i)
l+1 into the single symbol

cycle {1}, obtaining a cycle of form (∗ ∗ di1), then merges the cycles c
(i)
l+2, . . . , c

(i)
k ,

and then deletes symbols in the cycle containing the symbol 1. Therefore, all nodes
in this segment should have the form

(∗ ∗ di1) ∗ ∗.

In case Ai = φ, we have bi = a
(1)
2 and the segment I

(i)
1 is empty, and in case

Bi = φ, we have di = a
(1)
d−1 and the segment I

(i)
3 is empty.

We now show that any two shortest paths Pi and Pj , i 6= j, constructed by the
algorithm Optimal Parallel Routing are node-disjoint. Let v be a node on the
path Pi.

Suppose that v = (∗ ∗ bi ∗ ∗ b′ia(1)
1 ∗ ∗ a(1)

d−11) ∗ ∗ is a node on the first segment

I
(i)
1 of the path Pi. The node cannot be on the first segment I

(j)
1 of the path Pj since

all nodes on I
(j)
1 are of form (∗ ∗ bj ∗ ∗ b′ja(1)

1 ∗ ∗ a(1)
d−11) ∗ ∗ and bi 6= bj (thus b′i 6= b′j).

Moreover, the node v cannot be on the second or the third segment of Pj since the
cycle structure of a node on the second or the third segment of Pj has more single
symbol cycles (note that each execution of step 2 of the algorithm Single Routing
creates a new single symbol cycle in the cycle structure).

If v = (∗ ∗ 1)c
(i)
l+1 · · · c(i)k ∗ ∗ is on the second segment I

(i)
2 of the path Pi, then

v cannot be on the second segment I
(j)
2 of Pj since each node on I

(j)
2 is of form

(∗ ∗ 1)c
(j)
f+1 · · · c(j)k ∗ ∗ and

Bi = {c(i)l+1, . . . , c
(i)
k } 6= Bj = {c(j)f+1, . . . , c

(j)
k }.

The node v cannot be on the third segment I
(j)
3 of Pj either since each node on the

segment I
(j)
3 is of form (∗∗ dj1)∗∗, where dj ∈ ∪ki=2ci, while the cycle containing the

symbol 1 in the node v is either a single symbol cycle or of form (∗ ∗ a(1)
d−11), where

a
(1)
d−1 is in c1.

952 CHI-CHANG CHEN AND JIANER CHEN

Finally, if v = (∗ ∗ di1) ∗ ∗ is on the third segment of the path Pi, then v cannot
be on the third segment of Pj because di 6= dj .

By symmetry, the above analysis shows that the two shortest paths Pi and Pj
constructed by the algorithm Optimal Parallel Routing must be node-disjoint.

The running time of the algorithm Optimal Parallel Routing is dominated
by step 1 of the algorithm, which takes time O(n2 log n) according to Theorem 3.8.
Thus, the algorithm Optimal Parallel Routing runs in time O(n2 log n).

5. Conclusion and remarks. We have presented an efficient algorithm for the
maximum partition matching problem. By a nontrivial reduction, we have shown that
finding the maximum number of node-disjoint shortest paths between two given nodes
in the star networks can be reduced to the maximum partition matching problem. This
gives the first correct and efficient algorithm for constructing the maximum number
of node-disjoint shortest paths between two given nodes in the star networks.

The problem of constructing the maximum number of node-disjoint shortest paths
between two given nodes in the star networks was previously investigated in [11],
which presents an algorithm (Algorithm 3.2 in [11]) that claims to find the maximum
number of node-disjoint shortest paths between two given nodes in the star networks.
For each node u = c1 · · · cke1 · · · em, the algorithm in [11] runs in time exponential in
k, thus in time exponential in n in the worst case (when k = Θ(n)). More seriously,
the algorithm seems based on an incorrect observation that claims that when k > 1,
the maximum number of node-disjoint shortest paths from u to ε is always even (see
the paragraph following Lemma 3.11 in [11]). Therefore, in case k > 1, the algorithm
in [11] always produces an even number of node-disjoint shortest paths from the
node u to ε. The incorrectness of this can be shown as follows. Consider a node
u = c1 · · · cke1 · · · em in the n-star network, where k > 1. It is easy to make the node
u satisfy the following conditions: (1) |c2| ≥ |ci| for i = 3, . . . , k and |c2| ≤

∑k
i=3 |ci|;

(2) the number s =
∑k
i=2 |ci| is even; and (3) k − 1 is at least as large as log(2s).

Now, according to the discussion in section 2, we can construct a partition matching of
order s for the collection {c2, . . . , ck}. Moreover, by step 2 of the algorithm Optimal
Parallel Routing, the maximum number of node-disjoint shortest paths from u
to ε is s+ 1, which is an odd number. A concrete example of this construction in the
n-star network can be found in [3].

Finally, we describe how the algorithm Optimal Parallel Routing can be
used to construct, between two nodes in the n-star network, n−1 node-disjoint paths
of minimum bulk length. Let G be an h-connected graph. By Menger’s theorem [12],
for any pair of nodes u and v in G there are h node-disjoint paths connecting u and
v. The bulk length of h node-disjoint paths connecting u and v in G is defined to
be the length of the longest path among the h paths. The bulk distance between the
two nodes u and v is defined to be the minimum bulk length over all groups of h
node-disjoint paths connecting u and v. Clearly, the bulk distance between two nodes
u and v is at least as large as the distance between u and v, which is defined to be the
length of the shortest path connecting u and v. In general, the problem of computing
the bulk distance between two given nodes in a graph is NP-hard [8, 9].

The bulk distance problem on the star networks has been studied recently [4, 5,
6, 11, 13, 14]. Since the n-star network is (n − 1)-connected and vertex symmetric
[1], the bulk distance problem on two arbitrary nodes in the n-star network can be
converted to the problem of finding n−1 node-disjoint paths of minimum bulk length
from the node u to the identity node ε. Let dist(u) and Bdist(u) be the distance
and bulk distance, respectively, between the node u and the identity node ε in the

PARTITION MATCHING WITH APPLICATIONS 953

n-star network. It has been shown that Bdist(u) is equal to dist(u) plus an even
number [6]. Day and Tripathi [6] have developed an algorithm that constructs n− 1
node-disjoint paths between u and ε with bulk length dist(u) + 4. Thus, we always
have Bdist(u) ≤ dist(u) + 4. The authors of the present paper [4, 5] have established
a sufficient and necessary condition for the node u to have bulk distance dist(u) + 4
and have developed an O(n2 log n) time algorithm to construct n − 1 node-disjoint
paths between u and ε of bulk length dist(u) + 2 when the bulk distance of u is less
than dist(u) + 4.

Combining these results and the results in the present paper, we obtain an
O(n2 log n) time algorithm that constructs n − 1 node-disjoint paths of bulk length
Bdist(u) between any node u and the identity node ε in the n-star network, as follows.
We first check whether the bulk distance Bdist(u) is dist(u) + 4, using the formula
given in [4, 5]. If Bdist(u) =dist(u) + 4, then we apply the algorithm given in [6]
to construct n − 1 node-disjoint paths of bulk length dist(u) + 4 = Bdist(u) from u
to ε. If the bulk distance of u is less than dist(u) + 4, then we apply the algorithm
Optimal Parallel Routing in the present paper to find the maximum number of
node-disjoint shortest paths. If the algorithm returns n− 1 such shortest paths, then
these paths are the n− 1 node-disjoint paths of bulk distance dist(u) between u and
ε. If the algorithm returns less than n − 1 such shortest paths, then we know that
the bulk distance of u is dist(u) + 2 so the algorithm developed in [4] can be applied
to construct n− 1 node-disjoint paths of bulk length dist(u) + 2. This completes the
description of the algorithm that always constructs n− 1 node-disjoint paths of bulk
length Bdist(u) between a node u and the identity node ε in the n-star network. The
running time of the algorithm is clearly O(n2 log n).

We would like to make a few remarks on the complexity of the above algorithm.
The bulk distance problem on general graphs is NP-hard [9]. Thus, it is very unlikely
that the bulk distance problem can be solved in time polynomial in the size of the
input graph. On the other hand, our algorithm solves the bulk distance problem in
time O(n2 log n) on the n-star network. Note that the n-star network has n! nodes.
Therefore, the running time of our algorithm is actually a polynomial of the logarithm
of the size of the input star network. Moreover, our algorithm is almost optimal (differs
at most by a log n factor) since the following lower bound can be easily observed—
the distance dist(u) from u to ε can be as large as Θ(n). Thus, constructing n − 1
node-disjoint paths from u to ε takes time at least Θ(n2) in the worst case.

Acknowledgments. The authors would like to thank Professor Eva Tardos for
her thorough and valuable comments and useful discussion on an earlier version of
this paper. The authors are grateful to Professor Jonathan Gross for informing them
of the recent discovery by Galil and Yu on graph bulk distance [8]. The authors
also thank Professor Laxmi Bhuyan, Professor Don Friesen, Professor Mi Lu, and
Dr. Xiangdong Yu for their comments and discussion. Finally, the authors express
their sincere thanks to the referees, whose critical comments and suggestions were
important for removing possible bugs and confusion in a previous version and have
greatly improved the presentation of the paper.

REFERENCES

[1] S. B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection
networks, IEEE Trans. Comput., 38 (1989), pp. 555–565.

[2] G. Birkhoff and S. MacLane, A Survey of Modern Algebra, Macmillan, New York, 1965.

954 CHI-CHANG CHEN AND JIANER CHEN

[3] C. C. Chen, Combinatorial and Algebraic Methods in Star and de Bruijn Networks, Ph.D.
thesis, Dept. of Computer Science, Texas A&M University, College Station, TX, 1995.

[4] C. C. Chen and J. Chen, Vertex-disjoint routings in star graphs, in Proc. IEEE 1st Inter-
national Conference on Algorithms and Architectures for Parallel Processing, Brisbane,
Australia, 1995, pp. 460–464.

[5] C. C. Chen and J. Chen, Optimal parallel routing in star networks, IEEE Trans. Comput.,
46 (1997), pp. 1293–1303.

[6] K. Day and A. Tripathi, A comparative study of topological properties of hypercubes and star
graphs, IEEE Trans. Parallel Distributed Syst., 5 (1994), pp. 31–38.

[7] M. L. Furst, J. L. Gross, and L. A. McGeoch, Finding a maximum-genus graph imbedding,
J. Assoc. Comput. Mach., 35 (1988), pp. 523–534.

[8] Z. Galil and X. Yu, Short length versions of Menger’s theorem, in Proc. 27th Annual ACM
Symposium on Theory of Computing, ACM, Las Vegas, NV, 1995, pp. 499–508.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco, CA, 1979.

[10] D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms,
MIT Press Ser. Found. Comput., MIT Press, Cambridge, MA, 1989.

[11] J. Jwo, S. Lakshmivarahan, and S. K. Dhall, Characterization of node disjoint (parallel)
path in star graphs, in Proc. 5th International Parallel Processing Symposium, Anaheim,
CA, 1991, pp. 404–409.

[12] K. Menger, Zur allgemeinen kurventheorie, Fund. Math., 10 (1927), pp. 96–115.
[13] J. Misic and Z. Jovanovic, Routing function and deadlock avoidance in a star graph inter-

connection network, J. Parallel Distributed Comput., 22 (1994), pp. 216–228.
[14] S. Sur and P. K. Srimani, Topological properties of star graphs, Comput. Math. Appl., 25

(1993), pp. 87–98.
[15] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

OPTIMAL BIDDING ALGORITHMS AGAINST CHEATING IN
MULTIPLE-OBJECT AUCTIONS∗

MING-YANG KAO† , JUNFENG QI‡ , AND LEI TAN§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 955–969

Abstract. This paper studies some basic problems in a multiple-object auction model using
methodologies from theoretical computer science. We are especially concerned with situations where
an adversary bidder knows the bidding algorithms of all the other bidders. In the two-bidder case,
we derive an optimal randomized bidding algorithm, by which the disadvantaged bidder can procure
at least half of the auction objects despite the adversary’s a priori knowledge of his algorithm. In
the general k-bidder case, if the number of objects is a multiple of k, an optimal randomized bidding
algorithm is found. If the k – 1 disadvantaged bidders employ that same algorithm, each of them
can obtain at least 1/k of the objects regardless of the bidding algorithm the adversary uses. These
two algorithms are based on closed-form solutions to certain multivariate probability distributions.
In situations where a closed-form solution cannot be obtained, we study a restricted class of bidding
algorithms as an approximation to desired optimal algorithms.

Key words. auction theory, bidding algorithms, electronic commerce, automated negotiation
mechanisms, software agents, market-based control

AMS subject classifications. 05A99, 60C05, 68R05, 90A09, 90A12, 90D10, 90D13

PII. S0097539796305377

1. Introduction. This paper investigates some basic problems in auction the-
ory. Broadly speaking, an auction is a market mechanism with explicit or implicit
rules for allocating resources and determining prices on the basis of bids from mar-
ket participants [4, 11, 13, 19]. Auctions are frequently used to price various types
of assets. For instance, the U.S. Treasury raises funds by auctioning T-bonds and
T-notes, while the Department of the Interior sells mineral rights on federally owned
properties via auction. Economists are interested in auctions as an efficient way to
price and allocate goods which have no standard market value. Auctions are believed
to be the simplest and most familiar means of price determination for multilateral
trading without intermediary market makers [11, 13, 19].

In typical auctions, there are one seller and a group of competing buyers who bid
to possess the auction objects. Procurements describe situations in which a single
buyer wishes to purchase objects from a set of potential suppliers. There are four
basic forms of auctions in use [11, 13, 15]. In an English auction or ascending bid
auction, the price of an object is successively raised until only one bidder remains and
wins the object. In a Dutch auction, which is the converse of an English auction, an
initial high price is subsequently lowered until a bidder accepts the current price. In
a first-price sealed-bid auction, potential buyers submit sealed bids for an object. The
highest bidder is awarded the object and pays the amount of his bid. In a second-price
sealed-bid auction, the highest bidder wins the object but pays a price equal to the

∗Received by the editors June 14, 1996; accepted for publication (in revised form) December 11,
1997; published electronically January 29, 1999. An extended abstract appeared in Proc. of the 3rd
Annual Internat. Computing and Combinatorics Conference, Lecture Notes in Comput. Sci. 1276,
Springer-Verlag, Berlin, 1997, pp. 192–201.

http://www.siam.org/journals/sicomp/28-3/30537.html
†Department of Computer Science, Yale University, New Haven, CT 06520 (kao-ming-

yang@cs.yale.edu). The research of this author was supported in part by NSF grant CCR-9531028.
‡Department of Economics, Duke University, Durham, NC 27708 (qijf@econ.duke.edu).
§Department of Computer Science, Duke University, Durham, NC 27708 (lei@cs.duke.edu).

955

956 MING-YANG KAO, JUNFENG QI, AND LEI TAN

second-highest bid. While there are many other forms of auctions, these four are of
the greatest interest.

Previous literature on auction theory mainly studied bidding behavior under the
assumption that the objective of bidders is to maximize expected profits in the absence
of any budget constraints. Such work concentrates on the allocation of a single object
to one of many bidders. Each bidder has a valuation, which is his estimate of the
value of the object. In the independent private valuation (IPV) model, each bidder
knows his valuation for the object ex ante. Each bidder’s valuation is assumed to be
drawn independently from the same probability distribution. In the common value
(CV) model, it is assumed that bidders obtain imperfect estimates of the value of the
object. The bidders all assign the same value to the object ex post. Both models are
well studied in auction theory [14, 15, 16, 17].

Very little work in computer science has been conducted on problems related to
auctions. Neither auction mechanisms nor bidding algorithms have been formally
studied. Nevertheless, computer scientists have realized the importance of auctions
as an efficient method of resource allocation [4]. Gagliano, Fraser, and Schaefer [10]
applied auction techniques to the allocation of decentralized network resources. Yang,
Barash, and Upton [20] proposed an auction-based scheme in which task and resource
allocations are determined through negotiations among system entities.

Our work investigates some basic issues of automated negotiation mechanisms
which are emerging in electronic commerce and other applications of software agents
for resource allocation. For the purpose of maximizing transaction volume and speed
[6], we focus on the simultaneous auction of several objects and propose a
multiple-object auction model. This model further differs from the IPV and CV
models in two significant aspects. In this model, each bidder faces a binding bud-
get constraint which is identical to all the bidders. Such constraints can be used to
enforce fairness of some form when their compliance is verifiable. Our model also
addresses security concerns in electronic transaction environments. We explicitly rec-
ognize the possibility that electronically transmitted information about bids may be
legitimately or illegitimately revealed against the wishes of their bidders. The IPV
and CV models assume that no bidder has such informational advantage on bids or
bidding algorithms over other bidders [9]. The assumptions of our model are specified
as follows:

• There are a total of k bidders, B1, B2, . . . , Bk, each of whom has the same
total resource to devote toward winning objects. We normalize this amount
to be 1. Assume that k ≥ 2.
• A total of n objects are auctioned. Assume that n ≥ k. Each bidder’s goal

is to maximize the number of objects he wins. The objects are therefore of
equal value to a bidder.
• Each bidder submits a sequence of n bids simultaneously for the n objects.

Each object is won by the highest bidder at the price of his bid. If m bidders
submit the same highest bid for an object, each wins the object with prob-
ability 1/m. (The results of our bidding algorithms in sections 2 and 3 are
not affected by the specific tie-breaking rules that are used.) For technical
reasons, no zero bid is allowed. (This restriction is used only in section 4.)
• Some bidders may know the bidding algorithms of others. The information

structure can be characterized by a directed graph in which an arc from a
bidder Bi to another bidder Bj means that Bi knows Bj ’s algorithm. For
instance, in Figure 1.1, B4 knows the algorithms of B1 and B2; B3 knows

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 957

zB2

z
B4

zB1
zB3

@
@@I

6

¡
¡¡ª

@
@@R

Fig. 1.1. A graph of information structure.

B4’s; B2 knows B3’s; B1 knows only his own. The bidders all compete non-
cooperatively. We assume that each bidder knows the number of bidders
and that of objects.

We analyze the performance of a number of bidding algorithms with which bidders
can assign their bids. Almost all the bidding algorithms in this paper are randomized
ones. We first study the case of two bidders, i.e., k = 2, and then extend the results
to the case of multiple bidders. In the two-bidder case, let B and A denote the
bidders. We assume that A knows B’s bidding algorithm, while B does not know
A’s; i.e., B is a disadvantaged bidder and A an adversary. Here, A is an oblivious
adversary, because although A knows B’s bidding algorithm, he does not know the
outcome of the random choices that B makes. We give an optimal randomized bidding
algorithm for B by which he can procure at least one half of the objects despite A’s
a priori knowledge of his bidding algorithm. The main difficulty with obtaining this
optimal bidding algorithm is finding a closed-form solution to a desired multivariate
probability distribution [1, 5, 7, 12, 18].

We next study the case where there are more than two bidders, and an adversary
bidder knows the bidding algorithms of all the others. If the number of objects is
a multiple of the number of bidders, an optimal randomized bidding algorithm is
found. If all the disadvantaged bidders employ that same bidding algorithm, each of
them can obtain at least 1/k of the objects regardless of the bidding algorithm the
adversary uses. This bidding algorithm is also based on a closed-form solution to a
desired multivariate probability distribution.

When the number of objects is not a multiple of the number of bidders, a closed-
form solution of a desired probability distribution cannot be obtained. Motivated by
this, we study a class of bidding algorithms to approximate desired optimal algorithms.
A bidding algorithm in this class computes an initial sequence of bids, and the actual
bid sequence is a random permutation of the initial sequence.

Section 2 describes the optimal bidding algorithm for the disadvantaged bidder
in the two-bidder case. In section 3, the optimal randomized bidding algorithm from
section 2 is generalized for the multiple-bidder case. In section 4, a class of bidding
algorithms are introduced to approximate desired optimal algorithms when a closed-
form solution cannot be determined. Section 5 concludes the paper.

For brevity, let W (Bi) denote the expected number of objects that Bi wins with
a bidding algorithm that is explicitly or implicitly specified.

2. The two-bidder case. This section studies the two-bidder case. We assume
that A knows B’s bidding algorithm, while B does not know A’s. We give an optimal

958 MING-YANG KAO, JUNFENG QI, AND LEI TAN

randomized bidding algorithm for B such that W (B) = n/2 despite A’s informational
advantage. Since this problem is a zero-sum game, this bound of n/2 would be
straightforward if von Neumann’s min-max theorem were applicable. However, our
problem has an infinite pure strategy space, and it is not immediately clear that the
min-max theorem is applicable [2, 3, 8, 9, 19].

2.1. B’s optimal bidding algorithm. The following lemma gives an upper
bound for the expected number of objects B can win.

Lemma 2.1. W (B) ≤ n
2 .

Proof. Since A knows B’s bidding algorithm, A can perform at least as well as
B by employing the same algorithm. Then this lemma follows from the fact that our
auction is a zero-sum game.

Lemma 2.2 describes the marginals of a desired multivariate probability distribu-
tion with which B can form an optimal bidding algorithm.

Lemma 2.2. Assume that B draws his bid sequence b1, b2, . . . , bn from an n-
dimensional probability distribution such that each bi has the same marginal probability
distribution F2(bi), where

F2(bi) =

{
n
2 ·bi, bi ∈ [0, 2

n],
1, bi ∈ (2

n , 1],
(2.1)

subject to
∑
bi = 1. Then, A’s optimal bidding algorithm wins exactly n/2 objects on

average.
Proof. Let a1, a2, . . . , an be A’s optimal bids for the n objects, respectively. A’s

probability of winning the ith object is F2(ai). Since B’s bids are within [0, 2/n], it is
not to A’s advantage to bid over 2/n. Hence ai ≤ 2/n and F2(ai) = n

2 ai. A’s optimal
bids maximize W (A) as follows:

max∑
ai=1,

0≤ai≤ 2
n

W (A) = max∑
ai=1,

0≤ai≤ 2
n

F2(a1) + F2(a2) + · · ·+ F2(an)

= max∑
ai=1,

0≤ai≤ 2
n

n

2
·(a1 + · · ·+ an) =

n

2
.

Lemma 2.4 systematically constructs a bid sequence for B which satisfies the
conditions given in Lemma 2.2. We define two additional functions for Lemma 2.4.
Let

s(v) =
81

2
· v

2− 3v
.(2.2)

Let h(x, y, z) be the function defined on {(x, y, z)|0 ≤ x, y, z ≤ 1
3} such that

h(x, y, z) = s(|x− y|+ |y − z|+ |z − x|).(2.3)

Lemma 2.3. The function h(x, y, z) is a joint probability density function of x, y
and z.

Proof. Note that h(x, y, z) ≥ 0. To show that h(x,y,z) is a joint probability
density function, we need only verify that the integral of h(x,y,z) over {(x, y, z)|0 ≤
x, y, z ≤ 1

3} is 1. Let

r(x, y) =

∫ 1/3

0

h(x, y, z) dz.(2.4)

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 959

Consider the case x ≥ y. Then

if x ≥ y ≥ z, h(x, y, z) = s(2(x− z));
if x ≥ z ≥ y, h(x, y, z) = s(2(x− y));

if z ≥ x ≥ y, h(x, y, z) = s(2(z − y)).

Hence if x ≥ y,

r(x, y) =

∫ y

0

s(2(x− z)) dz +

∫ x

y

s(2(x− y)) dz +

∫ 1/3

x

s(2(z − y)) dz,(2.5)

which equals

9

2

(
2 ln(1− 3(x− y))− ln(3y(1− 3x))− 1− 6(x− y)

1− 3(x− y)

)
.(2.6)

By symmetry, if y ≥ x,

r(x, y) =
9

2

(
2 ln(1− 3(y − x))− ln(3x(1− 3y))− 1− 6(y − x)

1− 3(y − x)

)
.

It can be verified that ∫ 1/3

0

∫ 1/3

0

r(x, y) dxdy = 1.

Thus, ∫ 1/3

0

∫ 1/3

0

∫ 1/3

0

h(x, y, z) dxdydz = 1.

Lemma 2.4. B can use the following procedure to draw his bids b1, b2, . . . , bn such
that

∑
bi = 1 and the marginal probability distribution of each bi is as described by

(2.1).
Case 1: n = 2m is even. B draws b1 from the probability distribution F2 and sets

bi = b1 and bm+i = 2
n − b1 for i = 1, . . . ,m.

Case 2: n = 2m + 1 is odd. B draws b1 from F2 and then sets bi = b1 and
bm−1+i = 2

n − b1 for i = 1, . . . ,m−1. For the remaining three bids b2m−1, b2m, b2m+1,
B draws (x, y, z) according to h in (2.3) and sets

b2m−1 =
3

n

(
x− y +

1

3

)
, b2m =

3

n

(
y − z +

1

3

)
, b2m+1 =

3

n

(
z − x+

1

3

)
.(2.7)

Proof. Note that
∑n
i=1 bi = 1, whether n is even or odd.

Case 1. This lemma is correct since if a random variable X is drawn from the
uniform probability distribution on [0, 2

n], then 2
n −X has the same probability dis-

tribution.
Case 2. The proof of Case 1 shows that the marginal probability distribution of

each bi is F2 for i = 1, . . . , 2m − 2. It remains to show that b2m−1, b2m, b2m+1 are
also distributed the same way. Because these three random variables are symmetric
to each other in (2.7), we discuss only b2m−1 in detail. Let t = x − y + 1

3 . Since x
and y are defined on [0, 1

3], t is defined on [0, 2
3]. We have two cases: t ∈ [0, 1

3] and

960 MING-YANG KAO, JUNFENG QI, AND LEI TAN

t ∈ [1
3 ,

2
3]. The two cases are symmetric, and we discuss only the latter. Let G(t)

denote the probability distribution of t. Then

G(t) = 1−
∫ ∫

u−v+ 1
3≥t,0≤u,v≤ 1

3

r(u, v) dvdu = 1−
∫ 1/3

t−1/3

∫ u−t+1/3

0

r(u, v) dvdu.

Since u ≥ u− t+1/3, r(u, v) can take the form of (2.6), and we can obtain G(t) = 3
2 t.

Since b2m−1 = 3
n t, F2 is the probability distribution of b2m−1.

Theorem 2.5. The bidding algorithm given in Lemma 2.4 is optimal for B and
ensures B at least n/2 objects in expected terms.

Proof. Lemma 2.1 gives an upper bound for W (B). Lemmas 2.2 and 2.4 give
an upper bound for W (A), which in turn gives a matching lower bound for W (B)
because W (B) +W (A) = n.

2.2. Deriving the joint probability density function h(x, y, z). The most
difficult step of obtaining the function h is guessing that x,y, and z appear together as
|x− y|+ |y − z|+ |z − x|. It is worthwhile to show the derivation of the function s in
(2.2) that gives the joint probability density function h(x,y,z). As in (2.4), let r(x,y)
be the probability distribution of (x,y). Also let t = x − y + 1

3 . Since t = n
3 b2m−1

needs to be uniformly distributed over [0, 2
3], we need to have

1−
∫ 1/3

t−1/3

∫ u−t+1/3

0

r(u, v) dvdu =
3

2
t for all t ∈

[
1

3
,

2

3

]
(2.8)

and ∫ t

0

∫ 1/3

u−t+1/3

r(u, v) dvdu =
3

2
t for all t ∈

[
0,

1

3

]
.

These two cases are symmetric, and we discuss only the case given by (2.8) in detail.
For notational simplicity, let

s(2v) = q(v),

∫ u

q(v) dv = p(u), r2(x, y) =
∂r(x, y)

∂y
.

Differentiating (2.8) with respect to t twice, we obtain∫ 1/3

t−1/3

r2

(
u, u− t+

1

3

)
du+ r

(
t− 1

3
, 0

)
= 0.(2.9)

Since x ≥ y in (2.8), the following is derived from (2.5):

r2(u, v) = −(u− v)q′(u− v)− q
(

1

3
− v
)

+ q(u− v).

Then ∫ 1/3

t−1/3

r2

(
u, u− t+

1

3

)
du(2.10)

= −
(
t− 1

3

)(
2

3
− t
)
q′
(
t− 1

3

)
+ p

(
t− 1

3

)
− p
(

1

3

)
+ q

(
t− 1

3

)(
2

3
− t
)
.

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 961

We obtain from (2.5)

r

(
t− 1

3
, 0

)
=

(
t− 1

3

)
q

(
t− 1

3

)
+ p

(
1

3

)
− p
(
t− 1

3

)
.(2.11)

Setting w = t− 1
3 , we can derive the following differential equation from (2.9), (2.10),

and (2.11):

w(1− 3w)q′(w) = q(w).

The solution to the differential equation is

q(w) = c
3w

1− 3w
,

where c is a constant. Therefore

s(v) = c
3v

2− 3v
.

Since h(x,y,z) is a probability density function for (x, y, z), c is set to 27
2 to satisfy∫ 1/3

0

∫ 1/3

0

∫ 1/3

0

h(x, y, z) dxdydz = 1.

3. The multiple-bidder case. This section generalizes the results in section 2
to give an optimal randomized bidding algorithm for the case of multiple bidders. We
assume that the bidding algorithms of k − 1 bidders are known to a single adversary
bidder A. If all the k − 1 disadvantaged bidders employ our bidding algorithm, each
of them wins at least a fraction 1/k of the objects regardless of the bidding algorithm
the adversary uses.

Lemma 3.1. Assume that each of the k − 1 disadvantaged bidders independently
draws his bid sequence b1, b2, . . . , bn from an n-dimensional probability distribution
such that each bi has the same marginal probability distribution Fk(bi), where

Fk(bi) =

{ (
n
k ·bi

) 1
k−1 if bi ∈ [0, kn],

1 if bi ∈ (kn , 1],
(3.1)

subject to
∑
bi = 1. Then, W (A) is at most n/k.

Proof. Let bi,j denote the bid on the ith object of the jth disadvantaged bidder.
Let ai be A’s bid on the ith object. Because the bids of the k − 1 disadvantaged
bidders are within [0, k/n], A has no incentive to bid over k/n. Thus ai ≤ k/n and

F (ai) =
(
n
k ·ai

) 1
k−1 . Since bids from different disadvantaged bidders are independent,

Prob{aiwins the ith object}
= Prob{bi,1 ≤ ai}·Prob{bi,2 ≤ ai} · · ·Prob{bi,k−1 ≤ ai}
= (Fk(ai))

k−1

=
n

k
·ai.

From the fact that
∑
ai ≤ 1, A wins exactly n/k objects on average.

962 MING-YANG KAO, JUNFENG QI, AND LEI TAN

It appears quite difficult to find a closed-form solution to a joint probability
distribution whose marginals are as described by (3.1).

Conjecture 3.2. There exists an n-dimensional joint probability distribution
such that its marginal probability distribution of every component is as described by
(3.1), while the components from all dimensions sum to 1.

For k = 2, this conjecture has been proved in section 2. If n is a multiple of k, we
prove this conjecture as follows. Let

e(b1, b2, . . . , bk) =

{
(b1b2 · · · bk)

1
k−1−1, b1 + b2 + · · ·+ bk = 1, bi > 0,

0 otherwise.

Let

α =

∫
b1+···+bk=1

e(b1, b2, . . . , bk)db1db2 · · · dbk−1.

Normalizing e by using α, we have

g(b1, b2, . . . , bk) =

{
(b1b2···bk)

1
k−1

−1

α , b1 + b2 + · · ·+ bk = 1, bi > 0,
0 otherwise.

(3.2)

With this normalization, g is a probability density function of (b1, b2, . . . , bk). For
example, if n = k = 3, the probability density function shown in (3.2) is

g(b1, b2, b3) =

{ 1
2π
√
b1b2b3

, b1 + b2 + b3 = 1, bi > 0,

0 otherwise.

The following lemma proves Conjecture 3.2 for the case n = k.
Lemma 3.3. If n = k and the bid sequence b1, b2, . . . , bn is drawn from the

n-dimensional joint probability distribution in (3.2), then the marginal probability
distribution for each bi is as described by (3.1).

Proof. Because b1, b2, . . . , bk are symmetric for g, we need only show that the
probability distribution of bk is as described in (3.1). Let

bi = (1− bk)uk−i, i = 2, . . . , k − 1.

Then

dbi = (1− bk)duk−i.

Let

α′ =

∫
u1+···+uk−1=1

(u1u2· · ·uk−1)
1
k−1−1

duk−2duk−3· · ·du1.

Note that α = (k − 1)·α′. The probability distribution of bk equals∫
0≤w≤bk
b1+b2+···+bk−1+w=1

g(b1, . . . , bk−1, w)db2 · · · dbk−1dw

=
1

α
·
∫ bk

0

∫ 1−w

0

∫ 1−w−bk−1

0

· · ·
∫ 1−w−···−b3

0

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 963

((1− b2 − · · · − w)b2b3· · ·w)
1
k−1−1

db2 db3· · ·dbk−1dw

=
1

α
·
∫ bk

0

w
1
k−1−1

∫ 1

0

∫ 1−u1

0

· · ·
∫ 1−u1−···−uk−3

0

(u1u2 · · ·uk−2(1− u1 − · · · − uk−2))
1
k−1−1

duk−2· · ·du2 du1 dw

=
1

α
·
∫ bk

0

α′w
1
k−1−1 dw

=
α′

α
(k − 1)a

1
k−1

= Fk(bk).

The following lemma extends Lemma 3.3 to the case n = k·m for some integer.
Lemma 3.4. If n = k·m for some integer m, there exists a procedure to generate

a bid sequence b1, b2, . . . , bn such that the probability distribution for each bi can be
described by (3.1), and the bids bi sum to 1.

Proof. If m = 1, the lemma is the same as Lemma 3.3. If m > 1, we divide the
objects into m groups of k objects each and employ Lemma 3.3 to obtain bids for the
first group. We then set the bids for the other m − 1 groups to the corresponding
bids for the first group. We scale every bid by a factor of 1

m so that the bids sum to
1. This gives the desired probability distribution.

Theorem 3.5. If n = k·m for some integer m and the disadvantaged bidders all
employ the bidding algorithm characterized by Lemma 3.4, then each can obtain at
least n/k objects in expected terms, which is optimal.

Proof. From Lemmas 3.1 and 3.4 and the fact that our game is a zero-sum game,
the k−1 disadvantaged bidders win k−1

k ·n objects in total. Since they all use the same
bidding algorithm, by symmetry each of them wins n/k objects. This upper bound
of n/k is also a lower bound since the adversary can always win at least n/k objects
by employing the same bidding algorithm as the disadvantaged bidders.

4. Position-randomized bidding algorithms. In section 3, an optimal ran-
domized bidding algorithm for the bidders with informational disadvantage is derived
for the case where the number of objects is a multiple of that of bidders. This
algorithm is based on a closed-form solution to a desired multivariate probability dis-
tribution. If n is not a multiple of k, a closed-form solution cannot be obtained with
our current techniques. Motivated by this, we consider situations where all the bid-
ders are restricted to a class of bidding algorithms called position-randomized bidding
algorithms. A position-randomized bidding algorithm consists of two steps. Step 1
deterministically selects an initial sequence of n bids. Step 2 permutes the sequence.
The ith element of the final sequence is the actual bid for the ith object. As in sec-
tion 3, we assume that all the disadvantaged bidders adopt an identical bid sequence
at step 1 and the same probability distribution at step 2. A position-randomized bid-
ding algorithm can be considered as an approximation to optimal bidding algorithms
desired for resolving Conjecture 3.2 in section 3.

The next lemma examines how probability distributions chosen at step 2 affect
the expected numbers of objects bidders win.

Lemma 4.1. For a given initial bid sequence a1, a2, . . . , an of A and a given
initial bid sequence b1, b2, . . . , bn of the disadvantaged bidders,

• W1 denotes the expected number of objects A wins by using the uniform prob-
ability distribution while the disadvantaged bidders may use any arbitrary
probability distribution;

964 MING-YANG KAO, JUNFENG QI, AND LEI TAN

• W2 denotes the expected number of objects A wins without permuting his
initial bid sequence while the disadvantaged bidders employ the uniform prob-
ability distribution;
• W3 denotes the expected number of objects A wins using any given probability

distribution while the disadvantaged bidders employ the uniform probability
distribution.

If a1, a2, . . . , an are all different from b1, b2, . . . , bn, then W1 ≥W2 = W3.
Proof. For each ai,
• W1,i denotes the expected number of objects ai wins if A uses the uniform

probability distribution while the disadvantaged bidders may use any arbi-
trary probability distribution;
• W2,i denotes the expected number of objects ai wins if A does not permute

his initial bid sequence and the disadvantaged bidders employ the uniform
probability distribution;
• W3,i denotes the expected number of objects ai wins if A uses a given prob-

ability distribution and the disadvantaged bidders employ the uniform prob-
ability distribution.

Since Wj = Wj,1 + · · ·+Wj,n for j ∈ {1, 2, 3}, it suffices to prove that W1,i ≥W2,i =
W3,i. Without loss of generality, assume that b1 ≤ b2 ≤ · · · ≤ bn. Let p be the
largest index such that bp < ai; if no such bp exists, let p = 0. Since ai < bj for
j = p+ 1, . . . , n,

W2,i =
(p
n

)k−1

.

To calculate W3,i, let Qq,r be the probability that A places aq on the rth object. Then

W3,i =

n∑
r=1

Prob{ai wins the rth object}

=

n∑
r=1

Qi,r

(p
n

)k−1

.

Since
∑n
r=1Qi,r = 1,

W2,i = W3,i.

To calculate W1,i, let Pq,r be the probability that a disadvantaged bidder places bq
on the rth object. Then

W1,i =
n∑
r=1

1

n
·Prob{ai wins the rth object}

=

n∑
r=1

1

n
(P1,r + P2,r + · · ·+ Pp,r)

k−1
.

Since
∑n
r=1 Pq,r = 1 for each q, by Hödel’s inequality

W1,i ≥W2,i.

Since W1 ≥ W3 in Lemma 4.1, the disadvantaged bidders should always use the
uniform probability distribution at step 2. Since W2 = W3, we may assume that A

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 965

does not permute his initial bid sequence whenever the disadvantaged bidders use the
uniform probability distribution. We next use Lemma 4.1 to derive a lower bound for
the expected number of objects A can win. Let

ε = a positive infinitesimal amount;

β =

n∑
i=1

ik−1;

ci =
ik−1

β
;

E = {c0, c1, c2, . . . , cn};
D = {ε, c2 + ε, c3 + ε, . . . , cn + ε}.

Lemma 4.2. A can win at least β−1
nk−1 objects on average for any given initial bid

sequence and probability distribution employed by the disadvantaged bidders.

Proof. Given an initial bid sequence b1 ≤ b2 ≤ · · · ≤ bn of the k−1 disadvantaged
bidders, A chooses his initial bid sequence to be b1−(n−1)ε, b2+ε, . . . , bn+ε. SinceA’s
bids are different from b1, b2, . . . , bn, in light of Lemma 4.1, we may assume that the
disadvantaged bidders permute their bids with the uniform probability distribution.
Consequently, the expected number of objects won by A is as desired.

We next prove a matching upper bound for the expected number of objects A
can win.

Lemma 4.3. If the disadvantaged bidders employ c1, c2, . . . , cn as their initial
bid sequence and permute it with the uniform probability distribution, then A has an
optimal initial bid sequence a′1, a

′
2, . . . , a

′
n such that a′i ∈ D for all i.

Proof. Given an optimal initial bid sequence a1, a2, . . . , an of A, we show that this
sequence can be transformed into a desired sequence a′1, a

′
2, . . . , a

′
n without decreasing

W (A). Let m be the number of A’s bids that are in E. There are three cases.

Case 1: m = 0. For each ai, let a′i = cj + ε where j is the biggest index such that
cj < ai. Then the expected number of objects won by a′1, a

′
2, . . . , a

′
n is the same as

that of a1, a2, . . . , an, and the new sequence is as desired.

Case 2: m = 1. This case is impossible since A can increase W (A) by decreasing
one of his bids outside E by ε and increasing the one that is in E by ε.

Case 3: m ≥ 2. Without loss of generality, let a1, a2, . . . , am be A’s m bids in
E in the increasing order. We first decrease a1 by (m − 1)ε and increase aj by ε
for j = 2, . . . ,m. As shown below, this adjustment never decreases W (A). Then,
since A’s adjusted bids are not in E, his new initial bid sequence can be further
transformed into a desired sequence as in Case 1. Let w1 be the decreased amount of
W (A) resulted from decreasing a1. Let wj be the increased amount of W (A) resulted
from increasing aj for j = 2, . . . ,m. We need to show that −w1 +w2 + · · ·+wm ≥ 0.
It suffices to prove that w2 − w1 ≥ 0. Let #p denote the expected number of objects
aj wins if aj = cp. Then

#p =
k−1∑
i=0

1

i+ 1
·Prob{aj ties with i disadvantaged bidders and beats the others}

=

k−1∑
i=0

1

i+ 1

(
k − 1

i

)(
1

n

)i(
p− 1

n

)k−1−i

966 MING-YANG KAO, JUNFENG QI, AND LEI TAN

=
k−1∑
i=0

1

i+ 1

(
k − 1

i

)
(p− 1)k−1−i

nk−1

=

(
p− 1

n

)k−1

·1
k
·
((

1

p− 1

)k
− 1

)
.

Assume that a1 = cq and a2 = cr. Then w1 = #q − (q−1
n)k−1 and w2 = (rn)k−1−#r.

Note that w2 increases with r. Since q ≤ r, w2 is minimized when a1 = a2 and thus
q = r. Consequently,

w2 − w1 ≥
(q
n

)k−1

−#q −#q +

(
q − 1

n

)k−1

=
(q
n

)k−1

+

(
q − 1

n

)k−1

− 2·
k−1∑
i=0

1

i+ 1

(
k − 1

i

)
(q − 1)k−1−i

nk−1

=
(q
n

)k−1

−
(
q − 1

n

)k−1

− 2·
k−1∑
i=1

1

i+ 1

(
k − 1

i

)
(q − 1)k−1−i

nk−1

=
k−1∑
i=1

(
k − 1

i

)(
q − 1

n

)i(
1

n

)k−1−i
− 2·

k−1∑
i=1

1

i+ 1

(
k − 1

i

)
(q − 1)k−1−i

nk−1

=
k−1∑
i=1

(
1− 2

i+ 1

)(
k − 1

i

)
(q − 1)k−1−i

nk−1

≥ 0.

Lemma 4.4. If the k − 1 disadvantaged bidders all employ c1, c2, . . . , cn as their
initial bid sequence and permute it with the uniform probability distribution, then A
can win at most β−1

nk−1 objects on average.
Proof. From Lemma 4.3, A has an optimal initial bid sequence a′1, a

′
2, . . . , a

′
n,

such that for all j, a′j ∈ D. If a′j = ε, then it cannot win any object. If a′j = ci + ε,

then it can win (in)k−1 objects on average. The unit price A pays for these objects is
strictly greater than

ik−1

β

(in)k−1
=
nk−1

β
.

Since the expected number of objects won by such a′j is an integral multiple of 1
nk−1 ,

W (A) = m· 1
nk−1 for some integer m, and

m· 1

nk−1
·n
k−1

β
< 1.

Since m is an integer, m ≤ β − 1 and thus W (A) ≤ β−1
nk−1 .

Theorem 4.5. If the disadvantaged bidders all employ c1, c2, . . . , cn as their
initial bid sequence and permute it with the uniform probability distribution, then
each of them can win at least 1/k of n− β−1

nk−1 objects on average, which is optimal.

Proof. By Lemma 4.4, A wins at most β−1
nk−1 objects on average. By Lemma 4.2,

this upper bound is also the lower bound of the expected number of objects A can
win. This theorem follows from the fact that our auction is a zero-sum game.

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 967

5. Extensions and open problems. This paper leaves several problems un-
solved. Section 3 still lacks an optimal randomized bidding algorithm for the disad-
vantaged bidders when n is not a multiple of k. In section 4, if zero bids are allowed,
the initial bid sequence c1, . . . , cn is no longer optimal for the disadvantaged bidders.
In general, if disadvantaged bidders do not use identical bidding algorithms, it is not
even clear what an optimal bidding algorithm should mean, especially for a more
complicated information structure than discussed in this paper.

Our model can be extended to study sequential bidding. The bidders submit
sealed bids for an object. Once that object is sold, the next object is auctioned the
same way until all the objects are sold. For the case where n is a multiple of k, an
optimal sequential bidding algorithm is described in the following lemma.

Lemma 5.1. If n is a multiple of k and the objects are auctioned sequentially,
then a bidder can obtain n/k objects by bidding k/n on every object until his budget
is exhausted.

Proof. Assume that Bi employs this bidding algorithm. From his budget con-
straint, he wins at most n/k objects. This upper bound is also a lower bound. To
prove this claim by contradiction, assume that Bi wins fewer than n/k objects and
thus does not exhaust all his budget. Then, the total number of objects won by the
other bidders exceeds k−1

k ·n. Because n is a multiple of k and Bi has not exhausted
his budget, every object’s winning bid must be at least k/n. Therefore, the total of
the winning bids of the other bidders exceeds k− 1. Since this contradicts the budget
constraint, Bi can win at least n/k objects.

Our model can also be extended to the case where the objects may have distinct
values. In a general setting, the objects are divided into m groups. Let ni denote
the number of objects in the ith group, which may be any positive real number. The
bidders are asked to submit bids for the m groups simultaneously. Whoever bids
the highest for a group obtains all the objects in that group subject to the same
tie-breaking rule. An m-group auction is equivalent to an auction of m objects with
distinct values where ni is the value of the ith group. As before, assume that an
adversary bidder A knows the bidding algorithms of the other k− 1 bidders and that
all those disadvantaged bidders employ the same bidding algorithm.

Lemma 5.2. Assume that each disadvantaged bidder bids ni·bi for the ith group,
where b1, b2, . . . , bm are drawn from an m-dimensional probability distribution such
that the marginal probability distribution of each bi is Fk subject to n1·b1 + · · · +
nm·bm = 1. Then the optimal expected number of objects won by A is n/k.

Proof. Let ni·bi,j denote the bid on the ith object by the jth disadvantaged bidder.
Let ni·ai be A’s bid on the ith object. Because b1, b2, . . . , bm ∈ [0, k/n], A has no

incentive to set ai greater than k/n. Thus, ai ≤ k/n and Fk(ai) =
(
n
k ·ai

) 1
k−1 . Since

bids from different disadvantaged bidders are independent,

Prob{ni·ai wins the ith object}
= Prob{bi,1 ≤ ai}·Prob{bi,2 ≤ ai} · · ·Prob{bi,k−1 ≤ ai}
= (Fk(ai))

k−1

=
n

k
·ai.

A maximizes W (A) as follows:

max∑
ni·ai=1

1≤ai≤ kn

W (A)

968 MING-YANG KAO, JUNFENG QI, AND LEI TAN

= max∑
ni·ai=1

1≤ai≤ kn

n1·
(n
k
·a1

)
+ n2·

(n
k
·a2

)
+ · · ·+ nm·

(n
k
·am
)

=
n

k
.

Conjecture 5.3. There exists an m-dimensional probability distribution for
(b1, b2, . . . , bm) subject to the constraint n1·b1 + n2·b2 + · · ·+ nm·bm = 1 such that the
marginal probability distribution of each bi is as described by (3.1).

Remark. This conjecture can be reduced to the case m = 2 or m = 3.

We conclude the paper with two research directions. One is to consider general
information structures as specified by arbitrary directed graphs; the other is to inves-
tigate more general budget constraints beyond the homogeneous one of this paper. It
would be of significance to design bidding algorithms that can optimally or approx-
imately achieve game-theoretic equilibria in meaningful combinations of these two
directions.

Acknowledgments. We are indebted to Phil Long, Kasturi Varadarajan, and
Professor Dennis Yang at the Economics Department of Duke University for very
helpful comments. We also wish to thank the anonymous referees for contagious
enthusiasm toward this work and unusually thoughtful comments and detailed sug-
gestions.

REFERENCES

[1] V. Benes and J. Stepan, Extremal solutions in the marginal problem, in Advances in Probabil-
ity Distributions with Given Marginals: Beyond the Copulas, Kluwer Academic Publishers,
Norwell, MA, 1994, pp. 189–206.

[2] D. Blackwell, An analog of the minimax theorem for vector payoffs, Pacific J. Math., 6
(1956), pp. 1–8.

[3] D. Blackwell and M. A. Girshick, Theory of Games and Statistical Decisions, John Wiley,
New York, 1954.

[4] S. H. Clearwater, ed., Market-Based Control, a Paradigm for Distributed Resource Alloca-
tion, World Scientific, River Ridge, NJ, 1996.

[5] G. Dall’Aglio, Fréchet classes: The beginnings, in Advances in Probability Distributions with
Given Marginals: Beyond the Copulas, Kluwer Academic Publishers, Norwell, MA, 1994,
pp. 1–12.

[6] Federal Communications Commission, Fifth Report and Order, FCC 94-178, Washington,
DC, 1994.

[7] M. Fréchet, Sur les tableaux de corrélation dont les marges sont données, Ann. Univ. Lyon.
Sect. A (3), 14 (1951), pp. 53–77.

[8] Y. Freund and R. Schapire, Game theory, on-line prediction and boosting, in Proc. 9th
Annual Conference on Computational Learning Theory, ACM, New York, 1996, pp. 325–
332.

[9] D. Fudenberg and J. Tirole, Game Theory, MIT Press, Cambridge, MA, 1991.
[10] R. A. Gagliano, M. D. Fraser, and M. E. Schaefer, Auction allocation of computing

resources, Comm. ACM, 38 (1995), pp. 88–99.
[11] K. Hendricks and H. J. Paarsh, A survey of recent empirical work concerning auctions,

Canad. J. Econom., 28 (1995), pp. 403–426.
[12] S. Kotz and J. P. Seeger, A new approach to dependence in multivariate distributions, in

Advances in Probability Distributions with Given Marginals: Beyond the Copulas, Kluwer
Academic Publishers, Norwell, MA, 1994, pp. 113–128.

[13] J. McMillan and R. P. McAfee, Auctions and bidding, J. Econom. Literature, 25 (1987),
pp. 699–738.

[14] P. R. Milgrom, Good news and bad news: Representation theorems and applications, Bell J.
Econom., 12 (1981), pp. 380–391.

OPTIMAL BIDDING ALGORITHMS FOR MULTIPLE-OBJECT AUCTIONS 969

[15] P. R. Milgrom and R. J. Weber, A theory of auctions and competitive bidding, Econometrica,
50 (1982), pp. 1089–1122.

[16] R. B. Myerson, Optimal auction design, Math. Oper. Res., 6 (1981), pp. 58–73.
[17] C. Pitchik and A. Schotter, Perfect equilibria in budget-constrained sequential auctions: An

experimental study, RAND J. Econom., 19 (1988), pp. 363–388.
[18] B. Schweizer, Thirty years of copulas, in Advances in Probability Distributions with Given

Marginals: Beyond the Copulas, Kluwer Academic Publishers, Norwell, MA, 1994, pp. 13–
50.

[19] R. Wilson, Strategic analysis of auctions, in Handbook of Game Theory with Economic Ap-
plications, Vol. 1, R. J. Aumann and S. Hart, eds., Elsevier Science, New York, 1992,
pp. 227–279.

[20] E. H. Yang, M. M. Barash, and D. M. Upton, Accommodation of priority parts in a
distributed computer-controlled manufacturing system with aggregate bidding schemes, in
Proc. 2nd Industrial Engineering Research Conference, 1993, pp. 827–831.

THREE-PROCESSOR TASKS ARE UNDECIDABLE∗

ELI GAFNI† AND ELIAS KOUTSOUPIAS†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 970–983

Abstract. We show that no algorithm exists for deciding whether a finite task for three or
more processors is wait-free solvable in the asynchronous read-write shared-memory model. This
impossibility result implies that there is no constructive (recursive) characterization of wait-free
solvable tasks. It also applies to other shared-memory models of distributed computing, such as the
comparison-based model.

Key words. asynchronous distributed computation, task-solvability, wait-free computation,
contractibility problem

AMS subject classifications. 68Q05, 68Q22

PII. S0097539796305766

1. Introduction. A fundamental area in the theory of distributed computa-
tion is the study of asynchronous wait-free shared-memory distributed algorithms.
Characterizing the class of distributed tasks that can be solved, no matter how “inef-
ficiently,” is an important step toward a complexity theory for distributed computa-
tion. A breakthrough was the demonstration by Fischer, Lynch, and Paterson [6] that
certain simple tasks, such as consensus, are not solvable. Subsequently, Biran, Moran,
and Zaks [1] gave a complete characterization of the tasks solvable by two processors
and of tasks that can be solved when only one processor can fail. Recently, three
teams [3, 9, 17] independently extended this result by providing powerful necessary
conditions for task solvability, which enabled them to show that the k-set agreement
task is not solvable for more than k processors. Finally, Herlihy and Shavit [10, 11]
gave a simple condition that is necessary and sufficient for a given task to admit a
wait-free protocol. This condition was extended by Borowsky and Gafni [2] to the
more general model of asynchronous distributed computation of resiliency and set-
consensus.

Here, we put the quest for complete characterization of solvable tasks to an abrupt
end by showing that there is no recursive characterization of wait-free tasks. More
precisely, we show that the problem of deciding whether a given finite task for three
or more processors admits a wait-free protocol is undecidable. We also show that
this holds for the comparison-based model (when processors can only compare their
IDs). An immediate consequence of our result is that for any recursive function f(s)
there are finite solvable tasks of size (number of input-output tuples) s that cannot
be solved by any protocol in less than f(s) steps. Unfortunately, this may hamper the
development of a “complexity theory” of asynchronous distributed computation.

Our proof exploits a surprising connection between distributed computation and
topology. In particular, we give a reduction from the contractibility problem to the
task-solvability problem. The contractibility problem asks whether a given loop of a

∗ Received by the editors June 28, 1996; accepted for publication (in revised form) August 29,
1997; published electronically January 29, 1999. A preliminary abstract of this paper appeared as 3-
processor tasks are undecidable, in Proc. 14th Annual ACM Symposium on Principles of Distributed
Computing, Ottawa, Ont., Canada, ACM, New York, 1995, p. 271.

http://www.siam.org/journals/sicomp/28-3/30576.html
†Computer Science Department, UCLA, 3731 Boelter Hall, Los Angeles, CA 90095 (eli@

cs.ucla.edu, elias@cs.ucla.edu).

970

THREE-PROCESSOR TASKS ARE UNDECIDABLE 971

simplicial complex is contractible, that is, whether it can be continuously transformed
into a point.

The history of the contractibility problem goes back to Poincaré and Dehn at the
beginning of the twentieth century (see [19]). Dehn [4] noticed that the contractibility
problem is equivalent to the word problem of groups—given a word of a group as a
product of its generators, decide whether it is equal to the identity. The relation
between the contractibility of a loop and the word problem comes from the fact that
a loop of a complex is contractible iff the corresponding word of the fundamental
group of the complex is the identity. Dehn gave an algorithm (Dehn’s algorithm) for
the contractibility problem when the complex is a surface; for some recent interesting
results for this special case see [5]. Attempts to extend Dehn’s algorithm to higher
dimensional manifolds made no substantial progress, however, for the very good reason
that, as Novikov [15] showed in 1955, the word problem is undecidable.

The equivalence between the contractibility problem and the word problem of
groups is based on the fact that every group with a finite representation (with gen-
erators and relations) is the fundamental group of a finite simplicial complex. Since
the fundamental group depends only on the 2-skeleton of a complex (the collection
of all simplices of dimension 2 or less), it follows that the contractibility problem is
undecidable even for two-dimensional complexes. It is also known that every group
with finite representation is the fundamental group of some four-dimensional mani-
fold [13]. Thus, the contractibility problem is undecidable even for four-dimensional
manifolds.

Our main result is a reduction from the contractibility problem to the task-
solvability problem. We outline the ideas behind this reduction here. The Herlihy–
Shavit condition [11] states that a task is solvable iff there is a chromatic subdivision
of the input complex together with a simplicial map which is consistent with the
input-output relation (carrier-preserving) and preserves colors. Here we consider a
class of simple 3-processor tasks that is restricted to those whose input complex con-
sists of a single triangle (2-simplex). In addition, these tasks have the property that
whenever less than three processors participate, they must output a simplex of a fixed
loop L of the output complex. The Herlihy–Shavit condition implies that if the task is
solvable, then L is contractible. In fact, if we drop from the Herlihy–Shavit condition
the restriction that the map must be color-preserving, the opposite would be true: L
is contractible if the task is solvable. The difficult part of our reduction, then, is to
extend this relation to the case of chromatic complexes and color-preserving simpli-
cial maps. To do this, we proceed in stages. We first show that the contractibility
problem remains undecidable for loops of length 3 of chromatic complexes. The final
reduction is to take a chromatic complex with a loop of length 3 and transform it into
a 3-processor task that is solvable iff the loop is contractible.

In section 2, we discuss the solvability problem, present the Herlihy–Shavit con-
dition, and define the special class of tasks that we consider in this paper. In section
3, we discuss the contractibility problem and strengthen the result that the con-
tractibility problem is undecidable for the special case of chromatic complexes and
loops of length 3. We give a reduction from this stronger version of the contractibility
problem to the task-solvability problem in section 4. The results from section 3 and
the Herlihy–Shavit condition are then used to prove that the reduction works. We
conclude by discussing some of the implications of our results.

2. The task-solvability problem. We will use standard terminology from al-
gebraic topology (see [14]). All complexes considered here are finite and pure; that is,

972 ELI GAFNI AND ELIAS KOUTSOUPIAS

all maximal simplices have the same dimension (usually two-dimensional).

In topology, a simplex is defined by a set of n + 1 points, but in the theory of
distributed computation a simplex represents a consistent set of views of n + 1 pro-
cessors. The natural ordering of processors (according to their IDs) imposes structure
on the complexes in that their simplices are ordered. This order defines a natural
coloring of the vertices of the complex, where colors represent the rank of the ID of
a processor. More precisely, a coloring of an n-dimensional simplicial complex is an
assignment of colors {0, 1, . . . , n} to its vertices such that each vertex receives exactly
one color and vertices of each simplex receive distinct colors. A chromatic simplicial
complex is a simplicial complex together with a coloring.

A distributed task is a natural generalization of the notion of a (computable)
function for the model of distributed computation. The computation of functions by
a distributed system imposes such tight coordination of processors that only trivial
functions can be computed wait-free by asynchronous distributed systems. Mainly for
this reason, the study of distributed computation is focused on computing relations, a
natural generalization of functions which requires less tight coordination of processors.
In general, a distributed task is an input-output relation. Because in a distributed
system some processors may take no steps at all, the task input-output relation must
be defined on partial inputs and outputs. This requirement is captured nicely by
assuming that the inputs form a chromatic simplicial complex. The vertices of a
simplex of this complex denote the inputs to a subset of processors, the participating
processors [11]. Similarly, the possible outputs of a distributed task form a chromatic
simplicial complex.

Definition 1. A distributed task for n + 1 processors is a nonempty relation
T between the simplices of two n-dimensional chromatic complexes I, O, T ⊂ I × O,
which preserves colors; that is, when (A,B) ∈ T , then A and B have the same colors
(and therefore the same dimension).

A distributed task is solvable when there is a distributed protocol such that the
input to processor with ID k is a vertex of I with color k, its output is a vertex of O
of color k, the set of the input vertices form a simplex A ∈ I, and the set of output
vertices form a simplex B ∈ O with (A,B) ∈ T . In other words, the participating
processors get vertices of an input simplex and output vertices of a simplex of the
output complex such that the input simplex and the output simplex form a pair of
the task input-output relation. Each processor knows only its vertex, not the whole
input simplex. Finding out the input simplex is usually impossible because that task
is equivalent to the consensus problem, which is not solvable. Of course, the notion
of solvability depends on the computational model. Here, we consider the standard
computational model of wait-free protocols for shared read-write memory. In a wait-
free protocol, a processor must produce a valid output even when all other processors
fail.

A typical distributed task is shown in Figure 1. The input complex I contains
only one triangle {a, b, c}, and the output complex O is a subdivided triangle. The
numbers on the vertices are colors. The input-output relation T ⊂ I×O contains the
tuples ({a, b, c}{x, y, z}) for all triangles {x, y, z} of O (there are seven such triangles);
it also contains all possible color-preserving tuples of simplices of the boundaries of I
and O.

A problem central to the theory of distributed computation is the characterization
of the set of solvable tasks. This problem has a trivial negative answer: whether a
1-processor task is solvable is equivalent to whether the task, that is, the input-

THREE-PROCESSOR TASKS ARE UNDECIDABLE 973

a2

I

O

b

a

c

L

1

0

2

b1

1

c2 2 b21

c1

2

0

a1

0

Fig. 1. A standard inputless task.

output relation, is recursive (computable); a similar observation was made in [12].
However, this is an unsatisfactory answer because it sheds no light on the difficulties
inherent in distributed computation. Furthermore, many interesting distributed tasks
are straightforward input-output relations. The interesting question, then, is whether
a characterization of “simple” tasks exists. Here, we show that the answer for three
or more processors remains negative, even for the simplest kind of tasks—finite tasks
with a trivial input complex. For less than three processors, it is known that there
exists a simple characterization for finite tasks of two processors that reduces the
task-solvability problem to the connectivity properties of the output complex [1].

Our proof uses the Herlihy–Shavit condition for task solvability. Roughly speak-
ing, this condition entails that a subcomplex of the output complex is “similar to” the
input complex. To state the condition precisely, we need a few definitions: Consider
a chromatic complex C and a subdivision C ′ of C (a subdivision of a complex is a
refinement of it; see, for example, [14, p. 84]). For a simplex A ∈ C ′, its carrier,
carrier(A), is the smallest simplex of C that contains A. The complex C ′ is a chro-
matic subdivision of C if it is chromatic and its coloring has the property that each
vertex u ∈ C ′ has the color of some vertex of carrier(u).

Proposition 1 (Herlihy–Shavit). A task T ⊂ I × O is solvable wait-free iff
there exists a subdivision I ′ of I and a color-preserving simplicial map µ : I ′ 7→ O
such that for each simplex A ∈ I ′ there exists a simplex B ∈ O with µ(A) ⊂ B and
(carrier(A), B) ∈ T .

A map µ that satisfies the above condition will be called carrier-preserving and
color-preserving.

Proposition 1 provides a powerful tool for checking whether a particular task is
solvable. For example, by applying the Herlihy–Shavit condition we can conclude
immediately that the task of Figure 1 is wait-free solvable. To see this, notice that
in this case we can take the subdivision I ′ to be the output complex and the map µ

974 ELI GAFNI AND ELIAS KOUTSOUPIAS

to be the identity map.1 If, however, we create a “hole” in the output complex by
removing the triangle {a2, b2, c2}, the resulting task is not solvable; intuitively, the
map µ cannot create a “torn” image of I.

The main objective of our paper is to show that the condition of Proposition 1 is
not constructive, namely, that there is no effective way to find I ′ from T; computing
µ is easy, since one can try all possible simplicial maps from I ′ to O. We will restrict
our attention to the simple case of tasks of three processors, n = 2. In this case,
the simplices are triangles and the simplicial complexes are of dimension 2. For this
dimension, our intuition about topological facts is usually correct; exactly the opposite
is true for higher dimensions. We introduce one further simplification: we will deal
only with tasks where the input complex consists of only one triangle. Furthermore,
for each proper face of the input triangle there is exactly one possible output. In
particular, there is a loop L of the output complex that has length 3 such that when
less than three processors participate in the execution, the processors must output a
simplex of L, and this simplex is unique because of the coloring requirements. When
all three processors participate, the output can be any simplex of the output. We will
call such a task a standard inputless task (O,L). The task of Figure 1 is an example
of such a task. Since the input to each processor is fixed, we interpret a standard
inputless task as follows: processors do not really get any input; rather, they simply
execute a protocol in order to “agree on” some triangle of the output complex O.
This could be trivially achieved (by agreeing on a triangle in advance), except for
the difficulty that when some processors do not participate, the output simplex must
belong to the loop L.

For a standard inputless task, the Herlihy–Shavit condition can be restated as
“the task is solvable iff there is a chromatic subdivision I ′ of a triangle I and a color-
preserving simplicial map µ that maps the boundary of I ′ to the loop L and that can
be extended over I ′.” The coloring restrictions imply that the simplicial map µ maps
the boundary of I ′ only once around L. Putting it differently, the requirement that µ
is color-preserving guarantees that it is also carrier-preserving.

If we disregard colors for the moment, a standard inputless task is solvable iff there
is a carrier-preserving simplicial map µ from the boundary of a subdivided triangle
I ′ to the loop L which can be extended over the whole triangle. This condition shows
the close connection between task solvability and the contractibility problem, because
such I ′ and µ exist iff the loop L of the output complex O is contractible (we will
elaborate on this connection in section 4). It is not, however, immediate that this
observation holds for the special case of chromatic complexes and color-preserving
simplicial maps. Here, we extend this connection to the chromatic case by a series of
reductions.

3. The contractibility problem. Let X be a topological space. A loop L of
X is a continuous map from the 1-sphere S = {x ∈ R2 : |x| = 1} to X. Two loops L
and L′ are homotopic when L can be continuously deformed to L′. More precisely, L
and L′ are said to be homotopic if there exists a continuous map F : S × [0, 1] 7→ X,
such that F (x, 0) = L(x) and F (x, 1) = L′(x) [14, p. 103]. A nonsingular loop is one
without self-intersections (when the map is an injection). A loop L is null-homotopic,
or contractible, when it is homotopic to a constant loop; the image of a constant loop is
a point. Equivalently, loop L is null-homotopic when it can be continuously deformed
to a point [18, p. 158]. For example, in Figure 2 the loop L1 is null-homotopic while

1Strictly speaking, I′ is combinatorially homeomorphic to O, and µ is this homeomorphism.

THREE-PROCESSOR TASKS ARE UNDECIDABLE 975

L2

L1

Fig. 2. Contractible (L1) and noncontractible (L2) loops.

the loop L2 is not.
Let C be a simplicial complex, that is, a collection of simplices in the Euclidean

space Rm. The polytope |C| of C is the underlying Euclidean space consisting of the
union of the simplices of C. A loop of a complex C is a simplicial loop of its polytope
|C|. Thus, the image of a loop is a sequence of edges (v1, v2), (v2, v3), . . . , (vk−1, vk),
(vk, v1) (the image of a null-homotopic loop is simply a vertex v). We usually do not
distinguish between the loop of a complex and its image (as we have done many times
so far); so, for example, we can refer to a simplex of the loop when we really mean a
simplex of the image of it.

To show that task solvability is undecidable, we will use the standard technique
of reducing a known undecidable problem to it. In our case, this problem is the
contractibility problem [19].

Definition 2. The contractibility problem is defined as follows: given a simplicial
complex C and a loop L of C, is L null-homotopic?

For this definition to be complete, we need to fix the representation of C and L.
Since we are interested only in whether the problem is decidable, the details of the
representation are not important. For our purposes here, we assume that C and L
are given explicitly by their simplices.

There is an important connection between the homotopic properties of loops and
group theory, through the fundamental group of a complex. In particular, a loop
is null-homotopic iff the corresponding word of the fundamental group is equal to
the identity. This connection between contractibility and group theory results in the
following proposition.

Proposition 2. The contractibility problem is undecidable for two-dimensional
complexes.

This folklore result is based on the fact that for every group G with a finite
representation with generators and relations, there exists a finite simplicial complex
with fundamental group G. This complex can be easily constructed from G (see,
for example, [19, p. 129]). In fact, something stronger holds: each group G is the
fundamental group of a four-dimensional simplicial manifold [13, pp. 143–144]. This
means that the contractibility problem is undecidable for four-dimensional manifolds.
In contrast, for two-dimensional manifolds (e.g., sphere, torus, projective plane) it is
decidable [4]. Some recent work on this special case has led to a linear-time algorithm
for almost all two-dimensional manifolds [5]. The contractibility problem for three-

976 ELI GAFNI AND ELIAS KOUTSOUPIAS

dimensional manifolds is, to our knowledge, still unresolved; however, it is known
that not every group with finite representation can be the fundamental group of a
three-dimensional manifold.

Notice also that Proposition 2 refers to two-dimensional complexes. This is based
on the fact that the fundamental group of a complex of any dimension is identical to
the fundamental group of its 2-skeleton.

Since every group can be the fundamental group of a complex, the contractibility
problem is equivalent to the word problem of groups. The word problem asks whether
a word of a group (as a product of its generators) is equal to the identity [19, p. 46].
Novikov [15] showed that the word problem is undecidable: there exists a group G
such that no algorithm can decide whether a word of this group is equal to the identity
(for a textbook proof see [16, Chapter 12]). Notice that the group G need not be part
of the input, although for our purposes the weaker version of the result when the
group is part of the input will suffice.

We will make use of a stronger version of Proposition 2. We first observe that the
contractibility problem is undecidable for link-connected two-dimensional complexes.
A simplicial complex is link-connected when the link of every vertex is connected
(the link of a vertex is the subcomplex induced by its adjacent vertices). To see that
the contractibility problem remains undecidable for link-connected complexes, notice
that it is undecidable for the 2-skeleton of 4-manifolds, and clearly these complexes
are link-connected. Therefore we have the stronger proposition.

Proposition 3. The contractibility problem is undecidable for link-connected
two-dimensional complexes.

Link-connectivity must be preserved by all our reductions, but we will not use it
until the last part (Lemma 3) of the proof of the main result.

The plan for reducing this undecidable problem to the task-solvability problem
is as follows: First, we strengthen Proposition 3 to chromatic complexes and loops of
length 3. A chromatic complex together with a loop of length 3 defines a standard
inputless task. Using the Herlihy–Shavit condition, we then show that this task is
solvable iff the loop is contractible.

We begin by showing that Proposition 3 holds for nonsingular loops (i.e., loops
without self-intersections).

Lemma 1. The contractibility problem is undecidable for nonsingular loops of
link-connected two-dimensional complexes.

Proof. Given a link-connected two-dimensional simplicial complex C and a loop
L of C, we create a new complex C ′ and a singular loop L′ of C ′ such that L is null-
homotopic iff L′ is null-homotopic. The idea is that C ′ can be produced by attaching
an annulus (ring) A to C: one boundary of A is identified with the loop L, and the
other boundary is a nonsingular loop L′ (see Figure 3). The annulus A is free of self-
intersections except for points of L.

We claim that L is contractible in C iff L′ is contractible in C ′. But first we need
a definition. A topological space Y is a deformation retract of a topological space X,
Y ⊂ X, iff there is a continuous map f : X × [0, 1] 7→ X such that for all x ∈ X,
f(x, 0) = x and f(x, 1) ∈ Y , and for all y ∈ Y and all t, f(y, t) = y.

If Y is a deformation retract of X, then Y and X have the same homotopy type [14,
p. 108]. It is clear that |C| is a deformation retract of |C ′|: f gradually collapses the
annulus |A| to the loop |L| keeping |C| fixed. It follows that |C| and |C ′| have the
same homotopy and therefore that L is contractible in C iff it is also contractible in
C ′. The claim follows from the fact that L and L′ are homotopic in C ′.

THREE-PROCESSOR TASKS ARE UNDECIDABLE 977

L′

L

A

Fig. 3. Reduction to nonsingular loop.

A minor issue is that the annulus A must be constructed explicitly. We give here
one such construction. Let (x0, x1), (x1, x2), . . . , (xk−1, xk), (xk, x0) be the edges of L
(some of them may be identical when part of the loop retraces itself). The boundary
of annulus A identified with L contains vertices y0, y1, . . . , yk such that yi will be
identified with xi. The other boundary, L′, of annulus A contains distinct vertices
z0, z1, . . . , zk. The triangles of annulus A are {yi, yi+1, zi} and {yi+1, zi, zi+1}, for
i = 0, 1, . . . , k. We have to verify that these are indeed triangles (i.e., all vertices are
distinct) and that annulus A is free of self-intersections except for points in L. Some
of the vertices xi of L may be identical, because the loop L may cross or even retrace
itself. However, since (xi, xi+1) is an edge of L, it follows that yi and yi+1 are distinct
and therefore that the given triangulation of annulus A is valid. It is also easy to
verify that annulus A has no self-intersections outside L.

Finally, we have to verify that the new complex C ′ is link-connected. It is clear
that the links of vertices not in L are connected. Consider now the link lk(xi) of
a vertex xi ∈ L. Since C is link-connected, every vertex of C ∩ lk(xi) is connected
through lk(xi) to xi−1 and to xi+1. In particular, xi−1 and xi+1 are connected through
lk(xi) (or they are identical). Similarly, every vertex in A∩ lk(xi) is connected to xi−1

or to xi+1. Therefore, lk(xi) is connected.

This lemma allow us to consider only nonsingular loops. We may sometimes
treat a nonsingular loop L of a complex C as the one-dimensional subcomplex of
C consisting of the edges of L. We are now ready to strengthen Proposition 3 to
chromatic complexes and loops of length 3.

Theorem 1. The contractibility problem is undecidable for loops of length 3 of
link-connected two-dimensional chromatic complexes.

Proof. Consider a link-connected two-dimensional simplicial complex C and a
nonsingular loop L of it. We will show how to produce a chromatic complex C ′ and
a loop L′ ⊂ C ′ of length 3.

Producing a chromatic complex is easy. Let bsd C denote the barycentric sub-
division of the simplicial complex C [14, p. 85]. We can color the simplicial complex

978 ELI GAFNI AND ELIAS KOUTSOUPIAS

C bsd C

1

1

11

0

0

0

22 0

1

Fig. 4. The chromatic barycentric subdivision.

2 2

0

0

1

1

0

0

1

1

xk−1

L′

bsd L

x1

x2

z2

xk−2

z1

z0

xk

x0

u

Fig. 5. Reduction to loops of length 3.

bsd C with three colors as shown in Figure 4. Original vertices of C are colored with
0, vertices on the edges—with carrier an edge—with 1, and the remaining vertices—
with carrier a triangle—with color 2. With this coloring, bsd C becomes a chromatic
complex. The nonsingular loop L of C corresponds to a nonsingular loop bsd L of the
chromatic complex bsd C. Clearly, L is null-homotopic in C iff bsd L is null-homotopic
in bsd C ′. Notice also that the vertices of bsd L have colors 0 or 1.

Finally, to produce a complex C ′ and a loop L′ of length 3, we employ the
reduction of Lemma 1: C ′ is the result of attaching a chromatic annulus A to the
nonsingular loop bsd L. Let (x0, x1), (x1, x2), . . . , (xk−1, xk), (xk, x0) be the edges

THREE-PROCESSOR TASKS ARE UNDECIDABLE 979

of bsd L. One boundary of the chromatic annulus A is identified with bsd L, while
the other boundary L′ contains three vertices, z0, z1, z2, with colors 0, 1, and 2,
respectively. There is also an internal vertex u of A with color 2. The chromatic
annulus A is shown in Figure 5 (again, numbers on vertices indicate colors). We
omit its precise description here since the reader can easily derive it from the figure.
Remaining to be verified is that A is an annulus without self-intersections, and this
follows directly from the fact that bsd L is nonsingular. Note that this is the only
place where we need Lemma 1. We could actually use a simpler construction by
letting L′ be the loop (x0, u, xk), but the construction of Figure 5 is consistent with
the proof of Lemma 1.

An argument identical with that of the proof of Lemma 1 establishes that the
complex C ′ is link-connected and that L′ is null-homotopic iff L is null-homotopic.
The theorem follows from Lemma 1.

The requirement that loop L has length 3 is a “technical” detail. We could prove
our main result by simply considering loops L where, instead of an edge (zi, zi+1),
there is a chromatic path between zi and zi+1. The restriction to loops of length 3
results in simpler constructions and proofs, however.

4. Reduction to task-solvability. To show that task-solvability for three pro-
cessors is undecidable, we will reduce the stronger version of the contractibility prob-
lem of Theorem 1 to the task-solvability problem. The reduction is straightforward.
Given a link-connected two-dimensional chromatic complex C and a loop L of length
3, the output is the standard inputless task T = (C,L). We will show that the loop
L is contractible in C iff the standard inputless task (C,L) is solvable.

The proof is based on the two following lemmas.
Lemma 2. Let T = (C,L) be a standard inputless task. Loop L is contractible in

C iff there is a subdivision I ′ of the input triangle I and a simplicial map ψ : I ′ 7→ C
that is carrier-preserving.

Proof. Notice first that we require neither that I ′ be a chromatic subdivision nor
that µ be color-preserving. It follows directly from the definition of null-homotopic
loops that loop L is contractible in C iff there is a continuous map φ from a disk B to
|C| that maps homeomorphically the boundary of the disk to |L|. Since the triangle I
is homeomorphic to a disk, L is contractible in C iff there is a continuous map from
I to |C| that maps its boundary to the loop |L| homeomorphically (and, therefore,
simplicially). The problem with this definition is that φ is a continuous map, not a
simplicial one. However, a fundamental result from algebraic topology, the simplicial
approximation theorem [14, p. 89], allows us to replace the continuous map φ with
a simplicial one. By the simplicial approximation theorem, there is a subdivision I ′

of the triangle I and a simplicial map ψ : I ′ 7→ C that approximates φ. It suffices,
therefore, to verify that ψ is also carrier-preserving. By the definition of simplicial
approximations, for each point x of I, ψ(x) is a vertex of the smallest simplex of C that
contains φ(x). Since φ maps simplicially the boundary of I to |L|, all points of an edge
E of I are mapped to the same edge φ(E) of L. Thus, the vertices of I ′ with carrier E
are mapped by ψ to vertices of φ(E), which shows that ψ is carrier-preserving.

Lemma 2 shows the close connection between the contractibility of loops and the
solvability of tasks. However, it requires only that the map ψ be carrier-preserving,
while the Herlihy–Shavit condition requires the map to be chromatic too. The follow-
ing lemma shows that this is not a problem.

Lemma 3. Let T = (C,L) be a standard inputless task, where C is link-connected.
If there exists a subdivision I ′ of the input triangle I and a carrier-preserving simplicial

980 ELI GAFNI AND ELIAS KOUTSOUPIAS

map ψ : I ′ 7→ C, then there exists a chromatic subdivision A of I and a simplicial
map µ : A 7→ C that is both carrier-preserving and color-preserving.

Proof. The proof here is an adaptation of the proof of a similar result in [11,
Lemma 5.21]. The basic idea is that the colors of C induce a coloring of I ′. A vertex
u ∈ I ′ is assigned the color of its image ψ(u) ∈ C. We call such a coloring of I ′

ψ-induced. This coloring makes ψ a color-preserving map. However, such a coloring
may not make I ′ a chromatic complex, because two adjacent vertices u1 and u2 of
I ′ may receive the same color. Because ψ is a simplicial map, this happens only
when these vertices are mapped to the same node, in which case we say that the edge
{u1, u2} is monochromatic. Similarly, we say that a triangle is monochromatic when
all its vertices are mapped to the same vertex.

Let A be a subdivision of I such that there is a carrier-preserving simplicial map
µ : A 7→ C such that the number of monochromatic simplices of A with the µ-induced
coloring is minimum. We claim that A has no monochromatic edges or triangles.
Suppose that this is not the case. We will reach a contradiction by exhibiting a
subdivision A′ of A—and therefore of I—with one monochromatic simplex less than
A.

Consider first the case when A with the µ-induced coloring has a monochromatic
triangle {u1, u2, u3}, and therefore µ(u1) = µ(u2) = µ(u3). Let p be a vertex in
the link of µ(u1); such a vertex always exists because the complex C is pure. Con-
sider now the subdivision A′ of A where the triangle {u1, u2, u3} is subdivided into
three triangles {u1, u2, c}, {u1, c, u3}, and {c, u2, u3}, where c is the barycenter of
{u1, u2, u3}. Consider also the map µ′ : A′ 7→ C that agrees with µ on the vertices of
A and µ′(c) = p. But then A′ with the µ′-induced coloring has one monochromatic
simplex (the triangle {u1, u2, u3}) less than A with the µ-induced coloring.

We now assume that no triangle of A is monochromatic but that there is a
monochromatic edge {u1, u2} on the boundary of A. Then, u1 and u2 belong to
exactly one triangle of A. Let b be the third vertex of this triangle. We can con-
struct a subdivision A′ of A by subdividing the triangle {u1, u2, b} into two triangles
{u1, c, b} and {c, u2, b}, where c is the barycenter of {u1, u2}. Consider the extension
µ′ : A′ 7→ C such that µ′ agrees with µ on all vertices of A and {µ′(c), µ′(u1)} is
an edge of the loop L. Because µ′ is carrier-preserving, we have again reached a con-
tradiction since A with the µ-induced coloring has one monochromatic simplex more
than A′ with the µ′-induced coloring.

The last, and more complicated, case to consider is when A has a monochromatic
edge {u1, u2} that is not in its boundary. This is the only place where we must
require that complex C be link-connected. The edge {u1, u2} belongs to exactly two
triangles. Let a and b be the remaining vertices of these two triangles. Since µ is a
simplicial map, µ(a) belongs to the link of µ(u1) in C. Let p be a vertex in the link of
µ(u1) (not necessarily distinct for µ(a)). But then the fact that C is link-connected
implies that there is a path with edges (p1, p2), (p2, p3), . . . , (pk−1, pk) in the link of
µ(u1) that connects µ(a) = p1 and p = pk. We can always choose a nonempty path,
even when p = a, because C is pure. Similarly, there is a path with edges (q1, q2),
(q2, q3), . . . , (ql−1, ql) which connects µ(b) and p = ql. This suggests the following
subdivision A′ of A: The triangle {u1, u2, a} is subdivided into triangles {p̄i, p̄i+1, u1}
and {p̄i, p̄i+1, u2}, i = 1, 2, . . . , k − 1. The vertices p̄i, i = 2, 3, . . . , k, are new and
distinct, and p̄k is the barycenter of {u1, u2}. Similarly, the triangle {u1, u2, b} is
subdivided into triangles {q̄i, q̄i+1, u1} and {q̄i, q̄i+1, u2}, i = 1, 2, . . . , l − 1, where
q̄l = p̄k. Consider also the extension µ′ : A′ 7→ C such that µ′ agrees with µ on

THREE-PROCESSOR TASKS ARE UNDECIDABLE 981

A and µ′(p̄i) = pi, i = 1, 2, . . . , k and µ′(q̄i) = qi, i = 1, 2, . . . , l. Using the fact
that C is chromatic, it is easy to verify that B with the µ′-induced coloring has one
monochromatic simplex less than A with the µ-induced coloring.

An alternative proof of Lemma 3 can be obtained by employing the convergence
algorithm of Borowsky and Gafni [2]. We outline this proof here. By the Herlihy–
Shavit condition, it suffices to show that the task T is solvable. The protocol consists
of two phases. In the first phase, processors “converge” on a simplex of I ′. Let xi
be the vertex of I ′ where processor i converges. If the color of µ(xi) is i, then the
processor i stops and outputs µ(xi). Obviously, at least one processor stops in this
phase. Although the remaining processors do not know the output of the stopped
processors, they know a simplex of C that contains the outputs of stopped processors.
In the second phase, the remaining processors converge in C in the link of the output
of all stopped processors; each of the remaining processors starts at a vertex of its
color and, if possible, a vertex of the loop L. Since C is link-connected and chromatic,
the remaining processors can indeed converge. Thus T is solvable.

We can now prove the main theorem of this paper.

Theorem 2. The task-solvability problem for three or more processors in the
read-write wait-free model is undecidable.

Proof. By Theorem 1, there is no algorithm to decide, given a standard inputless
task T = (C,L), whether the loop L is contractible in C when C is link-connected.
However, by Lemmas 2 and 3 the loop L is contractible iff there is a chromatic
subdivision I ′ of the input triangle I and a color-preserving and carrier-preserving
simplicial map µ : I ′ 7→ C. This is precisely the Herlihy–Shavit condition for T to be
solvable, and therefore L is contractible in C iff T is solvable. Hence, task solvability
is undecidable for three processors.

This immediately implies that the solvability problem for more than three proces-
sors is also undecidable: Consider, for example, tasks where there is only one possible
output of all but the first three processors; such a task is solvable iff the subtask for
the first three processors is solvable.

Biran, Moran, and Zaks [1] define a slightly different model of distributed compu-
tation in which the processors must produce a valid output only if all of them complete
their protocol. For this model, the input-output relation contains only n-dimensional
simplices. For each task T ⊂ I × O, it is easy to construct an equivalent task T ′ in
the model of [1]: The input for task T ′ to processor i may be a special value pi that
indicates that the processor does not “participate” in T. In that case, the processor
must output a special value qi. Otherwise, the input is a vertex of I and the output a
vertex of O in such a way that the input-output relation of processors whose inputs
are not special values is identical to T. It is easy to see that T is solvable iff T ′ is
solvable in the model of [1]. This immediately implies the following.

Corollary 1. The task-solvability problem for the model of Biran, Moran, and
Zaks [1] is undecidable for three or more processors.

Another interesting variant of the shared read-write memory model is the compa-
rison-based model where processors cannot access directly their IDs but can only
compare them [11]. A typical task for this model is the renaming task: the input
(name) to each processor is a distinct member of a set S of size m, and the output
must be a distinct member of a smaller set of size k. In the comparison-based model,
the input to a processor is not a vertex of the input complex I but instead is some value
associated with the vertex. Different vertices may have the same value. Similarly there
are values associated with the vertices of the output complex. This generalization in

982 ELI GAFNI AND ELIAS KOUTSOUPIAS

the definition of tasks is necessary for the comparison-based model to be different
from the model we have considered so far; otherwise, when a processor gets as input a
vertex of the input complex I, it can immediately determine its color and the rank of
its ID. This suggests a trivial reduction from task-solvability to the comparison-based
model task-solvability: Given a task T ⊂ I ×O, construct a comparison-based model
task T ′ with the same input-output tuples where the value of each vertex is the vertex
itself. Then all values are distinct, and a processor can infer its color from its input.
It follows that T is solvable iff T ′ is solvable in the comparison-based model.

Corollary 2. The task-solvability problem for three or more processors in the
comparison-based model is undecidable.

Recently, Herlihy and Rajsbaum [8] proposed an interesting extension of Theo-
rem 2 to the models of resiliency and set-consensus. Using the contractibility problem,
they showed that the task-solvability problem for these models is also undecidable in
general.

5. Conclusion. Let us define the size of a task to be the number of its input-
output tuples. Theorem 2 implies that for any recursive function f(s), there are
solvable tasks of size s whose protocols require at least f(s) steps. This is indicative
of the difficulty involved in developing a robust complexity theory for asynchronous
distributed computation. The analogy for traditional complexity theory would be that
the finite languages, a proper subset of regular languages, are nonrecursive! However,
it may still be possible to develop a notion of complexity of distributed tasks that
is independent of the task size. An intriguing open problem is finding a solvable
“natural” task whose protocol requires, for example, exponential number of steps. Of
course, one could use the reductions given in this paper to produce such a task, but
that task could not be considered natural.

The Herlihy–Shavit condition (despite the title of [10]) is not constructive. Our
results here cast some doubt on its applicability as a necessary and sufficient condition
for task solvability. On the one hand, the best way to show that a task is solvable
is to provide a distributed algorithm that solves the given task. On the other hand,
showing that a task is not solvable often employs other weaker conditions that are
easier to apply than the Herlihy–Shavit condition (e.g., Sperner’s lemma or homology).
However, our work does show how powerful the Herlihy–Shavit condition is, because
no weaker condition would enable us to derive the results of this paper. Ironically,
although our work exposes the inherent weakness of the Herlihy–Shavit condition, to
our knowledge our work is the only work that makes full use of it.

Acknowledgments. The possibility that the Herlihy–Shavit condition might
not be constructive was suggested by Shlomo Moran in a conversation with the first
author in 1994. We would like to thank Geoffrey Mess of the UCLA Mathematics
Department for providing useful pointers to the literature.

REFERENCES

[1] O. Biran, S. Moran, and S. Zaks, A combinatorial characterization of the distributed tasks
which are solvable in the presence of one faulty processor, in Proc. 7th ACM Symposium
on Principles of Distributed Computing, Toronto, Ont., Canada, ACM, New York, 1988,
pp. 263–275.

[2] E. Borowsky, Capturing the Power of Resiliency and Set Consensus in Distributed Systems,
Ph.D. thesis, University of California, Los Angeles, 1995.

THREE-PROCESSOR TASKS ARE UNDECIDABLE 983

[3] E. Borowsky and E. Gafni, Generalized FLP impossibility result for t-resilient asynchronous
computations, in Proc. 25th ACM Symposium on the Theory of Computing, San Diego,
CA, ACM, New York, 1993, pp. 91–100.

[4] M. Dehn, Über die topologie des dreidimensional raumes, Math. Ann., 69 (1910), pp. 137–168
(in German); Papers on Group Theory and Topology, Springer-Verlag, New York, 1987 (in
English).

[5] T. K. Dey and S. Guha, Optimal algorithms for curves on surfaces, in Proc. 36th Annual
IEEE Symposium on Foundations of Computer Science, Milwaukee, WI, IEEE Computer
Society Press, Los Alamitos, CA, 1995, pp. 266–274.

[6] M. Fischer, N. Lynch, and M. Paterson, Impossibility of distributed consensus with one
faulty process, J. Assoc. Comput. Mach., 32 (1985), pp. 374–382.

[7] E. Gafni and E. Koutsoupias, 3-processor tasks are undecidable, in Proc. 14th Annual ACM
Symposium on Principles of Distributed Computing, Ottawa, Ont., Canada, ACM, New
York, 1995, p. 271 (abstract).

[8] M. Herlihy and S. Rajsbaum, The decidability of distributed decision tasks, in Proc. 29th
ACM Symposium on the Theory of Computing, El Paso, TX, ACM, New York, 1997, pp.
589–598.

[9] M. Herlihy and N. Shavit, The asynchronous computability theorem for t-resilient tasks, in
Proc. 25th ACM Symposium on the Theory of Computing, San Diego, CA, ACM, New
York, 1993, pp. 111–120.

[10] M. Herlihy and N. Shavit, A simple constructive computability theorem for wait-free com-
putation, in Proc. 26th ACM Symposium on the Theory of Computing, Montreal, Quebec,
Canada, ACM, New York, 1994, pp. 101–110.

[11] M. Herlihy and N. Shavit, The Topological Structure of Asynchronous Computability, Tech.
report CS-96-03, Department of Computer Science, Brown University, Providence, RI,
1996.

[12] P. Jayanti and S. Toueg, Some results on the impossibility, universality and decidability of
consensus, in Proc. 6th Workshop on Distributed Algorithms, Haifa, Israel, 1992, pp. 68–
84.

[13] W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace and World, New York,
1967.

[14] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Reading, MA, 1984.
[15] P. S. Novikov, On the Algorithmic Unsolvability of the Word Problem in Group Theory,

Trudy Mat. Inst. im. Steklov. 44, Izdat. Akad. Nauk SSSR, Moscow, 1955, (in Russian).
English translation available as On the algorithmic insolvability of the word problem in
group theory, AMS Trans., 2 (1958), pp. 1–122.

[16] J. J. Rotman, An Introduction to the Theory of Groups, 4th ed., Grad. Texts in Math.,
Springer-Verlag, New York, 1995.

[17] M. Saks and F. Zaharoglou, Wait-free k-set agreement is impossible: The topology of public
knowledge, in Proc. 26th ACM Symposium on the Theory of Computing, San Diego, CA,
ACM, New York, 1993, pp. 101–110.

[18] H. Seifert and W. Threlfall, A Textbook in Topology, Academic Press, New York, 1980.
[19] J. Stillwell, Classical Topology and Combinatorial Group Theory, 2nd ed., Grad. Texts in

Math., Springer-Verlag, New York, 1993.

SIMPLE ALGORITHMS FOR ROUTING
ON BUTTERFLY NETWORKS WITH BOUNDED QUEUES∗

BRUCE M. MAGGS† AND RAMESH K. SITARAMAN‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 984–1003

Abstract. This paper examines several simple algorithms for routing packets on butterfly
networks with bounded queues. We show that for any greedy queuing protocol, a routing problem
in which each of the N inputs sends a packet to a randomly chosen output requires O(logN) steps,
with high probability, provided that the queue size is a sufficiently large, but fixed, constant. We
also show that for any deterministic nonpredictive queuing protocol, there exists a permutation
that requires Ω(N/q logN) time to route, where q is the maximum queue size. We present a new
algorithm for routing logN packets from each input to randomly chosen outputs on a butterfly with
bounded-size queues in O(logN) steps, with high probability. The algorithm is simpler than the
previous algorithms of Ranade and Pippenger because it does not use ghost messages, it does not
compare the ranks or destinations of packets as they pass through switches, and it cannot deadlock.
Finally, using Valiant’s idea of random intermediate destinations, we generalize a result of Koch’s by
showing that if each wire can support q messages, then for any permutation, the expected number of
messages that succeed in locking down paths from their origins to their destinations in back-to-back
butterflies is Ω(N/(logN)1/q). The analysis also applies to store-and-forward algorithms that drop
packets if they attempt to enter full queues.

Key words. interconnection networks, parallel computers, communication protocols, routing
algorithms, circuit-switching, performance analysis

AMS subject classifications. 68Q20, 68Q22, 68Q25, 68M07, 68M20

PII. S0097539796311818

1. Introduction. Many commercial and experimental parallel computers, in-
cluding the NYU Ultracomputer [9], the IBM RP3 [19], the BBN Butterfly [5], and
NEC’s Cenju [18], use butterfly networks to route packets between processors. Several
proposed designs for the switching fabric of scalable high-speed ATM networks use
butterfly and other closely related multistage interconnection networks [26]. Although
many routing algorithms with provably good performance have been devised for but-
terfly networks [2, 15, 20, 23, 24, 31, 32, 33, 34], simpler algorithms are often used in
practice. Typically, packets are sent along shortest paths through the network, and
simple queuing protocols such as first-in first-out (FIFO) are used to determine which
packets to transmit at each step. In addition, the queues at the switches can usually
hold only a small number of packets. The performance of these simple algorithms
has proven surprisingly difficult to analyze. For example, the only previously known
upper bound on the expected time required for each input of an N -input butterfly

∗Received by the editors November 5, 1996; accepted for publication May 23, 1997; published
electronically January 29, 1999. A preliminary version of this paper appeared in the Proceedings of
the 24th Annual ACM Symposium on Theory of Computing (STOC), New York, 1992, pp. 150–161.
The views and conclusions contained here are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either express or implied, of AFMC,
ARPA, CMU, UMASS, or the U.S. Government.

http://www.siam.org/journals/sicomp/28-3/31181.html
†School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213 (bmm@cs.

cmu.edu). The work of this author was supported in part by the Air Force Materiel Command
(AFMC) and ARPA under contract F196828-93-C-0193, by ARPA contracts F33615-93-1-1330 and
N00014-95-1-1246, and by NSF National Young Investigator Award CCR-94-57766, with matching
funds provided by NEC Research Institute.
‡Department of Computer Science, University of Massachusetts, Amherst, MA 01003 (ramesh@

cs.umass.edu). The work of this author was supported in part by NSF Research Initiation Award
CCR-94-10077 and by NSF CAREER Award CCR-97-03017.

984

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 985

011Row

Level 0 1 2 3

101

110

111

100

010

001

000

Output
NodeNode

Input

Fig. 1.1. An 8-input butterfly network.

network with constant-size FIFO queues to route a packet to a random destination
was O(N). In this paper, we show that the routing time is actually O(logN), with
high probability. We also analyze the performance of several other simple algorithms
for routing on butterflies with bounded queues.

1.1. Butterfly networks. An example of an N -input butterfly (N = 8) with
depth logN (logN = 3) is shown in Figure 1.1. All logarithms in this paper are base
2. The edges of the butterfly are directed from the node in the smaller numbered
level to the node in the larger numbered level. The nodes in this directed graph
represent switches, and the edges represent communication links. We use the terms
node and switch interchangeably in the rest of the paper. Each node in a butterfly
has a label 〈l, c0 · · · clogN−1〉, where the level, l, ranges from 0 to logN , and the row,
c0 · · · clogN−1, is a logN -bit binary string. The switches on level 0 are called inputs,
and those on level logN are called outputs. For l < logN , node 〈l, c0 · · · cl · · · clogN−1〉
is connected to node 〈l + 1, c0 · · · cl · · · clogN−1〉 by a straight edge, and to node 〈l +
1, c0 · · · cl · · · clogN−1〉 by a cross edge. (The notation cl denotes the complement of
bit cl.) At each time step, each switch is permitted to transmit one packet along each
of its outgoing edges.

In a butterfly network, packets are typically sent from the inputs on level 0 to the
outputs on level logN . One of the nice properties of the butterfly is that there is a
unique path of length logN between any input and any output, and there is a simple
rule for finding that path. In particular, when a packet with origin 〈0, a0 · · · alogN−1〉
and destination 〈logN, d0 · · · dlogN−1〉 reaches level l, it passes through the node
labeled 〈l, d0 · · · dl−1al · · · alogN−1〉. If dl = al, then it takes the straight edge to
〈l+ 1, d0 · · · dlal+1 · · · alogN−1〉. Otherwise, if dl 6= al, then the packet takes the cross

986 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

edge from 〈l, d0 · · · dl−1al · · · alogN−1〉 to 〈l + 1, d0 · · · dl−1dl · · · alogN−1〉. This path
selection algorithm is called source oblivious [6] because, at each node, the next edge
taken by a packet depends only on its current location and its destination, and not
on its source, or on the locations or paths taken by any of the other packets. All of
the routing algorithms discussed in this paper are source oblivious.

1.2. Queuing protocols. This paper studies two broad classes of queuing pro-
tocols: greedy protocols and nonpredictive protocols. In a greedy queuing protocol, at
each step, each switch with one or more packets in its queue selects a packet and then
sends it to the next level, unless the queue that the packet wishes to enter is already
full. A switch is not prohibited from sending more than one packet at each step, pro-
vided that they use different edges. Nonpredictive protocols are a subclass of greedy
protocols. In a nonpredictive queuing protocol [13, section 3.4.4], [23], at each step,
each switch selects one packet from its queue without examining the destinations of
any of the packets in its queue, and sends the packet to the next level, unless the queue
that it wishes to enter is full. If the queue is full, then the switch must select the same
packet at the next step. The switch is not permitted to examine the destinations of
any other packets until the selected packet has been successfully transmitted. Many
easily implementable as well as conceptually simple queuing protocols like FIFO and
fixed-priority scheduling are nonpredictive.

1.3. Previous work. A number of different routing problems have been studied
on butterfly networks. If each input of an N -input butterfly sends a single packet, we
say that the network is lightly loaded. A specific type of routing problem of interest
is the permutation routing problem. In a permutation routing problem, each input
of the butterfly sends exactly one packet to some output of the butterfly and each
output receives exactly one packet from some input of the butterfly. If each input of
an N -input butterfly sends logN packets, we say that the network is fully loaded.

The first important butterfly routing algorithm is due to Batcher [4], who showed
that an N -input butterfly network can sort, and hence route, any permutation of
N -packets in O(log2N) steps.

The next breakthrough came more than a decade later when Valiant [32] and
Valiant and Brebner [34] observed that any permutation routing problem can be
transformed into two random problems by routing the packets first to random inter-
mediate destinations and then on to their true destinations. He also showed that an
N -node hypercube (or N -input butterfly) can route N packets to random destinations
(or from random origins) in O(logN) time using queues of size O(logN), with high
probability. As a consequence, the hypercube or butterfly can route any permutation
in O(logN) time, with high probability.

Valiant’s result was improved in a succession of papers by Aleliunas [2], Upfal
[31], Pippenger [20], Ranade [24], and Leighton et al. [14]. All of these papers use
Valiant’s idea of first routing to random intermediate destinations. Aleliunas and
Upfal increased the number of packets that can be routed in O(logN) time. They
developed the notion of a delay path and showed how to route N packets in any permu-
tation on an N -node shuffle-exchange graph and N logN packets in any permutation
on an N -input butterfly network, respectively, in O(logN) steps, using queues of size
O(logN). Pippenger devised an ingenious algorithm for routing with bounded size
queues. He showed how to route N logN packets in any permutation on a variant
of the butterfly in O(logN) steps with queues of size O(1). Finally, Ranade devel-
oped a simpler algorithm for routing with bounded queues that could also efficiently
combine multiple packets with the same destination. As a consequence of Ranade’s al-

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 987

gorithm, it is possible to simulate one step of an N logN -processor CRCW PRAM on
an N -input butterfly in O(logN) steps. Neither Pippenger’s algorithm nor Ranade’s
algorithm are greedy.

Stamoulis and Tsitsiklis [27] consider the problem of dynamic routing in but-
terflies and hypercubes with unbounded queues. Unlike the static routing problems
that we have seen so far, they assume that the packets with random destinations are
generated at each input according to a Poisson process. They show that if the load
factor on the network is less than one, then the network is stable in the steady state;
the average delay is O(logN), and the average queue size is O(1).

Recently, Broder, Frieze, and Upfal [7] have addressed the problem of dynamic
routing in butterfly and other networks with constant-size queues. They develop
a powerful method to reduce the steady state analysis of dynamic routing to the
better understood problem of static routing analysis. They extend the results of
section 2 to the dynamic setting, to provide a greedy algorithm that routes packets in
expected O(logN) time on an N -node butterfly with constant-size buffers, assuming
that packets with random destinations arrive at each input with expected interarrival
time Ω(logN). Further, they extend the results of section 4 to provide an algorithm
that routes packets in expected O(logN) time on an N -node butterfly with constant-
size buffers, assuming that packets with random destinations arrive at each input with
expected interarrival time greater than some absolute constant.

Although the performance of greedy algorithms in butterflies with bounded queues
has proven difficult to analyze, attempts have been made to approximately model
[29, 17] or empirically determine [30] their performance.

Finally, there have been several papers that analyze algorithms that drop packets
when there is contention. The BBN Butterfly algorithm has been studied by Kruskal
and Snir [12] and Koch [11]. Koch showed that for a random problem the number of
packets that succeed in locking down paths from their origins to their destinations in

an N -input butterfly is Θ(N/ log
1
q N), with high probability, where q is the maximum

number of packets that any wire can support.
The results presented for the BBN Butterfly algorithm also hold when packets

are routed in a store-and-forward fashion, with each switch having a buffer of size
q, and all packets attempting to enter a full buffer are dropped. Recently, there has
been progress in extending these results to the dynamic case, where packets arrive at
each input with a certain interarrival distribution. Rehrmann et al. [25] show that
if one packet arrives at each input of an N -input butterfly at every time step, and
each switch has a buffer of size 1 at each incoming edge, then the expected network
throughput is Θ(N/

√
logN) packets per time step.

1.4. Our results. In section 2 we show that for any greedy queuing protocol,
routing a random problem on a lightly loaded N -input butterfly requires O(logN)
steps, with high probability, provided that the queue size is a sufficiently large fixed
constant. Previously, only the trivial upper bound of O(N) was known. An intriguing
problem left open in this section is to bound the number of steps taken by a greedy
queuing protocol when the butterfly is fully loaded.

In section 3 we show that for any deterministic nonpredictive queuing protocol,
there exists a one-to-one routing problem (permutation) that requires Ω(N/q logN)
time to route, where q is the maximum queue size. Previously, no lower bound
greater than Ω(

√
N) was known. The Ω(

√
N) bound is based on the congestion and

is independent of the way the packets are scheduled. This section shows that greater
delays can occur due to the way packets interact in the network.

988 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

Section 4 presents a simple, but nongreedy, algorithm for routing a random prob-
lem on a fully loaded N -input butterfly with bounded-size queues in O(logN) steps,
with high probability. The algorithm is simpler than the previous algorithms of Ra-
nade and Pippenger because it does not use ghost messages, it does not compare the
ranks or destinations of packets as they pass through switches, and it cannot deadlock.

Finally, in section 5 we analyze routing algorithms that drop packets when there
is contention. Examples of machines that drop packets are NEC’s ATOM switch [28]
and the BBN Butterfly [5]. The BBN Butterfly algorithm has been studied by Kruskal
and Snir [12] and Koch [11]. Koch showed that for a random problem the number of
packets that succeed in locking down paths from their origins to their destinations is

Θ(N/ log
1
q N), with high probability, where q is the maximum number of packets that

any wire can support. By routing the packets to randomly (but not independently)
chosen intermediate destinations, we show that for any fixed permutation the expected

number of packets that reach their destinations is Ω(N/ log
1
q N).

2. Greedy queuing protocols. In this section, we study the performance of
greedy queuing protocols. In section 2.1, we analyze the average case behavior of
any routing algorithm with a greedy queuing protocol. We show that if every input
sends a packet to a randomly chosen output, then the time required for all of the
packets to reach their destinations is O(logN), with high probability. In section 2.2,
we show how any specific permutation routing problem on the butterfly can be routed
in O(logN) steps using Valiant’s idea of splitting a routing problem into two random
routing problems.

2.1. Average case behavior. We first define a few terms. A delay tree is a
rooted tree that is a subgraph of the butterfly. Its root is a level 0 node and the
tree contains a (directed) path, which we call the spine, from the root to a node in
level logN of the butterfly. The tree “grows out” from the spine so that there is a
unique directed path in the tree from the root to each node in the tree. A full node
is defined to be a node through which the paths of at least q packets pass, where q is
the maximum size of the queue in each node. Note that in the course of the routing,
a full node may never have a full queue since the packets could arrive at different
times. However a nonfull node can never have a full queue. A full delay tree is a
delay tree for which every node of the tree that is not on the spine is a full node. A
maximal full delay tree is a full delay tree that is not properly contained in any other
full delay tree. The number of packets on a delay tree is defined to be the sum over
all nodes of the tree of the total number of packets passing through each node. Note
that this number is different from the number of distinct packets on a delay tree. In
the former, if a particular packet hits (i.e., passes through) many nodes of a tree it
is counted many times in the sum. The significance of the above definitions becomes
clear in Theorem 2.1 below.

Theorem 2.1. The maximum delay of any packet is less than or equal to the
maximum number of packets on a full delay tree.

Proof. Let the path of some packet p, from its source to destination, be denoted
by P . Now consider the maximal full delay tree with the path P as its spine and the
source of the packet p as its root. We will refer to this maximal full delay tree as
the maximal full delay tree of packet p. We will bound the delay of p by the number
of packets on its maximal full delay tree. Since the tree is maximal, every nontree
node that is a neighbor of a tree node is not a full node. We will now show that at
each time step t until packet p reaches its destination, some packet in its maximal full

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 989

delay tree moves. At every time step t there are three cases.
(a) The packet p moves.
(b) Some other packet queued at the same node as p moves.
(c) No packet queued at the same node as p moves.

In the first two cases, it is evident that some packet in the tree moves. Since the
queuing protocol is greedy, case (c) necessarily means that the packet selected to be
sent at time step t by the node that contains p could not move because the queue in
the node n at the next level that it wanted to enter was full. Note that node n belongs
to the maximal full delay tree since it has at least q packets passing through it. Now
if some packet in node n moved at time step t we are done. If not we look at the
packet selected by node n and repeat the argument again. Note that case (c) cannot
apply at the leaves of a tree since it does not have any neighbors with full queues. So
we must encounter either case (a) or (b) before we leave the tree. Therefore the delay
of packet p is at most the number of packets on its maximal full delay tree. Thus the
maximum delay of any packet is at most the maximum of the number of packets on
a full delay tree.

We will use the following property of the butterfly network in the proofs in this
section.

Observation 2.2. A packet can enter a delay tree contained in the butterfly at
exactly one point, and once the packet leaves the tree it can never return to it.

We state without proof a result due to Hoeffding [10] and a Chernoff-type bound
[3] and [21, p. 56].

Lemma 2.3 (Hoeffding). Let X be the number of successes in r independent
Bernoulli trials where the probability of success in the ith trial is pi. Let S be the
number of successes in r independent Bernoulli trials where the probability of success
in each trial is p = 1

r

∑
1≤i≤r pi. Then E(X) = E(S) = rp, and for α such that

αE(S) ≥ E(S) + 1,

Pr[X ≥ αE(X)] ≤ Pr[S ≥ αE(S)].

Lemma 2.4. Let S be the number of successes in r independent Bernoulli trials
where each trial has probability p. The E(S) = rp, and for α > 2e,

Pr[S ≥ αE(S)] ≤ 2−αE(S).

Theorem 2.5. Let constant q be the maximum queue size. Then the maximum
delay of any packet is at most γ logN with probability at least 1 − 1

N for sufficiently
large but constant γ and q.

Proof. We will show that if there is a packet with large delay, then there must be
a delay tree with a large number of packets on it, which in turn we will show to be an
unlikely event. Assume that some packet p has a delay of γ logN or more. Consider
the maximal full delay tree of this packet. Let D denote the number of packets on the
maximal full delay tree of p. By Theorem 2.1, we know that D ≥ γ logN . Also since
every nonspine node of this delay tree is necessarily a full node, the maximum number
of nodes of this maximal full delay tree is at most D

q + logN . Let n be a node on any
level l of the butterfly. The average number of packets passing through n is 1, because
there are 2l possible packets that can pass through n and each of these packets has a
probability of 2−l of passing through it. Therefore, the expected number of packets
on the delay tree of p is at most D

q + logN . The gist of the remainder of the proof is
to show that the number of packets on a delay tree is clustered around its expected

990 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

value. Therefore, a delay tree is unlikely to have D packets on it for sufficiently large
constants q and γ.

The number of hits made by a packet on a delay tree is the number of nodes of
the tree through which the packet passes. Let us divide the hits on a delay tree into
two types: b-hits (for big hits), which are hits made by packets that make at least c
hits on the tree, and s-hits (for small hits), which are hits made by packets that make
fewer than c hits on the tree, where c is some constant. It must be the case that either
the total number of b-hits on some delay tree is greater than or equal to D

2 (call this
event Eb) or the total number of s-hits on some delay tree is greater than or equal to
D
2 . The latter possibility also implies that there are at least D

2(c−1) distinct packets

hitting some delay tree (call this event Es), since each packet making s-hits can make
at most c− 1 hits on the tree. Thus, the probability that some packet has delay d is
at most Pr(Eb) + Pr(Es).

The intuitive reason as to why b-hits are unlikely is as follows. If you imagine
packets running backward in time from destination to source, once a packet enters
the tree, it can remain in the tree at the next step only if it takes the unique edge
to its ancestor in the tree. So, at every step, it has approximately a probability of
1
2 of making another hit. This exponentially decreasing probability for making more
and more hits gives us the bound. Thus, this bound uses the tree structure in a
crucial way. The bound we will prove for Es, on the other hand, is valid for any set
of D

q + logN nodes.

Bounding the big hits. Let us suppose that event Eb occurs; i.e., there exists
a delay tree of size at most D

q + logN with a total of at least D
2 b-hits. To bound

the probability of this event we will enumerate all the possible ways it can happen.
The maximum value that D can take is N logN , since each packet can contribute at
most logN hits and there are a total of N packets. Therefore, the number of ways of
choosing D is at most N logN . The number of ways of choosing the root for the delay
tree is N . A binary tree of size at most D

q +logN can be represented by indicating the

number of children (no children, left son only, right son only, both sons) in breadth-
first-search order. Thus the total number of ways of choosing the delay tree is at most

N4
D
q +logN . The number of different packets causing these b-hits is at most D

c , since
each packet causes at least c hits and there are a total of at most D hits on the tree.
Let us assume that there is some arbitrary fixed ordering of the nodes in the tree,
e.g., the breadth-first-search ordering of the tree. We will now pick a nondecreasing
sequence (with respect to our ordering) of D

c nodes in the tree, n1, n2, . . . , nD
c

. Note

that each node of the tree can occur more than once in this sequence. Node ni is the
last node on the tree through which the ith packet passed. The number of ways of
choosing this sequence is at most(D

q + logN + D
c

D
c

)
=

(
D
q + logN + D

c
D
q + logN

)
.

Let node ni of the sequence be at level li of the butterfly. For every ni, we now
associate a nonnegative integer hi denoting the number of hits made by a packet pi
before leaving node ni. The number of ways of distributing at most D hits over D

c
elements of the sequence is at most(

D + D
c

D
c

)
.

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 991

We can ignore any ni with hi = 0 in this. Since the packet pi must have made
exactly hi hits before leaving the tree at ni, the number of choices for pi is 2li−hi .
Here we have used Observation 2.2. The total number of ways of choosing packets
for all elements in the sequence is at most

∏
i 2li−hi . (We are overcounting a little

since packets have to be distinct.) Now, we have chosen a particular tree, a sequence
of nodes ni, and the associated packets pi. The probability that all the packets pi
pass through their corresponding nodes ni is simply the product of the probabilities
that each individual packet pi passes through node ni which equals

∏
i 2−li . (We can

multiply probabilities because each packet chooses its path independently.) Putting
it all together, we have

Pr(Eb) ≤ N logN ·N4
D
q +logN ·

(
D
q + logN + D

c
D
q + logN

)

·
(
D + D

c
D
c

)
·
∏
i

2li−hi ·
∏
i

2−li

≤ N522Dq ·
(

(Dq + logN + D
c)e

D
q + logN

)D
q +logN

·
(

(D + D
c)e

D
c

)D
c

· 2−
∑

i
hi

≤ 25Dγ · 22Dq ·
((

1 +
q

c

)
e
)D
q +D

γ · 2log((c+1)e)Dc · 2−D2(2.1)

using the inequality
(
x
y

) ≤ xy/y! to bound the combinatorial coefficients and using the

fact that D ≥ γ logN and
∑
i hi ≥ D

2 . Note that the multiple of D in the exponent
of the first four factors decreases with an increase in the values of c, q, and γ. So for
some suitably large values for the constants c, q, and γ the expression in (2.1) is at
most 2−kD for some constant k > 0. We can use the fact that D ≥ γ logN to bound
the value of this expression (and hence Pr(Eb)) to be at most

2−kD ≤ 2−kγ logN =
1

Nkγ
≤ 1

2N

as long as the value of γ is chosen to be at least 2/k.

Bounding the small hits. Let us suppose event Es occurs; i.e., there is a tree
of size at most D

q + logN with at least D
2(c−1) different packets hitting the tree for

some value of D ≥ γ logN . The number of ways of choosing a value for D is at most

N logN . The number of ways of choosing such a tree is at most N4
D
q +logN . Let X

denote the total number of distinct packets hitting a tree of size at most D
q + logN .

X is a sum of N Boolean random variables, Xi, 1 ≤ i ≤ N . Each Xi is 1 if the packet
originating at input i hits the tree and 0 otherwise. The expected number of distinct
packets on the tree is at most the expected number of packets on the tree. Therefore,
E(X) ≤ D

q + logN . Using Lemmas 2.3 and 2.4 to derive the second inequality, we
have

Pr(Es) ≤ N logN ·N4
D
q +logN · Pr

(
X ≥ D

2(c− 1)

)
≤ N logN ·N4

D
q +logN · 2− D

2(c−1)(2.2)

992 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

as long as α =
D

2(c−1)

E(X) > 2e. Using the fact that D ≥ γ logN , we have

α ≥
D

2(c−1)

D
q + logN

≥ qγ

2(c− 1)(q + γ)
.(2.3)

Let c0, q0, and γ0 be values of c, q, and γ, respectively, for which Pr(Eb) was
shown to be at most 1

2N . We choose the values of c, q, and γ such that both Pr(Eb)
and Pr(Es) are at most 1

2N as follows. First we choose c = c0. Next we choose
constants q and γ such that q = γ. Let τ denote the value of q and γ. We choose τ
such that τ ≥ max(q0, γ0). We make α > 2e by choosing τ large enough such that
the right-hand side of (2.3) which equals τ/4(c− 1) is greater than 2e. Furthermore,
τ is chosen large enough such that

4
D
q · 2− D

2(c−1) = 4
D
τ · 2− D

2(c−1) ≤ 2−j
D
c−1

for some constant j > 0. Since D ≥ γ logN ,

2−j
D
c−1 ≤ 2−j

γ logN
c−1 = 2−j

τ logN
c−1 .

Finally, the value of τ is made large enough such that

Pr(Es) ≤ N logN ·N4logN · 2−j τ logN
c−1 ≤ 1

2N
.

Note that since c = c0 and q = γ = τ ≥ max(q0, γ0), Pr(Eb) is at most 1
2N for the

chosen values of c, q, and γ. It now follows that the probability that a packet has
delay greater than γ logN is at most 1

2N + 1
2N , which equals 1

N .

2.2. Routing a fixed permutation. The results of section 2.1 deal with the
routing delay of an average routing problem. What can we say about routing a fixed
permutation? We can show that we can route any fixed permutation in O(logN)
steps with high probability using Valiant’s idea of routing in two phases. In Phase A,
each packet is routed from its source in level 0 to a random intermediate destination
in level logN . For simplicity, we will assume that the butterfly network has wrap-
around; i.e., each node in level logN is identified with the node in level 0 in its row.
The packets are queued up at the end of Phase A, and in Phase B each packet is
routed to its actual destination.

Theorem 2.6. Any fixed permutation can be routed such that the delay is
O(logN) with probability ≥ 1− 2

N .
Proof. Phase A is precisely the same problem as that studied in section 2.1. In

Phase B, each packet is routed from its intermediate destination to its final destina-
tion. For convenience, we will denote the level of its final destination as 0 and that of
the intermediate destination as level logN . This phase is different from the one we
studied in section 2.1 in that the starting points are random while the destinations
are fixed. But the same proofs for the delay will work with small modifications. It is
perhaps best to imagine the packets running backward from level 0 (final destinations)
to random nodes in level logN (intermediate destinations). In the proof for bounding
the b-hits, the sequence ni will now represent switches through which packets that
hit the tree entered the tree (running backward in time). The number of ways of
associating a packet with ni in level li is 2li . The probability that the packet makes
hi hits is now 2−(li+hi), since it must leave the tree at the unique ancestor of ni in
level li − hi + 1. The rest of the calculation is the same as before. The proof for
bounding the s-hits is identical.

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 993

3. Difficult permutations. In this section, we prove that for any deterministic
nonpredictive queuing protocol, there exists a permutation that requires Ω(N/q logN)
time to route on a butterfly network. Previously, the best lower bound for routing
on a butterfly with queues of any size was Ω(

√
N). The Ω(

√
N) bound is proved

by observing that certain permutations, such as the bit-reversal permutation, force
Ω(
√
N) packets to pass through a single switch [13, section 3.4.2]. (It is also not

very difficult to prove that if the queue size is not bounded, then O(
√
N) is an upper

bound on the time to route any permutation using any greedy protocol.) Because the
Ω(
√
N) bound is based on congestion only, it applies to any queuing protocol. The

results in this section indicate that the manner in which packets are scheduled can
potentially cause much greater delays. The proof involves a careful examination of
the interaction of the packets as they route through the network.

To simplify the presentation in this section, we will assume that each switch has
a single queue, and that at each step, its two neighbors at the previous level may each
send a packet into the queue provided that, at the beginning of the step, the queue
held at most q packets. We call q the queue threshold of the switch. Since a queue
can receive 2 packets when it already has q, it may contain as many as q + 2 packets
but no more.

Theorem 3.1. For any deterministic nonpredictive queuing protocol, there exists
a permutation π that requires Ω(N/q logN) steps to route on a butterfly with queue
threshold q.

Proof. The proof is by induction. We will assume that there are two edges leading
into each butterfly input, and we begin by computing the time, td(r), required for
a depth d butterfly to accept r/2 packets on each of the 2d+1 edges into its inputs.
(For simplicity, we assume without loss of generality that r and q are even.) We will
assume that at time step 1 and at each time step thereafter, 1 packet is available
for transmission along each of these edges until r/2 packets have crossed the edge.
Furthermore, we will assume that each output switch can transmit one packet at each
step.

We begin by examining a 1-input butterfly, which consists of a single switch, s.
Suppose that at the beginning of time step 1, the queue at switch s is empty. We
would like to know how long it takes for s to receive r/2 packets from each of its
incoming edges, where r > q. On time steps 1 through q, s receives one packet along
each of its two incoming edges. During steps 2 through q, s transmits one packet
at each step. Thus, after q steps, 2q packets have been received, q − 1 have been
transmitted, and the queue contains q+ 1 packets. Since the queue is full, s does not
receive any packets on step q + 1, but it does transmit one. Thereafter, s receives
two packets on every other step and transmits one packet on every step, until a total
of r packets have been received, which occurs on step q + (r − 2q) = r − q. Thus,
t0(r) = r − q.

Next, let us compute the time required for each input of a depth-d butterfly to
receive r/2 packets along each of its incoming edges. In order for an input to receive
r packets, it must transmit at least r− (q+2) packets. Using the assumption that the
queuing protocol is nonpredictive, we will choose the paths of these r− (q+2) packets
so as to maximize the delay. Since a switch cannot look at a packet’s destination until
it has been selected for transmission, we can wait until a packet has been selected and
then decide if it should take a cross edge or a straight edge to the next level. The first
(r − (q + 2))/2 packets selected by each input switch 〈0, c0c1 · · · cd−1〉 will be sent to
the switches labeled 〈1, 0c1 · · · cd−1〉. These switches are the inputs of a depth-(d− 1)

994 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

subbutterfly. The second (r − (q + 2))/2 packets will be sent to the depth-(d − 1)
subbutterfly whose inputs are labeled 〈1, 1c1 · · · cd−1〉.

The inputs of the first subbutterfly start accepting packets at step 2. By induction,
the time required for each input to receive r−(q+2) packets is td−1(r−(q+2)). Thus,
the first subbutterfly receives packets during steps 2 through td−1(r− (q+ 2)) + 1. In
the meantime, no packets are sent to the inputs of the second subbutterfly. The first
packets arrive there on step td−1(r − (q + 2)) + 2 and continue to arrive until step
2td−1(r − (q + 2)) + 1, at which point each input has received r − (q + 2) packets.
Thus, td(r) = 2td−1(r − (q + 2)) + 1. Solving this recurrence yields

td(r) ≥ 2dt0(r − (q + 2)d)

≥ 2d(r − (q + 2)(d+ 1)).

The lower bound on td(r) that we have just derived requires r > (q + 2)(d + 1)
packets to pass through each butterfly input. In a permutation routing problem,
however, only one packet originates at each input. In order to use the bound, we will
force r packets through each input of an N/r2-input subbutterfly that spans levels
log r through logN − log r. We call this subbutterfly the busy subbutterfly. It has
depth d = logN − 2 log r. Each input of this subbutterfly is the root of a depth-log r
complete binary tree whose leaves are butterfly inputs on level 0. Call these trees the
input trees. Each output is the root of a log r-depth complete binary tree whose leaves
lie on level logN . Call these trees the output trees. All of these trees are completely
disjoint. The r packets that originate at the leaves of an input tree will all be sent
through the root of that tree. Each output of the busy subbutterfly receives exactly
r packets. These packets are distributed among the r leaves of the corresponding
output tree so that they each receive exactly one packet. Note that between levels
log r and logN − log r, the only switches and edges used for routing are those in the
busy subbutterfly.

All that remains is to choose appropriate values of r and d. From the construction
of the busy subbutterfly, we know that d = logN − 2 log r. In order for our lower
bound on td to be greater than zero, we need r > (q + 2)(d + 1). Choosing r =
2(q + 2)(logN + 1) yields td(r) ≥ 2d(q + 2)(logN + 1) = (N/r2)(q + 2)(logN + 1) =
N/(4(q + 2)(logN + 1)). Thus the delay is Ω(N/q logN).

Note that the maximum number of packets passing through any node (the con-
gestion) for the worst-case permutation constructed in this section is only O(q logN).
This implies that there are other more complex routing algorithms such as that of
Ranade [24] which can route this permutation in O(q logN) steps!

4. A simple routing algorithm. In this section we present a simple, but non-
greedy, algorithm for routing on butterfly networks. With high probability, the algo-
rithm requires O(k+ logN) time to route packets with random destinations, where k
is the number of packets that originates at each input. The algorithm is simpler than
the algorithms of Pippenger [20] and Ranade [24] because it does not use ghost mes-
sages, it does not compare the ranks or destinations of packets as they pass through
a switch, and it cannot deadlock. Unlike the algorithm of Ranade, however, it does
not combine packets with the same destination.

The routing algorithm begins by breaking the packets into waves. Each input
contributes one packet to each wave. The waves of packets are separated by waves of
tokens. Unlike the ghost messages in Ranade’s algorithm, a token carries no informa-

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 995

tion other than its type, which requires O(1) bits to represent.1 Initially, there are k
packets at each input and a token is placed between each pair of successive packets
and after the last packet. For 0 ≤ i ≤ k − 1, the ith packet at each input is assigned
to wave 2i, and the ith token is assigned to wave 2i + 1. Thus, the packets belong
to the even waves, and the tokens belong to the odd waves. Throughout the course
of the routing, the algorithm maintains the following important invariant. For i < j,
no packet or token in the jth wave leaves a switch before any packet or token in the
ith wave. Furthermore, packets within the same wave pass through a switch in the
increasing order of their row numbers of origin. (A row c0 · · · clogN−1 is viewed as a
binary number where c0 is the lower order bit.)

A switch labeled 〈l, c0 · · · clogN−1〉 has two edges into it, one from the switch
labeled 〈l − 1, c0 · · · cl−20cl · · · clogN−1〉, and the other from the switch labeled 〈l −
1, c0 · · · cl−21cl · · · clogN−1〉. We call the first edge the 0-edge, and the other the 1-edge.
At the end of each of these edges is a FIFO queue that can hold q packets or tokens.
We call these queues the 0-queue and the 1-queue, respectively.

The behavior of each switch is governed by a simple set of rules. By “forward” a
packet or token we mean send it to the appropriate queue in the next level. If that
queue is full, the switch tries again in successive time steps until it succeeds. A switch
can either be in 0-mode or in 1-mode and is initialized to be in 0-mode. In 0-mode, a
switch forwards packets in the 0-queue in FIFO fashion, until a token is at the head
of the 0-queue. It then changes to 1-mode. In 1-mode, a switch forwards packets in
the 1-queue in FIFO fashion, until a token is at the head of the 1-queue as well. Now
the switch waits until both the queues at its outgoing edges have room to receive a
token and then simultaneously sends one token to each of them. After doing this, the
switch changes back to 0-mode.

Note that at each step a switch is required to perform only O(1) bit operations
in order to determine which packet, if any, to send out. In the algorithms of Pip-
penger and Ranade, the switches must perform more complicated operations, such
as comparing the destinations of two packets as they pass through a switch. In the
succeeding sections, we show that our algorithm requires O(k + logN) steps, which
is asymptotically optimal.

4.1. Delay sequences. The proof that the algorithm requires O(k + logN)
time uses a delay sequence argument similar to those in [1, 14, 24]. A (w, f)-delay
sequence consists of four components: a path P from an output to an input; a sequence
s1, . . . , sw of w, not necessarily distinct switches which appear in order on the path;
a sequence h1, . . . , hw of w distinct packets and tokens; and a nonincreasing sequence
of wave numbers r1, . . . , rw. The path P may trace any edge of the network in either
direction. When the path traces an edge from some level l to level l + 1, we call
the edge a forward edge. The number of forward edges in the path is denoted by f .
The length, L, of P is equal to the distance from an output to an input (logN) plus
two times the number of forward edges on P , L = logN + 2f . We say that a delay
sequence occurs if, for 1 ≤ i ≤ w, packet or token hi belongs to wave ri and passes
through switch si. The following lemma shows that if some packet is delayed, then a
delay sequence must have occurred.

Lemma 4.1. If some packet arrives at its destination at step logN + d or later,
then a (d+ (q − 2)f, f)-delay sequence must have occurred for some f ≥ 0. Further-

1Tokens are used in a similar fashion in a bit-serial algorithm for routing on the hypercube in
[1]. It turns out, however, that tokens are not really needed in that algorithm. Ranade’s proof of the
equivalence of different queuing disciplines [23] implies that a FIFO queuing protocol will suffice.

996 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

more, no two tokens in the sequence belong to the same wave.
Proof. Before we begin the proof, we need some definitions. Let the lag of a switch

s at time t on level l be t− l. Also, let the rank of a packet h be a 2-tuple consisting of
h’s wave number and the row number of the input in which it originated. Ranks are
examined by first comparing wave numbers, and then, if there is a tie, comparing row
numbers. A row c0 . . . clogN−1 is viewed as a binary number where c0 is the low-order
bit. Note that each packet has a distinct rank. Every token belonging to the same
wave has the same rank. This rank is strictly less than all the packets in the wave
above it but strictly greater than the packets in the wave below it. Note that ranks
are used only as a tool for the analysis and not by the algorithm itself.

The algorithm maintains several important invariants. As mentioned before, the
packets and tokens leave each switch in order of nondecreasing wave number. Fur-
thermore, each edge transmits exactly one token from each odd wave. Finally, within
an even wave, the packets that arrive at a switch via its 0-edge have smaller ranks
than the packets that arrive via its 1-edge. As a consequence, each switch sends out
packets and tokens in order of strictly increasing rank.

The delay sequence begins with the last packet to arrive at its destination. Sup-
pose that some packet h1 arrives at its destination, s1, at step τ1, where τ1 ≥ logN+d.
Then s1 has lag at least d at step τ1. We will construct the delay sequence by spending
lag points. We begin the sequence with h1, s1, and r1, where r1 is the wave number
of h1. Next, we follow h1 back in time until the step at which it was last delayed.

In general, suppose that we have followed some packet or token hi back in time
from some switch si at time step τi until it was last delayed, at some switch s′i+1 at
time step τi+1. As we follow hi back in time, the nodes that hi passes through are
added to path P . Because hi is delayed at s′i+1 at step τi+1, the lag at s′i+1 at step
τi+1 is one less than the lag of si at step τi. There are three possible reasons for the
delay of hi at switch s′i+1.

First, if si+1 selects another packet or token, hi+1, to send instead of hi, then
hi+1 must have a strictly smaller rank than hi. In this case, hi+1, si+1 = s′i+1, and
ri+1 are inserted into the sequence, where ri+1 is the wave number of hi+1. We then
follow hi+1 back in time until it was last delayed. We have spent one lag point and
inserted one packet or token into the sequence.

Second, if s′i+1 doesn’t send hi because the queue at the end of one of its outgoing
edges is full, then we extend the path, P , forward along that edge to the switch at
its head, s′′i+1. The lag of switch s′′i+1 at time τi+1 is two less than the lag of si at
step τi. However, the queue must contain a total of q packets and tokens, all of which
have smaller rank than hi. We insert these packets and tokens into the sequence. We
then follow the packet or token at the head of the queue back in time until it was last
delayed.

If neither of these cases is true, it must be the case that in switch s′i+1 at time
τi+1 either of the following occurs.

(a) hi is a packet, it is at the head of the 1-queue, and the 0-queue is empty, or
(b) hi is a token, it is at the head of one of the queues, and the other queue is

empty.
In either case, we go back to the switch at the tail of the empty queue at the previous
time step. Note that we do not lose any lag by this process. We continue to do this
as long as we can find an empty queue at the current switch. Suppose we do it m
times and we are at a switch s′′i+1 at time τi+1−m. Switch s′′i+1 has packets or tokens
at the heads of both of its queues but did not send anything through one of its edges

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 997

at time τi+1 −m. If one of the heads of its queues is a packet, we add it and switch
s′′i+1 to the delay sequence and continue to follow this packet back in time. Note that
in case (a), this packet belongs to the same wave as hi but has rank strictly less than
hi since the first edge we followed back from s′i+1 is a 0-edge. In case (b), the packet
belongs to a wave earlier than that of token hi and hence has a strictly smaller rank.
In either case, we have added a packet of strictly smaller rank for the cost of one lag
point. Now suppose that both the heads of queues are tokens. The only reason the
tokens were not sent at time τi+1 −m is that one of the outgoing edges of s′′i+1 had
a full queue. In this case we extend the path P forward to the switch at the head of
the queue, insert all of the packets and tokens in that queue into the delay sequence,
and follow the packet or token at the head of the queue back in time. Now we have
added q packets and tokens for the cost of two lag points.

For each lag point spent, at least one new packet or token is inserted into the
delay sequence. Furthermore, for each forward edge on the path P , an additional
q − 2 packets and tokens are inserted. Let f be the number of forward edges on P .
Since we had d lag points to spend, we must insert at least d+ (q − 2)f packets and
tokens. Since we are inserting packets or tokens in strictly decreasing order of rank,
at most k of these can be tokens. The length of P is logN + 2f .

4.2. Bunched delay sequences. We have now established that if some packet
is delayed, then a delay sequence occurs. To simplify the rest of the argument, we
will restrict our attention to delay sequences in which the packets can be partitioned
into bunches of size b such that all of the packets in each bunch pass through the
same switch on the sequence and have the same wave number. We call such a delay
sequence a bunched delay sequence. Note that a bunched delay sequence cannot
contain tokens. The following lemma shows that if a delay sequence occurs, then a
bunched subsequence also occurs.

Lemma 4.2. If a (d + (q − 2)f, f) delay sequence occurs, then a (bg, f) bunched
delay sequence occurs, where

g =

⌈
d+ (q − 2b)f − bk − (b− 1) logN

b

⌉
.

Proof. Suppose that a (d + (q − 2)f, f) delay sequence occurs. We will describe
an algorithm for finding a bunched subsequence.

Starting at the first switch on the sequence, s1, form a bunch of size b of packets
with wave number 2(k − 1). If successful, then form another bunch of packets with
wave number 2(k − 1). Otherwise, if there are fewer than b remaining packets with
wave number 2(k − 1), then there are two cases to consider. First, if there are other
packets on the sequence that pass through s1, then discard the remaining packets
with wave number 2(k − 1) and begin forming bunches out of packets with the next
smaller even wave number. Since the wave number can decrease at most k times, this
case can happen only k times. Each time, we may discard as many as b − 1 packets
from the original delay sequence. Second, if no other packets on the sequence pass
through s1, then move on to the second switch, s2. This case can happen at most
logN + 2f times, since the path has length L = logN + 2f . As in the first case, we
may discard b− 1 packets from the original sequence.

Since the original sequence contains at least d + (q − 2)f − k packets, and we
discard a total of at most k(b − 1) + (logN + 2f)(b − 1) packets, at least d + (q −
2b)f − bk − (b − 1) logN packets are placed in bunches. Thus, there are at least

g = dd+(q−2b)f−bk−(b−1) logN
b e bunches.

998 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

4.3. The counting argument. We are now in a position to prove that, with
high probability, every packet reaches its destination within O(k + logN) steps.

Theorem 4.3. For any c2, there exist constants c1 and q > 0 such that the
probability that any packet is delayed for more than d = c1(k+ logN) steps is at most
1/N c2 , where k is the number of packets per input of the butterfly.

Proof. Note that, by Lemma 4.1, if some packet suffers delay d, then a (d+ (q −
2)f, f)-delay sequence must occur for some f ≥ 0. Therefore, using Lemma 4.2, a
(bg, f) bunched delay sequence must occur, where

g =

⌈
d+ (q − 2b)f − bk − (b− 1) logN

b

⌉
.

To prove this theorem we will enumerate all possible bunched delay sequences and
show that it is unlikely that any of them occurs.

The number of different bunched delay sequences is at most

N · 4L ·
(
L+ g

g

)
·
(
g + k

g

)
·
g∏
i=1

(
2di

b

)
,(4.1)

where di is the level of the switch through which the ith bunch passes. The factors
in this product are explained as follows. There are N choices for the output switch
at which the path P in the delay sequence originates. At each of the L switches on
the path, there are at most four choices for the next switch on the path. There are
at most

(
L+g
g

)
ways of choosing the g (not necessarily distinct switches) on the path

that the g bunches pass through, and at most
(
g+k
g

)
ways of choosing (not necessarily

distinct) wave numbers for the g bunches. Finally, given a switch with level di and

wave number w, there are
(

2di

b

)
ways of choosing b packets with wave number w that

can pass through the switch.
Whether or not a particular delay sequence occurs depends entirely on the random

destinations chosen by the packets in the delay sequence. It is important to note that
every packet on the delay sequence is distinct. Therefore, the events regarding any
two packets on the delay sequence are independent. Thus, the probability that all of
the packets pass through their corresponding switches is

∏g
i=1

1
2bdi

, since each of the

b packets in the ith bunch has probability 1/2di of passing through any particular
switch on level di.

We can bound the probability that any delay sequence occurs by summing the
probabilities of each individual delay sequence occurring, which is equivalent to mul-
tiplying (4.1) by

∏g
i=1

1
2bdi

. Using the inequality
(
x
y

) ≤ (ex/y)y to bound
(
L+g
g

)
and(

g+k
g

)
, and using

(
x
y

) ≤ xy/y! to bound
(

2di

b

)
, the product is at most

23 logN+4f · (e(L+ g)/g)g · (e(g + k)/g)g · (1/b!)g,

where g = dd+(q−2b)f−(b−1)k−(b−1) logN
b e. First, we choose b such that b! ≥ 16e2.

We can make g larger than L = logN + 2f , k, and 3 logN + 4f , by making q large
compared with b (but still constant), and d large compared with b(k + logN) (but
still c1(k + logN), where c1 is a constant).

In this case, the product is at most (8e2/b!)g ≤ 2−g. By making g large enough,
we can make this product less than 1/N c2 for any constant c2.

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 999

5. Algorithms that drop packets. In this section, we consider queuing pro-
tocols that resolve contention by dropping packets. Two examples of machines that
use this kind of protocol are the BBN Butterfly [5] and the NEC ATOM switch [28].

The ATOM switch routes packets in a store-and-forward manner. At every time
step, each switch examines the head of its input queue and forwards a packet to the
appropriate output queue. If a queue receiving packets is already full, then it discards
packets in excess of its maximum queue size. In the BBN Butterfly, each packet tries
to lock down a path between its source and destination. We will assume that each
edge of the butterfly can sustain up to q such paths. Therefore, if more than q packets
want to use the same edge only q succeed, and the rest fail to lock down their paths.
Packets that succeed in locking down paths are transmitted along these paths to their
respective destinations. This method of routing is known as circuit-switching.

In both of these queuing protocols, a natural question to ask is how many of
the packets reach their destinations. The ATOM switch has not been studied in
this context before. Kruskal and Snir [12] and Koch [11] studied the average case
performance of the BBN Butterfly algorithm. Koch showed that if each packet inde-
pendently chooses a random destination, then the expected number of packets that

get through is Θ(N/ log
1
q N). However, there are permutations that arise from natural

problems in which only O(
√
N) packets get through. To combat this we show how to

route any fixed permutation in either of the above-mentioned queuing protocols such

that the expected number of packets that reach their destinations is Ω(N/ log
1
q N). As

an aside, this section also provides an elementary proof of the fact that the expected
number of packets that get through for a random routing problem on the butterfly is

Ω(N/ log
1
q N). As mentioned earlier, this was first proved by Koch [11].

The idea for routing any fixed permutation is based on Valiant’s idea of routing
to random intermediate destinations. Consider two back-to-back butterflies, i.e., two
butterflies whose level logN nodes are identified. The source of the packets is level
0 of one of the butterflies, and each packet has a destination in level 0 of the other
butterfly. In the first stage, the packets route from level 0 to level logN of the first
butterfly. In the second stage, the packets route from level logN to level 0 of the
second butterfly. In the first stage we use a scheme for sending packets to random
but not independent destinations. Ranade [22] was the first to use this scheme in
order to reduce the amount of the randomness needed to send packets to intermediate
destinations in a packet switching algorithm. The scheme is as follows. At time step
i every level i switch receives two packets, one from each of its incoming butterfly
edges. The switch selects a random outgoing edge for one of the packets and routes
the other packet through the remaining outgoing edge. Therefore, in the first stage no
packets are dropped. In the second stage, every packet is routed from this intermediate
destination to its actual destination in level 0 of the second butterfly. In this stage,
packets are dropped according to the rules of BBN Butterfly routing or that of the
ATOM switch. We will assume that each packet picks a random rank from 1 to

r = log
1
q N . When packets must be dropped, packets with the least rank are dropped

in favor of those with a higher rank. We will now show that the expected number of

packets that reach their destinations is Ω(N/ log
1
q N).

Let n be a node at level l of the second butterfly. Consider any k packets whose
final destinations are reachable from this node. We bound the probability that all k
packets pass through this node.

Lemma 5.1. The probability that any k packets all pass through a node n in level
l of the second butterfly is at most 1

2lk
.

1000 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

l0 log N l 0Level

subbutterfly
B

n’ n

Fig. 5.1. Subbutterfly B.

Proof. Let the node in the first butterfly that corresponds to node n be n′. Let
the subbutterfly from level l to logN of the first butterfly that contains n′ be B (see
Figure 5.1). Note that the k packets pass through the given node n if and only if
all of these packets pass through some node of subbutterfly B. Consider the sources
of the k packets in level 0 of the first butterfly and the unique shortest paths from
each of the sources to subbutterfly B. If any two of them intersect before reaching
the subbutterfly, these two packets cannot both hit subbutterfly B, since at the node
of intersection only one packet can take the path to the subbutterfly. If no two paths
intersect, then the probability of each packet hitting B is independent of the others
and equals 1

2l
. Thus in this case the probability of all of them hitting the subbutterfly

is exactly 1
2lk

. Therefore, given any k packets the probability of all k of them passing

through the given node or equivalently hitting the subbutterfly is at most 1
2lk

.
Theorem 5.2. The expected number of packets that reach their destinations is

Ω(N/ log
1
q N).

Proof. Consider the path of a particular packet p in the second butterfly. We will
now evaluate the probability that packet p reaches its destination. Note that with
probability 1

r packet p will have the highest rank r. In this case, packet p can be
dropped only if there is a node on its path with at least q packets going through it,
all with rank r. We will now show a lower bound on the probability that there exist
no such q packets. First let’s bound Eq, the expected number of q-tuples of packets
incident on a node at level l of the second butterfly,

Eq ≤
(

2l

q

)
1

2ql
≤ 1

q!
,

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 1001

since there are
(

2l

q

)
ways of choosing q packets that can pass through a node on level

l, and by Lemma 5.1, the probability that these packets actually pass through the
node is at most 1/2ql.

The expected total number of q-tuples incident on some node on the path of
packet p is at most logN/q!, since the path has length logN . The expected number
of such q-tuples with all packets having rank r is at most logN/(q!rq) which equals

1/q!, since r = log
1
q N . Since 1/q! ≤ 1, the probability that no such q-tuple exists

anywhere on the path of packet p is at least 1 − 1/q!. (A slightly larger choice for r
would make the arguments work for q = 1.) This implies that packet p reaches its
destination with a probability of at least (1 − 1/q!)(1/r), since the probability that
packet p gets rank r is 1/r. Therefore, the expected number of packets to reach their

destinations is at least (1− 1/q!)(N/r) which is Ω(N/ log
1
q N).

The proof that the expected number of packets that reach their destinations is

Ω(N/ log
1
q N) also holds for a random routing problem in which each packet chooses

independently a random destination. Lemma 5.1 is true because the probability that
a packet passes through a node n in level l is 1/2l. Every packet chooses its path
independently and hence the probability that all of them pass through the node
exactly equals 1/2lk. The rest of the proof is the same as before. Koch [11] has
observed that the expected number of packets that get through is not affected by the
rule that is used to decide which messages to keep and which messages to drop, as
long as the destinations of the packets are not used to make this decision. Therefore,
for this problem, random ranks are necessary only as a tool for analysis and any other
nonpredictive rule would exhibit the same average case behavior.

6. Open questions. The most vexing problem left open by this paper is to
determine the average number of time steps required to route a random problem on a
fully loaded N -input butterfly with constant-size FIFO queues. If fewer than Ω(logN)
packets may be queued at a node, then the only known upper bound on the time to
route is O(N logN). This trivial upper bound is proven by showing that after logN
steps, at least one packet arrives at the outputs at every time step until the routing
is completed. Simulations show that the true time is closer to O(logN).

Another open question concerns the algorithm of section 4 for routing on a fully
loaded butterfly with constant-size queues. We know from section 2 that a single wave
of packets with random destinations can be routed using a greedy queuing protocol
in O(logN) time, but when the waves are pipelined, as in section 4, the analysis
requires us to use a simple, but not greedy, protocol to route each wave. It would
be interesting to show that even if each individual wave was routed with a greedy
protocol, the total time to route logN waves was O(logN).

Acknowledgments. The authors would like to thank Danny Krizanc, Christos
Kaklamanis, Tom Leighton, Satish Rao, Nick Pippenger, Alan Frieze, and Thanasis
Tsantilas for many helpful discussions.

REFERENCES

[1] W. A. Aiello, F. T. Leighton, B. M. Maggs, and M. Newman, Fast algorithms for bit-serial
routing on a hypercube, Math. Systems Theory, 4 (1991), pp. 253–271.

[2] R. Aleliunas, Randomized parallel communication, in Proceedings of the ACM SIGACT–
SIGOPS Symposium on Principles of Distributed Computing, 1982, pp. 60–72.

[3] D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.

1002 BRUCE M. MAGGS AND RAMESH K. SITARAMAN

[4] K. Batcher, Sorting networks and their applications, in Proceedings of the AFIPS Spring
Joint Computing Conference, 32 (1968), pp. 307–314.

[5] ButterflyTM Parallel Processor Overview, BBN report 6148, Version 1, Bolt, Beranek, and
Newman, Cambridge, MA, 1986.

[6] A. Borodin and J. E. Hopcroft, Routing, merging, and sorting on parallel models of com-
putation, J. Comput. System Sci., 30 (1985), pp. 130–145.

[7] A. Z. Broder, A.M. Frieze, and E. Upfal, A general approach to dynamic packet routing
with bounded buffers, in Proceedings of the ACM Symposium on Theory of Computing,
1996, ACM, New York, pp. 390–399.

[8] S. Felperin, P. Raghavan, and E. Upfal, A theory of wormhole routing in parallel computers,
in Proceedings 33rd IEEE Symposium on Foundations of Computer Science, IEEE Press,
Piscataway, NJ, 1992, pp. 563–572.

[9] A. Gottlieb, An overview of the NYU Ultracomputer Project, in Experimental Parallel Com-
puting Architectures, J. J. Dongarra, ed., Elsevier Science Publishers, B. V., Amsterdam,
The Netherlands, 1987, pp. 25–95.

[10] W. Hoeffding, On the distribution of the number of successes in independent trials, Ann.
Math. Statistics, 27 (1956), pp. 713–721.

[11] R. R. Koch, Increasing the size of a network by a constant factor can increase performance by
more than a constant factor, in Proceedings of the 29th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 221–230.

[12] C. P. Kruskal and M. Snir, The performance of multistage interconnection networks for
multiprocessors, IEEE Trans. Comput., C–32(12) (1983), pp. 1091–1098.

[13] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufmann, San Mateo, CA, 1992.

[14] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao, Randomized Routing and
Sorting on Fixed-Connection Networks, J. Algorithms, 17 (1994), pp. 157–205.

[15] T. Leighton, B. Maggs, and S. Rao, Universal packet routing algorithms, in Proceedings
of the 29th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, 1988, pp. 256–271.

[16] B. M. Maggs and R. K. Sitaraman, Simple algorithms for routing on butterfly networks
with bounded queues, in Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, ACM, New York, 1992, pp. 150–161.

[17] A. Merchant, A Markov chain approximation for the analysis of banyan networks, in Proceed-
ings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, ACM, New York, 1991.

[18] T. Nakata, S. Matsushita, N. Tanabe, N. Kajihara, H. Onozuka, Y. Asano, and
N. Koike, Parallel programming on Cenju: A multiprocessor system for modular circuit
simulation, NEC Research & Development, Princeton, NJ, 1991, pp. 421–429.

[19] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss, An introduction to the IBM
Research Parallel Processor Prototype (RP3), in Experimental Parallel Computing Archi-
tectures, J. J. Dongarra, ed., Elsevier Science Publishers, B. V., Amsterdam, The Nether-
lands, 1987, pp. 123–140.

[20] N. Pippenger, Parallel communication with limited buffers, in Proceedings of the 25th An-
nual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, 1984, pp. 127–136.

[21] P. Raghavan, Lecture Notes on Randomized Algorithms, Res. report RC 15340 (#68237), IBM
Research Division, T. J. Watson Research Center, Yorktown Heights, NY, 1990.

[22] A. G. Ranade, Constrained Randomization for Parallel Communication, Tech. report
YALEU/DCS/TR-511, Department of Computer Science, Yale University, New Haven,
CT, 1987.

[23] A. G. Ranade, Equivalence of Message Scheduling Algorithms for Parallel Communication,
Tech. report YALE/DCS/TR-512, Department of Computer Science, Yale University, New
Haven, CT, 1987.

[24] A. G. Ranade, How to emulate shared memory, J. Comput. System Sci., 42 (1991), pp. 307–
326.

[25] R. Rehrmann, B. Monien, R. Luling, and R. Diekmann, On the communication throughput
of buffered multistage interconnection networks, in Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures, ACM, New York, 1996, pp. 152–161.

[26] R. Rooholamini, V. Cherkassky, and M. Garver, Finding the right ATM switch for the
market, IEEE Comput., 27 (1994), pp. 16–28.

SIMPLE ALGORITHMS FOR ROUTING ON BUTTERFLY NETWORKS 1003

[27] G. D. Stamoulis and J. N. Tsitsiklis, The efficiency of greedy routing in hypercubes and
butterflies, in Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM, New York, 1991, pp. 248–259.

[28] H. Suzuki, H. Nagano, T. Suzuki, T. Takeuichi, and S. Iwasaki, Output-buffer switch
architecture for asynchronous transfer mode, in Proceedings of the 1989 IEEE International
Conference on Communications, IEEE Press, Piscataway, NJ, 1989, pp. 99–103.

[29] T. Szymanski and S. Shaikh, Markov chain analysis of packet-switched banyans with arbitrary
switch sizes, queue sizes, link multiplicities and speedups, in Proceedings of the IEEE
INFOCOM ’89, IEEE Press, Piscataway, NJ, 1989, pp. 960–971.

[30] A. M. Tsantilas, Communication Issues in Parallel Computation, Ph.D. thesis, Harvard
University, Cambridge, MA, 1990.

[31] E. Upfal, Efficient schemes for parallel communication, J. Assoc. Comput. Mach., 31 (1984),
pp. 507–517.

[32] L. G. Valiant, A scheme for fast parallel communication, SIAM J. Comput., 11 (1982),
pp. 350–361.

[33] L. G. Valiant, General purpose parallel architectures, in Handbook of Theoretical Computer
Science, J. van Leeuwen, Ed., Elsevier Science Publishers, B. V., Amsterdam, The Nether-
lands, 1990, pp. 943–971.

[34] L. G. Valiant and G. J. Brebner, Universal schemes for parallel communication, in Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing, ACM, New York,
1981, pp. 263–277.

FAST AND SIMPLE ALGORITHMS FOR RECOGNIZING CHORDAL
COMPARABILITY GRAPHS AND INTERVAL GRAPHS∗

WEN-LIAN HSU† AND TZE-HENG MA†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1004–1020

Abstract. In this paper, we present a linear-time algorithm for substitution decomposition on
chordal graphs. Based on this result, we develop a linear-time algorithm for transitive orientation
on chordal comparability graphs, which reduces the complexity of chordal comparability recognition
from O(n2) to O(n+m). We also devise a simple linear-time algorithm for interval graph recognition
where no complicated data structure is involved.

Key words. chordal graph, triangulated graph, interval graph, analysis of algorithms, graph
theory, substitution decomposition, modular decomposition, cycle-free poset, transitive orientation,
graph partitioning, cardinality lexicographic ordering, graph recognition

AMS subject classifications. 68Q25, 68R10

PII. S0097539792224814

1. Notation. All graphs in this paper are simple and have no self-loops. We also
assume all graphs are connected. (For the purposes of this paper, the components of
a disconnected graph can always be processed independently.) Let G = (V,E) be a
graph. An undirected edge between vertices u and v is denoted by uv. A directed
edge from u to v is written as (u, v). For undirected graphs, the neighborhood of a
vertex v, N(v), is {w ∈ V : vw ∈ E}. For a set S of vertices, N(S)=∪v∈SN(v) \ S.
The degree of a vertex v, d(v), is the cardinality of N(v). The closed neighborhood of
vertex v, N [v], is {v} ∪ N(v). Let m = |E|, n = |V |.

A chordal graph is a graph with no induced subgraph isomorphic to a cycle Ck, k ≥
4. Chordal graphs have been studied extensively. They are also called triangulated,
rigid-circuit, and perfect elimination graphs. There are several subclasses of chordal
graphs which have gained a lot of attention, e.g., interval graphs, split graphs, strongly
chordal graphs, and chordal comparability graphs. The latter are the comparability
graphs of cycle-free partial orders.

A module in an undirected graph G = (V,E) is a set of vertices S ⊆ V such
that for every vertex v ∈ V \ S, v is adjacent to all vertices in S or no vertex in S.
A module is nontrivial if 1 < |S| < |V |. A substitution decomposition of a graph is
the process of substituting a nontrivial module in the graph with a marker vertex
and doing the same recursively for the module and the substituted graph. It is also
called a modular decomposition. The process of a substitution decomposition on a
graph leads to a construction of a decomposition tree, where each subtree represents
a nontrivial module marked by its root. An example of a substitution decomposition
is shown in Fig. 1.1.

For general graphs, substitution decomposition takes O(min(n2,mα(m,n))) time
[15], [21]. In this paper, we call a graph prime if it does not contain a nontrivial
module.

∗Received by the editors January 17, 1992; accepted for publication February 13, 1998; published
electronically January 29, 1999. A preliminary version of this paper appeared as Substitution Decom-
position on Chordal Graphs and Applications, in ISA’91, Algorithms, Taipai, 1991, Lecture Notes in
Comput. Sci. 557, Springer-Verlag, Berlin, 1991, pp. 52–60.

http://www.siam.org/journals/sicomp/28-3/22481.html
†Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of

China (hsu@iis.sinica.edu.tw, mada@iis.sinica.edu.tw).

1004

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1005

Fig. 1.1.

A directed graph G = (V,E) is transitive if for all u, v, w ∈ V , (u, v), (v, w) ∈ E ⇒
(u,w) ∈ E. For a transitive graph G, since G has no self-loops, G must be acyclic.
An undirected graph is a comparability graph if we can give each edge a direction
such that the resultant directed graph is transitive. This process is called a transitive
orientation. The complement of a comparability graph is called a co-comparability
graph.

A clique is a set completely connected vertices. A clique is maximal if it is not an
induced subgraph of any larger clique.

2. Introduction. A linear-time algorithm for the substitution decomposition
on chordal graphs is given in this paper, which results in linear-time recognition
algorithms for chordal comparability graphs and interval graphs. In the next section,
we present an O(n+m) algorithm for substitution decomposition on chordal graphs.
Our algorithm uses a special ordering to force vertices in the same module to occur
consecutively in this ordering. This algorithm decomposes chordal graphs into prime
components. A prime graph has the following properties: (i) if it is a comparability
graph, there is a unique transitive orientation [19] (up to the reversal of the directions
of all edges); (ii) if it is an interval graph, there is a unique interval representation for
the graph [13] (by which we mean there is a unique linear maximal clique arrangement
up to the reversal of the interval model).

A chordal comparability graph is a graph which is both a chordal graph and a
comparability graph. The fastest algorithm [20] for recognizing a comparability graph
involves two stages. First, the input graph is transitively oriented, which can be done
in O(n2) time. Then we test whether this directed graph is transitive. The fastest
algorithm for the latter problem takes time proportional to that of multiplying two
n × n Boolean matrices, which is currently O(n2.376) [3]. Recently, an O(n + m)
algorithm has been developed to test whether a directed chordal graph is transitive

1006 WEN-LIAN HSU AND TZE-HENG MA

[16]. This brings the complexity of recognizing chordal comparability graphs down to
O(n2). The new bottleneck is the transitive orientation of chordal graphs. In section 4,
we present an algorithm which transitively orients a prime chordal comparability
graph in O(n + m) time. Combined with previous results, this yields an O(n + m)
algorithm for chordal comparability graph recognition.

A graph G = (V,E) is called an interval graph if it is the intersection graph of
a set F of closed intervals on the real line [14]. In other words, there is a one-to-
one mapping between the vertices in G and the intervals in F such that two vertices
are adjacent iff their corresponding intervals overlap. Interval graphs are exactly
the chordal co-comparability graphs [10]. This class of graphs has a wide range of
applications (cf. [11]).

Booth and Lueker [1] devised the first linear-time algorithm to recognize inter-
val graphs using a complicated data structure called a PQ-tree. Korte and Möhring
[11] simplified the operations on a PQ-tree by carrying out an incremental algorithm
based on a lexicographic ordering. In section 5, we present a linear-time algorithm
for recognizing prime interval graphs without using a PQ-tree. Combined with the
decomposition algorithm, this yields a linear-time algorithm for interval graph recog-
nition. We consider our algorithm to be much simpler than previous ones since there
is no complicated data structure involved and the approach is intuitively appealing.

3. Substitution decomposition on chordal graphs. A vertex is simplicial
if its neighbors form a clique. A necessary and sufficient condition for a graph to be
chordal is that it admits a perfect elimination scheme, which is a linear ordering of
the vertices such that, for each vertex v, the neighbors of v that are ordered after v
form a clique. A perfect elimination scheme of a chordal graph can be obtained by
taking the reverse of a lexicographic ordering, which can be carried out in linear time
[18].

A lexicographic ordering can be considered a special kind of breadth-first ordering.
Imagine there is a label of n digits, initially filled with zeros, associated with each
vertex. After the ith vertex in the ordering is chosen, put a “1” into the ith digit
of the labels of the neighbors of the vertex. The (i + 1)th vertex is then chosen
among the unchosen vertices with the greatest label (with the first digit being the
most significant digit). This ordering guarantees that if x is ordered before y and
there is a vertex ordered before x which is a neighbor of one but not both of x, y, the
first vertex added to the ordering with such property must be a neighbor of x. The
linear-time algorithm is built upon a partitioning procedure. One implementation of
a lexicographic ordering is shown in Fig. 3.1.

The output ordering π is the reverse of a perfect elimination scheme iff the in-
put graph is chordal [18]. Perfect elimination schemes play a central role in most
algorithms concerning chordal graphs.

A cardinality lexicographic ordering is just a lexicographic ordering with the ver-
tices sorted by their degrees in descending order prior to the partitioning. This extra
step ensures that when more than one vertex is eligible to be included to the ordering,
the tie is broken by choosing a vertex with maximum degree. Since we can count the
degrees and bucket sort the vertices of a graph in linear time, cardinality lexicographic
ordering can also be done in linear time.

Lemma 3.1. Let S be a module in a chordal graph G = (V,E). Either S is a
clique or N(S) is a clique.

Proof. Suppose neither S nor N(S) is a clique. There are w, x ∈ S, y, z ∈ N(S),
wx, yz 6∈ E. Since S is a module, both w and x are adjacent to y and z. Therefore,
w, x, y, z form a C4, which contradicts the assumption that G is chordal.

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1007

procedure Lexicographic(G);
create a list L of sets with V as the only set in L;
/* each set in L is kept as a doubly linked list */
for i := 1 to n do

begin
v := the first element of the first set in L;
remove v;
π(i) := v;
split and replace each Lj ∈ L into N(v) ∩Lj and Lj \N(v);

/* put N(v) ∩Lj in front of Lj \N(v) */
discard empty sets;

end;
end Lexicographic;

Fig. 3.1.

If module S is a clique, every vertex in S has the same closed neighborhood. Such
a module is called a type I module. All type I modules can be located in O(n + m)
time by partitioning the vertices using the closed neighborhoods of all vertices. By
Lemma 3.1, if there is a set with more than one vertex at the end of the partitioning
process, it is a type I module.

Lemma 3.2. If N [u] ⊂ N [v], then π−1(u) > π−1(v) in every cardinality lexico-
graphic ordering.

Proof. Initially, v is ordered before u since v has greater degree than u. Since
N [u] ⊂ N [v], no partitioning can pull u in front of v. Therefore, v will be included in
an ordering before u.

We call a module type II if it is connected but not type I. After all type I modules
are removed, a cardinality lexicographic ordering will put the vertices in a type II
module consecutively and the neighborhood of the module will be ordered before the
module.

Lemma 3.3. Let S be a connected module in a chordal graph G with no type I
module. If π is a cardinality lexicographic ordering on G, then

(i) π−1(v) < π−1(u) ∀v ∈ N(S), u ∈ S, and

(ii) all vertices in S are ordered consecutively in π.

Proof. (i) Since S is not type I, N(S) is a clique. If v ∈ N(S) and u ∈ S, then
N [v] ⊇ S ∪ N(S) ⊇ N [u]. N [v] 6= N [u], otherwise u, v form a type I module. By
Lemma 3.2, π−1(v) < π−1(u).

(ii) Suppose there exists π−1(x) < π−1(y) < π−1(z), y 6∈ S, x, z ∈ S, and π−1(x),
π−1(y) are smallest possible. Since every vertex in N(S) is ordered before x, and x
must be the first element of S in π, when x is selected, it has a lexicographic value
caused by N(S). At the same moment, y, as well as all vertices in S, are in the first
set in L. While we are adding vertices in S into the ordering, y is never placed into
a set in front of a set containing a vertex in S since (by part (i)) y 6∈ N(S). Since
S is connected, we have a pair of adjacent vertices x′, z′ ∈ S, π−1(x′) < π−1(y) <
π−1(z′). However, when x′ is selected, z′ will be placed into a set before y. Therefore,
π−1(z′) < π−1(y), a contradiction.

After getting the cardinality lexicographic ordering π, we scan the ordering from
the last position. By Lemma 3.3, if there is a type II module, the vertices in the
module must be in consecutive positions with all neighbors ordered before the module.

1008 WEN-LIAN HSU AND TZE-HENG MA

The algorithm to discover all type II modules in π tries to find the existence of such
configurations. We use a “stack of stacks” to store scanned vertices. Each stack can
be viewed as a candidate for a module. There are two conditions we have to enforce.
First, no vertex in a stack has a neighbor in another previously created stack, since
by Lemma 3.3, all neighbors of a type II module will be ordered before the module.
Second, the neighborhoods of vertices in the stack should agree outside the stack.
Each time a new vertex v is scanned, we try to start a new stack. If there is an
edge extended from the top stack down to a lower stack, all boundaries between these
two stacks must be broken. With each stack, we store the size of the stack, the
common neighborhood of vertices in the stack, and the minimum π−1(w), where w is
the neighbor of some but not all vertices in the stack. For a stack to be eligible to be
a module, w must be included in the stack. After v is processed, if the size of the top
stack is greater than 1 and the neighborhoods of vertices in the top stack agree on all
the unscanned vertices, we conclude this stack forms a module.

Each time a module is reported, a minimal module is found. We then replace the
top stack by a marker vertex, whose neighborhood is the CommonNeighbors of the
stack. Afterwards, this marker vertex is treated the same as all other vertices. Hence,
all modules will be reported in a recursive fashion. A pseudocode implementation of
the algorithm is shown in Fig. 3.2. An example for the algorithm is shown in Fig. 3.3.

Lemma 3.4. ChordalSubstDecomp correctly finds all type II modules in a chordal
graph in O(n+m) time.

Proof. Correctness: Suppose there is a type II module. By Lemma 3.3, all its
vertices are in consecutive position in π; let v be the one with the greatest π−1(v)
and u be the one with the smallest π−1(u) of the module. Since no vertex in this
module has a neighbor after v in the ordering, after u is merged into the top stack v
will still be the bottom vertex. After u is merged into this top stack, the MinDisagree
of this stack is greater than or equal to π−1(u) since their neighborhoods agree on all
vertices before u in π. This stack will be reported as a module.

Conversely, whenever a stack S is declared to be a module, no vertex is S has a
neighbor beyond the bottom of S; otherwise, the stack would have been merged with
that vertex. Moreover, since we check that the MinDisagree value is greater than
or equal to the top of the stack, all vertices yet to be processed must agree on all
elements of the stack. Hence the stack is in fact a module.

Time complexity: ChordalSubstDecomp steps through π and spends at constant
on each vertex if we ignore the time for subroutine calls. (Since MergeTopTwoStacks
can be called at most O(n) times, the total cost of entering the while-loop is bounded
by O(n).) Each call of CreateStack(v) costs O(|N(v)|) units of time. Overall, Create-
Stack takes O(n+m) time. We assume the neighborhoods of each vertex are sorted
by their indices in π (also the CommonNeighbors). The cost of MergeTopTwoStacks
is proportional to the sizes of the CommonNeighbors of the top two stacks. Since
the size of the CommonNeighbors of a stack is never larger than the degree of any
member in the stack, we can charge this cost to the neighborhoods of the bottom
vertex in the top stack and the top vertex in the second top stack. After a merge,
the bottom of the top stack will never be a bottom and the top of the second top
stack will never be a top. Therefore, the neighborhood of each vertex will never be
charged more than twice. The total cost for MergeTopTwoStacks is then O(n + m).
Since all the costs are bounded by O(n + m), the complexity of this algorithm is
O(n+m).

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1009

ChordalSubstDecomp(G, π);
i := 0; /* the number of stacks; an index */
for j := n to 2 do

begin
v := π(j);
CreateStack(v);
while v has a neighbor in a lower stack do

MergeTopTwoStacks;
if the size of STACK(i) > 1 and STACK(i).MinDisagree ≥ j then

report that vertices in STACK(i) form a module
end;

end ChordalSubstDecomp;

CreateStack(v);
i := i+ 1;
STACK(i).MinDisagree := n+ 1;

/* the value n+ 1 indicates there is no disagreed neighbor */
STACK(i).CommonNeighbors := N(v);

end CreateStack;

MergeTopTwoStacks;
S := STACK(i).CommonNeighbors ∩ STACK(i− 1).CommonNeighbors;
STACK(i− 1).MinDisagree := min(STACK(i).MinDisagree,

STACK(i− 1).MinDisagree,
(π−1(v), v ∈ STACK(i).CommonNeighbors ∪

STACK(i− 1).CommonNeighbors, v 6∈ S));
STACK(i− 1).CommonNeighbors := S;
i := i− 1

end MergeTopTwoStacks;

Fig. 3.2.

After we replace every type I and II module by a marker vertex, all remaining
modules must be independent sets with the same neighborhoods. These modules, call
them type III modules, can be found in linear time by partitioning the vertex set
using their neighborhoods (as we did for finding type I modules). In conclusion, we
have the following theorem.

Theorem 3.5. The substitution decomposition on a chordal graph can be carried
out in O(n+m) time.

Proof. We find type I, II, and III modules in stages. Each stage takes O(n+m)
time. We have to show only that at each stage, if a module of another type is
generated, it will also be found.

During stage III, if a type I or II module is generated after we replace a type III
module by a marker, then we must have had a connected module before the type III
module is replaced by a marker. This module would have been detected in previous
stages. After stage II, if a type I module S is generated, there must be some vertices
in S which are markers of type II modules, otherwise S would have been detected in
stage I. Suppose v ∈ S is a marker of the last of these type II module. The module

1010 WEN-LIAN HSU AND TZE-HENG MA

Fig. 3.3. An example for ChordalSubstDecomp.

replaced by v together with S \ {v} form a type II module. Therefore, by Lemma 3.4,
S should be reported as a module at stage II.

The decomposition tree can be easily constructed along with the decomposition
process. Whenever a module S is reported, we replace S by a marker v with the
same neighborhood as that of S. For the decomposition tree, create a tree rooted at
v whose children are those vertices in S.

4. Transitive orientation on chordal graphs. In this section, we present a
linear-time algorithm to transitively orient a prime chordal graph. Since a prime com-
parability graph admits a unique transitive orientation [19], the uniqueness provides
us extra power to improve the efficiency. Together with the linear-time algorithms for
substitution decomposition and transitive verification [16] on chordal graphs, we can
thus recognize chordal comparability graphs in linear time.

We call P = (X,R) a partially ordered set (poset) if X is a set and R is an
irreflexive transitive binary relation on X. We say x dominates y if (x, y) ∈ R. If
(u, v) or (v, u) ∈ R, we say that u, v are comparable. A poset P = (X,R) can be
viewed as a transitive graph G = (V,E) by taking X as the vertex set V , R as the
edge set E. Chordal comparability graphs, when transitively oriented, become a class
of poset called cycle-free posets. For more about characteristics on cycle-free posets,
see [5], [16].

A poset can be expressed by its Hasse diagram, which is an undirected graph
with a minimum number of edges where there is an upward path from a to b iff a
dominates b. A chain of a poset is a path on its diagram whose vertices are pairwise
comparable. For brevity, all chains mentioned hereafter are assumed maximal unless

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1011

otherwise stated. The chains of a poset correspond to the maximal cliques of its
comparability graph. Therefore, in a diagram, the vertices which appear in exactly
one chain are simplicial in the poset’s comparability graph.

To better understand the algorithm, the readers should keep in mind an imaginary
diagram—call it the target diagram—which represents the poset resulting from the
unique orientation of the input graph. Unlike the traditional transitive orientation
algorithms, our algorithm initially does not actually orient the edges of the input
graph. Instead, we explore the relative positions of vertices in the target diagram.
In the end, each edge is then oriented according to the relative positions of its two
endpoints.

We call a vertex w in a diagram high (resp., low) if it is dominated by (resp.,
dominates) a pair of incomparable vertices x, y. In a chordal comparability graph,
a simplicial vertex is neither high nor low and a nonsimplicial vertex must be either
high or low but not both, since if w is made high by u and v, and low by x and y, then
{u, v, x, y} induces a cycle of length 4. Thus, it can be observed that on a chain in the
diagram of a cycle-free poset, the high (resp., low) vertices are above (resp., below)
all simplicial and all low (resp., high) vertices. We say vertex x is higher (resp., lower)
than y when there exists a chain containing both x and y where x is above (resp.,
below) y.

One of the most widely used characterizations of chordal graphs is that the max-
imal cliques of a chordal graph can be connected to form a tree T such that for
each vertex v, the subgraph induced on T by the maximal cliques containing v is
connected [2], [8]. (Call it the connectivity property.) Our algorithm applies a par-
titioning technique on the clique tree structure for the input chordal graph. At the
end, all nonsimplicial vertices are marked either high or low and a topological sort for
the target diagram is generated to provide the basis for a transitive orientation.

In our following discussion, we assume that all graphs under investigation are
prime. Therefore, for any two vertices x and y, N [x] 6= N [y] and N(x) 6= N(y). The
basic idea of our algorithm is to take a confirmed high (or low) vertex x in a certain
chain and try to force the common vertices in a neighboring chain (i.e., another chain
which has nonempty intersection with this one) to be low (or high). Formally, we
claim the following.

Lemma 4.1. Let Ci and Cj be two chains with intersection S. If x is highest
(resp., lowest) in Ci, x 6∈ S, then every vertex in S must be low (resp., high).

Proof. Suppose v is the highest vertex in S. Since x 6∈ Cj , there exists y ∈ Cj ,
x, y are incomparable, y higher than v. Therefore, v is low and so is every vertex
in S.

To take advantage of the property of Lemma 4.1, we need to carry out our parti-
tioning by the order where “extreme” vertices are considered first. This requirement
can be easily met by the following observation.

Lemma 4.2. For two adjacent high (resp., low) vertices x, y, N [x] ⊃ N [y] iff x
is higher (resp., lower) than y.

Proof. (⇒) Suppose N [x] ⊃ N [y] but x is lower than y. (Note that since the
graph is prime, N [x] 6= N [y].) There must be a vertex z which is adjacent to x but
not y. z must be higher than x since otherwise transitivity and the fact that y is
higher than x would imply that y is higher than z, contradicting the fact that y and
z are incomparable. y, z together with the two vertices u, v which make x high form
a C4, a contradiction.

1012 WEN-LIAN HSU AND TZE-HENG MA

procedure CliqueTree(G, π)
create a clique C1=π(1);
for i := 2 to n do /* assuming the graph is connected */

begin
v := π(i);
find u ∈ N(v) with maximum π−1 and π−1(u) < i;

/* since G is connected, u must exist. */
let Cu be the clique generated or expanded when u is processed;
if v and Cu form a clique, then expand Cu by adding v to it;
else create a new clique Cj containing v and its neighbors with

less π−1, and link Cj to Cu;
end

end CliqueTree;

Fig. 4.1.

(⇐) If x is higher than y, but there exists a z ∈ N [y] which is incomparable to
x, z must be higher than y. Again, this implies the existence of a C4.

For an input graph G, a clique tree representation can be constructed by the
algorithm CliqueTree (see Fig. 4.1). We assume that the input graph is connected.
The algorithm goes through a lexicographic ordering starting from the first picked
vertex. Each time a new vertex v (it must be simplicial in the subgraph induced by
the previously processed vertices) is processed, we either add it to an existing clique
or create a new clique for v and link the new clique to an existing one.

Theorem 4.3. CliqueTree creates a clique tree representation (i.e., links all
maximal clique to form a tree T such that for each vertex v, the maximal cliques
containing v induce a connected subtree) in O(m+ n) time.

Proof. If we keep the record of the size of each clique, checking if v and Cu form
a clique can be done in |N(v)| time. Since each step can be done in |N(v)| time as v
is processed, CliqueTree can be done in O(m+ n) time.

For correctness, the following three conditions must be satisfied.

(i) All maximal cliques will be generated.
This can be proved by induction. The hypothesis is that the vertices π(i)π(i−1)...π(1)
processed by CliqueTree will generate all maximal cliques among them. This is triv-
ially true when i = 1. When π(i + 1) is then processed, since it is simplicial, it can
be in only one maximal clique. This clique is either created or expanded from an old
one.

(ii) These maximal cliques are connected as a tree.
Since each new clique (except the first one) will link to exactly one existing clique, a
tree structure of all existing maximal cliques is always kept.

(iii) The tree constructed has the connectivity property.
Again, we use induction. Suppose the tree constructed on π(i)π(i − 1)...π(1) is a
legitimate clique tree. If π(i+ 1) is added to an existing clique, there is no problem.
Suppose a new clique Cp is created by p = π(i + 1), and Cp is linked to Cq which
contains a neighbor q with maximum π−1 (which is smaller than i + 1) and Cq is
created or expanded when q is processed. Note that all the neighbors of q with
smaller π−1 will appear in Cq. If there exists a vertex r which is in Cp and Cr but
not in Cq, since π−1(r) < π−1(q), and q and r must be adjacent (as they are both
neighbors of the simplicial vertex p), r must in Cq. Therefore, the connectivity on the
clique containing any vertex is kept after p is processed.

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1013

procedure Orientation(G,T)
v := a vertex of largest degree in G;
Q := a queue containing only v;
mark(v) := 1;
/* a vertex u is high if it is marked 1, low if marked −1

initially all vertices are marked 0 */
while Q is not empty do

begin
remove the first vertex v from Q;
for all tree edges e between an element of Tv and T \ Tv do
begin

L := an empty list;
for all vertices w in e do

if mark(w) = 0 then
begin

mark(w) := -mark(v);
add w to L;

end;
sort L into order of decreasing degree;
append the elements of L, in order, to Q;
remove e from T ;

end;
end;

end Orientation;

Fig. 4.2.

An example of the construction is included in Fig. 5.3. We also record the in-
tersection of two adjacent maximal cliques on the edge connecting these maximal
cliques. All these can be obtained in linear time. With this information, we are ready
to perform a transitive orientation on a chordal comparability graph. The input is a
chordal graph G with one of its clique tree T . Let Tv be the subtree induced by all
maximal cliques containing v on T . We also assume each edge of T points to a set of
vertices which are in both maximal cliques connected by that edge.

To avoid wasting time looking into an empty edge, we remove an edge on T when
everything recorded in that edge is processed. This will not affect the correctness of
the algorithm since our subsequent traversal is not going to pass beyond this edge
anyway.

An ordering to be imposed on the vertices is constructed during our algorithm by
filling in an array of length n from both ends. Whenever a vertex enters the queue, if
it is marked high, it is inserted into the highest-indexed empty position in the array.
Otherwise, it is inserted into the lowest-indexed empty position. Once procedure
Orientation (see Fig. 4.2) has completed, we insert the remaining vertices, which are
simplicial, arbitrarily into the remaining empty positions in the array. We can then
orient an edge from the endpoint with a lower position to the endpoint with a higher
position on the list. If the input graph is transitive, this orientation yields a partial
order whose diagram is exactly characterized by the high-low relations generated by
our algorithm. An example is shown in Fig. 4.3.

We are now ready to state the main theorem of this section.

1014 WEN-LIAN HSU AND TZE-HENG MA

Fig. 4.3. An example for the transitive orientation of a chordal graph.

Theorem 4.4. A prime chordal graph, G = (V,E), can be transitively oriented
in O(n+m) time.

Proof. Throughout Orientation, we claim that our high-low assignments admit a
feasible transitive orientation if the input graph is comparable; and the vertex x at
the front of the queue must be maximal (i.e., no other vertex is higher (resp., lower)
than x if x is high (resp., low)) among all unprocessed vertices. By Lemma 4.2, we
know these conditions hold when we enter the while-loop. When a high vertex x is
moved into the queue, all vertices higher than x are either already in the queue or
they are entering the queue at the same time since, by Lemma 4.2, they exist on the
same edge of the clique tree when x is detected. Since each vertex being processed is
maximal among the unmarked vertices, by Lemma 4.1 and the sorting before putting
vertices into the queue, we know these two conditions still hold after each operation.

The main point we need to prove is that if G is a comparability graph, every
nonsimplicial vertex gets a high-low assignment when the algorithm ends. Suppose
this is not true. Let x be a vertex which is high in the unique orientation after
we fix the first vertex, but which is not marked high by the algorithm. Let S be the
connected component containing x in the graph induced by V \M , where M is the set
of vertices marked by the algorithm. We claim that S contains more than one vertex.

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1015

Assume for a contradiction that S contains only one vertex. Then of the two vertices
y, z which make x high, one (say, y) must be marked before z (y and z cannot be both
simplicial, otherwise a module containing y and z can be found). There is a maximal
clique containing x, y and another containing x, z, and they are connected by a path
in the clique tree. When y is being processed, this path is traversed. There must be
a time when y is not shared by two adjacent maximal cliques while x is. Therefore,
x would have been marked opposite to y at that moment. This contradiction shows
that S has at least two vertices. We claim S is a module. Suppose u ∈ M , which is
not simplicial, is adjacent to v but not w, v, w ∈ S. (u must exist; otherwise V \M is
a module.) We can find v′, w′ ∈ S such that u is adjacent to v′ but not w′ and v′, w′

are adjacent. Again, there is a path in the clique tree connecting a maximal clique
containing u, v′ and another containing v′, w′. Similar to what we have observed on
x, y, z earlier, this implies that v′ should have been marked opposite to u when u is
used for partitioning. This contradicts v′ ∈ S. Since G is prime, S cannot exist and
every nonsimplicial vertex must be marked by the algorithm.

The O(n + m) complexity comes from an amortized analysis [22]. The clique
tree and the intersection of all pairs of adjacent maximal cliques can be obtained in
linear time. When we traverse the clique tree, whenever an edge is passed, every
vertex recorded in that edge will be processed (either ignored or moved to a list) in
constant time and the edge of the clique tree is then deleted. Therefore, the cost of
the traversal can be charged to the number of vertices stored in the edges, which is
O(n+m). When a set of vertices is put into the queue, we charge the cost of sorting
to the edges in the clique induced by this set of vertices. Since there are quadratically
many edges in a clique, we have plenty of time for sorting. After all nonsimplicial
vertices are marked, the orientation can be performed in constant time per edge. The
overall complexity is thus O(n+m).

Corollary 4.5. Chordal comparability graphs can be transitively oriented in
O(n+m) time.

Proof. We can incorporate the orientation algorithm with the substitution de-
composition tree for a chordal graph. It is well known that the orientation within a
module is independent to the orientation outside that module [9]. Formally, a graph
is comparability iff each of its modules (including the prime graph represented at the
root of a decomposition tree) can be transitively oriented. Since each module of a
chordal graph is also chordal, our linear-time algorithm for prime chordal graph can
be applied to each module when it is found. The overall time complexity is still linear
since each edge is oriented once.

Note that during the execution of our algorithm, we never check if an illegal
orientation occurs. We only make sure that if the input graph is comparability, it
will be transitively oriented correctly. With the linear-time algorithm for transitive
verification for chordal graphs [16], we have the following result.

Corollary 4.6. Chordal comparability graphs can be recognized in O(m + n)
time.

5. Interval graph recognition. Interval graphs have been a very useful model
for many applications. Interested readers are referred to [6], [9]. The fastest algorithm
to recognize interval graphs relies on the following property.

Theorem 5.1 (See [7]). A graph G is an interval graph iff its maximal cliques
can be linearly ordered such that, for each vertex v, the maximal cliques containing v
occur consecutively.

This linear ordering of the maximal cliques actually admits a clique tree which

1016 WEN-LIAN HSU AND TZE-HENG MA

is a path. Unfortunately, although we can generate a clique tree for a chordal graph
in linear time, the clique tree constructed for an interval graph by the algorithm is
not necessarily a path. Booth and Lueker [1] created a data structure called PQ-
tree to capture the consecutive property of a set of intervals. Based on this data
structure, a linear-time algorithm is devised to recognize interval graphs. However,
their algorithm is quite involved. Korte and Möhring [11] devised a simpler algorithm
to recognize interval graphs which also runs in linear time. They observed that if the
input vertices follow a lexicographic ordering, the operations on the PQ-tree can be
simplified.

Hsu [13] proved that an interval graph has a unique maximal clique arrangement if
the graph is prime. In this section, we provide a linear-time algorithm to find the linear
maximal clique arrangement of a prime interval graph. Together with the linear-time
substitution decomposition algorithm, we have yet another linear-time algorithm for
interval graph recognition. Our algorithm uses only basic techniques such as graph
partitioning and lexicographic ordering; no special data structure such as PQ-tree is
required. We consider it to be much simpler than the previous algorithms. However,
we want to remind the readers that Booth and Lueker’s algorithm is much more
flexible in the sense that it can test the consecutive 1’s property of a Boolean matrix
and can operate in an “on-line” fashion. In contrast, our algorithm deals only with
interval graphs and must operate in an “off-line” fashion. The readers are encouraged
to make comparisons among these algorithms.

In order to better understand our algorithm, we ask the readers to keep in mind a
geometric model which is the unique linear maximal clique arrangement for the input
graph. Our algorithm is based on a graph partitioning idea. Initially, we obtain the
clique tree representation of the input chordal graph as we did in the last section.
Partition the maximal cliques into two sets such that there is a linear maximal clique
arrangement (if G is an interval graph) where all the maximal cliques in one set are at
the left of the maximal cliques in the other set. We then further refine our partition
based on the following observation.

Lemma 5.2. Let A and B be two sets of maximal cliques where A is at the left of
B in a linear arrangement. Suppose vertex v is shared by CA, CB , CA ∈ A,CB ∈ B.
If X is a set of maximal cliques at the right of A, all maximal cliques in X containing
v must be at the left of those not containing v. Symmetrically, if Y is a set of maximal
cliques at the left of B, all maximal cliques in Y containing v must be at the right of
those not containing v.

The proof to this lemma, which is omitted here, can be observed from the ge-
ometric model of an interval graph. The refinement process is repeatedly picking a
vertex which is in two maximal cliques in different sets of a partition. We can then
further partition these sets by Lemma 5.2. To start the partitioning process, we need
an initial partition which admits a feasible linear maximal clique arrangement if the
input graph is interval. The following lemma provides an easy way to find such a
configuration.

Before we prove Lemma 5.3, we investigate some basic behaviors on a lexico-
graphic ordering. A lexicographic ordering is a breadth-first ordering. Therefore, the
traversed vertices always form a connected component. Moreover, the traversal al-
ways adds vertices of a particular maximal clique until it is completely traversed. For
a lexicographic ordering π on G, we say that maximal clique Ca is traversed before
Cb if every vertex in Ca is included in π before the last ordered vertex in Cb.

If we focus on interval graphs with a particular geometric model, a lexicographic

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1017

Fig. 5.1. The scheme for proving Lemma 5.3. The dashed line represent an interval which
cannot exist.

ordering always picks a maximal clique to traverse first, then picks another which
has the greatest lexicographic value defined by the traversed vertices, and so on.
Intuitively, the traversal starts at a maximal clique and then expands toward both
ends of a linear maximal clique arrangement. The maximal cliques might not be
traversed consecutively as it is possible that there are more than one maximal clique
with vertices which are tied in their lexicographic value.

Lemma 5.3. For any lexicographic ordering on a prime interval graph G, the
maximal clique containing the last vertex (which is simplicial and thus contained by
only one maximal clique) included in the ordering must be leftmost or rightmost on
the linear maximal clique arrangement for G.

Proof. Suppose G has k maximal cliques. Since G is prime, these maximal
cliques have a unique ordering (up to reversal) C1, C2, ..., Ck, from left to right. (See
Fig. 5.1.) Let Cs be the first traversed maximal clique. We claim that either C1 or
Ck will be the last traversed maximal clique. It suffices to prove that if s > 1, C1

will be the last traversed maximal clique among C1, C2, ..., Cs. Suppose Ci, instead
of C1, is the last traversed maximal clique, 1 < i < s. Keep in mind that during a
lexicographic ordering, the lexicographic value of each vertex (as an interval in the
linear maximal clique arrangement) is decided by its connection to the intervals that
had been ordered. Let v be the first vertex which lies to the left of Ci being included
in the ordering with lexicographic value α. It is clear that every unordered vertex in
Ci also has the same lexicographic value. Let Cj be the maximal clique with greatest
index value such that every unordered vertex in Cj also has a lexicographic value α.
There is no interval connecting Cj and Cj+1 except those that extend all the way to
C1. Otherwise, such a vertex will be ordered before v. Therefore, the set of vertices
M whose interval representations end before Cj+1 form a module. M is not trivial.
Since C1 has a simplicial vertex, and since Ci is maximal, there must be a vertex in
Ci but not in C1. This contradicts our assumption that G is prime.

The clique tree structure provides enough information for us to partition a prime
interval graph into a unique linear maximal clique arrangement. We now present a
detailed description of the algorithm in Fig. 5.2. An example for this algorithm is
presented in Fig. 5.3.

We now prove the main theorem of this section.
Theorem 5.4. Given a prime interval graph G, a linear maximal clique arrange-

ment of G can be obtained in O(m+ n) time.
Proof. Lemmas 5.2 and 5.3 assure that LinearMaxCliqueArrange never parti-

tions the maximal cliques incorrectly. What we need to show is that when the ex-
ecution is over, a linear maximal clique arrangement can be trivially derived from
the partitioning. In other words, each set of maximal cliques contains exactly one

1018 WEN-LIAN HSU AND TZE-HENG MA

procedure LinearMaxCliqueArrangement(G)
find a clique tree of G;
create a initial partition P which consists all maximal cliques in G;
partition the maximal clique containing the last vertex of a lexicographic

ordering from the rest of the maximal cliques;
move (and delete from the clique tree) the edges in the clique tree crossing

these two sets of maximal cliques into CrossingEdge;
while CrossingEdge 6= ∅ do begin

pick an edge CiCj from CrossingEdge and remove it from CrossingEdge;
for each unprocessed v ∈ Ci ∩ Cj do

begin
for all sets Si in P , partition Si into maximal cliques containing

v, S′i, and maximal cliques not containing v, S′′i ;
if S′i 6= ∅ and S′′i 6= ∅ then do

begin
replace Si by S′i, S

′′
i according to Lemma 5.2;

for each edge e in the clique tree between a member of S′i
and a maximal clique not in S′i, remove e from the
clique tree and add it to CrossingEdge;

end;
end;

end; {while}
end Partitioning;

Fig. 5.2.

maximal clique. If we suppose this is not the case, then we have more than one
maximal cliques in the same set S after every edge in CrossingEdge has been pro-
cessed. Let VS denote the union of vertices in the maximal cliques in S. We
claim that M = {x|N(x) ⊂ VS , x ∈ VS} is a module. To show this, we show
that, for any vertex u 6∈ M , on the interval model, u either meets all the maxi-
mal cliques in S or none of them. If this is not true, there must exist a vertex v,
v ∈ Cx, Cz; v 6∈ Cy;Cx, Cy ∈ S;Cz 6∈ S. From the property of a clique tree, there is
a path on the subtree induced by v connecting Cx and Cz. Traversing on the path
from Cx, we can find an edge on the clique tree, C ′xC

′
z, such that C ′x ∈ S, C ′z 6∈ S.

When C ′x and C ′z were first partitioned into different sets, this edge must have been
put into CrossingEdge and v would have been used to partition Cx, Cy into different
sets before the algorithm ends. Thus M is a module. To see that it is nontrivial,
note that S must contain two distinct maximal cliques C and C ′, so there must be a
vertex x ∈ C \ C ′ and a vertex y ∈ C ′ \ C. Since all vertices outside M meet all or
none of S, x and y must be in M , so M is a nontrivial module, which contradicts the
fact that G is prime. Therefore, no set contains more than one maximal clique when
the partitioning is done.

A bipartite graph H connecting the vertex set and the maximal cliques can be
constructed by scanning all the maximal cliques once, such that vertex v is connected
to C iff v ∈ C. The size of this graph is in O(n + m). To find a clique tree and the
intersections of all adjacent maximal cliques on the tree can be done in O(n + m)
time. The partitioning caused by vertex v can be performed in NH(v) time since
all we need to do is to mark the maximal cliques containing v and split a set into

FAST AND SIMPLE ALGORITHMS FOR CHORDAL GRAPHS 1019

Fig. 5.3. An example for LinearMaxCliqueArrangement.

two if necessary. To decide the left-right relation of two sets, we maintain a counter
in each partitioned set recording the number of maximal cliques to the right of the
set. Whenever a partition is caused by v, we examine whether v is connected to a
left maximal clique (one with greater counter number) or to a right maximal clique.
Since whenever an edge is moved into CrossingEdge, the edge is deleted from the
clique tree, the total time needed for these movements is bounded by the number of
edges in the graph. In our traversal on the maximal cliques of S′i in order to find the
crossing edges, the time we wasted on traversing noncrossing edges when a partition
is caused by vertex v is bounded by NH(v). Therefore, the overall complexity is in
O(n+m).

An interval model for the input graph G can be constructed from the linear
maximal clique arrangement. It’s easy to test in linear time whether this model is
consistent with G. Therefore, we have a linear-time algorithm to recognize prime in-
terval graphs. We can incorporate this algorithm with the substitution decomposition
algorithm for chordal graphs to get a linear-time algorithm for recognizing interval
graphs. Whenever a module S is identified, we test whether S is an interval graph.
By Lemma 3.1, we can always replace the interval of a marker vertex v by the interval
model of the module it represents and still have an interval model. If all the modules
(including the last prime graph representing the input graph G) are interval graphs,
G is an interval graph. We have thus proved the following corollary.

Corollary 5.5. An interval graph can be recognized in linear time.

1020 WEN-LIAN HSU AND TZE-HENG MA

Remark. After we submitted our paper [12], McConnell and Spinrad [17] have de-
veloped a linear-time algorithm to perform modular decomposition for general graphs.
They also discussed the transitive orientation on a number of problems. Their time
bound for recognizing chordal comparability graphs is O(n+mlogn).

Yet another linear-time algorithm for recognizing interval graph without using
PQ-tree is developed by Corneil, Olariu, and Stewart [4].

Acknowledgment. The authors thank the referees who made many helpful sug-
gestions and a clearer presentation for procedure Orientation and the paper. We also
want to thank Spinrad who pointed out an error on the clique tree construction in an
earlier manuscript.

REFERENCES

[1] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[2] P. Buneman, A characterization of rigid-circuit graphs, Discrete Math., 9 (1974), pp. 205–212.
[3] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, in

Proc. 19th Annual ACM Symposium on the Theory of Computation, ACM, New York,
1987, pp. 1–6.

[4] D. Corneil, S. Olariu, and L. Stewart, The ultimate interval graph recognition algorithm?,
in Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia,
1998, pp. 175–180.

[5] D. Duffus, I. Rival, and P. Winkler, Minimizing setups for cycle-free ordered sets, Proc.
Amer. Math. Soc., 85 (1982), pp. 509–513.

[6] P. C. Fishburn, Interval Orders and Interval Graphs, Wiley, New York, 1985.
[7] D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math.,

15 (1965), pp. 835–855.
[8] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J.

Combin. Theory B, 16 (1974), pp. 47–56.
[9] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,

1980.
[10] P. C. Gilmore and J. J. Hoffman, A characterization of comparability graphs and of interval

graphs, Canad. J. Math., 16 (1964), pp. 539–548.
[11] N. Korte and R. H. Möhring, An incremental linear-time algorithm for recognizing interval

graphs, SIAM J. Comput., 18 (1989), pp. 68–81.
[12] W. L. Hsu and T. H. Ma, Substitution decomposition on chordal graphs and applications,

in ISA ’91, Algorithms: 2nd International Symposium on Algorithms, Lecture Notes in
Comput. Sci. 557, Springer-Verlag, Berlin, 1991, pp. 52–60.

[13] W. L. Hsu, O(m ·n) algorithms for the recognition and isomorphism problems on circular-arc
graphs, SIAM J. Comput., 24 (1995), pp. 411–439.

[14] C. G. Lekkerkerker and J. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[15] J. H. Muller and J. Spinrad, Incremental modular decomposition, J. Assoc. Comput. Mach.,
36 (1989), pp. 1–19.

[16] T. H. Ma and J. Spinrad, Cycle-free partial orders and chordal comparability graphs, Order,
8 (1991), pp. 175–183.

[17] R. McConnell and J. Spinrad, Linear-time modular decomposition and efficient transitive
orientation of comparability graphs, in Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, 1994, SIAM, Philadelphia, pp. 536–545.

[18] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[19] L. N. Shevrin and N. D. Filippov, Partially ordered sets and their comparability graphs,
Siberian Math. J., 11 (1970), pp. 497–509.

[20] J. Spinrad, On comparability and permutation graphs, SIAM J. Comput., 14 (1985), pp. 658–
670.

[21] J. Spinrad, P4 trees and substitution decomposition, Disc. Appl. Math., 39 (1992), pp. 263–291.
[22] R. E. Tarjan, Amortized computational complexity, SIAM J. Alg. Disc. Math., 6 (1985),

pp. 306–318.

FAST CONNECTED COMPONENTS ALGORITHMS FOR THE
EREW PRAM∗

DAVID R. KARGER† , NOAM NISAN‡ , AND MICHAL PARNAS‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1021–1034

Abstract. We present fast and efficient parallel algorithms for finding the connected components
of an undirected graph. These algorithms run on the exclusive-read, exclusive-write (EREW) PRAM.
On a graph with n vertices and m edges, our randomized algorithm runs in O(logn) time using
(m+ n1+ε)/ logn EREW processors (for any fixed ε > 0). A variant uses (m+ n)/ logn processors
and runs in O(logn log logn) time. A deterministic version of the algorithm runs in O(log1.5 n) time
using m+ n EREW processors.

Key words. connected components, parallel algorithms, graph algorithms, random walks

AMS subject classifications. 68Q22, 68Q25, 68R10, 05C40, 05C85, 60J15

PII. S009753979325247X

1. Introduction. Perhaps the most basic algorithmic problem involving an
undirected graph is to find its connected components. In this problem, the input
to the algorithm is an undirected graph G = (V,E), with |V | = n vertices and
|E| = m edges. The output is the connected components of the graph. There are
various ways to represent the solution; the one we shall use is to label each vertex
with the largest numbered vertex to which it is connected. Connected components
can be found in linear sequential time by breadth-first search or depth-first search
methods. However, these methods do not parallelize easily. Parallel algorithms for
connected components have been known for quite some time ([HCS79], [CLC82], or
see the survey in [KR90]). Until recently the best known algorithms required O(log n)
time on CRCW PRAMs and O(log2 n) time on CREW PRAMs (recall that CR (CW)
PRAMs allow multiple processors to concurrently read (write) to the same memory
location, while ER (EW) PRAMs allow only one processor to read (write) at a time).
The number of processors used by the best of those algorithms is nearly optimal in
the deterministic case [SV82, CV91, AS87] and completely optimal in the randomized
case [Gaz91].

In their survey, Karp and Ramachandran [KR90] raised the question of the
existence of o(log2 n)-time algorithms for connected components on exclusive-write
PRAMs. Recently, Johnson and Metaxas [JM91] developed a CREW algorithm that
runs in O(log1.5 n) time and uses m+n processors. An O(log1.5 n)-time algorithm for
the EREW PRAM is described in [NSW92], but this algorithm uses a large polynomial
number of processors.

∗Received by the editors March 6, 1993; accepted for publication (in revised form) February 16,
1997; published electronically January 29, 1999. A preliminary version of this paper appeared in
Proc. 4th Annual ACM-SIAM Symposium on Parallel Algorithms and Architectures, 1992, pp. 562–
572.

http://www.siam.org/journals/sicomp/28-3/25247.html
†MIT Laboratory for Computer Science, 545 Technology Square, Room NE43-321, Cambridge,

MA 02139 (karger@theory.lcs.mit.edu). This research was supported by a National Science Founda-
tion Graduate Fellowship, by NSF grant CCR-9010517, and grants from Mitsubishi and OTL.
‡Institute of Computer Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel (noam@

cs.huji.ac.il, michalp@cs.huji.ac.il). The research of the second author was supported by the Wolfson
Research Awards administered by the Israel Academy of Sciences and Humanities and by U.S.A.-
Israel BSF 89-00126.

1021

1022 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

In this paper we present improved EREW algorithms for connected components.
One contribution is the first (randomized) algorithm that runs in O(log n) time. It is
based on the parallelization of random walk techniques studied in [AKL*79], where
it is shown that a relatively short random walk will visit all the vertices in a graph.

Theorem 1.1. The connected components of an undirected graph can be computed
on a randomized EREW PRAM in O(log n) time with high probability1 using (m +
n1+ε)/ log n processors for any fixed ε > 0.

The running time of this algorithm is optimal, as the results of [CDR86] and
[DKR94] imply a lower bound of Ω(logn) time even on a randomized CREW PRAM.
For graphs that are not too sparse, i.e., with Ω(n1+ε) edges, the processor costs are
optimal as well, because the total work remains linear in the input size. For sparse
graphs, using a linear number of processors slightly increases the running time.

Theorem 1.2. The connected components of an undirected graph can be computed
on a randomized EREW PRAM in O(log n log log n) time with high probability with
(m+ n)/ log n processors.

This is of course within an O(log log n) factor of being work optimal. An impor-
tant related open problem is to design a deterministic O(log n)-time algorithm. We
have made some progress in this direction.

Theorem 1.3. The connected components of an undirected graph can be computed
on a deterministic EREW PRAM in O(log1.5 n) time using m+ n processors.

The running time of this deterministic algorithm matches those of [JM91] and
[NSW92]. It improves upon [JM91] by working in the more restricted EREW model
instead of in the CREW model. It improves upon [NSW92] by requiring only a linear
number of processors instead of a large polynomial number of processors. This last
result was proved independently (using a different method) by [JM92].

After publication of the preliminary version of this paper [KNP92], several im-
provements were given. Chong and Lam [CL95] gave an O(log n log log n)-time de-
terministic algorithm that uses m + n processors. Halperin and Zwick improved our
methods to yield first [HZ94] an optimal randomized algorithm for connected com-
ponents that runs in O(log n) time with a linear number of processors, and subse-
quently [HZ6] an optimal randomized algorithm for finding a spanning forest of the
graph (note that our algorithm does not find spanning forests).

In the following sections, we present the connectivity algorithm. To simplify the
exposition, we first present a randomized algorithm that uses m + n rather than
(m+n)/ log n processors. We give a general overview of the algorithm and then fill in
the details and provide proofs of correctness. We then discuss the changes needed to
make the algorithm deterministic. The modifications needed to reduce the processor
cost by an additional factor of logn are somewhat complex and are left to a later
section.

2. Overview of the algorithm. The algorithm is based on a simple and well-
known idea: repeatedly find groups of connected vertices in the graph and contract
(i.e., merge) each group into a single vertex, finishing when each connected component
is contracted to a single vertex. The question lies in how to find these connected
groups.

Suppose we are fortunate and the minimum degree of the graph is large. Let
N(i) be the set of vertices adjacent to i (including i). The following procedure can

1By “high probability” we mean that the probability of the event not happening can be made at
most n−δ for any fixed δ > 1 without affecting the orders of run times.

CONNECTED COMPONENTS ALGORITHMS FOR THE EREW PRAM 1023

be applied, using a processor for each vertex and a processor for each edge.
1. Each vertex looks at all vertices within distance two of itself, i.e., N(N(i)).

If it finds a larger numbered vertex than itself, it makes this vertex its parent.
Any vertex that fails to find a parent becomes a leader.

2. The selection of parents has created a group of trees with leaders at the
roots (note that the tree edges need not be graph edges). Each tree is now
contracted to a single vertex.

Assuming that the minimum degree is large, this process yields a much smaller graph,
as the following lemma shows.

Lemma 2.1 (neighborhoods). If all neighborhoods N(i) have size at least s, then
at most n/s leaders can exist.

Proof. The distance between two leaders must exceed 2. Thus the neighborhoods
of two leaders are disjoint, and therefore at most n/s leaders remain.

The contraction of the trees does not change the connected components, as can
be seen from the following lemma.

Lemma 2.2. In the contracted graph, two leaders are connected iff they were
connected in the old graph.

Proof. Note that two leaders are adjacent iff each had a descendant such that the
descendants were adjacent. The lemma then follows from the fact that all vertices are
necessarily connected to their leaders.

The running time of the algorithm will depend on the number of rounds needed
to contract every connected component into a single vertex. Since the reduction is
based on neighborhood size, this number of rounds depends on the minimum degree
s of the graph. The problem is that the minimum degree of the graph may be small,
and therefore the procedure described above may fail to reduce the size of the graph
significantly. We will show how to solve this problem by “imagining” additional edges
in the graph in order to make the neighborhoods large. As long as the imaginary edges
connect vertices that are connected in the original graph, the two lemmas given above
continue to hold. Similar ideas are explored in [BR91] and [NSW92]. The remainder
of this paper is dedicated primarily to the question of how to construct quickly and
in parallel a large neighborhood for each vertex in the graph.

Our approach to this question began with the following observation. It is known
that an EREW PRAM with a polynomial number of processors can simulate any
logspace algorithm in O(log n) time (see [KR90]). This extends to the fact that a
randomized EREW PRAM can simulate randomized-logspace algorithms.2 Since a
randomized-logspace algorithm for connectivity is known [AKL*79], a randomized
EREW algorithm follows.

Unfortunately, the parallelization of the random walk algorithm of [AKL*79] re-
quires Ω(mn2) processors. The reason so many processors are needed is that a random
walk of length Ω(mn) must be taken to be sure of covering the entire graph. Thus
the approach of [AKL*79] does not directly suggest an efficient algorithm. However,
an important idea can be extracted from this approach, namely, that a random walk
visits a large number of vertices relatively quickly. We thus explore the use of short
walks on the graph.

Consider taking a walk of some length p from each vertex of the graph by traveling
along edges of the graph. Using the vertices encountered along each walk as the

2In fact, the results in [Nis93] imply that any randomized-logspace algorithm with bounded two-
sided error can be simulated with zero error by a randomized EREW PRAM in O(logn) time using
a polynomial number of processors.

1024 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

neighborhood of the walk’s starting vertex, we will apply the contraction procedure
described above to reduce the size of the graph by a significant factor. This procedure
will be called a walk phase of length p. In the randomized algorithm, the walk is a
random walk; in the deterministic algorithm, the walk is based on a deterministic
traversal sequence. A walk phase takes O(log n) time to simulate in parallel, but
since the walk phases construct large neighborhoods, a very small number of phases
suffices to complete the algorithm. In more detail, consider the following procedure.

1. From each vertex 1 ≤ i ≤ n, take a walk of length p. Let W (i) be the itinerary
of i, i.e., the set of vertices seen on the walk that starts at i.

2. Consider the edges defined by the walks, so that there is an edge {i, j} if
j ∈W (i) or i ∈W (j). These edges clearly connect vertices that are connected
in G.

3. Use these “walk edges” to define the vertex neighborhoods. Each vertex
examines its neighborhoods, as was described at the start of this section, to
find a parent or become a leader.

4. To contract the resulting collection of trees, each vertex finds the leader in
its tree of parents and transfers all its edges to the leader (i.e., replaces each
edge {i, j} in G by an edge from i’s leader to j’s leader).

When a walk phase is finished, we have a new graph G′ whose vertices are the leaders
in the old graph. Lemmas 2.1 and 2.2 tell us that G′ is smaller than G and that G′

embodies the same connectivity information.
The connectivity algorithm is to repeat the walk phases until the resulting graph

has no edges. Each remaining vertex then represents the connected component con-
taining that vertex. Every vertex that does not remain will have dropped out after
selecting some vertex as its leader and giving that vertex its edges. The leader choices
of the vertices form a forest—the root of each tree is one of the connected component
representatives, and the vertices in each tree are a single connected component of the
graph. Tree contraction can now be used to let each vertex identify its connected
component representative.

To make the algorithm run quickly, we need to finish in a small number of walk
phases. From this description, it can be seen that all we need in order to implement
the algorithm are

• a walk that visits a large number of vertices, and
• a way to simulate a walk phase quickly in parallel.

We now show in detail how to achieve these two goals.

3. Implementing a walk phase. In the course of the following discussion of
the implementation of the algorithm, assume that G is totally connected. The results
we wish to prove then follow by independently considering the action of the algorithm
on each connected component of the graph.

The key question that must be solved is how to construct a walk that visits a large
number of vertices. Using randomization, the solution is straightforward. Knowing
that a random walk expects to cover all n vertices of a graph in time nO(1), we will
deduce that a random walk of length p visits pΩ(1) vertices with high probability. This
reduces the implementation of a walk phase to the problem of simulating a random
walk from each vertex in parallel.

It is well known that CRCW can be simulated on an EREW machine with an
O(log n) slowdown in running time and no increase in processor cost [KR90, pp. 894–
895]. Since we wish the walk phase to have running time O(log n), we feel free to say
that “processors concurrently read or write,” so long as this occurs only a constant

CONNECTED COMPONENTS ALGORITHMS FOR THE EREW PRAM 1025

number of times.
We now discuss the details of implementing a walk phase of length p using m+pn

processors.

3.1. Data structures and processor allocation. Each vertex i has a list Li
of edges leaving i. The edge connecting i and j appears as (i, j) in Li and as (j, i)
in Lj . The edge lists are stored contiguously in one array L of length 2m, sorted by
order of lists L1, L2, . . . , Ln.

Each vertex i also has two variables, firsti and lasti, which indicate the beginning
and end of the list Li in L. It is easy to determine the number of neighbors of i by
computing lasti − firsti + 1.

The algorithm uses an n× p array WALK to simulate random walks of length p.
Two more arrays, MAX of dimensions n × p and PARENT of length n, are used to
find the leaders of the graph.

We use O(log n) time to redistribute the processors at the beginning of each walk
phase.

• p processors are assigned to each vertex. Let Pi,1, Pi,2, . . . , Pi,p be the pro-
cessors assigned to vertex i for i = 1, . . . , n.
• One processor is assigned to every edge. These processors will be called edge

processors. Let Pk, where k = 1, . . . ,m, be these processors assigned to edge
k.

Therefore, the total number of processors is m+pn. Notice that after each walk phase
the number of vertices of the graph reduces, and therefore in each walk phase we can
allocate more processors per vertex. This will allow us to increase the length p of a
walk phase and thus to contract the connected components even faster.

We now turn to the details involved in executing the four steps outlined in the
overview of the algorithm.

3.2. Step 1: Simulating the random walk. We wish to simulate the process
of taking a random walk of length p simultaneously from all vertices of G. For each
vertex 1 ≤ i ≤ n and each 1 ≤ t ≤ p, processor Pi,t chooses a neighbor of vertex
i uniformly at random and writes it into WALK [i, t]. Each processor does so using
three concurrent reads of firsti, lasti, and L.

Consider the random variables uit defined by

ui1 = i,

uit+1 = WALK [uit, t] for t = 1, . . . , p.

By the choice of the WALK [i, t] values, the random variable uit is a random walk
starting at vertex i for each 1 ≤ i ≤ n. The random walks with different sources are
not independent, but this will not affect the analysis. As mentioned in the overview,
let the itinerary W (i) be the set of vertices encountered on the random walk from
i. Figure 1 shows a filled WALK array in which, for example, W (8) = {7, 8, 9} (in
the algorithm, each walk step moves from one vertex to a different vertex, but in our
picture, for the sake of clarity, we have drawn some horizontal edges that imply walk
steps that stand still). We will show later that all the W (i) are large, i.e., of size
exceeding pΩ(1).

3.3. Step 2: Finding neighborhoods. As stated in step 2 of the outline,
consider the walk edges defined by including (i, j) if i ∈ W (j) or j ∈ W (i). In step 3
each vertex looks for a parent among vertices up to two walk edges away. These

1026 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

TIME

VERTEX
1

1

p

2

3
4

5
6

7
8

9
10

n=11

Fig. 1. The WALK array.

edges are not actually constructed; instead, each vertex deduces the information it
needs directly from the WALK array. Furthermore, the edges considered are actually
a superset of the walk edges, which will define larger neighborhoods N(i) ⊃ W (i).
But it will still be true that i is connected to all vertices in N(i). Since larger
neighborhoods cause a greater reduction in the size of the graph, this use of more
edges can only help.

The values placed in the walk array in step 1 can be seen to define a collection
of trees (the values provide parent pointers). We let the neighborhood of a vertex be
the vertices to which it is connected by one of these trees. More formally, for each
i = 1, . . . , n, let Ti,t be the set of array entries [j, t′] that are in the tree containing
the entry [i, t] and let Ti =

⋃
t Ti,t. Define N(i) = {j | (∃t)[j, t] ∈ Ti} to be the

neighborhood of vertex i. In other words, imagine an edge from i to j whenever i and
j share a tree. Note that if the random walk from i encounters j then [j, t] ∈ Ti for
some t, so W (i) ⊂ N(i). Also, since each tree edge corresponds to a step in a random
walk, and thus to an edge in G, all members of N(i) are necessarily connected to i.

Let H denote the graph with vertex set V but with edges defined by the neigh-
borhoods N(i). This is the graph that will be used to find connected sets of vertices
to contract.

3.4. Step 3: Choosing leaders. We now implement the process of choosing
a maximum parent of distance at most two in H, as described in the overview of
section 2. This is achieved by calling twice the following procedure Max-Neighbor.
The first call to this procedure chooses for each vertex i the maximum vertex in N(i)
(which corresponds to finding the maximum vertex of distance one from each vertex
on the graph H). The second call finds the maximum vertex chosen by any vertex in
N(i) (which corresponds to finding the maximum vertex of distance two from each
vertex on the graph H). Initialize the array PARENT to PARENT [i] = i, and then
call the following procedure twice.

Procedure Max-Neighbor:

1. For each i = 1, . . . , n and t = 1, . . . , p, set MAX [i, t] = max[j,t′]∈Ti,t PARENT [j].

CONNECTED COMPONENTS ALGORITHMS FOR THE EREW PRAM 1027

2. For each i = 1, . . . , n, set PARENT [i] = maxt MAX [i, t].
At the first iteration this process labels each vertex with its largest “neighbor,”

so the second iteration labels vertices with their largest neighbor at distance two. In
other words, at the end of this process PARENT [i] contains the parent of vertex i.
Vertex i is a leader if PARENT [i] = i.

Implementing Max-Neighbor is straightforward. Step 2 is trivial. Step 1, maximiz-
ing over a tree, can be implemented using Euler tour techniques on the array WALK
in time O(log n) using np processors (see [KR90, pp. 879–883]). The only nonstan-
dard detail is that our filling up of the walk array has created trees with unidirectional
edges, while the Euler tour method requires bidirectional edges. To build these edges,
proceed as follows. Copy the WALK array, and then sort the edges ([i, t], [j, t+ 1]) in
the WALK array according to their second endpoints. We can do this in O(log np)
time using np processors, either by applying Cole’s sorting algorithm [Col88] or via
a simple bucket sort using (np)2 space. After the sort, all the edges that point to a
particular position in the WALK array are grouped together for application of the
Euler tour technique.

3.5. Step 4: Create the new graph G′. In this final step we must construct
the new graph G′ whose vertices are the leaders in the graph G. The selection of
parents in procedure Max-Neighbor created a group of trees (not to be confused with
the trees in the WALK array) with leaders at the roots. Each vertex now finds the
leader at the root of its tree by using Euler tours as before [KR90]. We can now create
the new smaller graph G′ = (V ′, E′). The set of vertices V ′ is the set of leaders, i.e.,
V ′ = {leader(i) | i ∈ V }. The set of edges of G′ is obtained by transforming each edge
(i, j) of E to an edge (leader(i), leader(j)), i.e., E′ = {(leader(i), leader(j)) | (i, j) ∈
E}.

To construct the set E′, each edge processor Pk for k = 1, . . . ,m concurrently
reads the leaders of each of its endpoints and renames its edge appropriately. If Pk
is handling edge (i, j), then Pk checks if leader(i) = leader(j). If so, this edge has
been contracted and is now useless, so Pk writes 0 at L[k]. If not, it writes the edge
(leader(i), leader(j)) at L[k].

Next sort L lexicographically by left and right endpoints in O(log n) time using
Cole’s sorting algorithm [Col88] or a bucket sort (for the bucket sort, a binary tree
atop an array of size m can be used to let all items with a particular key merge into a
list by walking up the tree). The renaming may yield multiple copies of some edges.
These must be removed because otherwise the random walk becomes “biased” toward
visiting vertices that are connected by many edges; our analysis requires that the
random walk be unbiased. To remove these multiple edges, each edge processor Pk
looks to its left at L. If L[k] = L[k− 1], then Pi writes a 0 at L[k]. Now compact the
array L using standard parallel compaction [KR90, pp. 875–876].

Next it is necessary to update the firsti and lasti variables. To do so, first set
firsti = −1 (using the processors Pi,1). Then each edge processor Pk looks to its left
(right) at L, and if it is at the beginning (end) of the edge list of some processor i, it
updates firsti (lasti). Afterward, any vertex that still has firsti = −1 must have no
incident edges. Such isolated vertices are marked as the representatives of connected
components and removed. It should be noted that the new graph G′ still has at most
m edges.

Clearly, all the operations described above can be done in O(log n) time. Thus
we have proved Lemma 3.1.

Lemma 3.1. A walk phase of length p can be implemented in O(log n + log p)

1028 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

time using m+ pn EREW processors.

4. Iterating the walk phase. Now that we have shown the required time and
processor bounds, it remains to show that the new graph G′ has significantly fewer
vertices, and that as a consequence the algorithm terminates in a small number of
walk phases. We require the following corollary to the known results regarding the
cover time of random walks on graphs. This lemma was first observed by Linial [Lin].
For completeness we sketch the proof.

Lemma 4.1. Let G be an undirected graph. Let v be any vertex in G that is
contained in a connected component of at least t vertices. Then the expected time
needed for a random walk starting from v to see t vertices is O(t4).

Proof. Define the random variable Xt to be the time it takes a random walk that
starts at v to see t vertices. Assume that by time Xt we saw the set of vertices Ct.
Let w 6∈ Ct be a vertex that is adjacent to some vertex in Ct. Then the expected
time to cover the graph Ct

⋃
w (and thus see a new vertex) is O(t3) if we do not

leave Ct
⋃
w. If we do leave it, then we shall see a new vertex even sooner. Hence

E(Xt+1) = E(Xt) +O(t3) = O(t4).
It was shown by Barnes and Feige [BF93] that O(t3) expected time is sufficient

to see t vertices. We can now obtain Lemma 4.2
Lemma 4.2. After a walk phase of length p, for every vertex i = 1, . . . , n, the

itineraries satisfy |W (i)| = Ω((p
logn)α) with high probability, where α = 1/4.

Proof. Consider the walk to be a composition of Ω(logn) “subwalks” of equal
length Ω(p

logn). Call each subwalk good if it visits Ω((p
logn)α) vertices. By the Markov

inequality and Lemma 4.1, each subwalk has a constant probability of being good.
This is true even if we condition on the outcomes of previous subwalks. Thus all the
subwalks fail to be good with polynomially small probability.

The result of [BF93] lets us take α = 1/3, thus improving the constant factors in
the following analysis.

Corollary 4.3. A walk phase of length p reduces the number of vertices in a
graph by a factor of Ω((p

logn)α) with high probability.

Proof. Consider the above two lemmas and the fact that W (i) ⊂ N(i). Now
apply Lemma 2.1.

We can now analyze the running time of our connected component algorithm.
Lemma 4.4. Using m + pn processors, with high probability we can identify the

connected components of the graph with O(log(logn/ log p)) walk phases.
Proof. Assume for now that p > log2 n. The hypothesis gives us at least p

processors per vertex. Running a walk phase of length p yields a graph of O(n(logα n
pα))

vertices. On this graph redistribute the processors to get

np

n logα n/pα
=

p1+α

logα n
> p9/8

processors per vertex. Thus the number of processors per vertex after t walk phases
is described with high probability by the recurrence

pt+1 > p
9/8
t

with solution

pt > p(9/8)t .

CONNECTED COMPONENTS ALGORITHMS FOR THE EREW PRAM 1029

Thus pt exceeds pn within O(log(logn/ log p)) steps. Since this implies that all the
processors are assigned to one vertex, the algorithm must be finished at this point.
Therefore, this is the maximum expected number of walk phases needed.

There remains the detail of what to do if initially p < log2 n. To handle this case,
note that even if p = 1, so that the random walks are in fact just inspections of a
single neighbor, the neighborhoods still have size two. Thus the size of the graph is
still reduced by a factor of two in each walk phase. Therefore, O(log(log2 n/p)) =
O(log(logn/ log p)) walk phases suffice to raise p to log2 n and thus reduce to the
previous case.

Since each walk phase is simulated in O(log n) time, the overall running time of
the algorithm is O(log n log(logn/ log p)). Theorems 1.1 and 1.2 follow immediately,
up to a factor of logn in the processor count that is removed in section 7.

5. Using fewer random bits. Randomness is used in our algorithm only to
construct random walks. We show how to restrict this use of randomness to O(nε)
bits for any ε > 0. Note first that once we have nε processors per vertex and can
simulate random walks of length nε, there is no need to reassign processors to vertices,
since an additional O(1/ε) walk phases of length nε will finish the problem. Therefore,
assume that random walks never exceed length nε. Now observe that a walk phase
of length p needs only p log n random bits. Two entries in the WALK array need
be independent only if it possible for a walk defined in the array to encounter both
of them. Therefore, entries WALK [i, t] and WALK [i′, t], i 6= i′, can use the same
random seed in selecting edges, since a particular walk is only at one place at any
particular time.

Corollary 5.1. Connected components can be found in

O(log n log(logn/ log p) + (logn)/ε)

time using m+ pn processors and O(nε) random bits.

6. The deterministic version. Our techniques can also be used to obtain a
deterministic algorithm for the EREW PRAM that runs in O(log1.5 n) time using
m + n processors. This improves on the deterministic O(log1.5 n)-time algorithm
of [NSW92] and matches an independent result of [JM92]. As in [NSW92], we use
a universal sequence instead of a random walk. It will be convenient to consider a
generalization of the universal sequences of [AKL*79] to allow walks on nonregular
graphs.

Definition 6.1. A graph G with at most r vertices will be called r-labeled if the
edges adjacent to each vertex are labeled with unique numbers from {1, 2, . . . , r}.

Definition 6.2. Given a string σ ∈ {1, 2, . . . , r}∗ and an r-labeled graph G, a
walk according to σ starting from a given vertex will follow an edge labeled i at step
j if σj = i. If σj = i and none of the edges leaving the current vertex are labeled i,
the walk will remain in that vertex.

Definition 6.3. A string σ ∈ {1, 2, . . . , r}∗ is called an r-universal sequence if
for every graph G with at most r vertices and any r-labeling of G a walk according to
σ visits all the vertices of G regardless of the starting vertex.

By following the proofs of [AKL*79], [BNS92], and [Nis92], it is not difficult to
see that the construction of [Nis92] yields an r-universal sequence of length rO(log r)

in our general sense. We need only the following two properties.
Theorem 6.4 (see [Nis92]). An r-universal sequence of length l = rO(log r) can

be generated by an EREW PRAM in O(log l) time using O(l log l) processors.

1030 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

Lemma 6.5. For any undirected connected graph G with at least r vertices, and
for any vertex v in G, a walk along an r-universal sequence σ starting from v visits
at least r vertices of G.

Proof. Label G so that each vertex of degree d is labeled with the numbers
{1, 2, . . . , d}. Assume the claim is false and σ visits fewer than r vertices.

Let Cr be the graph induced by all the vertices σ visits. Let w 6∈ Cr be a vertex
adjacent to some vertex v′ ∈ Cr such that the edge (v′, w) is labeled with a number
less than r (this is possible since v′ has at most r − 2 neighbors in Cr). Then the
graph Cr ∪w is an r-labeled graph with at most r vertices, and thus a walk according
to σ should cover it and thus visit w, a contradiction.

The deterministic algorithm proceeds as follows: instead of taking a random walk
from each vertex, generate an r-universal sequence and then walk along this sequence.
The parameter l is chosen such that the length of the resulting universal sequence is
p (where p is the number of processors allotted to each vertex in the graph); thus

r = 2O(
√

log p). We are thus assured by Lemma 2.1 that the number of vertices in the
graph at the next round shrinks by a factor of at least r.

Letting pi be the number of processors allotted to each vertex at iteration i, we
argue as in the random walk case. We have the following recursion:

p1 = 2,

pi+1 = pi · 2
√

log pi .

Lemma 6.6. Let p1 = 2 and pi+1 = pi · 2
√

log pi . Then pj = n for some j =
O(
√

log n).
Proof. Let qi = log pi. Therefore, q1 = 1 and qi+1 = qi +

√
qi. Then for every i,

q(i+
√
qi) ≥ 2qi. Thus the time to reach qj = log n is at most

√
1 +
√

2 +
√

4 +
√

8 +

· · ·+√log n = O(
√

log n).
As a result of this lemma, we can conclude that after O(

√
log n) walk phases the

graph is contracted to a single vertex.
Theorem 1.3 follows immediately. Observe that starting with (polynomially

many) more processors does not decrease the running time in this case.
Corollary 6.7. If an n-universal sequence of polynomial length can be gener-

ated deterministically in O(log n) time, then connected components can be found in
O(log n) time deterministically using m+ n1+ε processors for any fixed ε.

7. Approaching optimal work. The algorithms described above perform work
that exceeds the optimal by a factor of O(log n log logp n). Here we reduce this factor
to O(log logp n), showing how the O(log n log logp n) running time can be achieved
with (m + pn)/ log n processors (this will be optimal for p = nε). We begin with
the assumption that p > log2 n and later show how this assumption can be removed.
Assume without loss of generality that m ≥ n/2, since an initial step of the algorithm
can use n/ log n processors to remove any vertices with no edges.

7.1. Assuming p > log2 n. For now, assume that p > log2 n. Observe first
that in this case the difference between using pn and pn/ log n processors can be
ignored, since for p > log2 n, log logn

log p = Θ(log logn
log(p/ logn)). Thus the only need is to

perform the m-processor steps with m/ log n processors.
To do so, note that m processors are used for only one purpose: to update the

edge list after leaders have been identified. There are three phases in this update
process.

CONNECTED COMPONENTS ALGORITHMS FOR THE EREW PRAM 1031

1. Replace the edge (i, j) by the edge (leader(i), leader(j)).
2. Detect and remove dead edges, namely, those that now have the form (i, i)

because both endpoints chose the same leader.
3. Sort the remaining edges to remove duplicates and create edge lists for the

contracted graph.
The real sticking point in this process is step 3. Since potentially nearly m edges

may remain in the contracted graph, and since sorting them requires Ω(m logm) work,
it is unclear how step 3 can be performed.3 Getting around this problem is the main
topic of this section.

We begin by showing that steps 1 and 2 are easy to perform with m/ log n pro-
cessors. We allocate the processors according to the following scheme. Break the list
of edges into sequential blocks of size log n and assign one processor to each block.
Recall that the edge list is sorted by the first vertex in each edge. Therefore, the ith
block contains first some of the edges of some first vertex fi, then all the edges of
some set of vertices Vi, and finally some of the edges of a last vertex li.

The advantage of this assignment is that it allows us to simulate, in O(log n)
time, a single concurrent read by each edge (i, j) of some information from vertex i,
and similarly, in O(log n) time, concurrent writes (with any conflict resolution scheme
desired) by each edge (i, j) to vertex i. To simulate the read, proceed as follows. First
use the standard concurrent read simulation to let processor i read from fi and li into
its local memory; these two reads take O(log n) time. Then each processor updates
the log n edges it is responsible for—these updates now require only exclusive reads
from its local copies of fi and li or from the global values in the vertices Vi. The
concurrent write simulation is similar.

Exploiting this simulation, we will freely use instructions of the form “each edge
(i, j) reads from or writes to its vertex i,” with the understanding that each such step
actually takes O(log n) time.

One other small change is that it is necessary for each edge (i, j) to have a pointer
to its twin edge (j, i) that is maintained as edges are moved around.

It is now easy to perform step 1 in O(log n) time—each edge (i, j) concurrently
reads leader(i) and replaces i by leader(i) in (i, j) and in its twin (j, i). Step 2 can
be performed easily by m/ log n processors in O(log n) time with a standard array
compaction algorithm.

It remains to deal with the difficulty of step 3. The approach we take is to ensure
that the number of edges remaining after step 2 (counting duplications) is small, so
that few processors are needed to perform step 3. We use the following lemma.

Lemma 7.1. If each edge of a graph is selected independently with probability q
and connected components induced by the selected edges are contracted in the origi-
nal graph, then with high probability the number of edges of the contracted graph is
O(n lnn/q).

In [KKT95], the number of remaining edges is shown to be O(n/q) with high
probability; this does not improve our application.

Proof. The number of edges in the contracted graph is just the number of edges
crossing between the different connected components induced by the selected edges.
The number of different arrangements of connected components is certainly no more
than the number of ways to partition the set of n vertices into at most n groups,
namely, nn. For any given partition with k edges crossing between the components of
the partition, the probability that no crossing edge is chosen is (1− q)k ≈ e−kq. The

3Possibly some form of bucket sort could be used to circumvent the sorting lower bound.

1032 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

probability that k edges cross the partition resulting from the sampling construction
is just the probability that for some partition with at least k crossing edges, no one of
these k edges is chosen. This is at most nne−kq = en lnn−kq, which is negligible when
kq = Ω(n lnn).

We therefore use the following approach: Given an m-edge graph, choose m/ log n
edges at random, and using (m+ pn)/ log n processors and the basic algorithm, com-
pute connected components in this sampled graph in O(log n log logp n) time. This
labels all vertices in a given connected component of the sampled graph with a single
vertex. If we treat the label of a vertex as its choice of a leader, then we can contract
the original graph as if a walk phase has been performed. We use m/ log n processors
to relabel the edges and remove dead edges as was described at the beginning of this
section. Lemma 7.1 shows that at this point O(n log2 n) edges remain, so O(n log2 n)
processors suffice to perform step 3, sorting the edges and removing duplicates. We
can finish the calculation by finding connected components in the resulting contracted
graph; since the number of edges in the graph is O(n log2 n), and since by assumption
the number of processors is pn > n log2 n, this can be done in O(log n log logp n) time
with the available processors.

Thus when p > log2 n, connected components can be found in O(log n log logp n)
time using O((m+ pn)/ log n) processors.

7.2. Removing the assumption. We now handle the case p < log2 n. With
such a value of p, the running time that we must achieve is O(log n log log n). Assume
that in fact p = 1, since this merely restricts us further.

It suffices to find a procedure that, in O(log n) time and using (m + n)/ log n
processors, reduces the number of vertices by a constant factor. After O(log log n)
phases of this procedure, the graph will have n′ = O(n/ log3 n) vertices. The algorithm
of the previous section can be applied to solve this graph in O(log n log log n) time
using O(m/ log n+ n′ log2 n) = O((m+ n)/ log n) processors.

We use the same allocation of processors to blocks of log n edges that was used
previously, allowing the same simulation of concurrent reads and writes. The following
procedure reduces the number of vertices in the graph by at least half in O(log n) time
using (m+ n)/ log n processors.

1. For each vertex, compute the identity of its largest and smallest neighbors. To
find the maximum, each edge (i, j) concurrently writes j to vertex i, letting
multiple writes yield the maximum value written. Then do the same for the
minimum value.

2. It is necessarily the case that either half the vertices have a larger neighbor
or that half the vertices have a smaller neighbor. Which case we are in can
be determined in O(log n) time using n/ log n processors and the information
from the previous step. Assume the first case; the other can be handled the
same way.

3. Call vertices with no larger neighbors leaders, as before. The largest vertex j
that is a neighbor of a nonleader vertex i becomes the parent of i as before.
Mark the edge (i, j) in i’s edge list, as well as its twin edge (j, i) in j’s edge
list.

4. Each vertex i can now identify its children: it examines its edges (i, j) and
checks which ones were marked in the previous step.

5. Once each vertex has identified both parent and children, use the Euler tour
technique to transform each tree of parent pointers into a list of the vertices
in the tree and to identify the leader of each vertex.

CONNECTED COMPONENTS ALGORITHMS FOR THE EREW PRAM 1033

6. Having identified leaders, relabel the edge list precisely as was done in sec-
tion 7.1.

7. Since there is a linked list of vertices for each leader, and since each vertex has
a contiguous list of its edges, we have an implicit linked list of all the edges
that will be incident to a given leader after the graph is contracted. This
allows us to use optimal list ranking to count the number of edges belonging
to each leader in O(log n) time with n/ log n processors and to rank them.

8. Take a length n array and write into the kth position the number of edges
belonging to k if k is a leader, and 0 otherwise. Then, using array compaction,
each leader can find the number of edges belonging to the leaders that precede
it in the contracted graph.

9. The list ranking information just described suffices to determine the position
each edge should be copied to in the edge array of the contracted graph, so
the copying can be done in O(log n) time.

Note that duplicate edges do not affect this procedure, so we can ignore them until we
reduce to the case of p > log2 n. Lemma 7.1, used to reduce to m/ log n processors,
holds even when duplicate edges exist. We do need to remove duplicates from the set of
m/ log n edges that we sample for the first application of the random walk algorithm,
but the m/ log n processors that we have are sufficient to do this by sorting.

8. Conclusion. Since the publication of the preliminary version of this pa-
per [KNP92], Halperin and Zwick [HZ94] have used it to derive a work- and processor-
optimal randomized EREW-connected components algorithm. The obvious remain-
ing open problem is to find a deterministic O(log n)-time EREW algorithm for con-
nected components. One way to work toward this goal is to improve on the bounded
space universal traversal sequence construction which is used in our deterministic
algorithm, since any improvement in the space needed immediately yields a faster
algorithm. There also remains an intriguing gap in the CRCW model, where the
best-known algorithm has running time O(log n), but the best-known lower bound is
Ω(log n/ log log n).

Acknowledgments. Thanks to Daphne Koller, who made our collaboration pos-
sible. Thanks also to Rajeev Motwani and Serge Plotkin for helpful discussions.

REFERENCES

[AKL*79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff, Random
walks, universal traversal sequences and the complexity of maze problems, in Proc.
20th Annual Symposium on the Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, 1979, pp. 218–223.

[AS87] B. Awerbuch and Y. Shiloach, New connectivity and MSF algorithms for shuffle-
exchange network and PRAM, IEEE Trans. Comput., C-36 (1987), pp. 1258–1263.

[BF93] G. Barnes and U. Feige, Short random walks on graphs, in Proc. 25th ACM Sym-
posium on Theory of Computing, San Diego, ACM Press, New York, 1993, pp.
728–737.

[BNS92] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs, J. Comput. System Sci., 45 (1992), pp.
204–232.

[BR91] G. Barnes, and W. L. Ruzzo, Deterministic algorithms for undirected s−t connectivity
using polynomial time and sublinear space, in Proc. 23rd ACM Symposium on
Theory of Computing, New Orleans, ACM Press, New York, 1991, pp. 48–53.

[CDR86] S. Cook, C. Dwork, and R. Reischuk, Upper and lower bounds for parallel random
access machines without simultaneous writes, SIAM J. Comput., 15 (1986), pp.
87–97.

1034 DAVID R. KARGER, NOAM NISAN, AND MICHAL PARNAS

[CL95] K. Chong and T. Lam, Finding connected components in O(logn log logn) time on the
EREW PRAM, J. Algorithms, 18 (1995), pp. 378–402.

[CLC82] F. Y. Chin, J. Lam, and I. N. Chen, Efficient parallel algorithms for some graph
problems, in Comm. ACM, 25 (1982), pp. 659–665.

[Col88] R. Cole, Parallel merge-sort, SIAM J. Comput., 17 (1988), pp. 770–785.
[CV91] R. Cole and U. Vishkin, Approximate parallel scheduling. II. Applications to

logarithmic-time optimal parallel graph algorithms, Inform. and Comput. (formerly
Information and Control), 92 (1991), pp. 1–47.

[DKR94] M. Dietzfelbinger, M. Kutylowski, and R. Reischuk, Exact lower time bounds
for computing Boolean functions on CREW PRAMs, J. Comput. System Sci., 48
(1994), pp. 231–254; a preliminary version appeared in SPAA 1992.

[Gaz91] H. Gazit, An optimal randomized parallel algorithm for finding the connected compo-
nents of a graph, SIAM J. Comput., 20 (1991), pp. 1046–1067; a preliminary version
appeared in FOCS 1986.

[HCS79] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, Computing connected com-
ponents on parallel computers, Comm. ACM, 22 (1979), pp. 461–464.

[HZ94] S. Halperin and U. Zwick, An optimal randomized logarithmic time connectivity al-
gorithm for the EREW PRAM, in Proc. 6th Annual ACM-SIAM Symposium on
Parallel Algorithms and Architectures, ACM Press, New York, 1994, pp. 1–10.

[HZ6] S. Halperin and U. Zwick, Optimal randomized EREW PRAM algorithms for finding
spanning forests and other basic graph connectivity problems, in Proc. 7th Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, 1996, pp. 438–447.

[JM91] D. B. Johnson and P. Metaxas, Connected components in O(log3/2 |V |) parallel time
for the CREW PRAM, in Proc. 32nd Annual Symposium on Foundations of Com-
puter Science, IEEE Computer Society Press, Piscataway, NJ, 1991, pp. 688–697.

[JM92] D. B. Johnson and P. Metaxas, A parallel algorithm for computing minimum span-
ning trees, in Proc. 4th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, ACM Press, 1992, pp. 363–372.

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan, A randomized linear-time algorithm
to find minimum spanning trees, J. ACM, 42 (1995), pp. 321–328.

[KNP92] D. R. Karger, N. Nisan, and M. Parnas, Fast connected components algorithms
for the EREW PRAM, in Proc. 4th Annual ACM-SIAM Symposium on Parallel
Algorithms and Architectures, 1992, pp. 562–572.

[KR90] R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines,
in Handbook of Theoretical Computer Science, Vol. A, Jan van Leeuwen, ed., MIT
Press, Cambridge, MA, 1990, pp. 869–932.

[Lin] N. Linial, personal communication, 1992.
[Nis92] N. Nisan, Pseudorandom generators for space-bounded computation, in Combinatorica,

12 (1992), pp. 449–461; a preliminary version appeared in STOC 1990.
[Nis93] N. Nisan, On read-once vs. multiple access to randomness in logspace, Theoret. Comput.

Sci., 107 (1993), pp. 135–144; a preliminary version appeared in Proc. 5th IEEE
Structure in Complexity Theory Conference, 1990.

[NSW92] N. Nisan, E. Szemeredi, and A. Wigderson, Undirected connectivity in O(log1.5 n)
space, in Proc. 33rd Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Piscataway, NJ, 1992, pp. 24–29.

[SV82] Y. Shiloach and U. Vishkin, An O(logn) parallel connectivity algorithm, J. Algo-
rithms, 3 (1982), pp. 57–67.

PRODUCTS AND HELP BITS IN DECISION TREES∗

NOAM NISAN† , STEVEN RUDICH‡ , AND MICHAEL SAKS§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1035–1050

Abstract. We investigate two problems concerning the complexity of evaluating a function f
on k distinct inputs by k parallel decision-tree algorithms.

In the product problem, for some fixed depth bound d, we seek to maximize the fraction of input
k-tuples for which all k decision trees are correct. Assume that for a single input to f , the best
depth-d decision tree is correct on a fraction p of inputs. We prove that the maximum fraction of
k-tuples on which k depth-d algorithms are all correct is at most pk, which is the trivial lower bound.
We show that if we replace the restriction to depth d by “expected depth d,” then this result need
not hold.

In the help-bits problem, before the decision-tree computations begin, up to k−1 arbitrary binary
questions (help-bit queries) can be asked about the k-tuple of inputs. In the second stage, for each
possible (k− 1)-tuple of answers to the help-bit queries, there is a k-tuple of decision trees where the
ith tree is supposed to correctly compute the value of the function on the ith input, for any input
that is consistent with the help bits. The complexity here is the maximum depth of any of the trees
in the algorithm. We show that for all k sufficiently large, this complexity is equal to degs(f), which
is the minimum degree of a multivariate polynomial whose sign is equal to f .

Key words. decision trees, help bits

AMS subject classifications. 68Q05, 68Q25, 68R99, 05D99

PII. S0097539795282444

1. Introduction. Pick your favorite computation model and complexity mea-
sure, e.g., Boolean circuit size, communication complexity, decision-tree depth, inter-
active proof length, tensor rank, etc. Any attempt to understand such a model and
complexity measure requires understanding the ways that an “unreasonable” compu-
tation can be more efficient than a “reasonable” one. Of course, what is reasonable
changes as our understanding of the model improves.

Suppose we are given several unrelated instances of a problem to solve. The “rea-
sonable” approach is to solve each instance separately; intuitively, any computation
that is useful for solving one instance is irrelevant to any of the others. To what extent
is this intuition valid in a given model? The following question is the most common
way of formalizing this.

The direct-sum problem. Suppose that the complexity of computing some function
f is c. Is it true that computing f twice, on two unrelated inputs, requires complexity
2c? How about computing f on k unrelated inputs?

Versions of this question were first studied in the context of Boolean circuits
[Ulig, Paul, GF]. Subsequent work has concerned bilinear circuits [JT, Bsh], Boolean
circuits [FKN], communication complexity [KRW, KKN], and interactive proofs (see

∗Received by the editors March 6, 1995; accepted for publication (in revised form) March 13,
1997; published electronically January 29, 1999. A preliminary version of this paper appeared in
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994.

http://www.siam.org/journals/sicomp/28-3/28244.html
†Computer Science Department, Hebrew University, Jerusalem, Israel (noam@cs.huji.ac.il). This

research was supported by BSF grant 92-00043 and by a Wolfson award administered by the Israeli
Academy of Sciences.
‡Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA 15213. This

research was partially supported by NSF grant CCR-9119319.
§Department of Mathematics and RUTCOR, Rutgers University, New Brunswick, NJ 08903

(saks@math.rutgers.edu). This research was supported in part by NSF contracts CCR-9215293
and STC–91–19999, and by DIMACS.

1035

1036 N. NISAN, S. RUDICH, AND M. SAKS

the references contained in [Raz]). In this paper we consider two related problems of
a similar flavor.

The product problem. Let f be a function, and suppose that for any allowable
computation that has complexity bounded by c and attempts to compute f , the
fraction of inputs on which it correctly computes f is at most p. Suppose that we
have two independent computations, each taking as input the same ordered pair a, b
of inputs to f , where the first computation is trying to compute f(a) and the second
is trying to compute f(b). If each of the two computations has complexity at most c,
can the fraction of input pairs a, b on which both are correct exceed p2? What about
the analogous question for k independent computations and k inputs?

If the first computation accesses only a and the second accesses only b, then the
p2 upper bound is trivial. Intuition suggests that there is no advantage in having each
computation access the input of the other. A variant of this problem, in which we
seek to compute f on the two inputs by a single computation, was studied recently
in [IRW]. A version of this problem for interactive proofs, the well-known “parallel
repetition problem,” was recently solved by Raz [Raz].

The help-bit problem. Suppose that the complexity of exactly computing the
Boolean function f is c. Suppose that we wish to compute f on two inputs a and b,
and are allowed for free one “help bit,” i.e., an arbitrary function of the two inputs.
Is it possible to choose this help-bit function so that, given the help bit, f(a) and
f(b) can each be evaluated by a computation of complexity less than c, and if so, how
much can the complexity be reduced below c? How about computing f on k inputs
with k − 1 help bits?

The notion of help bits is essentially the same as that of bounded queries, which
were studied in recursion theory [Be87]. The term “help bit” was introduced in
the context of constant depth circuits in [Cai] and was also studied in the context of
Boolean circuits in [ABG]. The point here is that if we have k inputs, then we can use
k help bits to obtain the value of f on each of the inputs, and no further computation
is necessary. With only k − 1 help bits, we can for instance obtain the value of f at
k − 1 inputs, but then we still need complexity c to compute f on the last input. Is
there a more effective use of the help bits?

In this paper we consider these problems in the context of Boolean decision-tree
complexity—perhaps the simplest computational model. The cost of a computation
(decision tree) is simply the number of input variables that are read (the depth of
the decision tree); a more precise definition is given in section 2. While it is an easy
exercise to see that “direct-sum” holds for decision-tree depth, the other two problems
are more difficult. Our answer for the product problem is a qualified “Yes.”

Theorem 1.1. Let f be a Boolean function and suppose that any depth-d decision
tree computes f correctly on a fraction at most p of the inputs. Let T1, . . . , Tk be deci-
sion trees that each access a set of nk variables corresponding to a k-tuple α1, . . . , αk

of inputs to f . If each of the Ti has depth at most d, then the fraction of k-tuples
α1, . . . , αk on which each Ti correctly outputs f(αi) is at most pk.

The theorem seems completely obvious; however, readers might test their intu-
ition on the following variation. Suppose that in the above theorem we change the
complexity measure from “depth” to “average depth,” i.e, the average over all inputs
of the depth of the leaf reached by the input. This modified statement of the theorem
seems similarly obvious but, as we will see, it is false.

The recent work of [IRW], which was done independently of ours, includes a
(substantially different) proof of a weaker variant of this theorem, namely that a

PRODUCTS AND HELP BITS IN DECISION TREES 1037

single depth-d tree that tries to compute all k functions can be correct on at most
a pk fraction of the inputs. Our result shows that even if we use k parallel decision
trees then we can’t do better than this.

For the help-bit problem, the answer is more complicated. Linial [Lin] has shown
that the complexity of computing f on two inputs with one help bit is at least deg(f),
the degree of the (unique) multilinear real polynomial that is equal to f . Since almost
all Boolean functions on n variables have deg(f) = n, this says that for most functions
one help bit does not help at all in evaluating two instances of the function (the case
k = 2). It is natural to ask whether there are any functions for which one help
bit helps.1 Here, we show that for sufficiently large k, k − 1 help bits usually do
help in computing a function on k different inputs. We manage to prove a lower
bound that holds for all k, and is always tight when k, the number of instances to
be solved, is sufficiently large. We need the following definitions. If f is an n-variate
Boolean function, we say that the n variate real polynomial p sign represents f if for
all inputs a, f(a) = sgn(p(a)), where sgn(z) = 1 if z > 0 and sgn(z) = −1 otherwise
(here we are taking our Boolean set to be {−1, 1}). The sign degree of f , degs(f),
is the minimum degree of a polynomial that sign represents f . The sign degree of
a function has been studied extensively in connection with threshold circuits and
counting complexity classes. See the surveys [Sa93] and [Be93].

Theorem 1.2. Let f be an n-variate Boolean function. Then for all k ≥ 1,
any solution to the help-bit problem for f for k inputs and k − 1 help bits requires
depth at least degs(f). Furthermore, for all sufficiently large k, there is a decision-tree
algorithm with k − 1 help bits whose depth is degs(f).

In the case that f is equal to the product of n variables (which corresponds to
the parity function for {0, 1}-valued variables), degs(f) = n and so the lower bound
implies that help bits don’t help in this case. Actually, this function and its negative
are the only functions with degs(f) = n. Since the ordinary decision-tree complexity
of most Boolean functions is n, this means that for large enough k, the complexity
of k instances given k − 1 help bits is less than the ordinary decision-tree complexity
for most functions. In particular, if f is the majority function, then degs(f) = 1, and
the lower bound is trivial, while the upper bound says that for k sufficiently large, it
is possible to ask k − 1 binary questions so that, given the answers, the value of the
function on any one of the k inputs can be computed by probing just one variable.
This remarkable savings is not typical; it has been observed by Anthony [Ant] and
by N. Alon (personal communication) that almost all Boolean functions f satisfy
degs(f) ≥ bn/2c.

In the next section, we review the decision-tree model. In section 3 we give a
general formulation for the product problem in decision trees, and prove a general-
ization (Theorem 3.1) of Theorem 1.1. In section 4, we discuss the help-bit problem
and prove Theorem 1.2.

2. Preliminaries. In this section we present some basic definitions and notation.
Most of the notions discussed here are very familiar, but in some cases our notation
is nonstandard.

2.1. Boolean functions. For the purposes of this paper it will be convenient
to use B = {−1, 1} as our Boolean set, instead of {0, 1} (this choice of B is only
significant in section 4). If X is a set, a Boolean assignment to X is a map α from X

1This question was recently answered in the negative by Beigel and Hirst [BH], who showed more
generally that blog2 kc help bits don’t help for computing k functions.

1038 N. NISAN, S. RUDICH, AND M. SAKS

to B. The set of Boolean assignments to X is denoted BX . We refer to the elements of
X as variables. We will consider probability distributions over the set of assignments.
For a specified distribution D, a random assignment chosen according to D is denoted
by placing a ˜ above the identifier, e.g., α̃. A Boolean function over the variable set
X is a function with domain BX . In this paper, the range of our functions will always
be equal to Bk for some integer k.

2.2. Decision trees. All trees in this paper are rooted, ordered, binary trees.
For such a tree T every internal node v has exactly two children, and the two children
are distinguished as the (−1)-child and (+1)-child of v. The depth dT (v) of a node v
is, as usual, the number of edges along the path from v to the root, and the depth dT
of T is the maximum depth of any node in T .

Formally, a decision tree over X is a triple (T, p, a), where T is a rooted, ordered,
binary tree, p is a map that associates to each internal node v a variable x = pv in
the set X, and a is a map that associates each leaf v with an element av of some set
R. The label pv is called the query associated with v, and node v is said to probe
variable pv. We will generally say that T is a decision tree, keeping the maps p and
a implicit. The set of decision trees over X is denoted T (X), or simply T .

Let T be a decision tree over X. If α is any assignment in BX , the computation of
T on α is the unique path v0, v1, . . . , vs from the root of T to some leaf vs = lT (α) as
follows: start from the root v0 and inductively define vi+1 for i ≥ 0 as the α(pvi)-child
of vi. The output of the computation is the label alT (α). Thus T can be viewed as
a Boolean function over X. Trivially, every function f over X is computed by some
decision tree.

In the following definitions α ∈ BX , f is some function over X, T is a decision
tree over X, U is a set of decision trees over X, d is a nonnegative integer, and D is
a probability distribution over assignments to X.

• C(T, α), the cost of T on α, is the length (number of internal nodes) of the
corresponding computation path.
• C(T), the complexity or depth of T , is the maximum of C(T, β) over all

assignments β.
• Td = Td(X) is the set of all decision trees over X of depth at most d.
• CD(T), the distributional complexity of T with respect to D, is the average

of C(T, α̃) with respect to D, i.e., CD(T) =
∑
α∈BX D(α)C(T, α).

• qD(f, T), the agreement probability of T with f relative to D, is the probability
that T (α̃) = f(α̃), with respect to the random assignment α̃ chosen according
to D.
• The decision tree approximation problem for (f,D,U) is to determine qD(f ;U),

which is defined to be the maximum agreement probability qD(f ;T) over all
T ∈ U .
• T/β, the contraction of T by β where β is an assignment to some subset
Y of X, is the decision tree on the variable set X − Y that corresponds to
executing T with the modification that whenever the current node v is labeled
by y ∈ Y , follow the β(y) branch without probing y. Formally, the tree T/β
is obtained from T as follows: for each internal node v whose label pv belongs
to Y , replace the subtree rooted at v by the subtree rooted at the β(pv)-child
of v.
• A decision forest F over X is an ordered sequence T1, . . . , Tk, where Ti is a

decision tree over X. F computes a Boolean function one short whose domain
is BX and whose range is R = R1 ×R2 × · · · ×Rk, where Ri is the range of

PRODUCTS AND HELP BITS IN DECISION TREES 1039

the function computed by Ti.

The following example illustrates some of the definitions.

Example 1. Consider the case of four variables, X = {x1, x2, x3, x4}, where
f(x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4). (Since our Boolean set is {−1, 1} we treat
−1 as the FALSE value here). Consider the distribution D on assignments in which
the variables are assigned values independently, with x1 and x3 having probability p
of being 1 and x2 and x4 having probability 1− p of being 1, where p < 1/2. Further,
let U be the set T2(X) of decision trees of depth at most 2. Let T be the following
decision tree: First probe x1. If α(x1) = 1, then probe x2 and output α(x2). Other-
wise, if α(x1) = −1, probe x3 and output α(x3). Then this tree has depth 2, and it
is easy to see that this algorithm will output f(α) unless α(x1) = α(x3) = α(x4) = 1
and α(x2) = −1, or α(x1) = α(x4) = −1 and α(x3) = 1. Thus the probability of
agreement, qD(f ;T), is 1−p3(1−p)−p2(1−p) = 1−p2 +p4. This turns out to be the
largest agreement probability over all trees in T2(X), so qD(f ; T2(X)) = 1− p2 + p4.

3. The product problem. We now formalize the product problem stated in
the introduction for the decision-tree model. Let X1, . . . , Xk be pairwise-disjoint
sets of variables, and let D1, . . . , Dk be, respectively, distributions over assignments
to X1, . . . , Xk. Let X = X1 ∪ · · · ∪ Xk. A Boolean assignment β for X will be
viewed as a k-tuple (β1, . . . , βk), where βi is an assignment for Xi. Let D denote the

distribution over assignments to X given by ProbD[α̃ = β] =
∏k
i=1 ProbDi [α̃

i = βi],
i.e., the product distribution D1 ×D2 × · · · ×Dk.

Now suppose that we have k decision-tree approximation problems
(f1, D1,U1), . . . , (fk, Dk,Uk), where for each i, fi is a function over Xi, and let
qi = qDi(fi;Ui) be the optimal agreement probability for Ui with fi relative to Di.
It will be convenient sometimes to view fi as a function of the entire variable set X
that does not depend on any variables except those in Xi. We consider the prob-
lem of simultaneously approximating f1, . . . , fk by a decision forest F = (T1, . . . , Tk)
where Ti ∈ Ui. The simultaneous agreement probability qD(f1, . . . , fk;T1, . . . , Tk) for
T1, . . . , Tk with f1, . . . , fk denotes the probability, for α̃ chosen according to D, that
(T1(α̃) = f1(α̃)) ∧ (T2(α̃) = f2(α̃)) ∧ · · · ∧ (Tk(α̃) = fk(α̃)). For U1, . . . ,Uk where Ui
is a set of trees over X we define (see Example 2)

qD(f1, . . . , fk;U1, . . . ,Uk) = max{qD(f1, . . . , fk;T1, . . . , Tk) : T1 ∈ U1, · · · , Tk ∈ Uk}.

Now, since fi depends only on Xi, and since under D the assignments α̃1, . . . , α̃k

to X1, . . . , Xk are chosen independently, it would seem that qD(f1, . . . , fk;T1, . . . , Tk)
should just be the product of the probabilities qDi(fi;Ti). This is clearly the case if
each tree Ti only queries variables in Xi. However (as shown by the examples below),
if Ti is allowed to query variables outside of Xi, then this need not be the case.
Intuitively, it would seem that variables outside of Xi could not help to approximate
fi and indeed this is trivially true, if we are only trying to approximate fi. But when
we seek to approximate all of the functions simultaneously, it is no longer true that
such “cross-queries” are irrelevant.

Nevertheless, we might expect that for “reasonable” classes U1, . . . ,Uk of decision
trees, the optimal simultaneous agreement probability is attained by a sequence of
trees T1, . . . , Tk with Ti querying variables only in Xi, and is thus equal to the product
of the individual optimal agreement probabilities. The main result of this section is
to prove this in the case that for each i, Ui is the set of trees of some fixed depth di.

1040 N. NISAN, S. RUDICH, AND M. SAKS

Theorem 3.1. Let f1, . . . , fk and D1, . . . , Dk, D be as above. Let d1, . . . , dk be
nonnegative integers. Then

qD(f1, . . . , fk; Td1 , . . . , Tdk) =
k∏
i=1

qDi(fi, Tdi).

Note that Theorem 1.1 is a special case of the above. Before giving the proof we
present two examples to show that multiplicativity fails for some natural alternative
choices of the classes U1, . . . ,Uk.

Example 2. Theorem 3.1 fails if we replace the class Tdi by the class Sidi of trees
that are restricted to query at most di variables from Xi along any path but can query
any number of variables outside Xi. Consider the following trivial example. Let k = 2
and let X1 = {x1}, X2 = {x2}. The distribution D1 assigns x1 to 1 with probability
1/2, and D2 assigns x2 to 1 with probability 1/2, so α̃ is uniformly distributed on B2.
The functions f1 and f2 are given by f1(x1) = x1, f2(x2) = x2. Now let d1 = d2 = 0.
This means that we do not allow T1 to look at any variables in X1 and we do not
allow T2 to look at any variables in X2. Clearly qD1(f1,S1

0) = qD2(f2,S2
0) = 1/2.

However, we can achieve simultaneous agreement probability better than 1/4. Let T1

be the tree that queries x2 and outputs α̃(x2) and T2 be the tree that queries x1 and
outputs α̃(x1). Then, the probability that both T1 and f1 agree and T2 and f2 agree
is just the probability that x1 and x2 are assigned the same value, which is 1/2.

A somewhat more subtle example is the following.

Example 3. For a distribution D over BX , let T Dd be the class of trees whose
expected depth with respect to D is d, i.e., T ∈ T Dd if the average number of variables
queried with respect to α̃ chosen from D is at most d. Then the above theorem be-
comes false if we replace Tdi with T Didi

. To see this, let X be a set of four variables, and
f be the product of the variables. Let U be the uniform distribution over assignments
to X and let d = 3. First we show that the maximum agreement probability with f
attained by a decision tree S of expected depth at most 3 is equal to 3/4. Agreement
probability 3/4 is attained by the tree S that queries a particular variable x, and if
it is −1, then it returns −1, and otherwise it queries the remaining three variables
and returns their product. To see that this is the best possible, note that if T is any
decision tree, then for each leaf l in T of depth less than 4, T will agree with f on
exactly half of the inputs that reach l. Thus, if pi is the probability that a random
input α̃ ends up at a leaf of depth i, then the agreement probability qD(f ;T) can be
bounded above by p4 + 1/2(1− p4); it suffices to show that p4 ≤ 1/2. Now p1 either
equals 0, 1/2, or 1. If p1 > 0 then p4 ≤ 1/2. If p1 = 0, then the expected depth of
the tree is at least 4p4 + 2(1− p4) = 2 + 2p4, which means that p4 ≤ 1/2.

Now let X1, f1, D1 and X2, f2, D2 be copies of X, f, U on disjoint variable sets.
We show that it is possible to choose decision trees T1, T2, each of expected depth
at most 3, whose agreement probability exceeds 9/16 = (3/4)2. Let T1 be the S
described above and let x1 denote the variable in X1 probed first by T1. Let T2 be
the following tree: first probe x1 (in X1). If it is −1, output −1. If it is +1, then probe
all four variables in X2 and output their product. The expected depth of this tree
is 3, since half the paths have depth 1 and half the paths have depth 5. Now, let us
consider the probability of the event A that both T1(α̃) = f1(α̃) and T2(α̃) = T2(α̃):

ProbD[A] =
1

2
ProbD[A | α̃(x1) = −1] +

1

2
Prob[A | α̃(x1) = 1].

PRODUCTS AND HELP BITS IN DECISION TREES 1041

The conditional probability of A given α̃(x1) = −1 is 1/4 and the conditional prob-
ability of A given α̃(x1) = 1 is 1. Thus the probability of simultaneous agreement is
5/8.

What happens in the above example is that the variable x1 acts as a shared
random coin that partially coordinates the two computations so that they are more
likely to be simultaneously correct. On the face of it, it seems quite possible that a
similar trick might also help for the class of trees covered by the theorem; but as we
now show, no such trick can work in this case.

Proof of Theorem 3.1. Fix a sequence T1, . . . , Tk of decision trees with Ti of depth
at most di, and let α̃ = (α̃1, . . . , α̃k) be a random assignment to X = X1 ∪ · · · ∪Xk

chosen according to the distribution D. For I ⊆ [k] = {1, . . . , k}, let C(I) denote the
event

∧
i∈I(Ti(α) = fi(α

i)), i.e., the event that all of the trees indexed by I evaluate
their respective functions correctly. We seek to prove that Prob[C([k])] is bounded

above by
∏k
i=1 qDi(fi, Tdi).

The proof is by induction on k, and for fixed k by induction on d1 + · · ·+dk. The
result is trivial if k = 1.

So assume that k ≥ 2. Consider first the case that di = 0 for some i. We may
assume that dk = 0. Thus, the kth computation must guess the value of fk(α̃k)
without looking at any variables, so Tk consists of a single leaf labeled −1 or 1; i.e.,
Tk(α) is a constant t ∈ B. Now, by conditioning on the value of the vector α̃k, the
probability, P ∗, that C([k]) holds can be bounded above:

P ∗ ≤
∑

βk∈BXk |fk(βk)=t

Prob[α̃k = βk]× Prob[C([k − 1]) | α̃k = βk]

≤ maxβk∈BXkProb[C([k − 1]) | α̃k = βk]×
∑

βk∈BXk |fk(βk)=t

Prob[α̃k = βk]

= maxβk∈BXkProb[C([k − 1]) | α̃k = βk]× Prob[Tk(α̃k) = fk(α̃k)]

≤ maxβk∈BXkProb[C([k − 1]) | α̃k = βk]× qDk(fk, T0).

Now let γ be the value of βk that maximizes the probability in the last expression.
For each i between 1 and k − 1, define the tree Ui by contracting Ti using α̃k = γ.
Then we may rewrite the last term as

Prob[(U1(α̃) = f1(α̃)) ∧ · · · ∧ (Uk−1(α̃) = fk−1(α̃))]× qDk(fk, T0).

Each tree Ui has depth at most di, and so we may bound the first factor by
qD(f1, . . . , fk−1; Td1 , . . . , Tdk−1

), which is equal to
∏k−1
i=1 qDi(fi, Tdi), by the induction

hypothesis. Thus the desired result follows.
Now we assume that di > 0 for all i. Define a directed graph on {1, . . . , k} with

an edge from i to j if the first variable probed by Ti is an input to fj . Since this
directed graph has out-degree one, it has a directed cycle, which may be a self-loop.
Let j ≥ 1 be the length of the cycle. Let us reindex the trees so that the vertices of
the cycle in order are 1, . . . , j. Thus for each i < j, the first probe of Ti is a variable
in Xi+1 (which we will denote xi+1) and the first probe of Tj is a variable, denoted
x1, in X1. The case j = 1 does not have to be treated as a special case.

In the rest of the proof, we analyze the probability of simultaneous agreement
of the trees with their corresponding functions by conditioning on the assignments
to x1, . . . , xj . This will enable us to apply the induction hypothesis and prove the
theorem. For the case j = 1 this is easy; for j > 1 the underlying intuition is that it

1042 N. NISAN, S. RUDICH, AND M. SAKS

is possible simultaneously to replace each of the trees Ti for i ∈ [j], by trees T ′i of the
same depth in which the first probe in T ′i is xi, without decreasing the probability of
simultaneous agreement.

For b ∈ B, let f bi denote the function obtained from fi by fixing xi = b. Also, let
Db
i be the distribution on the set Xi−xi obtained from Di by conditioning on xi = b.

Now, for b = (b1, . . . , bj) ∈ Bj , let A(b) denote the event that (α̃(x1) = b1) ∧
· · · ∧ (α̃(xj) = bj). We can write the probability that all of the Ti compute correctly
by conditioning on b as follows:∑

b∈B[j]

Prob[A(b)]Prob[C([k]) | A(b)].(1)

We seek to upper-bound this expression by

k∏
i=1

qDi(fi, Tdi).(2)

To do this we show the following.
Claim. For each b ∈ B[j], the conditional probability of C([k]) given A(b) is at

most (
j∏
i=1

q
D
bi
i

(f bii , Tdi−1)

) k∏
i=j+1

qDi(fi, Tdi)
 .

Assuming the claim for the moment, we can then substitute into (1) to obtain
the following bound on the probability that all of the trees are correct: k∏

i=j+1

qDi(fi, Tdi)
(∑

b∈Bj
Prob[A(b)]

j∏
i=1

q
D
bi
i

(f bii , Tdi−1)

)
.(3)

The sum can be rewritten as

∑
b∈Bj

j∏
i=1

Prob[α̃(xi) = bi]qDbi
i

(f bii , Tdi−1),

which is equal to

j∏
i=1

(
Prob[α̃(xi) = −1]qD−1

i
(f−1
i , Tdi−1) + Prob[α̃(xi) = 1]qD1

i
(f1
i , Tdi−1)

)
.

Now, the ith term in this product corresponds to the probability of correctly
computing fi if we first probe xi and then, depending on the outcome, use the optimal
depth di − 1 tree to evaluate the residual function. Thus, we can upper-bound this
term by qDi(fi, Tdi). But then (3) is upper-bounded by (2) as required.

So it suffices to prove the claim. Define f
A(b)
i to be the function f bii for i ≤ j

and to be fi otherwise. Similarly, the distribution D
A(b)
i is equal to Dbi

i for i ≤ j and
to Di otherwise. Observe that by the mutual independence of α̃1, . . . , α̃k, their joint

distribution given A(b) is the product distribution of D
A(b)
i for i between 1 and k.

PRODUCTS AND HELP BITS IN DECISION TREES 1043

Let T
A(b)
i be the tree obtained by contracting Ti under the assumption that A(b)

holds. Then the conditional probability given A(b) that Ti(α) = fi(α
i) for all i, is

equal to the probability (with respect to the product distribution on D
A(b)
i) that for

all i, T
A(b)
i = f

A(b)
i . Now for each i the depth of T

A(b)
i is at most di − 1 if i ≤ j, and

is at most di for i > j, so we may apply induction to say that the probability, with

respect to the product distribution on D
A(b)
i , that T

A(b)
i = f

A(b)
i for every i, is at

most (
j∏
i=1

q
D
A(b)
i

(f
A(b)
i , Tdi−1)

) k∏
i=j+1

q
D
A(b)
i

(f
A(b)
i , Tdi)

 ,

which is equal to the expression in the claim. This proves both the claim and the
theorem.

Remark 1. The proof of the theorem can be extended to a more general model
of decision-tree computation. For this model, in the case of a single function we
are given a function f on an arbitrary domain S, and want to compute f(s) for an
unknown input s ∈ S. We are further given a set Q of admissible queries, where
each query q ∈ Q is a partition of S into sets (Sq1 , . . . S

q
r). The response to query q

is the index i such that s ∈ Sqi . The nodes of a decision tree are labeled by queries,
and the branches out of the node correspond to the answers to the query. For a
set of functions fi on disjoint domains Si, the formulation of the product problem
generalizes to this model. The statement and proof of the theorem now go through
assuming that (1) each allowed query depends only on variables from one function
and (2) the distributions Di are independent.

4. Help bits. The help-bits model can be formulated with respect to any model
of computation. Informally, we have a function g which we wish to compute using an
algorithm from a given class of algorithms. Before we begin computing, we are allowed
to ask a certain number of arbitrary binary questions about the input. Based on the
answers to these questions we choose an algorithm and then do the computation on
the input. The answers to the preliminary questions are referred to as “help bits.”
We say that g is computable by a class of algorithms using h help bits if there is such
a procedure that uses at most h questions and correctly evaluates g on all inputs.

As was observed previously in specific computational contexts [Be87, CH], the
problem of whether g can be computed with h help bits can be recast as a cover
problem. Given g and a class of algorithms, we wish to choose a set of algorithms
from the class that covers all inputs in the sense that for each input x, there is at
least one algorithm in the chosen set that outputs g(x). We refer to such a set of
algorithms as a cover of g. Then g is computable by the class of algorithms using h
help bits if and only if there is a cover of g of size 2h. To see this, suppose that g is
computable by the class using h help bits. Then each of the 2h possible sets of answers
to the questions specifies an algorithm in the class, and these algorithms together are
a cover of g. Conversely, given a cover of size 2h, index the algorithms in the cover
by Boolean strings of length h, and for each input x choose a Boolean string bx that
indexes an algorithm A(bx) in the cover that correctly evaluates g(x). Then we may
take our help-bit queries to be, “What are the bits of bx?”

Note that, provided that the class of algorithms includes all constant functions,
any function g whose range has size at most 2h is trivially computable using h help
bits, so the problem is only interesting for functions whose range is “large enough.”

1044 N. NISAN, S. RUDICH, AND M. SAKS

In this paper we are interested in the special case of the help-bits problem
where the function we are computing is a Cartesian product f̄ of Boolean func-
tions f1, . . . , fk over disjoint variable sets X1, . . . , Xk. The function f̄ has vari-
able set X = X1 ∪ · · · ∪ Xk, and its value on assigment α = (α1, . . . , αk) is the
k-tuple f1(α1), . . . , fk(αk). Given an unknown assignment α to X we want to eval-
uate f̄(α) = (f1(α1), . . . , fk(αk)) by a decision forest. We are allowed to ask, “for
free,” an arbitrary set of h binary questions about the assignment α. The answer
to these h questions is a vector a ∈ Bh. For each such a we will have a decision
forest F a = (T a

1 , . . . , T
a
k), where we require that F a(α) agrees with f̄(α) for every

assignment α that is consistent with a. Note that, unlike the product problem, we
are now dealing with worst case complexity of exact computation.

An algorithm in this model is specified by l arbitrary Boolean functions h1, . . . , hl
(the help-bit functions) on variable set X, together with 2l decision forests, which are
indexed by the possible outputs of h1, . . . , hl. The depth of the algorithm is the
maximum depth of any of the 2lk decision trees in these forests. In general, the
decision tree T a

i that computes fi(α
i) for α consistent with a is allowed to probe

variables outside of Xi. This is conceivably useful, because together with the help
bits, such probes could imply information about the variables in Xi. For instance, if
one of the help-bit functions is (fi(α

i)× αj(x)), where x is a variable in Xj , then by
probing the variable x, we can deduce fi(α

i). If T a
i only probes variables in Xi we

say that it is pure. If each of the 2lk decision trees is pure, the algorithm is pure. We
denote by Ch(f̄) the minimum depth (complexity) of any algorithm that computes
f̄ using h help bits and by Cpureh (f̄) the minimum depth of a pure algorithm that
computes f̄ .

Our main result applies to the case that, for some variable set X and Boolean
function f over X, each of the Xi are copies of X and the functions fi are copies of f ,
and in this case we denote the k-tuple f̄ by f [k]. It is not hard to generalize this and
formulate similar results for the case that the fi are arbitrary functions on arbitrary
disjoint sets of variables. When convenient we state the lemmas below for this general
case. The main result of this section (which is a slight refinement of Theorem 1.2), is
the following theorem.

Theorem 4.1. For any Boolean function f on n variables and any positive
integer k,

Cpurek−1 (f [k]) ≥ Ck−1(f [k]) ≥ degs(f).

If k is sufficiently large, then

Cpurek−1 (f [k]) = Ck−1(f [k]) = degs(f).

Before proving the theorem, we mention an example. As noted in the introduc-
tion, if f is the majority function, then degs(f) = 1, and so for this function and
any sufficiently large integer k, the theorem asserts that given k − 1 help bits it is
possible to compute f [k] with depth 1. M. Blum pointed out to us explicitly how to
do this for the case n = 3. Enumerate the subsets of {1, . . . , k} having size at least
2k/3. The number of these sets is 2ck for some c < 1. Fix an encoding of these sets
by ck bits. Now given k assignments to the variables of f imagine the assignments
arranged in a k× 3 array. In each row, at least two of the three entries agree with the
majority value, so there is a column in which at least 2k/3 of the entries agree with
the function value on that row. For the help bits, we ask for the lowest index of such

PRODUCTS AND HELP BITS IN DECISION TREES 1045

a column (requiring two bits) and then for the set S of rows for which this column
gives the function value (requiring ck bits). Armed with this information, the value
of the function on the assignment indicated by row r is equal to the entry in that
row and the designated column if r ∈ S, and is the negative of the entry otherwise.
Thus the decision tree for evaluating f on the rth assignment need only probe that
one variable.

To prove Theorem 4.1, it will be useful to “invert” our point of view and fix d
and consider the minimum number of help bits required to compute a given function.
Define Hd(f̄) (resp. Hpure

d (f̄)) to be the minimum number of help bits needed to
compute f̄ using a depth-d algorithm (resp. pure depth-d algorithm).

We will prove the following theorem.
Theorem 4.2. Let f be a Boolean function on n variables.

1. If d < degs(f), then for all k,

Hd(f
[k]) = Hpure

d (f [k]) = k.

2. There exists a positive constant δf such that for d = degs(f),

Hpure
d (f [k]) = (1− δf)k + o(k).

The first part of Theorem 4.2 easily implies the lower bound on Ck−1(f [k]) (and
hence on Cpurek−1 (f [k])) in Theorem 4.1. Also, the second part of Theorem 4.2 im-

plies that for sufficiently large k, Hpure
degs(f)(f

[k]) ≤ k − 1, which implies Cpurek−1 (f [k]) ≤
degs(f), which is the second part of Theorem 4.1.

Thus it suffices to prove Theorem 4.2. We can reinterpret Hd(f̄) and Hpure
d (f̄)

in terms of the notion of cover given in the beginning of this section. Say that a set
F of decision forests covers all assignments with respect to f̄ if for each α there is
an F ∈ F such that F (α) = f̄(α). Define τd(f̄) to be the minimum size of a cover
that consists of forests of depth d. Then the remarks at the beginning of this section
imply the following proposition.

Proposition 4.1. Let f̄ = (f1, . . . , fk) and d be a nonnegative integer. Then
1. Hd(f̄) = dlog τd(f̄)e,
2. Hpure

d (f̄) = dlog τpured (f̄)e.
So we now concentrate on obtaining bounds on τd(f

[k]) and τpured (f [k]). For this
we need yet another definition. A randomized decision tree over X is a probability
distributionQ on the set of decision trees over X. A randomized decision tree is said to
approximate f with probability p if for each assignment α, if T̃ is chosen according to Q,
the probability that T̃ (α) = f(α) is at least p. We define pd(f) to be the maximum p
such that there is a distribution Q over the set of decision trees of depth at most d that
approximates f with probability p. That this maximum exists follows by noting first
that we may assume that Q assigns nonzero probability only to trees whose range is
contained in the range of f . Let N be the number of such trees (which is finite). Then
the set of all such distributions can be viewed as a subset of RN , and this subset is
compact. For fixed f the probability that T̃ (α) = f(α) can be viewed as a continuous
function of the “vector” Q. Thus we have a continuous function on a compact set,
which must attain a maximum. It is easy to see that pd(f) ≥ 1/2 and that if d is
equal to C(f), the ordinary decision-tree complexity of f , then pd(f) = 1. Intuitively,
the quantity pd(f) represents the best agreement probability we can guarantee (with
respect to worst case input) by choosing an appropriate randomized decision tree. A
fundamental observation of Yao [Y2] (which was originally made in a slightly different

1046 N. NISAN, S. RUDICH, AND M. SAKS

context) says that we can choose a probability distribution on inputs such that for
any fixed decision tree (or randomized decision tree) the agreement probability with
respect to that distribution does not exceed pd(f). This observation follows from the
min-max theorem for two-person zero-sum games (matrix games), and variants of it
hold in most nonuniform complexity models. To formalize this observation in our
context, recall from the previous section that for a distribution D over assignments,
a function f , and a class T of decision trees, we defined the agreement probability
qD(f, T) to be the maximum over all trees T ∈ T of the probability that T and f
agree on a random assignment chosen according to D.

Lemma 4.1. For any Boolean function f over X and integer d ≥ 0, there exists
a distribution D̂ on assignments to X such that qD̂(f, Td) = pd(f).

Proof. We need first to recall the min-max theorem for two-person zero-sum
games. Let M be a r×s matrix with real entries. A stochastic vector is a nonnegative
real-valued vector with entries summing to 1. If v is a vector, write max(v) for the
maximum entry of v and min(v) for the minimum entry of v. In its simplest form
the min-max theorem says that if v ranges over all stochastic vectors of length r then
min(vM) attains a maximum V1, and if w ranges over all stochastic vectors of length
s then max(Mw) attains a minimum V2, and V1 = V2.

To apply the min-max theorem in this case, let M be the matrix whose rows are
indexed by the set Td and whose columns are indexed by the set BX of assignments,
and whose entry in position (T, α) is 1 if T (α) = f(α) and 0 otherwise. A stochastic
vector v indexed by Td corresponds to a randomized decision tree, and min(vM) rep-
resents the minimum over all assignments α of the probability that this randomized
decision tree computes f correctly on all assignments. Taking the maximum of this
over all such v, we get V1 = pd(f). Similarly, a stochastic vector indexed by BX cor-
responds to a probability distribution over all assignments, and thus V2 is equal to the
minimum over all such distributions D of qD(f, Td). Applying the min-max theorem
we get that the distribution D̂ that attains this minimum satisfies the conclusion of
the lemma.

Returning to the problem of bounding τd(f
[k]), we now prove the following lemma.

Lemma 4.2. For any Boolean function f on n variables and k, d ≥ 0, we have

1

pd(f)k
≤ τd(f [k]) ≤ τpured (f [k]) ≤

⌈
nk ln 2

pd(f)k

⌉
.

Proof. The middle inequality is trivial. For the last inequality, we use a standard
probabilistic argument to show that there is a set of at most dnk ln 2

pd(f) e pure forests

of depth at most d that cover all of the assignments. Let Q be the distribution on
decision trees over X of depth at most d that approximates f with probability pd(f).
For i ≤ k, let Qi be the corresponding distribution over the set of decision trees
over X. Then Qi approximates fi with probability pd(f). Consider the distribution
P = Q1 × · · · × Qk over forests. Suppose we select t forests F̃1, . . . , F̃t according to
P . For a given assignment α and j ≤ t, the probability that F̃j covers α is at least
pd(f)k. Thus the probability that none of the forests covers α is at most (1−pd(f)k)t,
and the probability that there exists an assignment α that is covered by none of the

forests is at most 2nk(1 − pd(f)k)t < 2nke−pd(f)kt. If t = d(nk ln 2)/pd(f)ke, then
this last expression is at most 1, so there is a positive probability that the forest
covers all assignments, and so there must be a set of t forests of depth d that cover
all assignments.

PRODUCTS AND HELP BITS IN DECISION TREES 1047

Now we turn to the lower bound on τd(f
[k]). Let D̂ be the distribution whose

existence is asserted by Lemma 4.1. Suppose that F1, . . . , Ft is a set of forests that
cover all assignments α to X. Consider the distribution P over all assignments α
which is the product D̂1 × · · · × D̂k, where D̂i is the copy of D̂ on Xi. Then,
by Theorem 3.1, for any forest Fi, the probability that it covers α̃ is at most pd(f)k.
Then the expected fraction of assignments covered by F1, . . . , Ft is at most tpd(f)k.
Since F1, . . . , Fk covers all assignments, this expectation must be at least 1, so
t ≥ 1/pd(f)k.

It is worth noting that the above lemma holds (with essentially the same proof)
in the general setting described at the beginning of this section; we can replace Td
by any set of Boolean functions on variable set X and define analogues to pd(f) and
τd(f).

As an immediate corollary of Lemma 4.2 and Proposition 4.1 we get the following
bounds on the complexity of the help-bits problem.

Corollary 4.1. For any Boolean function f on n variables and integers k, l, d ≥
0:

k(− log2 pd(f)) ≤ Hd(f
[k]) ≤ Hpure

d (f [k]) ≤ dk(− log2 pd(f)) + log2(nk)e .

From this we have the following result.
Corollary 4.2. For any Boolean function f on n variables and nonnegative

integer d:
1. If pd(f) = 1/2 then Hd(f

[k]) = k for all k.
2. If pd(f) > 1/2 then Hpure

d (f [k]) = k log2
1

pd(f) + o(k).

Next we need to connect the quantity pd(f) to the sign degree degs(f). The
following relationship has appeared elsewhere in slightly different form (see, e.g., [BS]).

Proposition 4.2. For any Boolean function f , pd(f) > 1/2 if and only if
d ≥ degs(f).

Proof. Let d ≥ degs(f) and let the variable set X be x1, . . . , xn. Then there is an
n-variate polynomial g(x1, . . . , xn) of degree at most d such that g(α) > 0 if and only
if f(α) = 1 for all assignments α = (α1, . . . , αn). By adding a small constant to the
polynomial we may assume that g(α) is never 0 and by an appropriate scaling we may
assume without loss of generality that the sum of the absolute values of the coefficients
of g is 1. Consider the following randomized decision tree: Choose a monomial of g
uniformly at random, where the probability that a given monomial is chosen is the
absolute value of its coefficient. Probe the variables of the monomial and output the
product of the values. It is easily seen that for any assignment α, the probability of
correctly evaluating f(α) minus the probability of incorrectly evaluating f(α) is equal
to |g(α)|, which is strictly positive (here we use that our domain is {−1, 1}). Thus
for any α this algorithm correctly evaluates f(α) with probability exceeding 1/2.

Now suppose pd(f) > 1/2. There must exist a randomized decision tree Q on
depth-d trees that evaluates f(α) correctly with probability exceeding 1/2. It is well
known and easy to see (by induction on d, looking at the two subtrees of the root) that
if T is a decision tree of depth d on variables {x1, . . . , xn}, then there is a polynomial
gT of degree d such that gT (α) = T (α) for all assignments α. Define the polynomial
g = − 1

2 +
∑
T∈Td Q(T)gT , where Q(T) is the probability that T is selected under the

distribution Q. Then g(α) = ProbQ[T̃ (α) = 1]− 1/2. By the choice of Q, this latter
term is positive if and only if f(α) = 1.

Theorem 4.2 (and hence Theorem 4.1) now follows easily.

1048 N. NISAN, S. RUDICH, AND M. SAKS

Proof of Theorem 4.2. By Proposition 4.2, pdegs(f)−1(f) = 1/2 and therefore, by

Corollary 4.2, Hdegs(f)−1(f [k]) = k for all k. Also by Proposition 4.2, pdegs(f) > 1/2,

and so Corollary 4.2 implies that Hpure
degs(f)(f

[k]) = log2
1

pdegs(f)(f)k + o(k). Taking

δf = log2(2pdegs(f)) yields the second part of Theorem 4.2.

Remark 2. It is interesting to note that, for k large enough, it is possible to
obtain an optimal algorithm in which all of the decision trees have a particularly
simple form. The randomized algorithm in the proof of Proposition 4.2 uses only
decision trees that correspond to computing monomials of g. Using this randomized
algorithm in the proof of the upper bound of Lemma 4.2, the decision trees used in
the help-bits algorithm are all of the same form.

Remark 3. In the proof of the lower bound in Lemma 4.2, we used Theorem
3.1 in order to deduce that for any forest F of depth at most d, the probability,
with respect to a particular distribution P on assignments, that F is correct for all
k functions is at most pd(f)k. In the special case d = degs(f) − 1, which is the
relevant case for proving that Ck−1(f [k]) > degs(f) − 1 in Theorem 4.1, there is an
alternative argument which we now sketch. As noted above, for d = degs(f)− 1, we
have pd(f) = 1/2, and thus for α̃ selected from D̂ (the distribution of Lemma 4.1),
any decision tree of depth d agrees with f with probability exactly 1/2. In particular,
this can be shown to imply that if we fix the values of any d variables, then either that
partial assignment occurs with probability 0 under D̂, or the value of f conditioned
on this assignment is unbiased.

Now, define the random variable ci to be 0 if Ti(α̃) = fi(α̃) and 1 otherwise. We
want to show that the probability that ci = 0 for all i is at most 1/2k. In fact, the
distribution on (c1, . . . , ck) is uniform on {0, 1}k. By the XOR lemma of [Vaz] (see also
[CGHFRS]), a distribution over {0, 1}k is uniform if for any subset J of {1, . . . , k},
the random variable cJ defined to be the XOR of the ci for i ∈ J is unbiased. Let
sJ be the probability that cJ = 0. The event cJ = 0 is the same as the event that
TJ(α̃)(=

∏
i∈J Ti(α̃)) is equal to fJ(α̃)(=

∏
i∈J fi(α̃)). Now by combining the decision

trees {Ti|i ∈ J} we get a single decision tree of depth at most |J |d that computes
TJ . We claim that such a decision tree must agree with fJ with probability exactly
1/2, which is enough to finish the argument. We prove the claim by showing that for
each leaf of the tree TJ that is reached with nonzero probability, fJ(α̃) conditioned
on α̃ reaching the leaf is unbiased. For each such leaf of the tree, there is an i ∈ J
such that at most d variables of Xi appear on the path. Recall that the value of fi is
unbiased when conditioned on the values of these d variables. If we further condition
the value of fJ by the values of all variables not in Xi, then fi is still unbiased and
therefore so is fJ .

Remark 4. One implication of Theorem 4.1 is that for every f , and k sufficiently
large (depending on f), Cpurek−1 (f [k]) = Ck−1(f [k]), the best algorithm for computing

f [k] using k− 1 help bits uses pure trees. It is reasonable to speculate that this is the
case for f for all k and l, and this is open. The first case of interest would be the case
k = 2 and l = 1. In this case, it is not hard to show that Cpure1 (f [2]) = C(f), i.e.,
a pure algorithm computing f [2] with one help bit does no better then the ordinary
decision tree complexity of f . (Very recent work of Beigel and Hirst [BH] extends this
to general (not necessarily pure) algorithms.) To see this, note that the value of the
help bit partitions the set of assignments of X = X1∪X2 into two groups A1 and A0.
It is not hard to see that either the set of assignments on X1 induced by A1 is all of
BX1 , or the set of assignments on X2 induced by A0 must be all of BX2 . Thus in the
case that the help bit is 1, the decision tree used to evaluate (the copy of) f on the

PRODUCTS AND HELP BITS IN DECISION TREES 1049

variables X1 must correctly evaluate f for all assignments to X1 and thus has depth
at least C(f), and similarly in the case that the help bit is 0, the decision tree used
to evaluate f on the variables X2 must correctly evaluate f for all assignments to X2

and thus has depth at least C(f).

Acknowledgments. The authors have had many conversations with several peo-
ple regarding this research. We would especially like to acknowledge the contributions
of Richard Beigel, Nati Linial, Russell Impagliazzo, and Avi Wigderson. We also thank
two anonymous referees for their extensive comments, which helped us to improve the
exposition.

REFERENCES

[ABG] A. Amir, R. Beigel, and W. Gasarch, Some connections between bounded query
classes and nonuniform complexity, in Proc. Structure in Complexity 5th Annual
Conference, IEEE Computer Society, Los Alamitos, CA, 1990, pp. 232–243.

[Ant] M. Anthony, On the Number of Boolean Functions of a Given Threshold Order,
Technical Report LSE-MPS-36, London School of Economics, 1992.

[Be87] R. Beigel, A structural theorem that depends quantitatively on the complexity of SAT,
in Proc. Structure in Complexity 2nd Annual Conference, IEEE Computer Society,
Los Alamitos, CA, 1987, pp. 28–32.

[Be93] R. Beigel, The polynomial method in circuit complexity, in Proc. Structure in Com-
plexity 8th Annual Conference, IEEE Computer Society, Los Alamitos, CA, 1993,
pp. 82–95.

[BH] R. Beigel and T. Hirst, One help bit doesn’t help, in Proc. 30th ACM Symposium
on Theory of Computing, Dallas, 1998, pp. 124–130.

[BS] J. Bruck and R. Smolensky, Polynomial threshold functions, AC0 functions and
spectral norms, SIAM J. Discrete Math., 21 (1992), pp. 33–42.

[Bsh] N. H. Bshouty, On the extended direct sum conjecture, in Proc. 21st ACM Symposium
on Theory of Computing, Association of Computing Machinery, New York, 1989,
pp. 177–185.

[Cai] J. Cai, Lower bounds for constant depth circuits in the presence of help bits, Inform.
Process. Lett., 36 (1990), pp. 79–84.

[CH] J. Cai and L. Hemachandra, Enumerative counting is hard, Inform. and Comput.,
82 (1989), pp. 34–44.

[CGHFRS] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and R. Smolensky,
The bit extraction problem of t-resilient functions, in Proc. 26th Symposium on
Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA,
1985, pp. 396–407.

[FKN] T. Feder, E. Kushilevitz, and M. Naor, Amortized communication complexity, in
Proc. 32nd Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 1991, pp. 239–248.

[GF] G. Galbiati and M. J. Fischer, On the complexity of 2-output boolean networks,
Theoret. Comput. Sci., 16 (1981), pp. 177–185.

[IRW] R. Impagliazzo, R. Raz, and A. Wigderson, A direct product theorem, in Proc.
9th Conference on Structure in Complexity Theory, IEEE Computer Society, Los
Alamitos, CA., 1994, pp. 88–96.

[JT] J. Ja’Ja’ and J. Takche, On the validity of the direct sum conjecture, SIAM J.
Comput., 15 (1986), pp. 1004–1020.

[KKN] M. Karchmer, E. Kushilevitz, and N. Nisan, Fractional covers and communication
complexity, in Proc. 7th Conference on Structures in Complexity Theory, IEEE
Computer Society, Los Alamitos, CA, 1992, pp. 262–274.

[KRW] M. Karchmer, R. Raz, and A. Wigderson, On proving super-logarithmic depth
lower bounds via the direct sum in communication complexity, in Proc. 6th Confer-
ence on Structures in Complexity Theory, IEEE Computer Society, Los Alamitos,
CA, 1991, pp. 299–304.

[Lin] N. Linial, personal communication, Jerusalem, 1993.
[Paul] W. J. Paul, Realizing boolean functions on disjoint set of variables, Theoret. Comput.

Sci., 2 (1978), pp. 383–396.

1050 N. NISAN, S. RUDICH, AND M. SAKS

[Raz] R. Raz, A parallel repitition theorem, in Proc. 27th annual ACM Symposium on
Theory of Computing, Association of Computing Machinery, New York, 1995, pp.
447–456.

[Sa93] M. Saks, Slicing the hypercube, in Surveys in Combinatorics, Keith Walker, ed., Lon-
don Math. Soc. Lecture Note Ser. 187, Cambridge University Press, Cambridge,
UK, 1993, pp. 211–255.

[Ulig] D. Ulig, On the synthesis of self-correcting schemes from functional elements with
a small number of reliable components, Math Notes Acad. Sci. USSR, 15 (1974),
pp. 558–562.

[Vaz] U. Vazirani, Randomness, Adversaries and Computation, Ph.D. Thesis, Department
of Computer Science and Electrical Engineering, U.C. Berkeley, Berkeley, CA,
1986.

[Y2] A. Yao, Probabilistic computations: Towards a unified measure of complexity, in Proc.
18th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 1977, pp. 222–227.

A TIME-SPACE TRADEOFF FOR UNDIRECTED GRAPH
TRAVERSAL BY WALKING AUTOMATA∗

PAUL BEAME† , ALLAN BORODIN‡ , PRABHAKAR RAGHAVAN§ , WALTER L. RUZZO† ,
AND MARTIN TOMPA†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1051–1072

Abstract. We prove a time-space tradeoff for traversing undirected graphs, using a structured
model that is a nonjumping variant of Cook and Rackoff’s “jumping automata for graphs.”

Key words. graph connectivity, graph reachability, time-space tradeoff, walking automaton,
jumping automaton, JAG

AMS subject classifications. 05C40, 68Q05, 68Q10, 68Q15, 68Q20, 68Q25

PII. S0097539793282947

1. The complexity of graph traversal. Graph traversal is a fundamental
problem in computing, since it is the natural abstraction of many search processes. In
computational complexity theory, graph traversal (or, more precisely, st-connectivity)
is a fundamental problem for an additional reason: understanding the complexity of
directed versus undirected graph traversal seems to be the key to understanding the
relationships among deterministic, probabilistic, and nondeterministic space-bounded
algorithms. For instance, although directed graphs can be traversed nondetermin-
istically in polynomial time and logarithmic space simultaneously, it is not widely
believed that they can be traversed deterministically in polynomial time and small
space simultaneously. (See Tompa [32] and Edmonds and Poon [22] for lower bounds
and Barnes et al. [5] for an upper bound.) In contrast, undirected graphs can be tra-
versed in polynomial time and logarithmic space probabilistically by using a random
walk (Aleliunas et al. [2], Borodin et al. [15]); this implies similar resource bounds
on (nonuniform) deterministic algorithms (Aleliunas et al. [2]). More recent work
presents uniform deterministic polynomial time algorithms for the undirected case
using sublinear space (Barnes and Ruzzo [8]), and even O(log2 n) space (Nisan [28]),
as well as a deterministic algorithm using O(log1.5 n) space, but more than polynomial
time (Nisan, Szemerédi, and Wigderson [29]).

In this paper we concentrate on the undirected case. The simultaneous time
and space requirements of the best-known algorithms for undirected graph traversal
are as follows. Depth-first or breadth-first search can traverse any n vertex, m edge
undirected graph in O(m + n) time, but requires Ω(n) space. Alternatively, a ran-
dom walk can traverse an undirected graph using only O(log n) space, but requires
Θ(mn) expected time (Aleliunas et al. [2]). In fact, Feige [23], based on earlier work

∗Received by the editors March 5, 1993; accepted for publication (in revised form) February 7,
1997; published electronically January 29, 1999. This material is based upon work supported in
part by the Natural Sciences and Engineering Research Council of Canada, by the National Science
Foundation under grants CCR-8703196, CCR-8858799, CCR-8907960, and CCR-9002891, and by
IBM under Research Contract 16980043. A portion of this work was performed while the fourth
author was visiting the University of Toronto, whose hospitality is gratefully acknowledged.

http://www.siam.org/journals/sicomp/28-3/28294.html
†Department of Computer Science and Engineering, University of Washington, Box 352350, Seat-

tle, WA 98195 (beame@cs.washington.edu, ruzzo@cs.washington.edu, tompa@cs.washington.edu).
‡Department of Computer Science, University of Toronto, Toronto, ON, Canada M5S 1A4

(bor@cs.toronto.edu).
§IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120

(pragh@almaden.ibm.com).

1051

1052 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

of Broder et al. [18] and Barnes and Feige [7], has shown that there is a spectrum of
compromises between time and space for this problem: any graph can be traversed
in space S and expected time T , where ST ≤ mn(log n)O(1). This raises the intrigu-
ing prospect of proving that logarithmic space and linear time are not simultaneously
achievable or, more generally, proving a time-space tradeoff that closely matches these
upper bounds.

Although it would be desirable to show a tradeoff for a general model of computa-
tion such as a random access machine, obtaining such a tradeoff is beyond the reach of
current techniques. Thus it is natural to consider a “structured” model (Borodin [14]),
that is, one whose basic move is based on the adjacencies of the graph, as opposed to
one whose basic move is based on the bits in the graph’s encoding. An appropriate
structured model for proving such a tradeoff is some variant of the JAG (“jumping
automaton for graphs”) of Cook and Rackoff [20]. Such an automaton has a set of
states, and a limited supply of pebbles that it can move from vertex to adjacent vertex
(“walk”) or directly to a vertex containing another pebble (“jump”). The purpose
of its pebbles is to mark certain vertices temporarily, so that they are recognizable
when some other pebble reaches them. The pebbles represent vertex names that a
structured algorithm might record in its workspace. Walking represents replacing a
vertex name by some adjacent vertex found in the input. Jumping represents copying
a previously recorded vertex name.

Rabin (see [20]), Savitch [31], Blum and Sakoda [13], Blum and Kozen [12], Hem-
merling [24], and others have considered similar models; see Hemmerling’s monograph
for an extensive bibliography (going back over a century) emphasizing results for
“labyrinths”: graphs embedded in two- or three-dimensional Euclidean space.

The JAG is a structured model, but not a weak one. In particular, it is general
enough to encompass in a natural way most known algorithms for graph traversal.
For instance, a JAG can execute a depth-first or breadth-first search, provided it has
one pebble for each vertex, by leaving a pebble on each visited vertex in order to avoid
revisiting it, and keeping the stack or queue of pebble names in its state. Furthermore,
as Savitch [31] shows, a JAG with the additional power to move a pebble from vertex
i to vertex i+ 1 can simulate an arbitrary Turing machine on directed graphs. Even
without this extra feature, we have shown [10] that JAGs are as powerful as Turing
machines for the purposes of solving undirected graph problems (our main focus).

Cook and Rackoff define the time T used by a JAG to be the number of pebble
moves, and the space to be S = P log2 n+log2Q, where P is the number of pebbles and
Q the number of states of the automaton. (Keeping track of the location of each pebble
requires log2 n bits of memory, and keeping track of the state requires log2Q.) It is well
known that st-connectivity for directed graphs can be solved by a deterministic Turing
machine in O(log2 n) space, by applying Savitch’s theorem [30] to the obvious O(log n)
space nondeterministic algorithm for the problem. Cook and Rackoff show that the
same O(log2 n) space upper bound holds for deterministic JAGs by direct construction
of an O(log n) pebble, nO(1) state deterministic JAG for directed st-connectivity.
More interestingly, they also prove a lower bound of Ω(log2 n/ log log n) on the space
required by JAGs solving this problem, nearly matching the upper bound. Standard
techniques (Adleman [1], Aleliunas et al. [2]) extend this result to any randomized
JAG whose time bound is at most exponential in its space bound. Berman and
Simon [11] extend this space lower bound to probabilistic JAGs with even larger time

bounds, namely, exponential in logO(1) n.
In this paper we use a variant of the JAG to study the tradeoff between time and

space for the problem of undirected graph traversal. The JAG variant we consider is

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1053

more restricted than the model introduced by Cook and Rackoff, because the pebbles
are not permitted to jump. This nonjumping model is closer to the one studied
by Blum and Sakoda [13], Blum and Kozen [12], and Hemmerling [24]. We will
distinguish this nonjumping variant by referring to it as a WAG: “walking automaton
for graphs.”

Several authors have considered traversal of undirected regular graphs by a WAG
with an unlimited number of states but only the minimum number (one) of pebbles, a
model better known as a universal traversal sequence (Aleliunas et al. [2], Alon, Azar,
and Ravid [3], Bar-Noy et al. [4], Borodin, Ruzzo, and Tompa [16], Bridgland [17],
Buss and Tompa [19], Istrail [25], Karloff, Paturi, and Simon [26], Tompa [33]). A
result of Borodin, Ruzzo, and Tompa [16] shows that such an automaton requires
Ω(m2) time (on regular graphs with 3n/2 ≤ m ≤ n2/6−n). Thus, for the particularly
weak version of logarithmic space corresponding to the case P = 1, a quadratic lower
bound on time is known.

The known algorithms and the lower bounds for universal traversal sequences sug-
gest that the true time-space product for undirected graph traversal is approximately
quadratic, perhaps Θ(mn). The result of this paper is a lower bound that provides
progress toward proving this conjecture. More specifically, we prove lower bounds
on time that are nonlinear in m for a wide range of values of P . In particular, for
any WAG M solving st-connectivity in logarithmic space, there is a family of regu-
lar graphs on which M requires time m1+Ω(1). Near the other extreme, if M uses a
number of pebbles that is sublinear in m, there is a family of regular graphs on which
M requires time superlinear in m. Although these give the desired quadratic lower
bound only at the extreme of linear time, they each at least establish that logarithmic
space and linear time are not simultaneously achievable on the nonjumping model
when m = ω(n). (They do not settle the question of simultaneous achievability of
logarithmic space and linear time when m = O(n) since the families of regular graphs
mentioned above have degree d = ω(1) and hence m = ω(n); see sections 3 and 4.)

We prove upper and lower bounds for undirected graph problems on other variants
of the JAG in a companion paper [10]. Following the preliminary appearance of these
results, Edmonds [21] proved a much stronger result for traversing undirected graphs,
and Barnes and Edmonds [6] and Edmonds and Poon [22] proved even more dramatic
tradeoffs for traversing directed graphs.

2. Walking automata for graphs. The problem we will be considering is
“undirected st-connectivity”: given an undirected graph G and two distinguished
vertices s and t, determine if there is a path from s to t.

Consider the set of all n-vertex, edge-labeled, undirected graphs G = (V,E) with
maximum degree d. For this definition, edges are labeled as follows. For every edge
{u, v} ∈ E there are two labels λu,v, λv,u ∈ {0, 1, . . . , d − 1} with the property that,
for every pair of distinct edges {u, v} and {u,w}, λu,v 6= λu,w. It will sometimes be
convenient to treat an undirected edge as a pair of directed half-edges, each labeled
by a single label. For example, the half-edge directed from u to v is labeled λu,v.

Following Cook and Rackoff [20], a WAG is an automaton with Q states and
P distinguishable pebbles, where both P and Q may depend on n and d. For the
st-connectivity problem, two vertices s and t of its input graph are distinguished.
The P pebbles are initially placed on s. Each move of the WAG depends on the
current state, which pebbles coincide on vertices, which pebbles are on t, and the
edge labels emanating from the pebbled vertices. Based on this information, the
automaton changes state and selects some pebble p and some i ∈ {0, 1, . . . , d − 1}.

1054 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

The selected i must be an edge label emanating from the vertex currently pebbled by
p, and p is moved to the other endpoint of the edge with label i. (The decision to
make t “visible” to the WAG but s “invisible” was made simply to render one-pebble
WAGs on regular graphs equivalent to universal traversal sequences.) A WAG that
determines st-connectivity is required to enter an accepting state if and only if there
is a path from s to t. Note that WAGs are nonuniform models.

We have defined WAGs running on arbitrary graphs, but our lower bounds apply
even to WAGs that are only required to operate correctly on regular graphs. The
restriction to regular graphs, in addition to strengthening the results, provides com-
parability to the known results about universal traversal sequences. A technicality
that must be considered in the case of regular graphs is that they do not exist for all
choices of degree d and number of vertices n, as is seen from the following proposition.

Proposition 1. d-regular, n-vertex graphs exist if and only if dn is even and
d ≤ n− 1.

(See [16, Proposition 1], for example, for a proof.) To allow use of Ω-notation in
expressing our lower bounds, however, the “time” used by a WAG must be defined
for all sufficiently large n. To this end, we consider the time used by a WAG on
d-regular, n-vertex graphs where dn is odd to be the same as its running time on
d-regular, (n+ 1)-vertex graphs.

3. The tradeoff. In this section we prove time lower bounds for WAGs with
P pebbles. The proof generalizes an unpublished construction of Szemerédi (com-
municated to us by Sipser) that proved an Ω(n log n) lower bound on the length of
universal traversal sequences for 3-regular graphs.

Theorem 2. Let P and d be fixed functions of n with dn even, P ≥ 1, d ≥ 6,
and d2 + Pd = o(n). Let m = dn/2, ε = 1/(3 ln(6e)), and

d0 = (2P/e)3P/(3P+2) n1/(3P+2).

Let M be any (deterministic) WAG with P pebbles that determines st-connectivity for
all d-regular, n-vertex graphs. Then M requires time

(a) Ω
(
m(log n) d/P

log(d/P)

)
, if P ≤ ε ln(n/d2) and 6P ≤ d ≤ d0,

(b) Ω
(
mP

(
n
d2

) 1
3P

)
, if P ≤ ε ln(n/d2) and d0 < d, and

(c) Ω
(
mmin

(
d, log n

(d2+Pd)

))
, otherwise.

Before proving the theorem, we will make a few observations about it. Perhaps
the most noteworthy is that these bounds are nonlinear whenever either d = ω(1) or
d ≥ 6P .

It is obvious that the regions (i.e., the sets of (P, d) pairs) where the three cases
apply are pairwise disjoint. It is also true that all three regions are nonempty for all
sufficiently large n, although we will not justify this statement.

Although they have very different forms, the three bounds meet “smoothly,”
except along the line segment d = 6P, 1 ≤ P ≤ ε ln(n/d2). Specifically, we will show
that where any pair of the three bounds meet along the curve P = ε ln(n/d2), d ≥
6P , both are Θ(m log(n/d2)), and where bounds (a) and (b) meet along the curve
d = d0, 1 ≤ P ≤ ε ln(n/d2), both are Θ(md0).

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1055

All three bounds are increasing functions of d (recall m = dn/2). The ratio of
the lower bounds to m is also an interesting quantity. Note that the ratio of bound
(a) to m is an increasing function of d, while that of bound (b) is decreasing. Since
they are equal (within constant factors) at d = d0, the two could be combined into
the single expression Ω(mmin((logn)(d/P)/ log(d/P), P (n/d2)1/(3P))), as was done
in bound (c).

It seems likely that the decrease in bound (b) is an artifact of the proof technique
rather than an intrinsic reduction in the complexity of the problem, since intuitively
higher degree would seem to make the search more difficult. On the other hand,
higher degree reduces the graph’s maximum possible diameter, which perhaps helps.
It is known that the length of universal traversal sequences is not monotonic in d,
although it may be monotonic up to some large threshold, perhaps d = bn/2c − 1.
(See Borodin, Ruzzo, and Tompa [16] for a discussion.) Similarly, the complexity of
st-connectivity is not monotone in d, since regular graphs of degree d > bn/2c− 1 are
necessarily connected, but it is plausibly monotone for d up to cn, for some constant
0 < c < 1/2.

Two special cases of the theorem are of particular interest. Namely, the following
two corollaries show that logarithmic space implies time m1+Ω(1) and that sublinear
space implies superlinear time.

Corollary 3. Let M be a WAG with P pebbles that determines st-connectivity
for all regular n-vertex graphs. If P = O(1), then there is a family of regular graphs
on which M requires time Ω(m1+1/(3P+3)).

Proof. Consider the family of regular graphs with degree d = d0 = Θ(n1/(3P+2)).
Theorem 2 applies, specifically case (a). This gives a time lower bound of Ω(md) =
Ω(m1+1/(3P+3)).

For P = 1 the Ω(m7/6) bound given above is not as strong as the Ω(m2) bound
given by Borodin, Ruzzo, and Tompa [16] but is included for comparative purposes.
Also, the Ω(m2) lower bound for universal traversal sequences holds for degree up to
n/3 − 2, so the decrease in the ratio of bound (b) to m noted above certainly is an
artifact of our proof when P = 1.

Corollary 4. Let M be a WAG with P pebbles that determines st-connectivity
for all regular n-vertex graphs. If P = o(n), then there is a family of regular graphs
on which M requires time Ω(m log(n/P)) = ω(m).

Proof. Suppose P ≥ n1/3. Consider the family of regular graphs with degree
d =

√
n/P = ω(1). Then d2 +Pd ≤ 2

√
Pn = o(n), so Theorem 2 applies, specifically

case (c). This gives a lower bound of Ω(m log d) = Ω(m log(n/P)) on time. When
P < n1/3, a similar analysis suffices, choosing d = log n.

Corollary 4 is tight: time O(m) is possible with O(n) pebbles [10, Theorem 15].
Note also that, when P = Θ(n), the time is still Ω(m log(n/P)) [10, Theorem 3].

Various constants in the theorem can be improved by slight modification to the
construction and/or its analysis, but in the interest of clarity we will not present these
refinements.

Proof of Theorem 2. The idea underlying the proof is to build a graph with many
copies of some fixed gadgets, each with many “entry points.” Since M does not have
enough pebbles to mark all the gadgets it has explored, it must spend time reexploring
each gadget from different entry points, or it risks the possibility that one of them
might never be fully explored. The crux of the argument is to choose the right gadgets
and to interconnect them so that we can be sure this happens. We use an “adversary”
argument to show this. We begin by giving an overview of the argument, followed

1056 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

by more detailed descriptions of the gadgets and adversary strategy, and finally the
analysis.

Overview. Imagine the adversary “growing” the graph as follows. At a general
point in the construction, the graph consists of some gadgets that are fully specified
except for the interconnections among their “entry point” vertices. The adversary
simulates M on this partial graph until M attempts to move some pebble p out of an
entry point using a label for which no edge is yet defined. Our main freedom in the
construction is the choice of the gadget at the other endpoint of this interconnecting
edge f . The adversary will pick it so that M will spend a nonnegligible number of
steps τ “exploring” the gadget reached through f . The adversary can achieve this
for most of the Ω(m) interconnecting edges, yielding an Ω(mτ) lower bound on time.
The parameter τ will vary depending on n, P, and d, giving the three lower bounds
quoted in the statement of the theorem.

The interconnecting edge f is chosen as follows. Note that no single labeled gadget
γ will suffice to keep p “busy” for τ steps. For example, M ’s very next move of p, say
by label a, might be an exit from γ. On the other hand, if the adversary can learn
that M ’s next move of p will be on label a, it can choose some gadget in which label
a moves from an entry point into the gadget, rather than exiting from it. Similarly,
if it can learn the next τ moves by p (and/or other pebbles following p across f), the
adversary can choose a gadget in which this whole sequence of moves avoids exiting
from the gadget. A key point is that M can sense only very limited facts about the
gadget that p enters when it crosses f . Suppose p has just crossed f , arriving at a
vertex v. M can sense (i) the degree of v, (ii) whether v is the target vertex t, and (iii)
whether there are other pebbles on v. Thus, in general M has several possible next
moves for p, based on which of these conditions hold. The adversary avoids having
to consider these alternative futures by assuming, respectively, (1) that the graph is
d-regular, (2) that M does not reach t (within Ω(mτ) steps), and (3) that f connects
to a gadget that contains no other pebbles when p enters it, and that remains free of
other pebbles (except perhaps ones that follow p across f) for τ moves. Given these
assumptions, the adversary will be able to deterministically simulate the next several
moves by M so that it can decide which labeled gadget can host those moves without
allowing a pebble to exit. Of course, the adversary must also ensure that assumptions
(1)–(3) are ultimately justified. Building a d-regular graph requires some care but is
not too difficult. Assumption (2) will follow easily if each connecting edge accounts
for τ moves. Assumption (3) is slightly trickier; we will return to it below.

We view the overall adversary strategy as a two-phase process. A local phase
determines the internal (“local”) structure required of a gadget hosting the next sev-
eral moves of p so that no pebble will exit this gadget until at least τ moves have
been charged to it, starting after p’s entry. The basic idea is to use a “lazy, greedy”
definition: lazy in that the adversary will not define a labeled half-edge in the gadget
until just before M needs to move a pebble across it, and greedy in that when such
a half-edge is defined, it will be defined to stay within the gadget. Of course, this
cannot continue indefinitely, but it will be possible for at least the first τ moves within
the gadget. Thus, pebble motion across half-edges exiting the gadget is deferred for
at least this long.

The adversary’s simulation of M is now “rolled back” to the point at which p
crossed f . The global phase of the adversary’s strategy is to choose a gadget already
present in the graph and to connect f to it. Recall that our goal is to reuse each gadget
many times, so that the total time spent in it asymptotically exceeds its number of

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1057

edges. (Occasionally, when all entry points of suitable gadgets have been used, a new
copy of the needed gadget will be added. This process terminates when the number
of vertices in the graph approaches n.) The gadget chosen for f must match the
gadget determined by the local phase, must have an unused entry point to which to
connect f , and (before f was connected to it) must have remained free of pebbles
from the time when p crossed f until τ moves were charged to it. The “pebble-free”
condition ensures assumption (3) above. Such a condition is necessary since, if it
were violated, M might encounter “unexpected” pebbles in the chosen gadget, i.e.,
pebbles not encountered during the simulation in the local phase. This could cause M
to deviate from the sequence of moves predicted by the local phase, and so possibly
allow p or one of the pebbles that followed it across f to exit from the gadget in fewer
than τ moves.

A point we slighted above is that the “τ steps” under discussion are not neces-
sarily consecutive and are not necessarily all made by p or by pebbles that followed p
across f . For example, p’s moves after crossing f might be interleaved with moves by
some other pebble p′ after crossing another undefined edge f ′ and/or many previously
defined connecting edges. In general, the adversary keeps track of these many inter-
leaved activities by charging pebble moves to connecting edges, with the “local phase”
for an undefined connecting edge f being the interval between its charge reaching 1
(at the first crossing of f by some pebble) and its charge reaching τ .

The final issue to address is that we want to avoid adding a new copy of a gadget
until all entry points of most existing copies have been used. Specifically, we will have
at most a fixed number (P (τ + 2) + d, to be precise) of “open” copies of each gadget
at any time. As noted above, many steps may occur between the first and τth steps
charged to f . During this interval, other pebbles might touch all open copies of the
gadget needed for f , leaving no pebble-free open gadget to which to connect f . Our
solution to this problem is found in the adversary’s method of charging pebble moves
to edges. Moves in f ’s gadget are always charged to f . In addition, certain moves
touching other gadgets are charged to f also. With this scheme, we can bound both
the number of moves that occur in f ’s gadget and the number of other gadgets that
are touched by pebbles during f ’s local phase. Thus, no gadget is expected to absorb
too many moves, and there will be at least one suitable pebble-free open copy of the
needed gadget when f accumulates charge τ .

The construction will “waste” (i.e., not fully utilize the connecting edges of) up
to P (τ + 2) + d copies of each gadget. The main constraint that limits τ is that it
must be small enough that this waste is small, i.e., P (τ + 2) + d times the number of
distinct types of labeled gadgets times the number of connecting edges per gadget is
small compared to the total number of connecting edges.

We will now present the construction in more detail. We actually define a sequence
of graphs Gi,j , 0 ≤ i ≤ µ, 0 ≤ j, representing successive phases of the construction.
Like τ , the parameter µ varies slightly depending on n, p, and d, but will be Θ(m) in
each case. (The maximum value of j is unimportant, but turns out to be about Pτ .)
Each graph consists of the following:

1. A set of gadgets, each with the same size S and number L of entry vertices,
and a fully defined internal structure and labeling. Each vertex that is not an entry
vertex has degree d. There is a fixed d′ ≥ 1 such that each entry vertex has d′ edges to
neighbors in the same gadget, and up to d−d′ connecting edges joining it to the entry
vertices of other gadgets or protogadgets (see below). We will show that d− d′ ≥ d/2
and that L/S > 1/3, ensuring at termination that the number of connecting edges is
Θ(m).

1058 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

2. A set of labeled committed connecting edges joining entry vertices of gadgets.
Gi,j will have exactly i committed connecting edges.

3. A set of up to P partially labeled uncommitted connecting edges, each joining
an entry vertex u of some gadget to an entry vertex v of a protogadget (see below).
The uncommitted half-edge from u to v is labeled, but the half-edge from v to u is
unlabeled.

4. A set of up to P partially defined protogadgets. Like a gadget, a protogadget
has S vertices, including L entry vertices, but unlike the gadgets, the internal structure
of a protogadget is in general only partially defined; its vertices may have degree less
than d, and its half-edges may not be labeled. In particular, only one entry vertex
v of each protogadget will be incident to a connecting edge, say the uncommitted
connecting edge {u, v}, and, as indicated above, the half-edge from v to u will be
unlabeled. The protogadgets are the tools used in the local phases of the adversary’s
strategy.

In outline, the adversary’s strategy is as follows. The initial graph G0,0 consists
of one arbitrarily chosen gadget. The start vertex s is an arbitrary vertex in this
gadget. For any Gi,j , the initial configuration of M on Gi,j consists of M in its start
state and all P pebbles on Gi,j ’s copy of s. Associate with each connecting edge of
the graph Gi,j an integer charge, initially zero. The adversary will charge each pebble
motion to at most one connecting edge, according to a rule to be given later. It will
simulate M starting from M ’s initial configuration on Gi,j until one of the following
two things happens. (It simulates M as if all vertices in Gi,j were of degree d, even
though some are of smaller degree.)

1. Suppose M attempts to move a pebble from a vertex u across a half-edge
labeled a, where no such labeled half-edge exists. If u is an entry vertex in some
gadget, add a new uncommitted half-edge from u labeled a to the entry point v of
a new protogadget. More precisely, we define Gi,j+1 to be Gi,j plus that half-edge
and protogadget. If u is in some protogadget, choose some other vertex v in the same
protogadget (according to a rule to be given later) and add a half-edge from u to v
labeled a. More precisely, we define Gi,j+1 to be Gi,j plus that half-edge (plus a few
others, as we will see). The choice of v is not arbitrary; one point we must establish
is that there will always be a suitable vertex v when needed. The thrust of this step
in the adversary strategy is to keep pebbles “trapped” in protogadgets for as long as
possible. This portion of the adversary’s strategy is the “local” strategy introduced
above, so-called because of its focus on the structure within a gadget.

2. Suppose an uncommitted edge f in Gi,j accumulates a charge of τ . In this
case, we will convert f into a committed edge. More precisely, we will form Gi+1,0

from Gi,j by choosing an existing gadget “similar” to f ’s protogadget and committing
f to enter the chosen gadget. (This is described more fully below.) Again, f cannot
be committed arbitrarily; a second point that we must establish is that an appropriate
gadget (usually) exists when needed, and that M ’s behaviors on Gi,j and Gi+1,0 are
similar. The thrust of this step is that the size of Gi+1,0 is growing slowly with i,
since we are (usually) able to reuse existing gadgets, but the time M spends in Gi+1,0

is rising rapidly with i, since a lower bound on the total running time of M is τ times
the number of committed edges (i, which is ultimately µ = Θ(m)). This portion of
the adversary’s strategy is the “global” strategy, so-called because of its focus on the
interconnections among gadgets.

The adversary continues the simulation on Gi,j+1 or Gi+1,0 as appropriate, and
repeats this process until Gµ,0 is constructed.

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1059

(a) (b)
d = 10, k = 4, q = 2, r = 1 d = 8, k = 1, q = 2, r = 1

For clarity, only half of the forward
edges are shown.

Fig. 1. Examples of the funnel gadgets.

Gadgets. Before describing the adversary strategy in more detail, we will describe
the gadgets and protogadgets. The gadgets are called “funnels.” An example is shown
in Fig. 1a. The entry vertices are those on the “rim” of the funnel. Intuitively, the
adversary will try to “trap” pebbles in a funnel for a while by assigning edge labels
so that the moves taken by pebbles in the gadget in the near future (i.e., the next τ
moves in the gadget) either stay on the same layer or drop to the next deeper layer.
The “cone” portion of the funnel (near the top of Fig. 1a) allows many entry vertices
to share vertices in the narrower portion near the bottom of Fig. 1a. An example of
a two-layer funnel is shown in Fig. 1b.

Four interrelated parameters k, q, g, and r, which in turn depend on n, P, and d,
characterize the gadgets. All four are positive integers. Each gadget has k+ 1 layers,
numbered 0 through k. Layer l, 0 ≤ l ≤ k, has

nl = (d+ 1) ·max(1, 2dlog2 ke−l)

vertices, designated vli, 0 ≤ i ≤ nl−1. The entry vertices are those on layer 0. Hence,
the number of entry vertices is

L = (d+ 1) · 2dlog2 ke,

and the total number of vertices per gadget is

S = (d+ 1)(2dlog2 ke+1 − 1 + k − dlog2 ke).

1060 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

Note that

L

S
=

(d+ 1) · 2dlog2 ke

(d+ 1)(2dlog2 ke+1 − 1 + k − dlog2 ke)
>

2dlog2 ke

2dlog2 ke+1 + k
≥ 1

3
,(1)

as promised, and that

S ≤ (1 + 1/d) d (2 · 2dlog2 ke + k) ≤ (7/6) d (5k) < 6dk.(2)

The parameter q is an even integer, 2 ≤ q. The d edge labels {0, 1, . . . , d − 1}
are partitioned into g = bd/qc “full” blocks, each of size q, plus perhaps one “partial”
block of size d mod q in case q does not evenly divide d. The same fixed partition is
used for all gadgets and is arbitrary, except that for each a ∈ {0, 1, . . . , d − 1}, we
place both a and its mate in the same block, where the mate of label a is d− 1− a.
Note that if d is odd, then (d− 1)/2 is its own mate and will be in the partial block.

The remaining gadget parameter r is an integer satisfying 1 ≤ r ≤ g/3. Note
that the existence of such an r implies that g ≥ 3, and hence

q ≤ d/3.(3)

Intuitively, r denotes an upper bound on the number of pebbles that we attempt to
trap in a given gadget.

The edges within a gadget always connect vertices on the same or adjacent layers.
A half-edge is called a “forward” half-edge if it goes from layer l to layer l + 1,
“backward” if it goes to layer l − 1, and “cross” if it goes to layer l. For each layer
l and each block B of labels, there is a t ∈ {forward,backward, cross} such that all
half-edges with labels in B leaving vertices on layer l will be of type t. Thus it is
natural to refer to the labels and the blocks of labels at a layer as forward, backward,
or cross, as well as the half-edges. For i ∈ N, a ∈ {0, 1, . . . , d − 1}, and 0 ≤ l ≤ k,
define

χ(i, a, l) =

 (i+ a+ 1) mod nl if a < (d− 1)/2,
(i+ nl/2) mod nl if a = (d− 1)/2,
(i− (d− 1− a)− 1) mod nl if a > (d− 1)/2.

If a ∈ {0, 1, . . . , d−1} is a forward label at layer l, then for 0 ≤ i ≤ nl−1, a will label
the half-edge from vertex vli to vertex vl+1

χ(i,a,l+1). Similarly, if a is a cross label it will

go to vlχ(i,a,l). Notice that a cross edge labeled a will be labeled by a’s mate in the
reverse direction. No parallel edges arise since nl ≥ d+ 1. As an example, if all edges
are cross edges (a case that does not arise in our constructions) and if nl = d + 1,
then layer l would be a (d+1)-clique. As another example, whenever label 0 is a cross
label at layer l, the half-edges labeled 0 will form a Hamiltonian cycle through the
layer l vertices, and those edges will be labeled d−1 (0’s mate) in the other direction.
Note that the backward labels are not constrained by χ.

The set of gadgets is defined as follows. For 0 ≤ l ≤ k let

bl =

{
g − r if l = 0,
r(nl−1/nl) otherwise,

fl =

{
0 if l = k,
r otherwise.

See Table 1. If q does not evenly divide d, then the labels in the partial block will
be cross labels at each layer 0 ≤ l ≤ k. For each layer 0 ≤ l ≤ k, choose fl of

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1061

Table 1
Number of edge blocks of each type per layer.

Layer 0 1 · · · dlog2 ke dlog2 ke+ 1 · · · k − 1 k
fl r r · · · r r · · · r 0
bl g − r 2r · · · 2r r · · · r r

Cross 0 g − 3r · · · g − 3r g − 2r · · · g − 2r g − r

the remaining g blocks as forward labels and bl as backward labels (connecting edge
labels, if l = 0). All blocks not selected above will be cross labels. Note that the rules
in the previous paragraph define the forward and cross half-edges, given their labels,
but not the backward half-edges. The chosen backward labels are assigned to these
half-edges in an arbitrary but fixed way. Note that there are just enough backward
labels: each of the nl−1 vertices on level 0 ≤ l − 1 < k has exactly qr forward labels,
with destinations evenly distributed over the nl vertices on layer l, so each vertex on
layer l is incident to exactly qr(nl−1/nl) = q · bl edges from layer l − 1.

For layer 0, the b0 blocks selected above will label connecting edges. Thus, each
entry vertex will be adjacent to exactly d′ = rq + (d mod q) other vertices in the
same gadget, and to d− d′ connecting edges. Note, since r ≤ g/3 and q ≤ d/3 (from
inequality (3)), that

d− d′ = gq − rq ≥ (2/3)gq = (2/3) bd/qc q ≥ (2/3)((3/4)(d/q))q = d/2,(4)

as claimed earlier. Also note that at most 3r blocks are chosen as forward and
backward at each layer, and that this is always possible since g ≥ 3r.

The number of distinct gadget types created by this process is(
g
r

)k (
g − r

2r

)dlog2 ke(
g − r
r

)k−dlog2 ke−1(
g
r

)1

≤
(
g
r

)2k−dlog2 ke(
g
2r

)dlog2 ke

≤
(eg
r

)r(2k−dlog2 ke) (eg
2r

)2rdlog2 ke

≤
(eg
r

)r(2k+dlog2 ke)
.(5)

Figure 1b fully shows a gadget with d = 8, k = 1, q = 2, g = 4, and r = 1, with
forward edges labeled 0 and 7 from layer 0 and backward edges labeled 3 and 4 from
layer 1. Figure 1a shows a gadget with d = 10, k = 4, q = 2, g = 5, and r = 1, with
forward edges labeled 0 from layers 0 through 3. In the interest of clarity, the forward
edges labeled 9 (0’s mate) are not shown in the figure.

Protogadgets and local strategy. The protogadgets are built incrementally by the
adversary. Initially, each consists of S vertices, denoted as in the gadgets, together
with the cross edges defined by the partial block of labels (if any) at each level. As
discussed previously, the adversary proceeds by simulating M from its initial config-
uration on Gi,j . Suppose during the tth step of this simulation that M attempts to
move some pebble p along the half-edge labeled a from some vertex u but no such
half-edge exists. As sketched earlier, if u is an entry vertex of some gadget, we create
a new protogadget into which p will move. If u is a vertex vli in some protogadget

1062 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

π, the adversary decides whether to make the block of labels containing a all forward
half-edges or all cross half-edges (see below). The graph Gi,j+1 is then defined to be
the same as Gi,j , except that at layer l in π, a’s block of half-edges is added. The
adversary restarts the simulation of M , starting from M ’s initial configuration on
Gi,j+1. It should be clear that during the first t − 1 steps of the simulation, M will
behave on Gi,j+1 exactly as it did on Gi,j , since Gi,j is a subgraph of Gi,j+1. The
tth step, of course, was impossible in Gi,j , but is possible in Gi,j+1. Note that p can
exit from π only at an entry vertex but is no nearer to such a vertex in Gi,j+1 after
the tth step than before. Thus we can view M as running on a dynamically growing
graph, one being built by the adversary so as to trap pebbles in protogadgets for some
number of moves. We will adopt this view when no confusion will arise and let Gi,∗
denote the last Gi,j built before Gi+1,0.

Let z be the number of free blocks at level l, i.e., blocks whose half-edges have
not yet been defined. The adversary chooses a’s block to label cross edges provided
z > bl + fl and forward edges provided bl < z ≤ bl + fl. If z ≤ bl, the adversary fails
(but see Claim 1 below).

Let

τ =

{
(k − dlog2 ke) bg/3c if P ≤ r,
r if P > r.

Note that (k − dlog2 ke) bg/3c ≥ r since k ≥ 1 and g/3 ≥ r, so in either case we have

(k − dlog2 ke) bg/3c ≥ τ.(6)

We prove three claims about the protogadgets. We will see later that the global
strategy prevents M from making more than τ moves in any protogadget, so Claim 1
below shows that the adversary will never fail.

Claim 1. The adversary will never fail, provided M makes at most τ moves in
any protogadget.

Proof. First, clearly at most min(P, τ) pebbles can enter a protogadget in τ steps,
and for the particular definition of τ chosen above, min(P, τ) ≤ r. Now, suppose the
claim is false. Suppose the adversary first fails during an attempted move at level l in
some protogadget π. Then at least g − bl moves were previously made by pebbles at
layer l. As noted, at most r pebbles can enter π in τ moves. It cannot be the case that
l < k, since for all such layers g− bl ≥ r = fl, so during the last r of the g− bl moves,
all r pebbles moved past layer l, leaving none to cause failure there. Thus, the failure
occurred in layer k. For a pebble to reach layer k, it must be that the maximum
number of cross edges, plus at least one forward edge, have been previously defined
at each layer less than k. Thus, the number of moves completed in this protogadget
prior to failure is at least

(g − bk) +
k−1∑
l=0

(g − bl − fl + 1)

= (g − r) + dlog2 ke (g − 3r + 1) + (k − dlog2 ke − 1)(g − 2r + 1)

≥ (k − dlog2 ke)(g − 2r + 1)

> (k − dlog2 ke) bg/3c
≥ τ.

The second inequality uses the assertion that r ≤ g/3, and the third uses inequal-
ity (6).

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1063

Claim 2. Each protogadget is a subgraph of some gadget.
Proof. The adversary chooses at most fl forward blocks and at most g− (fl + bl)

cross blocks at each layer. Thus there are enough unchosen blocks to select a total of
exactly fl forward and bl backward blocks, which precisely defines a gadget.

Claim 3. All entry points of a protogadget are equivalent in the sense that if M
makes at most τ moves in a protogadget entered through vertex v0

h, then the resulting
configuration will be exactly the same as if it had entered through vertex v0

0, except
that positions of all pebbles in it on layer l will be shifted by h mod nl for 0 ≤ l ≤ k.

Proof. Intuitively, this reflects the rotational symmetry of the funnel. To make
this precise, we claim that for any h ∈ N and any protogadget π, the mapping φh(vli) =
vli′ , where i′ = (i + h) mod nl, is an automorphism on π, i.e., a surjection on the
vertices of π preserving labeled half-edges. Consider a forward edge labeled a at level
l in π, say (vli, v

l+1
j), where j = χ(i, a, l + 1). Note that for each fixed a and l, there

is a constant c (depending on a and l but independent of i) such that χ(i, a, l + 1) =
(i + c) mod nl+1. Now φh(vli) = vli′ , φh(vl+1

j) = vl+1
j′ , with i′ = (i + h) mod nl, and

j′ = (j + h) mod nl+1, so since nl+1 divides nl we have

χ(i′, a, l + 1) = (i′ + c) mod nl+1

= (((i+ h) mod nl) + c) mod nl+1

= (i+ h+ c) mod nl+1

= (((i+ c) mod nl+1) + h) mod nl+1

= (j + h) mod nl+1

= j′.

A similar argument applies to cross edges.
The analog of Claim 3 also holds for gadgets, provided the τ moves use only

forward and/or cross edges. The same may not be true if backward edge labels are
used.

Global strategy. We have now described the gadgets and protogadgets and the
adversary’s strategy for building them. We turn to the remaining part of its strategy:
charging and committing edges. Recall that the adversary associates a charge with
each connecting edge, in which it counts moves in Gi,∗. In addition, it associates with
each connecting edge a second integer, called a birthdate, recording the time at which
a pebble first crosses the edge.

The construction of Gi+1,0 from Gi,∗ proceeds as follows. The adversary begins
with M in its initial configuration in the current graph Gi,∗. The adversary simulates
successive moves of M on Gi,∗ until some uncommitted connecting edge accumulates
charge τ , where edge charges are determined by the following rules. During a move,
suppose M moves pebble p along

1. an edge internal to a gadget or protogadget. Let f be the connecting edge
most recently crossed by p. If f has charge less than τ , then charge the move to f ;
otherwise there is no charge.

2. a connecting edge f (committed or not). Charge the move to the oldest (i.e.,
least birthdate) connecting edge having charge less than τ . If this is the first step in
which a pebble has crossed edge f in either direction, define the birthdate of f to be
the current time.

As sketched in the overview, the second charging rule ensures that when an un-
committed connecting edge f , even one whose associated pebbles have moved infre-
quently, accumulates charge τ , only a few of the gadgets of the appropriate type can
have been touched by pebbles since the birth of f .

1064 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

When some uncommitted connecting edge f = {u, v} with label λu,v = a accu-
mulates charge τ we stop the simulation and construct from Gi,∗ a new graph Gi+1,0

defined as follows. Let πv be the protogadget entered through f , with v in πv. Note
that by the charging rules above, each move in πv has been charged to f , so there
have been at most τ such moves. Thus by Claim 1 the adversary did not fail while
building πv. By Claim 2, the protogadget πv is a subgraph of some gadget γv. We
say an entry vertex of a gadget is open if it has degree less than d. If possible, choose
an entry vertex x of a gadget in Gi,∗ such that

• x is open,
• x’s gadget is of the same type as γv,
• x and u are not adjacent, and
• x’s gadget has remained pebble free since the birthdate of the

uncommitted edge f .

(7)

Gi+1,0 is identical to Gi,∗, except that the protogadget πv is removed and the uncom-
mitted edge f = {u, v} is replaced by the committed edge {u, x} with labels λu,x = a
and λx,u = b, where b is any label not already present on an outgoing half-edge at x.
If there is no such x, or if using the only such x would result in Gi+1,0 having neither
uncommitted edges nor open entry vertices, we instead add one additional gadget of
type γv, choose as x any of the new gadget’s entry vertices, then proceed as described
above. The latter contingency avoids premature termination of the construction. The
requirement that x and u be nonadjacent avoids construction of parallel edges.

The behavior of M on Gi+1,0 is similar to its behavior on Gi,∗. Suppose in Gi,∗
that the uncommitted edge f was first crossed during the simulation of the bth move
of M (i.e., has birthdate b) and accumulates charge τ during move b′. When M is
simulated on Gi+1,0, it will behave exactly as on Gi,j for the first b− 1 moves, since
the portion of Gi+1,0 visited during that period is exactly the same as the portion
visited in Gi,∗. In particular, the charges and birthdates attached to edges will be
the same. (Thus, one can view the adversary as rolling back the simulation to step
b, committing f , and resuming.) Between steps b and b′ those pebbles that crossed
edge f in Gi,∗ will be in x’s gadget γx in Gi+1,0 instead of in the protogadget πv
entered through f as they were in Gi,∗, but since γx contains πv as a subgraph, their
motions in Gi+1,0 will exactly reflect their motions in Gi,∗. Note that by Claim 3
this is true regardless of which entry vertex x of γx was chosen. It is crucial that the
chosen gadget γx was pebble free between steps b and b′, so there is no possibility
that these pebbles will meet pebbles in γx in Gi+1,0 that they did not meet in πv in
Gi,∗. Again, the charges and birthdates attached to edges will be the same in Gi+1,0

as in Gi,∗ through step b′. In particular, each of the i+ 1 committed edges in Gi+1,0

will have a charge of τ , and hence M will run for at least (i+ 1)τ steps on Gi+1,0.

Final Construction. After Gi+1,0 is built, we restart the simulation from the be-
ginning on Gi+1,0 to build Gi+2,0, etc. Continue this process until Gµ,0 is constructed.
Finally, from Gµ,0 we build a pair of similar graphs G and G′, one connected and the
other not, on which M will have identical behavior. In particular, if M runs for fewer
than µ · τ steps, then M cannot be correct on both. The connected graph G is built
by

1. committing all uncommitted edges, as described above;
2. joining the remaining open entry vertices with some number, ∆, of extra

vertices so as to make G have n vertices and be d-regular; and
3. designating one of these extra vertices as t.

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1065

One way to accomplish the second step is the following. First, pick any two nonad-
jacent open vertices and connect them. Repeat this as often as possible. Let u be
the number of “missing” half-edges, i.e., the total over all open vertices of d minus
their degrees, and let i be the number of remaining open vertices. Since the pairing
process could not be applied to reduce i further, it must be the case that the i open
entry vertices form a clique. Recalling that each entry vertex is incident to at most
d− d′ connecting edges, the number u of missing half-edges can be at most

i((d− d′)− (i− 1)) ≤ i(d− i) ≤ d2/4,

since d′ ≥ 1 and since i(d− i) is maximized when i = d/2. Thus u ≤ d2/4. Further-
more, u will necessarily be even, since each entry vertex starts with d−d′ missing half
edges; since from (4) d− d′ is a multiple of q, hence even; and since each committed
edge replaces a pair of missing half-edges. Notice that this implies that d(n −∆) is
even, since the gadgets together contain n−∆ vertices and d(n−∆)− u half-edges,
which naturally occur in pairs. Complete the construction by adding a ∆-vertex, d-
regular graph that contains a u/2-matching, removing the edges of this matching, and
connecting each of the u missing half-edges to a distinct endpoint of the matching.
Such a regular graph exists by Proposition 1, since dn, d(n −∆), and hence d∆ are
even; since, as shown below, d < ∆ and u ≤ d2/4 < ∆; and since the proof of Propo-
sition 1 given in Borodin et al. [16] constructs a regular graph that is Hamiltonian
and hence has a u/2-matching. (That construction is similar to the construction of
cross edges in one layer of our gadgets, where the 0-labels form a Hamiltonian cycle.)

The nonconnected graph G′ is built similarly, except that d + 1 of the ∆ extra
vertices, including t, are connected in a clique and hence are disconnected from the
rest of the graph.

By an argument similar to the one above, M ’s behavior on both G and G′ is
essentially the same as on Gµ,0. In particular, the edge charges will be the same, so
M will run for at least µ·τ steps without reaching any of the ∆ extra vertices, including
t. One point to be shown in the analysis below is that ∆ ≥ d+1+max(d+1, d2/4) =
d2/4 +d+ 1, i.e., large enough to allow completion of the construction of G and G′ as
described above. Since d ≤ √n−2 (in fact, d2 +Pd = o(n)), it suffices that ∆ ≥ n/4.

Analysis. All that remains to show our Ω(mτ) lower bound is to give values for
the various parameters so as to satisfy the constraints listed above (and to maximize
τ). For convenience, we summarize the relevant parameters and constraints here.

C1. Number of committed connecting edges: µ = Ω(m).
C2. Number of vertices added in the final step of the construction: ∆ ≥ n/4.
C3. Number of layers per gadget: k ≥ 1.
C4. Size of full blocks in the label partition: q ≥ 2, even.
C5. Number of full label blocks: g = bd/qc.
C6. Upper bound on the number of pebbles entering a protogadget: 1 ≤ r ≤ g/3.
C7. Time per committed edge: τ ; if P ≤ r then τ = (k − dlog2 ke) bg/3c; else

τ = r.

To satisfy constraint C1, choose

µ = bdLn/(8S)c .(8)

Since we have seen in inequality (1) that L/S = Ω(1), we have µ = Ω(m) as claimed
above.

We now turn to constraint C2. We say a gadget is closed if each of its L entry
vertices is connected to the maximum number d−d′ of committed half-edges; otherwise

1066 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

the gadget is open. Gµ,0 has exactly µ committed edges, or 2µ committed half-edges.
From (4), each closed gadget contributes (d− d′)L ≥ dL/2 committed half-edges, so
by (8) there can be no more than 2µ/(dL/2) ≤ n/(2S) closed gadgets in Gµ,0, each
of size S, and so closed gadgets contribute no more than n/2 vertices to G. Thus, to
ensure constraint C2, i.e., that ∆ is at least n/4, it suffices to ensure that the following
additional constraint holds:

C8. Number of vertices in open gadgets: must be at most n/4.

When building Gi+1,0 from Gi,∗, the adversary replaces a protogadget π by a
copy of a fixed gadget γ. There might be many copies of the gadget γ with which
π can be replaced. A key claim in establishing constraint C8 is that there are never
more than P (τ + 2) + d open copies of such a gadget.

Claim 4. When Gi+1,0 is defined, if there are P (τ + 2) + d open copies of
the gadget γv, then at least one of them will have an entry vertex x satisfying the
conditions (7), so a new (open) gadget will not be introduced into Gi+1,0.

Proof. We show an upper bound on the number of open gadgets that are disqual-
ified from containing x. It is easy to see that at most d− d′ ≤ d− 1 entry vertices are
adjacent to u in Gi,∗. A more subtle problem is to bound the number of gadgets that
can be touched by pebbles between the birth of π’s uncommitted connecting edge
f and the time at which f has accumulated charge τ . At most P gadgets contain
pebbles at the time of f ’s birth. At most P − 1 edges older than f can have charge
less than τ , because, by Claim 1, for each such edge f ′ there is at least one pebble
that does not leave its gadget or protogadget until f ′ has accumulated charge τ . Each
gadget touched by some pebble after the birth of f necessitates the crossing of some
connecting edge. Thus after at most (P − 1)τ such crossings, f will be the oldest
uncommitted edge, and after at most τ more crossings, f will have charge τ . Thus, at
most P (τ+1) gadgets can be touched by pebbles during the relevant interval. Finally,
at all times, at most P open gadgets are incident to uncommitted half-edges, hence
at most P lack open entry vertices. Thus, the number of vertices x not disqualified is
at least P (τ + 2) + d− (d− 1)−P (τ + 1)−P = 1, which establishes the claim.

Inequality (5) bounds the number of distinct gadget types, Claim 4 bounds the
number of open copies of each, and inequality (2) bounds the size of each copy. Thus,
the total number of vertices in open gadgets is at most

(eg
r

)r(2k+dlog2 ke)
(P (τ + 2) + d) 6dk.(9)

We divide the remainder of the analysis into two cases. The second applies when
P is small. The first applies to either small or large P but gives a weaker bound than
the second for small P .

Case 1. Let δ = 3ε/2 = 1/(2 ln(6e)), let

β = 72

(
d2 + Pd ln

n

d2 + Pd

)
,

and suppose n, P , and d are such that d2 + Pd ≤ n/e and β ≤ n/e6/δ, both of which
are true for all sufficiently large n, since d2 + Pd = o(n). Then we claim that the
following parameter values satisfy constraints C3–C8:

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1067

k = 1,

q = 2

⌈
d− 5

δ ln(n/β)

⌉
,

g = bd/qc ,
r = bg/3c ,
τ = r.

Note that constraints C3 and C5 are immediately satisfied, as is constraint C7 since
k = 1. It is also immediate that q is even and is positive, since d ≥ 6, δ > 0, and
n/β > 1; hence constraint C4 is satisfied.

For constraint C6, it is immediate that r ≤ g/3. To show r ≥ 1 it suffices to show
q ≤ d/3:

q = 2

⌈
d− 5

δ ln(n/β)

⌉
≤ 2

⌈
d− 5

6

⌉
= 2

⌊
d

6

⌋
≤ d

3
.

To satisfy constraint C8 above, we first note (making frequent use of the inequal-
ities x/2 ≤ bxc and dxe ≤ 2x, valid for all x ≥ 1) that

g/r = g/ bg/3c ≤ g/(g/6) = 6,

r = bg/3c ≤ g/3 = bd/qc /3 ≤ d/(3q)
=

d

6
⌈

d−5
δ ln(n/β)

⌉ ≤ 1

6

d

d− 5
δ ln(n/β) ≤ δ ln(n/β),

r + 2 ≤ 3r,

d2 + Pd ≤ d2 + Pd ln
n

d2 + Pd
< β, and

δ = 1/(2 ln(6e)) < 1.

Returning to constraint C8, we must show that (9) is at most n/4:(eg
r

)r(2k+dlog2 ke)
(P (τ + 2) + d) 6dk

= 6
(eg
r

)2r

(d2 + Pd(r + 2))

≤ 18(6e)2r(d2 + Pdr)

≤ 18(6e)2δ ln(n/β)(d2 + δPd ln(n/β))

= 18(n/β)(d2 + δPd ln(n/β))

=
18n(d2 + δPd ln(n/β)

72
(
d2 + Pd ln n

d2+Pd

)
< n/4,

as desired.
To complete the analysis of Case 1, we show that τ is large enough to imply the

bound in the statement of the theorem:

τ = r = bg/3c ≥ g/6 = bd/qc /6 ≥ d/(12q)

=
d

24
⌈

d−5
δ ln(n/β)

⌉ .

1068 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

The latter quantity equals d/24, if d ≤ δ ln(n/β) + 5. If d > δ ln(n/β) + 5, then

d

24
⌈

d−5
δ ln(n/β)

⌉ ≥ d

48
(

d−5
δ ln(n/β)

)
=

1

48

d

d− 5
δ ln(n/β)

≥ δ ln(n/β)

48

=
δ

48
ln

n

72
(
d2 + Pd ln n

d2+Pd

)
≥ δ

48
ln

n

72 (d2 + Pd) ln n
d2+Pd

= Ω

(
ln

n

d2 + Pd

)
.

The penultimate inequality holds since, by assumption, ln(n/(d2+Pd)) ≥ 1. The final
lower bound follows since ln(x/(72 lnx)) = Ω(lnx). Thus, as claimed in the statement
of the theorem, τ = Ω(min(d, ln(n/(d2 + Pd)))).

Case 2. Recall ε = 1/(3 ln(6e)) and suppose 6P ≤ d ≤ √n/69 and 1 ≤ P ≤
ε ln(n/d2). (Note that d ≤ √n/69 must be true for all sufficiently large n, since
d2+Pd = o(n).) Then we claim that the following parameter values satisfy constraints
C3–C8:

q̂ =
ed

P

(
d2

n

)1/(3P)

,

q = 2 dq̂/2e ,
g = bd/qc ,
r = P,

k =

⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
,

τ = (k − dlog2 ke) bg/3c = Θ(gk).

Note that constraint C5 is immediately satisfied, as is constraint C7 since r ≥ P . Since
q̂ is positive, it is also immediate that q is even and is positive, hence constraint C4
is satisfied.

Note for future use that

(n/d2)1/(3P) ≥ (n/d2)1/(3ε ln(n/d2)) = e1/(3ε) = 6e.(10)

For constraint C3, note that q ≥ q̂. Thus,

k =

⌊
ln((n/d2)1/(3P))

ln(ed/(qP))

⌋
≥
⌊

ln((n/d2)1/(3P))

ln(ed/(q̂P))

⌋
=

⌊
ln((n/d2)1/(3P))

ln((n/d2)1/(3P))

⌋
= 1.

Thus k ≥ 1. Using a similar analysis, we note for future use that k = 1 whenever
q > 2. This holds since q > 2 implies q̂/2 > 1, which implies q ≤ 2q̂. Thus,

k =

⌊
ln((n/d2)1/(3P))

ln(ed/(qP))

⌋
≤
⌊

ln((n/d2)1/(3P))

ln(ed/(2q̂P))

⌋
=

⌊
ln((n/d2)1/(3P))

ln((n/d2)1/(3P)/2)

⌋
= 1.(11)

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1069

The last equality follows from the fact that 1 < (lnx)/(ln(x/2)) < 2 whenever x > 4,
and from (10).

For constraint C6, it is immediate that r = P ≥ 1. To show r ≤ g/3 it suffices
to show 3qP ≤ d. If q = 2, this holds, since by assumption 6P ≤ d. If q > 2, then
q̂/2 > 1, so

3qP = 6 dq̂/2eP ≤ 6q̂P = 6(ed/P)(d2/n)1/(3P)P ≤ 6ed/(6e) = d.(12)

The last inequality follows from (10).
For constraint C8, we first note for integer k ≥ 1 that

2k + dlog2 ke ≤ 8k/3.

(The bound is tight at k = 3.) Also,

τ + 2 = (k − dlog2 ke) bg/3c+ 2 ≤ gk,

since g ≥ 3. Using (9), we bound the number of vertices in open gadgets as follows.(eg
r

)r(2k+dlog2 ke)
(P (τ + 2) + d) 6dk

≤ 6
(eg
P

)8Pk/3

dk(Pgk + d)

≤ 6

(
ed

qP

)(8/3)P

⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
dk(Pdk/q + d)

≤ 6
(n
d2

)8/9

d2(Pk2/q + k)

≤ 6n8/9d2/9(Pk2/q + k).

We break the rest of the derivation of constraint C8 into two subcases based on d.
Note that, since 3qP ≤ d from (12),

k =

⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
≤ lnn

3P ln(3e)
≤ lnn.

When d < n1/4, since k and P are both O(log n), we have

6n8/9d2/9(Pk2/q + k) = O(n8/9(n1/4)2/9 log3 n) = O(n17/18 log3 n) = o(n).

When d ≥ n1/4, we will show that q > 2P and k = 1, so we have

6n8/9d2/9(Pk2/q + k) ≤ 6n8/9(n1/2/69)2/9(1/2 + 1) = n/4.

We show that q > 2P as follows.

q

P
≥ q̂

P
=
ed

P 2

(
d2

n

)1/(3P)

≥ n1/4

P 2

(
n2/4

n

)1/3

=
n1/12

P 2
= ω(1).

(Recall P = O(log n).) Since q > 2P and P ≥ 1, we have q > 2, so k = 1 by (11).
To complete the analysis of Case 2, we show that τ = (k − dlog2 ke) bg/3c is

large enough to imply the bound in the statement of the theorem. Again we split the

1070 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

analysis into two subcases based on d. We have q > 2 if and only if q̂ > 2, which
holds exactly when

d > d0 = (2P/e)3P/(3P+2) n1/(3P+2).

In this case we have k = 1 by (11) and

τ = bg/3c ≥ g/6 ≥ d/(12q) ≥ d/(24q̂) =
d

24
(
ed
P

(
d2

n

)1/(3P)
)

=
P

24e

(n
d2

)1/(3P)

(13)

= Ω

(
P
(n
d2

)1/(3P)
)
,

as claimed. We remark that, by (10), when P is maximal, (13) is P/4 = Θ(log(n/d2)),
so the transition to the bound given in Case 1 is “smooth.”

In the second subcase we have d ≤ d0. First, note that

d0 = (2P/e)3P/(3P+2) n1/(3P+2) ≤ Pn1/(3P+2) ≤ Pn1/5 = o(n1/4).(14)

Second, since d ≤ d0, we have q = 2 and k ≥ 1. Also, note that (k−dlog2 ke)/k ≥ 1/3,
(attaining the minimum at k = 3) and that g ≥ 3. Hence τ = Ω(gk) and

gk =

⌊
d

q

⌋⌊
ln(n/d2)

3P ln(ed/(qP))

⌋
≥ d ln(n/d2)

24P ln(ed/(2P))

=
d ln(n/o(n1/2))

24P ln(ed/(2P))

= Ω

(
d/P

ln(d/P)
lnn

)
,

as claimed. We remark that when P is maximal and d ≥ 6P , the estimate in (14) can
be refined, allowing one to show d = Θ(P) = Θ(logn). Thus, τ again matches the
bound in Case 1 (up to constant factors).

Finally, when d = d0 we have q̂ exactly equal to 2; similarly, when d = d0,
the expression of which k is the floor is precisely 1. Furthermore, both expressions
vary slowly with d, so both are Θ(1) when d is near d0. Thus, again τ = (k −
dlog2 ke) bbd/qc /3c is “smooth” as d crosses d0, the threshold between the lower
bounds quoted in (a) and (b) in the statement of the theorem, and in fact both lower
bounds are Θ(md0) for d near d0.

This completes the proof.
It is interesting to note why the proof would fail if M were allowed to jump

pebbles. In the local phase, the adversary was able to pick an existing gadget in which
p must invest τ steps. In the presence of jumping, this fails, since p can always jump
out of the new gadget. As a particular foil to the proof above, imagine an automaton
that stations one pebble p on an entry vertex of some gadget, and successively moves
a second pebble q to each neighbor, jumping q back to p to find the next neighbor. In
time Θ(d), this has touched all Θ(d) connecting edges incident to that entry vertex,
which was impossible in the construction above.

A TIME-SPACE TRADEOFF FOR GRAPH TRAVERSAL 1071

4. Open problem. The obvious important problem is to strengthen and gen-
eralize these lower bounds. Following an earlier version of this paper [9], Edmonds
[21] proved a much stronger time-space tradeoff on general JAGs: for every z ≥ 2,
a JAG with at most 1

28z
logn

log log n pebbles and at most 2logz n states requires time

n · 2Ω((log n)/(log log n)) to traverse 3-regular graphs. The ultimate goal might be to
prove that ST = Ω(mn) for JAGs or even for general models of computation.

Acknowledgment. We thank Michael Sipser for showing us the construction
generalized in section 3.

REFERENCES

[1] L. M. Adleman, Two theorems on random polynomial time, in 19th Annual IEEE Symposium
on Foundations of Computer Science, Ann Arbor, MI, 1978, pp. 75–83.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. W. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in 20th Annual IEEE
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1979, pp. 218–
223.

[3] N. Alon, Y. Azar, and Y. Ravid, Universal sequences for complete graphs, Discrete Appl.
Math., 27 (1990), pp. 25–28.

[4] A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M. Werman, Bounds on universal
sequences, SIAM J. Comput., 18 (1989), pp. 268–277.

[5] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s-t connectivity, SIAM J. Comput., 27 (1998), pp. 1273–1282.

[6] G. Barnes and J. A. Edmonds, Time-space lower bounds for directed s-t connectivity on
JAG models, in Proceedings 34th Annual IEEE Symposium on Foundations of Computer
Science, Palo Alto, CA, 1993, pp. 228–237.

[7] G. Barnes and U. Feige, Short random walks on graphs, SIAM J. Disc. Math., 9 (1996),
pp. 19–28.

[8] G. Barnes and W. L. Ruzzo, Undirected s-t connectivity in polynomial time and sublinear
space, Comput. Complexity, 6 (1996/1997), pp. 1–28.

[9] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space tradeoffs
for undirected graph traversal, in Proc. 31st Annual IEEE Symposium on Foundations of
Computer Science, St. Louis, MO, 1990, pp. 429–438.

[10] P. W. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space trade-
offs for undirected graph traversal by graph automata, Inform. and Comput., 130 (1996),
pp. 101–129.

[11] P. Berman and J. Simon, Lower bounds on graph threading by probabilistic machines, in
24th Annual IEEE Symposium on Foundations of Computer Science, Tucson, AZ, 1983,
pp. 304–311.

[12] M. Blum and D. C. Kozen, On the power of the compass (or, why mazes are easier to search
than graphs), in 19th Annual IEEE Symposium on Foundations of Computer Science, Ann
Arbor, MI, 1978, pp. 132–142.

[13] M. Blum and W. J. Sakoda, On the capability of finite automata in 2 and 3 dimensional
space, in 18th Annual IEEE Symposium on Foundations of Computer Science, Providence,
RI, 1977, pp. 147–161.

[14] A. Borodin, Structured vs. general models in computational complexity, L’Enseignement
Mathématique, XXVIII (1982), pp. 171–190. Also in [27, pp. 47–65].

[15] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa, Two applications of
inductive counting for complementation problems, SIAM J. Comput., 18 (1989), pp. 559–
578. See also 18 (1989), p. 1283.

[16] A. Borodin, W. L. Ruzzo, and M. Tompa, Lower bounds on the length of universal traversal
sequences, J. Comput. System Sci., 45 (1992), pp. 180–203.

[17] M. F. Bridgland, Universal traversal sequences for paths and cycles, J. Algorithms, 8 (1987),
pp. 395–404.

[18] A. Z. Broder, A. R. Karlin, P. Raghavan, and E. Upfal, Trading space for time in undi-
rected s-t connectivity, SIAM J. Comput., 23 (1994), pp. 324–334.

[19] J. Buss and M. Tompa, Lower bounds on universal traversal sequences based on chains of
length five, Inform. Comput., 120 (1995), pp. 326–329.

1072 P. BEAME, A. BORODIN, P. RAGHAVAN, W. RUZZO, AND M. TOMPA

[20] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

[21] J. A. Edmonds, Time-space trade-offs for undirected ST -connectivity on a JAG, in Proceedings
of the 25th Annual ACM Symposium on Theory of Computing, San Diego, CA, 1993,
pp. 718–727.

[22] J. A. Edmonds and C. K. Poon, A nearly optimal time-space lower bound for directed st-
connectivity on the NNJAG model, in Proceedings of the 27th Annual ACM Symposium
on Theory of Computing, Las Vegas, NV, 1995, pp. 147–156.

[23] U. Feige, A spectrum of time-space trade-offs for undirected s-t connectivity, J. Comput.
System Sci., 54 (1997), pp. 305–316.

[24] A. Hemmerling, Labyrinth Problems: Labyrinth-Searching Abilities of Automata, Teubner-
Texte Math. 114, Teubner, Leipzig, 1989.

[25] S. Istrail, Polynomial universal traversing sequences for cycles are constructible, in Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, 1988,
pp. 491–503.

[26] H. J. Karloff, R. Paturi, and J. Simon, Universal traversal sequences of length nO(logn)

for cliques, Inform. Proc. Lett., 28 (1988), pp. 241–243.
[27] Logic and Algorithmic, An International Symposium Held in Honor of Ernst Specker, Zürich,

Feb. 5–11, 1980, Monographie No. 30 de L’Enseignement Mathématique, Université de
Genève, Switzerland, 1982.

[28] N. Nisan, RL ⊆ SC , Comput. Complexity, 4 (1994), pp. 1–11.
[29] N. Nisan, E. Szemerédi, and A. Wigderson, Undirected connectivity in O(log1.5 n) space, in

Proceedings 33rd Annual IEEE Symposium on Foundations of Computer Science, Pitts-
burgh, PA, 1992, pp. 24–29.

[30] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,
J. Comput. System Sci., 4 (1970), pp. 177–192.

[31] W. J. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput.
System Sci., 7 (1973), pp. 389–403.

[32] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial time, sub-
linear space implementations, SIAM J. Comput., 11 (1982), pp. 130–137.

[33] M. Tompa, Lower bounds on universal traversal sequences for cycles and other low degree
graphs, SIAM J. Comput., 21 (1992), pp. 1153–1160.

ON THE APPROXIMABILITY OF NUMERICAL TAXONOMY
(FITTING DISTANCES BY TREE METRICS)∗

RICHA AGARWALA† , VINEET BAFNA‡ , MARTIN FARACH§ , MIKE PATERSON¶, AND

MIKKEL THORUP‖

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1073–1085

Abstract. We consider the problem of fitting an n × n distance matrix D by a tree metric T .
Let ε be the distance to the closest tree metric under the L∞ norm; that is, ε = minT {‖ T −D ‖ ∞}.
First we present an O(n2) algorithm for finding a tree metric T such that ‖ T −D ‖ ∞ ≤ 3ε. Second
we show that it is NP-hard to find a tree metric T such that ‖ T −D ‖ ∞ < 9

8
ε. This paper presents

the first algorithm for this problem with a performance guarantee.

Key words. approximation algorithm, tree metric, taxonomy

AMS subject classifications. 62P10, 68Q25, 92B10, 92-08

PII. S0097539795296334

1. Introduction. One of the most common methods for clustering numeric data
involves fitting the data to a tree metric, which is defined by a weighted tree spanning
the points of the metric, the distance between two points being the sum of the weights
of the edges of the path between them. Not surprisingly, this problem, the so-called
numerical taxonomy problem, has received a great deal of attention (see [2, 7, 8] for
extensive surveys) with work dating as far back as the beginning of the century [1].
Fitting distances by trees is an important problem in many areas. For example, in
statistics, the problem of clustering data into hierarchies is exactly the tree fitting
problem. In “historical sciences” such as paleontology, historical linguistics, and evo-
lutionary biology, tree metrics represent the branching processes which lead to some
observed distribution of data. Thus, the numerical taxonomy problem has been, and
continues to be, the subject of intense research.

In particular, consider the case of evolutionary biology. By comparing the DNA
sequences of pairs of species, biologists get an estimate of the evolutionary time which
has elapsed since the species separated by a speciation event. A table of pairwise
distances is thus constructed. The problem is then to reconstruct the underlying
evolutionary tree. Dozens of heuristics for this problem appear in the literature every
year (see, e.g., [8]).

The numerical taxonomy problem is usually cast in the following terms. Let S

∗Received by the editors December 12, 1995; accepted for publication (in revised form) April 8,
1997; published electronically January 29, 1999. A preliminary version of this paper appeared in
Symposium on Discrete Mathematics ’96.

http://www.siam.org/journals/sicomp/28-3/29633.html
†DIMACS, Rutgers University, Piscataway, NJ 08855 (richa@helix.nih.gov). This research was

supported by Special Year National Science Foundation grant BIR-9412594. Current address: Na-
tional Human Genome Research Institute/National Institutes of Health, Bethesda, MD 20892.
‡DIMACS, Rutgers University, Piscataway, NJ 08855 (bafna@dimacs.rutgers.edu). This research

was supported by Special Year National Science Foundation grant BIR-9412594. Current address:
Bioinformatics, UW2230, SmithKline Beecham, 709 Swedeland Road, King of Prussia, PA 19406.
§Department of Computer Science, Rutgers University, Piscataway, NJ 08855 (farach@cs.

rutgers.edu). This research was supported by NSF Career Development Award CCR-9501942.
¶Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom

(msp@dcs.warwick.ac.uk). This research was supported in part by the ESPRIT LTR project 20244—
ALCOM–IT.
‖Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copen-

hagen Ø, Denmark (mthorup@diku.dk). This work was done while visiting DIMACS.

1073

1074 AGARWALA, BAFNA, FARACH, PATERSON, AND THORUP

be the set of species under consideration.
The numerical taxonomy problem.

Input: D : S2 → <≥0, a distance matrix.
Output: A tree metric T which spans S and fits D.
This definition leaves two points unanswered: first, what kind of tree metric, and,
second, what does it mean for a metric to fit D? Typically we are talking about any
tree metric, but sometimes we want to restrict ourselves to ultrametrics defined by
rooted trees where the distance to the root is the same for all points in S. In order to
distinguish specific types of tree metrics, such as ultrametrics, from the general case,
we will refer to unrestricted tree metrics as additive metrics. There may be no tree
metric coinciding exactly with D, so by “fitting” we mean approximating D under
norms such as L1, L2, or L∞. That is, for k = 1, 2, . . . ,∞, we want to find a tree
metric T minimizing ‖ T −D ‖k (‖ T −D ‖k is formally defined in Definition 2.6).

History. The numerical taxonomy problem for additive metric fitting under Lk
norms was explicitly stated in its current form in 1967 [4]. Since then it has collected
an extensive literature. In 1977 [10], it was shown that if there is a tree metric T
coinciding exactly with D, it is unique and constructible in linear, i.e., O(|S|2), time.
Unfortunately there is typically no tree metric coinciding exactly with D, and in
1987 [5], it was shown that for L1 and L2, the numerical taxonomy problem is NP-
hard, both in the additive and in the ultrametric cases. Additional complexity results
appear in [9].

The only positive fitting result is from 1995 [6] and shows that under the L∞ norm
an optimal ultrametric is polynomially computable, in fact, in linear time. However,
while ultrametrics have interesting special case applications, the fundamental prob-
lem in the area of numerical taxonomy is that of fitting D by general tree metrics.
Unfortunately no provably good algorithms existed for fitting distances by additive
metrics, and in [6] the numerical taxonomy problem for general tree metrics under
the L∞ norm was posed as a major open problem.

Our results. We consider the numerical taxonomy problem for additive metrics
under the L∞ norm as suggested in [6]. Let ε be the distance to the closest additive
metric under the L∞ norm, that is, ε = minT {‖ T −D ‖∞}. First we present an
O(n2) algorithm for finding an additive metric T such that ‖ T −D ‖∞ ≤ 3ε. We
complement this result not only by finding that an L∞-optimal solution is NP-hard,
but we also rule out arbitrarily close approximations by showing that it is NP-hard
to find an additive metric T such that ‖ T −D ‖∞ < 9

8ε.
Our algorithm is achieved by transforming the general tree metric problem to

that of ultrametrics with a loss of a factor of 3 on the approximation ratio. Since the
ultrametric problem is optimally solvable, our first result follows. We also generalize
our transformation from the general tree metric to ultrametrics under any Lk norm
with the same loss of a factor of 3.

The paper is organized as follows. After some preliminary definitions in section 2,
we give our 3-approximation algorithm in section 3. We show in section 4 that our
analysis is tight and that some natural “improved” heuristics do not help in the worst
case. In section 5, we give our NP-completeness and nonapproximability proofs.
Finally, in section 6, we generalize our reduction from L∞ to Lk norms with finite k.

2. Preliminaries. We present some basic definitions.
Definition 2.1. A metric on a set S = {1, . . . , n} is a function D : S2 → <≥0

such that
• D[x, y] = 0 ⇐⇒ x = y,

NUMERICAL TAXONOMY 1075

• D[x, y] = D[y, x],
• D[x, y] ≤ D[x, z] +D[z, y] (the triangle inequality).

Likewise, D : S2 → <≥0 is a quasimetric if it satisfies the first two conditions.
For (quasi) metrics A and B, A+B is the usual matrix addition, i.e., (A+B)[i, j] =
A[i, j] +B[i, j].

Definition 2.2. A (quasi) metric D is (quasi) additive if, for all points a, b, c, d,

D[a, b] +D[c, d] ≤ max{D[a, c] +D[b, d], D[a, d] +D[b, c]}.

This inequality is known as the 4-point condition.
Theorem 2.3 (see [3]). A metric is additive if and only if it is a tree metric.
Definition 2.4. A metric D is an ultrametric if, for all points a, b, c,

D[a, b] ≤ max{D[a, c], D[b, c]}.

As noted above, an ultrametric is a type of tree metric.
Definition 2.5. A quasimetric D on n objects is a centroid quasimetric if

∃l1, . . . , ln such that ∀i 6= j, D[i, j] = li + lj.
A centroid quasimetric D is a centroid metric if li ≥ 0 for all i. A centroid metric

is a type of tree metric since it can be realized by a weighted tree with a star topology
and edge weights li.

The k-norms are formally defined as follows.
Definition 2.6. For n×n real-valued matrices M and k ≥ 1, define the k-norm,

sometimes denoted Lk, by

‖M ‖k =

∑
i<j

|M [i, j] |k
 1

k

,

‖M ‖∞ = max
i<j
{|M [i, j] |}.

3. Upper bound. Let ma = maxi{D[a, i]}. Let Ca be the centroid metric with
li = ma −D[a, i], i.e., Ca[i, j] = li + lj = 2ma −D[a, i]−D[a, j].

Lemma 3.1 (see [2, Theorem 3.2]). For any point a, D is quasiadditive if and
only if D + Ca is an ultrametric.

Lemma 3.2 (see [2, Corollary 3.3]). Given an additive metric A and a centroid
quasi-metric Q, A+Q is additive if and only if A+Q satisfies the triangle inequality.

Let D be a distance matrix and let X be the set of all additive metrics. We define
A(D) to be (one of) the additive metrics such that

‖ D −A(D) ‖∞ = min
A∈X
‖ D −A ‖∞.

For point a, we say a metric M is a-restricted if ∀i,M [a, i] = D[a, i]. Let X a be the
set of a-restricted additive metrics. We define Aa(D) to be (one of) the a-restricted
additive metrics such that ‖ D −Aa(D) ‖∞ = minA∈Xa ‖ D −A ‖∞. In other words,
Aa(D) is an optimal a-restricted additive metric for D. We will sometimes refer to
such a metric as a-optimal. Similarly, we define U(D) to be an optimal ultrametric
for D. Note that the functions A(),Aa(), and U() need not be uniquely valued. In

1076 AGARWALA, BAFNA, FARACH, PATERSON, AND THORUP

the following, we will let the output be an arbitrary optimal metric, unless otherwise
noted. Recall that U() is computable in O(n2) time [6].

Lemma 3.1 suggests that we may be able to approximate the closest additive
metric to D by approximating the closest ultrametric to D + Ca, i.e., by computing
U(D + Ca) − Ca for some point a. Lemma 3.2 tells us that we need to guaran-
tee the triangle inequality for the final metric to show that it is additive. Thus
we need to modify our heuristic. Specifically, for any point a, we will show that
‖ D −Aa(D) ‖∞ ≤ 3‖ D −A(D) ‖∞, and we will give a modification Ua() of U()
such that Aa(D) = Ua(D + Ca)−Ca. We will use the following result implicit in [6].

Theorem 3.3. Consider two n × n distance matrices L,M : S2 → <>0 and a
real value h such that L[i, j] ≤ M [i, j] ≤ h for all i, j. There is an O(n2) algorithm
to compute an ultrametric U , if it exists, such that for all i, j, L[i, j] ≤ U [i, j] ≤ h,
and ‖M − U ‖∞ is minimized.

Proof. Our proof uses the construction of Theorem 5 in [6]. First we show how,
given a distance matrix A : S2 → <>0, we can construct in time O(n2) an ultrametric
U , such that U ≤ A (i.e., ∀i, j : U [i, j] ≤ A[i, j]) and such that for any ultrametric
U ′ ≤ A, U ′ ≤ U .

Let T be a minimum spanning tree over the graph defined by A. The ultrametric
U is now defined as follows. Let e = (i, j) be the maximum weight edge of T , and let
T1 and T2 be the subtrees of T obtained by deleting (i, j). Then U has root at height
A[i, j]/2 and the subtrees of the root are the ultrametric trees U1 and U2 recursively
defined on T1 and T2. Clearly, U ≤ A.

Claim 3.3A. For any ultrametric U ′, if U ′ ≤ A then U ′ ≤ U .
Proof. Let S1 and S2 be the partition of S defined by T1 and T2. By induction,

for k = 1, 2, Uk ≥ U ′|S2
k.

Let U ′1 and U ′2 be the two subtrees of U , and let S′1 and S′2 be the corresponding
partitioning of S. Set w = A[i, j] and w′ = min(i,j)∈S′1×S′2 A[i, j]. Since w is the
maximum weight in the minimum spanning tree T , w′ ≤ w. However, it is required
that U ′ ≤ A, so the height of the root of U ′ is w′/2, that is, the maximal distance in
U ′ is w′. Thus for all (i, j) ∈ S1 × S2, U [i, j] = w ≥ w′ ≥ U ′[i, j].

Consider an ultrametric U ′ as described in Theorem 3.3; i.e. for all i, j, L[i, j] ≤
U ′[i, j] ≤ h, and ε = ‖M − U ′ ‖∞ is minimized. Set

ε+ = max
i,j∈S

, (M [i, j]− U ′[i, j]) ≤ ε.

Suppose that we knew ε+. Define Aε
+

such that Aε
+

[i, j] = min{M [i, j] + ε+, h},
and construct T ε

+

and Uε
+ ≤ Aε

+

as described above. Since U ′ ≤ Aε
+

, Uε
+

[i, j] ≥
U ′[i, j], so L[i, j] ≤ Uε+ [i, j] and ‖M − Uε+ ‖∞ ≤ ‖M − U ′ ‖∞.

Now observe that if T is a minimum spanning tree for M then T is also a minimum
spanning tree for Aε

+

. Thus it follows that the topology of an optimal ultrametric U
may be the same as the one we would construct from T and M . Given that T defines
the right topology, we can construct the optimal ultrametric as follows.

Let e = (i, j) be the maximum M -weight edge of T , and let T1 and T2 be the
subtrees of T obtained by deleting (i, j). Let S1 and S2 be the partition of S defined
by T1 and T2. Set

µ =
max(i,j)∈S2 M [i, j] + min(i,j)∈S1×S2

M [i, j]

2
.

Then U has root at height min{h, µ}/2 and the subtrees of the root are the ultrametric
trees U1 and U2 recursively defined on T1 and T2.

NUMERICAL TAXONOMY 1077

3.1. The L∞ approximation. The stem of a leaf is the edge incident on it.
Lemma 3.4. For all points a, ‖ D −Aa(D) ‖∞ ≤ 3‖ D −A(D) ‖∞.
Proof. For all i, j, let ε[i, j] = A(D)[i, j]−D[i, j], and ε = maxi,j{|ε[i, j]|}. Derive

an a-restricted tree T /a from A(D) as follows. We will move all i either toward or
away from a until each i is distance D[a, i] from a. If A(D)[a, i]−D[a, i] is negative,
we simply increase the length of its stem. Otherwise, i must be moved closer to a.
Consider the (weighted) path from i to a. Let p be the point on this path which is
distance D[a, i] from a. We simply move i to this location. In either case, no point i
is moved more than |ε[a, i]|, and so |A(D)[i, j] − T /a[i, j]| ≤ |ε[a, i]| + |ε[a, j]|. Now,
T /a is additive by construction, and for all i, T /a[a, i] = D[a, i]. Further, for all i, j,

|D[i, j]− T /a[i, j]| ≤ |A(D)[i, j]− T /a[i, j]|+ |D[i, j]−A(D)[i, j]|
≤ (|ε[a, i]|+ |ε[a, j]|) + |ε[i, j]|
≤ 3ε.

Finally, by the optimality of Aa(D),

‖ D −Aa(D) ‖∞ ≤ ‖ D − T /a ‖∞ ≤ 3ε.

Lemma 3.5. For any point a, Aa(D) can be computed in polynomial time.
Proof. We say an ultrametric U is a-restricted (with respect to D) if it satisfies

the following constraints:

2ma ≥U [i, j] ≥ 2 max{li, lj} for all i, j,(1)

U [a, i] = 2ma for all i 6= a.(2)

For any distance matrix M , define Ua(M) to be an a-restricted ultrametric which
minimizes ‖M − Ua(M) ‖∞. Note that for all i, j, Ua(M)[i, j] ≤ 2ma. We can
therefore apply Theorem 3.3, and so ‖M − Ua(M) ‖∞ can be computed in O(n2)
time.

Let T = Ua(D + Ca)− Ca. We now show that T = Aa(D).
Claim 3.5A. T is an a-restricted additive metric.
Proof. Let Da = D + Ca. Constraint (2) implies that T is a-restricted, since

T [a, i] = Ua(D + Ca)[a, i]−Ca[a, i] = 2ma−(2ma−D[a, i]) = D[a, i]. By Lemma 3.2,
we only need to show that T satisfies the triangle inequality, i.e.,

T [i, j] ≤ T [i, k] + T [k, j], for all distinct i, j, k
⇔ Ua(Da)[i, j]− Ca[i, j] ≤ Ua(Da)[i, k]− Ca[i, k] + Ua(Da)[k, j]− Ca[k, j]
⇔ Ua(Da)[i, j] ≤ Ua(Da)[i, k] + Ua(Da)[k, j]− 2lk
⇔ Ua(Da)[i, j] ≤ max{Ua(Da)[i, k],Ua(Da)[k, j]}

+ min{Ua(Da)[i, k],Ua(Da)[k, j]} − 2lk.

Now, since Ua(Da) is an ultrametric,

Ua(Da)[i, j] ≤ max{Ua(Da)[i, k],Ua(Da)[k, j]}.
Also, min{Ua(Da)[i, k],Ua(Da)[k, j]} ≥ 2lk by constraint (1). Hence, the claim is
proved.

Claim 3.5B. Aa(D) + Ca is an a-restricted ultrametric.
Proof. From Lemma 3.1, Aa(D) + Ca is an ultrametric. To show that con-

straint (2) is satisfied, define T ′ = Aa(D) + Ca and note that

T ′[a, i] = Aa(D)[a, i] + Ca[a, i] = D[a, i] + li + la = 2ma.

1078 AGARWALA, BAFNA, FARACH, PATERSON, AND THORUP

For constraint (1), we use the fact that Aa(D) is a metric, and therefore, for all
i, j 6= a,

Aa(D)[a, j] ≤ Aa(D)[i, j] +Aa(D)[a, i]

⇒ T ′[a, j]− Ca[a, j] ≤ T ′[i, j]− Ca[i, j] + T ′[a, i]− Ca[a, i]

⇒ T ′[a, j] ≤ T ′[j, i] + T ′[a, i]− 2li

⇒ 2ma ≤ T ′[j, i] + 2ma − 2li

⇒ T ′[j, i] ≥ 2li.

By symmetry, T ′[j, i] ≥ 2lj . Also,

T ′[i, j] = Aa(D)[i, j] + li + lj

≤ Aa(D)[a, i] +Aa(D)[a, j] + li + lj

= 2ma.

Therefore, constraint (1) is also satisfied and Claim 3.5B is proved.
Finally,

‖ T −D ‖∞ ≥ ‖ Aa(D)−D ‖∞ (by Claim 3.5A)

= ‖ (Aa(D) + Ca)− (D + Ca) ‖∞
≥ ‖ Ua(D + Ca)− (D + Ca) ‖∞ (by Claim 3.5B)

= ‖ T −D ‖∞ (by construction).

Therefore, ‖ T −D ‖∞ = ‖ Aa(D)−D ‖∞. This proves the lemma.
Lemmas 3.4 and 3.5 imply the following theorem.
Theorem 3.6. Given an n × n distance matrix D, we can find a tree metric T

in O(n2) time such that

‖ T −D ‖∞ ≤ 3‖ A(D)−D ‖∞.

4. Tightness of analysis. In this section we show that the constant in Lemma 3.4
is tight, and that for some distance matrices it is not improved by trying different
values of c.

Theorem 4.1. There is an n× n distance matrix D such that, for all points c,

‖ D −Ac(D) ‖∞
‖ D −A(D) ‖∞ = 3.

Proof. Consider the following distance matrix D for the points q0, . . . , q8:

D[qi, qj] = d− ε if i = (j + 1) mod 9 or i = (j − 1) mod 9
= 0 if i = j mod 3
= d+ ε otherwise.

Note that for each c = qi, there exists a1 = q(i+1)mod9, a2 = q(i−1)mod9, b1 =
q(i+4)mod9, and b2 = q(i−4)mod9 such that

D[c, a1] = D[a2, c] = D[b2, b1] = d− ε,
D[b1, c] = D[c, b2] = D[a1, a2] = d+ ε, and
D[a1, b1] = D[a2, b2] = 0.

NUMERICAL TAXONOMY 1079

Fig. 4.1. Trees approximating D.

If we take d to be much larger than ε, it is easy to see that any reasonable
approximation by a tree metric T uses a tree with a central vertex m from which
three edges lead to subtrees containing c, {a1, b1}, and {a2, b2} respectively.

Hence,

T [b1, c]− T [c, a1] + T [a1, a2]− T [a2, c] + T [c, b2]− T [b2, b1] = 0,

whereas

D[b1, c]−D[c, a1] +D[a1, a2]−D[a2, c] +D[c, b2]−D[b2, b1] = 6ε.

Therefore, any such approximation T satisfies ‖ D − T ‖∞ ≥ ε.
For a c-restricted approximation T (where T [u, c] = D[u, c] for all c), we find that

T [a1, a2]−D[a1, a2]− T [b2, b1] +D[b2, b1] = 6ε,

and so ‖ D − T ‖∞ ≥ 3ε.
Figure 4.1 shows optimal solutions which establish that ‖ D −A(D) ‖∞ = ε and

that ‖ D −Ac(D) ‖∞ = 3ε.
Some rather involved examples show that there are c-optimal trees for which

changing the edge lengths cannot bring the error down below 3ε − o(1). Thus there
is no significant worst-case advantage to the obvious heuristic of changing the edge
lengths optimally using linear programming.

5. Lower bound. In this section, we show that the problem of finding a tree T
such that ‖ T −D ‖∞ < 9

8ε is NP-hard. First, we show that a decision version of the
numerical taxonomy problem is NP-complete.

The numerical taxonomy problem.
Input: A distance matrix D : S2 → <≥0, and a threshold ∆ ∈ <≥0.
Question: Is there a tree metric T which spans S and for which ‖ T −D ‖∞ ≤ ∆?

Theorem 5.1. The numerical taxonomy problem is NP-complete.
Proof. That the problem is in NP is immediate. We show NP-completeness by

reduction from 3SAT. For an instance of 3SAT with variables x1, . . . , xn and clauses
C1, . . . , Ck, we will construct a distance matrix D such that the 3SAT expression is

1080 AGARWALA, BAFNA, FARACH, PATERSON, AND THORUP

Fig. 5.1. Portion of sample layout.

satisfiable if and only if ‖ D −A(D) ‖∞ ≤ ∆ = 2. Let integer r represent some suffi-
ciently large distance (such as 10). We construct a distance matrix D to approximate
path lengths on a tree with leaves xi, x̄i, hi for 1 ≤ i ≤ n, and cj , c

′
j , c
′′
j for 1 ≤ j ≤ k,

and v.
To simplify the description of the construction we first present it in the form

of a set of inequalities on the distances between the vertices of a tree T , which are
expressed later in the required form. For example, we shall write “T [xi, x̄i] ≥ 2r” at
first, and realize this constraint eventually by letting D[xi, x̄i] = 2r + ∆. We classify
the inequalities as follows.

A. Literal pairs.

T [xi, x̄i] ≥ 2r, T [xi, hi] ≤ r, T [x̄i, hi] ≤ r for all i.

These inequalities force hi to be the midpoint of the path between xi and x̄i for
all i.

B. Star-like tree.

(1) T [v, xi] ≤ r + 1, T [v, x̄i] ≤ r + 1 for all i,

(2) T [hi, hj] ≥ 2, T [hi, xj] ≥ r, T [hi, x̄j] ≥ r for all i, j (i 6= j).

The inequalities B(1), together with those in A, imply T [v, hi] ≤ 1 for all i, and
we can then use the first inequality of B(2) to deduce that T [v, hi] = 1 for all i.

The vertex v must be at the center of a star with each hi at distance 1 from it
along separate edges. From each hi, at least one of the two paths of length r to xi
and x̄i proceeds away from v. An impression of a general feasible configuration is
presented in Figure 5.1.

The essential feature of such configurations, which we shall use in our reduction,
is that for each i, at least one of xi and x̄i is at distance r + 1 from v. The final
inequalities will represent the satisfaction of clauses by literals. A satisfying literal
will correspond to a vertex x̃i ∈ {xi, x̄i} such that T [v, x̃i] = r− 1. Clearly, xi and x̄i
cannot both be satisfying literals.

NUMERICAL TAXONOMY 1081

Fig. 5.2. Layout of clause vertices.

Now, we present the third set of inequalities that deal with the “clause” vertices
cj , c

′
j , c
′′
j . Specifically, we will show that a clause is satisfied if and only if at least one

of its literals is at a distance less than r + 1 from v.
C. Clause satisfaction. For each clause Cj = (yj , y

′
j , y
′′
j) where yj , y

′
j , y
′′
j are

literals, we have three vertices cj , c
′
j , c
′′
j and the following inequalities (where we drop

the subscript j for clarity):

T [c, y′] ≤ r + 1, T [c, y′′] ≤ r + 1,

T [c′, y′′] ≤ r + 1, T [c′, y] ≤ r + 1,

T [c′′, y] ≤ r + 1, T [c′′, y′] ≤ r + 1,

T [c, c′] ≥ 2, T [c′, c′′] ≥ 2, T [c′′, c] ≥ 2.

If T [v, yj], T [v, y′j], and T [v, y′′j] are all r+1, then the first inequalities in C force each
of cj , c

′
j , c
′′
j to coincide with v, contravening the last three inequalities. However, if at

least one of these literals is at a distance r − 1 of v then a configuration of the form
illustrated in Figure 5.2 is feasible.

We claim that the complete set of inequalities is satisfiable if and only if the
corresponding 3SAT formula is satisfiable. In one direction, suppose that there is a
satisfying truth assignment to the logical variables. For each variable, lay out the
corresponding tree vertices so that the vertex corresponding to the true literal is at
distance r−1 from v (the “false” literal will be at distance r+ 1 from v). Each clause
has a satisfying literal; therefore, for each j, at least one of yj , y

′
j , y
′′
j is at distance r−1

from v in the tree, thus allowing a legal placement of cj , c
′
j , c
′′
j . On the other hand, if

there is a tree layout satisfying all the inequalities then at least one of yj , y
′
j , y
′′
j must

be within distance r− 1 of v for each j. Since at most one of xi and x̄i can be within
r− 1 of v, the layout yields a (partial) assignment which satisfies the logical formula.

To complete the proof, we construct a distance matrix D such that (1) if for some
tree metric T , ‖ T −D ‖∞ ≤ ∆, then T satisfies all the inequalities from A, B, and

1082 AGARWALA, BAFNA, FARACH, PATERSON, AND THORUP

C, and (2) for the tree layout T described above, corresponding to a satisfiable 3SAT
expression, we have ‖ T −D ‖∞ ≤ ∆.

Concerning (1), for all vertices a, b, and all z ∈ <≥0, if an inequality is of the
form T [a, b] ≥ z, let D[a, b] = z + ∆. Correspondingly, if the inequality is of the form
T [a, b] ≤ z, let D[a, b] = z − ∆. Concerning (2), for x̃i ∈ {xi, x̄i}, x̃j ∈ {xj , x̄j},
i 6= j, in our intended configurations we have 2r − 2 ≤ T [x̃i, x̃j] ≤ 2r + 2, with either
extreme possible. Therefore, we take D[x̃i, x̃j] = 2r. Since ∆ = 2, this covers both
extremes. Similarly, for each clause C we take D[c, y] = D[c′, y′] = D[c′′, y′′] = r + 1.
Suitable values for the remaining entries of D are easy to find. This completes the
proof of Theorem 5.1.

Next, we strengthen Theorem 5.1 to show a hardness-of-approximation result.
Theorem 5.2. Given a 3SAT instance S, a distance matrix D can be computed

in polynomial time such that
1. if S is satisfiable, then ‖ D −A(D) ‖∞ ≤ 2;
2. if S is not satisfiable, then ‖ D −A(D) ‖∞ ≥ 2 + 1

4 .
Proof. We extend the construction of Theorem 5.1 by relaxing some of the in-

equalities by a fixed amount δ and omitting others. The matrix D is the same as
before.

A. Literal pairs.

T [xi, x̄i] ≥ 2r − δ, T [xi, hi] ≤ r + δ, T [x̄i, hi] ≤ r + δ for all i.

B. Star-like tree.

T [v, xi] ≤ r + 1 + δ, T [v, x̄i] ≤ r + 1 + δ, T [v, hi] ≤ 1 + δ for all i,

T [hi, hj] ≥ 2− δ for all i, j (i 6= j).

C. Clause satisfaction. For each clause C = (y, y′, y′′) where y, y′, y′′ are literals,
we have three vertices c, c′, c′′ and the following inequalities:

T [c, y′] ≤ r + 1 + δ, T [c, y′′] ≤ r + 1 + δ,

T [c′, y′′] ≤ r + 1 + δ, T [c′, y] ≤ r + 1 + δ,

T [c′′, y] ≤ r + 1 + δ, T [c′′, y′] ≤ r + 1 + δ,

T [c, c′] ≥ 2− δ, T [c′, c′′] ≥ 2− δ, T [c, c′′] ≥ 2− δ.

Note that the inequalities are a relaxation of the inequalities in the construction
of Theorem 5.1. It follows that if S is satisfiable, then there is a tree T that sat-
isfies these inequalities for all nonnegative δ. Consequently, if S is satisfiable, then
‖ D −A(D) ‖∞ ≤ 2.

In the remaining part, we consider an arbitrary tree T which satisfies inequalities
A, B, and C. Our aim will be to show that if S is not satisfiable then δ ≥ 1/4, and so
‖ D − T ‖∞ ≥ 2 + 1/4.

For any three distinct tree vertices u, v, w, let meet(u, v, w) denote the inter-
section point of the paths between them. We interpret xi as false if and only if

NUMERICAL TAXONOMY 1083

T [hi, meet(v, hi, xi)] ≤ T [hi, meet(v, hi, x̄i)]. Without loss of generality, we may re-
strict our attention to a tree for which our interpretation sets all xi to be false.

For any variable xi, let ĥi denote meet(hi, xi, x̄i) and v̂i denote meet(v, hi, xi).

Note that xi being false implies that T [hi, v̂i] ≤ T [hi, ĥi].

Claim 5.2A. For all i, (1) T [hi, v̂i] ≤ T [hi, ĥi] ≤ 3δ/2, and (2) T [xi, ĥi] −
T [hi, ĥi] ≥ r − 2δ.

Proof. For (1), 2T [hi, ĥi] = T [xi, hi]+T [x̄i, hi]−T [xi, x̄i] ≤ 2(r+δ)−(2r−δ) = 3δ.

For (2), T [xi, ĥi]− T [hi, ĥi] = T [xi, x̄i]− T [x̄i, hi] ≥ 2r − δ − (r + δ) = r − 2δ.
For each j 6= i, set hji = meet(hj , hi, xi).

Claim 5.2B. For all δ < 2
7 and for all j 6= i, T [hi, h

j
i] < T [hi, v̂i].

Proof. Suppose T [hi, h
j
i] ≥ T [hi, v̂i]. Then there are simple paths from hi to v̂i

to hj and from v to v̂i to hj . Therefore,

0 = T [hi, v̂i] + T [v̂i, hj]− T [hi, hj]

≤ T [hi, v̂i] + T [v, hj]− T [hi, hj]

≤ 3δ/2 + (1 + δ)− (2− δ).

Hence δ ≥ 2
7 .

Claim 5.2C. For all δ < 2
7 and for all i 6= j, T [xi, xj] ≥ 2r + 2− 5δ.

Proof. By Claims 5.2B and 5.2A(1), T [hi, h
j
i] ≤ 3δ/2 and T [hj , h

i
j] ≤ 3δ/2. Since

T [hi, hj] ≥ 2 − δ and δ ≤ 1/2, we may conclude that we have a simple path from hi
to hji to hij to hj , and a simple path from xi to ĥi to hji to hij to ĥj to xj . Note,

however, that ĥi and hji may coincide, and similarly for hij and ĥj . In conclusion,

T [xi, xj] = T [xi, ĥi] + T [ĥi, h
j
i] + T [hji , h

i
j] + T [hij , ĥj] + T [ĥj , xj]

≥ T [xi, ĥi] + T [hji , h
i
j] + T [ĥj , x]

= T [xi, ĥi] + T [hi, hj]− T [hi, ĥi]− T [hj , ĥj] + T [ĥj , xj]

≥ 2(r − 2δ) + 2− δ = 2r + 2− 5δ.

For the last inequality, we used Claim 5.2A(2).
Finally, we show that if S is not satisfiable then δ ≥ 1/4. If δ ≥ 2/7 then this is

trivially true, so we may assume that the conclusions of Claims 5.2B and 5.2C apply.
Let vertices x, x′, x′′ in T correspond to the three false literals of a clause. Let

p = meet(x, x′, x′′). Without loss of generality, assume T [x, p] ≥ T [x′, p] ≥ T [x′′, p].
Let d be at the middle of the path from x to x′′. By Claim 5.2C, T [x, d] = T [x′′, d] ≥
r+1−5δ/2. Hence the bounds of r+1+δ on T [x, c′] and T [x′′, c′] from the inequalities
in C imply that T [d, c′] ≤ 7δ/2.

Now d is situated on the path from x to p, and T [p, x′] ≥ T [p, x′′], implying
T [d, x′] ≥ T [d, x′′] ≥ r+ 1−5δ/2. Hence, as above, the bounds of r+ 1 + δ on T [x, c′′]
and T [x′′, c′′] imply that T [d, c′′] ≤ 7δ/2. Consequently T [c′, c′′] ≤ T [c′, d]+T [d, c′′] ≤
7δ. However, from C we also have the inequality T [c′, c′′] ≥ 2 − δ. Thus 7δ ≥ 2 − δ
and so δ ≥ 1/4.

Since T was arbitrary, we have shown that if S is not satisfiable then there is no
tree T such that ‖ D − T ‖∞ < 2 + 1/4, i.e., ‖ D −A(D) ‖∞ ≥ 2 + 1/4.

Theorem 5.2 immediately implies a hardness-of-approximation result for the nu-
merical taxonomy problem.

Corollary 5.3. It is an NP-hard problem, given a distance matrix D, to find

1084 AGARWALA, BAFNA, FARACH, PATERSON, AND THORUP

an additive metric T such that

‖ D − T ‖∞
‖ D −A(D) ‖∞ <

9

8
.

Proof. For any such T , if ‖ D − T ‖∞ ≥ 2 + 1/4 then ‖ D −A(D) ‖∞ > 2 and S
is unsatisfiable, and if otherwise then ‖ D −A(D) ‖∞ ≤ ‖ D − T ‖∞ < 2 + 1/4 and
S is satisfiable.

6. Generalization to other norms. First, we show that Lemma 3.4 can be
generalized to other norms.

Theorem 6.1. Let D be a distance matrix and T be a tree such that ‖ D − T ‖p ≤
ε. Then there exists a point a and an a-restricted tree T /a such that ‖ D − T /a ‖p ≤
3ε.

Proof. For any point a, the construction of Lemma 3.4 returns an a-restricted
tree T /a such that

|T /a[i, j]−D[i, j]| ≤ |ε[i, j]|+ |ε[a, i]|+ |ε[a, j]| for all i, j.(3)

Also, by the convexity of the function |x|p for real x, we have

k∑
i=1

|xi|p
k
≥
∣∣∣∣∣
∑k
i=1 xi
k

∣∣∣∣∣
p

.(4)

We continue the proof by an averaging argument. Clearly,

min
a
{(‖ T /a −D ‖p)p} ≤

∑n
a=1(‖ T /a −D ‖p)p

n
.

We use inequalities (3) and (4) to bound the sum

n∑
a=1

(‖ T /a −D ‖p)p =
n∑
a=1

n∑
i=1,i 6=a

n∑
j=1,j 6=a

|ε[i, j]− ε[a, i]− ε[a, j]|p

≤ 3p−1
n∑
a=1

n∑
i=1,i 6=a

n∑
j=1,j 6=a

|ε[i, j]|p + |ε[a, i]|p + |ε[a, j]|p

= 3pn(‖ T −D ‖p)p.

The theorem follows.
As in the case of L∞, we can show that if T is an a-optimal tree for D under Lk,

then T +Ca is an optimal a-restricted ultrametric for D+Ca under the same norm.
We define the Additivek problem as, given a matrix D, output an additive metric
A minimizing ‖ D −A ‖k. Similarly, the Ultrametrick problem is, given a matrix D,
output an ultrametric U minimizing ‖ D − U ‖k.

We conclude with Theorem 6.2.
Theorem 6.2. If A(D) is an algorithm which achieves an α-approximation for

the a-restricted Ultrametrick problem and runs in time T (n) on an n × n matrix,
then there is an algorithm F (D) which achieves a 3α-approximation for the Additivek
problem and runs in O(nT (n)) time.

NUMERICAL TAXONOMY 1085

REFERENCES

[1] R. Baire, Leçons sur les Fonctions Discontinues, Gauthier Villars, Paris, 1905.
[2] J-P. Barthélemy and A. Guénoche, Trees and Proximity Representations:, Wiley, New York,

1991.
[3] P. Buneman, The recovery of trees from measures of dissimilarity, in Mathematics in the Ar-

chaeological and Historical Sciences, F. Hodson, D. Kendall, and P. Tautu, eds., Edinburgh
University Press, Edinburgh, 1971, pp. 387–395.

[4] L. Cavalli-Sforza and A. Edwards, Phylogenetic analysis models and estimation procedures,
Amer. J. Human Genetics, 19 (1967), pp. 233–257.

[5] W. H. E. Day, Computational complexity of inferring phylogenies from dissimilarity matrices,
Bull. Math. Biol., 49 (1987), pp. 461–467.

[6] M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary
trees, Algorithmica, 13 (1995), pp. 155–179.

[7] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, W. H. Freeman, San Francisco,
CA, 1973.

[8] D. L. Swofford and G. J. Olsen, Phylogeny reconstruction, in Molecular Systematics, D. M.
Hillis and C. Moritz, eds., Sinauer Associates Inc., Sunderland, MA, 1990, pp. 411–501.

[9] H. T. Wareham, On the Complexity of Inferring Evolutionary Trees, Technical Report 9301,
Memorial University of Newfoundland, 1993.

[10] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer, Additive evolutionary trees,
J. Theor. Biol., 64 (1977), pp. 199–213.

COMPETITIVE ON-LINE ALGORITHMS FOR DISTRIBUTED DATA
MANAGEMENT∗

CARSTEN LUND† , NICK REINGOLD† , JEFFERY WESTBROOK†‡ , AND DICKY YAN§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1086–1111

Abstract. Competitive on-line algorithms for data management in a network of processors
are studied in this paper. A data object such as a file or a page of virtual memory is to be read
and updated by various processors in the network. The goal is to minimize the communication
costs incurred in serving a sequence of such requests. Distributed data management on important
classes of networks—trees and bus-based networks—are studied. Optimal algorithms with constant
competitive ratios and matching lower bounds are obtained. Our algorithms use different interesting
techniques, such as work functions [Chrobak and Larmore, Proc. DIMACS Workshop on On-Line
Algorithms, AMS, 1991, pp. 11–64] and “factoring.”

Key words. on-line algorithms, competitive analysis, memory management, data management

AMS subject classifications. 68Q20, 68Q25

PII. S0097539795287824

1. Introduction. The management of data in a distributed network is an im-
portant and much studied problem in management science, engineering, computer
systems, and theory [3, 11]. Dowdy and Foster [11] give a comprehensive survey of
research in this area, listing 18 different models and many papers. A data object, F,
such as a file or a page of virtual memory, is to be read and updated by a network
of processors. Each processor may store a copy of F in its local memory, so as to
reduce the time required to read the data object. All copies must be kept consistent,
however, so having multiple copies increases the time required to write to the object.
As read and write requests occur at the processors, an on-line algorithm has to decide
whether to replicate, move, or discard copies of F after serving each request while
trying to minimize the total cost incurred in processing the requests. The on-line
algorithm has no knowledge of future requests, and no assumptions are made about
the pattern of requests. We apply competitive analysis [6] to such an algorithm.

Let σ denote a sequence of read and write requests. A deterministic on-line
algorithm A is said to be c-competitive if for all σ, CA(σ) ≤ c · OPT (σ) + B holds,
where CA(σ) andOPT (σ) are the costs incurred by A and the optimal off-line solution,
respectively, and c and B are functions which are independent of σ but which may
depend upon the input network and file size. If A is a randomized algorithm, we
replace CA(σ) by its expected cost and consider two types of adversaries: The oblivious
adversary chooses σ in advance, and the more powerful adaptive on-line adversary
builds σ on-line, choosing each request with knowledge of the random moves made

∗Received by the editors June 16, 1995; accepted for publication (in revised form) May 19, 1997;
published electronically February 19, 1999. A preliminary version of this paper appeared as “On-Line
distributed data management,” in Proc. 2nd Annual European Symposium on Algorithms, ESA ’94,
Lecture Notes in Computer Science, Utrecht, The Netherlands, 1994, Springer-Verlag, New York,
pp. 202–214.

http://www.siam.org/journals/sicomp/28-3/28782.html
†AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932 (lund@research.att.com,

reingold@research.att.edu, westbrook@research.att.com).
‡The work of this author was performed while at Yale University. This research was partially

supported by NSF grant CCR-9009753.
§Department of Operations Research, AT&T Labs, Room 3J-314, 101 Crawfords Corner Road,

Holmdel, NJ 07733-3030 (yan@att.com). The work of this author was performed while at Yale
University. The research of this author was partially supported by fellowships from Yale University.

1086

ON-LINE DISTRIBUTED DATA MANAGEMENT 1087

by A on the previous requests. The oblivious adversary is charged the optimal off-
line cost, while the adaptive on-line adversary has to serve σ and be charged on-line.
(See Ben-David et al. [6] for a full discussion of different types of adversaries.) An
algorithm is strongly competitive if it achieves the best possible competitive ratio.

In this paper, we focus on two important classes of networks: trees and the
uniform network. A tree is a connected acyclic graph on n nodes and (n − 1) edges;
the uniform network is a complete graph on n nodes with unit edge weights. We
obtain strongly competitive deterministic and randomized on-line algorithms for these
classes.

Our algorithms use different interesting techniques, such as offset functions and
“factoring.” Competitive on-line algorithms based on offset functions have been found
for the 3-server [9] and the migration problems [10]. An advantage of these algorithms
is that they do not need to record the entire history of requests and the actions of
the on-line algorithm since decisions are based on the current offset values which can
be updated easily. Factoring is first observed in [7] and used in [10, 17]. The idea is
to break down an on-line problem on a tree into single edge problems. Thus strongly
competitive strategies for a single edge are generalized to a tree. Our algorithms are
strongly competitive for specific applications and networks and also illustrate these
two useful techniques. Our randomized algorithm for file allocation is barely random
[20]; i.e., it uses a bounded number of random bits, independent of the number of
requests. A random choice is made only at the initialization of the algorithm, after
which it runs deterministically.

1.1. Problem description. We study three variants of distributed data man-
agement: replication [1, 7, 17], migration [7, 10, 22], and file allocation (FAP) [2, 5].
They can be described under the same framework. We are given an undirected graph
G = (V,E) with nonnegative edge weights and |V | = n, where each node represents
a processor. Let F represent a data file or a page of memory to be stored in the
processors. At any time, let R ⊆ V , the residence set, represent the set of nodes that
contain a copy of F. We always require that R 6= ∅. Initially, only a single node v
contains a copy of F and R = {v}.

A sequence of read and write requests occur at the processors. A read at processor
p requests an examination of the contents of some data location in F ; a write at
processor p requests a change to the contents of some location in F. The location
identifies a single word or record in F. A read can be satisfied by sending a message
to any processor holding a copy of F ; that processor then returns the information
stored in the requested location. A write is satisfied by sending an update message to
each processor holding a copy F, telling it how to modify the desired location. After
a request is served, the on-line server can decide how to reallocate the multiple copies
of F.

Let D ∈ Z+ be an integer constant, D ≥ 1, which represents the number of
records in F.1 The costs for serving the requests and redistributing the files are as
follows:

Service Cost. Suppose a request occurs at a node v. If it is a read request, it is
served at a cost equal to the shortest path distance from v to a nearest node in R; if
it is a write request, it is served at a cost equal to the size of the minimum Steiner
tree2 that contains all the nodes in R ∪ {v}.

1R, Z+, and Z+
0 represent the sets of reals, positive integers, and nonnegative integers, respec-

tively.
2See section 2 for a definition.

1088 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

Movement Cost. The algorithm can replicate a copy of F to a node v at a cost D
times the shortest path distance between v and the nearest node with a copy of F; it
can discard a copy of F at no cost.

A file reallocation consists of a sequence of zero or more replications and discards
of copies of F. The replications and discards can be done in any order as long as the
residence set has a size of at least 1. The movement cost incurred during a reallocation
is equal to the total sum of all replication costs.

The replication and migration problems are special cases of file allocation. For
migration, we require |R| = 1. For replication, all the requests are reads, and it can be
assumed that all replicated copies of F are not discarded. The (off-line) optimization
problem is to specify R after each new request is served so that the total cost incurred
is minimized. For on-line replication, we consider only competitive algorithms that
have B = 0 in the inequality above; otherwise a trivial 0-competitive algorithm exists
[7].

Following previous papers on allocation and related problems, we adopt a
“lookahead-0” model. In this model, once a request is revealed, the on-line algorithm
must immediately pay the service cost before making any changes to the residence
set. One may contrast lookahead-0 with a lookahead-1 model, in which the algorithm
may change the residence set before paying the service cost. We discuss the lookahead
issue further below, together with some implementation issues.

1.2. Previous and related results. Black and Sleator [7] were the first to use
competitive analysis to study any of these problems, giving strongly 3-competitive
deterministic algorithms for file migration on trees and uniform networks and strongly
2-competitive deterministic algorithms for replication on trees and uniform networks.

Replication. Imase and Waxman [14] showed that a greedy algorithm for building
Steiner trees on-line is Θ(log n)-competitive, where n is the number of nodes, and
that this ratio is optimal within constant factors for general networks. This algorithm
is the basis of a solution for on-line replication in general networks. Koga [17] gave
randomized algorithms that are 2-competitive and 4-competitive against an adaptive
on-line adversary on trees and circles, respectively. He also obtained a randomized
algorithm with a competitive ratio that depends only on D and approaches (1+1/

√
2)

as D grows large, against an oblivious adversary on trees.

Migration. Westbrook [22] obtained a randomized algorithm for uniform networks
with a competitive ratio that depends only on D and approaches ((5 +

√
17)/4) as

D grows large, against an oblivious adversary. For general networks, Westbrook [22]
obtained a strongly 3-competitive randomized algorithm against an adaptive on-line
adversary. He also obtained an algorithm against an oblivious adversary with a com-
petitive ratio that depends only on D and approaches (1 +φ)-competitive as D grows
large, where φ ≈ 1.62 is the golden ratio. Chrobak et al. [10] studied migration on var-
ious classes of metric spaces, including trees, hypercubes, meshes, real vector spaces,
and general products of trees. They gave strongly (2+1/2D)-competitive randomized
algorithms for these spaces, (2+1/2D)-competitive deterministic algorithms for some
of these spaces, and a general lower bound for deterministic algorithms of (85/27).
Recently, Bartal, Charikar, and Indyk [4] obtained a 4.086-competitive deterministic
algorithm.

File Allocation. For general networks, Awerbuch, Bartel, and Fiat [2] and Bartal,
Fiat, and Rabani [5] give O(log n)-competitive deterministic and randomized algo-
rithms against an adaptive on-line adversary, respectively. Westbrook and Yan [23]
show that Bartal, Fiat, and Rabani’s algorithm is O(log d(G))-competitive on an un-

ON-LINE DISTRIBUTED DATA MANAGEMENT 1089

Table 1.1
The state of the art: Trees and uniform networks. Note eD = (1 + 1/D)D.

Replication Migration File allocation

Deterministic uniform 2 [7] 3 [7] 3 [5]
tree 2 [7] 3 [7] 3∗

Randomized uniform eD/(eD − 1)∗ 2 + 1/(2D)∗ ?
tree eD/(eD − 1)∗ 2 + 1/(2D) [10] 2 + 1/D∗

∗This paper

weighted graph with diameter d(G), and there exists a O(log2 d(G))-competitive de-
terministic algorithm. Bartal, Fiat, and Rabani also find a (3 +O(1/D))-competitive
deterministic algorithm on a tree and strongly 3-competitive randomized algorithms
against an adaptive on-line adversary on a tree and uniform network. Since replica-
tion is a special case of file allocation, these upper bounds are also valid for replication
when the additive constant B is zero.

1.3. New results. This paper contributes the following results:

• For on-line file allocation on a tree, we give a strongly 3-competitive deter-
ministic algorithm and a (2+1/D)-competitive randomized algorithm against
an oblivious adversary and show that this is optimal even if G is an edge.

• For uniform networks, we show that the off-line file allocation problem can
be solved in polynomial time. We give a strongly (2 + 1/(2D))-competitive
randomized on-line algorithm for migration against an oblivious adversary on
the uniform network.
• For the replication problem, we show that the off-line problem is NP-hard;

this implies that the file allocation problem is also NP-hard. We obtain ran-
domized algorithms that are (eD/(eD − 1))-competitive against an oblivious
adversary on a tree and a uniform network; this is optimal even if G is an
edge. (Albers and Koga [1] have independently obtained the same results for
on-line replication using a different method.)
• We show that no randomized algorithm for replication on a single edge can

be better than 2-competitive against an adaptive on-line adversary. Thus
Koga’s [17] algorithm for replication on a tree is strongly competitive.

Table 1.1 summarizes the competitive ratios of the best known deterministic and
randomized algorithms against an oblivious adversary for replication, migration, and
file allocation on trees and uniform networks. They are all optimal.

1.4. Lookahead and implementation issues. As stated above, we adopt the
lookahead-0 model that has been used in all previous work on allocation and its
variants. Studies of some other on-line problems, however, have used a lookahead-1
model, and in this subsection we comment briefly on the distinction.

In a lookahead-1 model of allocation, some request sequences could be served
by an on-line algorithm at a lower cost than would be possible in the lookahead-0
model. For example, if a write request occurs, a lookahead-1 algorithm can drop all
but one copies of F before servicing the request, thereby reducing the service cost.
The lookahead-0 model is more appropriate for file allocation, however, because the
service cost models both the message cost of satisfying a request, which includes the
cost of transmitting an answer back to a read request or passing an update on to
all copies, and the message cost of the control messages that must be transmitted in
order for the algorithm to learn of new requests and to implement its replication and

1090 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

drop decisions. Specifically, we assume that a new replication will not occur unless at
least one member of the replication set has been told of a new request, and a processor
will not discard a copy unless it has been told of a new write request.

We claim that for large values of D the optimal competitive ratio in a lookahead-1
model is not materially different from the optimal competitive ratio in a lookahead-0
model. In particular, if there is a c-competitive algorithm using lookahead-1, there
is a (c + 2/D)-competitive algorithm using lookahead-0. The lookahead-0 algorithm
simulates the lookahead-1 algorithm by keeping the same residence set. When the
lookahead-1 algorithm saves service cost on a read, the amount saved can be no more
than the distance it replicates files just prior to satisfying the request. Similarly, when
the lookahead-1 algorithm saves service cost on a write, the amount saved can be no
more than the weight of a minimum Steiner tree which connects the dropped copies
to an undropped copy. But at some point in the past, at least one of the dropped
copies must have been replicated over each edge in that Steiner tree. Hence for each
unit of distance saved on reads by the lookahead-1 algorithm, one file was moved one
unit of distance. The same holds for writes. The total cost saved by the lookahead-
1 algorithm is 2

D times the total movement cost. Both algorithms incur the same
movement cost, however.

One may ask whether our service cost is too optimistic: Could our algorithms
actually be implemented using only the control messages accounted for in the service
cost? Although we do not directly address this issue, our algorithms are essentially
distributed in nature and can be implemented with only constant message overhead
in the special case of uniform and tree networks.

2. Preliminaries. We use the technique of work functions and offset functions
introduced by Chrobak and Larmore [9]. Let S be a set of states, one for each legal
residence set. Thus S is isomorphic to 2V \ {∅}. Let R(s) denote the residence set
corresponding to state s ∈ S. We say the file system is in state s if the current
residence set is R(s), s ∈ S. Let Y = {vr, vw|v ∈ V } be the set of possible requests,
where vr and vw represent read and write requests at node v, respectively. A request
sequence σ = (σ1, . . . , σp) is revealed to the on-line algorithm, with each σi ∈ Y .
Suppose the network is in state s when σi arrives. The algorithm will be charged a
service cost of ser(s, σi), where ser(s, σi) : S × Y−→R is as described in section 1.1.
After serving σi, the algorithm can move to a different state t at a cost tran(s,t),
where tran : S × S−→R is the minimum cost of moving between the two residence
sets.

The work function Wi(s) is the minimum cost of serving requests 1 to i, termi-
nating in state s. Given σ, a minimum cost solution can be found by a dynamic
programming algorithm with the following functional equation:

∀ s ∈ S, i ∈ Z+, Wi(s) = min
t∈S
{Wi−1(t) + ser(t, σi) + tran(t, s)},

with suitable initializations. Let opti = mins∈SWi(s), i ≥ 1, be the optimal cost of
serving the first i requests. We call ωi(s) = Wi(s) − opti the offset function value
at state s after request i has been revealed. Define ∆opti = opti − opti−1; it is the
increase in the optimal off-line cost due to σi.

Our on-line algorithms make decisions based on the current offset values, ωi(s), s ∈
S. Note that to compute the ωi(s)’s and ∆opti’s, it suffices to know only the ωi−1(s)’s.

Since OPT (σ) =
∑|σ|
i=1 ∆opti, to show that an algorithm A is c-competitive, we need

only show that for each reachable combination of offset function, request, and file

ON-LINE DISTRIBUTED DATA MANAGEMENT 1091

system state, the inequality ∆CA + ∆Φ ≤ c · ∆opti holds, where ∆CA is the cost
incurred by A and ∆Φ is the change in some defined potential function. If the total
change in Φ is always bounded or nonnegative, summing up the above inequality over
σ, we have CA(σ) ≤ c ·OPT (σ) +B, where B is some bounded value.

The Steiner tree problem. We shall refer to a network design problem called the
Steiner tree problem (STP) [24], which can be stated as follows. An instance of STP
is given by a weighted undirected graph G = (V,E), a weight function on the edges
w : E−→Z+

0 , a subset Z ⊆ V of regular nodes or terminals, and a constant B′ ∈ Z+.
The decision problem is to ask if there exists a Steiner tree in G that includes all
nodes in Z and has a total edge weight of no more than B′. STP is NP-complete even
when G is restricted to bipartite graphs with unit edge weights or to planar graphs
[12, 16]. Surveys on STP can be found in [13, 24]. On a tree network, the union of
paths between all pairs of terminals gives the optimal Steiner tree.

3. Deterministic algorithms for FAP on a tree. We begin by introduc-
ing some concepts that will be used in building both deterministic and randomized
algorithms for file allocation on trees.

We say a residence set is connected if it induces a connected subgraph in G. On
a tree, if the residence set is always connected, each node without a copy of F can
easily keep track of R, and hence the nearest copy of F, by using a pointer. In fact,
when G is a tree we can limit our attention to algorithms that maintain a connected
R at all times.

Theorem 3.1. On a tree, there exists an optimal algorithm that always maintains
a connected residence set; i.e., given any (on-line or off-line) algorithm A, there exists
an algorithm A′ that maintains a connected R and CA′(σ) ≤ CA(σ) for all σ. If A is
on-line, so is A′.

Proof. Let R(A) and (R′) be the residence sets maintained by A and A′, respec-
tively. We simulate A on σ and let A′ be such that at any time, R′) is the minimum
connected set that satisfies R(A) ⊆ R(A′). Given R(A) on a tree, R(A′) is defined
and unique.

Since R(A) ⊆ R(A′), the reading cost incurred by A′ cannot be greater than that
by A. The same holds true for the writing cost issued at any node v, since R(A′)∪{v}
spans the unique minimum length Steiner tree for R(A) ∪ {v}. So A′ does not incur
a greater read or write cost than A.

Algorithm A′ does not need to carry out any replication unless A does, and only
to nodes that are not already in R(A′). To maintain R(A) ⊆ R(A′), A′ should
leave a copy of F along any replication path; this can be done without incurring any
extra cost. As R(A) ⊆ R(A′), A′ never needs to traverse a replication path longer
than that traversed by A for the same replication. Hence, A′ cannot incur a greater
replication cost. Since a reallocation is a sequence of replications and discards of F, A′

maintains a connected set at all times and does not incur a greater cost than A in the
reallocation.

Henceforth we shall consider only algorithms that maintain a connected residence
set R at all times. When we say that an algorithm replicates to node v, we shall mean
it leaves a copy of F , at all nodes along the shortest path from the residence set to
v. In a tree network we can make some additional simplifying assumptions. Suppose
an algorithm A decides to move to residence set R′ from set R. This reallocation
involves some sequence of replications and drops.

Lemma 3.2. All replications can be performed before all drops without increasing
the total cost of the reallocation.

1092 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

Proof. Dropping a copy can only increase the cost of following replications.
Henceforth we assume that all algorithms comply with Lemma 3.2.
Lemma 3.3. Let S = R′ \ R be the nodes that gain a copy of F . Then F can be

replicated to the nodes of S in any order at total cost D · |T (R′) \ T (R)|, where T (R)
is the subtree induced by node set R.

Proof. A copy of F must be sent across each edge in T (R′) \ T (R) at least once.
But in any order of replication, a copy cannot be sent across an edge more than once,
because then both endpoints contain a copy of F .

Henceforth we assume that all algorithms comply with Lemma 3.3.
A useful tool in handling on-line optimization on trees is factoring [7, 10]. It

makes use of the fact that any sequence of requests σ and any tree algorithm can be
“factored” into (n− 1) individual algorithms, one for each edge. The total cost in the
tree algorithm is equal to the sum of the costs in each individual edge game. For edge
(a, b) we construct an instance of two-processor file allocation as follows. The removal
of edge (a, b) divides T into two subtrees Ta and Tb, containing a and b, respectively.
A read or write request from a node in Ta is replaced by the same kind of request
from a, and a request from a node in Tb is replaced by the same request from b. Let
A be an algorithm with residence set R(A). Algorithm A induces an algorithm on
edge (a, b) as follows: if R(A) falls entirely in Ta or Tb, then the edge algorithm is
in state a or b, respectively; otherwise, the edge algorithm is in state ab. When the
edge algorithm changes state, it does so in the minimum cost way (i.e., at most one
replication). This factoring approach is used in our algorithms for file allocation on
a tree. For the rest of this paper, given an edge (a, b), we use Ta and Tb to represent
the subtrees described above, s to denote the state the edge is in, and let the offset
functions triplet be ωi = (ωi(a), ωi(b), ωi(ab)), where ωi(s) is the offset function value
of state s after σi has arrived.

Lemma 3.4. For algorithm A and request sequence σ, let A(a,b) be the algorithm
induced on edge (a, b) and σab be the request sequence induced on edge (a, b). Then

CA(σ) =
∑

(a,b)∈E
CA(a,b)

(σab).

Proof. We show that the cost incurred by any event contributes the same amount
to both sides of the equation.

For a write request at a node v, CA(σ) increases by the weight of the unique
Steiner tree, T ′, containing nodes in R(A)∪ {v}. In the induced problem of any edge
e on T ′, the residence set and the request node are on opposite sides of e, and a write
cost equal to e’s weight is incurred. For other edges, v and the residence set lie on
the same side of e, and no cost is incurred in their induced problems. So both sides
of the equation increase by the same amount.

For a read request at a node v, the same argument as in the write case can be
used, replacing T ′ by the unique path from v to the nearest node with a copy of F.
Both sides of the equation increase by the same amount.

Suppose A moves from a residence set of R to R′, and consider the sequence of
replications and discards that make up the reallocation process. We show by induction
on the length of this sequence that the movement cost to A is exactly equal to the sum
of movement costs in the induced edge problems. Suppose that the first action in the
sequence is to replicate F to node v. The cost to A is D times the sum of the lengths
of the edges on the shortest path from R to v. Since R is connected, the edges on this
path are exactly the edges that must replicate in their induced problems. Thus both

ON-LINE DISTRIBUTED DATA MANAGEMENT 1093

Table 3.1
Transition and service costs.

tran(t, s) s
a b ab

a 0 D D
t b D 0 D

ab 0 0 0

ser(t, σi) σi
ar aw br bw

a 0 0 1 1
t b 1 1 0 0

ab 0 1 0 1

Table 3.2
Changes in offsets.

Case 1: k ≥ 1.

σi+1 ωi+1(a) ωi+1(b) ωi+1(ab) ∆opti+1

ar 0 min(k + 1, l) l 0
aw 0 min(k + 1, D) min(l + 1, D) 0
br 0 k − 1 l − 1 1
bw 0 k − 1 l 1

Case 2: k = 0.

σi+1 ωi+1(a) ωi+1(b) ωi+1(ab) ∆opti+1

ar 0 min(1, l) l 0
aw 0 1 min(l + 1, D) 0
br min(1, l) 0 l 0
bw 1 0 min(l + 1, D) 0

sides of the equation increase by the same amount. If the first action is a discard,
then no costs are incurred by A or any of the induced edge algorithms.

Lemma 3.5. Let OPT (σab) be the cost incurred by an optimal edge algorithm for
(a, b) on sequence σab. Then

∑
(a,b)∈E OPT (σab) ≤ OPT (σ).

Proof. The lemma follows by letting A in Lemma 3.4 be the optimal off-line
algorithm for FAP on a tree and noting CA(a,b)

(σab) ≥ OPT (σab) for any A and edge
(a, b).

It follows from Lemmas 3.4 and 3.5 that if A is an on-line algorithm such that
on any σ, and for each edge (a, b), CA(a,b)

(σab) ≤ c · OPT (σab) holds, then A is
c-competitive.

To construct a deterministic algorithm for the tree, we first construct a suitable
optimal algorithm for a single edge. We then design the tree algorithm so that it
induces this optimal edge algorithm in each edge, thereby guaranteeing competitive-
ness.

3.1. An optimal deterministic edge algorithm. Let G = (a, b) be an edge
and let S = {a, b, ab} be the set of states the file system can be in—only node a
has a copy, only node b has a copy, and both a and b have a copy, respectively.
We can assume G is of unit length; otherwise the offsets and cost functions can be
scaled to obtain the same results. We write the offset functions as a triplet ωi =
(ωi(a), ωi(b), ωi(ab)) and similarly for the work functions. Suppose the starting state
is a. Then W0 = (0, D,D). The ser and tran functions are given in Table 3.1. By the
definition of the offset functions, and since it is free to discard a copy of F, we always
have ωi(ab) ≥ ωi(a), ωi(b), and at least one of ωi(a) and ωi(b) is zero. Without loss of
generality, we assume a starting offset function vector of ωi = (0, k, l), 0 ≤ k ≤ l ≤ D,
after σi has arrived. Table 3.2 gives the changes in offsets for different combinations
of requests and offsets in response to the new request σi+1.

Let s be the current state of R. Our algorithm specifies the new required residence

1094 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

set, R, after σi+1 has arrived and the offsets have been updated; it assumes state a is
a zero-offset state.

Algorithm DetEdge.
(1) If s 6= ab and ωi+1(s) = ωi+1(ab), replicate, i.e., set s = ab.
(2) If s = ab and ωi+1(b) = D, drop at b, i.e., set s = a.
Theorem 3.6. Algorithm DetEdge is strongly 3-competitive.
Proof. We first show that for each request σj , ∆CEdge + ∆Φ ≤ 3 · ∆optj (∗)

holds for some function Φ(·) defined below. Let a be a zero-offset state, and we have
ωi = (0, k, l). At any time, we define the potential function

Φ(s, k) =

 2 ·D − 2 · k if s = a,
2 ·D − k if s = b,
D − k if s = ab.

Initially, Φ = 0, and we always have Φ ≥ 0. When ωi = (0, 0, l) and s 6= ab, s can be
considered to be in state a or b, and Φ(a, 0) = Φ(b, 0) = 2D. Note that ωi = ωi+1

and ∆Φ = ∆opti = 0 hold in the following cases:
(i) ωi = (0, D,D) and σi+1 = ar or aw;
(ii) ωi = (0, l, l), l ≥ 1, and σi+1 = ar; and
(iii) ωi = (0, 0, 0) and σi+1 = ar or br.

Our algorithm ensures that ∆CEdge = 0 in these cases. Let us show that (∗) holds for
all possible combinations of state, request, and offset. The offsets and state variables
below are the ones before the new request σi+1 arrives. We consider the k ≥ 1 cases;
the k = 0 cases are similar to that when k ≥ 1 and σi+1 = ar or aw.

Case 1. σi+1 = ar.
We have ∆opti+1 = 0. If s = a or ab, then the left-hand side (L.H.S.) of (∗) ≤ 0

and (∗) holds. If s = b, by the last execution of the algorithm, we must have k < l.
Then ∆CEdge = −∆Φ = 1, and (∗) holds.

Case 2. σi+1 = aw.
We have ∆opti+1 = 0. If s = a, then L.H.S (∗) ≤ 0 and (∗) holds. If s = b or ab,

we must have k < D. Then ∆CEdge = −∆Φ = 1, and (∗) holds.
Case 3. σi+1 = br or bw.
We have ∆opti+1 = 1. In this case ∆CEdge ≤ 1, ∆Φ ≤ 2, and L.H.S. (∗) ≤ 3

hold.
Inequality (∗) also holds when DetEdge changes state. When DetEdge moves

from state ab to state a, ωi = (0, D,D) and ∆Φ = ∆CEdge = 0; and when Det-
Edge moves to state ab, ∆Φ = −∆CEdge = −D. Hence, (∗) holds for all possible
combinations of offsets, requests, and residence sets.

We claim that no deterministic algorithm is better than 3-competitive for FAP
on an edge. For migration, it is known that no deterministic algorithm can be better
than 3-competitive on a single edge [7]. We show that given any on-line algorithm A
for FAP there exists another on-line algorithm A′ such that (i) CA′(σ) ≤ CA(σ) for
any σ with only write requests; (ii) A′ always keeps only one copy of F at a node in
A’s residence set; and (iii) whenever A has only one copy of F, A′ has a copy at the
same node. Since A′ is a legal algorithm for any instance of the migration problem
and since the optimal cost to process σ without using replications is no less than the
optimal cost with replications, A is c-competitive on write-only sequences only if A′

is a c-competitive migration algorithm. This implies the claim.
Algorithm A′ is obtained from A as follows. Initially, both A and A′ have a copy

of F at the same node. The following rules are applied whenever A changes state:

ON-LINE DISTRIBUTED DATA MANAGEMENT 1095

(1) If A replicates, A′ does not change state.
(2) If A migrates, A′ follows.
(3) If A drops a page, A′ follows to the same node.

It follows from the rules above that (ii) and (iii) hold, and A′ cannot incur a write
cost higher than that of A. Each movement of A′ in (1) or (2) corresponds to a
distinct migration or earlier replication by A, respectively. So A′ cannot incur a
higher movement cost than A. The claim follows.

3.2. An optimal deterministic tree algorithm. Recall that for each edge
e = (a, b) on the tree, request sequence σ induces a sequence σab on (a, b). The
tree algorithm is based on factoring into individual edge subproblems and simulating
DetEdge on each subproblem. After r ∈ σ is served, for each edge e = (a, b) the
induced request rab is computed and the offset vector for the induced subproblem
is updated. The following algorithm is then executed, updating the residence set,
R(Tree). Initially R(Tree) consists of the single node containing F.

Algorithm DetTree.
(1) Examine each edge (u, v) in any order, and simulate the first step of Algorithm

DetEdge in the induced subproblem. If DetEdge replicates to one of the nodes, say
v, in the induced subproblem, then add v to R(Tree) and replicate to v.

(2) Simulate step 2 of DetEdge for all edges. For any node v, if the edge algorithm
for an incident edge e = (u, v) requires deleting node v from e’s residence set in e’s
induced problem, mark v.

(3) Drop at all marked nodes.
To show that DetTree is 3-competitive, we will show that it chooses a connected

residence set and, for each edge, it induces the state required by DetEdge. This is
not immediately obvious because the requirements of DetEdge on one edge might
conflict with those on another edge. For example, one edge might want to drop a
copy that another edge has just replicated.

We begin by analyzing the structure of the offset functions in the induced edge
problems. For the rest of this subsection, the offset values and functions for each edge
(a, b) refer to results from the induced sequence σab. The next lemma characterizes
the offset distribution between two adjacent edges.

Lemma 3.7. The following properties hold:
(A) At any time, there exists a root node r such that R = {r} corresponds to a

zero-offset state in the induced problems of all edges.
(B) For any edge (x, y) on the tree, define Si(x, y) = ωi(xy) − ωi(x). Then for

any adjacent edges (x, y) and (y, z), the inequality Si(x, y) ≤ Si(y, z) holds ∀ i.
Following from the earlier definitions (see the beginning of section 3.2), the claim

(A) above states that there is a node r such that for any edge (a, b), where a is nearer
to r than b, state a is a zero-offset state for the edge. Note that the location of the
root node r may not be unique, and its location changes with requests. The lemma
implies the following conditions.

Corollary 3.8.
(C) Let (x, y) be an edge in T such that a root r is in Tx. Let z 6= x be a neighbor

of y, and edges (x, y) and (y, z) have offsets (0, kxy, lxy) and (0, kyz, lyz), respectively.
Then

(C.1) lxy ≤ lyz;
(C.2) lxy − kxy ≥ lyz − kyz;
(C.3) kxy ≤ kyz; and
(C.4) if kyz = 0, then kxy = 0 and lxy = lyz hold.

1096 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

(D) Let (x, y) and (y, z) be adjacent edges with a root r in the subtree that is
rooted at y and formed from removing the two edges from T . Let the offsets in the
edges be (kxy, 0, lxy) and (0, kyz, lyz), respectively. Then lxy ≥ (lyz − kyz) holds.

Proof of Lemma 3.7. We use induction on the number of requests. Initially, let r
be the node holding the single copy of F ; all the edges have offset vectors (0, D,D),
and the lemma holds trivially. We assume the lemma holds for t ∈ Z+

0 revealed
requests and show that it remains valid after σt+1 has arrived at a node w. We first
show how to locate a new root. Let P represent the path from r to w. Unless specified
otherwise, the offsets referred to below are the ones before σt+1 arrives. We choose
the new root, r′, using the following procedure.

Procedure FindRoot.
(1) If (̄i) w = r or (ii) w 6= r and all the edges along P have offsets of the form

(0, k, l), k ≥ 1. Then r′ = r.
(2) Otherwise, move along P from r toward w, and cross an edge if it has offset

vector of the form (0, 0, l) until we cannot go any further or when w is reached. Pick
the node where we stop as r′.

Let us show that r′ is a valid root for the new offsets. We picture P as a chain of
edges starting from r, going from left to right, and ending in w. If the condition in
step (1) of the algorithm is satisfied, σt+1 corresponds to a request at the zero-offset
state for all edges. By Table 3.2, r remains a valid root node. Suppose (2) above
is executed. For any edge that is not on P, or is on P but is to the right of r′, its
zero-offset state remains the same. Node r′ is a valid root node for these edges. By
(C.4), edges along P with offsets of the form (0, 0, l) must form a connected subpath of
P, starting from r and ending in r′. They have the same value for the parameter l. By
Table 3.2, their offsets change from (0, 0, l) to (1, 0,min{l + 1, D}) or (min(1, l), 0, l),
and r′ is a valid root node for them. Hence (A) holds for our choice of r′ above.

To show that (B) holds, we consider any two adjacent edges (x, y) and (y, z)
whose removal will divide T into three disjoint subtrees: Tx, Ty, and Tz, with roots
x, y, and z, respectively. We show that for different possible positions of r and w, (B)
remains valid after σt+1 has arrived; i.e., St+1(x, y) ≤ St+1(y, z) holds when σt+1 is a
write or a read , when r ∈ Tx, Ty, or Tz, and when w ∈ Tx, Ty, or Tz. We assume (B)
holds before σt+1 arrives.

Suppose σt+1 is a read request, r ∈ Tx, and w ∈ Tx. For edge (x, y), ωt =
(0, kxy, lxy) and ωt+1 = (0,min(kxy + 1, lxy), lxy). For edge (y, z), ωt = (0, kyz, lyz)
and ωt+1 = (0,min(kyz + 1, lyz), lyz). Inequality St+1(x, y) ≤ St+1(y, z) follows from
St(x, y) ≤ St(y, z) or (C.1). Condition (B) can be shown to hold in other situations
by a similar case analysis. Please refer to the appendix for the complete case analysis.
Thus (B) holds for request (t+ 1), and the lemma follows.

Theorem 3.9. Algorithm DetTree is strongly 3-competitive.

Proof. We show that DetTree induces DetEdge on each tree edge. The theorem
then follows from Lemmas 3.4 and 3.5 and Theorem 3.6.

We proceed by induction on the number of requests. Initially, R(Tree) consists
of a single node. Suppose R(Tree) is connected after the first t ∈ Z+

0 requests, and
for each edge (a, b), the state induced by R(Tree) is equal to the state desired by
DetEdge when run on σab. Consider the processing of request t+ 1.

Step (1): Replication. We do a subinduction on the number of replications done
in Step (1) and show that no replication is in conflict with the state desired by any
edge.

Suppose that processing edge (a, b) in Step (1) causes F to be replicated to a.

ON-LINE DISTRIBUTED DATA MANAGEMENT 1097

Then r ∈ Ta, R(Tree) lies in Tb, inducing state s = b, and ωt+1 = (0, l, l). This follows
from the definition of DetEdge, the definition of the induced subproblem, and the
inductive hypothesis. Let Q be the path from b to the nearest node in R(Tree). If
Q 6= {b}, then, to avoid conflict, each edge along Q must also require replication
across it. From (A) and (C.2) in Theorem 3.7, we see that each edge (x, y) in Q has
an offset of the form ωt+1 = (0, l′, l′), where x is nearer to b than y and requires a
replication. A similar argument holds for the case when s = a and ωt+1 = (0, 0, 0).

Step (2): Marking nodes to drop. Again we perform a subinduction on the number
of markings done in Step (2) and show that no marking is in conflict with the state
desired by any edge and that a connected residence set results.

Suppose that processing edge (a, b) in Step (2) causes b to be marked. This occurs
because (a, b) has ωt+1 = (0, D,D), r ∈ Ta, r a write, and s = ab.

Since R(Tree) is connected by hypothesis, both a and b are in R(Tree), and the
nodes in Tb with a copy of F span a connected subtree of Tb, with b as its root. Let
us call it T ′b. If T ′b 6= {b}, each edge (x, y) in T ′b is in state s = xy. By (A) and (C.3)
in Theorem 3.7, (x, y) must have offset ωt+1 = (0, D,D), with x nearer to b than y is.
Under DetEdge, (x, y) needs to drop the copy of F in node y. Hence all the nodes
in T ′b are required to be removed from R(Tree), the new R(Tree) remains connected,
and no edges are in conflict.

Thus R(Tree) is connected, all induced edge algorithms match DetEdge, and
DetTree is 3-competitive.

4. Randomized algorithms for FAP on a tree. Our approach to building
a randomized tree algorithm is the same as our approach in the deterministic case.
We give a randomized algorithm for a two-point space, RandEdge, that is based
on counter values assigned at the nodes. By factoring, we obtain from RandEdge a
(2+1/D)-competitive algorithm, RandTree, for file allocation on a tree. RandTree
requires the generation of onlyO(logD) random bits at the beginning of the algorithm,
after which it runs completely deterministically. It is simpler than the tree algorithm
in [19], which can require the generation of Ω(logD) random bits after each request
is served.

4.1. An optimal randomized edge algorithm, RandEdge. Let edge e =
(a, b). We maintain counters ca and cb on nodes a and b, respectively. They satisfy
0 ≤ ca, cb ≤ D and (ca + cb) ≥ D. Our algorithm maintains a distribution of R
dependent on the counter values. Initially, the node with a copy of F has counter
value D, and the other node has counter value 0. The counter values change according
to the following rules. On a read request at a, we increment ca if ca < D. On a write
request at a, if (ca + cb) > D, we decrement cb; if (ca + cb) = D and ca < D, we
increment ca. The counters change similarly for a request at b. There is no change in
the counter values in other cases.

Algorithm RandEdge always maintains a distribution of R such that

pe[a] = 1− cb
D
,(4.1a)

pe[b] = 1− ca
D
, and(4.1b)

pe[ab] =
ca + cb
D

− 1.(4.1c)

Observe that the probability of having a copy of F at node v ∈ {a, b} is cv/D.

1098 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

In order to maintain this distribution, RandEdge simulates D deterministic
algorithms, numbered from 1 to D. The moves of each deterministic algorithm are
constructed (deterministically) on-line, according to rules given below. Before the
first request, one of the D algorithms is picked at random. RandEdge then makes
the same moves as the chosen deterministic algorithm. Thus pe[s], s ∈ {a, b, ab}, is
the proportion of algorithms in state s, and the expected cost incurred by RandEdge
is the average of the costs incurred by the D algorithms.

We define the D algorithms that achieve the probability distribution in (4.1).
Suppose that initially only node a has a copy of F . Then initially the D algorithms
are placed in state a. The following changes are made after a new request, σi, has
arrived. Without loss of generality, we assume the request arises at node a. (The ca
and cb values below refer to the counter values just before σi arrives.)

• There is no change in the algorithms if there is no change in the counter
values.
• Case 1. If σi = ar and ca < D, the lowest-numbered algorithm in state b

moves to state ab.
• Case 2. If σi = aw, (ca + cb) > D, the lowest-numbered algorithm in state ab

moves to state a.
• Case 3. If σi = aw, (ca+cb) = D, and ca < D, the lowest-numbered algorithm

in state b moves to state ab.
Lemma 4.1. RandEdge is feasible and maintains the probability distribution in

(4.1).
Proof. By feasible we mean that whenever a move must be made in Cases 1, 2,

and 3, there is some algorithm available to make the move. The choice of lowest-
numbered algorithm is only to emphasize that the choice must be independent of
which algorithm RandEdge is actually emulating.

The lemma holds initially with ca = D and cb = 0. We prove the lemma by
induction on the requests and assume it holds before σi arrives. If there is no change
in counter values after σi has arrived, the lemma holds trivially. By the induction
hypothesis, in Case 1 above, since ca < D and pe[b] > 0, at least one of the D
algorithms is in state b; in Case 2, since (ca + cb) > D and pe[ab] > 0, there is
an algorithm in state ab; in Case 3, since ca < D, there is an algorithm in state b.
Hence, RandEdge is feasible. It can be verified that the changes in the algorithms
implement the probability distribution in (4.1) for the new counter values.

Theorem 4.2. RandEdge is strongly (2 + 1/D)-competitive.
Proof. For each node v ∈ {a, b}, we maintain the potential function

φv =

{
D+1

2 +
∑D−1
j=cv

(2− j
D), OPT has a copy of F at v,∑cv

j=1
j
D otherwise,

where OPT represents the adversary. Let the overall potential function Φ = φa +
φb − (D + 1)/2. Initially, Φ = 0; at any time, Φ ≥ 0. We show that in response to
each request and change of state,

E(∆CRandEdge) + E(∆Mi) + ∆Φ ≤ (2 + 1/D) ·∆OPT(4.2)

holds, where ∆OPT , E[∆CRandEdge], and E(∆Mi) are the cost incurred by the event
on OPT and the service and movement costs incurred on RandEdge, respectively.
The ca and cb values below are the counter values just before the new request σi
arrives.

ON-LINE DISTRIBUTED DATA MANAGEMENT 1099

Case 1. Request σi = ar.
If ca = D, inequality (4.2) holds trivially. Suppose ca < D. We have

E(∆CRandEdge) = 1− ca
D
, E(∆Mi) = 1,

∆Φ =

{ −2 + ca
D , OPT has a copy of F at a,

ca+1
D otherwise.

It follows that ifOPT has a copy of F at a when σi arrives, L.H.S. (4.2) = ∆OPT = 0;
otherwise, L.H.S. (4.2) = (2 + 1/D) = (2 + 1/D) ·∆OPT . Inequality (4.2) holds.

Case 2. Request σi = aw and (ca + cb) > D.
We have

E(∆CRandEdge) =
cb
D
, E(∆Mi) = 0,

∆Φ =

{
2− cb−1

D , OPT has a copy of F at b,
−cb
D otherwise, and

L.H.S. (4.2) =

{
2 + 1

D , OPT has a copy of F at b,
0 otherwise.

Inequality (4.2) holds.
Case 3. Request σi = aw and (ca + cb) = D.
If ca = D, L.H.S. (4.2) = 0 and (4.2) holds trivially. Suppose ca < D. We have

E(∆CRandEdge) = 1− ca
D
, E(∆Mi) = 1,

∆Φ =

{ −2 + ca
D , OPT has a copy of F at a,

ca+1
D otherwise, and

L.H.S. (4.2) =

{
0, OPT has a copy of F at a,
2 + 1

D otherwise.

Hence, (4.2) holds.
Case 4. OPT changes state.
When OPT changes state, E(∆CRandEdge) = E(∆Mi) = 0. It can be checked

from the definition of Φ that when OPT replicates, ∆OPT = D and ∆Φ ≤ (2D+ 1)
hold; when OPT discards a copy of F, ∆Φ ≤ 0.

Since (4.2) holds for all possible events, by Theorem 4.6 RandEdge is strongly
(2 + 1/D)-competitive.

4.2. An optimal randomized tree algorithm—RandTree. We extend Rand-
Edge to a randomized algorithm for FAP on a tree, T , by means of factoring. Our
algorithm, RandTree, induces RandEdge on each edge for the induced request
sequence for the edge.

1100 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

Description of algorithm RandTree. RandTree internally simulates D de-
terministic algorithms. Each of them maintains a residence set that spans a subtree
of T . Initially, the residence set for each of them is the single node that contains F.
One of the D simulated algorithms is picked uniformly at random at the beginning,
and RandTree behaves exactly the same as the particular algorithm chosen.

We maintain counters ca and cb for each edge (a, b) in the tree. Using the factoring
approach (see section 3.2), we obtain an induced request sequence σab for (a, b). The
counter values change according to the same rules as described in the single edge
case (section 4.1), using σab. RandTree responds to each request and maintains an
(induced) distribution as required by RandEdge in (4.1) for each of the edges.

Read request. Suppose the new request, σi, is a read request at a node g. Let
T be rooted at g and e = (a, b) be an edge with a nearer to g than b is. The ca and
cb values described below are the counter values before σi arrives. The edges can be
classified into three types:

• type 1: edges with ca = D and cb = 0;
• type 2: edges with ca = D and cb > 0; and
• type 3: edges with ca < D.

RandEdge requires no change in probability values for the first two types of edges;
for type 3 edges, it requires that pe[b] decreases by 1/D and pe[ab] goes up by 1/D. For
any node v, we use T (v) to denote the subtree of T rooted at v. RandTree changes
the subtree configurations maintained by the D algorithms by using the following
procedure (Fig. 4.1).

(1) Let F be the forest of trees formed by all the type 3 edges.
(2) While there exists a tree T ′ ∈ F with at least one edge, Do

(2.1) Let x be a leaf node in T ′ and P be the path from x to the root
node of T ′.
(The root node of T ′ is the node in T ′ that is nearest to g.)

(2.2) Pick any one of the D algorithms that maintains a subtree, Z,
that includes node x and lies entirely in T (x).
Make that algorithm replicate along P , i.e., replace Z by Z ∪ P .

(2.3) Remove the edges in P from T ′ and update the forest F .

Fig. 4.1. Algorithm RandEdge (read requests).

Lemma 4.3. RandTree implements the required changes for all the edges for a
read request.

Proof. We prove the lemma by induction on the requests. Suppose that RandTree
induces RandEdge on all edges before σi arrives. Let y be the parent node of x. If
RandTree is feasible, i.e., it can be executed, it implements the changes required by
RandEdge as described above for all edges. We show that this is the case.

If x is a leaf node of T , since (x, y) is a type 3 edge, p(x,y)[x] > 0 and one of the
D algorithms must have the single node {x} as its tree configuration.

Otherwise, suppose all the descending edges of x are of type 1. Let (x,w) be one
of them. Then p(x,w)[xw] = p(x,w)[w] = 0; none of the algorithms maintain a subtree
with any edge in T (x). Since p(x,y)[x] > 0, one of the algorithms must have {x} as
its subtree.

Otherwise, suppose x has descending type 2 edges. Let (x,w) be any one of them.
Then p(x,w)[w] = 0 and p(x,w)[xw] > 0. Thus each of these edges is contained in the

ON-LINE DISTRIBUTED DATA MANAGEMENT 1101

subtree of at least one of the algorithms, and none of the algorithms has its subtree in
T (w). Since p(x,y)[x] > 0, at least one of these subtrees must lie in T (x) and contains
node x.

Hence, our algorithm is feasible and the lemma holds.

Write request. Suppose σi = rw. We use the same notation as in the read
request case. The edges can be classified into three types:

• type 1: edges with (ca + cb) > D;
• type 2: edges with (ca + cb) = D and ca < D; and
• type 3: edges with (ca + cb) = D and ca = D.

RandEdge requires no change in probability values for the type 3 edges; for type 1
edges, it requires that pe[ab] decreases by 1/D and pe[a] increases by the same amount;
for type 2 edges, it requires that pe[b] decreases by 1/D and pe[ab] increases by the
same amount. RandTree performs the following (Fig. 4.2).

(1) Let F be the forest of trees formed by all the type 1 edges.
(2) While there exists a tree T ′ ∈ F with at least one edge, Do

(2.1) Let g′ be the root node of T ′ and x be one of its children nodes in
T ′.

(2.2) Pick an algorithm that has a subtree Z that includes edge (g′, x).
(2.3) If Z is contained in T ′, make the algorithm replace Z by the single-

node subtree {g′}; otherwise, replace Z by the tree formed by
edges in (Z − T ′).

(2.4) Replace T ′ in F by the subtrees formed by T ′ − Z.
(3) Let F be the forest of trees formed by all the type 2 edges.
(4) While there exists a tree T ′ ∈ F with at least one edge, Do

(4.1) Let x be a leaf node of T ′ and P be the path from x to the root
node of T ′.

(4.2) Pick any one of the D algorithms that maintains a subtree, Z,
that includes node x and lies entirely in T (x).
Make that algorithm replicate along P , i.e., extends Z to Z ∪ P .

(4.3) Remove the edges in P from T ′ and update the forest F .

Fig. 4.2. Algorithm RandEdge (write requests).

Lemma 4.4. RandTree implements the required changes for all the edges for a
write request.

Proof. We prove by induction and assume RandEdge is induced on all the edges
before σi arrives. If RandTree is feasible, it implements the required changes for all
the edges. We show that this is the case.

Consider the first loop of the algorithm (in step (2)). Since p(g′,x)[g
′x] > 0, subtree

Z must exist. RandTree removes edges from Z that are contained in T ′. Note that
the pe[ab] values for type 2 and 3 edges are zero; RandTree processes edges in T ′ in
a top-down fashion, and configuration (Z − T ′) is always a connected subtree. Thus
the first loop can be executed.

Consider the second loop of the algorithm (in step (4)). Let y be a parent node
of x. Then p(x,y)[xy] = 0 and p(x,y)[x] > 0 hold. If x is a leaf node in T , one of the
D algorithms must have {x} as its subtree. If x has a descending type 1 edge, by
the first part of the algorithm, one of the D algorithms must have {x} as its subtree
after running the first loop of the algorithm. Suppose all the descending edges of x

1102 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

are type 3 edges. Let (x,w) be a type 3 edge; then p(x,w)[w] = p(x,w)[xw] = 0 and
p(x,w)[x] = 1. Since p(x,y)[x] > 0, one of the algorithms must have {x} as its subtree.

Hence, the algorithm is feasible and the lemma follows.
Lemmas 4.3 and 4.4 imply that RandTree induces RandEdge on all the edges.
Theorem 4.5 follows from the above lemmas and Theorem 4.2.

Theorem 4.5. Algorithm RandTree is strongly (2 + 1/D)-competitive for FAP
on a tree against an oblivious adversary.

4.3. Lower bound. We show that the competitive ratio, (2 + 1/D), obtained
above is the best possible for file allocation against an oblivious adversary, even if G
is a single edge.

Theorem 4.6. No on-line algorithm for the file allocation problem on two points
(a, b) is c-competitive for any c < (2 + 1/D).

Proof. Let A be any randomized algorithm for the file allocation problem on two
points. We define a potential function Ψ and give a strategy for generating adversary
request sequences such that

(i) for any C there is a request sequence σ with optimum cost ≥ C;
(ii) the cost to RandEdge on σ is at least (2 + 1/D)OPT (σ) − B′′, for B′′

bounded independent of σ;
(iii) Ψ is bounded; and
(iv) for each request generated by this adversary,

∆CA + ∆Ψ ≥ ∆CRandEdge.(4.3)

If conditions (ii), (iii), and (iv) hold for an adversary sequence σ, then summing
(4.3) over the sequence gives

CA(σ) ≥ (2 + 1/D) ·OPT (σ)−B,

where B is bounded. By condition (i), the adversary can make OPT (σ) arbitrarily
large, so there is no constant B′ independent of σ such that CA(s) < (2 + 1/D) ·
OPT (σ) +B′. Hence A cannot be c-competitive for c < 2 + 1/D.

We now define the adversary’s strategy. We assume that both the on-line and
off-line algorithms start with a single copy of F at a. Our adversary will generate
only requests that result in offset functions of the form (0, i, i), where 0 ≤ i ≤ D. A
zero-cost self-loop is a request such that the offset function is unchanged and ∆opt =
0. By a theorem of [18], there is always an optimal on-line algorithm that incurs
zero expected cost on a zero-cost self-loop. We assume A has this property. This
simplifies the adversary’s strategy, although the result can still be proved without
this assumption.

Suppose that the current offset function is (0, i, i), and let pi be probability that
RandEdge is in state a. Suppose A is in state a with probability q. If q < pi, the
adversary requests aw; otherwise the adversary requests br. When i = D we will
have q = 1 (aw is a zero-cost self-loop if i = D), and so the adversary will request
br. Similarly, when i = 0, q = 0 (ar is a zero-cost self-loop) and the adversary
requests aw. Therefore the adversary can always generate a next request using the
above rules, and the request sequence can be made arbitrarily long. Since there are
only D offset functions that can be generated by this strategy, an arbitrarily long
sequence of requests must cycle through the offset functions arbitrarily often. Notice,
however, that the only cycles which cost OPT nothing are zero-cost self-loops. Since
the adversary never uses these requests, all cycles have nonzero cost, so by continuing

ON-LINE DISTRIBUTED DATA MANAGEMENT 1103

long enough the adversary can generate request sequences of arbitrarily large optimum
costs. Hence condition (i) holds.

Next we consider condition (ii). Recall ca and cb, the counter values maintained
by RandEdge. We claim that if the offset function is (0, i, i), then ca = D and
cb = D−i. This is true initially, when F is located only at a, and i = D. By inspection
of RandEdge one can verify that whenever the adversary generates request br, cb
increases by 1, and that whenever the adversary generates aw, cb decreases by 1.
Hence pi = i/D and the expected movement cost incurred by RandEdge is 1 on br

and 0 on aw. With reference to the proof of Theorem 4.2, note that the amortized
cost to RandEdge is exactly 2+1/D times the cost to OPT on any request that the
adversary might generate, assuming OPT does not move following the request. (The
adversary never generates br if cb = D or aw if cb = 0.) The amortized cost incurred
by RandEdge is therefore exactly 2 + 1/D times the cost incurred by an “optimum”
algorithm that only ever has a copy of F at a. It is possible to show that this cost
really is optimum for our sequences, but in any case it is certainly lower-bounded by
the true optimum cost, and so (ii) holds.

Now define Ψ to be D · max{0, q − pi}. This is trivially bounded by D, so (iii)
holds. Finally, we must verify (4.3).

Case 1. The adversary requests aw.
In this case the new offset function must be (0, i + 1, i + 1). Suppose that after

the request A has mass q′ at a. Then ∆CA = 1 − q + D · max{0, q − q′}, ∆Ψ =
D·max{0, q′−pi+1}−D·max{0, q−pi}, and ∆CRandEdge = 1−pi. Since q < pi < pi+1,

∆CA + ∆Ψ = 1− q +D ·max{0, q − q′}+D ·max{0, q′ − pi+1} −D ·max{0, q − pi}
≥ 1− q
≥ 1− pi
= ∆CRandEdge.

Case 2. The adversary requests br.
In this case the new offset function must be (0, i−1, i−1). Suppose that after the

request, A has mass q′ at a. Then ∆CA = q+D ·max{0, q−q′}, ∆Ψ = D ·max{0, q′−
pi−1} −D ·max{0, q − pi}, and ∆CRandEdge = pi + 1. Since q ≥ pi > pi−1,

∆CA + ∆Ψ = q +D ·max{0, q − q′}+D ·max{0, q′ − pi−1} −D ·max{0, q − pi}
≥ q +D(q − pi−1)−D ·max{0, q − pi}
= q +D (pi − pi−1)

= q + 1

≥ pi + 1

= ∆CRandEdge.

5. Migration on a uniform network. We give a (2+1/(2D))-competitive ran-
domized algorithm against an oblivious adversary for migration on a uniform network.
This competitive ratio is optimal even for a single edge [10]. Let G be a complete
graph on n nodes labeled 1 to n. Initially, only node 1 has a copy of F. Our algorithm
is based on the offsets calculated on-line. Let S = {1, . . . , n} and the algorithm is in
state s if the single copy of F is at node s. We have the cost functions

ser(t, σi) =

{
0 if t = σi,
1 otherwise,

tran(t, s) =

{
0 if t = s,
D otherwise,

1104 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

and initially W0 = (0, D, . . . ,D).
Suppose the ith request is served and the new offset for each node, s, is calculated.

Let vs = D − ωi(s), k = max{j ∈ S|∑j
m=1 vm < 2D}, and δ = 2D −∑k

m=1 vm.
Algorithm Migrate. The algorithm maintains the probability, p[s], that a

node, s, contains F as follows:

If k < n, p[s] =

 vs/2D if s ≤ k,
δ/(2D) if s = k + 1,
0 otherwise.

If k = n, p[s] =

 vs/2D if s ≤ k and vs < D,
(vs + δ)/(2D) if s ≤ k and vs = D,
0 otherwise.

After a new request has arrived, our algorithm moves to different states with transition
probabilities that minimize the total expected movement cost while maintaining the
new required distribution.

Theorem 5.1. Given any σ, the expected cost incurred by Migrate, E[Cmig(σ)],
satisfies

E[Cmig(σ)] ≤ [2 + 1/(2D)] ·OPT (σ).

Proof. We show that after a request has arrived,

E[∆Cmig] + E[∆M] + ∆Φ ≤
(

2 +
1

2D

)
·∆opti(5.1)

holds, where E[∆Cmig] is the expected cost incurred by Migrate, E[∆M] is the
expected movement cost, and ∆Φ is the change in the potential function:

Φ =

n∑
s=1

vs∑
j=1

(
1

2
+

j

2D

)
− (3D + 1)/4.

Initially, Φ = 0. At any time, since at least one vs = D, we have Φ ≥ 0.
An offset table similar to Table 3.2 for file allocation can be constructed. Since

migration is equivalent to FAP with only write requests, it can be seen that if request
σi+1 is at a node s with ωi(s) = 0, we have ωi+1(s) = 0, the offsets for all other states
will increase by one, subject to a maximum of D, and ∆opti+1 = 0. If σi+1 is at
a node s with ωi(s) > 0, the offset for state s will decrease by one, all other offsets
remain the same, and ∆opti+1 = 1.

Case 1. A request at s such that vs < D.
In this case, we have ∆opti+1 = 1, and vs increases by one. If s ≤ k, then

E[∆Cmig] ≤ [1 − vs/(2D)]. It can be verified that E[∆M] ≤ 1/2, ∆Φ ≤ 1/2 +
(vs + 1)/(2D), and L.H.S. (5.1)≤ 2 + 1/(2D) = right-hand side (R.H.S.) (5.1). If
s > k, then the movement cost is zero. We also have E[∆Cmig] ≤ 1, ∆Φ = 1/2 +
(vs + 1)/(2D) ≤ 1 + 1/(2D); inequality (5.1) also holds.

Case 2. A request at s such that vs = D.
We have ∆opti+1 = 0. For each j ∈ S − {s} such that vj > 0, vj decreases by 1.

Each such vj contributes −[1/2 + vj/(2D)] to ∆Φ and no more than 1/2 to E[∆M].
We have E[∆Cost] = (1− ps), where ps is the probability mass at s, and

1− ps =
∑
j 6=s

pj ≤
∑

j 6=s,vj>0

vj
2D

.

Hence L.H.S. (5.1) ≤ 0.

ON-LINE DISTRIBUTED DATA MANAGEMENT 1105

6. Replication. We give upper and lower bounds on the performance of ran-
domized on-line algorithms for the replication problem.

6.1. Randomized on-line algorithms. Let eD = (1 + 1/D)D and βD =
eD/(eD − 1). So βD−→e/(e − 1) ≈ 1.58 as D−→∞. We describe randomized algo-
rithms that are βD-competitive against an oblivious adversary on the uniform network
and trees. First, consider a single edge (r, b) of unit length. Initially, only r contains
a copy of F . Suppose algorithm A is α-competitive, and it replicates F to node b with
probability pi after the ith request at b, where

∑
i pi = 1. The pi’s and α must satisfy,

for each k ∈ Z+
0 ,

E[CA(σ) | k] ≤
{
α · k, k ≤ D,
α ·D, k > D,

where E[CA(σ) | k] =
k∑
i=1

pi · (D + i) +

(
1−

k∑
i=1

pi

)
· k

is the expected cost incurred by A when σ contains k requests at b. The optimal
off-line strategy is to replicate a copy of F to b before the first request arrives if
k ≥ D and does not replicate otherwise. Algorithm A incurs a cost of (D + i) if it
replicates right after serving the ith request, i ≤ k; otherwise it incurs a cost of k.
An optimal randomized algorithm is given by a set of pi values that satisfy the above
inequalities for all k such that α is minimized. We note that the conditions above
are identical to those for the on-line block snoopy caching problem on two caches in
[15]. Karlin et al. [15] showed that the optimal α value is βD. This is achieved when
pi = [(D+1)/D]i−1/[D(eD−1)], 1 ≤ i ≤ D, and other pi’s are zero. The above single
edge algorithm can be applied to a uniform network by replicating F to each node v
after the ith request at v, with a probability of pi—another example of factoring.

Theorem 6.1. There exists a randomized algorithm that is strongly βD-competitive
against an oblivious adversary for replication on a uniform network.

We can extend the single edge algorithm to a tree, T , rooted at r, the node that
contains F initially. The algorithm responds only to requests at nodes not in the
current residence set.

Algorithm Tree. Keep a counter ci on each node i 6= r. Initially, all ci = 0.
Suppose a request arrives at a node x, and w is the node nearest to x that contains a
copy of F . After serving the request, the counters for all the nodes along the path from
w to x are increased by one. Let the nodes along the path be w = i0, i1, . . . , iq = x,
q ≥ 1. Perform the following procedure each time after a request has been served:

(1) Let pci0 = 1.
(2) For j = 1, . . . , q, Do

(2.1) With probability pcij /pcij−1
, replicate to node ij from node ij−1.

(2.2) If F is not replicated to ij , STOP.
Theorem 6.2. Algorithm Tree is strongly βD-competitive against an oblivious

adversary for replication on a tree network.
Proof. Without loss of generality, we assume that a connected R is always main-

tained by any solution. Let x 6= r be any node and y its parent. Before x obtains a
copy of F , a cost equal to the weight of (x, y) is incurred on the edge for each request
at a node in the subtree rooted at x. (This follows because R is connected and the
unique path from x to r passes through (x, y).) By our single edge algorithm, the
algorithm Tree is βD-competitive if, for each node x 6= r, a copy of F is replicated
to x after the ith request at the subtree rooted at x, with a probability pi. It can be

1106 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

shown by induction on the requests that before x acquires a copy of F, the counter
on x records the number of requests that have arrived at the subtree rooted at x,
and these counters form a nonincreasing sequence on any path moving away from
r. Hence, the values pcij /pcij−1

= (1 + 1/D)cij−cij−1 ≤ 1, j = 2, . . . , q, are defined

probability values. It is simple to verify that each time a node at the subtree rooted
at x receives a request, a copy of F is replicated to x with probability pcx , where cx
is x’s new counter value. The theorem follows.

6.2. Lower bound. We show that no randomized algorithm can be better than
2-competitive against an adaptive on-line adversary. We use n to denote the number
of nodes in G.

Theorem 6.3. Let ε be any positive function of n and D, taking values between
0 and 1. No on-line algorithm is better than (2− ε(D,n))-competitive for replication
against an adaptive on-line adversary.

Proof. Let node a have the initial copy of F, and let (a, b) be any edge in G.
Let A be any on-line algorithm which replicates to b after the jth request at b with
probability pj , j ∈ Z+. The adversary issues requests at b until A replicates or
until Nε requests have been issued, whichever first happens. Algorithm A incurs an
expected cost of

E[CA(σ)] =

Nε∑
j=1

pj · (j +D) +
∞∑

j=Nε+1

pj ·Nε.(6.1)

We choose different Nε’s for two different cases.
Suppose

∑∞
j=1 pj · j > D. Let Nε be the minimum positive integer that is greater

than D and such that
∑Nε
j=1 pj · j ≥ D. Given D, parameter Nε is a finite and unique

constant. The adversary replicates to b before the first request arrives, incurring a
cost of D. From (6.1), we have E[CA(σ)] ≥ D +

∑Nε
j=1 pj · j ≥ 2D, giving a ratio of

at least 2.
Suppose

∑∞
j=1 pj · j ≤ D. Let ε = ε(n,D). The adversary does not replicate and

incurs an expected cost of

Nε∑
j=1

pj · j +
∞∑

j=Nε+1

pj ·Nε.(6.2)

From (6.1), we have

E[CA(σ)] =

Nε∑
j=1

pj · j +D ·
Nε∑
j=1

pj +
∞∑

j=Nε+1

pj ·Nε(6.3a)

≥
1 +

Nε∑
j=1

pj

 · Nε∑
j=1

pj · j +
∞∑

j=Nε+1

pj ·Nε.(6.3b)

Given the pj ’s, one can choose Nε so that
∑Nε
j=1 pj is arbitrarily close to 1. Since

the series
∑∞
j=1 j · pj is bounded, one can also choose Nε so that

∑∞
j=Nε+1 pj ·Nε is

arbitrarily close to zero. Thus, by comparing (6.2) and (6.3b), we see that given any
ε, one can choose a finite Nε so that the ratio is as close to (2− ε) as desired.

7. Off-line replication and file allocation. We show that the off-line repli-
cation problem is NP-hard, and the off-line file allocation problem on the uniform
network can be solved in polynomial time.

ON-LINE DISTRIBUTED DATA MANAGEMENT 1107

7.1. The off-line replication problem. Awerbuch, Bartel, and Fiat find inter-
esting relationships between the on-line Steiner tree problem [14, 23] and on-line FAP.
We show that the (off-line) replication problem is NP-hard by using a straightforward
reduction from the Steiner tree problem [12, 16] (see section 2 for the definition). The
proof involves creating an instance for the replication problem in which (D + 1) re-
quests are issued at each of the terminal nodes for the Steiner tree problem instance,
forcing the optimal algorithm to replicate to these nodes.

Theorem 7.1. The replication problem is NP-hard, even if G is bipartite and
unweighted or if G is planar.

7.2. Off-line solution for file allocation on a uniform network. We show
that the off-line file allocation problem on a uniform network can be solved in poly-
nomial time by reducing it to a min-cost max-flow problem. A similar reduction was
obtained by Chrobak et al. [8] for the k-server problem. We convert an instance of the
FAP on a uniform network on nodes 1, . . . , n, to a min-cost max-flow problem on an
acyclic layered network, N , with O(n · |σ|) nodes and O(n2|σ|) arcs. Initially node 1
has a copy of F. An integral maximum flow in N defines a dynamic allocation of F in
the uniform network. The arc costs in N are chosen so that the min-cost max-flow in
N incurs a cost that differs from the minimum cost for FAP on the uniform network
by a constant. Network N is constructed as follows.

Nodes. Network N has (|σ| + 1) layers of nodes, (2n − 1) nodes in each layer,
a source node s, and a sink node t. Layer k, 0 ≤ k ≤ |σ|, has nodes {vk1 , . . . , vkn}
and {uk1 , . . . , uk(n−1)}. Each node allows a maximum flow of one unit into and out

of it. The vkj nodes correspond to the nodes in the uniform network. Layer k of N
corresponds to the state of the uniform network after σk has been served.

Arcs. There is an arc going from each layer k node to each layer (k + 1) node,
0 ≤ k ≤ (|σ| − 1); there is an arc from each layer |σ| node to t, arc (s, v0

1), and arcs
(s, u0

j), 1 ≤ j ≤ (n− 1). All the arcs have unit capacity.

A flow. A maximum flow in N has a value of n. Given integer arc costs, there is
a min-cost max-flow solution with only an integral flow of either 0 or 1 in each arc. A
flow of 1 into vkj represents the presence of a copy of F at node j just before request

k arrives. If the flow comes from v
(k−1)
i , it represents a copy of F being moved from

node i to node j after serving the (k − 1)st request; if the flow comes from u
(k−1)
i ,

it represents a replication to node j. A flow from v
(k−1)
j to ukw represents that the

copy of F at j is dropped after σ(k−1) is served. Thus an integral flow in N defines
a strategy for relocating copies of F. Since there are (n − 1) u nodes in each layer,
an integral max-flow must include a flow of 1 unit into at least one of the v nodes in
each layer. This corresponds to the requirement that there is always at least a copy
of F in the uniform network.

Edge costs. Edge costs are chosen so that the optimal flow has cost equal to the
optimal off-line cost for FAP minus the number of read requests, J , in σ. Arcs with
one end point at s or t have zero costs. Let (a, b) be any other arc, going between
layer k and (k+1). Its cost is equal to the sum of its associated movement and service

costs. Suppose b is v
(k+1)
i . Then (a, b)’s associated movement cost is D unless a is

vki . If σ(k+1) is a write at some node other than node i, the service cost is 1; if σ(k+1)

is a read at node i, the service cost is −1. The costs for all other cases are zero. The
movement and service costs account for the cost for replication and serving requests,
except a node is charged −1 when a read request arrives and it has a copy of F . If we
add J to the cost of the optimal flow, thus charging each read request 1 in advance,

1108 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

the sum is equal to the cost of an optimal dynamic allocation of F.
Using the algorithm in [21] for solving the min-cost max-flow problem on acyclic

networks, FAP on a uniform network can be solved in polynomial time.
Theorem 7.2. An optimal (off-line) file allocation on a uniform network can be

found in O(n3 · |σ| · (1 + logn |σ|)) time.

8. Open problems. Interesting open problems include finding a strongly com-
petitive randomized algorithm for FAP on a uniform network. Awerbuch, Bartel,
and Fiat [2] conjecture that if there exists a cn-competitive algorithm for the on-line
Steiner tree problem [14, 23], then there exists a O(cn)-competitive deterministic al-
gorithm for FAP. This conjecture is still open. For the migration problem, there is a
gap between the best known bounds [4, 10].

Appendix: Complete proof for (B) in Lemma 3.7. The following is the
complete proof for condition (B) in Lemma 3.7. It will be shown that

Si(x, y) ≤ Si(y, z)(8.1)

holds for i = (t + 1) after request (t + 1) has arrived, by considering the change in
offset values using Table 3.2 for all possible locations of the root node r, request node
w, and offset vectors. In each case, the required inequality follows from the property
that all offsets satisfy 0 ≤ k ≤ l and the assumption that (8.1) holds initially for i = t.
We will be referring to the conditions (C.1) to (C.4) and (D) that are implied by (8.1)
for i = t. We use L.H.S. and R.H.S. to denote the left- and right-hand sides of the
inequality under consideration, respectively.

Suppose the request is a READ request:
Case 1: r ∈ Tx and w ∈ Tx.

For (x, y) : ωt = (0, kxy, lxy) and ωt+1 = (0,min(kxy + 1, lxy), lxy).
For (y, z) : ωt = (0, kyz, lyz) and ωt+1 = (0,min(kyz + 1, lyz), lyz).
St+1(x, y) ≤ St+1(y, z) follows from St(x, y) ≤ St(y, z) or (C.1).

Case 2: r ∈ Ty and w ∈ Ty.
For (x, y) : ωt = (kxy, 0, lxy) and ωt+1 = (min(kxy + 1, lxy), 0, lxy).
For (y, z) : ωt = (0, kyz, lyz) and ωt+1 = (0,min(kyz + 1, lyz), lyz).
St+1(x, y) ≤ St+1(y, z) ⇔ lxy −min(kxy + 1, lxy) ≤ lyz follows from (D).

Case 3: r ∈ Tx and w ∈ Ty.
For (x, y) : ωt = (0, kxy, lxy) and ωt+1 =

{
(0, kxy − 1, lxy − 1) if kxy ≥ 1,
(min(1, lxy), 0, lxy) if kxy = 0.

For (y, z) : ωt = (0, kyz, lyz) and ωt+1 = (0,min(kyz + 1, lyz), lyz).
kxy ≥ 1: St+1(x, y) ≤ St+1(y, z) ⇔ lxy − 1 ≤ lyz follows from (C.1).
kxy = 0: St+1(x, y) ≤ St+1(y, z) ⇔ lxy −min(1, lxy) ≤ lyz follows from (C.1).

Case 4: r ∈ Tx and w ∈ Tz.
For (x, y) : ωt = (0, kxy, lxy) and ωt+1 =

{
(0, kxy − 1, lxy − 1) if kxy ≥ 1,
(min(1, lxy), 0, lxy) if kxy = 0.

For (z, y) : ωt = (0, kyz, lyz) and ωt+1 =

{
(0, kyz − 1, lyz − 1) if kyz ≥ 1,
(min(1, lyz), 0, lyz) if kyz = 0.

kxy, kyz ≥ 1: St+1(x, y) ≤ St+1(y, z) ⇔ lxy ≤ lyz follows from (C.1).
kxy = kyz = 0: By (C.4), lxy = lyz; hence St+1(x, y) = St+1(y, z) holds in this case.
kxy ≥ 1, kyz = 0: By (C.3), this case cannot happen.
kxy = 0, kyz ≥ 1: St+1(x, y) ≤ St+1(y, z) ⇔ lxy − min(1, lxy) ≤ lyz follows from
(C.1).

Case 5: r ∈ Ty and w ∈ Tz.
For (x, y) : ωt = (kxy, 0, lxy) and ωt+1 = (min(kxy + 1, lxy), 0, lxy).

ON-LINE DISTRIBUTED DATA MANAGEMENT 1109

For (z, y) : ωt = (0, kyz, lyz) and ωt+1 =

{
(0, kyz − 1, lyz − 1) if kyz ≥ 1,
(min(1, lyz), 0, lyz) if kyz = 0.

kyz ≥ 1: St+1(x, y) ≤ St+1(y, z) ⇔ lxy −min(kxy + 1, lxy) ≤ lyz follows from (D).
kyz = 0:
We need to show that St+1(x, y) ≤ St+1(y, z) ⇔ lxy − min(kxy + 1, lxy) ≤ lyz −
min(1, lyz) holds, given St(x, y) ≤ St(y, z) ⇔ lxy − kxy ≤ lyz holds initially. The
inequality holds because lxy − lxy = 0 = lyz − lyz ≤ R.H.S., and lxy − kxy − 1 ≤
lyz − 1 ≤ R.H.S.

Suppose the request is a WRITE request:
Case 1: r ∈ Tx and w ∈ Tz.

For (x, y) : ωt = (0, kxy, lxy) and ωt+1 =

{
(0, kxy − 1, lxy) if kxy ≥ 1,
(1, 0,min(lxy + 1, D)) if kxy = 0.

For (y, z) : ωt = (0, kyz, lyz) and ωt+1 =

{
(0, kyz − 1, lyz) if kyz ≥ 1,
(1, 0,min(lyz + 1, D)) if kyz = 0.

kxy, kyz ≥ 1 : St+1(x, y) ≤ St+1(y, z) ⇔ lxy ≤ lyz follows from (C.1).
kxy ≥ 1, kyz = 0: By (C.3), this case cannot happen.
kxy = kyz = 0: By (C.4), lxy = lyz; hence St+1(x, y) = St+1(y, z) holds in this case.
kxy = 0, kyz ≥ 1 St+1(x, y) ≤ St+1(y, z) ⇔ min(lxy + 1, D) − 1 ≤ lyz follows from
St(x, y) ≤ St(y, z) ⇔ lxy ≤ lyz .

Case 2: r ∈ Ty and w ∈ Tz.
For (x, y) : ωt = (kxy, 0, lxy) and ωt+1 = (min(kxy + 1, D), 0,min(lxy + 1, D)).

For (y, z) : ωt = (0, kyz, lyz) and ωt+1 =

{
(0, kyz − 1, lyz) if kyz ≥ 1,
(1, 0,min(lyz + 1, D)) if kyz = 0.

kyz ≥ 1: We need to show that

St+1(x, y) ≤ St+1(y, z)
⇔(8.2)

min(lxy + 1, D)−min(kxy + 1, D) ≤ lyz holds,
given that

St(x, y) ≤ St(y, z) ⇔ lxy − kxy ≤ lyz holds initially.

It can be proved as follows. If kxy = D, then L.H.S. = 0 ≤ R.H.S.
If kxy < D, then L.H.S. ≤ lxy + 1− (kxy + 1) ≤ lyz = R.H.S. Hence (8.2) holds.
kyz = 0: We need to show that

St+1(x, y) ≤ St+1(y, z)
⇔(8.3)

min(lxy + 1, D)−min(kxy + 1, D) ≤ min(lyz + 1, D)− 1 holds,
given that

St(x, y) ≤ St(y, z) ⇔ lxy − kxy ≤ lyz holds initially.

If lyz < D, (8.3) follows from (8.2). If kxy = D, then L.H.S. = 0 ≤ R.H.S. Suppose
lyz ≤ (D − 1) and (kxy + 1) ≤ D. In this case L.H.S. ≤ lxy − kxy ≤ lyz = R.H.S.
Hence (8.3) holds.

Case 3: r ∈ Ty and w ∈ Ty.
For (x, y) : ωt = (kxy, 0, lxy) and ωt+1 = (min(kxy + 1, D), 0,min(lxy + 1, D)).
For (y, z) : ωt = (0, kyz, lyz) and ωt+1 = (0,min(kyz + 1, D),min(lyz + 1, D)).
We need to show that St+1(x, y) ≤ St+1(y, z)
⇔ min(lxy + 1, D)−min(kxy + 1, D) ≤ min(lyz + 1, D) holds,

1110 C. LUND, N. REINGOLD, J. WESTBROOK, AND D. YAN

given that St(x, y) ≤ St(y, z) ⇔ lxy − kxy ≤ lyz holds initially which follows from
(8.3).

Case 4: r ∈ Tx and w ∈ Ty.

For (x, y) : ωt = (0, kxy, lxy) and ωt+1 =

{
(0, kxy − 1, lxy) if kxy ≥ 1,
(1, 0,min(lxy + 1, D)) if kxy = 0.

For (y, z) : ωt = (0, kyz, lyz) and ωt+1 = (0,min(kyz + 1, D),min(lyz + 1, D)).
kxy ≥ 1: St+1(x, y) ≤ St+1(y, z) ⇔ lxy ≤ min(lyz + 1, D) follows from St(x, y) ≤
St(y, z) ⇔ lxy ≤ lyz.
kxy = 0:
St+1(x, y) ≤ St+1(y, z) ⇔ min(lxy+1, D)−1 ≤ min(lyz+1, D) follows from St(x, y) ≤
St(y, z) ⇔ lxy ≤ lyz.

Case 5: r ∈ Tx and w ∈ Tx.
For (x, y) : ωt = (0, kxy, lxy) and ωt+1 = (0,min(kxy + 1, D),min(lxy + 1, D)).
For (y, z) : ωt = (0, kyz, lyz) and ωt+1 = (0,min(kyz + 1, D),min(lyz + 1, D)).
St+1(x, y) ≤ St+1(y, z) ⇔ min(lxy + 1, D) ≤ min(lyz + 1, D) follows from St(x, y) ≤
St(y, z) ⇔ lxy ≤ lyz.

Thus we have shown that (B) holds after σt+1 has arrived.

REFERENCES

[1] S. Albers and H. Koga, New on-line algorithms for the page replication problem, in Proc.
Fourth Scandinavian Workshop on Algorithmic Theory, Aarhus, Denmark, 1994, Lecture
Notes in Comput. Sci. 824, Springer-Verlag, New York, pp. 25–36.

[2] B. Awerbuch, Y. Bartal, and A. Fiat, Competitive distributed file allocation, in Proc. 25th
ACM Symposium on Theory of Computing, San Diego, CA, 1993, pp. 164–173.

[3] B. Gavish and O. R. L. Sheng, Dynamic file migration in distributed computer systems,
Comm. ACM, 33 (1990), pp. 177–189.

[4] Y. Bartal, M. Charikar, and P. Indyk, On page migration and other relaxed task systems,
in Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA,
1997, pp. 43–52.

[5] Y. Bartal, A. Fiat, and Y. Rabani, Competitive algorithms for distributed data management,
in Proc. 24th Annual ACM Symposium on the Theory of Computing, Victoria, BC, 1992,
pp. 39–50.

[6] S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson, On the power of
randomization in online algorithms, Algorithmica, 11 (1994), pp. 2–14.

[7] D. L. Black and D. D. Sleator, Competitive Algorithms for Replication and Migration Prob-
lems, Tech. Report CMU-CS-89-201, Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1989.

[8] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan, New results on server problems,
SIAM J. Discrete Math., 4 (1991), pp. 172–181.

[9] M. Chrobak and L. L. Larmore, The server problem and on-line games, in Proc. of the
DIMACS Workshop on On-Line Algorithms, AMS, Providence, RI, 1991, pp. 11–64.

[10] M. Chrobak, L. L. Larmore, N. Reingold, and J. Westbrook, Page migration algorithms
using work functions, in Proc. 4th International Symposium on Algorithms and Compu-
tation, Hong Kong, 1993, Lecture Notes in Comput. Sci. 762, Springer-Verlag, New York,
pp. 406–415.

[11] D. Dowdy and D. Foster, Comparative models of the file assignment problem, Comput.
Surveys, 14 (1982), pp. 287–313.

[12] M. R. Garey and D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM
J. Appl. Math., 32 (1977), pp. 826–834.

[13] F. K. Hwang and D. Richards, Steiner tree problems, Networks, 22 (1992), pp. 55–89.
[14] M. Imase and B. M. Waxman, Dynamic Steiner tree problem, SIAM J. Discrete Math., 4

(1991), pp. 369–384.
[15] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, Competitive randomized

algorithms for non-uniform problems, in Proc. 1st ACM-SIAM Symposium on Discrete
Algorithms, 1990, SIAM, Philadelphia, PA, pp. 301–309.

ON-LINE DISTRIBUTED DATA MANAGEMENT 1111

[16] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Compu-
tations, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[17] H. Koga, Randomized on-line algorithms for the page replication problem, in Proc. 4th Inter-
national Symposium on Algorithms and Computation, Hong Kong, 1993, Lecture Notes in
Comput. Sci. 762, Springer-Verlag, New York, pp. 436–445.

[18] C. Lund and N. Reingold, Linear programs for randomized on-line algorithms, in Proc. 5th
ACM-SIAM Symposium on Discrete Algorithms, 1994, SIAM, Philadelphia, PA, pp. 382–
391.

[19] C. Lund, N. Reingold, J. Westbrook, and D. Yan, On-line distributed data management, in
Proc. 2nd Annual European Symposium on Algorithms, Utrecht, The Netherlands, Lecture
Notes in Comput. Sci. 855, 1994, Springer-Verlag, New York, pp. 202–214.

[20] N. Reingold, J. Westbrook, and D. D. Sleator, Randomized competitive algorithms for
the list update problem, Algorithmica, 11 (1994), pp. 15–32.

[21] R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf. Ser. in
Appl. Math. 44, SIAM, Philadelphia, PA, 1983.

[22] J. Westbrook, Randomized algorithms for multiprocessor page migration, SIAM J. Comput.,
23 (1994), pp. 951–965.

[23] J. Westbrook and D. C. K. Yan, The performance of greedy algorithms for the on-line
Steiner tree and related problems, Math. Systems Theory, 28 (1995), pp. 451–468.

[24] P. Winter, Steiner problem in networks: A survey, Networks, 17 (1987), pp. 129–167.

EFFICIENT DATABASE UPDATES WITH INDEPENDENT
SCHEMES∗

RICCARDO TORLONE† AND PAOLO ATZENI†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1112–1135

Abstract. The weak instance model is a framework for considering the relations in a database
as a whole, regardless of the way attributes are grouped in the individual relations. Queries and
updates can be performed for any set of attributes. The management of updates is based on a lattice
structure on the set of legal states, and inconsistencies and ambiguities can arise.

In the general case, the test for consistency and determinism may involve the whole database.
In this paper it is shown how, for the highly significant class of independent schemes, updates can
be handled efficiently, considering only the relevant portion of the database.

Key words. relational database, weak instance model, lattice on database states, update
operations, chase procedure, optimization

AMS subject classifications. 68P15, 68Q25, 06B99

PII. S009753979325799X

1. Introduction. In a relational database, the universe of discourse is repre-
sented by means of a set of relations. The weak instance approach [6, 18, 22, 23, 24, 31]
provides a framework to consider a database as a whole, regardless of the way at-
tributes appear in the various relation schemes. The information content of a database
state is considered to be embodied in the representative instance, a sort of relation
with variables, obtained by extending all relations to the global set of attributes (called
the universe) and then by chasing [21] their union. Query answering is performed by
first computing the total projection [26] of the representative instance on the set of
attributes involved in the query and then executing whatever further operations are
needed. Any subset of the universe can in principle be queried.

Example 1. Consider a database scheme with relations R1(EDP), R2(DMP)
and the functional dependencies E → D, D →M as constraints. Figures 1, 2, and 3,
show a consistent database state on this scheme, the corresponding representative
instance, and a total projection, respectively.

Following a new interest on the theory of database updates [1], we proposed a
formal approach to updates in the weak instance model [9]; in the same way as for the
management of queries, which allows the retrieval of tuples over any subset of the uni-
verse, insertions and deletions over any subset of the universe are allowed. Problems
of consistency and determinism arise and have been completely characterized.

Example 2. If we want to insert in the state in Figure 1 a tuple defined on
the attributes EM , with values Jim for E and White for M , we can consistently add
the tuple 〈MS, White, C〉 to the second relation. Because of the dependency D →
M , the chase would combine the tuple 〈Jim, MS, C〉 already in r1, with this tuple,
generating a tuple in the representative instance with values Jim for E and White for
M . Conversely, if we want to insert into the same state a tuple defined on EPM ,

∗Received by the editors November 1, 1993; accepted for publication (in revised form) July 8,
1997; published electronically February 19, 1999. A preliminary version of this paper appeared in
Proc. ACM SIGMOD International Conf. on Management of Data, Atlantic City, NJ, May 1990.
This work was partially supported by MURST and by Consiglio Nazionale delle Ricerche.

http://www.siam.org/journals/sicomp/28-3/25799.html
†Dipartimento di Informatica e Automazione, Università di Roma Tre, Via della Vasca Navale 79,

00146 Roma, Italy (torlone@dia.uniroma3.it, atzeni@dia.uniroma3.it).

1112

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1113

r1: Employee Dept. Project r2: Dept. Manager Project
John CS A CS Smith A
John CS B IE White B
Bob EE B EE Jones B
Jim MS C CS Smith B

Fig. 1. A database state.

Employee Dept. Project Manager
John CS A Smith
John CS B Smith
Bob EE B Jones
Jim MS C v1

v2 CS A Smith
v3 IE B White
v4 EE B Jones

Fig. 2. A representative instance.

Employee Manager
John Smith
Bob Jones

Fig. 3. A total projection of the representative instance.

with values Dan for E, C for P , and Moore for M , we obtain a potential result only if
we add one tuple to r1 and one tuple to r2, with the given values for EPM and with
the same value for D whichever it is (provided that the constraints are not violated).
In this case, some further piece of information has to be added, and there are several
possible choices—this is a case of nondeterminism. Finally, an inconsistency arises if
we try to insert a tuple on EM with John for E and White for M , since the functional
dependencies imply that the only manager of John is Smith.

In the general case, the characterizations for consistency and determinism of in-
sertions require the construction of the representative instance of the state, by means
of the application of the chase procedure to a set of data that involves the whole
database [9]. However, updating a state often involves only a small part of the
database. The case is therefore similar to that of query answering, where the crucial
step is the computation of the representative instance, which has to be completely
constructed in the general case. To solve this problem, various classes of schemes were
introduced, beginning with independent schemes [17, 19, 25, 26], where queries can
be answered by means of simple relational expressions, optimizable and independent
of the actual database state [5, 19, 27, 28]. In this paper we show that a similar ap-
proach can be followed for updating as well: we study updates to relational databases
through weak instances and show that they can be implemented efficiently.

The paper is organized as follows. In section 2 we briefly review the needed
background. In section 3 we review definitions and characterizations of updates in the
weak instance model. In section 4 we consider independent schemes and characterize
consistency and determinism with this class of schemes. On the basis of these results,
in section 5 we present practical and efficient algorithms for update operations, and in
section 6 we show that some step of these algorithms can be simplified under certain

1114 RICCARDO TORLONE AND PAOLO ATZENI

further assumptions. In section 7, we discuss modifications, another important class
of database update operations, and finally, in section 8, we conclude by summarizing
our contribution.

2. Background definitions and notation.

2.1. Relations, databases, and tableaux. The universe U is a finite set of
symbols {A1A2 . . . Am}, called attributes. As usual, we use the same notation A to
indicate both the single attribute A and the singleton set {A}. Also, we indicate the
union of attributes (or sets thereof) by means of the juxtaposition of their names.
A relation scheme is an object R(X), where R is the name of the relation scheme
and X is a subset of U . A database scheme is a collection of relation schemes R =
{R1(X1), . . . , Rn(Xn)}, with distinct relation names (which therefore can be used to
identify the relation schemes) and such that the union of the Xi’s is the universe U .

The domain D is the disjoint union of two countably infinite sets, the set of
constants and the set of variables. (For the sake of simplicity, we assume that all
attributes have the same domain.) A tuple on a set of attributes X is a function t
from X to D. If t is a tuple on X and if Y ⊆ X, then t[Y] denotes the restriction of
the mapping t to Y and is therefore a tuple on Y . A tuple t on a set of attribute X
is total if it does not involve variables.

A tableau T is a set of tuples on the universe U . We say that a variable or a
constant is unique in T if it appears only once. A relation of a relation scheme R(X)
is a finite set of total tuples on X. A (database) state of a database scheme R is a
function r that maps each relation scheme Ri(Xi) ∈ R to a relation on Ri(Xi). With
a slight abuse of notation, given R = {R1, . . . , Rn}, we write r = {r1, . . . , rn}.

Given a database state r, the state tableau for r is a tableau (denoted by Tr)
formed by taking the union of all the relations in r extended to U by means of unique
variables.

The total projection (π↓) is an operator on tableaux that produces relations,
given a tableau T and a subset X of U , generating the set of total tuples on X that
are restrictions of tuples in T : π↓X(T) = {t[X]|t ∈ T and t[X] is total}. We will
use two (orthogonal) generalizations of the total projection: (1) the restricted total
projection of a tableau T on X ⊆ U with respect to a set of constants C, denoted
by π↓X [C](T), is the set of total tuples on X that do not contain constants in C:

π↓X [C](T) = {t[X]|t ∈ T, t[X] is total and, for each Ai ∈ X, t[Ai] 6∈ C}; and (2) the

total projection of a tableau T on a database scheme R, denoted by π↓R(T), is the
state obtained by totally projecting T on the various relation schemes.

In this paper, we shall consider relational expressions whose only operators are
select (σ), project (π), natural join (1), and union (∪) and whose operands are rela-
tional schemes of a fixed database scheme. Given a database state r of a scheme R
and a relational expression E with operands in R, we denote by E(r) the relation ob-
tained by substituting r into the corresponding relation variables in E and evaluating
E according to the usual definitions of relational operators [7, 20, 29]. The target of
E is the set of attributes in U on which E(r) is defined.

2.2. Constraints: Local satisfaction and global consistency. Usually as-
sociated with a database scheme is a set of constraints, that is, properties that are
satisfied by the legal states. There are two notions of satisfaction: local satisfaction,
defined on individual relations, and global satisfaction, or consistency, defined on the
database state. We introduce the two concepts in turn. Various classes of constraints

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1115

have been defined in the literature [20, 29]; here, we limit our attention to functional
dependencies.

Let Y Z ⊆ X ⊆ U ; a relation r on a scheme R(X) (locally) satisfies the functional
dependency (FD) Y → Z if, for every pair of tuples t1, t2 ∈ r such that t1[Y] = t2[Y],
it is the case that t1[Z] = t2[Z]. Without loss of generality, in the following we will
often assume that all FDs have the form Y → A, where A is a single attribute.

Given a set of FDs, it usually happens that there are additional FDs implied by
this set. The closure of a set of FDs F , denoted by F+, is the set of dependencies that
are logically implied by F , and the closure of a set of attributes X with respect to a
set of FDs F , denoted by X+

F (or simply X+ when F is understood from context), is
the set of attributes {A | X → A ∈ F+}. A set of FDs F is said to be nonredundant
if there is no Y → A ∈ F such that (F − {Y → A})+ = F+. Let R(X) be a relation
scheme and F be a set of FDs defined on R(X); a set of attributes Y ⊆ X is a superkey
of R if Y → X ∈ F+.

Let R = {R1(X1), . . . , Rn(Xn)} be a database scheme; without loss of generality
we associate with R a set of nonredundant FDs F = ∪ni=1Fi, where, for every 1 ≤
i ≤ n, the FDs in Fi are defined on Ri(Xi). Note that we assume the FDs to be
embedded in relation schemes.

A state r = {r1, . . . , rn} globally satisfies [18] a set of FDs F if there is a relation w
on the universe U (called a weak instance for r with respect to F) that (locally) satisfies
F and contains the relations of r in its projections over the respective relation schemes:
πXi(w) ⊇ ri for 1 ≤ i ≤ n. A state that globally satisfies the set of dependencies
associated with the database scheme is also said to be (globally) consistent.

2.3. The chase procedure. The chase [21] is a procedure that receives as input
a tableau T and generates a tableau CHASEF (T) that, if possible, satisfies the given
dependencies F . If only functional dependencies are considered, the process modifies
values in the tableau, by equating variables and “promoting” variables to constants
as follows. We use τ = 〈t1, t2, Y → A〉 to denote a chase step, with reference to a
tableau T , where t1 and t2 are tuples in T and Y → A ∈ F . We say that a chase
step τ is valid if t1[Y] = t2[Y] and that τ is applied to T , denoted τ(T), if it is valid
and the A-value of t1 and t2 are modified as follows: if one of them is a constant and
the other is a variable, then the variable is changed (is promoted) to the constant;
otherwise the values are equated. If a chase step tries to identify two constants, then
we say that the chase encounters a contradiction, and the process stops, generating a
special tableau that we call the inconsistent tableau and denoted by T∞. The tableau
CHASEF (T) is obtained from T by applying all valid chase steps exhaustively to T .
Lemma 1 states a property of the chase that will be used in the following discussion.

Lemma 1 (see [5, Lemma 4.1]). Let t be a tuple defined on U and r = π↓R({t}).
Let Ri0(Xi0) ∈ R and ti0 be the tuple in CHASEF (Tr) corresponding to πXi0 ({t}).
Then ti0 [X+

i0
] = t[X+

i0
].

2.4. Query answering in the weak instance model. The definition of global
satisfaction is clearly not practical since, in general, there may be many weak instances
(often infinitely many). However, the existence of a weak instance can be studied by
means of the notion of representative instance, a tableau on the universe, U , of the
attributes.

The representative instance for a state r, denoted by RIr, is the tableau obtained
by chasing the state tableau Tr of r with respect to the dependencies associated with
the database state.

1116 RICCARDO TORLONE AND PAOLO ATZENI

The main property of the representative instance is that a database state is con-
sistent if and only if the corresponding representative instance is not the inconsistent
tableau [18]. Also, for every consistent state r and for every X, the X-total projec-
tion of the representative instance of r is equal to the set of tuples that appear in the
projection on X of every weak instance of r [23].

The weak instance approach to query answering allows queries to be formulated
on databases as if they were composed of just one relation over the universe U . For
each query, being X ⊆ U the set of attributes involved, the evaluation requires a first
step that computes the relation over X implied by the current state: because of the
result just mentioned on total projections [23], it follows that the X-total projection
of the representative instance is the natural content of this relation.

We say that a tuple t over a set of attributes X x-belongs (in symbols, t∈̂r) to a
consistent state r of a database scheme R with a universe U ⊇ X if t belongs to the
X-total projection of the representative instance of r.

Finally, the completion r∗ of a consistent state r is the state obtained by projecting
the representative instance of r on the scheme R; that is, r∗ = π↓R(RIr) [24]. A

consistent state r is complete if it coincides with its completion; that is, if r = π↓R(RIr).

2.5. Tableau and relational expression containment. A valuation function
v is a function from D to D that is the identity on constants. A valuation function
v can be extended to tuples and tableaux as follows: (i) given a tuple t on a set of
attributes X, v(t) is a tuple on X such that v(t)[A] = v(t[A]) for every A ∈ X; (ii)
given a tableau T = {t1, . . . , tn}, v(T) = {v(t1), . . . , v(tn)}.

Given two tableaux T1, T2, we say that T1 is contained in T2 (in symbols T1 ≤ T2)
if T2 is the inconsistent tableau T∞, or there is a valuation function ψ (called in
this case containment mapping) defined on all the symbols appearing in T1 such that
ψ(T1) ⊆ T2.1 If both T1 ≤ T2 and T2 ≤ T1, the two tableaux are equivalent. Note
that, by definition, the inconsistent tableau properly contains every other tableau.
We now recall some useful properties of tableaux and chase.

Lemma 2 (see [9, Lemma 1]). For every tableau T , T1 and for every set F of
FDs, the following statements hold:

1. T ≤ CHASEF (T);
2. if T ≤ T1, then CHASEF (T) ≤ CHASEF (T1);
3. if T ≤ T1 and T1 = CHASEF (T1), then CHASEF (T) ≤ T1.

2.6. Independent schemes. A scheme is independent [17, 25] if, for all its
states, local satisfaction implies global satisfaction. Independent schemes are clearly
important from the practical point of view because the global consistency of their
states can be verified in a local manner, looking at the individual relations, without
having to build and chase the state tableau. Graham and Yannakakis [17] derived an
efficient test for independence (later improved in [19, 27]).

Independent schemes are also important in the weak instance approach to query
answering, because they guarantee the efficient computation of total projection of the
representative instance [5, 19]. Atzeni and Chan [5], Ito, Iwasaki, and Kasami [19],
and Sagiv [28] showed that, for every independent scheme and for every subset X
of its universe, there is a relational algebra expression EX that computes the total
projection of the representative instance for every state of the scheme. In the approach

1Note that tableau containment is defined in the opposite direction when it refers to containment
of queries.

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1117

of Atzeni and Chan, EX is a union of simple chase join expressions (scjes) [5, 4, 13],
a restricted form of a project-join expression, that we recall next.

A preliminary concept is needed: a derivation sequence (ds) of some relation
scheme Ri0(Xi0) is a finite sequence of FDs σ = 〈Y1 → Z1, . . . , Ym → Zm〉 from F
such that, for all 1 ≤ j ≤ m: Yj ⊆ Xi0Z1 · · ·Zj−1 and Zj ∩ Xi0Z1 · · ·Zj−1 = ∅.
We say that σ covers a set of attributes X if Xi0Z1 · · ·Zj ⊇ X. Essentially, a ds of
Ri0(Xi0) is a sequence of FDs used in computing (part of) the closure of Xi0 .

Given a ds σ = 〈Y1 → Z1, . . . , Ym → Zm〉 covering a set of attributes X, the scjes
for σ over X is the expression

πX(Ri01πY1Z1(Ri1)1 · · ·1πYmZm(Rim)),

where Yj → Aj , for 1 ≤ j ≤ m, is an FD in Fij and is therefore embedded in Rij .
The subexpressions Ri0 , πY1Z1

(Ri1), . . . , πYmZm(Rim) are called the components of the
scje.

Before closing this section, we mention an important property of independent
schemes that will be often used in the sequel: each derived value in the chase of Tr is
“uniquely” derived for an independent scheme.

Lemma 3 (see [16, Lemma 4]). Let R be an independent scheme. Then for any
consistent state r, for any Rj ∈ R, and for any FD Y → A ∈ Fj, it is the case that

π↓Y A(CHASEF (Tr)) = πY A(rj).

3. Updating in the weak instance model. In this section we briefly review
our approach to updates in the weak instance model [9]. Similar to the approach to
query answering, it allows updates to be formulated on every subset of the universe.
As a preliminary tool, we introduce a partial order on states, which extends a known
notion of equivalence of states [24]; then we discuss insertions, and finally deletions.

3.1. A lattice on states. A state r1 is weaker than a state r2 (r1 � r2) if every
weak instance of r2 is also a weak instance of r1. Two states r1, r2 are equivalent
(r1 ∼ r2) if both r1 � r2 and r2 � r1. The relation � is a partial order on the set of the
complete states, since it is reflexive, antisymmetric, and transitive. Also, it is strongly
related to (tableau) containment of representative instances, (set) containment of total
projections, and relations, as stated in the next theorem.

Theorem 1 (see [9, Theorem 1]). Let r1 = {r1,1, . . . , r1,n} and r2 = {r2,1, . . . , r2,n}
be two states. Properties 1, 2, and 3 below are equivalent; if the states are complete,
then property 4 is also equivalent to the others.

1. The state r1 is weaker than the state r2 : r1 � r2.
2. The representative instance of r1 is contained in the representative instance

of r2 : RIr1 ≤ RIr2 .
3. For every X ⊆ U , the X-total projection of RIr1 is a subset of the X-total

projection of RIr2
: π↓X(RIr1

) ⊆ π↓X(RIr2
).

4. The state r1 is a relationwise subset of the state r2 : for every Ri ∈ R, it is
the case that r1,i ⊆ r2,i.

By the equivalence of properties 1 and 3 of Theorem 1 above, it follows that two
states are equivalent if and only if, for every X, their X-total projections are equal,
that is if they have identical query answering behavior. Therefore, it makes sense to
consider equivalence classes of states. To represent the various classes, we will use the
set of complete states since it is known that each consistent state is equivalent to one
and only one complete state [24, section 3].

1118 RICCARDO TORLONE AND PAOLO ATZENI

In [9] we showed that the partial order � extended to the complete inconsistent
state (a special state defined as the projection of the inconsistent tableau on the
database scheme) induces a complete lattice [12] on the set of complete states, that
is, every set of complete states has both a greatest lower bound (glb) and a least
upper bound (lub).

3.2. Insertions. Let R = {R1(X1), . . . , Rn(Xn)} be a database scheme, with
U = X1X2 . . . Xn. Given a state r of R and a tuple t over a set of attributes X ⊆ U ,
we consider the insertion of t into r defined through the following notion of result.

A state rp is a potential result for the insertion of t into r if r � rp and t∈̂rp.
Various cases for an insertion of a tuple in a consistent state exist: the insertion of
a tuple t over X in a state is possible if there is a consistent state r′ such that t∈̂r′,
a possible insertion is consistent if it has a consistent potential result, and a possible
and consistent insertion is deterministic if the glb of the potential results is a potential
result. Note that the notion of determinism is defined only for possible and consistent
insertions. When an insertion is deterministic, we consider the glb of the potential
results as the result of the insertion. In other words, an insertion is possible if the
dependencies allow us to generate t in the representative instance of a state r′ possibly
unrelated to the given state, it is consistent when the new tuple does not contradict
the information content of the original state, and it is deterministic when the insertion
can be univocally performed by adding only the information that is strictly needed.

In [9] we showed the following general characterizations for possibility, consistency,
and determinism.

Theorem 2 (see [9, Theorem 2]). The insertion of t in a state is possible if and
only if there is a relation scheme Ri(Xi) ∈ R such that F implies the FD Xi → X.

Let RIr be the representative instance of r. The characterization of both consis-
tency and determinism is based on the construction of a tableau obtained by adding to
RIr a tuple te obtained by extending t to the universe U by means of unique variables.
Let Tt,r be such a tableau.

Theorem 3 (see [9, Theorem 3]). Let the insertion of t in r be possible. It is
consistent if and only if CHASEF (Tt,r) 6= T∞.

Definition 1 (state r+t). The state r+t, or simply r+ when t is understood from
context, is obtained from r and t by (totally) projecting CHASEF (Tt,r) on the database

scheme: r+t = π↓R(CHASEF (Tt,r)).

Lemma 4 (see [9, Lemma 8]). Let the insertion of t in r be possible and consis-
tent. Then r+ is the glb of the potential results.

Theorem 4 (see [9, Theorem 4]). Let the insertion of t in r be possible and
consistent. It is deterministic if and only if CHASEF (Tt,r) ≡ RIr+

.

Corollary 1 (see [9, Corollary 1]). Let the insertion of t in r be possible and
consistent; it is deterministic if and only if t∈̂r+.

Corollary 1 gives an effective characterization of determinism: given r and t,
we can build Tt,r, chase it with respect to the given constraints, then generate r+

and compute its representative instance RIr+
, and finally check whether the total

projection π↓X(RIr+) contains t.

Example 3. Consider the first insertion in Example 2. The insertion is possible
since for R1(X1) we have X1 → X ∈ F+. Then, following the definitions, we could
build the tableau Tt,r and then chase it; the tableaux that we obtain are reported in
Figure 4. It is possible to see that, if we project CHASEF (Tt,r) on the database scheme,
we obtain the state we suggested as a result.

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1119

Tt,r
Employee Dept. Project Manager

John CS A Smith
John CS B Smith
Bob EE B Jones
Jim MS C v1

v2 CS A Smith
v3 IE B White
v4 EE B Jones

Jim v5 v6 White

CHASEF (Tt,r)
Employee Dept. Project Manager

John CS A Smith
John CS B Smith
Bob EE B Jones
Jim MS C White
v2 CS A Smith
v3 IE B White
v4 EE B Jones

Jim MS v5 White

r+1
Employee Dept. Project

John CS A
John CS B
Bob EE B
Jim MS C

r+2 Dept. Manager Project
CS Smith A
IE White B
EE Jones B
CS Smith B
MS White C

Fig. 4. Tt,r, CHASEF (Tt,r) and r+ for Example 3.

Note that the insertion of a tuple on a set of attributes X ⊆ U allows a form
of “side effect,” since it may cause the addition of some extra information for the
attributes not in X. For instance, in Example 3, we showed that the insertion of
the tuple with values Jim for E and White for M produces the insertion of the
tuple 〈MS,White,C〉 in r2. This tuple states that White is the manager of the MS
department and is involved in project C and that this information is not provided
directly by the user. This fact, however, is just a consequence of the weak instance
model framework in which the FDs allow us to derive, in the representative instance,
further information from tuples of a database. Thus, the insertion of a new tuple
(over a relation or any set of attributes) may induce new values for old tuples in the
representative instance. However, with our approach, this side effect is always minimal
because we have defined the result of an insertion as the glb of all the potential results;
in this way the original state is always changed as little as possible. We will come
back on this issue in section 6, where we will show that, under certain conditions, the
side effect can also be kept “under control.”

1120 RICCARDO TORLONE AND PAOLO ATZENI

3.3. Deletions. The definitions of deletions are somewhat symmetric with re-
spect to those concerning insertions.

A state rp is a potential result for the deletion of a tuple t from a state r if rp � r

and t̂6∈rp. The empty state is a consistent potential result for every deletion, and so
there is no need to define the notions of possible and consistent results for deletions. A
deletion is deterministic if the lub of the potential results is a potential result. When
a deletion is deterministic, we consider the lub of the potential results to be the result
of the deletion.

Let r be a consistent state and t be a tuple on X that x-belongs to r. We derived
the following characterizations for deletions.

Lemma 5 (see [9, Lemma 9]). The deletion of t from r is deterministic only if
there is a relation scheme Ri(Xi) such that X ⊆ Xi.

Definition 2 (state r−t). The state r−t, or simply r− when t is understood
from the context, is obtained from r and t by removing, from each relation ri such
that X ⊆ Xi, each tuple t′ such that t′[X] = t[X].

Theorem 5 (see [9, Theorem 5]). The deletion of t from r is deterministic if

and only if (i) there is a relation scheme Ri(Xi) such that X ⊆ Xi and (ii) t̂6∈r−.

4. Insertions for independent schemes. In the same way as query answering
can be efficiently performed for independent schemes, we want to show that, for this
meaningful class of schemes, updates defined over any subset of the universe can be
managed efficiently.

With respect to deletions, Theorem 5 already gives an efficient way to check for
determinism and to perform the update. With respect to insertions, the problem is
more complex in general. Regarding possibility, Theorem 2 gives a complete charac-
terization at the scheme level, which can be efficiently verified by using the closure
algorithm proposed by Bernstein [11], but with regard to consistency and determin-
ism, the tests require the chase of Tt,r (Theorems 3 and 4), a tableau involving the
whole database state. Since computing the chase of a tableau takes polynomial time
in the number of the rows of the tableau [2], it follows that the tests for consistency
and determinism of an insertion require time and size polynomial with respect to the
size of the database state.

In the next section we show that it is possible to derive alternative methods for
checking consistency and determinism of insertions to independent schemes that are
easier to implement and optimize.

4.1. Consistency. Throughout this section we will consider a consistent state
r on a scheme R = {R1(X1), . . . , Rn(Xn)} and the insertion of a tuple t over X ⊆ U
in r, assuming that it is possible.

Let t be the “extension” of t with respect to r generated by Algorithm 1 (shown
in Figure 5). It turns out that t has interesting properties, which make it fundamental
in the efficient check of both consistency and determinism.

Let us introduce a property to be used shortly.
Condition 1. There is no V → A ∈ Fj for j ∈ {1, . . . , n} such that

(i) V A ⊆ X, and
(ii) there exists t′ ∈ rj such that t′[V] = t[V] and t′[A] 6= t[A].

Lemma 6. If Condition 1 holds, then t is uniquely defined.
Proof. Condition 1 implies that when there are two or more alternatives at any

step, those not chosen remain valid after the transformation and therefore can be
applied later.

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1121

Algorithm 1.
Input : a tuple t over X ⊆ U and a database state r;
Output : the “extension” t of t with respect to r and the set of attributes X;
begin

tU [X] := t; /* tU is a tuple of distinct variables over U */
W := X;
while there exists some V → A ∈ Fj, 1 ≤ j ≤ n, such that V ⊆W,A 6∈W

and there exists t′ ∈ rj such that t′[V] = tU [V]
do begin

tU [A] := t′[A];
W := W ∪A

end;
return tU [W] and W

end.

Fig. 5. Algorithm for the computation of the extension of a tuple.

Definition 3 (state r̃). Let t be the extension of t with respect to r and t̃ be a
tuple over the universe U obtained by extending t to U by means of “new constants,”
that is, a unique constants not already appearing in r. Then the state r̃ is obtained
from r and t̃ by adding the tuple t̃[Xj] to each relation rj ∈ r on Rj(Xj).

Lemma 7. If R is independent and Condition 1 holds, then r̃ is a consistent
potential result for the insertion of t in r.

Proof. We have to show that (1) r̃ is consistent and (2) r̃ is a potential result.
(1) r̃ is consistent: Since R is independent, it is sufficient to show that r̃ is

locally consistent. By way of contradiction assume that it is not. Let r̃j be a relation
that violates the respective FDs Fj . Since r is consistent, rj satisfies Fj , and so the
violation has to involve the new tuple t̃[Xj] together with a tuple t′ ∈ rj ; that is,
there is an FD V → A ∈ Fj such that t′[V] = t̃[V] and t′[A] 6= t̃[A]. Since the values
of t̃ over attributes in U −X are all new constants, t̃[V] = t′[V] implies V ⊆ X and
so t[V] = t′[V]. Then the computation of t would also add A to W and so to X
because of t′ ∈ rj , and therefore t̃[A] = t[A]. Then, we would have t′[V] = t[V] and
t′[A] 6= t[A], for some V → A ∈ Fj with V A ⊆ X, against Condition 1.

(2) r̃ is a potential result: By construction r � r̃. Also, since the insertion of t in r
is possible, by Theorem 2, there is a relation scheme Ri(Xi) ∈ R such that F implies
the FD Xi → X and so X+

i ⊇ X. Let t′ be the tuple in CHASEF (Tr̃) originating from
πXi(t̃). Then, by Lemma 1, t′[X+

i] = t̃[X+
i], and since X+

i ⊇ X, by definition of t̃ we
have t′[X] = t. It follows that t ∈ πX(RIr̃), and so r̃ is a potential result.

Theorem 6. The insertion of t in a state r of an independent scheme is consis-
tent if and only if Condition 1 holds.

Proof. Only if. The construction of t can be seen as an initial sequence in
the chase of Tt,r with respect to F . Then, violation of Condition 1 implies that
CHASEF (Tt,r) = T∞ and so, by Theorem 3, the claims follows.

If. This proof is made by Lemma 7.
This theorem gives us an effective and efficient method to check for consistency

of insertions in independent schemes: instead of performing the chase of Tt,r (as re-
quested by Theorem 3), it is sufficient to apply Algorithm 1 and to check for violations
of FDs involving t.

1122 RICCARDO TORLONE AND PAOLO ATZENI

Example 4. The scheme in Example 1 is clearly independent. Now consider
the first insertions in Example 2. We have t = 〈Jim,MS,White〉, so the insertion is
consistent since such a tuple does not violate the FDs that involves. Conversely, if we
want to insert the tuple 〈John,White〉, we would have an inconsistent insertion since
t = 〈John,CS,White〉, and Condition 1 does not hold for the FD D → M and, for
instance, the tuple 〈CS,Smith,A〉 of r2.

4.2. Determinism. Throughout this section we will consider a consistent data-
base state r of a scheme R = {R1(X1), . . . , Rn(Xn)} and the insertion of a tuple t
over X ⊆ U in r, assuming that it is possible and consistent.

As in section 4.1, let t be the extension of t with respect to r generated by
Algorithm 1, let t̃ be the tuple obtained by extending t to the universe U by means of
a set of new constants Cnew , and let r̃ be the state obtained by adding to the original
state r the projections of t̃ over the various relation schemes.

Definition 4 (state r̂). Let r̃∗ be the completion of r̃, that is, r̃∗ = π↓R(RIr̃).
Then, r̂ is the state obtained from r̃∗ by removing all the tuples having some new
constant: r̂ = π↓R[Cnew](RIr̃).

We have the following result for the state r̂ (we recall that r+ = π↓RCHASEF (Tt,r),
where Tt,r = RIr ∪ {te} and te is the tuple obtained by extending t to the universe U
by means of unique variables).

Theorem 7. The state r̂ coincides with the state r+.
Proof. By Lemma 7, r̃ is a potential result, and therefore—since by Lemma 4

the state r+ is the glb of the potential result—we have r+ � r̃ and thus r+ � r̃∗ as
every state is equivalent to its completion. Since r+ is complete (being constructed
as the projection of a chased tableau), by equivalence of parts 1 and 4 of Theorem 1,
we have that r+ is a relationwise subset of r̃∗, and thus of r̂, which is obtained from
r̃∗ by eliminating tuples that do not appear in r+. Thus, to complete the proof we
need to show that for every Ri ∈ R, it is also the case that r̂i ⊆ r+i , where r̂i ∈ r̂ and
r+i ∈ r+. We will prove this part by showing that it is possible to build a tableau T ,

such that T ≤ CHASEF (Tt,r) and r̂ = π↓R(T). Since r+ = π↓R(CHASEF (Tt,r)), the fact
that r̂ is a relationwise subset of r+ would then follow directly from the definitions of
containment mapping and total projection.

Let T1 = RIr ∪ {te}, where te is obtained by extending t to the universe U by
means of unique variables. Since t is built using chase steps that are valid in Tt,r
and since the chase is independent of the order of the individual chase steps [21],
it follows that T1 can be seen as an intermediate result in chasing Tt,r and that
CHASEF (T1) = CHASEF (Tt,r). Similarly, let rt̃ be the state obtained by projecting t̃
over the various relational schemes and let T2 = RIr∪CHASEF (Trt̃). By construction,
Tr̃ = Tr ∪ Trt̃ , so T2 can be considered as an intermediate result in chasing Tr̃, and
CHASEF (T2) = CHASEF (Tr̃) = RIr̃. The tableau T2 contains all the tuples of RIr
and, by Lemma 1, n tuples ti such that ti[X

+
i] = t̃[X+

i] for 1 ≤ i ≤ n. Then, let φ
be a function from D to D that (i) maps the new constants in t̃ to unique variables
in T2 and (ii) is the identity on all the other elements in D, and consider the tableau
T3 = φ(T2). This tableau is composed of the tuples of RIr and n tuples t′i such that
t′i[A] = t[A] if A ∈ X, and t′i[A] is a variable otherwise. It easily follows that T3 ≤ T1

because of a containment mapping that is the identity on RIr and maps the n tuples
t′i to te. Now, let us consider the chase of T2 and let ψ be the function that maps each
symbol appearing in T2 to the symbols to which it is changed by the chase, that is,
ψ(T2) = CHASEF (T2), and let ψ′ = φ◦ψ. The function ψ′ coincides with ψ except for
the variables v that have been changed to new constants by chasing T2, that is, ψ′(v) =

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1123

φ(ψ(v)) = vj if ψ(s) is a new constants cj such that φ(cj) = vj , and ψ′(s) = ψ(s) for
all the other symbols s in T2. Since all the chase steps that can be applied to T2 are
also valid in the tableau T3 if we replace the new constants with unique variables, it
follows that ψ′(T2) coincides with the chase of T3, that is, ψ′(T2) = CHASEF (T3). If
we let T4 = φ(RIr̃), we have T4 = φ(ψ(T2)) = ψ′(T2) = CHASEF (T3), and therefore,
since T3 ≤ T1, by part 2 of Lemma 2, we have CHASEF (T3) ≤ CHASEF (T1), and so
T4 ≤ CHASEF (T1) = CHASEF (Tt,r).

Now, since φ maps new constants to new variables and is the identity on the other
elements of D, we have that π↓R(T4) exactly coincides with r̂. As argued above, it

follows that r̂ is a relationwise subset of r+ = π↓R(CHASEF (Tt,r)).

Corollary 2. The insertion of a tuple t in a state r is deterministic if and only
if t∈̂r̂.

Proof. The proof follows by Corollary 1 and Theorem 7.

Corollary 2 gives us an alternative method to check for determinism that does
not requires the chase of the special tableau Tt,r over the whole database.

Example 5. Consider again the insertion of t = 〈Jim,White〉 over EM in
the state in Figure 1. We have in this case t = 〈Jim,MS,White〉 over EDM and
t̃ = 〈Jim,MS, c1,White〉 over U . Hence, r̃ is obtained by adding 〈Jim,MS, c1〉 to r1

and 〈MS,White, c1〉 to r2. In computing the completion of r̃, the tuple 〈MS,White,C〉
is also added to the second relation and so, by deleting the tuples with the new constant
c1, we obtain again the state we suggest as the result.

In the following section we will show how the new method can be efficiently
implemented if the scheme is independent. For this purpose, we now mention some
properties of Tt,r and r̂ for the class of independent schemes. We recall that, given
a tuple t over a set of attributes X ⊆ U , the tuple te denotes its extension to U by
means of unique variables.

Lemma 8. If R is independent, then for any Rj ∈ R and for any Y → A ∈ Fj it

is the case that π↓Y A(CHASEF (Tt,r)) = πY A(rj) ∪ π↓Y A({te}).
Proof. It is sufficient to prove that π↓Y A(CHASEF (Tt,r)) ⊆ πY A(rj)∪π↓Y A({te}) as

the other containment, by construction, is trivial. Let us consider the state r̃: Since, by
Lemma 7, it is a consistent potential result, we have that r � r̃ and t∈̂r̃. Hence, RIr ≤
RIr̃ and t ∈ π↓X(RIr̃) and therefore, since all the variables in te are unique, Tt,r = RIr∪
{te} ≤ RIr̃. Thus, by part 3 of Lemma 2, it follows that CHASEF (Tt,r) ≤ CHASEF (Tr̃).

Now let t′ ∈ π↓Y A(CHASEF (Tt,r)). By equivalence of parts 2 and 3 of Lemma 1 we

have π↓Y A(CHASEF (Tt,r)) ⊆ π↓Y A(CHASEF (Tr̃)); hence, t′ ∈ π↓Y A(CHASEF (Tr̃)). Since

R is independent and, by Lemma 3, π↓Y A(CHASEF (Tr̃)) = πY A(r̃j), it follows that
t′ ∈ πY A(r̃j). Now, by definition of r̃, we have that t′ ∈ πY A(rj) or t′ = t̃[Y A].
In the first case, the proof is complete. In the second case, we have two subcases:
(i) Y A ⊆ X and so t̃[Y A] = t[Y A], which would again prove the claim; (ii) Y A 6⊆
X and therefore t̃[Y A] contains constants not appearing in CHASEF (Tt,r) and

therefore t̃[Y A] 6∈ π↓Y A(CHASEF (Tt,r)), which, however, contradicts t̃[Y A] = t′ ∈
π↓Y A(CHASEF (Tt,r)).

Lemma 9. If R is independent and the insertion of t in r is deterministic, then
for any Ri(Xi) and for any Y → A ∈ Fi, it is the case that πY A(r̂i) = πY A(ri) ∪
π↓Y A({te}).

Proof. If the insertion is deterministic, then by Theorem 4, we have that RIr+ ≡
CHASEF (Tt,r), and so by Theorem 7 and by equivalence of parts 1 and 2 of Theo-
rem 1, RIr̂ ≡ CHASEF (Tt,r). Also, since R is independent, by Lemma 3 we have that

1124 RICCARDO TORLONE AND PAOLO ATZENI

Algorithm 2.
Input: a state s, a tuple tY over Y ⊆ U , a set of attributes V ⊇ Y ,

a set of constants C;
Output: a relation sout;
begin

let EV be the AC-expression for V ;
repeat

select a scje Ei = πV (Ri01πY1Z1(Ri1)1 · · ·1πYmZm(Rim)) from EV ;
s(0) := {tY } 1 si0 ; / ∗ si0 ∈ s on Ri0 ∗ /
W := Y ∪Xi0 ;
k := 0;
repeat

select a component πYjZj (Rij) from Ei such that W ⊇ Yj ,
choosing first those such that Y ∩ YjZj 6= ∅ (if any);
s(k+1) := s(k) 1 πYjZj (sij) / ∗ sij ∈ s on Rij ∗ /;
W := W ∪ YjZj ;
k := k + 1;

until (s(k) = ∅) or (all the components of Ei have been selected);
sout := πV (s(k))−{tuples with constants in C};

until (sout 6= ∅) or (all scje of EV have been selected);
return sout

end.

Fig. 6. Basic algorithm for update operations.

for any Ri(Xi) ∈ R and for any FD X → A ∈ Fi, it is the case that πY A(r̂i) =

π↓Y A(RIr̂). By equivalence of parts 2 and 3 of Theorem 1, it follows that πY A(r̂i) =

π↓Y A(CHASEF (Tt,r)), and so, by Lemma 8, πY A(r̂i) = πY A(ri) ∪ π↓Y A({te}).
5. Algorithms for update operations. On the basis of the results of the

previous sections, we present in this section efficient algorithms that can be used to
update relational databases on independent schemes. Such algorithms exploit some
known result on query answering for this class of schemes. In particular, we will use
the results of Atzeni and Chan [5], who proved that, for independent schemes, the
total projection of the representative instance can be obtained by means of a union of
scjes and proposed an algorithm to compute and optimize this expression, which runs
in polynomial time with respect to the size of the database scheme. In the following,
we will denote by EX = ∪Ei the union of scjes for a set of attributes X ⊆ U [5,
Algorithm 5.8], and we will refer to EX as the AC-expression for X.

5.1. Basic algorithm. In this subsection we provide an algorithm (shown in
Figure 6) that will be used for several purposes in the rest of the paper, and whose
aim is to test efficiently whether certain total tuple appears in the representative
instance of a state defined on an independent scheme. More specifically, given a
consistent state s of an independent scheme R, a tuple tY over Y ⊆ U , a set of
attributes V ⊆ U such that Y ⊆ V , and a set of constants C, Algorithm 2 verifies
whether there exists total tuples on V in RIs, without constants in C, that coincide
with tY on the attributes Y , that is, whether σY=tY (π↓V [C](RIs)) is not empty. If
Y = V and C = ∅, the algorithm simply tests whether tY ∈̂s. The role of the set of
attributes V and of the set of constants C will be clarified later.

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1125

The search is efficiently performed by joining tY with tuples of s on the basis of
the scje in the AC-expression EV for V , giving precedence to the components having
some attribute in Y . This corresponds in performing selections on the values in tY as
early as possible while computing σY=tY (EV (r)).

In the inner loop of the algorithm the expression σY=tY (Ei(r)) for an scje Ei ∈ EV
is evaluated. The loop halts as soon as the result turns out to be empty or when the
scje has been completely computed. Then, the derived tuples having no constants in
C are stored in the relation sout. The algorithm stops as soon as sout is not empty
or when all the scjes in EV have been examined. Thus, at termination, we have that
sout contains tuples of σY=tY (EV (s)) without constants in C and that sout 6= ∅ if and
only if σY=tY (EV (s)) contains at least one tuple without constants in C. Since in [5]

it is proved that a tuple t′ ∈ π↓V (RIs) if and only if t′ ∈ EV (s), the following result
easily follows.

Lemma 10. Assume that Algorithm 2 receives as input a tuple tY over Y ⊆ U ,
a consistent state s of a scheme R, a set of attributes V ⊆ U such that Y ⊆ V and
a set of constants C. Then, at termination, (1) sout ⊆ π↓V [C](σY=tY (RIs)), and (2)

sout 6= ∅ if and only if π↓V [C](σY=tY (RIs)) 6= ∅.
Corollary 3. Let Y = V and C = ∅, then the output relation sout of Algo-

rithm 2 is not empty if and only if tY ∈̂s.

Note that, for efficiency purposes, Algorithm 2 does not compute a complete
total projection of the representative instance. Note also that if π↓V (σY=tY (RIs)) is
not empty, then sout is not deterministic, since it depends on the order in which the
scjes have been selected. However, this is not important since, as we will see, we just
need a relation satisfying the above properties.

5.2. Performing insertions. Let r be a consistent state of a scheme R, and
consider the insertion of a tuple t over X ⊆ U in r, assuming that it is possible
and consistent. In section 4 it has been shown that the property of determinism for
insertions can be verified on the state r̂. The construction of this state requires the
computation of the completion of the state r̃. We will show now that we do not need
to compute the full completion of r̃, since, as suggested by Lemma 9, it is sufficient
to find only those tuples without new constants of r̂∗ that coincide with t on the
attributes involved in some FD.

More specifically, let us consider the following database state. Again, t denotes
the extension of t with respect to r, t̃ the tuple obtained by extending t to the universe
U by means of new constants, r̃ the state obtained by adding to the original state r
the projections of t̃ over the various relation schemes, and r̃∗ its completion.

Definition 5 (state ř). A state ř is obtained from r and r̃ (1) by adding the tuple
t[Xi] to each relation ri ∈ r on Ri(Xi) such that X ⊇ Xi, and (2) by adding at least
one tuple without new constants tj ∈ r̃∗j , such that tj [Y A] = t[Y A] and tj 6∈ rj, to each

relation rj ∈ r over Rj(Xj) such that X 6⊇ Xj and X ⊇ Y A for some Y → A ∈ Fj,
An important point here is that, if the deterministic condition is satisfied, in

case (2) above there must exist at least one tuple without new constants tj in r̃∗j
such that tj [Y A] = t[Y A] and tj 6∈ rj . This follows from the fact that, by Lemma 9,

πY A(r̂j) = πY A(ri)∪π↓Y A({te}) for each Y → A ∈ Fj and the fact that r̂j is obtained
from r̃∗j by just deleting tuples with new constants. Note also that, in general, several
tuples may satisfy this property.

We have the following results for ř.

Lemma 11. If R is independent and the insertion of t in r is deterministic, then

1126 RICCARDO TORLONE AND PAOLO ATZENI

ř ∼ r̂.

Proof. We have to show that for deterministic insertions (1) r̂ � ř and (2) ř � r̂.

(1) r̂ � ř. We prove this part by showing that, for every Ri(Xi) ∈ R and for

every ti ∈ r̂i, either (i) ti ∈ ři or (ii) ti ∈ π↓Xi(RIř). It would follow that every ti ∈ r̂i
belongs to the relation ř∗i in the completion ř∗ of ř. Since, by Theorem 7, r̂ coincides
with a complete state and is therefore itself complete, the fact that r̂ � ř then follows
by the equivalence of parts 1 and 4 of Theorem 1.

Thus, let ti ∈ r̂i for some Ri(Xi) ∈ R. By construction of r̂, we have three
possible cases: (a) ti ∈ ri, where ri ∈ r—that is, ti belongs to a relation of the
original state; (b) ti 6∈ ri and X ⊇ Xi, and so ti = t[Xi]; and (c) ti 6∈ ri and X 6⊇ Xi,
and so ti has been generated in chasing Tr̃. In the first two cases we also have ti ∈ ři
by construction. With respect to the third case, we will show that ti can be generated
by chasing Tř.

Thus, let ti be a tuple of r̂i on Ri(Xi) ∈ R, such that ti 6∈ ri and X 6⊇ Xi.
Since, by Theorem 7, r̂ = r+, we have that, by construction of r+, the tuple ti
is also generated by chasing Tt,r. Moreover, since the insertion is deterministic, by
Theorem 4, CHASEF (Tt,r) is equivalent to the representative instance of a database
state. It follows that ti originates in CHASEF (Tt,r) from a tuple t0 of a relation
r0 ∈ r (indeed, t0 can not originate from t since this would imply that ti = t[Xi]
and so X ⊇ Xi). Let χ = τ1, . . . , τm be the sequence of chase steps that allows us to
generate ti from t0 in the chase of Tt,r. Since R is independent, by Lemma 8, each τk
in χ promotes a variable to a constant in r or in t, because of a tuple tj and an FD

Y → A, such that tj [Y A] ∈ πY A(rj) ∪ π↓Y A({te}).
Now, for each Y → A ∈ Fj such that X ⊇ Y A, if X ⊇ Xj , the tuple t[Xi] is in

řj by construction. Moreover, if X ⊇ Y A and X 6⊇ Xj , we have argued above that,
for deterministic insertions, there must exist at least one tuple without new constants
t′j in r̃∗j such that t′j [Y A] = t[Y A] and so, by construction, a tuple satisfying this
property is also in řj . It follows that the above sequence of chase step χ is also valid
in Tř; that is, it allows us to generate ti from t0 (which, by construction, belongs to
ř), by chasing Tř. As argued above, this concludes part (1) of the proof.

(2) ř � r̂: the proof easily follows from their definitions.

Theorem 8. For independent schemes the insertion of t in r is deterministic if
and only if t∈̂ř.

Proof. Only if. If the insertion is deterministic, then by Corollary 2, t∈̂r̂ and, by
Lemma 11, ř ∼ r̂. It follows that t∈̂ř.

If. Since, by construction, ř � r̂, if t∈̂ř, then it is also the case that t∈̂r̂ and
therefore, by Corollary 2, the insertion is deterministic.

A state ř can be efficiently derived from r and r̃ by using Algorithm 3, shown
in Figure 7. In this algorithm, Cnew denotes the set of new constants used in the
construction of t̃, and, for each Ri(Xi) ∈ R, Y +

Fi
denotes the local closure of a set of

attributes Y ⊆ Xi with respect to Fi. The following lemma confirms the correctness
of the algorithm.

Lemma 12. Assume that Algorithm 3 receives as input a state r of an independent
scheme R, a tuple t over X ⊆ U , and its extensions t and t̃. Then, the output of the
algorithm is a state ř.

Proof. Since the tuples added to rout in step (a) of Algorithm 3 belong to ř by
definition, it is sufficient to show that in step (b), only tuples satisfying condition
(2) of the definition of ř, are added to rout, and nothing else. First, note that if
there is a tuple ti ∈ r̃i such that ti[Y A] = t[Y A] for some Y → A in Fi, it easily

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1127

Algorithm 3.
Input : r, t over X ⊆ U , t over X, t̃ over U ;
Output : a state ř;
begin

rout := r;
for each Ri(Xi) ∈ R
do if X ⊇ Xi

(a) then routi := routi ∪ {t[Xi]}
else for each Y → A ∈ Fi such that X ⊇ Y A

do if does not exist t′ ∈ routi such that t′[Y A] = t[Y A]
then begin

execute Algorithm 2 over r̃, t[Y +
Fi

], Xi and Cnew ;
(b) routi := routi ∪ sout

end;
return rout

end.

Fig. 7. Algorithm for the generation of a state ř.

follows that t is defined on Y +
Fi

and ti[Y
+
Fi

] = t[Y +
Fi

]. Then, by Lemma 10, in step (b)
of Algorithm 3, we add to rout at least one tuple (if any) without new constants in

π↓Xi [Cnew](σY +
Fi

=t[Y +
Fi

](RIr̃)). It follows that, for each relation rj ∈ r over Rj(Xj) ∈ R

such that X 6⊇ Xj and X ⊇ Y A for some Y → A ∈ Fj , we add, in step (b) of
Algorithm 3, at least one tuple tj ∈ r̃∗j without new constants such that tj [Y A] =

t[Y A] and tj 6∈ r, and nothing else.

Example 6. Let r be the state in Figure 1 and t = 〈Jim,White〉 over EM .
We have shown in Example 4 that t = 〈Jim,MS,White〉 over X = EDM . Let
t̃ = 〈Jim,MS, c1,White〉 and consider the execution of Algorithm 3 over these inputs.
We have X 6⊇ X1 = EDP and X ⊇ ED, where E → D ∈ F1, but t[ED] ∈ πED(r1)
and therefore rout1 = r1. We then have X 6⊇ X2 = DMP , X ⊇ DM for the
functional dependency D → M ∈ F2, and t[DM] 6∈ πDM (r2). Thus, in this case,
Algorithm 2 needs to be executed with r̃, 〈MS,White〉, DMP, and {c1} as inputs.
We have EDMP = R2 ∪ πDMP (R1 1 πDM (R2)). For the first scje in EDMP we
obtain sout = ∅, since t[DM] 1 r̃2 = {〈MS, c1,White〉}. For the second scje we
have πDMP (t[DM] 1 r̃1 1 πDM (r̃2)) = {〈MS,C,White〉, 〈MS, c1,White〉}. Hence,
we obtain: rout2 = r2 ∪ {〈MS,C,White〉}. Thus, in this case, ř coincides with r̂ (see
Example 5) and t∈̂ř—this confirms the determinism of the insertion of t in r.

We are now ready to present Algorithm 4 (shown in Figure 8), which summarizes
all phases of insert operations to independent schemes.

Step (1) of Algorithm 4 checks for possibility (Theorem 2). This test requires
the computation of closures of sets of attributes, an operation that can be performed
in time O(‖F‖), where ‖F‖ is the size of the description of F , by using Bernstein’s
algorithm [10]. Since the closure has to be performed |R| times in the worst case,
where |R| is the number of relation schemes in R, it follows that testing for possibility
is bounded by O(|R| × ‖F‖).

In step (2) the extension t of t with respect to the state r is computed by using
Algorithm 1. This algorithm requires the computation of the closure of a set of
attributes and, at each step of the computation, the selection of a tuple given a value

1128 RICCARDO TORLONE AND PAOLO ATZENI

Algorithm 4.
Input : r and t over X ⊆ U ;
Output : “not possible” | “not consistent” | “not deterministic” |

the result of the insertion of t in r;
begin
(1) if not exists Ri(Xi) ∈ R such that X+

i ⊇ X
then return “not possible” and stop;

(2) compute t and X using Algorithm 1;
(3) if Condition 1 does not hold

then return “not consistent” and stop;
(4) compute ř using Algorithm 3;
(5) verify that t∈̂ř using Algorithm 2;
(6) if sout = ∅

then return “not deterministic”
else return ř

end.

Fig. 8. Algorithm for the execution of insert operations.

on the left-hand side of an FD. The selection time depends on the cardinality of the
relation, but it can be strongly reduced by defining indexes on the left-hand side of
all the FDs in F . Let kF,r be the maximum time needed to search for tuples in a
database state r, given a value on the left-hand side of an FD in F . The cost of step
(2) is then proportional to ‖F‖×kF,r. Under the same hypothesis, Condition 1 in step
(3) (which, by Theorem 6, checks for possibility) can be tested in time O(|F | × kF,r),
where |F | is the cardinality of the set of FDs F . This is because in an independent
scheme each FD is embedded in at most one relational scheme [17].

In step (4) the state ř is computed with Algorithm 3.
This algorithm requires, in the worst case, the execution of Algorithm 2 a number

of times that, by the above property of independent schemes, is bounded by |F |. For
any given X, there are at most as many scjes in EX as relation schemes in R [5, 3].
It follows that the execution of Algorithm 2 corresponds to the execution of a number
of relational algebra expressions bounded by |F ′| × |R|, where F ′ denotes the FDs
Y ′ → A′ in F , such that there is no other FD Y → A in some Fi ⊆ F , for which
Y +
Fi
⊇ Y ′A′. The cost of each expression is bounded by |rmax | × kF,r × |F |, where

|rmax | is the size of the largest relation in r. In fact, the computation starts with a
relation not larger than |rmax | and then performs a number of joins, bounded by |F |,
that simply require for each tuple in the intermediate relation the search for a tuple
in a relation, given a value for its key (which is the left-hand side of an FD). This is
because, at each step, the attributes of the intermediate relation include the left-hand
side of the FD over which each component is projected. Note also that the size of
the computed relation is always bounded by |rmax |. In sum, step (4) is bounded by
|rmax | × |F |2 × |R| × kF,r. On average however, it turns out that the cost of this
operation is quite limited. This is because (i) updates often involve only a very small
portion of FDs in F , (ii) relational expressions are optimized as described in [5] and
selections are performed as early as possible, and (iii) the number of scjes for a set
of attributes is small when the scheme enjoys the desirable property of “independent
updatability” [16].

Finally, step (5) tests for determinism (Theorem 8 and Corollary 3) and requires

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1129

Algorithm 5.
Input : r and t over X ⊆ U ;
Output : “not deterministic” | the result of the deletion of t from r;
begin
(1) if not exists Ri(Xi) ∈ R such that Xi ⊇ X

then return “not deterministic” and stop;
(2) for each Ri(Xi) ∈ R do if Xi ⊇ X

then r−i := ri − σX=t(ri);
(3) verify that t∈̂r− using Algorithm 2;
(4) if verified

then return “not deterministic” and stop
else return r−

end.

Fig. 9. Algorithm for the execution of delete operations.

the execution of Algorithm 2 once more. Note that the state r̃ as well as the state ř
do not need to be effectively constructed. So, Algorithms 2 and 3 could be slightly
modified in order to work on the tuples in r, r̃, and ř, without actually adding tuples
to r.

From the discussion above, it turns out that Algorithm 4 provides a practical and
efficient way to perform the insertion of a tuple t over any set of attributes X ⊆ U in
a state of an independent scheme.

Example 7. Examples 4 and 6 deal with the execution of all the steps of Algo-
rithm 4 for the tuple t = 〈Jim,White〉 over EM and the state in Figure 1.

5.3. Performing deletions. By the results of the previous sections it is also
possible to give an efficient method for performing delete operations on a database
state of an independent scheme. This algorithm is shown in Figure 9.

In step (1), the necessary condition for determinism of Lemma 5 is tested: it
requires time proportional to |R|. Then, in step (2), the state r− is computed by
executing a number of selections, again bounded by |R|. Then, by Theorem 5 and
Corollary 3, step (3) tests for determinism. This requires one execution of Algorithm 2,
which is optimized as discussed in the previous subsection. Also in this case, the
algorithm can be slightly modified in order to work on the tuples r and r− without
actually deleting tuples from r.

Thus, again, given a state r of an independent scheme and a tuple t over any set
of attributes X ⊆ U , Algorithm 5 provides a practical and efficient way to perform
the deletion of t from r.

Example 8. Assume that we want to delete the tuple t = 〈Smith,B〉 over MP
from the state in Figure 1. The condition in step (1) of Algorithm 5 is verified for the
scheme R2(DMP). Then, the state r− is obtained in step (2) by deleting the tuple
〈CS,Smith,B〉 from r2. However, it is easy to see that this tuple can be reconstructed
from the tuple 〈John,CS,B〉 in r1 and the tuple 〈CS,Smith,A〉 in r2. It follows that in
step (3) we obtain t∈̂r− and therefore the insertion is not deterministic. Conversely,
the deletion of t = 〈White,B〉 over the same attributes is deterministic since in this

case we would have t̂6∈r−.

6. Possible simplifications of the algorithms. In this section we show that,
under certain further assumptions, update operations can be managed more easily.

1130 RICCARDO TORLONE AND PAOLO ATZENI

6.1. Insertions. We recall that a database scheme R is separable if it is inde-
pendent and every consistent state on R is complete [16]. (Chan and Mendelzon also
provided an efficient test for separability.)

Now, let r be a state of a database scheme R, t be a tuple over X ⊆ U , and t be
the extension of t with respect to r. Let us consider the following state.

Definition 6 (state r). The state r is obtained from r and t by adding the tuple
t[Xj] to each relation rj ∈ r on Rj(Xj) ∈ R such that Xj ⊆ X.

Theorem 9. If R is separable, then r = r+.

Proof. If R is separable, then the state r̃ coincides with its completion r̃∗, and
therefore, by construction, r̂ can be obtained by eliminating from r̃ the tuples with new
constants. The state we obtain clearly coincides with r, and therefore, by Theorem 7,
the claim follows.

Corollary 4. The insertion of a tuple t in a state r on a separable scheme is
deterministic if and only if t∈̂r.

Proof. The proof follows by Corollary 1 and Theorem 9.

By this result, the test for determinism and the computation of the minimum
result for insertions to separable schemes can be done more efficiently since in this
case it is not required to compute the state ř as it suffices to refer to the state r which
can be easily generated.

Example 9. The scheme of the state r in Figure 1 is independent but not sepa-
rable since, for instance, the state obtained by deleting the tuple 〈CS,Smith,B〉 from
r2 is not complete (see Example 8). Therefore, we have in general r 6= r+. In fact,
for to the tuple t = 〈Jim,White〉 over EM , we have that t = 〈Jim,MS,White〉 and
so r = r, whereas we have shown that the insertion of t in r is deterministic. It is
easy to show that, if the second relation would contain only the attributes D and P ,
the scheme would be separable. In this case the insertion above can be performed by
adding to r2 the tuple 〈MS,White〉, which is indeed embedded in t.

The state r has an interesting property: it contains only the tuples that can be
derived directly from t by extending this tuple with values from tuples of r, using
the FDs in F . Then, by simply computing the extension of t with Algorithm 1, we
immediately know not only the tuples to insert in the original database, but also the
side effect generated by the insertion. Therefore, when r is the result of the insertion,
we can keep the side effect under control. Unfortunately, as shown in Example 9, even
for independent schemes, r is not always the correct result, and insertion operations
require, in the general case, a more involved computation, as described in section 5.

Interestingly however, it is possible to give for independent schemes “local” con-
ditions at scheme level (which therefore can be efficiently tested) that allow us to refer
to the state r for insert operations even for schemes that are nonseparable. Let us
consider the following property which refer to the insertion of a tuple t over X ⊆ U
in a state r of a scheme R.

Condition 2. For every relational scheme Ri(Xi) ∈ R, at least one of the
following holds:

(i) Xi ⊆ X,
(ii) Y A 6⊆ X for any Y → A ∈ Fi,

(iii) Fi contains an FD whose left-hand side is a superkey of Xi.

Theorem 10. Let R be independent and assume that Condition 2 holds. Then,
the insertion of t in r is deterministic if and only if t∈̂r.

Proof. Only if. We prove this part by showing that if, for an independent scheme,
Condition 2 holds and the insertion is deterministic, then for every Ri(Xi) ∈ R

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1131

such that Xi 6⊆ X it is the case that r̂i = ri. The fact that t∈̂r would then follow
by Theorem 8 and the fact that in this case, by construction, ř = r. So, by way of
contradiction, assume that R is independent, Condition 2 holds, and there is a scheme
Ri(Xi) ∈ R such that Xi 6⊆ X and r̂i 6= ri. By definition of r̂, this implies that (i)
Y A ⊆ X for some Y → A ∈ Fi, (ii) there is no tuple in ri which coincides with t on
Y A, and (iii) there is a tuple t′ ∈ r̃∗i without new constants such that t′[Y A] = t[Y A].
But because of Condition 2, if Xi 6⊆ X and Y A ⊆ X for some Y → A ∈ Fi, then
there must exist an FD Z → B ∈ Fi such that Z is a superkey of Xi. Now, since
the scheme is independent, by Lemma 3, π↓ZB(CHASEF (Tr̃)) = πZB(r̃i), and since Z

is a superkey, this implies π↓Xi(CHASEF (Tr̃)) = r̃i and therefore t′ = t̃[Xi]. This, in

turn, implies that t′ = t[Xi], since t′ does not contain new constants, and therefore
Xi ⊆ X—a contradiction.

If. If t∈̂r, then it is also the case that t∈̂ř since, by construction, r � ř. Then,
the claim follows by Theorem 8.

Example 10. Consider again the insertion of the tuple t = 〈Jim,White〉 over
EM in the state r in Figure 1: In this case Condition 2 is not verified since X =
EDM . For R1(X1) we have X1 6⊆ X, E → D ∈ F1 and is embedded in X, and the
left-hand side of E → D does not contain a superkey of X1. However, if we consider
the insertion of t = 〈Jim,D〉 over EP in the same state, we obtain t = 〈Jim,MS,D〉,
and since in this case Condition 2 holds (X1 ⊆ X and Y A 6⊆ X for any Y → A ∈ F2),
the result of this insertion can be obtained by simply adding t to the first relation.

Testing for Condition 2 on an independent scheme requires, in the worst case, time
proportional to |F | × ‖F‖, since, as we have said before, each FD is embedded in at
most one relational scheme. This test can be performed after step (3) of Algorithm 4,
and if it succeeds, then steps (4)–(6) of Algorithm 4 can be replaced by just one step,
verifying (by using Algorithm 2) that t∈̂r.

6.2. Deletions. With respect to deletions, we can test for determinism more
efficiently if it is the case that every piece of information that is defined on some
subset of a relation scheme is explicitly represented in the database. This is the
property of the embedded-complete schemes [15]: a scheme R is embedded-complete if
for any consistent state r of R and for any X ⊆ U such that there exists Ri(Xi) ∈ R

with Xi ⊇ X, it is the case that π↓X(RIr) =
⋃
Xj⊇X πX(rj).

Let us consider the deletion of any tuple over a set of attributes X ⊆ U from a
state r of the scheme R.

Theorem 11. The deletion of a tuple t from a state r on an embedded-complete
scheme is deterministic if and only if there is a relational scheme Ri(Xi) such that
Xi ⊇ X.

Proof. Only if. The proof follows by Lemma 5.
If. This part follows by Theorem 5 and the fact that if the database scheme is

embedded-complete, then no tuple over a set of attributes which is contained in a
relational scheme can be generated by the chase from other tuples, and so it is never
the case that t̂6∈r−.

Also in this case, it is possible to state local conditions at scheme level for inde-
pendent schemes that allow us to test for determinism of a deletion of a tuple t over
a set of attributes X ⊆ U as follows.

Condition 3. For every relation scheme Ri(Xi) in R, at least one of the fol-
lowing holds:

(i) X 6⊆ Xi,
(ii) for every relation scheme Rj(Xj) in R, i 6= j, X 6⊆ X+

j ,
(iii) Fi contains an FD whose left-hand side is a superkey of X.

1132 RICCARDO TORLONE AND PAOLO ATZENI

Theorem 12. Let R be independent and assume that Condition 3 holds. Then
the deletion of t from r is deterministic if and only if there is a relational scheme
Ri(Xi) such that X ⊆ Xi.

Proof. Only if. The proof is made by Lemma 5.

If. Assume by way of contradiction that, for an independent scheme R, Condition
3 holds and that there is a relational scheme Ri(Xi) ∈ R such that X ⊆ Xi but the
deletion is not deterministic. By Theorem 5 it follows that t∈̂r−, and therefore there
is a tuple t′ in RIr− such that t′[X] = t. Then let tj be the tuple from which t′

originates and assume that tj ∈ r−j over Rj(Xj). Clearly, X 6⊆ Xj and so i 6= j.
Moreover, since we have assumed that t∈̂r, by Theorem 2, Xj → X ∈ F+, and
so, X ⊆ X+

j . This implies that there is an FD Y → A ∈ Fi such that Y is a
superkey of X; otherwise Condition 3 would be false. Since R is independent, by
Lemma 3, we have π↓Y A(RIr−) = πY A(r−i), and since Y is a superkey of X, we have

that π↓X(RIr−) = πX(r−i). But, by construction, t 6∈ πX(r−i) and so it follows that

t̂6∈r−—a contradiction.

Example 11. Consider the deletion t = 〈CS,Smith,B〉 over X = DMP from the
state r in Figure 1. Condition 3 does not hold since X ⊆ X2 = DMP , X ⊆ X+

1 = U ,
and the only FD D → M in F2 has a left-hand side that is not a superkey of X.
Therefore, for deletions defined on EDP we need to check whether t 6∈ r− (it turns
out that the deletion of t is not deterministic as shown in Example 8). Note that the
scheme of r is not embedded-complete. Conversely, Condition 3 is verified for the
tuple t′ = 〈CS,Smith〉 over DM since we have DM ⊆ X2 and DM ⊆ X+

1 , but in
this case D is a superkey of DM . Hence, the deletion of t′ from r is deterministic
and the result of the deletion can be obtained by deleting the tuples 〈CS,Smith,A〉 and
〈CS,Smith,B〉 from r2.

Condition 3 can be tested for independent schemes in time bounded by ‖F‖ ×
(|R|2 + |F |) and can be performed after step (2) of Algorithm 5. If such a condition
is verified, then the test for determinism in step (3) is no longer necessary, since in
this case the state r− is surely the maximum result.

7. Modification operations. The present paper studies insertions and dele-
tions of tuples as basic database update operations. However, modifications form
another important class of update operations, often used in practical situations. The
goal of this section is to discuss briefly the modification of tuples: we show that they
naturally fit in our framework and that, in general, insertion and deletion results can
be used to characterize them.

A simple modification operation consists of changing the values of a single tuple.
Therefore, we can represent a modification of a state r by means of a pair (told, tnew),
where told and tnew are tuples defined over the same set of attributes X ⊆ U ; the
intended meaning of this operation is clearly to substitute told by tnew in r.

According to the definition of insertions and deletions, this operation should be
realized by altering the information content of the original state as little as possible.
Thus, in the framework we have defined, a modification (told, tnew), defined over any
set of attributes X ⊆ U , of a database state r for a scheme R, can be defined through
the following notion of result.

A state rp is a potential result for the modification (told, tnew) to r if (1) told̂6∈rp,

(2) tnew∈̂rp, and (3) for every state r′ � r of R such that (a) told̂6∈r′ and (b) the
insertion of tnew in r′ is consistent, r′ � rp.

If we assume that told∈̂r, a modification is always possible, but as with insertions,
inconsistency and nondeterminism may arise. We then say that a modification is

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1133

consistent if it has a consistent potential result and is deterministic if the glb of the
potential results is itself a potential result.

By the definition above, it turns out that a modification can be implemented, in
most cases, through a deletion followed by an insertion. Specifically, we can easily
show the following results

Lemma 13. Let r be a database state of a scheme R, and (told, tnew) be a modi-
fication defined over a set of attributes X ⊆ U . Then the following properties hold:

(i) If the deletion of told from r is deterministic and the insertion of tnew to
r−told is consistent, then the modification (told, tnew) of r is consistent.

(ii) If the deletion of told from r is deterministic and the insertion of tnew to
r−told is deterministic, then the modification (told, tnew) of r is deterministic.

(iii) If the deletion of told from r is deterministic then (r−told)+tnew is the glb of
the potential results.

We note that the converses of the above results do not hold in general. This is
shown in the following example.

Example 12. Consider the database scheme R = {R1(AB), R2(BC)}, with the
FDs A→ B and B → C defined for it, and the state of R:

r = {r1 = {〈1, 2〉}, r2 = {〈2, 3〉}}.

Consider now the modification (told, tnew) = (〈1, 2, 3〉, 〈1, 2, 5〉) defined over ABC.
The deletion of told from r is not deterministic, since it can be realized either by
deleting the tuple 〈1, 2〉 from r1 or the tuple 〈2, 3〉 from r2. However, we have that the
modification is indeed deterministic. In fact, let r′ and r′′ be the potential results for
the deletion of told from r. Then

r′ = {r′1 = ∅, r′2 = {〈2, 3〉}} and r′′ = {r′′1 = {〈1, 2〉}, r′′2 = ∅}.

Then, it is easy to see that the insertion of tnew in r′ is inconsistent, whereas the
insertion of tnew in r′′ is consistent and deterministic. It follows that the glb of the
potential results is indeed a potential result and can be obtained by substituting 〈2, 5〉
for 〈2, 3〉 in r2.

This example shows that in general, in order to implement a modification (told, tnew)
of a state r, we first have to find all the maximal potential results for the deletion of
told from r. We recall that a maximal potential result rM for a deletion is a potential
result for which there is no other potential result rp such that rM � rp [9]. Then we
have to select from among them the states for which the insertion of tnew is consistent
and deterministic. Finally, the results for the insertion of tnew to the selected states
have to be compared: if there is one that is weaker than each other, the modification
is deterministic.

From the discussion above, it turns out that the algorithms derived for implement-
ing insertions and deletions can be also used to implement modification operations.

8. Conclusions. In this paper we have shown that, similar to what has been
done with respect to query answering, efficient algorithms for characterizing and per-
forming update operations defined over any subset of the universe can be given for the
highly significant class of independent schemes. In fact, the various characterizations,
which require time and space polynomial with respect to the size of the database state
[9], can be verified for this class of schemes efficiently, as in this case we can derive a
restricted number of optimized relational expression that allow us to refer only to the
relevant portion of the database.

1134 RICCARDO TORLONE AND PAOLO ATZENI

In particular, with respect to insert operations, we have first shown that the prop-
erty of consistency can be efficiently tested by considering only to the “extension” of
the tuple to be inserted (which is obtained by adding to t further values derived from
the original state and the constraints) and the involved FDs. With respect to the
property of determinism, we have first provided an alternative method that does not
require the construction of a special tableau over the whole database. This method
refers to a state obtained from the original database by adding tuples that, for inde-
pendent schemes, can be efficiently derived. If the insertion is deterministic, then this
special state corresponds to the result of the insertion. We have then provided for both
insertions and deletions practical algorithms implementing the various characteriza-
tions. We have finally shown that under some further conditions, update operations
can be managed more easily.

Clearly, when nondeterministic updates arise, the system should not simply reject
them but rather try to resolve these situations in some way. Indeed, this can be done
in several ways since, in general, the problem is that some information for satisfying
the request is missing and there are several possible choices for providing this extra
information. For instance, potential ambiguities can be solved by means of a dialogue
with the users, similar to the approach described in [8]. Therefore, the algorithms
we have presented can be extended in several ways in order to try to resolve non-
deterministic update operations.

New classes of database schemes, generalizing the class of independent schemes,
have been introduced [14, 30]. Similar to the independent ones, these schemes enjoy
the property that the consistency of a database state after a simple update to a base
relation can be efficiently verified. Thus, it could be interesting to extend the results
of this paper to these more general classes of schemes.

Acknowledgment. We would like to thank the anonymous referees for their
very helpful comments and suggestions.

REFERENCES

[1] S. Abiteboul, Updates, a new frontier, in Second International Conference on Data Base
Theory (ICDT’88), Bruges, Lecture Notes in Comput. Sci. 326, Springer-Verlag, New York,
1988, pp. 1–18.

[2] A. Aho, C. Beeri, and J. Ullman, The theory of joins in relational databases, ACM Trans.
Database Syst., 4 (1979), pp. 297–314.

[3] P. Atzeni and E. Chan, Efficient query answering in the representative instance approach, in
Proc. 4th ACM SIGACT SIGMOD Symp. on Principles of Database Systems, Portland,
OR, 1985, pp. 181–188.

[4] P. Atzeni and E. Chan, Efficient optimization of simple chase join expressions, ACM Trans.
Database Syst., 14 (1989), pp. 212–230.

[5] P. Atzeni and E. Chan, Efficient and optimal query answering on independent schemes,
Theoret. Comput. Sci., 77 (1990), pp. 291–308.

[6] P. Atzeni and M. De Bernardis, A new interpretation for null values in the weak instance
model, J. Comput. System Sci., 41 (1990), pp. 25–43.

[7] P. Atzeni and V. DeAntonellis, Relational Database Theory: A Comprehensive Introduc-
tion, Benjamin Cummings, Menlo Park, CA, 1993.

[8] P. Atzeni and R. Torlone, Solving ambiguities in updating deductive databases, in Math-
ematical Fundamentals of Data Base Systems (MFDBS’91), Rostock, Germany, Lecture
Notes in Comput. Sci. 495, Springer-Verlag, New York, 1991, pp. 104–118.

[9] P. Atzeni and R. Torlone, Updating relational databases through weak instance interfaces,
ACM Trans. Database Syst., 17 (1992), pp. 718–746.

[10] C. Beeri and P. Bernstein, Computational problems related to the design of normal form
relational schemas, ACM Trans. Database Syst., 4 (1979), pp. 30–59.

EFFICIENT DATABASE UPDATES WITH INDEPENDENT SCHEMES 1135

[11] P. Bernstein, Synthesizing third normal form relations from functional dependencies, ACM
Trans. Database Syst., 1 (1976), pp. 277–298.

[12] G. Birkhoff, Lattice Theory, 3rd ed., Colloq. Publ. XXV, AMS, Providence, RI, 1967.
[13] E. Chan, Optimal computation of total projections with unions of simple chase join expres-

sions, in Proc. ACM SIGMOD International Conf. on Management of Data, Boston, MA,
1984, pp. 149–163.

[14] E. Chan and H. Hernandez, Independence-reducible database schemes, J. ACM, 38 (1991),
pp. 856–886.

[15] E. Chan and A. Mendelzon, Answering queries on embedded-complete database schemes, J.
ACM, 34 (1987), pp. 349–375.

[16] E. Chan and A. Mendelzon, Independent and separable database schemes, SIAM J. Comput.,
16 (1987), pp. 841–851.

[17] M. Graham and M. Yannakakis, Independent database schemas, J. Comput. System Sci., 28
(1984), pp. 121–141.

[18] P. Honeyman, Testing satisfaction of functional dependencies, J. ACM, 29 (1982), pp. 668–
677.

[19] M. Ito, M. Iwasaki, and T. Kasami, Some results on the representative instance in relational
databases, SIAM J. Comput., 14 (1985), pp. 334–354.

[20] D. Maier, The Theory of Relational Databases, Computer Science Press, Potomac, MD, 1983.
[21] D. Maier, A. Mendelzon, and Y. Sagiv, Testing implications of data dependencies, ACM

Trans. Database Syst., 4 (1979), pp. 455–468.
[22] D. Maier, D. Rozenshtein, and D. Warren, Window functions, in Advances in Computing

Research, Vol. 3, P. Kanellakis and F. Preparata, eds., JAI Press, Greenwich, CT, 1986,
pp. 213–246.

[23] D. Maier, J. Ullman, and M. Vardi, On the foundations of the universal relation model,
ACM Trans. Database Syst., 9 (1984), pp. 283–308.

[24] A. Mendelzon, Database states and their tableaux, ACM Trans. Database Syst., 9 (1984),
pp. 264–282.

[25] Y. Sagiv, Can we use the universal instance assumption without using nulls?, in Proc. ACM
SIGMOD International Conf. on Management of Data, Ann Arbor, MI, 1981, pp. 108–120.

[26] Y. Sagiv, A characterization of globally consistent databases and their correct access paths,
ACM Trans. Database Syst., 8 (1983), pp. 266–286.

[27] Y. Sagiv, On computing restricted projections of the representative instance, in Proc. 4th
ACM SIGACT SIGMOD Symp. on Principles of Database Systems, Portland, OR, 1985,
pp. 173–180.

[28] Y. Sagiv, Evaluation of queries in independent database schemes, J. ACM, 38 (1991), pp. 120–
161.

[29] J. Ullman, Principles of Database Systems, 2nd ed., Computer Science Press, Potomac, MD,
1982.

[30] K. Wang and M. Graham, Constant-time maintainability: A generalization of independence,
ACM Trans. Database Syst., 17 (1992), pp. 201–246.

[31] M. Yannakakis, Querying weak instances, in Advances in Computing Research, Vol. 3,
P. Kanellakis and F. Preparata, eds., JAI Press, Greenwich, CT, 1986, pp. 185–211.

LEARNING DNF OVER THE UNIFORM DISTRIBUTION
USING A QUANTUM EXAMPLE ORACLE∗

NADER H. BSHOUTY† AND JEFFREY C. JACKSON‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 1136–1153

Abstract. We generalize the notion of probably approximately correct (PAC) learning from an
example oracle to a notion of efficient learning on a quantum computer using a quantum example
oracle. This quantum example oracle is a natural extension of the traditional PAC example oracle,
and it immediately follows that all PAC-learnable function classes are learnable in the quantum
model. Furthermore, we obtain positive quantum learning results for classes that are not known to
be PAC learnable. Specifically, we show that disjunctive normal form (DNF) is efficiently learnable
with respect to the uniform distribution by a quantum algorithm using a quantum example oracle.
While it was already known that DNF is uniform-learnable using a membership oracle, we prove
that a quantum example oracle with respect to uniform is less powerful than a membership oracle.

Key words. quantum example oracle, quantum computing, disjunctive normal form (DNF),
machine learning, Fourier transform

AMS subject classifications. 68Q20, 68Q05

PII. S0097539795293123

1. Introduction. Recently, there has been significant interest in the extent to
which quantum physical effects can be used to solve problems that appear to be
computationally difficult, using traditional methods [16, 8, 7, 6, 33, 31, 30]. In this
paper, we apply quantum methods to questions in computational learning theory. In
particular, we focus on the problem of learning—from examples alone—the class DNF
of polynomial-size disjunctive normal form expressions.

The DNF learning problem has a long history. Valiant [32] introduced the prob-
lem and gave efficient algorithms for learning certain subclasses of DNF. Since then,
learning algorithms have been developed for a number of other subclasses of DNF
[25, 4, 2, 21, 3, 1, 11, 27, 13, 10] and recently for the unrestricted class of DNF expres-
sions [22], but almost all of these results—in particular the results for the unrestricted
class—use membership queries. (The learner is told the output value of the target
function on learner-specified inputs.) While Angluin and Kharitonov [5] have shown
that if DNF is PAC learnable in a distribution-independent sense (definitions are
given in the next section) with membership queries, then it is learnable with respect
to polynomial-time computable distributions without these queries, the question of
the extent to which membership queries are necessary for distribution-dependent DNF
learning is still open. In particular, Jackson’s harmonic sieve [22] uses membership
queries to learn DNF with respect to the uniform distribution. Can DNF be learned
with respect to uniform from a weaker form of oracle?

We show that DNF is efficiently learnable with respect to the uniform distribution
by a quantum algorithm that receives its information about the target function from a
quantum example oracle. This oracle generalizes the traditional PAC example oracle

∗Received by the editors October 12, 1995; accepted for publication (in revised form) September
22, 1997; published electronically February 19, 1999.

http://www.siam.org/journals/sicomp/28-3/29312.html
†Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4 Canada

(bshouty@cpsc.ucalgary.ca). The work of this author was supported by NSERC.
‡Department of Mathematics and Computer Science, Duquesne University, Pittsburgh, PA

15282. The work of this author was sponsored by the National Science Foundation under grant
CCR-9119319 (jackson@mathcs.duq.edu).

1136

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1137

in a natural way. Specifically, the quantum oracle QEX(f,D) is a traditional PAC
example oracle EX(f,D) except that QEX(f,D) produces the example 〈x, f(x)〉
with amplitude

√
D(x) rather than with probability D(x). We also show that, with

respect to the uniform distribution, a quantum example oracle can be simulated by a
membership oracle but not vice versa.

To obtain our quantum DNF learning algorithm, we modify the harmonic sieve
algorithm (HS) for learning DNF with respect to uniform using membership queries

[22]. In fact, HS properly learns the larger class P̂ T 1 of functions expressible as a
threshold of a polynomial number of parity functions, and our algorithm properly
learns this class as well. The harmonic sieve uses membership queries to locate parity
functions that correlate well with the target function with respect to various near-
uniform distributions. The heart of our result is showing that these parities can be
located efficiently by a quantum algorithm, using only a quantum example oracle.

Our primary result, then, is to show that DNF is quantum-learnable, using an
oracle that is strictly weaker than a membership oracle. Our algorithm also possesses
a somewhat better asymptotic bound on running time than the harmonic sieve. We
consider the potential significance of these results in more detail in the concluding
section.

2. Definitions and notation.

2.1. Functions and function classes. We will be interested in the learnability
of sets (classes) of Boolean functions over {0, 1}n for fixed positive values of n. It will
be convenient to use different definitions for “Boolean” in different contexts within
this paper. In particular, at times we will think of a Boolean function as mapping to
{0, 1} and at other times to {−1,+1}; the choice will either be indicated explicitly
or clear from context. We call {0, 1}n the instance space of a Boolean function f , an
element x in the instance space an instance, and the pair 〈x, f(x)〉 an example of f .
We denote by xi the ith bit of instance x.

Intuitively, a learning algorithm should be allowed to run in time polynomial in
the complexity of the function f to be learned; we will use the size of a function as
a measure of its complexity. The size measure will depend on the function class to
be learned. In particular, each function class F that we study implicitly defines a
natural class RF of representations of the functions in F . We define the size of a
function f ∈ F as the minimum, over all r ∈ RF such that r represents f , of the size
of r, and we define below the size measure for each representation class of interest.

A DNF expression is a disjunction of terms, where each term is a conjunction of
literals and a literal is either a variable or its negation. The size of a DNF expression
r is the number of terms in r. The DNF function class is the set of all functions that
can be represented as a DNF expression of size polynomial in n.

Following Bruck [12], we use P̂ T 1 to denote the class of functions on {0, 1}n
expressible as a depth-2 circuit with a majority gate at the root and polynomially
many parity gates at the leaves. All gates have unbounded fanin and fanout 1. The
size of a P̂ T 1 circuit r is the number of parity gates in r.

2.2. Quantum turing machines. We now review the model of quantum com-
putation defined by Bernstein and Vazirani [6]. First we define how the specification
(program) of a quantum Turing machine (QTM) is written down. Then we describe
how a QTM operates.

1138 NADER H. BSHOUTY AND JEFFREY C. JACKSON

The specification of a QTM is almost exactly the same as the specification of a
probabilistic TM (PTM). Recall that the transition table of a PTM specifies, for each
state and input symbol, a set of moves—a move is a next state, new tape sym-
bol, and head movement direction—along with associated probabilities that each
move will be chosen. Of course, these probabilities must be nonnegative and sum
to 1. In a QTM specification, the transition probabilities between PTM configura-
tions are replaced with complex-valued numbers (amplitudes) that satisfy a certain
well-formedness property. Loosely speaking, if the sum of the squares of the ampli-
tudes for the transitions corresponding to each state/symbol pair is 1, then the QTM
satisfies the well-formedness property. A somewhat peculiar aspect of amplitudes is
that they may have negative real components, unlike the probabilities of the PTM
model. Formally, we define well-formedness as follows. For a QTM M , let RM be
the (infinite-dimensional) matrix where each row and each column is labeled with
a distinct machine configuration (cr and cc, respectively) and each entry in RM is
the amplitude assigned by M to the transition from configuration cc to cr. Then M
satisfies the well-formedness property if RM is unitary (R†MRM = RMR

†
M = I, where

R†M is the transpose conjugate of RM). A QTM specification also contains a set of
states (including all of the final states) in which an Obs operation is performed; we
define this operation below.

To describe the operation of a QTM, we use the notion of a superposition of
configurations. For example, consider a probabilistic Turing machine M ′ that at step
i flips a fair coin and chooses to transition to one of two configurations c1 and c2. While
we would generally think of M ′ as being in exactly one of these configurations at step
i + 1, we can equivalently think of M ′ as being in both states, each with probability
1/2. Continuing in this fashion, for each step until M ′ terminates we can think of M ′

as being in a superposition of states, each state with an associated probability. After
M ′ takes its final step, each of its final states will have some associated probability
(we assume without loss of generality that all computation paths in M ′ have the same
length). If M ′ now “chooses” to be in one of these final states σf randomly according
to the induced probability distribution on final states, then the probability of being
in σf is exactly the same in this model as it is in the traditional PTM model.

In summary, we can view a PTM M ′ as being in a superposition of configurations
at each step, where a superposition is represented by a vector of probabilities, one for
each possible configuration of M ′. Likewise, we view a QTM M as being in a super-
position of configurations at each step, but now the superposition vector contains an
amplitude for each possible configuration of M . The initial superposition vector in
both cases is the all-zero vector except for a single 1 in the position corresponding to
the initial configuration of the machine. Note that each step of a PTM M ′ can be
accomplished by multiplying the current superposition vector by a matrix RM ′ , which
is defined analogously with RM above. In the same way, each step of a QTM M is
accomplished by multiplying its current superposition vector by RM . The difference
between the machines comes at the point(s) where M “chooses” to be in a single
configuration rather than in a superposition of configurations. M does this (concep-
tually) by transitioning to a superposition of configurations all of which are in one of
the Obs states mentioned above. The superposition vector is then changed so that a
single configuration has amplitude 1 and all others are 0. This is exactly analogous
to the PTM M ′ choosing its final state, except that the probability of choosing each
configuration ci is now the square of the magnitude of the amplitude associated with
ci in M ’s current superposition vector.

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1139

The notation ∑
x

ax|x〉

denotes a superposition of configurations x, each having amplitude ax. While in
general this sum is over all possible configurations of the QTM, when we use this no-
tation it will be the case (unless otherwise noted) that all of the configurations having
nonzero amplitude are in the same state and have the tape head at the same position.
In this case, the configurations x are distinguished only by their tape contents, so
we will treat x as if it is merely the tape content and ignore the other configuration
parameters. We will also assume that all tapes contain the same number of nonblank
characters unless otherwise noted.

Given this notation, we now more formally define the Obs operation. Intuitively,
an Obs will collapse a superposition S to one of two possible superpositions, S0 or S1,
with the choice of superposition based on a probability that is a function of the value
of the first bit of the tape (we are implicitly assuming that when an Obs is performed
the configurations in a superposition differ only in terms of what is on the respective
tapes, which will be sufficient for our purposes). Specifically, let b ∈ {0, 1}. Then

Obs

(∑
bx

abx|bx〉
)

=

∑
x

a0x∑
y
|a0y|2 |0x〉 with probability

∑
x |a0x|2,∑

x
a1x∑
y
|a1y|2 |1x〉 with probability

∑
x |a1x|2.

Note that by permuting bits of the tape and performing successive Obs operations we
can simulate the informal definition of Obs given earlier. We say that a language L
is in BQP if there exists a QTM M such that, at the end of a number of steps by
M polynomial in the length of the input to M , an Obs fixes the first tape cell to 1
with probability at least 2/3 if the input is in L and fixes it to 0 with probability at
least 2/3 otherwise. We will also sometimes think of an Obs as simply computing the
probability that the first cell will be fixed to 1.

Finally, we will at times want to introduce deterministic transitions into our
QTMs while preserving the well-formedness property of the transition matrices. It
can be shown [15] that as long as a deterministic computation is reversible, then the
computation can be carried out on a QTM. Informally, a computation is reversible
if given the result of the computation it is possible to determine the input to the
computation. (See [6] for a formal definition and discussion of reversibility in the
context of quantum computation.)

2.3. Standard learning models. We begin by defining the well-known PAC
learning model and then generalize this to a quantum model of learning. First, we
define several supporting concepts. Given a function f and probability distribution D
on the instance space of f , we say that the Boolean function h having as its domain the
instance space of f is an ε-approximator for f with respect to D if PrD[h = f] ≥ 1− ε.
An example oracle for f with respect to D (EX(f,D)) is an oracle that on request
draws an instance x at random according to probability distribution D and returns
the example 〈x, f(x)〉. A membership oracle for f (MEM(f)) is an oracle that given

1140 NADER H. BSHOUTY AND JEFFREY C. JACKSON

any instance x returns the value f(x). Let Dn denote a nonempty set of probability
distributions on {0, 1}n. Any set D = ∪nDn is called a distribution class. We let Un
represent the uniform distribution on {0, 1}n and call U = ∪nUn simply the uniform
distribution.

Now we formally define the probably approximately correct (PAC) model of learn-
ability [32]. Let ε and δ be positive values (called the accuracy and confidence of the
learning procedure, respectively). Then we say that the function class F is (strongly)
PAC learnable if there is an algorithm A such that for any ε and δ, any f ∈ F (the
target function), and any distribution D on the instance space of f (the target dis-
tribution), with probability at least 1 − δ algorithm A(EX(f,D), ε, δ) produces an
ε-approximation for f with respect to D in time polynomial in n, the size of f , 1/ε,
and 1/δ. The probability that A succeeds is taken over the random choices made by
EX and A (if any). We generally drop the “PAC” from “PAC learnable” when the
model of learning is clear from context.

We will consider several variations on the basic learning models. Let M be any
model of learning (e.g., PAC). If F is M-learnable by an algorithm A that requires
a membership oracle, then F is M-learnable, using membership queries. If F is
M-learnable for ε = 1/2 − 1/p(n, s), where p is a fixed polynomial and s is the
size of f , then F is weakly M-learnable. We say that F is M-learnable by H if F
is M-learnable by an algorithm A that always outputs a function h ∈ H. If F is
M-learnable by F , then we say that F is properly M-learnable. Finally, note that
the PAC model places no restriction on the example distribution D; we sometimes
refer to such learning models as distribution-independent. If F is M-learnable for
all distributions D in distribution class D then F is M-learnable with respect to D.
Learning models which place a restriction on the distributions learned against we call
distribution-dependent models.

2.4. The Fourier transform. We will make substantial use of the discrete
Fourier transform in our analysis; this approach was introduced in machine learning
by Linial, Mansour, and Nisan [28]. In this section we give some basic definitions and
standard theorems.

For each bit vector a ∈ {0, 1}n we define the function χa : {0, 1}n → {−1,+1} as

χa(x) = (−1)Σni=1aixi = 1− 2

(
n∑
i=1

aixi mod 2

)
.

That is, χa(x) is the Boolean function that is 1 when the parity of the bits in x
indexed by a is even and is −1 otherwise. With inner product defined by1 〈f, g〉 =
Ex[f(x) · g(x)] ≡ E[fg] and norm defined by ‖f‖ =

√
E[f2], {χa | a ∈ {0, 1}n} is an

orthonormal basis for the vector space of real-valued functions on the Boolean cube
Zn2 . That is, every function f : {0, 1}n → R can be uniquely expressed as a linear
combination of parity functions:

f =
∑

a∈{0,1}n
f̂(a)χa,

where f̂(a) = E[fχa]. We call the vector of coefficients f̂ the Fourier transform of

f . Note that for f mapping to {−1,+1}, f̂(a) represents the correlation of f and χa

1Expectations and probabilities here and elsewhere are with respect to the uniform distribution
over the instance space unless otherwise indicated.

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1141

with respect to the uniform distribution. Also, let 0n represent the vector of n zeros.
Then f̂(0n) = E[fχ0n] = E[f], since χ0n is the constant function +1.

By Parseval’s identity, for every real-valued function f , E[f2] =
∑
a∈{0,1}n f̂

2(a).

For f mapping to {−1,+1} it follows that
∑
a f̂

2(a) = 1. More generally, it can be

shown that for any real-valued functions f and g, E[fg] =
∑
a f̂(a)ĝ(a).

3. The quantum example oracle. While it has been shown that DNF is learn-
able with respect to the uniform distribution if membership queries are available to the
learning algorithm [22], it is desirable to have a DNF learning algorithm that can learn
from examples alone. This seems to be a hard problem, using conventional comput-
ing paradigms. However, other problems—such as integer factorization—which had
seemed to be hard have recently been shown to have efficient quantum solutions [30].
Thus it is natural to ask the following question: Is there a QTM M such that, given
access to a traditional PAC example oracle EX(f,D) for any function f in DNF, M
efficiently learns an ε-approximation to f?

In this paper, we consider a related question that we hope may shed some light
on the question posed above. Specifically, we consider the question of learning DNF
from a quantum example oracle. This oracle, which we define below, generalizes the
PAC example oracle to the quantum setting in a natural way. It should be noted
that questions about the power of quantum computing relative to oracles has been
investigated previously; for example, Berthiaume and Brassard [8, 7] consider the
relative abilities of quantum and more traditional Turing machines to answer decision
questions relative to a membership oracle.

We now define the quantum example oracle. Note that each call to the tradi-
tional PAC example oracle EX(f,D) can be viewed as defining a superposition of
2n configurations, each containing a distinct 〈x, f(x)〉 pair and having probability of
occurrence D(x). We generalize this to the quantum setting in a natural way. A
quantum example oracle for f with respect to D (QEX(f,D)) is an oracle running
coherently with a QTM M that changes M ’s tape |y〉 to∑

x

√
D(x)|y, x, f(x)〉.

That is, QEX defines a superposition of 2n configurations much as EX does, but
QEX assigns each configuration an amplitude

√
D(x). As with the Obs operation,

calls to QEX will be invoked by transitioning into designated states of M , and we
will assume that any valid QTM program has the property that at each step either
all of the states with nonzero amplitude in a superposition call QEX or none do.
Note that for any f and D, a call to QEX(f,D) followed by an appropriate Obs
operation is equivalent to a call to EX(f,D). We say that F is quantum learnable if
F is PAC learnable by a QTM M using a quantum example oracle. Because every
efficient TM computation can be simulated efficiently by a QTM [6] and because EX
can be simulated by QEX, we have that every PAC-learnable function class is also
quantum learnable.

For both standard and quantum example oracles, we use EX(f) (respectively,
QEX(f)) to represent learning with respect to the uniform distribution, that is,
EX(f,U\) (respectively, QEX(f,U\)).

4. Learning DNF from a membership oracle. In the next section we present
our primary result, that DNF is quantum learnable with respect to the uniform distri-
bution. Our result builds on the harmonic sieve (HS) algorithm for learning DNF with

1142 NADER H. BSHOUTY AND JEFFREY C. JACKSON

respect to the uniform distribution using membership queries [22]. In this section we
briefly review the harmonic sieve.

4.1. Overview of HS. The HS algorithm depends on a key fact about DNF
expressions: for every DNF f and distribution D there is a parity χa that is a weak
approximator to f with respect to D [22]. Also, for any function weakly approximable
with respect to uniform by a parity function, a technique originally due to Goldreich
and Levin [20] and first applied within a learning algorithm (KM) by Kushilevitz and
Mansour [26] can be used to find such a parity (using membership queries). Combining
these two facts gives that the KM algorithm weakly learns DNF with respect to uniform
[9].

An obvious method to consider for turning this weak learner into a strong learner
is some form of hypothesis boosting [29, 18, 17, 19]. In fact, HS is based on a partic-
ularly simple and efficient version of boosting discovered by Freund [18]. Each stage
i of Freund’s boosting algorithm explicitly defines a distribution Di and calls on a
weak learner to produce a weak approximator with respect to Di. Distribution Di is
defined in terms of the performance of the weak hypotheses produced at the preceding
boosting stages and in terms of the target distribution D. After a polynomial number
of stages, a majority vote over the weak hypotheses gives a strong approximator with
respect to D.

So in order to strongly learn DNF with respect to a distribution D, all that is
needed is an efficient algorithm for weakly learning DNF with respect to the set of dis-
tributions {Di} defined by Freund’s algorithm in the process of boosting with respect
to D. While the question of whether or not such an algorithm exists for arbitrary D is
an open problem, it is known that when boosting with respect to uniform a modified
version of the KM algorithm can efficiently find a weakly approximating parity for any
DNF f with respect to any of the distributions Di defined by Freund’s algorithm [22].
When learning with respect to such a distribution Di, the modified KM algorithm must
be given not only a membership oracle for f but also an oracle for the distribution Di,
that is, a function which given an instance x returns the weight that Di places on x.
Because Freund’s booster explicitly defines the distribution Di at each boosting stage
i, an oracle for each Di can be simulated and therefore the modified KM algorithm
can be boosted by a modified version of Freund’s algorithm that supplies Di to the
weak learner at each stage i. This then gives a strong learning algorithm that uses
membership queries to learn DNF with respect to the uniform distribution.

4.2. Algorithmic details. The HS algorithm and its primary subroutine WDNF

(the modified KM) are sketched in somewhat more detail in Figures 4.1 and 4.2. We
will assume here and elsewhere that the number of terms s in the target function’s
representation as a DNF is known. This assumption can be relaxed by placing a
standard guess-and-double loop around the body of the HS program (see, e.g., [24]
for details); this increases the running time of the algorithm by at most a factor of
log s. The HS algorithm runs for O(s2 log(1/ε)) stages. At each stage i, ri(x) (line 8)
represents the number of weak hypotheses wj among those hypotheses produced before
stage i that are “right” on x. For uniform target distribution, the distributions Di

defined by Freund’s booster are given by

Di(x) =
αiri(x)∑
y α

i
ri(y)

,(4.1)

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1143

Invocation: h← HS(n, s,MEM(f), ε, δ)
Input: n; s = size of DNF f ; MEM(f); ε > 0; δ > 0
Output: with probability at least 1−δ (over random choices made by HS), HS returns
h such that Pr[f = h] ≥ 1− ε

1. γ ← 1/(8s+ 4)
2. k ← 1

2γ
−2 ln(4/ε)

3. w0 ← WDNF(n, s,MEM(f),Un, δ/2k)
4. for i← 1, . . . , k − 1 do
5. B(j;n, p) ≡ (nj)pj(1− p)n−j
6. βir ≡ B(bk/2c− r; k− i−1, 1/2 +γ) if i−k/2 < r ≤ k/2, βir ≡ 0 otherwise
7. αir ≡ βir/maxr=0,...,i−1{βir}.
8. ri(x) ≡ |{0 ≤ j < i | wj(x) = f(x)}|
9. Θ ≡ c2ε3

10. Eα ← Est(Ex[αiri(x)], EX(f),Θ/3, δ/2k)

11. if Eα ≤ 2Θ/3 then
12. k ← i
13. break do
14. endif
15. D̃i(x) ≡ αiri(x)/2

nEα

16. wi ← WDNF(n, s,MEM(f), D̃i(x), δ/2k)
17. enddo
18. h(x) ≡MAJ(w0(x), w1(x), . . . , wk−1(x))
19. return h

Fig. 4.1. Harmonic sieve (HS) algorithm for learning DNF from a membership oracle.
Est(E,EX(f), ε, δ) uses random sampling from EX(f) to efficiently estimate the value of E, pro-
ducing a value within an additive factor of ε of the true value with probability at least 1 − δ. c2
represents a fixed constant (1/57 is sufficient).

Invocation: wi ← WDNF(n, s,MEM(f), cD, δ)
Input: n; s = size of DNF f ; MEM(f); cD, an oracle that given x returns c ·D(x),
where c is a constant in [1/2, 3/2] and D is a probability distribution on {0, 1}n; δ > 0
Output: with probability at least 1− δ (over random choices made by WDNF), WDNF
returns h such that PrD[f = h] ≥ 1/2 + 1/(8s+ 4)

1. g(x) ≡ 2nf(x)cD(x)
2. find (using membership queries and with probability at least 1− δ) χa such

that |E[gχa]| ≥ c/(4s+ 2)
3. h(x) ≡ sign(E[gχa]) · χa(x)
4. return h

Fig. 4.2. WDNF subroutine called by HS.

where αri(x) is defined in Figure 4.1. Note that while Di is explicitly defined, it
is not computationally feasible to compute Di exactly because of the sum over an
exponential number of terms in the denominator of (4.1). However, by a Chernoff
bound argument this sum, and therefore Di, can be closely approximated in time
polynomial in the standard parameters. The function D̃i is HS’s approximation to Di.
Note that because of the bound on the variable Eα and the accuracy with which Eα
estimates Ex[αiri(x)], with probability at least 1 − δ/2k, Ex[αiri(x)] = c3Eα for fixed

c3 ∈ [1/2, 3/2]. With the same probability, then, D̃i(x) = c3Di(x) for all x.

1144 NADER H. BSHOUTY AND JEFFREY C. JACKSON

Therefore, while we show WDNF in Figure 4.1 being called with an argument D̃i(x),
the corresponding parameter in Figure 4.2 is cD, an oracle representing the product
of a constant and a probability distribution. This oracle, along with the membership
oracle for the target f , is used by WDNF to simulate an oracle g. We have omitted
the details of line 2 of WDNF because this is the main point at which our quantum
algorithm will differ from HS. Rather than using membership queries to locate the
required parity χa, the new algorithm will use a quantum example oracle. Both
algorithms depend on a key fact about DNF expressions [22]: for every DNF f with
s terms and for every distribution D there exists a parity χa such that

|ED[fχa]| ≥ 1

2s+ 1
.

It follows from the definition of expectation that for either h = χa or h = −χa

PrD[f = h] ≥ 1

2
+

1

4s+ 2
.

The WDNF algorithm can only guarantee to find a parity which is nearly optimally
correlated with the target, which is why another factor of two is given up by the algo-
rithm. Finally, WDNF also relies on the easily verified fact that for g(x) = 2nf(x)cD(x),
E[gχa] = cED[fχa]. In essence, by combining the target f and distribution D we
create a function g with the property that the large Fourier coefficients of g corre-
spond to parities that are weak approximators to f with respect to D. This is why
the hypothesis returned by WDNF is appropriate.

The version of WDNF modified to utilize a quantum example oracle is based on a
similar idea of learning with respect to uniform in order to find a weak hypothesis
with respect to a nonuniform distribution, but the implementation of the idea is quite
different. We develop the modified algorithm in detail in the next section.

5. Learning DNF from a quantum example oracle. In this section we show
how to modify the harmonic sieve in order to uniform-learn DNF using a quantum
example oracle rather than a membership oracle. First, consider the call to WDNF at
line 16 of HS for a fixed i, and for notational convenience let D ≡ Di and α(x) ≡ αiri(x).

Then, given the discussion concerning D̃i above and the definition of D̃i at line 15 in
Figure 4.1, with high probability there is a c3 ∈ [1/2, 3/2] such that for all χa∑

x

f(x)χa(x)D̃i(x) = c3ED[fχa] = E[αfχa]/Eα.

Also, again with high probability, the call to Est at line 10 is successful in estimating
E[α] to within the desired accuracy and therefore Eα ≥ 2Θ/3. Applying this obser-
vation to the equation above and invoking the key DNF fact cited earlier gives that,
with high probability, each time WDNF is called there exists some χa such that

|E[αfχa]| ≥ Θ

3(2s+ 1)
=

c2ε
3

3(2s+ 1)
,(5.1)

and this χa (or its inverse) is a (1/(4s + 2))-approximator to f . Our goal will be to
find such a χa, or at least one that is nearly as good an approximator, using only a
quantum example oracle for f .

Conceptually, to find such a χa we will repeatedly run a quantum subprogram
that randomly selects one χa each time the subprogram runs. On any given run each

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1145

χa is selected with probability proportional to E2[αfχa]. The technique we use to
perform this random sampling from the set of χa’s is similar to a quantum algorithm
of Bernstein and Vazirani that samples the χa’s with probability f̂2(a) = E2[fχa].
However, there are two difficulties with using their technique directly. First, their
algorithm uses calls to the function f (membership queries), and we want an algorithm
that uses only quantum example queries. Second, their technique works for Boolean
({−1,+1}-valued) functions, but the pairwise product αf , viewed as representing a
single function, is clearly not Boolean in general. We address each of these difficulties
in turn below.

5.1. Randomly selecting parities using a quantum example oracle. Our
first step in modifying WDNF to learn from a quantum example oracle for Boolean f—
QEX(f)—rather than from a membership oracle is to show that we can randomly

select parity functions with probability proportional to f̂2, using only QEX(f). The
proof of the following lemma presents the required algorithm QSAMP.

Lemma 1. There is a quantum program QSAMP that, given any quantum example
oracle QEX(f) for f : {0, 1}n → {−1,+1}, returns χa with probability f̂2(a)/2.

Proof. QSAMP begins by calling QEX(f) on a blank tape to get the superposition

1

2n/2

∑
x

|x, f(x)〉.

QSAMP next replaces f(x) with (1−f(x))/2 (call this f ′(x)); note that (−1)f
′(x) = f(x).

Then we will apply a Fourier operator F to the entire tape contents. We define F as

F (|a〉) ≡ 1

2n/2

∑
y

(−1)a·y|y〉,

where |a| = |y| = n. This operation can be performed in n steps by a quantum Turing
machine [6]. Also recall that (−1)a·y ≡ χa(y) ≡ χy(a). Thus applying F gives us

F

(
1

2n/2

∑
x

|x, f ′(x)〉
)

=
1

2n/2

∑
x

F (|x, f ′(x)〉)

=
1

2n+1/2

∑
x,y,z

(−1)x·y(−1)f
′(x)z|y, z〉

=
1√
2

∑
y

Ex[χy(x)f(x)]|y, 1〉

+
1√
2

∑
y

Ex[χy(x)]|y, 0〉

=
1√
2

∑
y

f̂(y)|y, 1〉+
1√
2
|0̄, 0〉,

where |y| = |x| = n and |z| = 1 and the final line follows by orthonormality of the

parity basis. An Obs operation at this point produces |y, 1〉 with probability f̂2(y)/2,
as desired.

5.2. Sampling parity according to coefficients of non-Boolean functions.
While algorithm QSAMP is a good first step toward relaxing HS’s requirement for a

1146 NADER H. BSHOUTY AND JEFFREY C. JACKSON

Invocation: h← HS’(n, s,QEX(f), ε, δ)
Input: n; s = size of DNF f ; quantum example oracle QEX(f); ε > 0; δ > 0
Output: with probability at least 1 − δ (over random choices made by HS′), HS′

returns h such that Pr[f = h] ≥ 1− ε
1. γ, k, αir, ri(x), Θ, D̃i(x) are defined as in HS

2. w0 ← WDNF’(n, s,MEM(f),Un, δ/2k)
3. for i← 1, . . . , k − 1 do
4. EX(f) ≡ Obs(QEX(f))
5. Eα ← Est(Ex[αiri(x)], EX(f),Θ/3, δ/2k)

6. if Eα ≤ 2Θ/3 then
7. k ← i
8. break do
9. endif

10. wi ← WDNF’(n, s,QEX(f), D̃i(x), δ/2k)
11. enddo
12. h(x) ≡MAJ(w0(x), w1(x), . . . , wk−1(x))
13. return h

Fig. 5.1. Modified harmonic sieve (HS′) algorithm for learning DNF from a quantum example
oracle QEX(f).

membership oracle, it is not enough. As noted above, we need to sample the parity
functions according to the coefficients of the non-Boolean function αf . We will do
this indirectly by sampling over individual bits of the function. First, note that we
can limit the accuracy of α and still compute an adequate approximation to E[αfχa].
Let T denote the quantity on the right-hand side of (5.1). Also let d = dlog(3/T)e =
O(log(s/ε3)). Then, since 0 ≤ α(x) ≤ 1 for all x, for θ(x) = b2dα(x)c2−d, we have

|E[θfχa]| ≥ |E[αfχa]| − T

3

for all χa. Furthermore, note that any value θ taken on by θ(x) can be written as

θ = θ12−1 + θ22−2 + · · ·+ θd2
−d + k2−d,

where for each j ∈ [1, d], θj ∈ {−1,+1} and k ∈ {−1, 0, 1}. Thus

|E[θfχa]| ≤ max
j
|E[θjfχa]|+ T

3
.

By (5.1), with high probability there exists χa such that |E[αfχa]| ≥ T . Therefore,
for any such χa there is a fixed polynomial p1 and an index j such that |E[θjfχa]| ≥
1/p1(s, 1/ε). Furthermore, for each j, the number of χa’s such that |E[θjfχa]| ≥
1/p1(s, 1/ε) is at most p2

1(s, 1/ε) by Parseval’s identity. This suggests that to find a
weak approximator to f with respect to D defined as in (4.1), we define θ as above
and then apply quantum sampling using each of the d Boolean functions θj · f . We
formalize this idea in the next section.

5.3. Modified HS algorithm. Combining the above observations, by modifying
HS as shown in Figures 5.1 through 5.3, we obtain a quantum algorithm that uses a
quantum example oracle to learn DNF with respect to the uniform distribution . The
first difference between the new algorithm and the original is that Est will now be

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1147

Invocation: wi ← WDNF’(n, s,QEX(f), α, δ)
Input: n; s = size of DNF f ; QEX(f); α, an oracle that given x returns α(x) ∈ [0, 1];
δ > 0
Output: with probability at least 1− δ (over random choices made by WDNF′), WDNF′

returns h such that PrD[f = h] ≥ 1/2 + 1/(8s+ 4)
1. T ≡ c2ε3/(3(2s+ 1))
2. d ≡ dlog(3/T)e
3. for j ← 1, . . . , n do
4. for `← 1, . . . , 22d+1 ln(2n/δ) do
5. h = QSAMP’(QEX(f), θj)
6. EX(f) ≡ Obs(QEX(f))
7. Ec ← Est-a(h,EX(f), α, 1/(8s+ 4), δ/(n22d+2 ln(2n/δ)))
8. if |Ec| ≥ 3/(8s+ 4) then
9. return sign(Ec) · h

10. endif
11. enddo
12. enddo
13. return 1

Fig. 5.2. WDNF′ subroutine called by HS′. Procedure Est-a(h,EX(f), α, ε, δ), described in the
text, estimates ED[fh] within accuracy ε with probability at least 1−δ, where D(x) = α(x)/

∑
y
α(y).

θj represents the jth bit of α.

Invocation: h← QSAMP’(QEX(f), θj)
Input: Quantum example oracle QEX(f); Boolean function θj(x).

Output: For y 6= 0̄, returns χy with probability f̂2(y)/2. Returns χ0̄ with probability

1/2 + f̂2(0̄)/2.
1. Call QEX(f) on blank tape
2. In superposition, replace (reversibly) f(x) with (1− f(x)θj(x))/2.
3. In superposition, apply Fourier operator F to the n+ 1 bits on the tape.
4. Perform an Obs operation.
5. Return χy, where y represents the first n bits on the tape.

Fig. 5.3. QSAMP′ subroutine called by WDNF′.

given a simulated example oracle EX(f)—simulated using QEX(f) as explained in
section 3—in order to estimate expected values.

The second, more important, difference is that in order to find a weak approxi-
mator (line 2 of WDNF) we will use the quantum approach outlined above. That is, for
each value of j ∈ [1, d] we will sample the χa’s in such a way that the probability of
seeing each χa is exactly E2[θjfχa]/2. We do this by running a modified QSAMP that,
after calling QEX(f), replaces f(x) with θj(x)·f(x) expressed as a {0, 1}-valued func-
tion. This is a reversible operation because x is still on the tape and θ2

j (x) = 1 for all
x; therefore, this operation can be performed by a QTM. As shown in the preceding
section, there exists some χa and some j such that χa is a weak approximator to f
and |E[θjfχa]| ≥ T/3 ≥ 2−d. Therefore, if we run the modified QSAMP′ 22d+1 ln(2n/δ)
times for each value of j, then—with probability at least 1− δ/2—at least one of the
χa’s returned by the quantum sampler will be this weak approximator.

1148 NADER H. BSHOUTY AND JEFFREY C. JACKSON

Finally, we will again simulate EX(f)—this time within WDNF′—in order to test
whether or not a given h returned by QSAMP′ is a weak approximator. In order to
perform this test, ED[fh] is estimated (where D is the distribution defined by α as
in (4.1)) by procedure Est-a. This procedure, given the uniform-distribution example
oracle EX(f) and the function α(x), simulates the example oracle EX(f,D) using the
same method as boost-by-filtering algorithms such as Freund’s. Specifically, it queries
EX(f) and receives the pair 〈x, f(x)〉. It then flips a biased coin which produces
heads with probability α(x). If the coin comes up heads, then the algorithm uses
this pair in subsequent processing. Otherwise, it discards the pair, queries EX(f)
again, and repeats the coin-flip test. It can be shown that this process efficiently
simulates EX(f,D) for the α’s produced by our algorithm (see, e.g., [18]). Finally,
given EX(f,D), by a standard Chernoff argument we can estimate ED[fh] with
the required accuracy and confidence with a number of samples polynomial in the
appropriate parameters. Overall, WDNF′ allocates half of the confidence δ to estimating
the ED[fh]’s. This gives us

Theorem 2. DNF is quantum learnable with respect to uniform.

Also, P̂ T 1, the class of functions expressible as a threshold of a polynomial number
of parity functions, has the property that for every f ∈ P̂ T 1 and every distribution D
there exists a parity function χa that weakly approximates f with respect to D [22].
This was the only property of DNF that we used in the above arguments. Therefore,
the following theorem holds.

Theorem 3. P̂ T 1 is quantum learnable with respect to uniform.

We now briefly examine the asymptotic time bound of this algorithm. First, Cher-
noff bounds tell us that to estimate the expected value of a Boolean variable to within
an additive tolerance λ with confidence δ requires a sample (and time) Õ(λ2) (the
notation Õ(·) is the same as standard big-O notation with log factors suppressed; in
this case, δ contributes only a log factor and therefore does not appear in the bound).
Using this fact and the earlier description of the algorithm, we can straightforwardly
show that the algorithm as given has a time bound of Õ(ns6/ε12). This compares
with a bound on the harmonic sieve of Õ(ns8/ε18). Furthermore, as noted in [24],
the ε3 factor that appears in the harmonic sieve can be brought arbitrarily close
to ε2; with this improvement the bounds improve to approximately Õ(ns6/ε8) and
(Õ(ns8/ε12), respectively. While neither bound is a “small” polynomial, the quantum
algorithm is somewhat of an improvement. It is also reasonable to suspect that fu-
ture improvements in the running time of the original algorithm would lead to similar
improvements in the quantum algorithm as well.

6. Membership oracle versus quantum example oracle. In practice, it
is not clear how a quantum example oracle could be constructed without using a
membership oracle. Furthermore, because a QTM uses interference over an entire
superposition to perform its computations, it might seem that perhaps there is some
way to simulate a membership oracle given only a quantum example oracle by choosing
a clever interference pattern. In this section we show that this is not the case.

Definition 4. We say that membership queries can be quantum-example sim-
ulated for function class F if there exists a BQP algorithm A and a distribution D
such that for all f ∈ F and all x, running A on input x with quantum example oracle
QEX(f,D) produces f(x).

Theorem 5. Membership queries cannot be quantum-example simulated for
DNF.

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1149

Before proving this theorem, we develop some intuition. Consider two functions
f0 and f1 that differ in exactly one input x. Then the superpositions returned by
QEX(f0, D) and QEX(f1, D) are very similar for “almost all” D. In particular, if we
think of superpositions as vectors in an inner product space of dimension 2n, then there
is in general an exponentially small angle between the superpositions generated by
these two oracles. This angle will not be changed by unitary transformations. Thus, in
general, an observation will be unable to detect a difference between the superpositions
produced by QEX(f0, D) and QEX(f1, D). Therefore, a BQP algorithm with only
a quantum example oracle QEX(fi, D), i ∈ {0, 1}, will be unable to correctly answer
a membership query on x for both f0 and f1.

We now present two lemmas that will help us to formalize this intuition.
Lemma 6. Let A be a quantum algorithm that makes at most t calls to QEX(f,D)

for f : {0, 1}n → {0, 1}. Then there is an equivalent quantum program (modulo
a slowdown polynomial in n and t) that makes all t calls at the beginning of the
program.

Proof. Let RM be the unitary matrix representing the transitions of the QTM M .
Let the configurations of M be encoded by bit strings in any reasonable way. Then
suppose M is initially in a superposition

S0 =
∑
y

ay|y〉,

where the sum is over all possible configurations y of M . After a single transition µ,
M will be in the superposition

S1 =
∑
y,z

ayRM [z, y]|z〉.

Now assume that all of the configurations z with nonzero amplitude in S1 cause
QEX(f,D) to be called. (Recall that by definition, either all of the configurations in
a superposition cause this to happen or none of them do.) The resulting superposition
will be

S2 =
∑
x,y,z

√
D(x)ayRM [z, y]|z, x, f(x)〉

(by z, x, f(x) we mean the configuration that results when (x, f(x)) is appended to
the tape contents specified by the configuration z). But notice that there is a machine
M ′ that, beginning with S0, first calls QEX(f,D), producing

S′1 =
∑
x,y

√
D(x)ay|y, x, f(x)〉,

and then simulates the transition µ. A technical detail of this simulation is that a
transition that corresponds to writing in a blank cell of y’s tape necessitates shifting
x and f(x) to the right one cell first. Thus M ′ takes at most polynomially (in n)
many steps and produces S2 given S0. A simple inductive argument completes the
proof.

Before presenting the next lemma, we need several definitions.
Definition 7. Define Obs over any linear combination of configurations (i.e.,

we no longer require that the sum of squared amplitudes be 1) as

Obs

(∑
x

ux|x〉
)

=
∑

x:x1=1

|ux|2.

1150 NADER H. BSHOUTY AND JEFFREY C. JACKSON

Define the length of a linear combination of configurations S =
∑
x ux|x〉 to be ‖S‖ =√∑

x |ux|2. For any linear combination of configurations S we define for i ∈ {0, 1}

S(i) =
∑
x:x1=i

ux|x〉.

Lemma 8. Let S1 and S2 be superpositions and let S be any linear combination
of configurations. Let W be any sequence of valid quantum operations. Then

1. Obs(S) ≤ ‖S‖2;
2. ‖WS‖ = ‖S‖;
3. |√Obs(S1)−√Obs(S2)| ≤√Obs(S1 − S2).

Proof. For part 1 we have

Obs(S) = ‖S(1)‖2 ≤ ‖S(0)‖2 + ‖S(1)‖2 = ‖S‖2.

Part 2 follows from the fact that W is a unitary operation that preserves length.
To prove part 3 we have

|
√
Obs(S1)−

√
Obs(S2)| =

∣∣∣‖S(1)
1 ‖ − ‖S(1)

2 ‖
∣∣∣

≤ ‖S(1)
1 − S(1)

2 ‖
=
√
Obs(S1 − S2).

Proof of Theorem 5. By way of contradiction, assume that M is a QTM that can
quantum-simulate membership queries for any DNF h, using calls to QEX(h,D). By
Lemma 6, we can assume without loss of generality that all of the calls to QEX(h,D)
occur at the beginning of M ’s program. Take f(x) = 0 and g(x) = xc11 ∧ · · · ∧ xcnn ,
where xd = 1 if and only if x = d. The second function is zero for all assignments to
x except c = (c1, . . . , cn). We want to use the simulator M to find h(c) for h ∈ {f, g}.
The simulator will first make t calls to QEX(h,D), giving

Sh =
∑

z1,...,zt

√
D(z1) · · ·D(zt)|z1, h(z1), . . . , zt, h(zt)〉.

After that, the computation for both f and g is the same in the sense that both
computations consist of a series of applications of RM to Sh. The superpositions Sf
and Sg differ only in configurations

|z1, h(z1), . . . , zt, h(zt)〉,

where one of the zi is c.
Therefore,

Sf = Sg + Ef,g,

where

Ef,g =
∑

(∃i)zi=c

√
D(z1) · · ·D(zt)|z1, f(z1), . . . , zt, f(zt)〉

−
∑

(∃i)zi=c

√
D(z1) · · ·D(zt)|z1, g(z1), . . . , zt, g(zt)〉.

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1151

If W represents the sequence of transitions after the initial calls to QEX(f,D), then
at the end of the computation by M we observe Obs(WSf) and Obs(WSg) for f and
g, respectively. By Lemma 8

|
√
Obs(WSf)−

√
Obs(WSg)|2 ≤ Obs(WEf,g)

≤ ‖WEf,g‖2
= ‖Ef,g‖2

= 2
∑

(∃i)zi=c

(√
D(z1) · · ·D(zt)

)2

= 2(1− (1−D(c))t)

≤ 2tD(c).

For any fixed D, any fixed polynomial p1, and large enough n, almost all choices
of c are such that D(c) < 1/p1(n). For all such c and appropriately chosen p1 the
observations Obs(WSf) and Obs(WSg) are indistinguishable.

While it is not possible to simulate membership queries in polynomial time given
only a quantum example oracle, it is a simple matter to simulate a uniform quantum
example oracle with membership queries.

Lemma 9. For every Boolean function f , QEX(f,U) can be simulated by a QTM
making a single call to MEM(f).

Proof. QEX(f,U) can be simulated by applying the Fourier transform F to the
tape |0̄〉 and then calling MEM(f).

Thus a membership oracle for f is strictly more powerful than a uniform quantum
example oracle for f .

7. Concluding remarks. We have defined the notion of a quantum example
oracle and argued that it is a natural quantum extension of the standard PAC example
oracle. We then showed the learnability of DNF (and P̂ T 1) with respect to uniform,
given access to such an oracle. Such an oracle is also shown to be weaker (with respect
to uniform) than a membership oracle.

While we believe that these results are interesting theoretically, like many oracle
results in complexity theory the practical significance of our results is not clear. Our
algorithm at the very least offers some potential speed-up over an implementation
of the unmodified harmonic sieve for learning DNF from a membership oracle on a
quantum computer. Also, while we do not currently see how to implement a quantum
example oracle without recourse to a membership oracle, it is conceivable that there
may be some way to build a quantum example oracle from something (much) less than
a full membership oracle, which could add substantially to our algorithm’s relevance to
practical machine-learning problems. Finally, we hope that these results may provide
stepping stones toward answering the larger question of whether DNF can be learned
by a QTM from a standard PAC example oracle. A positive answer to this question
has potentially great practical significance.

An earlier version of this paper [14] claimed that our quantum algorithm would
learn DNF in a generalized persistent noise model. This propagated an erroneous
claim by Jackson that the harmonic sieve was noise-tolerant [22]. While a modified
version of the harmonic sieve has subsequently been shown to tolerate persistent
classification noise [23], we do not consider the quantum extension of that algorithm
in this paper, leaving this problem open for further study.

1152 NADER H. BSHOUTY AND JEFFREY C. JACKSON

Acknowledgment. N. H. Bshouty thanks Richard Cleve for an enlightening
seminar on quantum computation.

REFERENCES

[1] H. Aizenstein, L. Hellerstein, and L. Pitt, Read-thrice DNF is hard to learn with mem-
bership and equivalence queries, in Proceedings 33rd Annual Symposium on Foundations
of Computer Science, Pittsburgh, PA, 1992, pp. 523–532.

[2] H. Aizenstein and L. Pitt, Exact learning of read-twice DNF formulas, in Proceedings 32nd
Annual Symp. on Foundations of Computer Science, San Juan, Puerto Rico, 1991, pp. 170–
179.

[3] H. Aizenstein and L. Pitt, Exact learning of read-k disjoint DNF and not-so-disjoint DNF,
in Proceedings 5th Annual Workshop on Computational Learning Theory, Pittsburgh, PA,
1992, pp. 71–76.

[4] D. Angluin, M. Frazier, and L. Pitt, Learning conjunctions of Horn clauses, Machine
Learning, 9 (1992), pp. 147–164.

[5] D. Angluin and M. Kharitonov, When won’t membership queries help?, J. Comput. System
Sci., 50 (1995), pp. 336–355.

[6] E. Bernstein and U. Vazirani, Quantum complexity theory, in Proceedings 25th Annual ACM
Symp. on Theory of Computing, San Diego, CA, 1993, pp. 11–20.

[7] A. Berthiaume and G. Brassard, Oracle quantum computing, in Proceedings Workshop on
the Physics of Computation, Dallas, TX, IEEE Press, Piscataway, NJ, 1992, pp. 195–199.

[8] A. Berthiaume and G. Brassard, The quantum challenge to structural complexity theory, in
Proceedings 7th IEEE Conference on Structure in Complexity Theory, Boston, MA, 1992,
pp. 132–137.

[9] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich, Weakly learning
DNF and characterizing statistical query learning using Fourier analysis, in Proceedings
26th Annual ACM Symp. on Theory of Computing, Montreal, Canada, 1994, pp. 253–262.

[10] A. Blum, R. Khardon, E. Kushilevitz, L. Pitt, and D. Roth, On learning read-k-satisfy-j
DNF, in Proceedings 7th ACM Workshop on Comput. Learning Theory, ACM Press, New
York, 1994, pp. 110–117.

[11] A. Blum and S. Rudich, Fast learning of k-term DNF formulas with queries, J. Comput.
System Sci., 51 (1995), pp. 367–373.

[12] J. Bruck, Harmonic analysis of polynomial threshold functions, SIAM J. Discrete Math., 3
(1990), pp. 168–177.

[13] N. H. Bshouty, Exact learning via the monotone theory, in Proceedings 34th Annual Symp.
on Foundations of Computer Science, Palo Alto, CA, 1993, pp. 302–311.

[14] N. H. Bshouty and J. C. Jackson, Learning DNF over the uniform distribution using a
quantum example oracle, in Proceedings 8th Annual Workshop on Computational Learning
Theory, Santa Cruz, CA, 1995, pp. 118–127.

[15] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum com-
puter, Proceedings Roy. Soc. London Ser. A, 400, 1985, pp. 97–117.

[16] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proceedings
Roy. Soc. London Ser. A, 439, 1992, pp. 553–558.

[17] Y. Freund, An improved boosting algorithm and its implications on learning complexity, in
Proceedings 5th Annual Workshop on Computational Learning Theory, Pittsburgh, PA,
1992, pp. 391–398.

[18] Y. Freund, Boosting a weak learning algorithm by majority, Inform. and Comput., 121 (1995),
pp. 256–285.

[19] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and
an application to boosting, in Proceedings 2nd Annual European Conf. on Computational
Learning Theory, Barcelona, Spain, 1995.

[20] O. Goldreich and L. A. Levin, A hard-core predicate for all one-way functions, in Proceedings
21st Annual ACM Symp. on Theory of Computing, Seattle, WA, 1989, pp. 25–32.

[21] T. R. Hancock, Learning 2µDNF formulas and kµ decision trees, in Proceedings 4th Annual
Workshop on Computational Learning Theory, 1991, pp. 199–209.

[22] J. Jackson, An efficient membership-query algorithm for learning DNF with respect to the
uniform distribution, in Proceedings 35th Annual Symp. on Foundations of Computer
Science, 1994, pp. 42–53.

[23] J. Jackson, E. Shamir, and C. Shwartzman, Learning with queries corrupted by classification
noise, in Proceedings 5th Israel Symp. on the Theory of Computing and Systems, 1997.

LEARNING DNF USING A QUANTUM EXAMPLE ORACLE 1153

[24] J. C. Jackson, The Harmonic Sieve: A Novel Application of Fourier Analysis to Machine
Learning Theory and Practice, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, 1995.
Available as Technical report CMU-CS-95-183.

[25] M. Kearns, M. Li, L. Pitt, and L. Valiant, On the learnability of Boolean formulae, in
Proceedings 19th Annual ACM Symp. on Theory of Computing, New York, NY, 1987,
pp. 285–295.

[26] E. Kushilevitz and Y. Mansour, Learning decision trees using the Fourier spectrum, SIAM
J. Comput., 22 (1993), pp. 1331–1348.

[27] E. Kushilevitz and D. Roth, On learning visual concepts and DNF formulae, in Proceedings
6th Annual Workshop on Computational Learning Theory, Santa Cruz, CA, 1993, pp. 317–
326.

[28] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and
learnability, J. ACM, 40 (1993), pp. 607–620.

[29] R. E. Schapire, The strength of weak learnability, Machine Learning, 5 (1990), pp. 197–227.
[30] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in

Proceedings 35th Annual Symp. on Foundations of Computer Science, Santa Fe, NM,
1994, pp. 124–134.

[31] D. R. Simon, On the power of quantum computation, in Proceedings 35th Annual Symp. on
Foundations of Computer Science, 1994, pp. 116–123.

[32] L. G. Valiant, A theory of the learnable, Comm. ACM, 27 (1984), pp. 1134–1142.
[33] A. C.-C. Yao, Quantum circuit complexity, in Proceedings 34th Annual Symp. on Foundations

of Computer Science, Palo Alto, CA, 1993, pp. 352–361.

APPROXIMABILITY AND NONAPPROXIMABILITY RESULTS
FOR MINIMIZING TOTAL FLOW TIME ON A SINGLE MACHINE∗

HANS KELLERER† , THOMAS TAUTENHAHN‡ , AND GERHARD J. WOEGINGER§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1155–1166

Dedicated to the memory of Gene Lawler

Abstract. We consider the problem of scheduling n jobs that are released over time on a single
machine in order to minimize the total flow time. This problem is well known to be NP-complete,
and the best polynomial-time approximation algorithms constructed so far had (more or less trivial)
worst-case performance guarantees of O(n).

In this paper, we present one positive and one negative result on polynomial-time approximations
for the minimum total flow time problem: The positive result is the first approximation algorithm
with a sublinear worst-case performance guarantee of O(

√
n). This algorithm is based on resolving the

preemptions of the corresponding optimum preemptive schedule. The performance guarantee of our
approximation algorithm is not far from best possible, as our second, negative result demonstrates:
Unless P = NP , no polynomial-time approximation algorithm for minimum total flow time can have
a worst-case performance guarantee of O(n1/2−ε) for any ε > 0.

Key words. scheduling, approximation algorithm, worst-case analysis, total flow time, release
time, single machine

AMS subject classifications. 08C85, 68Q20, 05C38, 68R10, 90C35

PII. S0097539796305778

1. Introduction. Scheduling independent jobs on a single machine has been
studied extensively under various objective functions. We consider one of the basic
problems of this kind, which from a worst-case point of view also appeared to be
among the most intractable ones: There are given n independent jobs J1, . . . , Jn
which have to be scheduled nonpreemptively on a single machine. Each job Ji has a
processing time pi and becomes available for execution at its release time ri, where
pi and ri are nonnegative real numbers. All job data are known in advance. Without
loss of generality we assume that the smallest release time is equal to zero. In a certain
schedule for these jobs, let Ci be the completion time of job Ji, let Si be its starting
time (i.e., Si + pi = Ci), and let Fi = Ci − ri denote its flow time, respectively. The
objective is to determine a schedule that minimizes the total flow time

∑
Fi. This

problem is commonly denoted by 1|ri|
∑
Fi.

In case all job release times are identical, the problem can be solved in O(n log n)
time by applying the well-known shortest processing time (SPT) rule; see Smith [19].
For arbitrary release times, the problem becomes NP-complete (Lenstra, Rinnooy
Kan, and Brucker [15]). Several authors (Chandra [4], Chu [6], Deogun [7], and

∗Received by the editors June 12, 1996; accepted for publication (in revised form) May 2, 1997;
published electronically March 19, 1999. A preliminary version of this paper appeared in Proc. 28th
Annual ACM Symp. on the Theory of Computing, 1997.

http://www.siam.org/journals/sicomp/28-4/30577.html
†Institut für Statistik, Ökonometrie und Operations Research, Universitätsstrasse 15, Universität

Graz, A–8010 Graz, Austria (hans.kellerer@kfunigraz.ac.at).
‡Fakultät für Mathematik, Otto-von-Guericke Universität Magdeburg, D–39016 Magdeburg, Ger-

many (on.tau@zib-berlin.de). This research was supported by DAAD (German Academic Exchange
Service).
§TU Graz, Institut für Mathematik B, Steyrergasse 30, A-8010 Graz, Austria (gwoegi@

opt.math.tu-graz.ac.at). The research of this author was supported by a research fellowship of the
Euler Institute for Discrete Mathematics and Its Applications and by START project Y43-MAT of
the Austrian Ministry of Science.

1155

1156 H. KELLERER, T. TAUTENHAHN, AND G. WOEGINGER

Dessouky and Deogun [8]) developed branch-and-bound algorithms for 1|ri|
∑
Fi.

Other papers (Bianco and Ricciardelli [3], Dyer and Wolsey [10], Hariri and Potts
[13], and Posner [18]) gave branch-and-bound algorithms for 1|ri|

∑
wiFi, the prob-

lem of minimizing the total weighted flow time. Gazmuri [12] designed asymptotically
optimal algorithms for minimizing total flow time under very general probability dis-
tributions of the job data.

The preemptive version 1|pmtn, ri|
∑
Fi of the problem can be solved in poly-

nomial time by the shortest remaining processing time (SRPT) rule (see, e.g., Baker
[2]). The objective value of the optimum preemptive schedule clearly is a lower bound
on the objective value of the nonpreemptive problem. Ahmadi and Bagchi [1] have
shown that it dominates six other lower bounds for 1|ri|

∑
Fi that had been used in

the scheduling literature.

Approximation algorithms. For an instance I of 1|ri|
∑
Fi, let FH(I) denote

the total flow time obtained when algorithm H is applied to I, and let F ∗(I) be the
objective value of an optimum solution for I. We usually write FH and F ∗ instead
of FH(I) and F ∗(I), respectively, if the instance I is clear from the context. Now let
ρ : R+ → R+ and let H be an approximation algorithm. We say that algorithm H
has worst-case performance guarantee ρ if

sup{FH(I)/F ∗(I) | I is an instance with n jobs } ≤ ρ(n)

holds for all integers n ≥ 1.

Chu [5] and Mao and Rifkin [17] investigated several “reasonable” algorithms for
1|ri|

∑
Fi, but none of them yielded a sublinear worst-case performance guarantee.

For instance, a straightforward procedure for 1|ri|
∑
Fi is the earliest start time (EST)

algorithm: “Whenever the machine becomes free for assignment, take the shortest of
the (at that time) available jobs and assign it to the machine.” The following example
shows that the total flow time in an EST schedule can be a factor of n away from
the optimum: Let ε be a very small positive real number. Then choose p1 = 1,
p2 = · · · = pn = ε, r1 = 0, r2 = · · · = rn = ε. The EST schedule processes the jobs
in the ordering (1, 2, . . . , n) with total flow time Ω(n), whereas an optimum schedule
processes the jobs in the ordering (2, 3, . . . , n− 1, 1) with total flow time O(1).

Another direct approach is the earliest completion time (ECT) rule. An ECT
schedule is formed by scheduling jobs without any unnecessary idle time, where the
next job to be scheduled is the one with the earliest possible completion time of all
unscheduled jobs. Again, let ε be a very small positive real number. Then the job
data p1 = 1 + 2ε, p2 = · · · = pn = ε and ri = i − 1 for all i = 1, . . . , n yields an
ECT schedule of (2, 3, . . . , n − 1, 1) with total flow time Ω(n), whereas the optimum
schedule is (1, 2, . . . , n) with total flow time O(1). Again, we get a worst-case ratio
of n.

New results. The results of this paper are as follows. First we present a
polynomial-time approximation algorithm with worst-case performance guarantee of
O(
√
n). The algorithm starts from an optimum solution of the corresponding pre-

emptive instance. Then the preemptive schedule is transformed step by step into a
nonpreemptive one by successively resolving the preemptions. Our proof also demon-
strates that for any instance the minimum total flow time of an optimum nonpreemp-
tive schedule is at most a factor of

√
n larger than the corresponding minimum total

flow time of the optimum preemptive schedule.

MINIMIZING THE TOTAL FLOW TIME 1157

In the second part of the paper, we prove that polynomial-time approximation
algorithms for minimum total flow time on a single machine cannot have a worst-
case performance guarantee of O(n1/2−ε) for any ε > 0. This result is derived by an
appropriate reduction from the NP-complete numerical three-dimensional matching
problem.

Organization of the paper. Section 2 describes the approximation algorithm
and proves the claimed worst-case performance guarantee of O(

√
n). Section 3 gives

the nonapproximability result, and section 4 contains the discussion.

2. The approximation algorithm. In this section, we design a polynomial-
time approximation algorithm for the minimum total flow time problem that has
worst-case performance guarantee O(

√
n). The main idea is to start with an optimum

solution of the corresponding problem, where preemption is allowed, and then to get
rid of the preemptions while increasing the total flow time by only some “moderate”
amount.

As already mentioned in the introduction, an optimum preemptive schedule can
be obtained by applying the SRPT rule, which is defined as follows: The remaining
processing time Pi(t) of job Ji is the amount of processing time of Ji which has not
been scheduled before time t. At any time t, the available job Ji with SRPT Pi(t) is
processed until it is either completed or until another job Jj with pj < Pi(rj) becomes
available. In the second case, Ji is preempted and Jj is processed.

We denote the total flow time in an optimum preemptive schedule by F ∗pmtn.
With every job Ji we associate the interval Ii = [Si, Ci] in the preemptive schedule.
Note that due to possible preemptions, the length of Ii in general need not be equal
to pi. Let us observe some simple properties of the SRPT schedule: If a job Ji has a
preemption at time t, then the processing of some job Jj with pj < Pi(t) starts at this
time. Consequently, job Ji cannot return to the machine until job Jj is completed.

Observation 2.1. In the SRPT schedule, for any two jobs Ji and Jj either the
corresponding intervals Ii and Ij are disjoint or one of them contains the other one.
Furthermore, there is no machine idle time during Ii and Ij.

With the preemptive schedule we associate in the following way a directed ordered
forest that describes the containment relations of the intervals Ii. The jobs J1, . . . , Jn
form the vertices of the forest. We introduce a directed edge going from job Ji to
Jj if and only if Ij ⊆ Ii and there does not exist a job Jk with Ij ⊆ Ik ⊆ Ii. For
every vertex Ji, its sons are ordered from left to right according to the ordering of
their corresponding intervals Ij . This yields a collection of ordered directed out-trees.
Out-trees that consist of a single vertex are called trivial out-trees. To complete the
definition of the forest, we also order the roots of these out-trees from left to right
according to the ordering of their corresponding intervals. By T (i) we denote the
maximal subtree of this forest rooted at Ji (hence, T (i) exactly contains those jobs
that are processed during [Si, Ci]). A leaf is a job with out-degree zero. (Hence, it
does not have any preemptions.)

Since our approximation algorithm transforms the preemptive schedule into a
nonpreemptive one, the forest associated with the final schedule will be a collection
of n trivial out-trees. In sections 2.1, 2.2, and 2.3, we describe three procedures for
removing preemptions and simplifying the forest structure. Every procedure acts on
a certain subtree T (i) and removes all preemptions of the job Ji. Section 2.4 explains
how the approximation algorithm applies and combines these three procedures.

1158 H. KELLERER, T. TAUTENHAHN, AND G. WOEGINGER

-

-
J1 J2 J3 J4 J2 J1

¡¡
¡
¡¡
¡
¡¡
¡¡

¡¡
¡

¡¡
¡

¡¡
¡¡

¡¡
¡
¡¡
¡
¡¡
¡¡

¡¡
¡

¡¡
¡

¡¡
¡¡J1 J2 J3 J4

Fig. 1. Illustration for Procedure SmallSubtree(i) with i = 1.

2.1. How to handle small subtrees. A subtree T (i) is called small if it con-
tains at most

√
n jobs. In this case we use the following procedure to resolve the

preemptions of job Ji and of all jobs contained in T (i).
Procedure SmallSubtree(i).
Let Si = Si0 < Si1 < · · · < Sik denote the starting times of the jobs in
T (i) in the current preemptive schedule. Remove all jobs and reinsert
them without preemptions in the ordering Ji, Ji1 , Ji2 , . . . , Jik .

For an illustration, see Figure 1. It is easy to see that SmallSubtree(i) does not
decrease the starting time of any job. Hence, the resulting schedule still obeys all
release times. Completion times of jobs outside of T (i) are not changed, and the
completion times of jobs in T (i) are all increased by less than Ci− ri. Since there are
at most

√
n jobs in T (i),

∆small(i) =
√
nFi(1)

is an upper bound on the increase of the objective function caused by SmallSubtree(i).

2.2. How to handle the last root. Now let Ji be the root of the rightmost
nontrivial out-tree. (Ji is preempted, but all jobs that are processed after Ci are
without preemptions.) Such a root Ji is called the last root and may be handled
according to the following procedure.

Procedure LastRoot(i).
Compute d√n e+ 1 time points t0 = Ci, t1, . . . , td√n e such that there
are exactly hpi units of idle time between Ci and th in the current
schedule for all h ∈ {0, . . . ,√n}. Determine 0 ≤ k ≤ d√n e − 1 so as
to minimize the value of k + |{j : tk ≤ Sj ≤ tk+1}|.
In case there is a job processed during [tk, tk + pi], shift it to the
right until its processing is disjoint from [tk, tk+pi]. If necessary shift
also some later jobs to the right, but without changing their relative
orderings and without introducing any unnecessary idle time. Then
remove Ji and reschedule it in the interval [tk, tk + pi].

For an illustration, see Figure 2. Since the job starting times are not decreased,
the resulting schedule is again feasible. Moreover, by definition of the numbers th,
there are exactly pi units of idle time between tk and tk+1. Hence, the shifting of jobs
takes place only within the interval [tk, tk+1], and no jobs outside of this interval are
affected by LastRoot(i).

Lemma 2.2. The value of k determined by Procedure LastRoot(i) satisfies

k + |{j : tk ≤ Sj ≤ tk+1}| ≤ 3

2

√
n.

MINIMIZING THE TOTAL FLOW TIME 1159

-¡¡
¡
¡¡
¡
¡¡
¡¡ J9 J10J5 J6 J7 J8J1 J1J2 J3 J4 J11

-¡¡
¡
¡¡
¡
¡¡
¡¡ J9 J10J5 J6 J7 J8J2 J3 J4 J11J1

t0 t1 t2 t3

Fig. 2. Illustration for Procedure LastRoot(i) with i = 1.

Proof. Define nh = |{j : th ≤ Sj ≤ th+1}|. Then

d√n e−1∑
h=0

(h+ nh) ≤ 1

2
d√n e(d√n e − 1) + n ≤ 3

2

√
nd√n e.

Since k was chosen to minimize k + nk, the value k + nk is bounded from above by
the average of these d√n e numbers.

Procedure LastRoot(i) increases the flow time of job Ji by at most kpi+
∑n
j=1 pj .

Furthermore, the flow times of at most nk = |{j : tk ≤ Sj ≤ tk+1}| other jobs are
increased by at most pi. By applying Lemma 2.2 one gets that LastRoot(i) increases
the value of the objective function by at most

∆last(i) = kpi +
n∑
j=1

pj + nkpi ≤ 3

2

√
n pi +

n∑
j=1

pj .(2)

Finally, observe that in the new schedule Ji is processed entirely after its completion
time in the old schedule.

2.3. How to handle fathers and sons. Procedure FatherSon(i, j) described
below may be applied only if the jobs Ji and Jj fulfill the following four conditions:

(C1) Jj is a son of Ji.
(C2) All sons of Ji in T (i) that lie to the right of Jj are leaves (i.e., jobs without

preemption).
(C3) There are less than

√
n jobs that lie to the right of Jj in T (i).

(C4) Just before executing FatherSon(i, j), job Ji is removed and rescheduled en-
tirely after its old completion time.

Condition (C4) may be fulfilled if Ji is rescheduled by LastRoot(i) or (as we will
see) if it is rescheduled by FatherSon(k, i), where k was the father of i at that time.
Condition (C4) has the following consequences: At the moment as SRPT decided to
start processing Jj instead of Ji, it did so because the remaining processing time of
Ji was larger than pj . Hence, the total time that Ji is processed during [Cj , Ci] is
at least pj , and in case Ji is moved to some place after Ci, there is sufficient empty
space in [Cj , Ci] to schedule all of Jj .

Procedure FatherSon(i, j).
All jobs that are processed during [Cj , Cj + pj] are shifted to the
right until their processing is disjoint from [Cj , Cj +pj]. If necessary,
also, some later jobs are shifted to the right but without changing

1160 H. KELLERER, T. TAUTENHAHN, AND G. WOEGINGER

-

-¡¡
¡
¡¡
¡
¡¡
¡¡

¡¡
¡

¡¡
¡

¡¡
¡¡

¡¡
¡
¡¡
¡
¡¡
¡¡

¡¡
¡

¡¡
¡

¡¡
¡¡

J1 J2

J3 J4 J5 J6 J7

J2 J8 J1 J9 J1J3 J4 J5 J6 J7

J2 J8 J9

Fig. 3. Illustration for Procedure FatherSon(i, j) with i = 1 and j = 2.

their relative orderings and without introducing any unnecessary idle
time.
Then remove Jj and reschedule it to the interval [Cj , Cj + pj].

For an illustration, see Figure 3. Note that in the new schedule Jj is processed
entirely after its completion time in the old schedule. Furthermore note that Proce-
dure FatherSon(i, j) transforms all sons of Ji in T (i) that lie to the right of Jj into
trivial out-trees.

Procedure FatherSon(i, j) produces another feasible schedule where job Jj no
longer has preemption. Only jobs in the interval [Cj , Ci] are shifted to the right, and
no other jobs are affected. All the shifted jobs are contained in T (i), they lie to the
right of Jj , and, by condition (C3), their number is less than

√
n. The completion

time of every moved job (including job Jj) increases by at most pj . Hence, the total
increase in the value of the objective function that FatherSon(i, j) produces can be
bounded by

∆fson(j) =
√
n pj .(3)

2.4. Putting everything together. Finally, we describe our approximation al-
gorithm in detail. The algorithm starts with the optimum schedule for the preemptive
problem and determines the corresponding directed ordered forest.

In the first phase, Procedure SmallSubtree(i) is applied to all jobs Ji for which
2 ≤ |T (i)| ≤ √n holds. Afterward, every subtree T (i) either fulfills |T (i)| = 1 (and Ji
has no preemption) or |T (i)| > √n holds.

In the second phase, the algorithm goes through a number of steps and repeatedly
modifies the rightmost nontrivial out-tree. Every such step increases the number of
trivial out-trees by at least

√
n. Every step consists of one call to LastRoot, possibly

followed by several calls to FatherSon. For a nonleaf vertex Ji in the forest, let
rmnls(i) denote the index of its rightmost nonleaf son and let leaf(i) denote the
number of sons of Ji lying to the right of rmnls(i). (Obviously, all these leaf(i)
sons must be leaves.) Every step of the second phase is performed as follows. Let Ji
be the root of the rightmost nontrivial out-tree.

LastRoot(i);
While rmnls(i) exists and leaf(i)<

√
n do

FatherSon(i,rmnls(i))
i :=rmnls(i)

EndWhile
Let Ji∗ denote the last job whose preemptions are resolved in such a step. Then

either Ji∗ has more than
√
n sons (that all are leaves) to the right of rmnls(i∗) or job

MINIMIZING THE TOTAL FLOW TIME 1161

rmnls(i∗) does not exist. In the latter case, all sons of J∗i are leaves and, according
to the result of the first phase, their number must be greater than

√
n. In either case,

there are at least
√
n leaves that formerly were preempting Ji∗ , the father of Ji∗ ,

its grandfather, and so on—the whole chain of ancestors to the formerly “last root.”
Since the execution of the step removes all preemptions from this chain of ancestors,
it turns all these at least

√
n leaves into trivial out-trees.

In the second phase of the algorithm the step described above is repeated over
and over until all preemption have been removed. Since every step produces at least√
n new trivial out-trees, the second phase terminates after at most

√
n steps. This

completes the description of our approximation algorithm.
Theorem 2.3. The approximation algorithm described for the problem 1|ri|

∑
Fi

has a worst-case performance guarantee of O(
√
n), and it can be implemented to run

in O(n3/2) time. Moreover, there exist instances for which the algorithm yields a
schedule whose objective value is Ω(

√
n) from the optimum.

Proof. To analyze the worst-case behavior of the algorithm, we define job classes
S, L, and F . Class S contains the jobs Ji for which SmallSubtree(i) is executed, L the
jobs Ji for which LastRoot(i) is executed, and F the jobs Jj for which FatherSon(i, j)
is executed. Since every procedure removes all preemptions of the corresponding job,
every job is contained in at most one of the classes S, L, and F . Moreover, |L| ≤ √n
holds, since LastRoot(i) is executed exactly once per step in the second phase, and
there are at most

√
n steps.

The constructed nonpreemptive schedule has an objective value FH which satisfies

FH ≤ F ∗pmtn +
∑
i∈S

∆small(i) +
∑
i∈L

∆last(i) +
∑
i∈F

∆fson(i)

≤ F ∗pmtn +
∑
i∈S

√
nFi +

∑
i∈L

3

2

√
n pi +

n∑
j=1

pj

+
∑
i∈F

√
n pi.

Here we used (1), (2), and (3). If we also apply the straightforward relations pi ≤ Fi,
for 1 ≤ i ≤ n and

∑n
i=1 Fi = F ∗pmtn, together with |L| ≤ √n, then we determine that

FH ≤ F ∗pmtn +
3

2

√
n

∑
i∈S∪L∪F

Fi + |L|
n∑
j=1

pj ≤
(

1 +
5

2

√
n

)
F ∗pmtn(4)

holds. Since F ∗pmtn ≤ F ∗, this proves that the algorithm has a worst-case performance
guarantee of O(

√
n).

What about the time complexity? The SRPT schedule can be computed in
O(n log n) time. Procedure SmallSubtree needs to be run only on the vertices which
have at most

√
n descendants and whose father is either nonexistent or has more than√

n descendants. All these vertices can be located in a single O(n) time traversal of
the forest. Hence, procedures SmallSubtree and FatherSon are both executed only
O(n) times and always consider only O(

√
n) of the jobs. Procedure LastRoot may

have to deal with up to O(n) jobs, but it is executed only O(
√
n) times. Summarizing,

this yields a time complexity of

|S| ·O(
√
n) + |L| ·O(n) + |F| ·O(

√
n) ≤ O(n3/2).

To see that the algorithm can be a factor of Ω(
√
n) from the optimum, consider

the instance of n = x2 jobs: The jobs Ji with 1 ≤ i ≤ x − 1 all have processing

1162 H. KELLERER, T. TAUTENHAHN, AND G. WOEGINGER

-
J1 J1 J1 J1 J1

optimum nonpreemptive schedule: F ∗ = Θ(n3/2)

-

optimum preemptive schedule: F ∗pmtn = Θ(n)

J1

Fig. 4. Illustration for the lower bound example in Corollary 2.4.

time 1/(x − 1) and release times 1 + (i − 1)/(x − 1). Job Jx has processing time x2

and release time 0. The remaining x2 − x jobs are dummy jobs, all with processing
times 0 and release times 0. The forest corresponding to the optimum preemptive
schedule has a single nontrivial tree with root Jx and J1, . . . , Jx−1 as leaves. Hence,
our algorithm calls SmallSubtree(x) and produces a schedule with FH = x3 − x+ 2,
whereas F ∗ = x2 + 3 holds. As x tends to infinity, the ratio FH/F ∗ grows like
Θ(x) = Θ(

√
n).

Corollary 2.4. For any instance of n jobs with release times on a single ma-
chine, the inequality F ∗/F ∗pmtn ≤ 5

2

√
n + 1 holds. Moreover, for every sufficiently

large n, there exists an instance In such that F ∗(In)/F ∗pmtn(In) ≈ √n.

Proof. The upper bound follows from (4) and F ∗ ≤ FH . The lower bound follows
from the instance with n jobs where r1 = 0, p1 = n, ri = (i− 1)

√
n, and pi = ε = 1/n

for i ≥ 2. Then F ∗pmtn ≈ n and F ∗ ≈ n3/2 holds. (See Figure 4.)

3. The nonapproximability result. In this section, we will prove that no
polynomial-time approximation algorithm for minimizing the total flow time may have
worst-case performance guarantee O(n1/2−ε) for any ε > 0. The proof is done by a
reduction from the following version of the NP-complete numerical three-dimensional
matching problem (see Garey and Johnson [11]).

Problem. Numerical three-dimensional matching (N3DM).

Instance. Positive integers ai, bi, and ci, 1 ≤ i ≤ k, with
∑k
i=1(ai+bi+ci) = kD.

Question. Do there exist permutations π, ψ such that ai+ bπ(i) + cψ(i) = D holds
for all i?

This problem remains NP-complete even if the numbers ai, bi, and ci are encoded
in unary and the total size of the input is Θ(kD). In the following discussion, we will
make use of this unary encoding. Consider an arbitrary instance of N3DM and let
0 < ε < 1

2 be some real number. Define numbers

n = d(20k)4/εD2/εe, r = d2Dn(1−ε)/2e, g = 100rk2.

Next we will construct from the N3DM instance and from the number ε a correspond-
ing scheduling instance with n jobs. For every number ai in the N3DM instance, we
introduce a corresponding job with processing time 2r+ ai, for every bi we introduce
a job with processing time 4r+ bi, and for every ci we introduce a job with processing
time 8r+ ci. These 3k jobs are called the big jobs and they are all released at time 0.

Moreover, there will be a number of so-called tiny jobs. Tiny jobs occur only in
groups denoted by G(t; `), where t and ` are positive integers. A group G(t; `) consists

MINIMIZING THE TOTAL FLOW TIME 1163

of ` tiny jobs with processing time 1/`. They are released at the times t + i/` for
i = 0, . . . , ` − 1. Note that it is possible to process all jobs in G(t; `) in a feasible
way during the time interval [t, t + 1] with a total flow time of 1. We introduce the
following groups of tiny jobs.

(T1) For 1 ≤ i ≤ k, we introduce the group G((14r +D + 1)i− 1; rg).
(T2) For 1 ≤ i ≤ g, we introduce the group G((14r +D + 1)k + ri− 1; g).

In a pictorial setting, the groups of type (T1) occur at regular intervals from time
14r + D to time (14r + D + 1)k. They leave k holes, where each hole has length
14r + D. Similarly, the groups of type (T2) occur in a regular pattern after time
(14r +D + 1)k. They leave holes of size r − 1.

So far we have introduced 3k big jobs and k + 100rk2 groups of tiny jobs, which
amounts to an overall number of

3k + krg + 100rk2g = 3k + 100r2k3 + 10, 000r2k4 < 11, 000r2k4 < n

jobs. In order to simplify calculations, we introduce a number of artificial jobs all
with processing time zero and release time zero such that the total number of jobs
becomes equal to n. This completes the construction of the scheduling instance.

Lemma 3.1. If the N3DM instance has a solution, then for the constructed
scheduling instance F ∗ ≤ 200rk2 holds.

Proof. Consider the following feasible schedule. All tiny jobs are processed im-
mediately at their release times. Hence, their total flow time equals k + 100rk2. For
every triple (ai, bπ(i), cψ(i)) with sum D in the solution of the N3DM instance, we pack
the corresponding three jobs together into one of the holes of length 14r+D that are
left free by the groups of type (T1). The job corresponding to ai is processed first,
the job corresponding to bπ(i) is processed second, and the job corresponding to cψ(i)

is processed last in this hole. It is easy to see that this yields a total flow time of

(5)

k + 100rk2 + 3
k∑
i=1

(ai + 2r) + 2
k∑
i=1

(bi + 4r) +
k∑
i=1

(ci + 8r) +
3

2
(14r +D + 1)k(k − 1).

Since
∑k
i=1(ai + bi + ci) = kD and since D ≤ r, one easily gets an upper bound of

k + 100rk2 + 25rk + 24rk(k − 1) < 200rk2

for the expression in (5).
Lemma 3.2. If the N3DM instance does not have a solution, then for the con-

structed scheduling instance F ∗ ≥ 100r2k2 holds.
Proof. Consider an optimum schedule S∗ and suppose that its total flow time is

strictly less than 100r2k2. Our first claim then is that in S∗ all tiny jobs in groups
of type (T1) are processed as soon as they are released: Since all these tiny jobs
have identical processing times, they are processed in S∗ in order of increasing release
times. It is easy to see that there is no use in splitting one of the groups of type (T1)
by processing some larger jobs in between (since this would contradict the SPT rule).
Since all big jobs have integer processing times and since the total processing time in
every group is equal to 1, we may further assume that the starting time of every big
job and of every group G(t; `) in S∗ is an integer. When the processing of some group
G(t; rg) starts at time t + x, for x an integer, the total flow time of the rg tiny jobs
in G(t; rg) is rgx+ 1 = 100r2k2x+ 1. This implies x = 0 and proves the claim.

1164 H. KELLERER, T. TAUTENHAHN, AND G. WOEGINGER

Our second claim is that in S∗ none of the big jobs are processed during the time
interval that starts with release of the last group of type (T1) and ends with release of
the last group of type (T2). Suppose otherwise. The groups of type (T2) are released
at regular intervals of length r. Since big jobs all have processing times of at least 2r,
scheduling a big job somewhere between these groups would shift the jobs of at least
one group by at least r time units away from their release time. This would yield a
total flow time of at least gr = 100r2k2 and proves the second claim.

Our third claim is that in S∗ one of the big jobs is processed after the last group
of tiny jobs. Suppose otherwise. There are two types of holes that are left free by the
tiny jobs for processing the big jobs: k holes of length 14r + D and 100rk2 holes of
size r− 1. Since big jobs all have processing times of at least 2r, they must be packed
into the holes of size 14r +D ≤ 15r. Since two jobs corresponding to the numbers ci
and cj have total processing time at least 16r, every such hole must contain exactly
one job corresponding to some ci. By analogous arguments, we determine that every
hole of size 14r+D must contain exactly one job corresponding to some ai, bj , and ch,
respectively. This implies that the corresponding three numbers fulfill ai+bj+ch ≤ D,
which in turn yields ai + bj + ch = D (since the total sum of these 3k numbers is
kD and the total size of the holes is kD). Hence, the N3DM instance would have a
solution; this contradiction shows that our third claim holds true.

Finally, observe that the last group of tiny jobs is processed at time t = (14r +
D + 1)k + 100r2k2 − 1. Hence, the big job that is processed after this last group has
a completion time of at least 100r2k2, and since its release time is zero, its flow time
is at least 100r2k2. This final contradiction completes the proof of the lemma.

Theorem 3.3. For all 0 < ε < 1
2 and 0 < α < 1, there does not exist a

polynomial-time approximation algorithm for the minimum total flow time problem
with worst-case approximation guarantee αn1/2−ε unless P = NP .

Proof. Suppose such an approximation algorithm H would exist for some fixed
0 < ε < 1

2 and 0 < α < 1. Take an instance of N3DM that is encoded in unary, and
perform the above construction. Since the instance is encoded in unary, the size of
the resulting scheduling instance is polynomial in the size of the N3DM instance.

Then apply algorithm H to the scheduling instance. In case the N3DM instance
has a solution, Lemma 3.1 and the worst-case performance guarantee of H imply that

FH ≤ αn1/2−ε · F ∗ < r

2
· 200rk2 = 100r2k2.

In case the N3DM instance does not have a solution, Lemma 3.2 implies that

FH ≥ F ∗ ≥ 100r2k2

holds. Hence, with the help of algorithm H we could distinguish between these two
possibilities in polynomial time, which would imply P = NP .

4. Concluding remarks. In this paper we investigated the problem of min-
imizing total flow time on a single machine. For this NP-complete problem, only
approximation algorithms with worst-case bounds of Ω(n) were known up to now.
We presented the first approximation algorithm with sublinear worst-case perfor-
mance guarantee. The algorithm has a tight worst-case of O(

√
n). It is based on a

resolution of the interrupted jobs in the corresponding optimum preemptive sched-
ule. Moreover, we derived a lower bound on the worst-case performance guarantee
of polynomial-time approximation algorithms for this problem. We proved that no

MINIMIZING THE TOTAL FLOW TIME 1165

polynomial-time approximation algorithm can have a worst-case performance guar-
antee of O(n1/2−ε) with ε > 0. This also shows that our approximation algorithm is
almost “best possible.”

We finish the paper with some remarks and open problems.

(1) The open main problem concerns closing the gap between our upper bound
and our lower bound. For example, there might exist an approximation algorithm
with worst-case performance guarantee of O(

√
n/ log n).

(2) Subsequent to and inspired by our work, Leonardi and Raz [16] investi-
gated the problem Pm|ri|

∑
Fi with parallel machines. Since the preemptive problem

Pm|pmtn, ri|
∑
Fi is NP-complete for m ≥ 2 machines [9], Leonardi and Raz [16] do

not have the optimum preemptive schedule as a starting point for their approximation
algorithm. Instead, they start with an approximative solution for this relaxation and
then resolve the preemptions.

(3) Another open problem consists in designing approximation algorithms for
the total weighted flow time problem on a single machine. Also in this case, the
corresponding preemptive problem 1|pmtn, ri|

∑
wiFi is NP-complete (Labetoulle et

al. [14]).

(4) The waiting time Wi of some job Ji in a schedule is defined by Wi = Si − ri;
i.e., it is the time that the job spends in the system while waiting for being processed.
We are not aware of any positive results on approximating the total waiting time.

Acknowledgment. Gerhard Woeginger acknowledges helpful discussions with
Amos Fiat and Stefano Leonardi.

REFERENCES

[1] R.H. Ahmadi and U. Bagchi, Lower bounds for single-machine scheduling problems, Naval
Res. Logist., 37 (1990), pp. 967–979.

[2] K.R. Baker, Introduction to Sequencing and Scheduling, John Wiley, New York, 1974.
[3] L. Bianco and S. Ricciardelli, Scheduling of a single machine to minimize total weighted

completion time subject to release dates, Naval Res. Logist., 29 (1982), pp. 151–167.
[4] R. Chandra, On n|1|F dynamic deterministic problems, Naval Res. Logist., 26 (1979), pp.

537–544.
[5] C. Chu, Efficient heuristics to minimize total flow time with release dates, Oper. Res. Lett.,

12 (1992), pp. 321–330.
[6] C. Chu, A branch-and-bound algorithm to minimize total flow time with unequal release dates,

Naval Res. Logist., 39 (1992), pp. 859–875.
[7] J.S. Deogun, On scheduling with ready times to minimize mean flow time, Comput. J., 26

(1983), pp. 320–328.
[8] M.I. Dessouky and J.S. Deogun, Sequencing jobs with unequal ready times to minimize mean

flow time, SIAM J. Comput., 10 (1981), pp. 192–202.
[9] J. Du, J.Y.T. Leung, and G.H. Young, Minimizing mean flow time with release time con-

straint, Theoret. Comput. Sci., 75 (1990), pp. 347–355.
[10] M.E. Dyer and L.A. Wolsey, Formulating the single machine sequencing problem with release

dates as a mixed integer program, Discrete Appl. Math., 26 (1990), pp. 255–270.
[11] M.R. Garey and D.S. Johnson, Computers and Intractability, W. H. Freeman, San Francisco,

1979.
[12] P.G. Gazmuri, Probabilistic analysis of a machine scheduling problem, Math. Oper. Res., 10

(1985), pp. 328–339.
[13] A.M.A. Hariri and C.N. Potts, An algorithm for single machine sequencing with release

times to minimize total weighted completion time, Discrete Appl. Math., 5 (1983), pp.
99–109.

[14] J. Labetoulle, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan, Preemptive schedul-
ing of uniform machines subject to release dates, in Progress in Combinatorial Optimiza-
tion, Academic Press, New York, 1984, pp. 245–261.

1166 H. KELLERER, T. TAUTENHAHN, AND G. WOEGINGER

[15] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker, Complexity of machine scheduling
problems, Ann. Discrete Math., 1 (1977), pp. 343–362.

[16] S. Leonardi and D. Raz, Approximating total flow time on parallel machines, in Proc. 29th
Annual ACM Symposium on the Theory of Computing, El Paso, TX, 1997.

[17] W. Mao and A. Rifkin, On-line algorithms for a single machine scheduling problem, in The
Impact of Emerging Technologies on Computer Science and Operations Research, S. Nash
and A. Sofer, eds., Kluwer Academic Publishers, Norwell, MA, 1995, pp. 157–173.

[18] M.E. Posner, Minimizing weighted completion times with deadlines, Oper. Res., 33 (1985),
pp. 562–574.

[19] W.E. Smith, Various optimizers for single-state production, Naval Res. Logist. Quart., 3
(1956), pp. 56–66.

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS
(WITHOUT MATRIX MULTIPLICATION)∗

D. AINGWORTH† , C. CHEKURI† , P. INDYK† , AND R. MOTWANI†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1167–1181

Abstract. In the recent past, there has been considerable progress in devising algorithms for
the all-pairs shortest paths (APSP) problem running in time significantly smaller than the obvious
time bound of O(n3). Unfortunately, all the new algorithms are based on fast matrix multiplication
algorithms that are notoriously impractical. Our work is motivated by the goal of devising purely
combinatorial algorithms that match these improved running times. Our results come close to achiev-
ing this goal, in that we present algorithms with a small additive error in the length of the paths
obtained. Our algorithms are easy to implement, have the desired property of being combinatorial
in nature, and the hidden constants in the running time bound are fairly small.

Our main result is an algorithm which solves the APSP problem in unweighted, undirected graphs

with an additive error of 2 in time O(n2.5
√

logn). This algorithm returns actual paths and not just

the distances. In addition, we give more efficient algorithms with running time O(n1.5
√
k logn +

n2 log2 n) for the case where we are only required to determine shortest paths between k specified pairs

of vertices rather than all pairs of vertices. The starting point for all our results is an O(m
√
n logn)

algorithm for distinguishing between graphs of diameter 2 and 4, and this is later extended to

obtaining a ratio 2/3 approximation to the diameter in time O(m
√
n logn + n2 logn). Unlike in

the case of APSP, our results for approximate diameter computation can be extended to the case of
directed graphs with arbitrary positive real weights on the edges.

Key words. diameter, shortest paths, matrix multiplication

AMS subject classifications. 05C12, 05C50, 05C85, 68Q20

PII. S0097539796303421

1. Introduction. Consider the problem of computing APSP in an unweighted,
undirected graph G with n vertices and m edges. The recent work of Alon, Galil, and
Margalit [2], Alon, Galil, Margalit, and Naor [3], and Seidel [16] has led to dramatic
progress in devising fast algorithms for this problem. These algorithms are based on
formulating the problem in terms of matrices with small integer entries and using
fast matrix multiplications. They achieve a time bound of Õ(nω)1 where ω denotes
the exponent in the running time of the matrix multiplication algorithm used. The
current best matrix multiplication algorithm is due to Coppersmith and Winograd [9]
and has ω = 2.376. In contrast, the naive algorithm for APSP performs breadth-first
searches (BFSs) from each vertex and requires time Θ(nm).

Given the fundamental nature of this problem, it is important to consider the
desirability of implementing the algorithms in practice. Unfortunately, fast matrix
multiplication algorithms are far from being practical and suffer from large hidden
constants in the running time bound. Consequently, we adopt the view of treating

∗Received by the editors May 13, 1996; accepted for publication (in revised form) June 16, 1997;
published electronically March 22, 1999.

http://www.siam.org/journals/sicomp/28-4/30342.html
†Department of Computer Science, Stanford University, Stanford, CA 94305-9045 (donald@

cs.stanford.edu, chekuri@cs.stanford.edu, indyk@cs.stanford.edu, rajeev@cs.stanford.edu). The first
author was supported by an NSF Graduate Fellowship and NSF grant CCR-9357849. The second
and third authors were supported by an OTL grant and NSF grant CCR-9357849. The fourth au-
thor was supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award,
an OTL grant, and NSF Young Investigator award CCR-9357849, with matching funds from IBM,
Schlumberger Foundation, Shell Foundation, and Xerox Corporation.

1The notation Õ(f(n)) denotes O(f(n) polylog (n)).

1167

1168 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

these results primarily as indicators of the existence of efficient algorithms and con-
sider the question of devising a purely combinatorial algorithm for APSP that runs in
time O(n3−ε). The (admittedly vague) term “combinatorial algorithm” is intended to
contrast with the more algebraic flavor of algorithms based on fast matrix multipli-
cation. To understand this distinction, the reader may find it instructive to try and
interpret the “algebraic” algorithms in purely graph-theoretic terms even with the
use of the simpler matrix multiplication algorithm of Strassen [17]. The best known
combinatorial algorithm, due to Feder and Motwani [12], runs in O(n3/ log n) time,
yielding only a marginal improvement over the naive algorithm.

We take a step in the direction of realizing the goals outlined above by presenting
an algorithm which solves the APSP problem with an additive error of 2 in time
O(n2.5

√
log n). This algorithm returns actual paths and not just the distances. Note

that the running time is better than the Õ(n2.81) time bound of the more practical
matrix multiplication algorithm of Strassen [17]. Further, as explained below, we
also give slightly more efficient algorithms (for sparse graphs) for approximating the
diameter. Our algorithms are easy to implement, have the desired property of being
combinatorial in nature, and the hidden constants in the running time bound are fairly
small. Our additive approximations are presented only for the case of unweighted,
undirected graphs, but they can be easily generalized to the case of undirected graphs
with small integer edge weights. In addition, we give a more efficient algorithm with
running time O(n1.5

√
k log n + n2 log2 n) for the case where we are only required to

determine shortest paths between k specified pairs of vertices rather than all pairs of
vertices.

A crucial step in the development of our result was the shift of focus to the
problem of computing the diameter of a graph. This is the maximum over all pairs
of vertices of the shortest path distance between the vertices. The diameter can be
determined by computing APSP distances in the graph, and it appears that this
is the only known way to solve the diameter problem. In fact, Fan Chung [6] had
earlier posed the question of whether there is an O(n3−ε) algorithm for finding the
diameter without resorting to fast matrix multiplication. The situation with regard
to combinatorial algorithms for diameter is only marginally better than in the case
of APSP. Basch, Khanna, and Motwani [4] presented a combinatorial algorithm that
verifies whether a graph has diameter 2 in time O

(
n3/ log2 n

)
. A slight adaptation

of this algorithm yields a Boolean matrix multiplication algorithm which runs in the
same time bound, thereby allowing us to verify that the diameter of a graph is d, for
any constant d, in O

(
n3/ log2 n

)
time.

Consider the problem of devising a fast algorithm for approximating the diameter.
It is easy to estimate the diameter within a ratio 1/2 in O(m) time: perform a BFS
from any vertex v and let d be the depth of the BFS tree obtained; clearly, the
diameter of G lies between d and 2d. No better approximation algorithm was known
for this problem; in fact, it was not even known how to distinguish between graphs
of diameter 2 and 4. Our first result is an O(m

√
n log n) algorithm for distinguishing

between graphs of diameter 2 and 4, and this is later extended to obtaining a ratio 2/3
approximation to the diameter in time O(m

√
n log n + n2 log n). It should be noted

that, unlike in the case of APSP, our results for approximate diameter computation
can be extended to the case of directed graphs with arbitrary positive real weights on
the edges.

The problem of computing approximate shortest paths has been considered earlier
in the literature but purely from the point of view of multiplicative errors in the

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1169

approximation. Awerbuch, Berger, Cowen, and Peleg [1] and Cohen [7] have presented
efficient algorithms for computing t-stretch paths for t ≥ 4, where a path is said to
have stretch t if its length is at most t times the length of the shortest path between
its endpoints. Cohen [8] gave an algorithm that approximates paths from s sources
to all other nodes in a weighted graph in time O((m + sn)nε) for any ε > 0. This
algorithm outputs paths of length (1 + O(1/ polylogn))d(u, v) + O(wmax polylogn),
where d(u, v) denotes the distance between vertices u and v, and wmax is the largest
edge weight in the graph. Her algorithm may be specialized to the unweighted case
to compute paths of length (1 + δ)d(u, v) + c for any δ > 0 within the same time,
where the constant c depends on ε and δ.

The rest of this paper is organized as follows. We begin in section 2 by presenting
some definitions and an algorithm for a version of the dominating set problem that
underlies all our algorithms. In section 3, we describe the algorithms for distinguish-
ing between graphs of diameter 2 and 4, and the extension to obtaining a ratio 2/3
approximation to the diameter. As we remarked earlier, these results can be applied
to directed, weighted graphs. Then, in section 4, we apply the ideas developed in
estimating the diameter to obtain the promised algorithm for an additive-error ap-
proximation for APSP. These ideas are extended in section 5 to obtain a more efficient
algorithm for additive-error approximations to the k-pairs shortest paths problem. Fi-
nally, in section 6 we present an empirical study of the performance of our algorithm
for APSP.

2. Preliminaries and a basic algorithm. We present some notation and a
result concerning dominating sets in graphs. Initially, all definitions are with respect
to some undirected, unweighted, connected graph G(V,E) with n vertices and m
edges. Later, we will point out the extension to directed and weighted graphs.

Definition 2.1. The distance, d(u, v), between two vertices u and v is the length
of the shortest path between them.

Definition 2.2. The diameter, ∆, of a graph G is defined to be maxu,v∈G d(u, v).
Definition 2.3. The k-neighborhood, Nk(v), of a vertex v is the set of all vertices

other than v that are at distance at most k from v, i.e.,

Nk(v) = {u ∈ V | 0 < d(v, u) ≤ k}.

The degree of a vertex v is denoted by dv = |N1(v)|. Finally, we will use the notation
N(v) = N1(v) ∪ {v} to denote the set of vertices at distance at most 1 from v.

It is important to keep in mind that the set N(v) contains not just the neighbors
of v but also includes v itself.

Definition 2.4. For any vertex v ∈ V , we denote by b(v) the depth of a BFS
tree in G rooted at the vertex v.

Throughout this paper, we will be working with a parameter s to be chosen later
that will serve as the threshold for classifying vertices as being of low degree or high
degree. This threshold is implicit in the following definition.

Definition 2.5. Let L(V) = {u ∈ V | du < s} and H(V) = V \ L(V) = {u ∈
V | du ≥ s}.

The following is a generalization of the standard notion of a dominating set.
Definition 2.6. Given a set A ⊆ V , a set D ⊆ V is a dominating set for A if

and only if for each vertex v ∈ A, N(v) ∩D 6= ∅. That is, for each vertex in A \D,
one of its neighbors is in D.

The following theorem underlies all our algorithms.

1170 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

Theorem 2.7. There exists a dominating set for H(V) of size O(s−1n log n),
and such a dominating set can be found in O(m+ ns) time.

Remark 2.8. It is easy to see that choosing a set of Θ(s−1n log n) vertices
uniformly at random gives the desired dominating set for H(V) with high probability.
This construction in the proof of this theorem is in effect a derandomization of this
randomized algorithm.

Proof. Suppose, to begin with, that H(V) = V ; then we are interested in the
standard dominating set for the graph G. The problem of computing a minimum
dominating set for G can be reformulated as a set cover problem as follows: for every
vertex v create a set Sv = N(v). This gives an instance of the set cover problem
S = {Sv | v ∈ V }, where the goal is to find a minimum cardinality collection of sets
whose union is V . Given any set cover solution C ⊆ S, the set of vertices corresponding
to the subsets in C forms a dominating set for G of the same size as C. This is because
each vertex v occurs in one of the sets Sw ∈ C and thus is either in the dominating
set itself or has a neighbor therein. Similarly, any dominating set for G corresponds
to a set cover for S of the same cardinality.

The greedy set cover algorithm repeatedly chooses the set that covers the most
uncovered elements, and it is known to provide a set cover of size within a factor logn
of the optimal fractional solution [13, 15]. Since every vertex has degree at least s and
therefore the corresponding set Sv has cardinality at least s, assigning a weight of 1/s
to every set in S gives a fractional set cover of total weight (fractional size) equal to
s−1n. Thus, the optimal fractional set cover size is O(n/s), and the greedy set cover
algorithm must then deliver a solution of size O(s−1n log n). This gives a dominating
set for G of the same size. If we implement the greedy set cover algorithm by keeping
the sets in buckets sorted by the number of uncovered vertices, the algorithm can be
shown to run in time O(m).

Consider now the case where H(V) 6= V . Construct a graph G′ = (V ′, E′), adding
a set of dummy vertices X = {xi | 1 ≤ i ≤ s}, as follows: define V ′ = V ∪ X and
E′ = E ∪ {(xi, xj) | 1 ≤ i < j ≤ s} ∪ {(u, xi) | u ∈ L(V)}. Every vertex in this
new graph has degree s or higher, so by the preceding argument we can construct a
dominating set for G′ of size O(s−1(n + s) log (n+ s)) = O(s−1n log n). Since none
of the new vertices in X are connected to the vertices in H(V), the restriction of
this dominating set to V will give a dominating set for H(V) of size O(s−1n log n).
Finally, the running time is increased by the addition of the new vertices and edges,
but since the total number of edges added is at most ns + s2 = O(ns), we get the
desired time bound.

2.1. Extension to directed graphs. We briefly indicate the extension of the
preceding definitions, notation, and observations to directed graphs. Given a directed

graph G(V,E), we will denote by
←
G the graph obtained from G by reversing the

direction of all the edges of G.

We use → and ← to overline quantities defined with respect to G and
←
G, respec-

tively. We will use the term degree to refer to the out-degree of a vertex, and for v ∈ V
we will denote its degree by

→
dv. The definitions of distance, diameter, neighborhoods,

BFS tree, and dominating set given earlier extend naturally to directed graphs as

described below. We give the definitions only for G, and definitions for
←
G can be

obtained similarly.
Definition 2.9. For any two vertices u, v ∈ V , we define d(u, v) as the length

of the shortest path from u to v. If no such path exists, we assume d(u, v) =∞.

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1171

Algorithm 2-vs-4

1. if
→
L(V) 6= ∅ then

(a) choose v ∈
→
L(V)

(b) compute a
−→
BFS tree from v and a

←−
BFS tree from each of the vertices

in
→
N(v)

2. else

(a) compute an out-dominating set D for
→
H(V) = V

(b) compute a
−→
BFS tree from each of the vertices in D

3. endif
4. if all BFS trees have depth 2 then return 2

else return 4.

Fig. 3.1. Algorithm 2-vs-4.

Note that d(u, v) is not symmetric in general.

Definition 2.10. The diameter ∆ of a graph G is defined to be maxu,v∈G d(u, v).

Definition 2.11. Let
→
Nk(v) = {u ∈ V | 0 < d(v, u) ≤ k}. Further,

→
N(v) =

→
N1(v) ∪ {v} denotes the set of vertices at distance at most 1 from v.

Definition 2.12.
−→
BFS is a BFS tree in the directed graph G. For any vertex

v ∈ V , we denote by
→
b(v) the depth of a

−→
BFS tree in G rooted at the vertex v.

We define
→
H(V),

→
L(V), and dominating set for directed graphs with respect to

out-going edges incident at the vertices.

Definition 2.13. For some s, let
→
L(V) = {u ∈ V | →du < s} and

→
H(V) =

V \
→
L(V) = {u ∈ V | →du ≥ s}.
Definition 2.14. Given a set A ⊆ V , a set D ⊆ V is an out-dominating set for

A if and only if for each vertex v ∈ A,
→
N(v) ∩D 6= ∅.

The following is an easy consequence of Theorem 2.7.

Corollary 2.15. Given a directed graph G(V,E), there exists an out-dominating

set for
→
H(V) of size O(s−1 log n), and such a dominating set can be found in O(m+ns)

time.

3. Estimating the diameter. In this section we will develop an algorithm to
find an estimate E such that 2

3∆ ≤ E ≤ ∆. We first present an algorithm for distin-
guishing between graphs of diameter 2 and 4. It is then shown that this algorithm
generalizes to the promised approximation algorithm.

3.1. Distinguishing diameter 2 from 4. The basic idea behind the algorithm
is rooted in the following lemma whose proof is straightforward.

Lemma 3.1. Suppose that G has a pair of vertices a and b with d(a, b) ≥ 4.

Then, any
−→
BFS tree rooted at a vertex v ∈

→
N(a) and any

←−
BFS tree rooted at a vertex

v ∈
←
N(b) will have depth at least 3.

The algorithm shown in Figure 3.1, called Algorithm 2-vs-4, computes BFS trees
from a small set of vertices that is guaranteed to contain such a vertex, and so one of
these BFS trees will certify that the diameter is more than 2.

1172 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

 v

b

x 1

x belongs to N(v) and N(b)

N (v) has fewer than s nodes

Fig. 3.2. Case 1 in Algorithm 2-vs-4.

We are assuming here that the sets
→
L(V) and D(V) are provided as a part of the

input; otherwise, they can be computed in O(m+ ns) time.
Theorem 3.2. Algorithm 2-vs-4 distinguishes graphs of diameter 2 and 4, and

it has running time O(ms−1n log n+ms).
Proof. It is clear that the algorithm outputs 2 for graphs of diameter 2 since

in such graphs no BFS tree can have depth exceeding 2. Assume then that G has
diameter 4 and fix any pair of vertices a, b ∈ V such that d(a, b) ≥ 4. We will show

that the algorithm performs a properly directed BFS from a vertex v ∈
→
N(a) ∪

←
N(b).

Since, by Lemma 3.1, the depth of the BFS tree rooted at v is at least 3, the algorithm
will output 4.

We consider the two cases that can arise in the algorithm.

Case 1. [
→
L(V) 6= ∅].

If b belongs to
→
N(v), then there is nothing to prove. If

→
b(v) > 2, then again we

have nothing to prove. Note that if
→
b(v) = 1, then

→
dv = n − 1 and our choice of

s = o(n) would imply that v /∈
→
L(V) which would be a contradiction. Therefore,

the only case that remains is when
→
b(v) = 2 and d(v, b) = 2 (see Figure 3.2). These

assumptions imply that
→
N(v) ∩

←
N(b) 6= ∅, and Lemma 3.1 completes the proof. The

size of
→
N(v) is at most s; therefore, the time to compute the BFS trees is bounded by

O(ms).

Case 2. [
→
L(V) = ∅].

Since D is an out-dominating set for V , it follows immediately that D∩
→
N(a) 6= ∅,

establishing the proof of correctness. From Theorem 2.7, we have |D| = O(s−1n log n),
and this implies a bound of O(ms−1n log n) on the cost of computing the BFS trees
in this case.

Choosing s =
√
n log n, we obtain the following corollary.

Corollary 3.3. Graphs of diameter 2 and 4 can be distinguished in O(m
√
n log n)

time.

3.2. Approximating the diameter. The ideas used in Algorithm 2-vs-4 can
be generalized to estimate the diameter for all directed graphs: fix any two vertices
a and b for which d(a, b) = ∆, where ∆ is the diameter of the graph. Suppose we

can a find a vertex v in
→
N∆/3(a) or v′ in

←
N∆/3(b); then it is clear that

→
b(v) ≥ 2

3∆ or
←
b(v′) ≥ 2

3∆, and we can use
→
b(v) or

←
b(v′) as our estimate. As before, we will find a

small set of vertices which is guaranteed to have a vertex in
→
N∆/3(a)∪

←
N∆/3(b). Then

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1173

Algorithm Approx-Diameter

1. compute an s-partial-
−→
BFS tree from each vertex in V

2. let w be the vertex with the maximum depth (
−→
pb(w)) partial-

−→
BFS tree

3. compute a
−→
BFS tree from w and a

←−
BFS tree from each vertex in

−→
PBFS s(w)

4. compute a new graph Ĝ from G by adding all edges of the form (v, u) where

u ∈
−→

PBFS s(v)

5. compute an out-dominating set D in Ĝ

6. compute a
−→
BFS tree from each vertex in D

7. return estimate E equal to the maximum depth of all BFS trees from Steps
3 and 6.

Fig. 3.3. Algorithm approx-diameter.

we can compute the BFS tree from each of these vertices and use the maximum of
the depths of these trees as our estimate E. The reason for choosing the fraction 1/3
will become apparent in the analysis of the algorithm. In what follows, it will simplify
notation to assume that ∆/3 is an integer; in general, though, our analysis needs to
be modified to use b∆/3c. Also, we assume that ∆ ≥ 3, and it is easy to see that the
case ∆ ≤ 2 can be handled separately.

A key tool in the rest of our algorithms will be the notion of a partial-BFS defined
in terms of a parameter k.

Definition 3.4. A k-partial-BFS tree is obtained by performing a BFS up to the
point where exactly k vertices (not including the root) have been visited.

Lemma 3.5. A k-partial-BFS tree can be computed in time O(k2).
Proof. The number of edges examined for each vertex visited is bounded by k since

the k-partial-BFS process is terminated when k distinct vertices have been examined.
This implies that the total number of edges examined is O(k2) and that dominates
the running time.

Note that a k-partial-BFS tree contains the k vertices closest to the root but that
this set is not uniquely defined due to the need to break ties, which is done arbitrarily.
Typically, k will be clear from the context and we will not specify it explicitly.

Definition 3.6. Let
−→

PBFS k(v) be the set of vertices visited by a k-partial-
−→
BFS

from v. Denote by
−→
pb(v) the depth of the tree constructed in this fashion.

←−
PBFS and

←−
pb(v) are defined similarly.

Consider now the formal description of the approximation algorithm for diameter,
algorithm approx-diameter, as shown in Figure 3.3.

The following lemmas constitute the analysis of this algorithm.
Lemma 3.7. The dominating set D found in step 5 is of size O(s−1n log n).

Proof. In Ĝ, each vertex v ∈ V is adjacent to all vertices in
−→

PBFS s(v) with

respect to the graph G. Since |
−→

PBFS s(v)| = s for every vertex v, the out-degree

of each vertex in Ĝ is at least s. From Theorem 2.7, it follows that we can find a
dominating set of size O(s−1n log n).

Lemma 3.8. If |
→
N∆/3(v)| ≥ s for all v ∈ V , then D ∩ (

→
N∆/3(v) ∪ {v}) 6= ∅ for

each vertex v ∈ V .
Proof. Consider any particular vertex v ∈ V . If v is in D, then there is nothing

1174 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

to prove. Otherwise, since D is a dominating set in Ĝ, there is a vertex u ∈ D
such that (v, u) is an edge in Ĝ. If (v, u) is in G, then again we are done since

u ∈
→
N(v) ⊂

→
N∆/3(v). The other possibility is that u is not a neighbor of v in G, but

then it must be the case that u ∈
−→

PBFS s(v). The condition |
→
N∆/3(v)| ≥ s implies

that
−→

PBFS s(v) ⊂
→
N∆/3(v), which in turn implies that u ∈

→
N∆/3(v), and hence

u ∈ D ∩
→
N∆/3(v).

The reader should notice the similarity between the preceding lemma and Case
2 in Theorem 3.2. Lemma 3.8 follows from the more general set cover ideas used in
the proof of Theorem 2.7 and as such it holds even if we replace ∆/3 by some other
fraction of ∆. The more crucial lemma is given below.

Lemma 3.9. Let S be the set of vertices v such that |
→
N∆/3(v)| < s. If S 6= ∅ then

the vertex w found in step 2 belongs to S. In addition if
→
b(w) < 2

3∆, then for every
vertex v,

−→
PBFS s(w) ∩

←
N∆/3(v) 6= ∅.

Proof. It can be verified that for any vertex u ∈ S,
−→
pb(u) > ∆/3; conversely, for

any vertex v in V \S,
−→
pb(v) ≤ ∆/3. From this we can conclude that if S is nonempty,

then the vertex of largest depth belongs to S.

Also, for each vertex u ∈ S, we must have
→
N∆/3(u) ⊂

−→
PBFS s(u). If

→
b(w) < 2

3∆,

then every vertex is within a distance 2
3∆ from w. From this and the fact that

→
N∆/3(w) ⊂

−→
PBFS s(w), it follows that

−→
PBFS s(w) ∩

←
N∆/3(v) 6= ∅.

The proof of the above lemma makes clear the reason why our estimate is only
within 2

3 of the diameter. Essentially, we need to ensure that the ∆/k neighborhood
of w intersects the ∆/k neighborhood of every other vertex. This can happen only if
→
b(w) is sufficiently small. If it is not small enough, we want

→
b(w) itself to be a good

estimate. Balancing these conditions gives us k = 3 and the ratio 2/3.
Theorem 3.10. Algorithm approx-diameter gives an estimate E such that 2

3∆ ≤
E ≤ ∆ in time O(ms + ms−1n log n + ns2). Choosing s =

√
n log n gives a running

time of O(m
√
n log n+ n2 log n).

Proof. The analysis is partitioned into two cases. Let a and b be two vertices
such that d(a, b) = ∆.

Case 1. (For all vertices v, |
→
N∆/3(v)| ≥ s.)

If either a or b is in D, we are done. Otherwise from the proof of Lemma 3.8, the

set D has a vertex v ∈
→
N∆/3(a). Since in step 6 we compute

−→
BFS trees from each

vertex in D, one of these is v and
→
b(v) is the desired estimate.

Case 2. (There exists a vertex v ∈ V such that |
→
N∆/3(v)| < s.)

Let w be the vertex in step 2. If
→
b(w) ≥ 2

3∆,
→
b(w) is our estimate and we are

done. Otherwise from Lemma 3.9,
−→

PBFS s(w) has a vertex v ∈
←
N∆/3(b). Since in

step 3 we compute
←−
BFS trees from each vertex in

−→
PBFS s(w), one of these is v and

←
b(v) is the desired estimate.

The running time is easy to analyze. Each partial-BFS in step 1 takes at most
O(s2) time by Lemma 3.5; thus, the total time spent on step 1 is O(ns2). Step 2 can
be implemented in O(n) time. In step 3, we compute BFS trees from s vertices, which

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1175

requires a total of O(ms) time. The time required in step 4 is dominated by the time
required to compute the partial-BFS trees in step 1. Theorem 2.7 implies that step
5 requires only O(n2 + ns) time (note that the graph Ĝ could have many more edges
than m). By Lemma 3.7, step 6 takes O(ms−1n log n) time. Finally, the cost of step
7 is dominated by the cost of computing the various BFS trees in steps 3 and 6. The
running time is dominated by the cost of steps 1, 3, and 6, and adding the bounds
for these gives the desired result.

3.3. Extension to weighted graphs. The algorithm for estimating the diam-
eter extends to the case of weighted graphs as well, provided all edge weights are
positive. This requires some minor modifications to algorithm approx-diameter that
are listed below.

• The BFS is replaced by Dijkstra’s algorithm [10] for shortest paths, and the
depth of the tree now refers to the distance to the farthest vertex found so
far.
• In forming the new graph Ĝ in step 4 we need to remove all the original edges

of G before we add the new edges. Note that Ĝ is an unweighted graph.
The last modification is necessary because in a weighted graph it is not neces-

sarily the case that a neighbor of a vertex v belongs to N∆/3(v). The running time
remains the same because the time required by Dijkstra’s algorithm (implemented
with Fibonacci heaps [10]) is O(m) when m = Ω(n log n).

We obtain the following theorem.
Theorem 3.11. Given a directed graph with positive edge weights, there is an

algorithm that gives an estimate E such that 2
3∆ ≤ E ≤ ∆ in time O(m

√
n log n +

n2 log n).

4. Estimating APSP. We now turn to the problem of approximate APSP com-
putations. We restrict ourselves to undirected and unweighted graphs for the rest of
the paper, although it should be noted that there is an obvious extension of the results
below to the case of undirected graphs with edge weights that are small integers.

It is possible to determine not only the diameter but the APSP distances to within
an additive error of 2. The basic idea is that a dominating set, since it contains a
neighbor of every vertex in the graph, must contain a vertex that is within distance
1 of any shortest path. Since we can only find a small dominating set for vertices in
H(V), we have to treat L(V) vertices differently, but their low degree allows us to
manage with only a partial-BFS, which we can combine with the information we have
gleaned from the dominating set.

We give a detailed description of the approximate APSP algorithm, algorithm
approx-APSP, in Figure 4.1. In Figure 4.2 we illustrate the main ideas behind this
algorithm.

Theorem 4.1. In algorithm approx-APSP, for all vertices u, v ∈ V , the distances
returned in d̂ satisfy the inequality

0 ≤ d̂(u, v)− d(u, v) ≤ 2.

Further, the algorithm can be modified to produce paths of length d̂ rather than merely
returning the approximate distances. This algorithm runs in time O(n2s+n3s−1 log n);
choosing s =

√
n log n gives a running time of O(n2.5

√
log n).

Proof. We first show that the algorithm can be easily modified to return actual
paths rather than only the distances. To achieve this, in steps 3 and 4 we can associate
with each updated entry in the matrix the path from the BFS tree used for the
update. In step 5, we merely concatenate the two paths from step 3 that determine
the minimum value of d̂.

1176 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

Algorithm Approx-APSP

Comment: Define G[L(V)] to be the subgraph of G induced by L(V).

1. initialize all entries in the distance matrix d̂ to ∞
2. compute a dominating set D for H(V) of size s−1n log n

3. compute a BFS tree from each vertex v ∈ D, and update d̂ with the shortest
path lengths for v so obtained

4. compute a BFS tree in G[L(V)] for each vertex v ∈ L(V), and update d̂
with the shortest path lengths for v so obtained

5. for all u, v ∈ V \D do

d̂(u, v)← min{d̂(u, v), min
w∈D
{d̂(w, u) + d̂(w, v)}}

6. return d̂ as the APSP matrix, and its largest entry as the diameter.

Fig. 4.1. Algorithm approx-APSP.

For a vertex u, it is clear that the shortest path distance to any vertex v ∈ V that
is returned cannot be smaller than the correct values, since they correspond to actual
paths. To see that they differ by no more than 2, we need to consider three cases.

Case 1. (u ∈ D).
In this case, the BFS tree from v is computed in step 3 and so clearly the distances

returned are correct.
Case 2. (u ∈ H(V) \D).
By the definition of D, it must be the case that u has a neighbor w in D. Clearly,

the distances from u and w to any other vertex cannot differ by more than 1, and
the distances from w are always correct as per Case 1. The assignment in step 6
guarantees d̂(u, v) ≤ d̂(w, u) + d̂(w, v) = d(w, v) + 1 ≤ d(u, v) + 2.

Case 3. (u ∈ L(V)).
Fix any shortest path from u to v. Suppose that the path from u to v is entirely

contained in L(V); then d̂(u, v) is set correctly in step 4. Otherwise, the path must
contain a vertex w ∈ H(V). If w is contained in D, then the correct distance is
computed as per Case 1. Finally, if w ∈ H(V) \D, then D contains a neighbor x of
w. Clearly, in step 6, one of the possibilities considered will involve a path from u to
x and a path from x to v. Since the distances involving x are correctly computed in
step 3, this means that d̂(u, v) ≤ d(x, u)+d(x, v) ≤ d(w, u)+d(w, v)+2 = d(u, v)+2.

Finally, we analyze the running time of this algorithm. Step 1 requires only O(n2)
time, and Theorem 2.7 implies that we can perform step 2 in the stated time bound.
Step 3 requires ms−1n log n for computing the BFS trees. Step 4 may compute as
many as Ω(n) BFS trees, but G[L(V)] only has O(ns) edges and so this requires only
O(n2s) time. Finally, step 5 takes all n2 vertex pairs and compares them with the
s−1n log n vertices in D. This implies the desired time bound.

Although the error in this algorithm is 2, it can be improved for the special case
of distinguishing diameter 2 from 4 based on the following two observations.

Fact 4.2. If u ∈ H(V) is at distance ∆ from some vertex v, then d̂(u, v) ≤ ∆+1.
Proof. Consider w, the vertex that dominates u. If the algorithm were to have

set d̂(u, v) > ∆ + 1, then step 5 of the algorithm would imply d̂(w, v) > ∆. Since d̂ is
exact for vertices in D, this is not possible.

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1177

D

A graph with HI, LO, D labeled The BFS for a node in D (step 3)

The BFS for a node in LO (step 4)

LOHI

The actual shortest path

The path computed in step 5

u

v

Fig. 4.2. Illustration of algorithm approx-APSP.

Fact 4.3. If the algorithm reports for some u ∈ L(V) that b(u) > 2, we can
verify this in time O(ns) per vertex.

Thus, by performing a verification for each of the L(V) vertices that report dis-
tance over 2, we can improve algorithm approx-APSP so that it always performs as
well as the diameter approximation algorithms of the previous section. The first fact
also appears to be useful in bringing the diameter error down to 1, but, unfortunately,
the vertices in L(V) cannot be handled as easily for larger diameters.

5. Estimating k-pairs shortest paths. In this section we consider the prob-
lem where we only seek to determine the distances between a given set of distinguished
pairs of vertices denoted by P . We show that the algorithm approx-APSP can be
generalized to handle this problem with the same error bounds. The generalized al-
gorithm, called approx-kPSP, works in time O(n1.5

√
k log n + n2 log2 n), where k is

the cardinality of the set P . When P contains all pairs of vertices, the behavior of
approx-kPSP is identical to that of approx-APSP. However, for small k, the algorithm
is significantly faster than approx-APSP.

The main idea behind the speed-up is the observation that the choice of s =√
n log n is not optimal when we do not need to find the distances between all pairs.

Step 5 of approx-APSP (the concatenation of paths) requires at most O(kns−1 log n)
time (instead of O(n3s−1 log n)), so the total time taken is O(mns−1 log n+ n2s+

kns−1 log n). Now, the first term of the sum is not necessarily dominated by the last
one. We have two cases: if k ≥ m, the last term dominates the first but we get the

1178 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

Algorithm approx-kPSP(i)

Comments:

define si = n
2i and t = log

(
n1.5√
k logn

)
,

all d̂(u, v) are initially equal to ∞ and G1 = (V1, E1) is set to G.
1. if i = t then compute a BFS tree from each vertex v ∈ Vi in Gi and update
d̂ with the shortest path lengths obtained

2. else let
Ui = {v ∈ Vi| degree of v in Gi is at least si},
Vi+1 = Vi − Ui, and
Gi+1 be the subgraph of Gi induced by Vi+1

(a) call Approx-kPSP(i+1)
(b) compute a dominating set Di for Ui in Gi
(c) compute a BFS tree from each v ∈ Di and update d̂ with the shortest

path lengths obtained
(d) for each {u, v} ∈ P do

d̂(u, v)← min{d̂(u, v), min
w∈Di

d̂(w, u) + d̂(w, v)}

3. return

Fig. 5.1. Algorithm approx-kPSP.

desired running time that depends on k when we balance the second and third terms;
conversely, when k < m, we observe that the first term dominates the last. Note that
the first term is the cost of performing BFS from all the dominating set vertices.

The intuition for the improvement comes from the following example: suppose
that all vertices have degree d. Then we could take s = d, so m = O(nd) and |D| =
O(nd log n), and the first term would be equal to m|D| = O(n2 log n). This example
shows that performing BFS from all the dominating set vertices is not expensive if
the degrees are more or less uniform. Of course, in general, such an assumption is
not true. However, we can exploit this observation by partitioning the vertex set into
O(log n) classes, such that the ith class consists of vertices of degree between n

2i and
n

2i−1 , and computing the dominating sets for each class separately. This effectively
reduces the first term to O(n2 polylog (n)), and now we can balance the second and
third terms as in the other case.

This algorithm, called approx-kPSP, is described in Figure 5.1. The algorithm
is recursive and at the top level it is invoked with parameter value i = 1, assuming
G1 = G. The algorithms makes t recursive calls, where t is a parameter chosen so as
to minimize the running time.

We begin the analysis by identifying the optimal choice of t.
Lemma 5.1. The parameter t can be chosen such that the running time of

algorithm approx-kPSP is O(n1.5
√
k log n + n2 log2 n). This time is achieved for

t = log(n1.5/
√
k log n).

Proof. Observe that for each i and v ∈ Vi, the degree of v in Gi is less than si−1

(assume s0 = n). This implies that |Ei| = O(nsi−1). Let Ci denote the running time
of the invocation of approx-kPSP with argument i. It is easy to see that Ct = n|Et|
and that for i < t, Ci is dominated by the time required for steps 2(c) and 2(d) which

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1179

require |Di||Ei| and k|Di| time, respectively. The total time can now be estimated as
follows:

t∑
i=1

Ci = n|Et|+
t−1∑
i=1

(|Di||Ei|+ k|Di|) ≤
t−1∑
i=1

n

si
nsi−1 log n+ k

t−1∑
i=1

n

si
log n+ n2st

≤ 2n2 log2 n+
n

st
k log n+ n2st.

Letting t = log(n1.5/
√
k log n) we get st = Θ(

√
(k log n)/n) which gives the desired

bound on the running time of the algorithm.
We can now complete the analysis of the algorithm.
Theorem 5.2. For all pairs (u, v) ∈ P , the distances returned in d̂ by approx-

kPSP satisfy the inequalities:

0 ≤ d̂(u, v)− d(u, v) ≤ 2.

The algorithm runs in time O(n2 log2 n+ n1.5
√
k log n).

Proof. Let di(u, v) denote the distance between u and v in Gi. Clearly, it is

sufficient to show by induction on i that 0 ≤ d̂(u, v) − di(u, v) ≤ 2 after finishing
approx-kPSP(i). The base case (for i = t) holds trivially since we compute the exact
shortest paths. The proof of the inductive step is similar to the proof Theorem 4.1;
hence we omit the details. The time bound follows from Lemma 5.1.

5.1. Application: Randomized approximation scheme for diameter. Al-
gorithm approx-kPSP can be used to obtain a randomized approximation scheme for
the diameter of a graph. Let u, v ∈ V be such that d(u, v) = ∆. If we choose a vertex
w uniformly at random from V , the probability of d(u,w) ≤ ε

2∆ is Θ(ε∆n). This guar-

antees that a set P of O(n2

ε2∆2 log n) vertices chosen uniformly at random contains ver-
tices x, y such that d(u, x) ≤ ε

2∆ and d(v, y) ≤ ε
2∆; hence d(x, y) ≥ (1−ε)∆ with high

probability. We can use algorithm approx-kPSP to approximate distances between

all pairs of vertices in P in O(n1.5
√|P | log n + n2 log2 n) = O(n

2.5

ε∆ log n + n2 log2 n)
time. For large ∆, say, ∆ = Ω(nδ) for some δ > 0, the improvement is significant.
We obtain the following theorem.

Theorem 5.3. For any 0 < ε < 1 there exists a Monte Carlo algorithm which

finds an estimate E such that (1−ε)∆ ≤ E ≤ ∆+2 in time O(n
2.5

ε∆ log n+n2 log2 n).
Note that while this randomized algorithm assumes knowledge of ∆, it is sufficient

to provide it with a constant-factor approximation to ∆. The depth of a BFS tree
rooted at an arbitrary vertex of G is a 2-approximation for ∆ and can be used for
this purpose.

6. Experimental results. To evaluate the usefulness of our algorithm, we ran
it on two families of graphs and compared the results with a carefully coded algorithm
based on BFS. The algorithm approx-APSP was tweaked with the following heuristic
improvement to step 5 that avoids many needless iterations: when a node has a
neighbor in D, we copy the distances of its neighbor (since they can differ by at most
1). This algorithm (called fast approx-APSP) occasionally has a higher fraction of
incorrect entries but seems to be a faster way to solve the APSP problem.

The first family of graphs were random graphs from the Gn,m model [5], which
are graphs chosen uniformly at random from those with n vertices and m edges. In
our experiments, we chose random graphs with n ranging from 10 to 1000, and 2m/n2

1180 AINGWORTH, CHEKURI, INDYK, AND MOTWANI

Table 6.1
Summary of experimental results. The speed-up numbers indicate the ratio of the execution

time of the carefully coded BFS algorithm to that of the algorithms. The accuracy refers to the ratio
of the total number of exact entries in the distance matrix to the total number of entries in the
matrix.

Approx-APSP Fast approx-APSP
speed-up accuracy speed-up accuracy

Random graphs Median 0.52 0.39 5.30 0.51
Average 0.63 0.39 4.75 0.55

Std Dev 0.23 0.14 1.70 0.12

GraphBase Median 0.59 0.69 3.95 0.53

Average 2.44 0.72 10.18 0.47
Std Dev 0.24 0.16 1.73 0.13

ranging from 0.03 to 0.90. On these graphs, fast approx-APSP runs about five times
faster than the BFS implementation, and about half of the distances are off by one.

The second family of graphs comes from the Stanford GraphBase [14]. We tested
all of the connected, undirected graphs from Appendix C in Knuth [14] (ignoring edge
weights). This is a very heterogeneous family of graphs, including graphs representing
highway connections for American cities, athletic schedules, five-letter English words,
and expander graphs, as well as more combinatorial graphs. Thus the results here are
quite indicative of practical performance. Although the BFS-based algorithm runs
faster for certain subfamilies of the GraphBase, fast approx-APSP outperformed the
other algorithms overall.

The results are summarized in Table 6.1. The speed-up numbers indicate the
inverse of the ratio of the execution time of the algorithms to that of the carefully
coded BFS algorithm. The accuracy refers to the ratio of the total number of exact
entries in the distance matrix to the total number of entries in the matrix. In both of
these families, the accuracy of approx-APSP could be improved by subtracting 1 in
step 5. This did not seem necessary given that the BFS approach performed about
as fast as approx-APSP, and that fast approx-APSP performed faster with roughly
50% accuracy. The numbers indicate that for general graphs where an additive factor
error is acceptable, fast approx-APSP is the algorithm of choice, and for more specific
families of graphs, the parameters can be adjusted for even better performance.

7. Conclusions and further work. Our work suggests several interesting di-
rections for future work, the most elementary being the following: is there a com-
binatorial algorithm running in time O(n3−ε) for distinguishing between graphs of
diameter 2 and 3? It is our belief that the problem of efficiently computing the di-
ameter can be solved given such a decision algorithm, and our work provides some
evidence in support of this belief. Subsequent to our work, Dor, Halperin, and Zwick
[11] have shown that the problem of computing APSP with an additive error of at
most 1 is as hard as Boolean matrix multiplication. This result still does not resolve
the question of whether computing the diameter is easier and raises the interesting
question of whether there is some strong equivalence between the diameter and APSP
problems, e.g., that their complexity is the same within poly-logarithmic factors. Dor,
Halperin, and Zwick have also extended our techniques to obtain tradeoffs between
the additive error and the running time and to obtain approximate distances with
multiplicative factors instead of additive factors. Finally, of course, removing the
additive error from our results remains a major open problem.

FAST ESTIMATION OF DIAMETER AND SHORTEST PATHS 1181

Acknowledgments. We are grateful to Noga Alon for his comments and sugges-
tions, and to Nati Linial for helpful discussions. We are also indebted to Edith Cohen
for comments that helped us extend some of our results. Thanks also to Michael
Goldwasser, David Karger, Sanjeev Khanna, and Eric Torng for their comments.

REFERENCES

[1] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg, Near-linear cost sequential and dis-
tributed constructions of sparse neighborhood covers, in Proceedings of the 34th Annual
IEEE Symposium on Foundations of Computer Science, Palo Alto, CA, 1993, pp. 638–647.

[2] N. Alon, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest path problem,
in Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science,
San Juan, PR, 1991, pp. 569–575.

[3] N. Alon, Z. Galil, O. Margalit, and M. Naor, Witnesses for Boolean matrix multiplication
and for shortest paths, in Proceedings of the 33rd Annual IEEE Symposium on Foundations
of Computer Science, 1992, pp. 417–426.

[4] J. Basch, S. Khanna, and R. Motwani, On Diameter Verification and Boolean Matrix Mul-
tiplication, Report STAN-CS-95-1544, Department of Computer Science, Stanford Univer-
sity, Stanford, CA, 1995.

[5] B. Bollobás, Random Graphs. Academic Press, New York, 1985.
[6] Fan R. K. Chung, Diameters of graphs: Old problems and new results, Congr. Numer., 60

(1987), pp. 295–317.
[7] E. Cohen, Fast algorithms for t-spanners and stretch-t paths, in Proceedings of the 34th Annual

IEEE Symposium on Foundations of Computer Science, 1993, pp. 648–658.
[8] E. Cohen, Polylog-time and near-linear work approximation scheme for undirected shortest

paths, Proceedings of 26th Annual ACM Symposium on Theory of Computing, 1994,
pp. 16–26.

[9] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput., 9 (1990), pp. 251–280.

[10] T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press and
McGraw–Hill, New York, 1990.

[11] D. Dor, S. Halperin, and U. Zwick, All pairs almost shortest paths, in Proceedings of the
37th Annual IEEE Symposium on Foundations of Computer Science, Burlington, VT, 1996,
pp. 452–461.

[12] T. Feder and R. Motwani, Clique partitions, graph compression and speeding-up algorithms,
in Proceedings of the 25th Annual ACM Symposium on Theory of Computing, San Diego,
CA, 1991, pp. 123–133.

[13] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,
9 (1974), pp. 256–278.

[14] D. E. Knuth, The Stanford GraphBase: A platform for combinatorial computing, Addison–
Wesley, Reading, MA, 1993.

[15] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975),
pp. 383–390.

[16] R. G. Seidel, On the all-pairs-shortest-path problem, in Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, Victoria, BC, 1992, pp. 745–749.

[17] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354–356.

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS
IN THREE DIMENSIONS∗

SARIEL HAR-PELED†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1182–1197

Abstract. We present a new technique for constructing a data structure that approximates
shortest path maps in Rd. By applying this technique, we get the following two results on approximate
shortest path maps in R3.

(i) Given a polyhedral surface or a convex polytope P with n edges in R3, a source point s on
P, and a real parameter 0 < ε ≤ 1, we present an algorithm that computes a subdivision of P of
size O((n/ε) log(1/ε)) which can be used to answer efficiently approximate shortest path queries.
Namely, given any point t on P, one can compute, in O(log (n/ε)) time, a distance ∆P,s(t), such
that dP,s(t) ≤ ∆P,s(t) ≤ (1 + ε)dP,s(t), where dP,s(t) is the length of a shortest path between s
and t on P.

The map can be computed in O(n2 logn+ (n/ε) log (1/ε) log (n/ε)) time, for the case of a poly-
hedral surface, and in O((n/ε3) log(1/ε) + (n/ε1.5) log (1/ε) logn) time if P is a convex polytope.

(ii) Given a set of polyhedral obstacles O with a total of n edges in R3, a source point s in
R3\ int∪O∈OO, and a real parameter 0 < ε ≤ 1, we present an algorithm that computes a subdivision
of R3, which can be used to answer efficiently approximate shortest path queries. That is, for any
point t ∈ R3, one can compute, in O(log (n/ε)) time, a distance ∆O,s(t) that ε-approximates the
length of a shortest path from s to t that avoids the interiors of the obstacles. This subdivision can
be computed in roughly O(n4/ε6) time.

Key words. approximation algorithms, Euclidean shortest paths, Voronoi diagrams

AMS subject classifications. 68U05, 65D99, 52B05, 52B10

PII. S0097539797325223

1. Introduction. The three-dimensional Euclidean shortest path problem is de-
fined as follows: Given a set of pairwise-disjoint polyhedral objects in R3 and two
points s and t, compute the shortest path between s and t which avoids the interiors
of the given polyhedral “obstacles.” This problem has received considerable attention
in computational geometry. It was shown to be NP-hard by Canny and Reif [3], and
the fastest available algorithms for this problem run in time that is exponential in
the total number of obstacle vertices (which we denote by n) [20, 21]. The apparent
intractability of the problem has motivated researchers to develop polynomial-time al-
gorithms for computing approximate shortest paths and for computing shortest paths
in special cases.

In the approximate three-dimensional Euclidean shortest path problem, we are
given an additional parameter ε > 0, and the goal is to compute a path between s and
t that avoids the interiors of the obstacles and whose length is at most (1+ε) times the
length of the shortest obstacle-avoiding path (we call such a path an ε-approximate
path). Approximation algorithms for the three-dimensional shortest path problem
were first studied by Papadimitriou [19], who gave an O(n4(L + log(n/ε))2/ε2)-time
algorithm for computing an ε-approximate shortest path, where L is the number of
bits used in each computation. A rigorous analysis of Papadimitriou’s algorithm

∗Received by the editors July 29, 1997; accepted for publication (in revised form) March 3, 1998;
published electronically March 22, 1999. This work was supported by a grant from the U.S.–Israeli
Binational Science Foundation. This work is part of the author’s Ph.D. thesis, prepared at Tel Aviv
University, Tel Aviv, Israel.

http://www.siam.org/journals/sicomp/28-4/32522.html
†School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (sariel@

math.tau.ac.il).

1182

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1183

was recently given by Choi, Sellen, and Yap [6]. A different approach was taken
by Clarkson [7], resulting in an algorithm with roughly O

(
n2/ε4

)
running time (the

precise result is stated in Theorem 4.2).

The problem of computing a shortest path between two points along the surface
of a single convex polytope is an interesting special case of the three-dimensional
Euclidean shortest path problem. Sharir and Schorr [22] gave anO(n3 log n) algorithm
for this problem, exploiting the property that a shortest path on a polyhedron unfolds
into a straight line. Mitchell, Mount, and Papadimitriou [16] improved the running
time to O(n2 log n); their algorithm works for nonconvex polyhedra (or polyhedral
surfaces) as well. Chen and Han [5] gave another algorithm with an improved running
time of O(n2). It is a rather long-standing and intriguing open problem whether the
shortest path on a convex polytope can be computed in subquadratic time. This
has motivated the problem of finding near-linear algorithms that produce only an
approximation of the shortest path. The first result in this direction is by Hershberger
and Suri [12]. They present a simple algorithm that runs in O(n) time and computes
a path whose length is at most 2dP (s, t). Using the algorithm of [12], Agarwal et
al. [1] present a relatively simple algorithm that computes an ε-approximate shortest
path (i.e., a path on ∂P between two points s, t ∈ ∂P whose length is at most
(1 + ε)dP (s, t)) for any prescribed 0 < ε ≤ 1, where the running time of the algorithm
is O(n log (1/ε)+1/ε3). In a companion paper [11], we present an improved algorithm,
with O(n) preprocessing time that answers two-point ε-approximate shortest path
queries in O((log n)/ε1.5 + 1/ε3) time for any pair of points s, t ∈ ∂P . Recently,
Varadarajan and Agarwal [24] gave a subquadratic time algorithm that computes a
constant approximation to the shortest path on a polyhedral terrain. Other recent
works by Mata and Mitchell [14] and also by Lanthier, Maheshwari, and Sack [13]
implement various heuristics for computing approximate shortest paths on weighted
terrains (i.e., each face f is being assigned a weight wf , such that the distance between
any two points a, b ∈ f is wf · |ab|). Those programs give satisfactory results in
practice, which are within an order of magnitude better than their worst case analysis.

In this paper, extending our work in [11], we present a new general technique for
constructing a data structure that one can use to answer ε-approximate shortest path
queries, for a source point s and approximation factor ε > 0 fixed in advance. Using
this technique, we solve two problems involving approximate shortest path maps in
R3.

Approximate shortest path maps. The exact algorithms of [16, 22] receive
as input a convex polytope or a polyhedral surface P and a fixed source point s on
P, and they compute a map (i.e., a subdivision of P) of complexity Θ(n2) that can
be used to answer (exact) shortest path queries from s to any point on P (along P)
in O(log n) time (such a query reports the length of the shortest path; reporting the
path itself might require more time). This shortest path map can be stored in linear
space, for the case of a convex polytope, by using a persistent data structure; see [17].
However, the time required to compute this compact representation of the shortest
path map is quadratic in the worst case. This raises the problem of computing a map
of near-linear size for approximate shortest path queries from s. We show in section
3 that this is indeed possible: Given a polyhedral surface P with n edges in R3, a
source point s ∈ P, and a prescribed 0 < ε ≤ 1, there exists a map (a subdivision of
P) of complexity O((n/ε) log (1/ε)), such that for any t ∈ P, one can compute the
length of an ε-approximate shortest path between s and t on P in O(log (n/ε)) time
by locating t in the map.

1184 SARIEL HAR-PELED

We present an algorithm that constructs such an approximation map in O(n2 log n
+(n/ε) log(1/ε) log(n/ε)) time for the case of a polyhedral surface, and in O((n/ε3)
log (1/ε)+(n/ε1.5) log (1/ε) log n) time for the case of a convex polytope. Note that if
P is a convex polytope, then our previous result [11] provides an alternative structure
with similar properties. However, the dependence of the query time on ε is much
better in the method we present here.

Approximate spatial shortest path maps. In section 4, we present a similar
result for ε-approximate shortest paths among polyhedral obstacles in R3. Let O be
a set of polyhedral obstacles in R3 with a total of n edges, s a source point in R3,
and 0 < ε ≤ 1 a parameter. We show that there exists a spatial subdivisionM of R3

such that for any t ∈ R3 one can compute in O(log (n/ε)) time the length of an ε-
approximate shortest path between s and t that avoids the interiors of the obstacles by
performing a spatial point-location query with t inM. The space needed to compute
and preprocess M for spatial point-location is O(n2/ε4+δ), for any δ > 0, and the
preprocessing time is

O

(
n4

ε2

(
β(n)

ε4
log

n

ε
+ log (nρ) log(n log ρ)

)
log

1

ε

)
,

where ρ is the ratio of the length of the longest edge in O to the Euclidean dis-

tance between s and t, β(n) = α(n)
O(α(n))O(1)

, and α(n) is the extremely slowly
growing inverse of the Ackermann function. This algorithm uses the algorithm of
Clarkson [7] that computes an ε-approximate shortest path between two given points

in O
(
n2

ε4 β(n) log n
ε + n2 log (nρ) log(n log ρ)

)
time.

The paper is organized as follows. Section 2 introduces the notion of a distance
function and shows how to compute a “small-size” additive weighted Voronoi diagram
that enables us to ε-approximate this function. We present two applications of this
result. In section 3, we present the algorithm mentioned above for constructing a map
for approximate shortest path queries from a fixed source on a convex polytope or a
polyhedral surface in R3. In section 4 we present the algorithm mentioned above for
constructing a spatial subdivision for approximate shortest path queries from a fixed
source among polyhedral obstacles in R3. We conclude in section 5 by mentioning a
few open problems.

2. Approximating a distance function by a weighted Voronoi diagram.
In this section, we introduce the notion of a distance function and show how to
compute a “small-size” additive weighted Voronoi diagram that approximates the
function up to a factor of 1 + ε. We use this result in sections 3 and 4 to derive our
two main results.

Definition 2.1. Let I be a subset of Rd. A function f : I → R is a distance
function on I if

(i) f(x) + f(y) ≥ |xy| for any x, y ∈ I,
(ii) f(x) + |xy| ≥ f(y) for any straight segment xy ⊆ I,

where |xy| denotes the Euclidean distance between x and y.

Thus, a distance function has to satisfy two types of triangle inequalities. Since
these inequalities are satisfied by the Euclidean distance from any fixed point, a
distance function can be regarded as a certain generalization of the Euclidean distance.

Example 2.1. Figure 2.1 illustrates some of the geometric restrictions imposed
on a univariate distance function.

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1185

g(x′) = f(x) + |xx′|

f(x)

f

−f(x) + |xx′|

x′x

−f(x)

Fig. 2.1. The graph of the distance function f must lie inside the gray area. This implies that
the function g(x′) = f(x) + |xx′| approximates f(x′) “well” in a small neighborhood of x and for
sufficiently large values of x′.

Example 2.2. (i) Let P be a polyhedral surface in R3, and let s be a source point
on P. For any t ∈ P, let dP,s(t) denote the length of a shortest path between s and t
on P. It is easy to verify that dP,s(t) is a distance function on P.

(ii) Let O be a collection of pairwise-disjoint polyhedral obstacles in R3, and let s
be a point in FP (O) = R3 \∪O∈O intO. Let FP (O, s) denote the connected component
of FP (O) that contains s (i.e., the set of all the points in R3 that can be connected
to s by a path that avoids the interiors of the obstacles of O).

For any t ∈ FP (O, s), we denote by dO,s(t) the length of a shortest path between
s and t that avoids the interior of the obstacles of O. Clearly, dO,s is a distance
function on FP (O, s).

Definition 2.2. A pair S = (S,w) is a weighted set of points if S = {p1, . . . , pm}
is a finite set of points in Rd, and w(·) is a function assigning nonnegative weights
to the points of S. We define the distance of a point p from the point pi to be
V(pi,w(pi))(p) = |ppi| + w(pi). We define VS(p) = minmi=1 V(pi,w(pi))(p). The func-

tion VS(p) induces a natural subdivision VS of Rd into cells, known as the (additive)
weighted Voronoi diagram of S, such that the ith cell is the locus of all points closest
to pi in this distance function. As is well known, in the planar case VS has complexity
O(m), and it can be computed in O(m logm) time (see [10]).

Remark 2.1. For d ≥ 3, the complexity of an additive weighted Voronoi diagram
of m points in Rd is O

(
mbd/2c+1

)
. This follows by reducing the computation of the

diagram to the computation of a convex hull in d + 2 dimensions. Furthermore, we
can compute the diagram in O(mbd/2c+1) time (see [2]).

We next show how to approximate a distance function f(·) by a weighted Voronoi
diagram. First, we compute a global minimum p0 of f. As illustrated in Figure
2.1, the function V(p0,f(p0))(p) approximates f(p) “well” for p sufficiently close to, or

1186 SARIEL HAR-PELED

sufficiently far from, p0. In other words, f is well approximated in these regions by
the weighted Voronoi diagram of the single site p0 with weight f(p0). By adding extra
sites to the diagram, we can make the distance induced by the resulting diagram an
ε-approximation to f everywhere, as will be shown next.

Definition 2.3. Given a point p ∈ Rd, and r ≥ 0, let B(p, r) denote the closed
ball of radius r centered at p, and let B(p, r) denote the set Rd \ B(p, r). For r′ > r,
let A(p, r, r′) denote the annulus (or shell) B(p, r′) \B(p, r).

The following sequence of technical lemmas provide the basis for approximating
a given distance function by a weighted Voronoi diagram. The following lemmas are
stated for arbitrary dimension d. We will apply them with d = 1, 2, or 3.

Lemma 2.4. Let I be a convex subset of Rd, f a distance function defined over
I, and S = (S,w) a weighted set such that S ⊆ I and f(x) ≤ w(x) for all x ∈ S.
Then f(t) ≤ VS(t) for all t ∈ I.

Proof. Let t be any point of I, and let x denote the point of S realizing VS(t).
Then VS(t) = w(x) + |tx| ≥ f(x) + |tx| ≥ f(t).

Formalizing the intuition behind Figure 2.1, we have the following.
Lemma 2.5. Let I be a convex subset of Rd, f a distance function defined over

I, 0 < ε ≤ 1 a parameter, p a point in I, and w a real number such that f(p) ≤ w ≤
(1 + ε/8)f(p). Then f(t) ≤ V(p,w)(t) ≤ (1 + ε)f(t) for all t in

I ∩
(
B

(
p,
εf(p)

8

)
∪B

(
p,

6f(p)

ε

))
.

Proof. The first inequality f(t) ≤ V(p,w)(t) follows immediately from Lemma 2.4.

As for the other inequality, for t ∈ I ∩B(p, εf(p)
8) we have

w

(1 + ε/8)
− εw

8
≤ f(p)− |pt| ≤ f(t) ≤ V(p,w)(t) = w + |pt| ≤ w +

εw

8
.

However,

w + εw/8
w

1+ε/8 − εw/8
=

1 + ε/8
1

1+ε/8 − ε/8
≤ 1 + ε/8

1− ε/8− ε/8 =
1 + ε/8

1− ε/4 ≤ 1 + ε

since ε ≤ 1. Thus, V(p,w)(t) ≤ (1 + ε)f(t) for all t ∈ I ∩B(p, εf(p)/8).

For t ∈ I ∩B(p, 6f(p)/ε), we have

|pt| − w ≤ |pt| − f(p) ≤ f(t) ≤ V(p,w)(t) = |pt|+ w.

However,

|pt|+ w

|pt| − w = 1 +
2w

|pt| − w ≤ 1 +
2w

3w/ε− w ≤ 1 +
2w

2w/ε
= 1 + ε

since |pt| ≥ 6f(p)/ε ≥ 3w/ε. Thus, V(p,w)(t) ≤ (1 + ε)f(t) for any such t.

Lemma 2.6. Let I be a convex subset of Rd, f a distance function defined over I,
0 < ε ≤ 1 a parameter, and p a point in I. Then for any t ∈ I∩B(p, εf(p)/9) and any
number wt such that f(t) ≤ wt ≤ (1+ε/8)f(t), we have f(p) ≤ V(t,wt)(p) ≤ (1+ε)f(p).

Proof. Since |pt| ≤ εf(p)/9, it follows that f(t) ≥ f(p)− |pt| ≥ f(p) (1− ε/9).
Thus,

εf(t)

8
≥ ε

8
f(p)

(
1− ε

9

)
≥ εf(p)

9
≥ |pt|,

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1187

implying that p ∈ B(t, εf(t)/8). By Lemma 2.5, we have f(p) ≤ V(t,wt)(p) ≤ (1 +
ε)f(p).

The preceding lemmas suggest the following strategy for constructing an approxi-
mation of a distance function f over (a convex portion of) Rd: Pick a point p such that
f(p) is close to the global minimum of f. The Voronoi diagram V(p,w) approximates f
“well” near p and outside a larger ball centered at p, where w is an approximation of
f(p). We approximate f in the space between those two balls by partitioning it into
concentric spherical shells whose radii form an increasing geometric progression and
by covering each shell by a uniform grid (whose unit length increases with the radius
of the shell). In this manner, the number of points needed is only a function of ε (the
approximation factor) and d.

When approximating a distance function on a convex subset I of Rd, we have to
cope with the possibility that sites might be placed outside I. We overcome this by
projecting all such sites onto the boundary of I.

Definition 2.7. Let I be a convex subset in Rd, and let x be a point in Rd. Let
ν(x, I) denote the projection of x onto I; that is, ν(x, I) is the closest point (in the
Euclidean distance) in I to x. Clearly, if x ∈ I, then ν(x, I) = x.

When x is fixed, we call ν(x, I) the hook point of I.

Definition 2.8. Let r ≥ r′ > 0 be real numbers, let p be a point in Rd, and let I
be a convex set in Rd. We denote by S(p, I, r, r′) the set Ir′ ∩B(p, r) ∩ ((r′/

√
d)Zd),

where Zd is the integer lattice and Ir′ = ∪q∈IB(q, r′) is the set of all points in Rd that
are at distance at most r′ from some point of I. Clearly, |S(p, I, r, r′)| = O((r/r′)d)
(with a constant of proportionality depending on d).

The following technical lemma shows how to pick the sites of the additive weighted
Voronoi diagram so that it ε-approximates a given distance function.

Lemma 2.9. Let I be a convex subset of Rd, f : I → R a distance function,
0 < ε ≤ 1 a parameter, c a positive constant, and p a point in I such that f(t) ≥
f(p)/c for all t ∈ I. Then one can compute a set S in I of size O((1/ε)d log(1/ε))
(the constant of proportionality depends on c) such that p ∈ S, and for any weight
function w on S satisfying f(x) ≤ w(x) ≤ (1 + ε/8)f(x) for all x ∈ S, we have
f(t) ≤ VS(t) ≤ (1 + ε)f(t) for all t ∈ I, where S = (S,w).

Proof. Let wp be any number satisfying f(p) ≤ wp ≤ (1 + ε/8)f(p).

Let ri = (2i + 1)wp, for i = 1, . . . ,m, where m = dlog2(6/ε)e. Let A1 = B(p, r1),
let Ai = A(p, ri−1, ri), for i = 2, . . . ,m, and let Am+1 = B(p, rm). Clearly, I =
∪m+1
i=1 (I ∩ Ai).

Let r′1 = εwp/(18c) and let r′i = ε2i−1wp/9 for i = 2, . . . ,m. Let S′i = Ai ∩
S(p, I, ri, r′i) for i = 1, . . . ,m. Let S = {p} ∪⋃mi=1 Si, where Si = {ν(x, I)|x ∈ S′i},
for i = 1, . . . ,m. See Figure 2.2 for an illustration of the set S.

Let w be any weight function such that f(x) ≤ w(x) ≤ (1 + ε/8)f(x) for any
x ∈ S, and let S = (S,w).

We claim that S is the required weighted set. Indeed, let t ∈ I. If t ∈ Am+1,
then |pt| ≥ (2m + 1)wp ≥ 6f(p)/ε. Thus, t ∈ B(p, 6f(p)/ε), and by Lemmas 2.4 and
2.5, we have f(t) ≤ VS(t) ≤ V(p,wp)(t) ≤ (1 + ε)f(t).

If t ∈ B(p, rm), let Ai be the shell containing t. Let x’ be the closest point to t
in S′i. Let x = ν(x′, I). By the definition of ν and S′i and by the convexity of I, we
have |tx| ≤ |tx′| ≤ r′i (see Figure 2.3).

If i = 1, then the inequality f(t) ≥ f(p)/c ≥ wp/2c implies that |tx| ≤ r′1 =
εwp/(18c) ≤ εf(t)/9. Thus, x ∈ B(t, εf(t)/9).

If i > 1, then we also have |tx| ≤ r′i = ε2i−1wp/9 ≤ εf(t)/9, since f(t) ≥

1188 SARIEL HAR-PELED

A4

A3 A2 p

Fig. 2.2. Illustration of the proof of Lemma 2.9. We pick our sites to be on a uniform grid
inside each concentric shell around p.

t

h

s

Fig. 2.3. |st| ≥ |ht| for h = ν(s, I).

|pt| − f(p) ≥ (2i−1 + 1)wp − f(p) ≥ 2i−1wp. Thus, x ∈ B(t, εf(t)/9).
By Lemmas 2.6 and 2.4, we have f(t) ≤ VS(t) ≤ V(x,w(x))(t) ≤ (1 + ε)f(t).
As for the size of S, we have

|S| = O

(
m∑
i=1

(
ri
r′i

)d)
= O

((
3wp

εwp/(18c)

)d
+

m∑
i=2

(
(2i + 1)wp
ε2i−1wp/9

)d)

= O

(
1

εd
log

1

ε

)
.

To approximate a distance function f(·) using the constructive proof of Lemma
2.9, we need to find a point which is, within a constant factor, a global minimum of f
over the given range. The following lemma shows that this can be easily done if f has
a known zero point outside the given range.

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1189

Lemma 2.10. Let I ′ be a subset of Rd, f : I ′ → R a distance function, 0 < ε ≤ 1
a parameter, I a convex subset of I ′, and s a point in I ′ \I such that f(s) = 0. Then
f(t) ≥ f(h)/2 for all t ∈ I, where h = ν(s, I).

Proof. Let t be any point in I. Since h is the closest point in I to s and I is convex,
it easily follows that |st| ≥ |ht| (see Figure 2.3). Since f(t) = f(t) + f(s) ≥ |st|,
we have f(t) ≥ |ht|. Moreover, the segment ht is contained in I, implying that
f(h) ≤ f(t) + |ht| ≤ 2f(t).

Remark 2.2. The lemma also holds when s ∈ I, but then it only yields the trivial
bound f(t) ≥ 0 for all t ∈ I. Then, of course, s is the required global minimum.

Remark 2.3. Let I ′ be a set in Rd, I a convex subset of I ′, f : I ′ → R a distance
function, 0 < ε ≤ 1 a parameter, and s a point of I ′ such that f(s) = 0. Computing
a weighted set S = (S,w) such that the weighted Voronoi diagram induced on I
approximates f up to a factor of (1 + ε) can be accomplished by following the proof
of Lemma 2.9 in four stages:

(i) Compute the point p = ν(s, I). By Lemma 2.10, p is “almost” a minimum of f
on I.

(ii) Compute an (ε/8)-approximation wp to f(p) (as prescribed in the lemma).
(iii) Construct the set S of points in I, as prescribed in the proof.
(iv) Approximate the distance function values of all the points of S, up to a factor of

1 + ε/8, and use these values as the weights for the points of S.

Remark 2.4. The set of points S produced in the proof of Lemma 2.9 is made
out of O(log(1/ε)) subsets (i.e., S1, . . . , Sm) such that f(x) ≤ cf(t), for all x, t ∈ Si,
for 1 ≤ i ≤ m, where c is an appropriate constant. This property enables us, in the
case of shortest paths on a convex polytope, to approximate the value of the distance
function to all the points of Si simultaneously, yielding a more efficient algorithm.
See Remark 3.1 for the details.

Remark 2.5. Let I ′ be a subset of Rd, and let f, g be two distance functions
defined over I ′. It is easy to verify that h(x) = max(f(x), g(x)) is also a distance
function. This implies that the distance function induced by any furthest neighbor
Voronoi diagram of a finite set of points in Rd is a distance function in Rd. Hence,
by Lemma 2.9 we have the following.

Corollary 2.11. Any furthest neighbor Voronoi diagram of points in Rd can be
ε-approximated by a (nearest neighbor) weighted Voronoi diagram with O((1/εd) log (1/ε))
sites.

We can strengthen Lemma 2.9 by noticing that in the cases to which we are going
to apply it, our distance function is the length of a shortest path from a fixed source
point to the given point of I. In such cases, if the source point lies outside I, then a
shortest path connecting any point in I to our source point must first pass through
the boundary ∂I. We next show that if we are able to ε-approximate the distance on
the boundary of I, then we can trivially ε-approximate the distance function to all
the points of I.

Definition 2.12. Let I be a convex polytope in Rd. We call a function f : I → R
boundary-induced on I, if f is a distance function, and for any t ∈ I, there exists a
point x ∈ ∂I such that f(t) = f(x) + |tx|.

Definition 2.13. Given a convex polytope I in Rd, we denote by φ(I) the set
of all the facets ((d− 1)-faces) of I.

Lemma 2.14. Let I be a convex polytope in Rd, f : I → R a boundary-induced
distance function, and 0 < ε ≤ 1 a parameter. For any facet F of I, let S(F) =
(SF , wF) be a weighted set of points in F such that f(t) ≤ VS(F)(t) ≤ (1 + ε)f(t),

1190 SARIEL HAR-PELED

for all t ∈ F . Then f(t) ≤ VS(t) ≤ (1 + ε)f(t) for all t ∈ I, where S = (S,w) =
∪F∈φ(I)S(F).

Proof. For any t ∈ I, let x be the point in ∂I satisfying f(t) = f(x) + |tx|, and
let F be a facet of I that contains x. By Lemma 2.4, we have

f(x) + |tx| = f(t) ≤ VS(t) ≤ VS(x) + |tx| ≤ VS(F)(x) + |tx| ≤ (1 + ε)f(x) + |tx|
≤ (1 + ε)(f(x) + |tx|) = (1 + ε)f(t).

Remark 2.6. Let I ′ be a set in Rd, I a convex subset of I ′, f : I ′ → R a
boundary-induced distance function, 0 < ε ≤ 1 a parameter, and s a point of I ′ such
that f(s) = 0. Computing a weighted set S = (S,w) such that the weighted Voronoi
diagram induced on I approximates f up to a factor of (1+ε), can be done by applying
the algorithm described in Remark 2.3 for each facet of I. By Lemma 2.14, the union
of all these weighted sets has the required properties.

3. Approximate shortest path map on a polyhedral surface in R3. Let
P be a given polyhedral surface in R3 with n edges, let s be a source point on P,
and let 0 < ε ≤ 1 be a given parameter. In this section, we give an algorithm for
constructing an approximation map on P of complexity O((n/ε) log(1/ε)) such that
given any t ∈ P, one can compute in O(log(n/ε)) time a distance ∆P(s, t) satisfying
dP(s, t) ≤ ∆P(s, t) ≤ (1 + ε)dP(s, t).

Although the following description is rather technical, one has to bear in mind
that it is a straightforward implementation of the technique of Section 2. Namely,
for each edge of our domain (polyhedral terrain, or a convex polytope) we compute a
“small” set of points, the (geodesic) distance from the source point to all those points,
and we construct the weighted additive Voronoi diagram that those points induce on
each face of the domain.

Definition 3.1. A polyhedral surface P in R3 is the union of a collection of
planar polygonal faces, with their edges and vertices, such that each edge is incident
to at most two faces and any pair of faces intersect either at a common edge, a
common vertex, or not at all. A face is a simple closed polygon (i.e., it contains its
boundary), and an edge is a closed segment (i.e., it contains its endpoints). Without
loss of generality we assume that all the faces are triangular (since simple polygons
may be triangulated in linear time [4] and the number of new edges introduced by the
triangulation is linear in the number of vertices). We also assume that P is connected.

A polyhedral terrain is a polyhedral surface that intersects every vertical line in
at most a single point.

Definition 3.2. Given a polyhedral surface P in R3 and any two points s, t on
P, we denote by dP,s(t) the length of a shortest path between s and t on P.

As noted in Example 2.2 (i), dP,s(·) is a distance function on P. Moreover, if F
is a face of P and s /∈ F , then dP,s is boundary induced on F. (If s ∈ F , then dP,s(t)
is the Euclidean distance |st|.)

The following theorem is the main result of this section.
Theorem 3.3. Let P be a polyhedral surface in R3 with n edges, s a source

point on P, and 0 < ε ≤ 1 a real parameter. Then there exists a subdivision Π of P
of complexity O((n/ε) log (1/ε)), which facilitates ε-approximate shortest path queries
from s on P. That is, for any query point t on P, one can compute, in O(log (n/ε))
time, a distance ∆P(s, t) such that dP,s(t) ≤ ∆P(s, t) ≤ (1 + ε) dP,s (t).

The map can be computed in O(n2 log n+(n/ε) log (1/ε) log (n/ε)) time if P is an
arbitrary polyhedral surface, and in O((n/ε3) log (1/ε) + (n/ε1.5) log (1/ε) log n) time
if P is a convex polytope.

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1191

The space used by the algorithm is O((n/ε) log (1/ε)) if P is either a convex
polytope or a polyhedral terrain, and O(n2 + (n/ε) log (1/ε)) otherwise.

Proof. For each face F of P that does not contain s, we construct a weighted
Voronoi diagram that approximates dP,s on F. By Remark 2.6, this can be done by
constructing a weighted Voronoi diagram on each edge of P, as outlined in Remark
2.3.

For the general case, we compute the exact shortest path map of s on P, using
the algorithm of [16], in O(n2 log n) time. The exact map enables us to compute the
shortest distance from s to any point of P in O(log n) time. Thus, computing the
distances from s to the n hooks of the edges of P takes additional O(n log n) time.
The hook point of an edge is the closest point of the edge to s, and it can be computed
in O(1) time.

For the convex case, we approximate the distances on P to all the hooks on the
edges of P, up to a factor of (1+ε/8). This takes O(n/ε3 +(n/ε1.5) log n) time, using
the algorithm of [1, section 6].

For each edge e of P, we compute a set Se of O((1/ε) log (1/ε)) points on e, as
specified in the proof of Lemma 2.9, taking the corresponding p to be the hook of e
and wp to be the approximated (exact in the nonconvex case) distance along P from
s to p. Let S = ∪eSe, taken over all edges e of P.

We now compute (or approximate) the distances from s to all the points in S. For
the nonconvex case, this can be done in O((n/ε) log (1/ε) log n) time, using the exact
shortest path map.

For the convex case, we compute approximate distances from s to all points of S,
up to a factor of (1 + ε/8). Using the observation of Remark 2.4, we partition S into
O(n log (1/ε)) sets, each of size O(1/ε), such that the required distances to the points
in each such set are within a fixed constant factor of each other (namely, for each edge
e of P, the set Se is decomposed into O(log(1/ε)) sets, as in the proof of Lemma 2.9).
Using the algorithm described in Remark 3.1 below, we can compute the distances
from s to all the points of S in O((n/ε3) log (1/ε) + (n/ε1.5) log (1/ε) log n) time.

Next, we compute, for each face F of P, the weighted Voronoi diagram induced
by the weighted points of S that lie on ∂F . This takes O((n/ε) log2 (1/ε)) overall
time (see [10]), since each face contains O((1/ε) log (1/ε)) points of S. Let Π be the
resulting map, consisting of the union of all those facial Voronoi diagrams.

By Lemmas 2.9 and 2.14, the map Π on P has the required properties. More-
over, we can preprocess each face F of P in O((1/ε) log2 (1/ε)) time such that point
location queries on F can be answered in O(log (1/ε)) time (see [18]). Overall, this
preprocessing takes O((n/ε) log2 (1/ε)) time.

To answer an approximate shortest path query for a query point q, the algorithm
must locate the face of P containing q. If P is a polyhedral terrain, we project
the terrain into the xy-plane and preprocess it, in O(n log n) time, for planar point
location. If P is a convex polytope, it can be preprocessed in linear time to answer
point location queries in O(log n) time (see [9]). Otherwise, we preprocess P for
spatial point-location in O(n2 log n) time and O(n2) space with O(log n) query time,
using the algorithm of [23].

Given any query point q on P, the algorithm computes the face F of P that
contains q in O(log n) time. Locating the face of the subdivision Π that contains q
takes an additional O(log (1/ε)) time. Thus, ε-approximate shortest path queries for
P can be answered in O(log (n/ε)) time. (If the face containing q is already known,
the query time reduces to O(log (1/ε)).)

1192 SARIEL HAR-PELED

Definition 3.4. Let P be a convex body in R3. An outer path of P is a curve γ
connecting two points on ∂P and disjoint from the interior of P.

Remark 3.1. Let P be a convex polytope in R3, s a source point on P, T a set
of points on P, and 0 < ε ≤ 1 a prescribed parameter. One can ε-approximate the
length of the shortest path from s to all the points of T on P, in O((n + |T |)/ε3 +
((n+ |T |)/ε1.5) log (n+ |T |)) time, by adding the points of T as vertices to P and by
using the algorithm of [1, section 6].

The algorithm of [1] works by computing an approximation polytope for each
point of T and by computing the exact distance from s to the point on this polytope.

Moreover, suppose that T can be partitioned into m sets T1, . . . , Tm such that
dP,s(t) ≤ c · dP,s(t′) for all t, t′ ∈ Ti and for each i = 1, . . . ,m, where c is a prescribed
constant and all the points of Ti belong to the same edge of P, for any fixed i =
1, . . . ,m. Then it is possible to speed up the above algorithm, as follows. Instead
of constructing an approximation polytope for each destination point separately, we
construct an approximation polytope that can be used to approximate the distances
from s to all the points of Ti, for i = 1, . . . ,m. This is done by ensuring that all
the points of Ti lie on the boundary of the approximation polytope calculated by
the algorithm, which can be enforced by intersecting it with a supporting plane of P
passing through the edge containing the points of Ti (adding at most one new face
to the approximation polytope). We also need to use a more refined approximation
polytope, so as to achieve the claimed error bound, but since c is a constant this
does not change the asymptotic complexity of the algorithm. See [1] for the technical
details.

This improves the running time to

O

(
n+

m

ε3
+

m

ε1.5
log n+

|T |
ε1.5

)
by constructing an approximation polytope for the points of Ti (in O(m

ε1.5 log n) time),
computing the exact distance map from the source point on the approximation poly-
tope (in O(1/ε3) time), and extracting the shortest path to each point of Ti, repeating
all this, for T1, . . . , Tm. Moreover, for each point t ∈ Ti, the algorithm computes a
polygonal outer path of P, made up of O(1/ε1.5) segments, that realizes the approxi-
mated distance.

Remark 3.2. The algorithm of [16] works for arbitrary polyhedral surfaces; in
particular, it is not restricted to polyhedral terrains. Thus, the algorithm of Theorem
3.3 also works for general polyhedral surfaces.

Remark 3.3. For a convex polytope P with n edges in R3, one can compute
an approximation map that can be used to compute an outer path that realizes the
approximate distance. This is done by modifying the algorithm of Theorem 3.3 such
that it stores an outer path from the source point to each of the constructed sites,
where the outer path realizes its ε-approximate distance. Such a path is readily
available from the procedure used to compute the approximate distance to the site,
and the complexity of such a path is O(1/ε1.5) (see [1]). The space needed to store
the extended approximation map is O(n/ε2.5 log (1/ε)), and the computation time
remains O((n/ε3) log(1/ε) + (n/ε1.5) log (1/ε) log n).

The new map can be used to answer approximate shortest path queries, in
O(log (n/ε)) time, and also compute, in additional O(1/ε1.5) time, an outer path
of the convex polytope realizing this distance. Such an outer path can be projected
onto the boundary of the convex polytope in additional O

(
n log (1/ε) + 1/ε3

)
time,

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1193

resulting in a path on ∂P which is an ε-approximation to the shortest path (see [1]).
Note, however, that the performance of the enhanced data structure is poorer in terms
of both storage and query time.

4. Constructing spatial approximate shortest path maps in R3. Let O
be a collection of pairwise-disjoint polyhedral obstacles in R3, s a source point in
R3 \ int∪ O, and 0 < ε ≤ 1 a parameter. In this section, we present an algorithm
for preprocessing O such that for any point in R3 (or, more precisely, for any “free”
point that can be reached from s without penetrating an obstacle) one can compute
in O(log(n/ε)) time a distance ∆O,s(t) satisfying dO,s(t) ≤ ∆O,s(t) ≤ (1 + ε)dO,s(t),
where dO,s(t) is the length of a shortest path between s and t that avoids the interiors
of the obstacles.

The preprocessing time of the algorithm is roughly O(n4/ε6), which shows that
the problem of approximating the distance from a single source to all the “free” points
in R3 is not much harder (computationally) than approximating the distance between
any specific pair of points (which can be done in roughly O(n2/ε4) time (see [7])). In
fact, for a fixed source point and many destination points, our algorithm will actually
be faster. The problem of computing the exact distance between two points in R3

among polyhedral obstacles is NP-hard, as shown by Canny and Reif [3], and the
fastest available algorithms for this problem run in time that is exponential in the
total number of obstacle vertices [20, 21, 22].

Definition 4.1. Let O be a collection of pairwise-disjoint polyhedral obstacles
with a total of n edges in R3 and s a source point in FP (O) = R3 \ int ∪O∈OO. Let
FP (O, s) denote the set of all points in FP (O) that can be connected to s by a path
that avoids the interiors of the obstacles of O.

For any t ∈ FP (O, s), as above, we denote by dO,s(t) the length of a shortest path
between s and t that avoids the interiors of the obstacles of O.

As noted in Example 2.2 (ii), dO,s(·) is a distance function over FP (O, s), and
for any convex set I ⊆ FP (O, s) such that s /∈ I, the function dO,s(·) is boundary
induced over I.

Theorem 4.2 (Clarkson [7]). Given a set O of polyhedral obstacles in R3, and
points s and t, an ε-approximate path between s and t that does not penetrate into any
obstacle in O can be computed in

O

(
n2

ε4
β(n) log

n

ε
+ n2 log (nρ) log(n log ρ)

)
time, where n is the number of obstacle edges, ρ is the ratio of the length of the longest

edge in O to the Euclidean distance between s and t, β(n) = α(n)
O(α(n))O(1)

, and α(n)
is the inverse of the Ackermann function.

The following theorem is the main result of this section.

Theorem 4.3. Let O be a collection of pairwise-disjoint polyhedral obstacles
with n edges in R3, s a source point in FP (O), and 0 < ε < 1 a parameter. Then
a subdivision M of FP (O, s) of complexity O(n2/ε4+δ), for any 1 > δ > 0, can be
computed in

O

(
n4

ε2

(
β(n)

ε4
log

n

ε
+ log (nρ) log(n log ρ)

)
log

1

ε

)
time, where ρ, and β(n) are as above.

1194 SARIEL HAR-PELED

For any query point t ∈ FP (O, s), one can compute in O(log(n/ε)) time a dis-
tance ∆O,s(t) such that dO,s(t) ≤ ∆O,s(t) ≤ (1 + ε) dO,s (t).

Proof. First, we partition FP (O) into O(n2) vertical prisms. This can be easily
done by erecting a vertical wall from each edge of the obstacles. For an edge e of
the obstacles, such a wall is the set of all points in FP (O) that lie on vertical rays
emanating from the edge and not intersecting the obstacles. Let M′′′ denote the
resulting partition of FP (O). It is easy to verify that the complexity ofM′′′ is O(n2)
and that it can be computed in O(n2 log n) time.

We refine M′′′ by further partitioning each cell of M′′′ into vertical triangular
prisms. This is done by projecting each cell ofM′′′ into the xy-plane and by triangu-
lating the resulting polygon in O(m logm) time (see [18]), where m is the number of
vertices of the polygon. For each new edge created, we erect a corresponding vertical
wall inside the cell. Let M′′ be the resulting subdivision of FP (O). Clearly, the
complexity of M′′ remains O(n2), and it can be computed in additional O(n2 log n)
time.

Let Tv be the vertical prism in M′′ that contains s. We construct an adjacency
graph G on the vertical prisms ofM′′. By computing the connected component of G
that contains Tv, one obtains the subdivision M′ =M′′ ∩ FP (O, s).

Each cell I of M′ is a vertical prism, having at most five faces. We can ap-
proximate the distance function dO,s(t) inside I by computing a weighted set SI =
(SI , wI), as specified in the proofs of Lemmas 2.9 and 2.14. To do so, it is necessary to
(ε/8)-approximate the value of dO,s(·) for O((1/ε2) log (1/ε)) points (i.e., the points
of SI). By Theorem 4.2, this takes

O

((
β(n)

ε4
log

n

ε
+ log (nρ) log(n log ρ)

)
n2

ε2
log

1

ε

)
time. The weighted Voronoi diagram VSI induced by SI inside I approximates dO,s
inside I up to a factor of 1 + ε.

Let S = ∪I∈M′SI . Clearly, one can (ε/8)-approximate the distance between s
and all the sites of S in

O

(
n4

ε2

(
β(n)

ε4
log

n

ε
+ log (nρ) log(n log ρ)

)
log

1

ε

)
time.

Let M be the subdivision ∪I∈M′ (VSI ∩ I). We preprocess M for spatial point
location by constructing a two-level spatial point location data structure. First, we
preprocess M′ for point location in O(n2 log n) time, using the algorithm of [23].
Next, we preprocess each cell I of M′ for nearest neighbor queries for the weighted
set SI . By Lemma 4.5, performing this preprocessing for all the cells of M′ takes a
total of O

(
n2/ε4+δ

)
randomized expected time and space, for any δ > 0.

For any query point t ∈ FP (O, s), we can compute in O(log n + log (1/ε)) =
O(log (n/ε)) time the cell ofM that contains t; that is, in O(log (n/ε)) time, one can
compute a distance ∆O,s(t) such that dO,s(t) ≤ ∆O,s(t) ≤ (1 + ε)dO,s(t).

To complete the description and analysis of the algorithm, we next show how to
preprocess a weighted set in R3 so that one can perform efficient nearest neighbor
queries in the additive weighted Voronoi diagram that it induces.

Definition 4.4. Let S = (S,w) be a weighted set in R3. We decompose the
weighted Voronoi diagram VS into “simpler” cells in the following way: For each cell
C in VS, we compute the spherical map SC of the cell by projecting the boundary of the

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1195

cell onto the sphere of directions centered at pC , where pC is the site of C in S. (We use
here the well-known property that C is star-shaped with respect to pC .) We decompose
SC into pseudovertical subcells on the sphere of directions by drawing a meridian arc
upward and downward from each vertex SC and from each locally longitude-extremal
point on any arc of SC , and by extending each of these meridian arcs until it hits
another arc of SC or, failing this, all the way to the poles of the sphere of directions.
Clearly, the complexity of SC is linear in the complexity of cell C.

We project each “vertical” trapezoid in SC back into C to obtain the portion within
C of the cone with apex pC spanned by the trapezoid. This defines a decomposition of
C into simple subcells such that each subcell is uniquely defined by at most six points
of S. We decompose all the cells of VS in a similar manner and let C(S) denote the
resulting subdivision. We call C(S) the spherical decomposition of VS .

For a weighted set R ⊆ S and a subcell T ∈ C(R), a weighted point (p, wp) ∈ S
conflicts with T if there exists a point t ∈ T such that V(p,wp)(t) < VR(t). Let K(S, T)
denote the set of all the points of S that conflict with T . The conflict size of T is
w(S, T) = |K(S, T)|.

Lemma 4.5. Let S = (S,w) be a weighted set of m points in R3 and δ > 0 a
parameter. One can compute, in O(m2+δ) randomized expected time, a data structure
for nearest-neighbor queries, of size O(m2+δ), such that for any point p ∈ R3 one
can compute, in O(logm) time, the cell of VS that contains p, that is, the point in S
realizing the distance VS(p).

Proof. We construct the data structure using a randomized divide and conquer
algorithm. We randomly pick a subset R of S of size r, where r is a parameter to
be specified later. One can compute the weighted Voronoi diagram of R = (R,w),
in O(r2) time, by Remark 2.1 and construct the spherical decomposition C(R) in
O(r2 log r) additional time, using plane sweeping techniques on the sphere of directions
(see [18]).

For each subcell T in C(R), we compute its conflict size w(S, T). Each subcell
in C(R) is uniquely defined by at most six sites in R, and if K(S, T) ∩ R 6= ∅, then
T /∈ C(R). We can thus apply the analysis of Clarkson and Shor. By [8, Corollary
3.8], w(S, T) ≤ c · (n log r)/r for all T ∈ C(R), with probability at least 1/2, where
c > 0 is an appropriate constant. We sample R from S repeatedly until we get a
sample that fulfills this condition. Overall, this stage takes O(mr2 +r2 log r) expected
running time. For each cell T ∈ C(R), we construct recursively a data structure for
point-location in the Voronoi diagram VK(S,T).

For any query point p, locating the subcell T in C(R) that contains p is done by
a brute force search inside C(R) in O(r2) time. Then we compute the point realizing
VS(p) by recursively performing a nearest neighbor query in the data structure com-
puted for VK(S,T). Thus, a query takes Q(m) = Q(c(m log r)/r) + O(r2) time, and
the data structure can be computed in randomized expected time as

T (m) = T (r) +O(r2)T

(
cm log r

r

)
+O

(
mr2 + r2 log r

)
.

Choosing r to be a sufficiently large constant, we have Q(m) = O(logm), and T (m) =
O(m2+δ) (where the constants of proportionality depend on δ). A similar bound holds
for the space required by the algorithm.

Remark 4.1. The only stage in the algorithm of Theorem 4.3 that uses random-
ization is the construction of the spatial point-location data described in Lemma 4.5.
This can be replaced by a deterministic data structure as follows.

1196 SARIEL HAR-PELED

We observe that each spherical cell, in the decomposition described, can be
parametrized by 24 parameters (6 sites and their respective weights). Thus, we define
a range space (S,R), where R is the set of all possible subsets of S that are contained
inside such a spherical cell. It is easy to verify that this is a range space having finite
VC-dimension. By a result of Matoušek [15], we can compute in O(mrO(1)) time a
subset R of S having O(r log r) points, which is (1/r)-net of (S,R). In particular, the
set R can replace the random sample in the proof of Lemma 4.5; see [15]. This yields
a deterministic algorithm with the same time/space complexity as in Lemma 4.5.

Alternatively, one can naively preprocess the Voronoi diagram VS for spatial
point-location directly; see [23]. However, this approach is considerably less efficient
than the approach proposed above.

5. Conclusions. In this paper we have presented two results for computing
approximate maps that facilitate shortest path queries on the surface of a convex
polytope or on a polyhedral surface in 3-space, or among polyhedral obstacles in
3-space. We conclude by mentioning the following open problems:

(i) Can an ε-approximate shortest path between two points on a polyhedral
terrain, or on the surface of a nonconvex polyhedron, be computed in time that is near-
linear in the number of edges? A recent subquadratic solution has been obtained by
Varadarajan and Agarwal [24], but it computes only a constant-factor approximation
to the shortest path.

(ii) Can the exact shortest path between two points on a convex polyhedron be
computed in near-linear time? in subquadratic time?

(iii) Can the methods and techniques used in this paper be extended to handle
shortest path queries for weighted surfaces (as in [13, 14])?

Acknowledgments. The author wishes to thank Pankaj Agarwal and Micha
Sharir for helpful discussions concerning the problems studied in this paper and related
problems. Micha Sharir also suggested Lemma 4.5. The author also wishes to thank
the referees for their comments and suggestions.

REFERENCES

[1] P. Agarwal, S. Har-Peled, M. Sharir, and K. R. Varadarajan, Approximate shortest
paths on a convex polytope in three dimensions, J. Assoc. Comput. Mach., 44 (1997),
pp. 567–584.

[2] F. Aurenhammer, Voronoi diagrams: A survey of a fundamental geometric data structure,
ACM Comput. Surv., 23 (1991), pp. 345–405.

[3] J. Canny and J. H. Reif, New lower bound techniques for robot motion planning problems,
in Proc. 28th IEEE Sympos. Found. Comput. Sci., Los Angeles, 1987, pp. 49–60.

[4] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6 (1991),
pp. 485–524.

[5] J. Chen and Y. Han, Shortest paths on a polyhedron; Part I: Computing shortest paths,
Internat. J. Comput. Geom. Appl., 6 (1996), pp. 127–144.

[6] J. Choi, J. Sellen, and C. K. Yap, Approximate Euclidean shortest path in 3-space, J.
Comput. Geom. Appl., 7 (1997), pp. 271–295.

[7] K. L. Clarkson, Approximation algorithms for shortest path motion planning, in Proc. 19th
ACM Sympos. Theory Comput., New York, 1987, pp. 56–65.

[8] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geom-
etry, II, Discrete Comput. Geom., 4 (1989), pp. 387–421.

[9] D. P. Dobkin and D. G. Kirkpatrick, A linear algorithm for determining the separation of
convex polyhedra, J. Algorithms, 6 (1985), pp. 381–392.

[10] S. J. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987), pp. 153–
174.

CONSTRUCTING APPROXIMATE SHORTEST PATH MAPS 1197

[11] S. Har-Peled, Approximate shortest paths and geodesic diameters on convex polytopes in three
dimensions, in Proc. 13th ACM Sympos. Comput. Geom., Nice, France, 1997, pp. 359–365.

[12] J. Hershberger and S. Suri, Practical methods for approximating shortest paths on a convex
polytope in R3, in Proc. 6th ACM-SIAM Sympos. Discrete Algorithms, San Francisco,
1995, pp. 447–456.

[13] M. Lanthier, A. Maheshwari, and J.-R. Sack, Approximating weighted shortest paths on
polyhedral surfaces, in Proc. 13th ACM Sympos. Comput. Geom., Nice, France, 1997,
pp. 274–283.

[14] C. Mata and J. Mitchell, A new algorithm for computing the shortest paths in planar sub-
divisions, in Proc. 13th ACM Sympos. Comput. Geom., Nice, France, 1997, pp. 264–273.

[15] J. Matoušek, Approximations and optimal geometric divide-and-conquer, in Proc. 23rd ACM
Sympos. Theory Comput., New Orleans, 1991, pp. 505–511. Also to appear in J. Comput.
Syst. Sci.

[16] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem,
SIAM J. Comput., 16 (1987), pp. 647–668.

[17] D. M. Mount, Storing the subdivision of a polyhedral surface, Discrete Comput. Geom., 2
(1987), pp. 153–174.

[18] J. O’Rourke, Computational Geometry in C, Cambridge University Press, Cambridge, U.K.
1994.

[19] C. H. Papadimitriou, An algorithm for shortest path motion in three dimensions, Inform.
Process. Lett., 20 (1985), pp. 259–263.

[20] J. H. Reif and J. A. Storer, A single-exponential upper bound for finding shortest paths in
three dimensions, J. ACM, 41 (1994), pp. 1013–1019.

[21] M. Sharir, On shortest paths amidst convex polyhedra, SIAM J. Comput., 16 (1987), pp. 561–
572.

[22] M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput., 15
(1986), pp. 193–215.

[23] X.-H. Tan, T. Hirata, and Y. Inagaki, Spatial Point Location and Its Applications, Lecture
Notes in Comput. Sci. 450, Springer-Verlag, New York, 1990, pp. 241–250.

[24] K. Varadarajan and P. Agarwal, Approximating shortest paths on a nonconvex polyhedron,
in Proc. 38th IEEE Sympos. Found. Comput. Sci., Miami Beach, 1997, pp. 182–191.

NEW LOWER BOUNDS FOR CONVEX HULL PROBLEMS
IN ODD DIMENSIONS∗

JEFF ERICKSON†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1198–1214

Abstract. We show that in the worst case, Ω(ndd/2e−1 +n logn) sidedness queries are required
to determine whether the convex hull of n points in Rd is simplicial or to determine the number of
convex hull facets. This lower bound matches known upper bounds in any odd dimension. Our result
follows from a straightforward adversary argument. A key step in the proof is the construction of a
quasi-simplicial n-vertex polytope with Ω(ndd/2e−1) degenerate facets. While it has been known for
several years that d-dimensional convex hulls can have Ω(nbd/2c) facets, the previously best lower
bound for these problems is only Ω(n logn). Using similar techniques, we also obtain simple and
correct proofs of Erickson and Seidel’s lower bounds for detecting affine degeneracies in arbitrary
dimensions and circular degeneracies in the plane. As a related result, we show that detecting
simplicial convex hulls in Rd is dd/2esum-hard in the sense of Gajentaan and Overmars.

Key words. computational geometry, convex polytopes, degeneracy, lower bounds, decision
trees, adversary arguments

AMS subject classifications. 68Q25, 68U05, 52B55, 52B05

PII. S0097539797315410

1. Introduction. The construction of convex hulls is one of the most basic and
well-studied problems in computational geometry [2, 3, 5, 10, 11, 12, 13, 15, 17, 18,
29, 34, 35, 38, 39, 47, 41, 45, 43, 44, 48]. Over 20 years ago, Graham described an
algorithm that constructs the convex hull of n points in the plane in O(n log n) time
[29]. The same running time was first achieved in three dimensions by Preparata
and Hong [38]. Yao [48] proved a lower bound of Ω(n log n) on the complexity of
identifying the convex hull vertices, in the quadratic decision tree model. This lower
bound was later generalized to the algebraic decision tree and algebraic computation
tree models by Ben-Or [7]. It follows that both Graham’s scan and Preparata and
Hong’s algorithm are optimal in the worst case. If the output size f is also taken into
account, the lower bound drops to Ω(n log f) [34], and a number of algorithms match
this bound both in the plane [34, 12, 10] and in three dimensions [18, 16, 10].

In higher dimensions, the problem is not quite so completely solved. Seidel’s
“beneath-beyond” algorithm [41] constructs d-dimensional convex hulls in O(ndd/2e)
time. After a 10-year wait, Chazelle [15] improved the running time to O(nbd/2c) by
derandomizing a randomized incremental algorithm of Clarkson and Shor [18]; see
also [44]. Since an n-vertex polytope in Rd can have Ω(nbd/2c) facets [27], Seidel’s
algorithm is optimal in even dimensions, and Chazelle’s algorithm is optimal in all
dimensions, in the worst case.

However, several faster algorithms are known when the output size f is also con-
sidered, at least when the input points are in general position. In 1970, Chand and
Kapur [13] described a “gift-wrapping” algorithm that constructs convex hulls in ar-

∗Received by the editors January 27, 1997; accepted for publication (in revised form) September
5, 1997; published electronically March 22, 1999. This research was done while the author was
a graduate student at the University of California at Berkeley, with the support of a Graduate
Assistance in Areas of National Need Fellowship. An extended abstract of this paper was presented
at the 12th Annual ACM Symposium on Computational Geometry [22].

http://www.siam.org/journals/sicomp/28-4/31541.html
†Department of Computer Science, University of Illinois, 1504 W. Springfield Ave., Urbana, Illi-

nois, 61801 (jeffe@cs.uiuc.edu).

1198

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1199

bitrary dimensions in time O(nf); see also [47]. Seidel’s “shelling” algorithm runs
in time O(n2 + f log n) [43]. A divide-and-conquer algorithm of Chan, Snoeyink,
and Yap [12] constructs four-dimensional hulls in time O((n + f) log2 f), and a re-
cent improvement by Amato and Ramos [2] constructs five-dimensional hulls in time
O((n + f) log3 f). In dimensions higher than five, the fastest algorithms are an im-
provement of the gift-wrapping algorithm by Chan [11] with running time O(n log f+
(nf)1−1/(bd/2c+1) polylogn), an extension of Chan, Snoeyink, and Yap’s divide-and-
conquer algorithm [12] with running time O((n+(nf)1−1/dd/2e+fn1−2/dd/2e) polylog
n), and an improvement of Seidel’s shelling algorithm by Matoušek [35] with running
time O(n2−2/(bd/2c+1) polylogn+f log n). For related results, see [6, 13, 17, 18, 34, 45].

Except when f is extremely small or extremely large, there are still large gaps
between all these upper bounds and the lower bound Ω(n log f + f). Moreover, most
of these algorithms compute either the complete face lattice of the convex hull or
a triangulation of its boundary, both of which can be significantly larger than the
number of facets if the input is not in general position. Avis, Bremner, and Seidel [5]
describe families of polytopes on which current convex hull algorithms perform quite
badly, sometimes requiring exponential time (in d) even when the number of facets is
only polynomial.

In this paper, we consider convex hull problems for which the result is a single
integer, or even a single bit, although the convex hull itself may be large. We show
that in the worst case, Ω(ndd/2e−1 + n log n) sidedness queries are required to decide
whether the convex hull of n points in Rd is simplicial or to determine the number
of convex hull facets, where d is any fixed constant. This matches known upper
bounds when d is odd [15]. The only lower bound previously known for either of these
problems is Ω(n log n), following from the techniques of Yao [48] and Ben-Or [7].
When the dimension is allowed to vary with the input size, deciding if a convex hull
is simplicial is coNP-complete [14, 19], and counting the number of facets is #P-hard
[19].

Our lower bounds follow from a straightforward adversary argument. We start by
constructing a set whose convex hull contains a large number of independent degen-
erate facets. To obtain the adversary configuration, we perturb this set to eliminate
the degeneracies, but in a way that the degeneracies are still “almost there.” An ad-
versary can reintroduce any one of the degenerate facets, by moving its vertices back
to their original position, without changing the result of any other sidedness query.

Our argument is similar to earlier arguments of Erickson and Seidel [23]; however,
many of the proofs in that paper were flawed [24]. Our proof technique yields correct
and very simple proofs of Erickson and Seidel’s claimed lower bounds for affine de-
generacy detection in arbitrary dimensions and circular degeneracy detection in the
plane.

The paper is organized as follows. Section 2 contains definitions and some pre-
liminary results. In section 3, we describe some relative complexity results. Section 4
contains the proof of our main theorem. We discuss extensions of our model of com-
putation in section 5. In section 6, we discuss the relevance of our results in light
of existing convex hull algorithms. In section 7, we prove lower bounds for some re-
lated degeneracy-detection problems. Finally, in section 8, we summarize and suggest
directions for further research.

2. Geometric preliminaries.

2.1. Definitions. We begin by reviewing basic terminology from the theory of
convex polytopes. For a more detailed introduction, we refer the reader to Ziegler [49]

1200 JEFF ERICKSON

or Grünbaum [30].
The convex hull of a set of points is the smallest convex set that contains it. A

polytope is the convex hull of a finite set of points. A hyperplane h supports a polytope
if the polytope intersects h and lies in a closed half-space of h. The intersection of a
polytope and a supporting hyperplane is called a face of the polytope. The dimension
of a face is the dimension of the smallest affine space that contains it; a face of
dimension k is called a k-face. The faces of a polytope are also polytopes. Given a
d-dimensional polytope, its (d − 1)-faces are called facets, its (d − 2)-faces are called
ridges, its 1-faces are called edges, and its 0-faces are called vertices.

A polytope is simplicial if all its facets, and thus all its faces, are simplices. A
polytope is quasi simplicial if all of its ridges are simplices, or equivalently, if its facets
are simplicial polytopes. A degenerate facet of a quasi-simplicial polytope is any facet
that is not a simplex.

The basic computational primitive that we consider is the sidedness query : Given
d + 1 points p0, p1, . . . , pd ∈ Rd, does the point p0 lie “above,” on, or “below” the
oriented hyperplane determined by the other d points? Algebraically, the result of a
sidedness query is given by the sign of the following (d + 1) × (d + 1) determinant,
where pij denoted the jth coordinate of pi:∣∣∣∣∣∣∣∣∣

1 p01 p02 · · · p0d

1 p11 p12 · · · p1d

...
...

...
. . .

...
1 pd1 pd2 · · · pdd

∣∣∣∣∣∣∣∣∣ .
The value of this determinant is d! times the signed volume of the simplex spanned
by the points. The algorithms we consider can be modeled as a family of decision
trees, one for each possible value of n, in which every decision is based on the result
of a sidedness query. (We will consider other computational primitives in section 5.)

The orientation of a simplex (p0, p1, . . . , pd) is the result of a sidedness query on
its vertices (in the order presented). If the orientation is zero, we say that the simplex
is degenerate. A set of points is affinely degenerate if any d+ 1 of its elements lie on
a single hyperplane, or equivalently, if the set contains the vertices of a degenerate
simplex. The convex hull of an affinely nondegenerate set of points is simplicial, but
the converse is not true in general—consider the regular octahedron in R3. Note that
any d+ 1 vertices of a degenerate facet are also the vertices of a degenerate simplex.

2.2. The weird moment curve. The weird moment curve in Rd, denoted
ωd(t), is the set of points

ωd(t) = (t, t2, . . . , td−1, td+1),

where the parameter t ranges over the reals. The weird moment curve is similar
to the standard moment curve (t, t2, . . . , td−1, td), except that the degree of the last
coordinate is increased by 1.

If we project the weird moment curve down a dimension by dropping the last
coordinate, we get a standard moment curve. Since every set of points on the standard
moment curve is in convex position, every set of points on the d-dimensional weird
moment curve is in convex position if d ≥ 3. Similarly, since every set of points on the
standard moment curve is affinely nondegenerate, no d points on the d-dimensional
weird moment curve lie on a single (d−2)-flat. It follows immediately that the convex

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1201

hull of any set of points on the weird moment curve is quasi-simplicial; however,
degenerate facets are possible.

Lemma 2.1. Let x0 < x1 < · · · < xd be real numbers. The orientation of the
simplex (ωd(x0), ωd(x1), . . . , ωd(xd)) is given by the sign of

∑d
i=0 xi. In particular,

the simplex is degenerate if and only if
∑d
i=0 xi = 0.

Proof. The orientation of the simplex (ωd(x0), ωd(x1), . . . , ωd(xd)) is given by the
sign of the determinant of the following matrix:

M =

1 x0 x2

0 · · · xd−1
0 xd+1

0

1 x1 x2
1 · · · xd−1

1 xd+1
1

...
...

...
. . .

...
...

1 xd x2
d · · · xd−1

d xd+1
d

 .

The determinant of M is an antisymmetric polynomial of degree
(
d+1

2

)
+ 1 in the

variables xi, and it is divisible by (xi − xj) for all i < j. It follows that

detM∏
i<j(xj − xi)

is a symmetric polynomial of degree 1, and we easily observe that its leading coefficient
is 1. (This polynomial is well defined, since the xi’s are distinct.) The only such

polynomial is
∑d
i=0 xi.

This result, or at least its proof, is hardly new. If we replace the weird moment
curve by any polynomial curve, the orientation of a simplex is given by the sign of
a symmetric Schur polynomial [40]. A determinantal formula for Schur polynomials
was discovered by Jacobi in the mid-1800s [32].1

The next lemma characterizes degenerate convex hull facets on the weird moment
curve. The result is similar to Gale’s “evenness condition” [27], which describes which
vertices of a cyclic polytope form its facets.

Lemma 2.2. Let X be a set of real numbers, and let x0 < x1 < · · · < xd be
elements of X such that

∑d
i=0 xi = 0. The points ωd(x0), ωd(x1), . . . , ωd(xd) are the

vertices of a degenerate facet of conv(ωd(X)) if and only if, for any two elements
y, z ∈ X \ {x0, x1, . . . , xd}, the number of elements of {x0, x1, . . . , xd} between y and
z is even.

Proof. Let h be the hyperplane passing through the points ωd(x0), ωd(x1), . . . ,
ωd(xd). For any real number x, the point ωd(x) lies above, on, or below h according

1Jacobi proved that for any nonnegative integers γ0, γ1, . . . , γd,

∣∣∣∣∣∣∣∣∣∣

xγ0
0 xγ1

0 · · · x
γd
0

xγ0
1 xγ1

1 · · · x
γd
1

..

.
..
.

. . .
..
.

xγ0
d xγ1

d · · · x
γd
d

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

Σγ0 Σγ1 · · · Σγd
Σγ0−1 Σγ1−1 · · · Σγd−1

..

.
..
.

. . .
..
.

Σγ0−d Σγ1−d · · · Σγd−d

∣∣∣∣∣∣∣∣∣∣
·

∏
0≤i<j≤d

(xj − xi),

where Σk is the sum of all possible monomials of total degree k in the variables x0, x1, . . . , xd. In
particular, Σ0 = 1 and Σk = 0 for all k < 0.

1202 JEFF ERICKSON

to the sign of the determinant∣∣∣∣∣∣∣∣∣
1 x x2 · · · xd−1 xd+1

1 x1 x2
1 · · · xd−1

1 xd+1
1

...
...

...
. . .

...
...

1 xd x2
d · · · xd−1

d xd+1
d

∣∣∣∣∣∣∣∣∣ =

 ∏
1≤i<j≤d

(xj − xi)
(d∏

i=1

(x− xi)
)(

x+
d∑
i=1

xi

)

=

 ∏
1≤i<j≤d

(xj − xi)
(d∏

i=0

(x− xi)
)
.

(See the proof of Lemma 2.1.) Since all factors of the form (xj − xi) are positive, the

sign of this determinant is equal to the sign of the polynomial f(x) =
∏d
i=0(x− xi).

The hyperplane h supports conv(ωd(X)) if and only if f(x) has the same sign for all
x ∈ X \ {x0, x1, . . . , xd}.

The polynomial f(x) has degree d+ 1 and vanishes at each xi. Thus, the sign of
f(x) changes at each xi. In more geometric terms, the weird moment curve crosses
the hyperplane h at each of the points ωd(xi). It follows that f(y) and f(z) both have
the same sign if and only if an even number of xi’s lie between y and z.

3. dd/2eSUM hardness. Gajentaan and Overmars [26] define the class of
3SUM-hard problems, all of which are harder than the following base problem:

3sum: Given a set of n distinct integers, do any three sum to zero?

This problem can be easily solved in O(n2) time, which is believed to be optimal, but
the best lower bound in any general model of computation is only Ω(n log n) [7].

Formally, a problem is 3sum-hard if there is a subquadratic reduction from 3sum
to the problem in question. Thus, a subquadratic algorithm for any 3sum-hard
problem would imply a subquadratic algorithm for 3sum, and a sufficiently pow-
erful quadratic lower bound for 3sum would imply similar lower bounds for every
3sum-hard problem. (For this reason, some earlier papers call these problems “n2-
hard,” but see [8].) Examples of 3sum-hard problems include several degeneracy
detection, separation, hidden surface removal, and motion planning problems in two
and three dimensions.

More generally, we will say that a problem is rSUM-hard if the following problem
can be reduced to it in o(ndr/2e) time:

rsum: Given a set of n distinct integers, do any r sum to zero?

The problem rsum can be solved in time O(n(r+1)/2) when r is odd or in time
O(nr/2 log n) when r is even. We conjecture that these algorithms are optimal; how-
ever, the best lower bound in any general model of computation, for any fixed r, is
again only Ω(n log n) [7]. Higher-dimensional versions of many 3sum-hard problems
are rsum-hard for larger values of r. For example, Lemma 2.1 immediately implies
that detecting affine degeneracies in Rd is dsum-hard.

Theorem 3.1. Deciding whether the convex hull of n points in Rd is simplicial,
for any fixed d, is dd/2esum-hard.

Proof. We describe the proof explicitly only for the case d = 5; generalizing the
proof to higher dimensions is straightforward.

Given a set of integers X = {x1, x2, . . . , xn}, we first replace them with the larger

set X ′ = {x[1, x]1, x[2, x]2, . . . , x[n, x]n}, where x[i = xi − 2−i and x]i = xi + 2−i for all i.

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1203

We then consider the points ω5(X ′) obtained by lifting X ′ onto the weird moment
curve in R5. To prove the theorem, it suffices to show that the convex hull of the
points ω5(X ′) is nonsimplicial if and only if some three elements of X sum to zero.

Suppose that the convex hull of ω5(X ′) is nonsimplicial. Then some six points in
ω5(X ′) lie on the same hyperplane. By Lemma 2.1, the corresponding six elements
of X ′ sum to zero. These must consist of three matched pairs a[, a], b[, b], c[, c] for
some a, b, c ∈ X. Otherwise, the various “fudge factors” ±2−i do not cancel out, and
the sum of six elements is not even an integer. Thus, X has three elements whose sum
is zero.

Conversely, suppose that a + b + c = 0 for some a, b, c ∈ X. This immediately
implies a[+ a] + b[+ b] + c[+ c] = 0, and thus, by Lemma 2.1, the corresponding
points in ω5(X ′) all lie on a single hyperplane. Moreover, by Lemma 2.2, this hyper-
plane supports a facet of the convex hull of ω5(X ′), since no other elements of X ′

lie in the intervals (a[, a]), (b[, b]), or (c[, c]). Thus, the convex hull of ω5(X ′) is not
simplicial.

The best lower bound we can ever hope to derive using this reduction is Ω(ndd/4e+
n log n), which is significantly smaller than the best known upper bound O(nbd/2c +
n log n), except for the single case d = 5. In particular, Theorem 3.1 tells us absolutely
nothing about the four-dimensional case, since we already have a lower bound of
Ω(n log n) in all dimensions.

In an earlier paper [21], we derive an Ω(ndr/2e) lower bound for rsum in the
r-linear decision tree model. In this model, decisions are based on the signs of arbitrary
affine combinations of r or fewer input variables. Unfortunately, since the reduction
described by the previous theorem does not follow this model, we do not automatically
get similar lower bounds for detecting simplicial convex hulls. In the next section of
the paper, we derive such lower bounds directly.

Remark. If r is not fixed, the problem rsum is NP-complete, by a simple reduc-
tion to Subset Sum [28]. We can use this fact to give simple proofs that certain
geometric problems in arbitrary dimensions are NP-hard. For example, Khachiyan
[33] proves that detecting affine degeneracies is NP-complete. This result follows
directly from Lemma 2.1. Chandrasekaran, Kabadi, and Murty [14] and Dyer [19] in-
dependently prove that deciding whether the convex hull of a set of points is simplicial
is coNP-complete; this result also follows immediately from Theorem 3.1. Moreover,
since the reductions are parsimonious [28], the corresponding counting problems (how
many degenerate simplices/facets?) are #P-complete.

4. Lower bounds for convex hull problems. Our main result is based on
the following combinatorial construction.

Lemma 4.1. For all n and d, there is a quasi-simplicial polytope in Rd with O(n)
vertices and Ω(ndd/2e−1) degenerate facets.

Proof. First consider the case when d is odd, and let r = (d− 1)/2. Without loss
of generality, we assume that n is a multiple of r. Let X denote the following set of
n+ 2n/r = O(n) integers:

X = {−rn,−rn+ r, . . . ,−r; r, r + 1, 2r, 2r + 1, . . . , n, n+ 1}.

We can specify a degenerate facet of ω5(X) as follows. Choose r distinct elements
a1, a2, . . . , ar ∈ X, all positive multiples of r. Let a0 = −∑r

i=1 ai, let b0 = a0 +r, and
for all i > 0, let bi = ai + 1. Each ai and bi is a unique element of X, and no element
of X lies between ai and bi for any i. The d+ 1 points ωd(a0), ωd(b0), . . . , ω(ar), ω(br)

1204 JEFF ERICKSON

all lie on a single hyperplane by Lemma 2.1, since

r∑
i=0

(ai + bi) = 2
r∑
i=0

ai = 0.

Moreover, since any pair of elements of X \ {a0, b0, a1, b1, . . . , ar, br} has an even
number of elements of {a0, b0, . . . , ar, br} between them, Lemma 2.2 implies that these

points are the vertices of a single facet of conv(ωd(X)). There are at least
(
n/r
r

)
=

Ω(nr) ways of choosing such a degenerate facet.

In the case where d is even, let r = d/2−1, and assume without loss of generality
that n is a multiple of r. Let X be the following set of n+ 2n/r + 1 = O(n) integers:

X = {−n− rn,−n− rn+ r, . . . ,−n− r; r, r + 1, 2r, 2r + 1, . . . , n, n+ 1; 2n}.

Using similar arguments as above, we easily observe that the polytope conv(ωd(X))
has Ω(nr) degenerate facets, each of which has ωd(2n) as a vertex.

This result is the best possible when d is odd, since an odd-dimensional n-vertex
polytope has at most O(n(d−1)/2) facets [49]. In the case where d is even, the best
known upper bound is O(nd/2), which is a factor of n bigger than the result we prove
here. We conjecture that this upper bound is tight. However, if we consider only sets
of points on the weird moment curve, the bound given in the lemma is tight. That
is, the convex hull of any set of n points on ωd has at most O(ndd/2e−1) degenerate
facets.

We now prove the main result of the paper.

Theorem 4.2. Any decision tree that decides whether the convex hull of a set of n
points in Rd is simplicial, using only sidedness queries, must have depth Ω(ndd/2e−1 +
n log n).

Proof. Let X be the set of numbers described in the proof of Lemma 4.1, and let
X ′ = X + 1/(2d+ 2) = {x+ 1/(2d+ 2) | x ∈ X}. Initially, the adversary presents the

set of points ωd(X
′). Since

∑d
i=0 x

′
i is always a half-integer, this point set is affinely

nondegenerate, so its convex hull is simplicial.

It suffices to consider the case where d is odd. Let r = (d − 1)/2. Choose
distinct elements a′0, b

′
0, a
′
1, b
′
1, . . . , a

′
r, b
′
r ∈ X ′ so that

∑r
i=0(a′i + b′i) = 1/2 and no

other elements of X ′ lie between a′i and b′i for any i. The corresponding points
ω(a′0), ω(b′0), . . . , ω(a′r), ω(b′r) form a collapsible simplex. To collapse it, the adversary
simply moves the points back to their original positions in ωd(X). Lemmas 2.1 and
2.2 imply that the collapsed simplex forms a degenerate facet of the new convex hull.
Since the sum of any other (d + 1)-tuple changes by at most 1/2 − 1/(2d + 2), no
other simplex changes orientation. In other words, the only way for an algorithm to
distinguish between the original configuration and the collapsed configuration is to
perform a sidedness query on the collapsible simplex.

Thus, if an algorithm does not perform a separate sidedness query for every
collapsible simplex, then the adversary can introduce a degenerate facet that the
algorithm cannot detect. There are Ω(ndd/2e−1) collapsible simplices, one for each
degenerate facet in conv(ωd(X)).

Finally, the n log n term follows from the algebraic decision tree lower bound of
Ben-Or [7].

A three-dimensional version of our construction is illustrated in Figure 4.1. (See
also the proof of Theorem 7.4 below.)

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1205

(a) (b) (c)

Fig. 4.1. Our adversary construction in three dimensions. Bottom views of (a) a quasi-
simplicial polytope with Ω(n) degenerate facets, (b) the simplicial adversary polytope with one col-
lapsible simplex highlighted, and (c) the corresponding collapsed polytope.

Our lower bound matches known upper bounds when d is odd [15]. We emphasize
that if the points are known in advance to lie on the weird moment curve, this problem
can be solved in O(ndd/4e) time if dd/2e is odd, and in O(ndd/4e log n) time if dd/2e is
even, by an algorithm that uses more complicated queries not allowed by Theorem 4.2,
namely, evaluating the signs of certain linear combinations of x1-coordinates. (See
[21].)

The convex hull of the adversary configuration ωd(X
′) has dd/2e − 1 more facets

than the convex hull of any collapsed configuration. Thus, we immediately have the
following lower bound.

Theorem 4.3. Any decision tree that computes the number of convex hull facets
of a set of n points in Rd, using only sidedness queries, must have depth Ω(ndd/2e−1 +
n log n).

A simple modification of our argument implies the following “output-sensitive”
version of our lower bound.

Theorem 4.4. Any decision tree that decides whether the convex hull of a set of
n points in Rd is simplicial or computes the number of convex hull facets, using only
sidedness queries, must have depth Ω(f) when d is odd and Ω(f1−2/d) when d is even,
where f is the number of faces of the convex hull.

Proof. Assume that f > n, since otherwise we have nothing to prove. We con-
struct a modified degenerate polytope as follows. We start by constructing a degen-
erate polytope with f faces, exactly as described in the proof of Lemma 4.1. When
d is odd, this polytope is the convex hull of Θ(f2/(d−1)) points on the weird moment
curve and has Ω(f) degenerate facets. When d is even, the polytope is the convex
hull of Θ(f2/d) points and has Ω(f1−2/d) degenerate facets.

By introducing a new vertex extremely close to the relative interior of any facet
of a simplicial polytope, we can split that facet into d smaller facets. Each such split
increases the number of polytope faces by 2d − 2. To bring the number of vertices of
our adversary polytope up to n, we choose some facet and repeatedly split it in this
fashion, being careful not to introduce any new degenerate simplices. The augmented
polytope has at most f + (2d − 2)n = O(f) faces.

To get a modified adversary polytope, we slide the original vertices of the degen-
erate polytope along the weird moment curve, just enough to remove the degeneracies,
leaving the new vertices in place. Each of the degenerate facets becomes a collapsible
simplex. As long as we do not slide the vertices too far, collapsing a simplex will

1206 JEFF ERICKSON

not change the orientation of any simplex involving a new vertex. (In effect, we are
treating sidedness queries involving new vertices as “allowable” queries; see below.)
The lower bound now follows from the usual adversary argument.

5. Other computational primitives. In this section, we identify a general
class of computational primitives which, if added to our model of computation, do
not affect our lower bounds. In fact, even if we allow any finite number of these
primitives to be performed at no cost, the number of required sidedness queries is the
same. These primitives include comparisons between coordinates of input points in
any number of directions, comparisons between coordinates of hyperplanes defined by
d-tuples of points, and in-sphere queries.

The primitives we consider are all algebraic queries. The result of an algebraic
query is given by the sign of a multivariate query polynomial, evaluated at the co-
ordinates of the input. If the sign is zero (resp., nonzero), we say that the input
is degenerate (resp., nondegenerate) with respect to that query. For example, a set
of points is affinely degenerate if and only if it is degenerate with respect to some
sidedness query.

A projective transformation of Rd (or more properly, of the projective space RPd)
is any map that takes hyperplanes to hyperplanes. If we represent the points of Rd
in homogeneous coordinates, a projective transformation is equivalent to a linear
transformation of Rd+1. In Stolfi’s two-sided projective model [46], projective maps
preserve (or reverse) the orientation of every simplex in Rd and thus preserve the
combinatorial structure of convex hulls. (See Chapter 14 of [46].)

Let X be the set of numbers described in the proof of Lemma 4.1. We call an
algebraic query allowable if for some projective transformation φ the configuration
φ(ωd(X)) is nondegenerate with respect to that query. Our choice of terminology is
justified by the following theorem.

Theorem 5.1. Any decision tree that decides whether the convex hull of n points
in Rd is simplicial, using only sidedness queries and a finite number of allowable
queries, requires Ω(ndd/2e−1) sidedness queries in the worst case.

Proof. If some projective transformation makes ωd(X) nondegenerate with re-
spect to an algebraic query, then almost every projective transformation (i.e., all but
a measure zero subset) makes ωd(X) nondegenerate. Thus, for any finite set of al-
lowable queries, almost every projective transformation makes ωd(X) nondegenerate
with respect to all of them. Let φ be such a transformation.

If φ(ωd(X)) is nondegenerate with respect to some finite set of allowable queries,
then for all X ′ in an open neighborhood of X in Rn, the configuration φ(ω(X ′)) is
also nondegenerate with respect to that set of queries.

The theorem now follows from a slight modification of the proof of Theorem
4.2. Let ε > 0 be some sufficiently small real number. The set φ(ωd(X + ε)) has
a simplicial convex hull but has Ω(ndd/2e+1) collapsible simplices, each correspond-
ing to a degenerate facet in φ(ωd(X)). No allowable query can distinguish between
φ(ωd(X + ε)) and any collapsed configuration, or even between φ(ωd(X + ε)) and
φ(ωd(X)).

We characterize allowable queries algebraically as follows. Consider the degen-
erate configuration ωd(X) as a single point in the configuration space Rdn. Any
algebraic query induces a surface in configuration space, consisting of all configura-
tions that are degenerate with respect to that query. Since any projective map φ can
be represented by a (d+ 1)× (d+ 1) matrix with determinant ±1, the set of projec-
tively transformed configurations φ(ωd(X)) forms a (d2 + 2d)-dimensional algebraic

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1207

variety in configuration space. Any query whose surface does not completely contain
this variety is allowable.

We give below a (nonexhaustive!) list of allowable queries. We leave the proofs
that these queries are in fact allowable as easy exercises.

• Comparisons of point coordinates, or more generally comparing inner prod-
ucts of two points with a fixed direction vector, is allowable. In fact, we can
allow the input points to be presorted in any finite number of fixed direc-
tions. Seidel describes a similar result in the context of three-dimensional
convex hull lower bounds [42, Theorem 5]. We emphasize that the directions
in which these comparisons are made must be fixed in advance. No matter
how we transform the adversary configuration, there is always some direction
in which a point comparison can distinguish it from a collapsed configuration.
• More generally, deciding which of two points is hit first by a hyperplane

rotating around a fixed (d − 2)-flat is allowable. We can even presort the
points by their cyclic orders around any finite number of fixed (d−2)-flats. If
the (d−2)-flat is “at infinity,” then “rotation” is just translation, and we have
the previous notion of point comparison. We can interpret this type of query
in dual space as a comparison between the intersections of two hyperplanes
with a fixed line. Again, we emphasize that the (d− 2)-flats must be fixed in
advance.
• Sidedness queries in any fixed lower-dimensional projection are allowable.

This is a natural generalization of point comparisons, which can be considered
sidedness queries in a one-dimensional projection. We can even specify in
advance the complete order types of the projections onto any finite number
of fixed affine subspaces. (As a technical point, we would not actually include
this information as part of the input, since this would drastically increase the
input size; instead, knowledge of the projected order types would be hard-
wired into the algorithm.)
• “Second-order” comparisons between vertices of the dual hyperplane arrange-

ment, in any fixed direction, are also allowable. Such a query can be inter-
preted in the primal space as a comparison between the intersections of two
hyperplanes, each defined by a d-tuple of input points, with a fixed line. To
prove that such a query is allowable, it suffices to observe that a projec-
tive transformation of the primal space induces a projective transformation
of the dual space, and vice versa. Note that a second-order comparison is
algebraically equivalent to a sidedness query if the two d-tuples share d − 1
points.
• Since most projective transformations do not map spheres to spheres,

in-sphere queries are allowable. Given d + 2 points, an in-sphere query asks
whether the first point lies “inside,” on, or “outside” the oriented sphere de-
termined by the other d + 1 points. Similarly, in-sphere queries in any fixed
lower-dimensional projection are allowable.
• Distance comparisons between pairs of points or pairs of projected points

are allowable. More generally, comparing the measures of pairs of simplices
of dimension less than d—for example, comparing the areas of two triangles
when d > 2—defined either by the original points or by any fixed projection,
are allowable.

However, comparing the volumes of arbitrary simplices of full dimension is not
allowable. In any projective transformation of ωd(X), all of the degenerate simplices

1208 JEFF ERICKSON

have the same (zero) volume. It is not possible to collapse a simplex in any adversary
configuration while maintaining the order of the volumes of the other collapsible
simplices.

6. Our models vs. real convex hull algorithms. A large number of con-
vex hull algorithms rely (or can be made to rely) exclusively on sidedness queries.
These include the “gift-wrapping” algorithms of Chand and Kapur [13] and Swart
[47], the “beneath-beyond” method of Seidel [41], Clarkson and Shor’s [18] and Sei-
del’s [44] randomized incremental algorithms, Chazelle’s worst-case optimal algorithm
[15], and the recursive partial-order algorithm of Clarkson [17]. Seidel’s “shelling” al-
gorithm [43] and the space-efficient gift-wrapping algorithms of Avis and Fukuda (at
least if Bland’s pivoting rule is used) [6] and Rote [39] require only sidedness queries
and second-order comparisons.

Matoušek [35] and Chan [11] improve the running times of these algorithms (in
an output-sensitive sense) by finding the extreme points more quickly. Clarkson [17]
describes a similar improvement to a randomized incremental algorithm. Since every
point in our adversary configuration is extreme, our lower bound still holds even
if the extremity of a point can be decided for free. We are not suggesting that
the computational primitives used by these algorithms cannot be used to break our
lower bounds, only that the ways in which these primitives are currently applied are
inherently limited.

Chan [11] describes an improvement of the gift-wrapping algorithm that uses ray
shooting data structures of Agarwal and Matoušek [1] and Matoušek and Schwarzkopf
[36] to speed up the pivoting step. In each pivoting step, the gift-wrapping algorithm
finds a new facet containing a given ridge of the convex hull. In the dual, this is
equivalent to shooting a ray from a vertex of the dual polytope along one of its
outgoing edges. The dual vertex that the ray hits corresponds in the primal to the
new facet. A single pivoting step tells us the orientation of n − d simplices, all of
which share the d vertices of the new facet. However, at most one of these simplices
can be collapsible, since two collapsible simplices share at most d/2 vertices. Thus,
even if we allow a pivoting step to be performed in constant time, our lower bound
still holds.

There are a few convex hull algorithms which seem to fall outside our framework,
most notably the divide-and-conquer algorithm of Chan, Snoeyink, and Yap [12], and
its improvement by Amato and Ramos [2]. The four-dimensional version of their
algorithm uses primitives involving up to 22 points.2 Higher-dimensional versions of
their algorithm require the use of linear programming queries and ray-shooting queries
in certain (d− 1)-dimensional projections of the input; the fastest known algorithms
to answer these queries [1, 11, 35, 36] do not even fit into the algebraic decision tree
model.

7. Related problems.

7.1. Affine degeneracies.

Theorem 7.1. Any decision tree that decides whether a set of n points in Rd
is affinely nondegenerate, using only sidedness queries, must have depth Ω(nd). If

2The most elaborate primitive is a sidedness query on a three-dimensional projection of four
input points, where the direction of projection is defined by the intersection of three planes, each the
affine hull of three points, each the intersection of a fixed hyperplane and the affine hull of two input
points.

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1209

d ≥ 3, this lower bound holds even when the points are known in advance to be in
convex position.

Proof. Let X denote the set of integers from −dn to n, and let X ′ = X +
1/(2d+ 2). The adversary initially presents the point set ωd(X

′). This point set is
affinely nondegenerate, since the expression

∑
i x
′
i is always a half-integer.

Choose arbitrary distinct positive elements x1, x2, . . . , xd ∈ X, and let x0 =
−∑i xi; this is also an element of X. Then the points ωd(x

′
i) form a collapsible

simplex. To collapse it, the adversary just shifts the points back down to ωd(xi); the

collapsed simplex is obviously degenerate. Since the expression
∑d
i=0 x

′
i changes by

at most 1/2− 1/(2d+ 2) for any other simplex, no other simplex changes orientation.

Thus, if an algorithm does not perform a sidedness query on every collapsible
simplex, the adversary can introduce an affine degeneracy that the algorithm cannot
detect. There are at least

(
n
d

)
= Ω(nd) such simplices. If d ≥ 3, the original point set

and each collapsed point set is in convex position.

Erickson and Seidel [23] prove an Ω(nd) lower bound for a restricted problem:
Do any d+ 1 points lie on a nonvertical hyperplane? Except in the two-dimensional
case, where an explicit adversary construction is given, their extension to the general
problem is flawed [24].

The previous theorem easily generalizes to allow additional queries, as described
in section 5.

Theorem 7.2. Any decision tree that decides whether a set of n points in Rd is
affinely nondegenerate, using only sidedness queries and a finite number of allowable
queries, requires Ω(nd) sidedness queries in the worst case. If d ≥ 3, this lower bound
holds even when the points are known in advance to be in convex position.

7.2. An alternate proof in two dimensions. According to Grünbaum [31],
A. H. Stone observed that a set of n integer points on the unit cubic can have n2/8
collinear triples. Füredi and Palásti [25] discovered an elegant construction, which
we describe below, that improves this lower bound to roughly n2/6. We can use
their construction to slightly improve our lower bound for the two-dimensional affine
degeneracy problem. The resulting lower bound is the best that can be derived using
our techniques, except possibly for some lower-order terms.

Füredi and Palásti describe their construction in the dual. Let L(α) be the line
passing through the point (cosα, sinα) at angle −α/2 to the x-axis. The line L(α)
also passes through the point (cos(π − 2α), sin(π − 2α)); if this is the same point as
(cosα, sinα), then the line is tangent to the unit circle at that point. Three lines
L(α), L(β), L(γ) are concurrent if and only if α+β+γ ≡ 0 (mod 2π). It follows that
the set of lines {L(2πi/n) | 1 ≤ i ≤ n} has 1 + bn(n− 3)/6c concurrent triples. See
Figure 7.1(a). See [25] for further details. Related results are described in [9, 20, 31].

The set of lines {L((2i − 1)π/n) | 1 ≤ i ≤ n} has no concurrent triples, but its
arrangement has dn(n−3)/3e triangular cells, each bounded by a triple of lines of the
form

L((2i− 1)π/n), L((2j − 1)π/n), L((2k − 1)π/n),

where i + j + k ≡ 1 or 2 (mod n). See Figure 7.1(b). Each of these triangles is
collapsible; to collapse such a triangle, we shift each of its three defining lines by
π/3n, resulting in the lines

L((2i− 2/3)π/n), L((2j − 2/3)π/n), L((2k − 2/3)π/n)

1210 JEFF ERICKSON

(a) (b) (c)

Fig. 7.1. Another adversary construction for arbitrary degeneracies in the plane, following a
construction of Füredi and Palásti. (a) The degenerate configuration. (b) The adversary configura-
tion. (c) A collapsed configuration.

if i+ j + k ≡ 1 (mod n), or

L((2i− 4/3)π/n), L((2j − 4/3)π/n), L((2k − 4/3)π/n)

if i+j+k ≡ 2 (mod n); see Figure 7.1(c). We easily verify that the collapsed triangle
is degenerate and that no other triangle changes orientation, since the sum of any
other triple of defining angles changes by at most 2π/3n < π/n.

Theorem 7.3. Any decision tree that decides whether a set of n points in
R2 is affinely degenerate, using only sidedness queries, must have depth at least
dn(n− 3)/3e.

Grünbaum [31] proves that a simple arrangement of n lines in the projective plane
can have at most bn(n− 1)/3c triangular cells if n is even, and at most bn(n− 2)/3c
if n is odd. Thus, we cannot hope to prove a lower bound bigger than n2/3 + Ω(n)
using collapsible triangles.

7.3. Circular degeneracies. We also easily prove the following related theorem
first proved in [23]. A set of points in the plane is circularly degenerate if any four
points lie on a circle. The basic computational primitive used to detect circular
degeneracies is the in-circle query : Given four points, is the first point inside, on, or
outside the oriented circle defined by the other three points? In-circle queries can be
answered by lifting the points to the unit paraboloid z = x2 +y2, or stereographically
projecting them onto a sphere, and performing a three-dimensional sidedness query.

Theorem 7.4. Any decision tree that decides whether n points in R2 is circularly
degenerate, using only in-circle queries, must have depth Ω(n3).

Proof. An in-circle query on four points on the unit parabola (t, t2) is algebraically
equivalent to a sidedness query for four points on the three-dimensional weird moment
curve (t, t2, t2). Thus, Lemma 2.1 implies that four points, (a, a2), (b, b2), (c, c2), and
(d, d2), on the unit parabola are cocircular if and only if a + b + c + d = 0. Let X
be the set of integers from −n to n. There are Θ(n3) 4-tuples in X whose sums are
zero. The adversary presents a set of points on the unit parabola with x-coordinates
taken from the set X + 1/8. This set is nondegenerate and has Ω(n3) collapsible
4-tuples.

We can extend the model of computation in a similar fashion as before, but with
a different set of new queries. A linear fractional transformation of the plane (or
more formally, of the Riemann sphere (CP1) is any transformation that maps circles

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1211

to circles. If we represent the points of R2 in complex homogeneous coordinates—
representing (x, y) ∈ R2 by any complex multiple of (1 + 0i, x + yi) ∈ (C2—then a
linear fractional transformation is equivalent to a linear transformation of (C2.

We say that a query is circularly allowable if some linear fractional transformation
of the set (X,X2) is nondegenerate with respect to that query, where X is the set of
numbers described in the proof of Theorem 7.4. Circularly allowable queries include
first- and second-order point comparisons and sidedness queries but do not include
comparisons between arbitrary in-circle determinants.

Arguments similar to those in section 5 give us the following theorem.
Theorem 7.5. Any decision tree that decides whether n points in R2 is circularly

degenerate, using only in-circle queries and a finite number of circularly allowable
queries, requires Ω(n3) in-circle queries in the worst case.

We conjecture that Ω(nd+1) insphere queries are required to decide if a set of n
points in Rd is spherically degenerate, but we have been unable to generalize our proof
of the two-dimensional case to higher dimensions. A proof would follow immediately
from the construction of a set of numbers having Ω(nd+1) (d+2)-tuples in the zeroset
of a certain symmetric polynomial, by applying our usual adversary argument. For
example, in three dimensions, we need Ω(n4) 5-tuples in the zeroset of the polynomial

1 +
∑

1≤i≤j≤5

xixj .

Erickson and Seidel [23] prove that Ω(nd+1) in-sphere queries are required to
detect proper spherical degeneracies, i.e., sets of d + 2 points on a sphere of finite
radius, but their proof for the general problem was flawed [24]. Unlike all the adversary
sets in this paper, the adversary set they use is not obtained by perturbing a highly
degenerate point set. Is there a set of n points in Rd with Ω(nd+1) independent
spherical degeneracies? Such a set might lead to a proof of our conjecture.

8. Conclusions and open problems. We have presented new lower bounds on
the worst-case complexity of detecting simplicial convex hulls or counting convex hull
facets in a fairly natural model of computation. Our lower bounds follow from a simple
adversary argument, based on the construction of a convex polytope with a large
number of degenerate features. In order to be correct, any algorithm must individually
check that each of those degenerate features is not present in the input. Similar
arguments give us simple proofs of lower bounds for several degeneracy-detection
problems.

Several open problems remain to be answered. While our lower bounds match ex-
isting upper bounds in odd dimensions, there is still a gap when the dimension is even.
A first step in improving our lower bounds would be to improve the combinatorial
bounds in Lemma 4.1. Is there a four-dimensional polytope with n vertices and Ω(n2)
degenerate facets? However, we conjecture that no such polytope (or even polyhedral
3-sphere) exists. Simple variations on the weird moment curve will not suffice, since
an “evenness condition” like Lemma 2.2 always forces the number of degenerate facets
to be linear. Arguments based on merging facets of cyclic or product polytopes also
fail, as do variations on Amenta and Ziegler’s deformed products [3, 4]. The best
example we can construct is the connected sum of n/5− 1 copies of a bipyramid over
a cube, which has n vertices and 2n− 8 facets, each a square pyramid.

A common application of convex hull algorithms is the construction of Delaunay
triangulations and Voronoi diagrams. Are Ω(ndd/2e) in-sphere queries required to de-
cide if the Delaunay triangulation is simplicial (i.e., really a triangulation)? Again, a

1212 JEFF ERICKSON

first step is to construct a Delaunay triangulation with Ω(ndd/2e) independent degen-
erate features.

Another similar problem is deciding, given a set of points, which ones are vertices
of the set’s convex hull. This problem can be decided in O(n2) time (using only
sidedness queries!) by invoking a linear-time linear programming algorithm once for
each point [37]. This upper bound can be improved to O(n2bd/2c/(bd/2c−1) polylogn)
using an algorithm due to Chan [11]. Except for the polylogarithmic term, this
algorithm is almost certainly optimal, but as usual the only known lower bound is
Ω(n log n) [7]. It seems unlikely that a collapsible simplex argument could be used to
imply a reasonable lower bound for this problem.

Another interesting open problem is to strengthen the models in which our lower
bounds hold. Quadratic lower bounds for either the five-dimensional convex hull
problem or the two-dimensional affine degeneracy problem in stronger models of com-
putation would imply similar lower bounds for a number of other 3sum-hard problems.
While the lower bounds we prove here and in earlier papers [23, 21] are in fairly nat-
ural models, there are still 3sum-hard problems that cannot even be solved in these
models. For example, one of the simplest problems for which our techniques fail is
finding the minimum area triangle determined by a set of points in the plane. In order
to prove a useful lower bound for this problem, we must consider a model that allows
comparison of signed triangle areas. It seems impossible to apply our “collapsible
simplex” adversary argument in such a model; a radically new idea is called for.

Ultimately, of course, we would like a lower bound bigger than Ω(n log n) that
holds in some general model of computation, such as algebraic decision trees or alge-
braic computation trees.

Acknowledgments. I would like to thank Raimund Seidel for several helpful
discussions, David Bremner for pointing out the NP-hardness results in [14, 19], and
Jack Snoeyink for pointing out [9].

REFERENCES

[1] P. K. Agarwal and J. Matoušek, Ray shooting and parametric search, SIAM J. Comput.,
22 (1993), pp. 794–806.

[2] N. M. Amato and E. A. Ramos, On computing Voronoi diagrams by divide-prune-and-
conquer, in Proceedings of the 12th ACM Sympos. Comput. Geom., Philadelphia, PA,
1996, pp. 166–175.

[3] N. Amenta and G. Ziegler, Deformed products and maximal shadows of polytopes, Report
502-1996, Technische Univesität Berlin, May 1996. In Advances in Discrete and Computa-
tional Geometry, B. Chazelle, J. E. Gooman, and R. Pollack, eds., American Mathematical
Society, Providence, RI, 1999, pp. 57–90 (full version of [4]).

[4] N. Amenta and G. Ziegler, Shadows and slices of polytopes, in Proceedings of the 12th ACM
Sympos. Comput. Geom., Philadelphia, PA, 1996, pp. 10–19.

[5] D. Avis, D. Bremner, and R. Seidel, How good are convex hull algorithms?, Comput. Geom.
Theory Appl., 7 (1997), pp. 265–302.

[6] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), pp. 295–313.

[7] M. Ben-Or, Lower bounds for algebraic computation trees, in Proceedings of the 15th ACM
Sympos. Theory Comput., Boston, MA, 1983, pp. 80–86.

[8] S. Bloch, J. Buss, and J. Goldsmith, How hard are n2-hard problems?, SIGACT News, 25
(1994), pp. 83–85.

[9] S. A. Burr, B. Grünbaum, and N. J. A. Sloane, The orchard problem, Geom. Dedicata, 2
(1974), pp. 397–424.

[10] T. M. Chan, Optimal output-sensitive convex hull algorithms in two and three dimensions,
Discrete Comput. Geom., 16 (1996), pp. 361–368.

LOWER BOUNDS FOR CONVEX HULL PROBLEMS 1213

[11] T. M. Chan, Output-sensitive results on convex hulls, extreme points, and related problems,
Discrete Comput. Geom., 16 (1996), pp. 369–387.

[12] T. M. Chan, J. Snoeyink, and C.-K. Yap, Primal dividing and dual pruning: Output-sensitive
construction of 4-d polytopes and 3-d Voronoi diagrams, Discrete Comput. Geom., 18
(1997), pp. 433–454.

[13] D. R. Chand and S. S. Kapur, An algorithm for convex polytopes, J. Assoc. Comput. Mach.,
17 (1970), pp. 78–86.

[14] R. Chandrasekaran, S. N. Kabadi, and K. G. Murty, Some NP-complete problems in linear
programming, Oper. Res. Lett., 1 (1982), pp. 101–104.

[15] B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput.
Geom., 10 (1993), pp. 377–409.

[16] B. Chazelle and J. Matoušek, Derandomizing an output-sensitive convex hull algorithm in
three dimensions, Comput. Geom., 5 (1995), pp. 27–32.

[17] K. L. Clarkson, More output-sensitive geometric algorithms, in Proceedings of the 35th IEEE
Sympos. Found. Comput. Sci., Santa Fe, NM, 1994, pp. 695–702.

[18] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry
II, Discrete Comput. Geom., 4 (1989), pp. 387–421.

[19] M. E. Dyer, The complexity of vertex enumeration methods, Math. Oper. Res., 8 (1983),
pp. 381–402.

[20] P. Erdős and G. Purdy, Two combinatorial problems in the plane, Discrete Comput. Geom.,
13 (1995), pp. 441–443.

[21] J. Erickson, Lower bounds for linear satisfiability problems, in Proceedings of the 6th ACM-
SIAM Sympos. Discrete Algorithms, San Francisco, CA, 1995, pp. 388–395. Chicago J.
Theoret. Comput. Sci., to appear.

[22] J. Erickson, New lower bounds for convex hull problems in odd dimensions, in Proceedings of
the 12th ACM Sympos. Comput. Geom., Philadelphia, PA, 1996, pp. 1–9.

[23] J. Erickson and R. Seidel, Better lower bounds on detecting affine and spherical degeneracies,
Discrete Comput. Geom., 13 (1995), pp. 41–57.

[24] J. Erickson and R. Seidel, Erratum to “Better lower bounds on detecting affine and spherical
degeneracies,” Discrete Comput. Geom., 18 (1997), pp. 239–240.

[25] Z. Füredi and I. Palásti, Arrangements of lines with a large number of triangles, Proceedings
of the Amer. Math. Soc., 92 (1984), pp. 561–566.

[26] A. Gajentaan and M. H. Overmars, On a class of O(n2) problems in computational geom-
etry, Comput. Geom. Theory Appl., 5 (1995), pp. 165–185.

[27] D. Gale, Neighborly and cyclic polytopes, in Convexity, V. Klee, ed., in Proceedings of the
Sympos. Pure Math. VII, Amer. Math. Soc., Providence, RI, 1963, pp. 225–232.

[28] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, New York, 1979.

[29] R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set,
Inform. Process. Lett., 1 (1972), pp. 132–133.

[30] B. Grünbaum, Convex Polytopes, John Wiley, New York, 1967. Rev. ed., V. Klee and P.
Kleinschmidt, ed., Graduate Texts in Math., Springer-Verlag, New York, in preparation.

[31] B. Grünbaum, Arrangements and Spreads, Regional Conf. Ser. Math. 10, Amer. Math. Soc.,
Providence, 1972.

[32] C. G. J. Jacobi, De functionibus alternantibus earumque divisione per productum e differentiis
elementorum conflatum, J. Reine Angew. Mathematik, 22 (1841), pp. 360–371. Reprinted
in Gesammelten Werke III, G. Reimer, Berlin, 1884.

[33] L. Khachiyan, On the complexity of approximating determinants in matrices, J. Complexity,
11 (1995), pp. 138–153.

[34] D. G. Kirkpatrick and R. Seidel, The ultimate planar convex hull algorithm?, SIAM J.
Comput. 15 (1986), pp. 287–299.

[35] J. Matoušek, Linear optimization queries, J. Algorithms, 14 (1993), pp. 432–448.
[36] J. Matoušek and O. Schwarzkopf, On ray shooting in convex polytopes, Discrete Comput.

Geom., 10 (1993), pp. 215–232.
[37] N. Megiddo, Linear programming in linear time when the dimension is fixed, J. Assoc. Com-

put. Mach., 31 (1984), pp. 114–127.
[38] F. P. Preparata and S. J. Hong, Convex hulls of finite sets of points in two and three

dimensions, Commun. ACM, 20 (1977), pp. 87–93.
[39] G. Rote, Degenerate convex hulls in high dimensions without extra storage, in Proceedings of

the 8th ACM Sympos. Comput. Geom., Berlin, Germany, 1992, pp. 26–32.
[40] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen,

thesis, Berlin, 1901. Reprinted in Gesammelte Abhandlungen, Springer, 1973.

1214 JEFF ERICKSON

[41] R. Seidel, A convex hull algorithm optimal for point sets in even dimensions, M.S. thesis,
Dept. Comput. Sci., Univ. British Columbia, Vancouver, BC, 1981.

[42] R. Seidel, A method for proving lower bounds for certain geometric problems, in Computa-
tional Geometry, G. T. Toussaint, ed., North-Holland, Amsterdam, 1985, pp. 319–334.

[43] R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face, in Pro-
ceedings of the 18th ACM Sympos. Theory Comput., Berkeley, CA, 1986, pp. 404–413.

[44] R. Seidel, Small-dimensional linear programming and convex hulls made easy, Discrete Com-
put. Geom., 6 (1991), pp. 423–434.

[45] R. Seidel, Convex hull computations, in Handbook of Discrete and Computational Geometry,
J. E. Goodman and J. O’Rourke, eds., CRC Press LLC, Boca Raton, FL, 1997, pp. 361–376.

[46] J. Stolfi, Oriented Projective Geometry: A Framework for Geometric Computations, Aca-
demic Press, New York, 1991.

[47] G. F. Swart, Finding the convex hull facet by facet, J. Algorithms, 6 (1985), pp. 17–48.
[48] A. C. Yao, A lower bound to finding convex hulls, J. Assoc. Comput. Mach., 28 (1981), pp. 780–

787.
[49] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Math. 152, Springer-Verlag, New

York, 1994.

THE HEIGHT AND SIZE OF RANDOM HASH TREES AND
RANDOM PEBBLED HASH TREES∗

LUC DEVROYE†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1215–1224

This paper is dedicated to the memory of Markku Tamminen, who died tragically in New York

shortly after he finished his analysis of N-trees and random hash trees.

Abstract. The random hash tree and the N-tree were introduced by Ehrlich in 1981. In the
random hash tree, n data points are hashed to values X1, . . . , Xn, independently and identically
distributed random variables taking values that are uniformly distributed on [0, 1]. Place the Xi’s
in n equal-sized buckets as in hashing with chaining. For each bucket with at least two points,
repeat the same process, keeping the branch factor always equal to the number of bucketed points.
If Hn is the height of tree obtained in this manner, we show that Hn/ log2 n→ 1 in probability. In
the random pebbled hash tree, we remove one point randomly and place it in the present node (as
with the digital search tree modification of a trie) and perform the bucketing step as above on the
remaining points (if any). With this simple modification,

Hn√
2 logn

log logn

→ 1

in probability. We also show that the expected number of nodes in the random hash tree and random
pebbled hash tree is asymptotic to 2.3020238 . . . n and 1.4183342 . . . n, respectively.

Key words. data structures, probabilistic analysis, hashing with chaining, hash tables, N-trees,
random hash trees, expected complexity

AMS subject classifications. 68Q25, 68P10

PII. S0097539797326174

1. Introduction. In this paper, we analyze the height of the random hash tree
(Ehrlich, 1981) defined as follows. We are given X1, . . . , Xn, n independent uniform
[0, 1] random numbers. If n > 1, we partition [0, 1] into n equal intervals of length
1/n each, and place all points in the intervals. Let N1, . . . , Nn be the cardinalities
of the intervals (thus,

∑
iNi = n). Repeat the partition process for every interval

containing at least two points and keep going until no further divisions are possible.
The root node represents [0, 1], and each node represents a given interval. All internal
nodes have at least two of the Xi’s, while all leaf nodes have one or zero of the Xi’s. If
this structure is to be used for storing the data, then two important quantities are the
number of nodes in the tree, Sn, and the height of the tree, Hn. The former quantity
obviously measures the storage, while the latter is the worst-case search time. In
addition, Sn is also proportional to the time needed to construct the hash tree. The
model is appropriate for situations in which a hash function can be constructed that
delivers a uniform [0, 1] random variate. This may be a debatable hypothesis.

The distributive partitioning method invented by Dobosiewicz (1978) led Ehrlich
(1981) to define the N-tree. In N-trees, the Xi’s are unrestricted on the real line,
and given that a node has k ≥ 2 of the Xi’s, it spawns k equal child intervals of
[miniXi,maxiXi]. Note that there are always at least two nonempty subintervals
(the first and the last) so that the size of the N-tree is limited to n(n+ 1)/2. A basic

∗Received by the editors August 18, 1997; accepted for publication (in revised form) March 17,
1998; published electronically March 22, 1999. This research was sponsored by NSERC grant A3456
and FCAR grant 90-ER-0291.

http://www.siam.org/journals/sicomp/28-4/32617.html
†School of Computer Science, McGill University, Montreal H3A 2K6, Canada (luc@cs.mcgill.ca).

1215

1216 LUC DEVROYE

study of N-trees and random hash trees was performed by Tamminen (1983). The
results of Tamminen will be summarized in the next section. However, Tamminen
did not study Hn. Hashing with several levels of buckets has been known since being
introduced by Fagin et al. (1979) as extendible hashing. Its analysis was subsequently
refined in several papers, including papers by Tamminen (1983, 1985) and Flajolet
(1983). However, these structures differ fundamentally from the trees studied here.

The random hash tree and its modifications studied here are vaguely related to
random tries (see Pittel (1985) for the main properties). We will show that the height
Hn of the random hash tree is with high probability close to log2 n, which is rather
disappointing. The reason for this phenomenon is the same reason why random binary
tries have height close to 2 log2 n. This prompted us to consider a modification similar
to the modification of a trie into the digital search tree of Coffman and Eve (1970):
if n points belong to an interval associated with a node, remove one point uniformly
at random and place it in the node (“pebble” the node). If n > 1, the interval
is partitioned equally into n − 1 child subintervals and the n − 1 remaining points
are placed in their subintervals. This process is repeated until all leaf nodes have
cardinality zero or one. The tree thus obtained is called the random pebbled hash
tree. We will show that this minor modification causes a major improvement in Hn,
which is with high probability close to

√
2 log n/ log log n.

Assuming that each bucketing operation is available at unit cost, the expected
time for unsuccessful and for successful search (assuming all points are equally likely
to be probed for) is O(1) for both random hash tree and random pebbled hash tree,
but the expected worst-case search time for the latter tree is much better than for
classical hash structures in view of the behavior of Hn. For example, for standard
hashing with chaining under the above model, Mn ∼ log n/ log log n in probability
(Gonnet (1981); see Devroye (1985, 1986) for distributions with a bounded density),
where Mn is the worst-case search time (or, equivalently, the maximal size of any
chain).

The random pebbled hash tree is also superior to random binary search trees,
where the height is in probability of the order of logn (under a simpler computational
model, however). It also compares favorably with fusion trees (Fredman and Willard,
(1990)) for standard dictionary operations. Unfortunately, hash trees are not appro-
priate without modifications for fully dynamic situations. A brief section is devoted
to this issue.

There are hash structures with better expected worst-case search and insert times.
Azar et al. (1994) have shown that the worst chain length in multihashing with d > 1
hash functions and insertion into the shortest chain leads to a maximum occupancy
of about logd log n with high probability. This leads to expected worst-case search
times about d logd log n, which are much better than with random pebbled hash trees.
However, multihashing is not an option when the table is to be used for sorting and
order-preserving hash functions are called for. Also, the performance of multihashing
is easily matched by bucketing followed by a binary search tree, known as the BSST
structure, discussed below.

For a survey of known results on hashing and tries, we refer to Gonnet and Baeza-
Yates (1991) and Vitter and Flajolet (1990). Throughout the paper, B(n, p) denotes
a binomial (n, p) random variable.

2. Survey of known results on N-trees and random hash trees. Assume
that the Xi’s are uniformly distributed on [0, 1]. Then Tamminen (1983) shows the
following for N-trees:

HEIGHT AND SIZE OF RANDOM HASH TREES 1217

A. supn
ESn
n ≤ 2.

B. 1.64 ≤ lim infn
ESn
n ≤ lim supn

ESn
n ≤ 1.70.

C. Let Ai be the depth of Xi in the N-tree so that (1/n)
∑n
i=1Ai is the average

successful search time. Then

E

{
1

n

n∑
i=1

Ai

}
≤ 2

for all n.
D. 1.71 ≤ lim infn E

{
1
n

∑n
i=1Ai

} ≤ lim supn E
{

1
n

∑n
i=1Ai

} ≤ 1.80.
If the Xi’s have a density f bounded by ‖f‖∞, then for the random hash tree, Tam-
minen (1983) obtained the following results:

A. supn
ESn
n ≤ 3‖f‖∞.

B. lim supn
ESn
n ≤ 4.

C. Let Ai be the depth of Xi in the random hash tree so that (1/n)
∑n
i=1Ai is

the average successful search time. Then

lim sup
n

E

{
1

n

n∑
i=1

Ai

}
≤ 4.

Note in particular that the asymptotic bounds in parts B and C do not depend
upon the density. Tamminen (1983) also offers heuristic arguments for densities with
unbounded support and so-called hybrid trees, where the first level is split as in an
N-tree and all other splits are as in a random hash tree.

3. The height of the random hash tree. In this section, we assume that
X1, . . . , Xn are independently and indentically distributed (i.i.d.) and have common
density f on [0, 1]. Let Hn be the height of the random hash tree. We show the
following.

Theorem 1. For any increasing sequence an (however fast), there exists a density
f for which P{Hn ≥ an} → 1 as n→∞.

Proof. Let F be the distribution function for f, supported on [0, 1]. Let N1 be
the number of points in [0, 1/n], N2 the number of points in [0, 1/n2], and so forth.
Clearly,

[Nan ≥ 2] ⊆ [Hn ≥ an].

But, putting p = 1− F (1/nan), we see that

P{Nan < 2} = pn + npn−1 ≤ (n+ 1)e−(n−1)F (1/nan) → 0

if nF (1/nan)/ log n→∞. It suffices to pick F such that F (1/nan) = 1/
√
n for all n.

Then let f be a histogram with breakpoints at 1/nan . Conclude that P{Hn ≥ an} →
0.

Theorem 2. When f is the uniform distribution on [0, 1], we have

Hn

log2 n
→ 1 in probability.

Proof. For a lower bound, it suffices to consider a subtree of the random pebbled
hash tree. To do so, we consider only those nodes at depth one that contain precisely
two points. Let L be the number of these nodes. Observe that

E{L}=(n−1)P{B(n−1, 1/(n−1))=2}=(n−1)

(
n− 1

2

)(
1

(n− 1)2

)(
n− 2

n− 1

)n−2

∼ n

2e

1218 LUC DEVROYE

as n → ∞. Furthermore, if one of the data points is changed, L changes by at most
two. Thus, by McDiarmid’s version of Azuma’s inequality (McDiarmid, 1989),

P{L < E{L}/2} ≤ e−E2{L}
8n = e

− n
32e2+o(1) .

Each of the subtrees rooted at these nodes is independent of the others. Both points
in one of these nodes are placed in the same subtree with probability 1/2. Thus, a
subtree has height of at least k − 1 with probability 1/2k−1. Therefore,

P{Hn ≤ k} ≤ E
{

(1− 1/2k−1)L
}

≤ E
{
e−

L

2k−1
}

≤ e−E{L}
2k + P{L < E{L}/2}

≤ e−
n

(2e+o(1))2k + e
− n

32e2+o(1)

→ 0,

as n→∞ if k = b(1− ε) log2 nc for ε ∈ (0, 1).
For the upper bound, let N1, . . . , Nn be the cardinalities of the children of the

root (so that
∑
iNi = n unless n = 1). If Xi and Xj find themselves in the same

child node of the root, then they will stay together at depth 2 with probability 1/2,
at depth 3 with probability 1/22, and at depth k with probability 1/2k−1. Let Am,k
be the event that for the mth child of the root, one of the pairs of points in the node
stays together to depth k. Clearly,

P{Hn > k} ≤ P{∪nm=1Am,k}
≤ nP{A1,k}

≤ nE

{(
N1

2

)
2k−1

}

=
n− 1

2k

as N1 is binomial (n, 1/n). Therefore, for ε > 0,

lim
n→∞P{Hn > (1 + ε) log2 n} = 0.

4. The height of the random pebbled hash tree. In this section, we assume
that X1, . . . , Xn are i.i.d. and have common density f on [0, 1]. Let Hn be the height
of the random pebbled hash tree. Clearly, Hn ≤ n−1. In a random pebbled hash tree
we interchangeably speak of nodes, intervals (each node represents an interval), and
cardinality (the number of Xi’s that fall in a node’s interval). We show the following.

Theorem 3. Consider a random pebbled hash tree. For any monotonically de-
creasing sequence an ↓ 0 (however slow), there exists a density f for which P{Hn ≥
nan} → 1 as n→∞.

Theorem 3 shows that no good universal results are possible for Hn unless the
density of the Xi’s is suitably restricted. As we may often assume that the hash
function is very good, we will assume that the Xi’s are uniformly distributed on [0, 1].
It is worthwhile to note that Theorem 3 remains valid for the N-tree as well.

Proof. We take a density f that decreases monotonically on [0, 1] and has distri-
bution function F. Remove one data point. Let N1 be the number of points in [0, 1/n].

HEIGHT AND SIZE OF RANDOM HASH TREES 1219

Remove one point again, and let N2 be the number of points in [0, 1/n2], and so forth.
Assume without loss of generality that nan is integer-valued and strictly increasing
to ∞. Clearly,

[Nnan ≥ 2] ⊆ [Hn ≥ nan].

But Nk is binomial (Nk−1 − 1, F (1/nk)/F (1/nk−1)), which is stochastically greater
than a binomial (Nk−1, F (1/nk)/F (1/nk−1)) random variable minus one. Therefore,
Nk is stochastically greater than a binomial (n, F (1/nk)) random variable minus k.
Thus, for n large enough, setting p = F (1/nnan) =

√
an + 1/n, we have, by Cheby-

shev’s inequality,

P{Nnan < 2} ≤ P{B(n, p) ≤ nan + 1}
= P{B(n, p) ≤ np2}
≤ np(1− p)

(np(1− p))2

∼ 1

n
√
an + 1/n

→ 0.

Now, take for f a histogram whose distribution function satisfies F (1/nnan)=
√
an+1/n

for all n large enough.
Theorem 4. When f is the uniform distribution on [0, 1], we have

Hn√
2 log n

log log n

→ 1 in probability.

5. Proof of Theorem 4.
Lemma 1. For t > 0 and t ≥ c,

P{B(n, c/n) ≥ t} ≤ et−c−t log t+t log c.

Proof. We write B = B(n, c/n). By Chernoff’s bounding method, for λ > 0,

P{B ≥ t} ≤ E
{
eλB−λt

}
=
(

1 +
(
eλ − 1

) c
n

)n
e−λt

≤ ec(eλ−1)−λt.

The upper bound is minimized when eλ = t/c, yielding the desired inequality.
Lemma 2. If B is a binomial (n, c/n) random variable and t > 0, then, for t ≥ c,

E {BIB≥t} ≤ cet−c−t log t+t log c.

Proof. By simple bounding, we have for λ > 0,

E {BIB≥t} ≤ E
{
BeλB−λt

}
= nE

{ c
n
eλB

′−λt
}

= cE
{
eλB

′−λt
}
,

1220 LUC DEVROYE

where B′ is binomial (n − 1, c/n). Here we made use of the linearity of expectation.
By the Chernoff bound used in Lemma 1, we have

E {BIB≥t} ≤ c
(

1 +
(
eλ − 1

) c
n

)n−1

e−λt

≤ c
(

1 +
(
eλ − 1

) c

n− 1

)n−1

e−λt

≤ cec(eλ−1)−λt.

The upper bound is minimized when eλ = t/c.
We are now ready to prove Theorem 4. For the upper bound, take ε > 0 and

define k =
⌈
(1 + ε)

√
2 log n

log log n

⌉
. The tree is pruned by omitting the root node if its

cardinality is less than k, all nodes at depth one with cardinality less than k− 1, and
in general all nodes at depth d of cardinality less than k − d. We call this tree the
pruned tree. To compute P{Hn ≥ k}, the pruned tree and the random pebbled hash
tree are equivalent as all deleted nodes are roots of subtrees that cannot reach past
depth k. The expected number of nodes in the pruned tree at depth one is

(n− 1)P{B(n− 1, 1/(n− 1)) ≥ k − 1} ≤ (n− 1)ek−1−1−(k−1) log(k−1)

=
n− 1

e

(
e

k − 1

)k−1

,

where we used Lemma 1. Let the L nodes at depth one have cardinalities N1, . . . , NL.
Given N1, the first node spawns an expected number of nodes at depth two equal to

(N1 − 1)P{B(N1 − 1, 1/(N1 − 1)) ≥ k − 2} ≤ (N1 − 1)ek−2−1−(k−2) log(k−2)

=
N1 − 1

e

(
e

k − 2

)k−2

.

Given all the cardinalities, we thus have an expected number of nodes at depth two
not exceeding ∑L

i=1(Ni − 1)

e

(
e

k − 2

)k−2

.

But

E

{
L∑
i=1

Ni

}
= E

{
n−1∑
i=1

MiIMi≥k−1

}
≤ nek−1−1−(k−1) log(k−1) ,

where M1, . . . ,Mn−1 are the cardinalities of the n− 1 intervals in the first partition.
Here we used Lemma 2 with c = 1. Therefore, the expected number of nodes at depth
two does not exceed

n

e2

(
e

k − 1

)k−1(
e

k − 2

)k−2

.

By induction, the expected number of nodes at depth k − 1 does not exceed

n

ek−1

k−1∏
i=1

(e
i

)i
= ne(k−1)(k−2)/2−

∑k−1

i=1
i log i = ne−(1/2+o(1))k2 log k.

HEIGHT AND SIZE OF RANDOM HASH TREES 1221

Thus,

P{Hn ≥ k} ≤ ne−(1/2+o(1))k2 log k → 0

for the given choice of k.
For a matching lower bound, we argue by embedding and prune the tree even

further. For ε ∈ (0, 1), define k =
⌊
(1− ε)

√
2 log n

log log n

⌋
. Of all nodes at depth one,

we keep only those of exact cardinality k. These nodes spawn children at depth two,
of which we keep only the first child and only if it is of cardinality precisely k − 1.
Continuing in this manner, the process either becomes extinct or it survives up to
depth k with at least one node of cardinality one. In the latter case, Hn ≥ k. A node
at depth one has progeny that survives to depth k with probability

1

(k − 1)k−1(k − 2)k−2 · · · 2211

def
= q.

Clearly, q = e−(1/2+o(1))k2 log k. Given that there are L nodes at depth one in the
pebbled hash tree, we have

P{Hn < k|L} ≤ (1− q)L.

Now, L is binomial (n−1, p), where p = P{B = k} and B is binomial (n−1, 1/(n−1)).
It is easy to verify that for n ≥ 3,

p =

(
n− 1

k

)
1

(n− 1)k

(
1− 1

(n− 1)

)n−1−k
≥ 1

k!

(
n− 1− k
n− 1

)k (
1− 1

n− 1

)n−1

≥ 1

4 k!

(
1− k

n− 1

)k
≥ 1− k2/(n− 1)

4 k!

def
= q′.

Hence L is stochastically greater than B′, a binomial (n−1, q′) random variable. Thus,

P{Hn < k} ≤ E
{

(1− q)L} ≤ E
{

(1− q)B′
}

= (q′(1− q) + 1− q′)n−1
= (1− qq′)n−1 ≤ e−(n−1)qq′ → 0

when nqq′ →∞. This is easily verified for our choice of k.

6. The size of random hash trees. The second parameter of primary interest
is Sn. We will look only at sn = ESn. By linearity of expectation, we have

sn =

{
1, 0 ≤ n ≤ 1,
1 + n

∑n
i=0 P{B(n, 1/n) = i}si, n ≥ 2.

Note that we provide storage for empty bins as well. The recurrence given above
yields s0 = s1 = 1, s2 = 1+2(3/4+s2/4) so that s2 = 5. Hence we have the following
theorem.

Theorem 5. For the random hash tree,

lim
n→∞

ESn
n

= 2.3020238

1222 LUC DEVROYE

The limiting constant is

1

e

∞∑
i=0

si
i!
,

where s0, s1, . . . is given by the above recurrence.
Proof. The values sn can be shown to be approximable by the values tn, where

tn =
n

e

∞∑
i=0

si
i!
.

Indeed, note that

sn − tn
n

=
1

n
+

n∑
i=0

(
P{B(n, 1/n) = i} − 1

e i!

)
si −

∑
i>n

si
e i!

.

But for 0 ≤ i ≤ n,

P{B(n, 1/n) = i} − 1

e i!
=

(
n

i

)
(n− 1)n−i

nn
− 1

e i!
≤ ni

i!

(n− 1)n−i

nn
− 1

e i!

=
1

i!

(n− 1)n−i

nn−i
− 1

e i!
≤ e

i
n−1

i!
− 1

e i!
≤ i

n i!
,

and for 0 ≤ i ≤ n,

P{B(n, 1/n) = i} − 1

e i!
≥ (n− i+ 1)i

i!

(n− 1)n−i

nn
− 1

e i!

≥
(

1− i− 2

n− 1

)i
e−

1
1−1/n

i!
− 1

e i!

≥ e−
i2

n−i+1− 1
1−1/n

i!
− 1

e i!
≥ 1

e i!

(
e−

i2

n−i+1− 1
n−1 − 1

)
≥ − 1

e i!

(
i2

n− i+ 1
+

1

n− 1

)
≥ − 1

e i!

(
i2

n/2
+ i2Ii≥n/2 +

1

n− 1

)
.

Thus, we have (sn − tn)/n→ 0 if

∞∑
i=0

i2si
i!

<∞.

But that follows from the simple fact that si = O(i), something that is easy to verify.
Numerical computations show that

1

e

∞∑
i=0

si
i!

= 2.3020238

For the random pebbled hash tree, the recurrences are slightly different. Indeed,

sn =

{
1, 0 ≤ n ≤ 1,
1 + (n− 1)

∑n−1
i=0 P{B(n− 1, 1/(n− 1)) = i}si, n > 1.

HEIGHT AND SIZE OF RANDOM HASH TREES 1223

The analysis is entirely similar as for Theorem 5, and we thus obtain the following
theorem.

Theorem 6. For the random pebbled hash tree,

lim
n→∞

ESn
n

= 1.4183342

The limiting constant is

1

e

∞∑
i=0

si
i!
,

where s0, s1, . . . is given by the above recurrence.
In particular, note that random pebbled hash trees are smaller on the average

than random N-trees.

7. BBST: Bucketing followed by binary search trees. Assume that we
bucket n points into n equispaced buckets and that within each bucket we maintain a
balanced binary search tree. Then, in view of the results of Gonnet (1981) and Devroye
(1985), the expected worst-case search and insert times and indeed the expected
value of the height of this hybrid structure is asymptotic to log2 log n for all bounded
densities f on [0, 1]. In fact, the height Hn satisfies Hn/ log2 log n→ 1 in probability.
The expected average search time (if each element is equally likely to be probed for)
and the expected unsuccessful search time (for a random element drawn independently
from the same density f) are both O(1).

8. Extension: m pebbles. We may extend the analysis to m pebbles, leaving
m randomly selected points in every node before bucketing. If there are m+k points,
then there are k (with possibly k = 1) child nodes, each corresponding to a subinterval
1/kth of the length of the interval of the split node. This leads to random m-pebbled
hash trees. A quick analysis not worth repeating here shows that in this case, Hn ∼√

(2/m) log n/ log log n in probability. However, the worst-case search time is roughly
(m+1)Hn when comparisons and bucket operations all take one time unit. Therefore,
it seems wasteful to take m > 1, and thus the most important member of the family is
the pebbled hash tree studied above. A rather obvious but unaesthetic modification,
however, will improve matters exponentially. Let us set m = c log n/ log log n for some
constant c, and pick the m pebbles as follows for a node representing interval [a, b]:
find the mth order statistic M in time linear in the number of points. The m points on
[a,M] are placed in a balanced binary search tree in time m logm = O(log log n). The
remaining points on (M, b] are bucketed as in a random hash tree, and the process
is repeated. This tree has expected height O(1) so that expected worst-case search
times are O(log log n). As this method is eclipsed by the simple BBST structure of
the previous section, we will not analyze it in this paper.

9. Dynamic data structures. The data structures described above are of
course useful in any static setting, in which case we have expected preprocessing
time O(n) and expected worst-case search times as given by the expected values of
Hn in the analyses. Consider now the standard dictionary operations insert and
search. We may introduce the load factor α, the number of elements stored divided
by the branch factor of the root. The objective is to keep α at all times in a fixed
range, such as [1/2, 2]. As soon as α reaches a boundary, a complete rehash is per-
formed to make α = 1. In an amortized sense, these rehash operations take O(1)

1224 LUC DEVROYE

expected time. Expected worst-case search times remain asymptotically the same as
for the static case. However, for a fully dynamic data structure with interspersed
delete and insert operations, additional analysis is required.

Acknowledgment. I would like to thank all referees for their suggestions.

REFERENCES

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal (1994), Balanced allocations (extended
abstract), in Proc. 26th ACM Symposium on the Theory of Computing, pp. 593–602.

E. G. Coffman and J. Eve (1970), File structures using hashing functions, Communications of the
ACM, 13, pp. 427–436.

L. Devroye (1985), The expected length of the longest probe sequence when the distribution is not
uniform, J. Algorithms, 6, pp. 1–9.

L. Devroye (1986), Lecture Notes on Bucket Algorithms, Birkhäuser Verlag, Boston.
W. Dobosiewicz (1978), Sorting by distributive partitioning, Inform. Process. Lett., 7, pp. 1–6.
G. Ehrlich (1981), Searching and sorting real numbers, J. Algorithms, 2, pp. 1–14.
R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong (1979), Extendible hashing—a fast

access method for dynamic files, ACM Trans. Database Systems, 4, pp. 315–344.
P. Flajolet (1983), On the performance evaluation of extendible hashing and trie search, Acta

Inform., 20, pp. 345–369.
M. L. Fredman and D. E. Willard (1990), Blasting through the information theoretic barrier with

fusion trees, in Proc. 22nd Symposium on Theory of Computing, ACM Press, pp. 1–7.
G. H. Gonnet (1981), Expected length of the longest probe sequence in hash code searching, J. Assoc.

Comput. Mach., 28, pp. 289–304.
G. H. Gonnet and R. Baeza-Yates (1991), Handbook of Algorithms and Data Structures, Addison-

Wesley, Workingham, UK.
C. McDiarmid (1989), On the method of bounded differences, in Surveys in Combinatorics 1989,

London Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, UK.
B. Pittel (1985), Asymptotical growth of a class of random trees, Ann. Probab., 13, pp. 414–427.
M. Tamminen (1983), Analysis of N-trees, Inform. Process. Lett., 16, pp. 131–137.
M. Tamminen (1985), Two levels are as good as any, J. Algorithms, 6, pp. 138–144.
J. S. Vitter and P. Flajolet (1990), Average-case analysis of algorithms and data structures,

in Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van
Leeuwen, ed., MIT Press, Amsterdam, pp. 431–524.

ON REARRANGEABILITY OF MULTIRATE CLOS NETWORKS∗

GUO-HUI LIN† , DING-ZHU DU‡ , XIAO-DONG HU§ , AND GUOLIANG XUE¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1225–1231

Abstract. Chung and Ross [SIAM J. Comput., 20 (1991), pp. 726–736] conjectured that the
multirate three-stage Clos network C(n, 2n− 1, r) is rearrangeable in the general discrete bandwidth
case; i.e., each connection has a weight chosen from a given finite set {p1, p2, . . . , pk} where 1 ≥ p1 >
p2 > · · · > pk > 0 and pi is an integer multiple of pk, denoted by pk | pi, for 1 ≤ i ≤ k − 1. In this
paper, we prove that multirate three-stage Clos network C(n, 2n− 1, r) is rearrangeable when each
connection has a weight chosen from a given finite set {p1, p2, . . . , pk} where 1 ≥ p1 > p2 > · · · >
ph > 1/2 ≥ ph+1 > · · · > pk > 0 and ph+2 | ph+1, ph+3 | ph+2, . . . , pk | pk−1. We also prove that
C(n, 2n− 1, r) is two-rate rearrangeable and C(n, d 7n

3
e, r) is three-rate rearrangeable.

Key words. rearrangeability, multirate Clos networks, minimization of the number of center
switches

AMS subject classifications. 94A05, 05C70

PII. S0097539796313921

1. Introduction. The multirate interconnection network is a research topic in
asynchronous transfer mode (ATM) networks with applications in computer net-
works, telecommunications, and the Internet. The symmetric three-stage Clos net-
work C(n,m, r) has been widely used in the design of telecommunication networks
[1]. C(n,m, r) consists of r n×m crossbars (switches) in the first (or input) stage, m
r× r crossbars in the second (or central) stage, and r m×n crossbars in the third (or
output) stage. Every crossbar in the first stage has an outlet connected to an inlet
of every crossbar in the second stage, and every crossbar in the second stage has an
outlet connected to an inlet of every crossbar in the third stage (Fig. 1). There are
totally rn inlets in the first stage, called inputs, and totally rn outlets in the third
stage, called outputs. A connection (request, or call) in the network is a triple (i, j, w)
where i is an input, j is an output, while w is the weight of this connection, and it
represents the bandwidth required by the connection. A route is a path in the network
joining an input crossbar (i.e., a crossbar in the first stage) to an output crossbar (i.e.,
a crossbar in the third stage) and a route r realizes a connection (i, j, w) if the input
crossbar i and output crossbar j are connected by r with capacity w.

Usually, one assumes that each link has unit capacity. Therefore, the weight of
each connection is in the interval [0, 1]. A set of connections is compatible if, at every

∗Received by the editors December 19, 1996; accepted for publication (in revised form) February
5, 1998; published electronically March 22, 1999.

http://www.siam.org/journals/sicomp/28-4/31392.html
†Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, People’s Re-

public of China. Current address: Department of Computer Science, The University of Vermont,
Burlington, VT 05405 (ghlin@emba.uvm.edu). The work of this author was supported in part by
the National Natural Science Foundation of China.
‡Department of Computer Science, University of Minnesota, Minneapolis, MN 55455

(dzd@cs.umn.edu). The work of this author was supported in part by National Science Founda-
tion grant CCR-9530306 and Grant-in-Aid Research of The University of Minnesota.
§Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, People’s Re-

public of China (xdhu@amath3.amt.ac.cn). The work of this author was supported in part by the
National Natural Science Foundation of China.
¶Department of Computer Science and Electrical Engineering, The University of Vermont,

Burlington, VT 05405 (xue@emba.uvm.edu). The research of this author was supported in part
by National Science Foundation grants ASC-9409285 and OSR-9350540.

1225

1226 G.-H. LIN, D. Z. DU, X.-D. HU, AND G. XUE

n

n

m

m

 m

 m

 n

 n

r r

r r

Fig. 1. Symmetric three-stage Clos network.

input and output, the sum of weights of all connections is at most one. A request
frame is a compatible set of connections. A configuration is a set of routes, and it is
compatible if the total weight of routes passing through each link is at most one. A
request frame is said to be realizable if there exists a compatible configuration which
contains routes realizing all connections in the request frame. A multirate network is
said to be (multirate) rearrangeable if every request frame is realizable.

A connection c is said to be compatible with a request frame F if F ∪ {c} is
still compatible. A route r is said to be compatible with a compatible configuration
C if C ∪ {r} is still compatible. A network is said to be strictly nonblocking if for
every compatible configuration C realizing a request frame F and every connection c
compatible with F , there exists a route r such that r realizes c and r is compatible
with C.

In circuit switching, all connections are assumed to have the same rate one.
Namely, a network is said to be rearrangeable in circuit switching if every compatible
request frame of connections with weight one is realizable, and it is well known that the
symmetric three-stage Clos network C(n,m, r) is rearrangeable in circuit switching if
and only if m ≥ n [1]. Now, since multirate is involved, we may need more crossbars in
the center stage to reach the rearrangeability. Chung and Ross [2] conjectured1 that
if a symmetric three-stage Clos network C(n,m, r) is strictly nonblocking in circuit
switching, then it is multirate rearrangeable in the discrete bandwidth case. That is,
C(n, 2n− 1, r) is multirate rearrangeable if each connection has weight chosen from a
given finite set {p1, p2, . . . , pk} where 1 ≥ p1 > p2 > · · · > pk > 0 and pi is an integer
multiple of pk, denoted by pk | pi, for 1 ≤ i ≤ k − 1. They verified their conjecture
when k = 2 and {p1, p2, . . . , pk} = {1, p}.

Du et al. [3] recently proved that C(n,m, r) for m ≥ 41n/16 is multirate rear-
rangeable in general.

1After proving the result [2, Corollary 3] that a strictly nonblocking network for classical circuit
switching is also rearrangeable if all connections have weight of either b or 1, Chung and Ross [2]
stated that “It would be of interest to show that Corollary 3 holds for the general discrete bandwidth
case with K distinct rates.” For an easy reference, we call it the Chung–Ross conjecture. In this
paper, we consider this conjecture only for three-stage Clos networks.

ON REARRANGEABILITY OF MULTIRATE CLOS NETWORKS 1227

In this paper, we prove that the symmetric three-stage Clos network C(n, 2n−1, r)
is multirate rearrangeable when each connection has a weight chosen from a given
finite set {p1, p2, . . . , pk} where 1 ≥ p1 > p2 > · · · > ph > 1/2 ≥ ph+1 > · · · > pk > 0
and ph+2 | ph+1, ph+3 | ph+2, . . . , pk | pk−1. We also prove that C(n, 2n − 1, r) is
two-rate rearrangeable and C(n, d 7n

3 e, r) is three-rate rearrangeable.

2. Main results. In this section, we prove the following theorem.
Theorem 2.1. Symmetric three-stage Clos network C(n, 2n − 1, r) is multi-

rate rearrangeable when each connection has a weight chosen from a given finite set
{p1, p2, . . . , pk} where ph+2 | ph+1, ph+3 | ph+2, . . . , pk | pk−1, and 1 ≥ p1 > p2 >
· · · > ph > 1/2 ≥ ph+1 > ph+2 > · · · > pk > 0.

Proof. For k − h = 0, since p` > 1/2 for all ` = 1, 2, . . . , k, each link contains
at most one call. Thus, we can treat the network as that used in circuit switching.
From the result about circuit switching, C(n, 2n − 1, r) is nonblocking and hence
rearrangeable. Next, we consider k − h ≥ 1. Suppose α` for ` = 1, 2, . . . , h and β
are integers such that p` + α`pk ≤ 1 < p` + (α` + 1)pk and βpk ≤ 1 < (β + 1)pk.
First, route all calls with weights p1, p2, . . . , pk−1 on the 2n − 1 center switches. By
the induction assumption, it is possible. Now we route all calls with weight pk (or,
say, pk-call) in an arbitrary ordering. We will prove that we can always find a space
for a pk-call compatible with previous routed calls. In fact, for contradiction, suppose
there exists a pk-call (i, j, pk) compatible with previous routed calls, but we cannot
find space on a center switch to route this call (i, j, pk). Let I be the input switch
containing input i and J the output switch containing output j. Define the I-load
(the J-load) of a center switch as the sum of weights of all calls from input switch I
to the center switch (from the center switch to output switch J). Then every center
switch has its I-load or its J-load greater than 1 − pk. Note that there are 2n − 1
center switches. Therefore, we can find either n center switches that each has I-load
greater than 1 − pk or n center switches that each has J-load greater than 1 − pk.
Without loss of generality, we assume that the former occurs. This means that each of
these n center switches has I-load equal to either p` + α`pk for some ` ∈ {1, 2, . . . , h}
or βpk. Note that input switch I has exactly n input, and each input can contain at
most one p`-call for ` ∈ {1, 2, . . . , h}. Thus, every input in input switch I has a load
equal to either p` + α`pk or βpk. It follows that the call (i, j, pk) cannot exist, which
is a contradiction.

Melen and Turner [4] gave a routing algorithm CAP, and with CAP it can be
showed that the multirate three-stage Clos network C(n, 2n − 1, r) is rearrangeable
when each connection has a weight at most 1/2. The outline of the algorithm CAP
is as follows.

Divide all calls in each input/output switch into groups of size m. Then algorithm
CAP can arrange m center switches, with flexible link capacity, to route all calls such
that each center switch holds at most one call from every group in every input/output
switch. Thus, if for each input/output switch the total weight of a set of calls chosen
one from each group is never greater than one, then the line capacity can be restricted
to be within one. Thus, algorithm CAP actually routes all calls with m center switch
in the model considered in this paper.

The following is a corollary of Theorem 2.1.
Corollary 2.2. The symmetric three-stage Clos network C(n, 2n − 1, r) is

multirate rearrangeable when every connection has a weight chosen from a given set
{p1, p2}.

Proof. If p1 ≤ 1/2, then it follows from the result of Melen and Turner [4]. If

1228 G.-H. LIN, D. Z. DU, X.-D. HU, AND G. XUE

p1 > 1/2, it follows from Theorem 2.1.

The next result is obtained with algorithm CAP, too.

Lemma 2.3. Symmetric three-stage Clos network C(n, 2n − 1, r) is multirate
rearrangeable when each connection has a weight bigger than 1/3.

Proof. Since every call has weight bigger than 1/3, each input/output has at most
two calls. Thus, each input/output switch has at most 2n calls. If it has fewer than
2n calls, we put them all into one group. If it has exactly 2n calls, then we place the
one with the smallest weight among the 2n calls into one group and put the remaining
2n− 1 calls into another group. Note that when an input (output) switch has exactly
2n calls, each inlet (outlet) in this switch has exactly two calls. It follows from this
fact that among weights of the 2n calls, the smallest one plus any other one cannot
exceed one. This means that the total weight of any two calls, respectively, chosen
from two groups is at most one. Therefore, algorithm CAP can route all calls with
2n− 1 center switches.

The following is a result about three rates.

Theorem 2.4. Symmetric three-stage Clos network C(n, d7n
3 e, r) is multirate

rearrangeable when every connection has a weight chosen from {p1, p2, p3} where 1 ≥
p1 > p2 > p3 > 0.

Proof. By Theorem 2.1 and Lemma 2.3, we can assume that p1 > 1/2 ≥ p2 and
1/3 ≥ p3. In the following, we consider two cases.

Case 1. p1 > 1/2 and 1/3 ≥ p2 > p3. It was proved in [3] that if all calls
with weights bigger than 1/f (f is an integer) can be routed with c(≥ 2n) center
switches, then at most d(c− 2)/f − c+ 2ne additional center switches are needed to
route all calls with weights at most 1/f . Now we choose f = 6. If p3 ≤ 1/6, then
all calls with weights bigger than 1/6 are p1- or p2-calls. They can be routed with
2n center switches since all calls with the same weight can be routed with n center
switches. Therefore, the total number of center switches for routing all calls is at most
2n+ d(2n− 2)/6e < d7n/6e. Hence, we may assume p3 > 1/6.

Consider a bipartite graph G with two vertex sets, respectively, consisting of
all inputs and all outputs and with all p3-calls and p2-calls as edges. Since p2 >
p3 > 1/6, each vertex has degree at most five. By a lemma of de Werra [5], this
graph can be decomposed into five edge-disjoint matchings. First, we can route calls
in four matchings with d4n/3e center switches since 1/3 ≥ p2 > p3. In fact, each
matching for the bipartite graph G can be decomposed into n edge-disjoint matchings
for the bipartite graph H between input switches and output switches, and hence four
matchings for G give 4n matchings for H. Moreover, each center switch can route
three matchings for H. Therefore, we need only d4n/3e center switches to route four
matchings for G.

Next, we consider calls in the fifth matching together with all p1-calls. We will
route them with n center switches in the following way.

If p1 + p3 > 1, then there are at most n considered calls in each input/output
switch. Therefore, n center switches are enough to route them by classic routing
algorithm.

If p1 + p3 ≤ 1 and p1 + p2 > 1, then each input/output switch has at most 2n
calls in which there are at most n p1- or p2-calls. Thus, we can divide them into two
groups of at most size n such that one group contains only p3-calls and the other one
contains the remainders. Now, with the routing algorithm CAP of Melen and Turner
[4], n center switches are enough to route all considered calls.

If p1 + p2 ≤ 1, then each input/output switch has at most 2n calls in which there

ON REARRANGEABILITY OF MULTIRATE CLOS NETWORKS 1229

are at most n p1-calls. Thus, we can divide them into two groups of size at most
n such that one group contains only p2- or p3-calls and the other one contains the
remainders. Now, the routing algorithm CAP of Melen and Turner [4] can also use n
center switches to route all considered calls.

Case 2. p1 > 1/2 ≥ p2 > 1/3 ≥ p3. Furthermore, if p1 + p2 ≤ 1, then each input
switch has at most 2n p1- or p2-calls. These at most 2n calls can be divided into two
groups such that each group contains at most n calls and only one group contains
p1-calls since each input switch has at most n p1-calls. Since p1 + p2 ≤ 1, the sum
of two elements chosen, respectively, from the two group is at most one. Thus, we
can use n center switches to route all p1-calls and p2-calls by the routing algorithm
CAP of Melen and Turner [4]. It is shown in [3] that a network which is rearrangeable
for the classical circuit switching is multirate rearrangeable if all weights are in the
interval [b, 1/b1/bc] for some 0 < b ≤ 1. According to this result, n center switches are
enough to route all p3-calls. Therefore, totally, 2n center switches are enough when
p1 + p2 ≤ 1. Next, we may also assume p1 + p2 > 1. An argument similar to that in
the proof of Theorem 2.1 will be employed.

First, route all calls with weights p1 and p2 on the 2n − 1 center switches. By
Corollary 2.2, it is possible. Now we route all calls with weight p3 (or, say, p3-call)
in an arbitrary ordering. We will prove that we can always find a space for a p3-call
compatible with previous routed calls. In fact, for contradiction, suppose there exists
a p3-call (i, j, pk) compatible with previous routed calls, but we cannot find space on
a center switch to route this call (i, j, pk). Let I be the input switch containing input
i and J the output switch containing output j. Define the I-load (the J-load) of
a center switch as the sum of weights of all calls from input switch I to the center
switch (from the center switch to output switch J). Then every center switch has its
I-load or its J-load greater than 1− p3. Note that there are d7n/3e center switches.
Therefore, we can find either d7n/6e center switches that each has I-load greater than
1 − p3 or d7n/6e center switches that each has J-load greater than 1 − p3. Without
loss of generality, we assume that the former occurs. Since p1 + p2 > 1, every I-load
greater than 1− p3 must be in the following forms:

p1 + k1p3

(
k1 =

⌊
1− p1

p3

⌋)
,

p2 + k2p3

(
k2 =

⌊
1− p2

p3

⌋)
,

2p2 + k3p3

(
k3 =

⌊
1− 2p2

p3

⌋)
,

k4p3

(
k4 =

⌊
1

p3

⌋)
.

Suppose that there are x1 center switches with I-load equal to p1 + k1p3, x2 center
switches with I-load equal to p2 + k2p3, x3 center switches with I-load equal to
2p2 + k3p3, and x4 center switches with I-load equal to k4p3. Then we have

x1 + x2 + x3 + x4 ≥ d7n/6e.

1230 G.-H. LIN, D. Z. DU, X.-D. HU, AND G. XUE

Without loss of generality, assume

x1 + x2 + x3 + x4 = d7n/6e.

(If x1 +x2 +x3 +x4 > d7n/6e, we delete some center switches from our consideration.)
Now we consider p1-calls and p2-calls only in the I-loads of d7n/6e center switches.
Suppose that among n inputs of input switch I, there are y1 inputs each containing
such a p1-call, y2 ones each containing one such p2-call, y3 ones each containing two
such p2-calls, and y4 containing only p3-calls. Note that the number of considered
p1-calls and the number of considered p2-calls does not change and the total number
of p3-calls in I-loads must be smaller than the maximum number of p3-calls which
can be put in the inputs. Thus, we have

x1 = y1,

x2 + 2x3 = y2 + 2y3,

k1x1 + k2x2 + k3x3 + k4x4 < k1y1 + k2y2 + k3y3 + k4y4.

That is,

(x1 − y1) = 0,

(x2 − y2) + 2(x3 − y3) = 0,

k1(x1 − y1) + k2(x2 − y2) + k3(x3 − y3) + k4(x4 − y4) < 0.

Therefore,

(x1 − y1) + (x2 − y2) + (x3 − y3) + (x4 − y4)

<

(
1− k1

k4

)
(x1 − y1) +

(
1− k2

k4

)
(x2 − y2) +

(
1− k3

k4

)
(x3 − y3)

=
2k2 − k3 − k4

k4
· (x3 − y3).

Note that

0 ≤
⌊

2(1− p2)

p3

⌋
− (k3 + k4) ≤ 1,

0 ≤
⌊

2(1− p2)

p3

⌋
− 2k2 ≤ 1.

It follows that |2k2 − k3 − k4| ≤ 1. Now, we consider two subcases.
Subcase 2.1. p3 ≤ 1/4. In this case, we have k4 ≥ 4 and |x3 − y3| = |y2 − x2|/2 ≤

d7n/6e/2. Thus, we have

(x1 − y1) + (x2 − y2) + (x3 − y3) + (x4 − y4) < d7n/6e/8.

Therefore,

x1 + x2 + x3 + x4 < n+ d7n/6e/8 ≤ d7n/6e(6/7 + 1/8) < d7n/6e,

ON REARRANGEABILITY OF MULTIRATE CLOS NETWORKS 1231

which is a contradiction.
Subcase 2.2. p3 > 1/4. In this case, we have 1 ≤ k2 ≤ 2, 0 ≤ k3 ≤ 1, and k4 = 3.

If k3 = 1, then 2p2 + p3 ≤ 1. Then we must have k2 = 2. Thus, 2k2 − k3 − k4 = 0.
Therefore,

x1 + x2 + x3 + x4 < y1 + y2 + y3 + y4 = n,

which is a contradiction. (Note: The proof here shows that 2n − 1 center switches
are enough in this special situation.) Next, we assume k3 = 0, i.e., 2p2 + p3 > 1.
Consider a bipartite graph with two vertex sets, respectively, consisting of all inputs
and all outputs and with all p3-calls and p2-calls as edges. Since p2 > p3 > 1/4,
each vertex has degree at most three. By a lemma of de Werra [5], this graph can be
decomposed into three edge-disjoint matchings. Clearly, we can route two matchings
with n center switches since 1/2 ≥ p2 > p3. Put calls in the third matching together
with all p1-calls. We now consider p1-calls and those calls in the third matching. If
p1 + p3 > 1, then each input/output switch has at most n considered calls. They can
be routed with n center switches. If p1 +p3 ≤ 1, then each input/output switch has at
most 2n such calls in which there exist at most n p1- or p2-calls. Thus, we can route
them with n center switches by the routing algorithm CAP of Melen and Turner [4].
Thus, totally, 2n center switches are enough in this case.

Note that in Subcase 2.2, only 2n center switches are required. Moreover, if
1 ≥ p1 > 1/2 and 1/3 ≥ p2 > p3 > 1/4, then we can route all p1-calls with n center
switches and route all p2-calls and p3-calls with n center switches. Therefore, we have
the following corollary.

Corollary 2.5. The symmetric three-stage Clos network C(n, 2n, r) is multirate
rearrangeable when every connection has a weight chosen from {p1, p2, p3} where 1 ≥
p1 > p2 > p3 > 1/4.

3. Discussion. The conjecture of Chung and Ross [2] on rearrangeability of
multirate Clos networks seems true not only in the discrete bandwidth case but also
in arbitrary rates. This is equivalent to the following conjecture: consider any double
stochastic square matrix of order nr. Divide it into r2 blocks, each of which is an
n×n submatrix. Now we color all cells of the matrix such that the total value in the
same color and in the same block-row is at most one and the total value in the same
color and in the same block-column is at most one. The conjecture says that 2n− 1
colors are enough. In this paper, we proved it in several special cases. Finally, we
would like to mention that by an argument similar to the proof of Lemma 2.3, we can
also prove that the conjecture is true for r = 2.

Acknowledgments. The authors wish to thank the referees for their insightful
comments.

REFERENCES

[1] V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic
Press, New York, 1965.

[2] S.-P. Chung and K. W. Ross, On nonblocking multirate interconnection networks, SIAM J.
Comput., 20 (1991), pp. 726–736.

[3] D. Z. Du, B. Gao, F. K. Hwang, and J. H. Kim, On multirate rearrangeable Clos networks,
SIAM J. Comput., 28 (1999), pp. 463–470.

[4] R. Melen and J. S. Turner, Nonblocking multirate networks, SIAM J. Comput., 18 (1989),
pp. 301–313.

[5] D. de Werra, Balanced schedules, Inform. J., 9 (1971), pp. 453–465.

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES∗

PRASAD TETALI†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1232–1246

Abstract. Random walks are well known for playing a crucial role in the design of randomized
off-line as well as on-line algorithms. In this work we prove some basic identities for ergodic Markov
chains (e.g., an interesting characterization of reversibility in Markov chains is obtained in terms of
first passage times). Besides providing new insight into random walks on weighted graphs, we show
how these identities give us a way of designing competitive randomized on-line algorithms for certain
well-known problems.

Key words. random walk, graph, Markov chain, reversibility, competitive ratio, first passage
time, M-matrices

AMS subject classifications. 68Q25, 60C05, 60J10, 60J15, 60J20, 15A51

PII. S0097539798335511

1. Introduction. In a recent paper, Coppersmith et al. [8] made clever use of
results from synthesis of electrical networks to design reversible random walks useful
for certain randomized on-line algorithms.

At the heart of their methods lies the following problem on random walks. We
are given a weighted (undirected) graph with n vertices, and with weight Cij on edge
{i, j}, for 1 ≤ i, j ≤ n. Assume that the weights are symmetric and that they satisfy
the triangle inequality. Every traversal of an edge {i, j} costs Cij .

Recall that a random walk on an undirected graph is the Markov chain whose
state space is the vertex set of the graph, whose behavior is given by the rule that
when the chain is at any given vertex the next transition is along an edge incident
to that vertex that is chosen at random, according to some probability distribution.
(The probability distribution could depend on the vertex, and the case of uniform
distribution over the incident edges is often called a simple random walk.) We say
that a random walk on G has stretch s (with respect to the cost matrix C) if, for any
sequence of vertices v0, . . . , vk, the expected cost of the random walk to traverse these
nodes in the prescribed order is at most s times the optimal cost, up to an additive
constant. Let euv denote the expected cost of the walk to go from vertex u to vertex
v. If for every v0, . . . , vk,

∑k
i=1 evi−1vi ≤ s

∑k
i=1 Cvi−1vi + a, where a ≥ 0, then the

walk is said to have stretch s. Given the cost matrix C, the problem is to design a
random walk with as low a stretch as possible.

Coppersmith et al. proved the following tight result for all symmetric cost matri-
ces: Any random walk on a weighted (undirected) graph with n vertices has stretch
≥ (n − 1), and every weighted (undirected) graph has a random walk with stretch
≤ (n− 1).

Coppersmith et al. justified the relevance of this problem by providing bounds
for the cat and mouse game, which they showed was central to the analysis of on-line

∗Received by the editors March 10, 1998; accepted for publication March 20, 1998; published
electronically March 22, 1999. A preliminary version of this paper appeared in Proc. 5th Annual
ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1994, pp. 402–411. The
work of this author was done while at AT&T Bell Labs, Murray Hill, NJ 07974.

http://www.siam.org/journals/sicomp/28-4/33551.html
†School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 (tetali@math.

gatech.edu).

1232

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1233

algorithms for well-known problems such as the metrical task system problem and the
k-server problem. (We shall define these shortly for the nonspecialist.)

Symmetry of the costs is crucial to the basic technique used in [8] in designing
the appropriate random walk, and thus an interesting question is left open on stretch
under asymmetric costs—equivalently, the stretch of random walks on directed graphs.
In this work we prove close-to-optimal lower and upper bounds on a stretch for a
class of matrices, without the symmetry assumption. Moreover, under symmetry our
results imply those of [8].

In a nutshell, Coppersmith et al. interpret a given cost matrix as an effective
resistance matrix of a resistive network, and then they synthesize an actual network
that has the desired properties. Classical analogues between resistive networks and
reversible Markov chains yield a corresponding random walk that achieves the optimal
stretch. We use a different way of synthesizing a random walk, the advantage being
that we do not need reversibility of the walk (i.e., symmetry of the costs) for our
techniques to work. We interpret the cost matrix as the hitting time (first passage
time) matrix of an ergodic (not necessarily reversible) Markov chain and then describe
how to find the unique chain that yields the desired hitting times, i.e., design the
transition probabilities which yield the desired hitting times. While such a synthesis
of an ergodic chain from a valid hitting time matrix is unique and efficient, it is not
true that an arbitrary cost matrix is always a hitting time matrix.1 (The consolation,
however, is that we can check for the latter condition with essentially one matrix
inversion.) We call a cost matrix ergodic if it can be interpreted as a certain hitting
time matrix, and we call the corresponding random walk an ergodic walk. We show
that this walk achieves optimal stretch when the costs are symmetric and is close to
optimal when the costs are asymmetric. We show that our techniques also work when
the cost matrix is essentially an effective resistance matrix, thus extending several
results proved in [8].

Given a weighted (directed) graph with a weight (or cost) matrix C = {Cij},
define the cycle offset ratio Ψ(C) as follows. Ψ(C) is the maximum over all sequences

v0, . . . , vk = v0 of

∑k
i=1 Cvi−1,vi∑k
i=1 Cvi,vi−1

.

(Note that 1 ≤ Ψ(C) ≤ (n− 1), since the costs satisfy the triangle inequality.)
We prove the following result.
Any random walk on a weighted graph with n vertices has stretch ≥ (n−1)/Ψ(C),

and the ergodic walk has stretch ≤ (n− 1), with equality under a symmetric C.
While we show examples that achieve equality in the lower bound, any tightening

of the upper bound seems quite hard. However, it is interesting that the stretch
of random walks on directed graphs can be brought down below n − 1, while the
counterpart on undirected graphs has an optimal bound of n− 1.

The first application, for the cat and mouse game (see section 3), follows imme-
diately from the above. It was mentioned in [8] that the cat and mouse game is at
the core of several on-line algorithms. We show that for any n × n cost matrix C
and any “blind” cat strategy (i.e., a random walk strategy), there is a mouse strategy
that forces the competitiveness of the cat to be at least (n−1)/Ψ(C), and the ergodic
walk by the cat achieves a competitive ratio ≤ (n− 1), on ergodic C.

1Similarly, an arbitrary cost matrix is not necessarily an effective resistance matrix for the tech-
niques of [8] to work.

1234 PRASAD TETALI

The second and more interesting application is for the notoriously hard k-server
problem (see [11], [16], [20], [17]). The k-server problem (defined in [20]) is as follows.
There are k mobile servers located on k vertices of a graph G with positive, real costs
on the edges. (The costs can be thought of as distances between the positions.) An
on-line algorithm manages the servers in such a way as to satisfy an on-line sequence of
requests for service at vertices vi, i = 1, 2, . . . ; i.e., servicing a request corresponds to
moving a server to the requested vertex whenever a server isn’t there. The algorithm
pays a cost equal to the cost on the edge traversed by the server. The competitiveness
of the algorithm is measured with respect to the cost an adversary pays, wherein the
adversary moves the servers but also gets to choose the request sequence.

Due to the hardness of the k-server problem, it is significant to prove competi-
tive ratios even for special cases such as special classes of graphs (e.g., [4], [8], [6]).
Coppersmith et al. [8] provide one such example class. They use random walks to
design optimal randomized k-competitive server algorithms when the cost matrix has
a resistive inverse. We extend this class by allowing asymmetric costs, or equivalently,
weighted directed graphs, with ergodic cost matrices.

Define edge offset ratio Ψ′(C) to be maxij
Cij
Cji

. (Note that Ψ(C) ≤ Ψ′(C), and

that Ψ(C) = Ψ′(C) = 1, for symmetric C.) We prove the following result for the
asymmetric k-server problem. (This implies the result of [8].)

Let C be a cost matrix on n nodes. If every submatrix on k+ 1-nodes is ergodic,
then we have a randomized kΨ′(C)-competitive strategy for the k-server problem on
C.

The final application is to the task system problem, defined as follows. We have a
task system (S,C) for processing sequences of tasks wherein S is a set of states, and
C is a cost matrix, describing the cost of changing from state i to state j. We assume
that the costs satisfy the triangle inequality and that there is no cost of staying in
the same state (Cii = 0). Furthermore, when the costs are symmetric we refer to
the task system as a metrical task system (MTS). Each task T has a cost vector vT ,
where vT (i) is the cost of processing T in state i. A schedule for a given sequence of
tasks T1, . . . , Tk is a sequence of states s1, . . . , sk, where si is the state in which Ti is
processed. The task system problem is to design an on-line schedule (choose si only
knowing T1, . . . , Ti) so that the algorithm is w-competitive—on any input sequence
of tasks, the cost of the on-line algorithm is, barring an additive constant, at most w
times that of the optimal off-line algorithm.

Borodin et al. [5] designed a deterministic algorithm with a competitive ratio of
at most (2n−1)Ψ(C) for the task system problem with asymmetric costs. If the costs
are symmetric (i.e., an MTS), they prove a matching lower bound of (2n − 1). It is
straightforward to extend their lower bound proof for the asymmetric case to get a
lower bound of (2n − 1)/Ψ(C). Coppersmith et al. provided a simpler, memoryless,
(2n − 1)-competitive, randomized algorithm for any MTS, and also showed that no
randomized algorithm can do better against an adaptive on-line adversary. We extend
the results of [8] to the task system with ergodic cost matrices. In particular, we prove
a lower bound of (2n−1)/Ψ(C) for any randomized on-line scheduler. We also provide
a randomized on-line scheduler with a competitive ratio of at most (2n − 1). While
(2n − 1) is the best possible for symmetric cost matrices, our randomized scheduler
achieves a competitive ratio of strictly less than (2n− 1), whenever the (ergodic) cost
matrix is asymmetric. This shows that it is possible to design random walks with
lower stretch on directed graphs than on undirected graphs. This also suggests that
the deterministic algorithm of [5] (or a variant thereof) may have a competitive ratio

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1235

of at most (2n− 1) even under asymmetric costs.
Thus the novel technique of using the synthesis of random walks from hitting

times for the design of on-line algorithms, while yielding the results of [8] for undi-
rected graphs in a natural and simpler way, also yields results for directed graphs.
We conclude this work with an interesting question on “approximating” an ergodic
Markov chain, which will have useful implications in terms of extending our results
to all cost matrices.

2. Results on ergodic Markov chains. In this section we prove two identities
involving the first passage times and the transition probabilities. These results are
crucial (later) to the analysis of our on-line algorithms. Lemma 2.1 and Theorem
2.2 below appeared in an earlier paper of this author [23]; however, the proofs are
included here to keep the presentation self-contained.

Consider an electrical network on n nodes with resistors rij between nodes i and
j. Let Rij denote the effective resistance between the nodes. Then Foster’s theorem
asserts that ∑

i∼j

Rij
rij

= n− 1,

where i ∼ j denotes that i and j are connected by a finite rij . The proof appears in
[13]. Also, [22] shows an alternative way (using random walks) of proving the same.
In this section we prove an elementary identity for ergodic Markov chains which yields
Foster’s theorem when the chain is time-reversible.

Let P denote the transition probability matrix (size n× n) of an ergodic Markov
chain with stationary distribution π. Let Pii = 0 ∀i. Furthermore, let H denote the
expected first-passage matrix (also size n×n) of the above chain; i.e., Hij denotes the
expected time to reach state j starting from state i. We call these the hitting times.
Then we have the following lemma.

Lemma 2.1.
∑
i,j πjPjiHij = n− 1.

Proof.

∑
i,j

πjPjiHij =
∑
j

πj

(∑
i

PjiHij

)
=
∑
j

πj [Hjj − 1]

=
∑
j

πj [1/πj − 1] = n− 1,

since Hjj = 1/πj .
We prove a stronger statement than Lemma 2.1 in the form of Corollary 2.7 below.

Both Lemma 2.1 and Corollary 2.7 were formulated while attempting to interpret
Foster’s theorem in terms of ergodic Markov chains. For a proof that Lemma 2.1
implies Foster’s theorem, see [23].

2.1. Synthesis of an ergodic walk. In the following we describe the construc-
tion (whenever one such exists) of an ergodic walk given an all-pairs hitting times
matrix H. Given P as above, we define P̄ to be the following (n−1)× (n−1) matrix.
Let

P̄ii = πi

=
n∑
j=1
j 6=i

πiPij

 ,

1236 PRASAD TETALI

and P̄ij = −πiPij , for 1 ≤ i, j ≤ n− 1.
Furthermore, let H̄jj = Hjn +Hnj , and H̄jk = Hjn +Hnk −Hjk, for 1 ≤ j, k ≤

n−1. We use the standard notation of In for an identity matrix of size n×n, and δij
to denote the entries of I. The following theorem is a generalization of the resistive
inverse identity (well known in electrical network theory) used in [8].

Theorem 2.2.

P̄ H̄ = In−1.

Proof. The basic identity we use is the triangle inequality for the hitting times.
Using a “renewal type” theorem (see section 2.3 of [2] or Proposition 9-58 of [19]) one
can show the following:

Hxz +Hzy −Hxy =
Nxz
y

πy
,(2.1)

Hxz +Hzx =
Nxz
x

πx
.(2.2)

(Recall that Nxz
y denotes the expected number of visits to y in a random walk from

x to z.) From (2.1) and (2.2) we have

H̄jk =
N jn
k

πk
∀j, k.

Consider

n−1∑
j=1

P̄ijH̄jk = P̄iiH̄ik +
n−1∑
j=1
j 6=i

P̄ijH̄jk

= πi
N in
k

πk
−
n−1∑
j=1
j 6=i

πiPij
N jn
k

πk

=
πi
πk

N in
k −

n−1∑
j=1
j 6=i

PijN
jn
k

=
πi
πk

[δik] (taking conditional means, given the first outcome)

= δik.

Remark 1. We have defined P̄ and H̄ by treating n as a special state of the
chain. Clearly, we could have chosen any other state j and carried out a similar
analysis.

Remark 2. For reversible chains, we have H̄jk = H̄kj. This is because

Hjn +Hnk +Hkj = Hjk +Hkn +Hnj ∀i, j (**).

The proof of this can be found in [9], or it can be verified directly by using the
formula for the hitting times in terms of either resistances (see [22]) or the fundamental

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1237

matrix (see [18]). Thus the proof of Theorem 2.2 becomes simpler for the reversible
case. (In particular, we do not need to use (2.1) and (2.2).)

An interesting consequence of Theorem 2.2 is that the property in (**) is sufficient
(not only necessary) to imply reversibility. For (**) implies that H̄ is symmetric
which in turn implies that P̄ is symmetric, i.e., πiPij = πjPji ∀i, j. This alternative
characterization of reversibility is interesting for yet another reason: Interpreted in
the electrical world, it can be shown (see [23]) to be equivalent to what is known as
the reciprocity theorem (see [22]).

Corollary 2.3. Given the hitting times, the chain can be tested for reversibility
in O(n2) time.

Proof. First we designate an arbitrary state as state n and then verify (**) for
all pairs of vertices in O(n2) time. (Here we abuse notation by using n for both the
number of states and the name of a particular state.)

Corollary 2.4. Given P and π, the hitting times (Hij) can be computed with
a single matrix inversion, and conversely, given the hitting times, P and π can be
computed with a single matrix inversion.

Proof. In view of Theorem 2.2, we need to show only (a) how to compute H from
H̄, and (b) how to compute P from P̄ .

(a) For 1 ≤ i, j ≤ n− 1, we have

Hin =
∑
k

N in
k =

∑
k

πkH̄ik,

Hni = H̄ii −Hin,

Hij = Hin +Hnj − H̄ij .

Thus we can first compute Hin and Hni ∀i < n, and then compute Hij for 1 ≤ i, j ≤
n− 1.

(b) We need to compute πn and Pni, since the rest of the information is available
in P̄ . Since π is stochastic, and πP = π, we have

πn = 1−
∑
i<n

πi = 1−
∑
i<n

P̄ii,

πnPni = πi −
∑
j 6=i,n

πjPji =
∑
j 6=n

P̄ji.

We observe that Theorem 4.4.12 of [18] gives an alternative way of computing
the chain, given all-pairs hitting times. However, the method outlined above seems
simpler, since the solution can be written in essentially one equation; see Theorem
2.2.

2.2. A trace inequality. Based on some empirical results and Lemma 2.1
above, we conjectured that

∑
i,j πiPijHij ≤ n − 1, with equality under reversibil-

ity of the chain. This plays a crucial role in all our applications below, besides having
an intrinsic importance. Recently, Aldous [1] proved this conjecture using a result
due to Fiedler et al. [12]. We provide a slightly different proof using Theorem 2.2 and
the main theorem in [12].

Definition 2.5. An M -matrix is an n× n matrix A of the form A = αI − P in
which P is nonnegative and α is at least as big as the largest eigenvalue of P .

1238 PRASAD TETALI

An alternative characterization of nonsingular M -matrices (see [21]) is that a
nonsingular matrix A with nonpositive off-diagonal entries is an M -matrix iff A−1 ≥
0, meaning that all the nonzero entries are positive. From this, it is clear that the
matrix P̄ defined above is an M -matrix. The following theorem of Fiedler et al. is an
interesting trace-inequality.

Theorem 2.6 (Fiedler et al. [12]). For a nonsingular M -matrix A (size n× n),
tr(A−1AT) ≤ n, with equality holding iff A is symmetric.

Now we are ready to state and prove the generalization of Lemma 2.1.
Corollary 2.7.

∑n
i,j=1 πiPijHij ≤ n − 1, with equality holding iff P (,) is a

reversible chain.
Proof. Using Theorem 2.6 with P̄ in place of A, we have tr(H̄P̄T) ≤ n − 1. We

are done by noticing that

tr(H̄P̄T)

=

n−1∑
i=1

n−1∑
j=1

H̄ijP̄ij

=
∑
i

H̄iiπi −
∑
i 6=j

H̄ijπiPij

=
∑
i

[Hin +Hni]πi −
∑
i 6=j

[Hin +Hnj −Hij]πiPij

=
∑
i

[Hin +Hni]πi −
∑
i

Hinπi(1− Pin)

−
∑
j

Hnj(πj − πnPnj) +
n−1∑
i,j=1

πiPijHij

=
n∑

i,j=1

πiPijHij .

3. Lower and upper bounds on stretch. We recall the definition of stretch of
a random walk from the introduction: a random walk is said to have stretch s if there
exists an a > 0 such that, for every v0, . . . , vk,

∑k
i=1 evi−1vi ≤ s

∑k
i=1 Cvi−1vi +a. The

following facts follow easily from the definition of stretch.
Fact 1. If a random walk has stretch s on cost matrix C = {Cij}, then the walk

has the same stretch on C ′ = {βCij}, where β is any positive constant.
Fact 2. In computing the stretch of a random walk, it suffices to consider se-

quences of vertices, v0, v1, . . . , vk = v0, that form simple cycles in the graph G.
Note that if a random walk has a stretch of c on simple cycles, then since any

cycle can be decomposed as the union of disjoint simple cycles, the random walk will
have stretch c on arbitrary closed paths. Now, as shown on page 426 of [8], Fact 2
follows from the fact that we gave ourselves room by allowing for an additive constant
in the definition of stretch.

Let C = {Cij} be the given cost matrix of size n× n.
Definition 3.1. Let Ψ(C) be defined as the maximum over all cycles (v0, . . . , vk =

v0) of the ratio ∑k−1
i=0 Cvi,vi+1∑k−1
i=0 Cvi+1,vi

.

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1239

If we assume that the costs satisfy the triangle inequality, then it is easy to see
that Ψ(C) ≤ n−1. (Note that Ψ is defined in [5] and is termed the cycle offset ratio.)

Theorem 3.2. Any random walk over a directed weighted graph has stretch at
least (n−1)/Ψ(C), where C = {Cij} is an n×n matrix specifying weight Cij on edge
(i, j).

Proof. Note that the lower bound is n− 1, when C is symmetric, since Ψ(C) = 1.
In fact, the proof is identical to Theorem 1 of [8], wherein the symmetric case was
dealt with.

We now introduce the notion of ergodic cost matrices, which subsumes the class of
resistive cost matrices, introduced in [8]. First, we describe two types of cost matrices
for which there exist random walks with stretch at most n− 1.

Type I. Let Cij = Hij ∀i, j, i 6= j, where Hij denote the hitting times of an
n-state ergodic Markov chain.

Claim 1. Every cost matrix of Type I has a random walk with stretch at most
n− 1.

Proof. Note that, in view of Fact 2, it suffices to bound stretch over all simple
cycles; this can then be extended to all paths, with an additive constant such as
maxi,j Cij .

Consider the walk with Hij as the hitting times. The expected cost per move is

E =
∑
i,j

πiPijCij =
∑
i,j

πiPijHij ≤ (n− 1)

by Corollary 2.7. The claim now follows by noticing that the expected cost of a
traversal over any sequence v0, . . . , vk of vertices equals E ×∑k−1

i=0 Hvivi+1 = E ×∑k−1
i=0 Cvivi+1 .

Type II. Let Cij = 1
2 [Hij + Hji] ∀i, j, i 6= j, where Hij now denote the hitting

times of any reversible Markov chain.
Claim 2. Every cost matrix of Type II has a random walk with stretch at most

n− 1.
Proof. As in the proof of Claim 1, without loss of generality, it suffices to bound

stretch over all simple cycles.
The expected cost per move is

E =
∑
i,j

πiPijCij =
1

2

∑
i,j

πiPij [Hij +Hji] = n− 1

by Lemma 2.1 and reversibility of P . Moreover, the expected cost of a traversal over
any (cyclic) sequence v0, . . . , vk = v0 of vertices is, as before, equal to

E ×
k−1∑
i=0

Hvivi+1

= E × 1

2

[
k−1∑
i=0

Hvivi+1
+
k−1∑
i=0

Hvi+1vi

]
by (**)

= (n− 1)

k−1∑
i=0

1

2
[Hvivi+1

+Hvi+1vi]

= (n− 1)×
k−1∑
i=0

Cvivi+1
.

1240 PRASAD TETALI

Hence we have the claim.

Remark 3. Any quantitative sharpening of the trace inequality (Theorem 2.6)
immediately gives an improved upper bound on stretch for cost matrices of Type I.

Definition 3.3. A cost matrix is ergodic if it is either the hitting time matrix
of an ergodic chain (Type I) or the commute time matrix of a reversible chain (Type
II).

Note that Theorem 2.2 guarantees that we can test if a matrix is ergodic or not
with essentially a single matrix inversion.

Theorem 3.4. Every graph with an ergodic cost matrix has a random walk with
stretch ≤ n − 1. Moreover, this walk (termed ergodic walk) can be designed with a
single matrix inversion.

Proof. From Claims 1 and 2, the first part of the theorem follows. We now show
how Theorem 2.2 can be used to design the desired random walk. Let G be a graph
with the ergodic cost matrix C. In view of (**) it is easy to see that Cin+Cnj−Cij =
Hin+Hnj−Hij , regardless of whether C is of Type I or II. Define H̄ij = Cin+Cnj−Cij ,
for 1 ≤ i, j ≤ n − 1. The rest should be obvious: We construct P , the transition
probability matrix of the desired walk, by first computing P̄ using Theorem 2.2.

Remark 4. Recall that a cost matrix is resistive if the Cij can be interpreted
as effective resistance Rij ∀i, j. Note that any resistive cost matrix is of Type II
(modulo a constant factor), since effective resistance Rij is essentially the commute
time Hij+Hji (modulo the same constant factor) of a reversible chain. This, together
with Fact 1, shows that our results imply those of [8].

The lower and upper bounds are obviously tight under symmetry, since Ψ(C) = 1.
The following example shows that the lower bound is, in general, tight.

Example. Consider a directed cycle 1, 2, . . . , n, 1 with cost 1 on each directed
edge (i, i + 1). Now put in all other edges to make a directed Kn and assign the
distance along the original cycle to be the cost of each edge. Thus the cost matrix has
Ψ = n − 1. The optimal random walk (with stretch 1) is, in fact, the deterministic
walk always going around the cycle.

With each undirected cycle, we associate the following notion of a (strongly con-
nected) “bicycle.” A bicycle is a sequence of nodes v0, v1, . . . , vk−1, v0, vk−1, . . . , v1, v0,
i.e., the undirected cycle traversed once in either direction. The following asserts that
our random walk is optimal over traversals of 1.

Corollary 3.5. The stretch over any bicycle of any random walk is ≥ (n− 1),
and the ergodic walk achieves the equality.

Proof. The equality is obvious in view of the preceding theorem. The proof of
the lower bound is essentially the proof of Theorem 1 of [8].

The cat and mouse game. As mentioned in the introduction this game is a
convenient tool in analyzing more complicated on-line strategies. For completeness,
we describe the game here, but we refer the reader to [8] for further details and related
interesting references. This is a game played for a fixed number of rounds between a
cat and a mouse on a graph. Each round begins with both the cat and the mouse on
the same vertex; the mouse moves once (and just once) at the beginning of the round
to some (carefully chosen) vertex unknown to the cat. The rest of the round consists
of the cat’s moves (which could be deterministic or randomized) on the edges of the
graph until the cat reaches the vertex that the mouse is at. Each move of the mouse
can use information about all previous moves by the cat. A strategy for the cat is
c-competitive if there exists an (additive) constant a ≥ 0 such that for any number of
rounds and any strategy of the mouse, the cat’s expected cost is at most c times the

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1241

mouse’s cost +a.
Theorem 3.6. For any n × n ergodic cost matrix C and for any random walk

strategy by the cat, there is a mouse strategy that forces the competitiveness of the cat
to be at least (n − 1)/Ψ(C), and the ergodic walk by the cat achieves a competitive
ratio ≤ (n− 1).

Proof. It was pointed out in [8] that a random walk with stretch c defines a
memoryless c-competitive strategy for the cat: in each round the cat, without re-
course to its previous moves, executes a random walk with stretch c. Thus the upper
bound is immediate from Theorem 3.4 above. For the lower bound, we use a stan-
dard argument (used, e.g., in [8] and [20]). Consider (n− 1) mice, one on each node
except where the cat is. Whenever a cat moves from i to j, the mouse on j moves
to i. Thus the mice together pay a cost of

∑k−1
i=0 Cvi+1,vi , whenever the cat takes a

walk v0, . . . , vk incurring a cost of
∑k−1
i=0 Cvi,vi+1

. The single mouse strategy is going
to be (just as in [8]) that we choose one of the (n − 1) strategies uniformly at ran-
dom. By the definition of Ψ(C), the mouse can always make the competitive ratio to
be ≥ (n− 1)/Ψ(C).

4. k-servers with asymmetric costs. Consider the usual k-server problem
with the triangle inequality constraint on the costs. An adaptive on-line adversary
(provably different from the oblivious and the adaptive off-line ones) chooses the next
request at each step, knowing the current position of the on-line algorithm and, if
1, moves one of its servers to satisfy the request. We describe here a randomized
on-line algorithm that works well against such an adaptive on-line adversary. (The
significance of results proved against such an adversary is as follows. It was shown
in [3] that a c-competitive randomized on-line algorithm against an adaptive on-line
adversary implies the existence of a c2-competitive deterministic algorithm.) Let us
assume that all the costs are positive and bounded. Let us, however, not make the
assumption that the cost Cij of moving a server from position i to j be the same as
that of moving a server from j to i, Cji. We also make the strong assumption that
every k × k submatrix is ergodic in the sense defined above.

Definition 4.1. Let the edge offset ratio Ψ′(C) be maxi,j(Cij/Cji).
We may simply write Ψ′ to denote Ψ′(C) as long as there is no confusion as

to the underlying C. Note that Ψ(C) ≤ Ψ′(C), and when C is symmetric Ψ(C) =
Ψ′(C) = 1.

We are now ready to state the main theorem of this section.
Theorem 4.2. Let C be a cost matrix on n nodes. If every submatrix on k + 1-

nodes is ergodic, then we have a randomized kΨ′(C) competitive strategy (against an
adaptive on-line adversary) for the k-server problem on C.

Proof. For convenience, we refer to the k-servers under our randomized on-line
strategy as randomized servers. The strategy is as follows. Suppose the randomized
servers are on positions 1 through k. Let the current request be on position x. We
find the (unique) ergodic walk that corresponds to these k+1 vertices by interpreting
the costs as the hitting times. (Note that this computation, for all choices of k + 1
vertices, can be done once and for all at the beginning.) Let pij denote the transition
probabilities of this walk. Then the strategy is to move the (randomized) server at j
(for j = 1, . . . , k) to x with probability (pxj/

∑
j pxj). (The probabilities clearly sum

to 1, over all j.)
We can model the situation as a game between the randomized server and an

adversary. The adversary controls k “off-line” servers. In each round of the game, the
adversary picks the next request (vertex) and moves one of his servers to that vertex.

1242 PRASAD TETALI

Then the randomized server uses her strategy to move one of her servers to the request.
We want to show that the expected cost of the randomized server is within a constant
factor of k times the cost incurred by the off-line server. Toward this, let us denote the
positions of the randomized servers and the adversary’s servers by a = {a1, . . . , ak}
and b = {b1, . . . , bk}, respectively. We define the following “potential function” Φ:

Φ(a,b) =

n∑
i,j=1

Cij −
∑
x

∑
j

Cxaj + kmin
σ

∑
i

Cbiaσ(i)
,

where x ranges over nodes where there is currently no randomized server, and σ
ranges over (directed) matchings between the adversary’s positions and the random-
ized servers’ positions. (The first term in the definition of Φ is introduced simply
to make Φ positive and is thus not essential to the proof.) Let CostR and CostA
denote the accumulated costs of the randomized servers and the adversary’s servers,
respectively.

Furthermore, let

∆ = Φ + CostR − kψ′ × CostA.

We would like to show that ∆ is always nonincreasing with every move of either
the randomized servers or the adversary.

Adversary’s move. Consider a move by the adversary’s server from node bj to
bj′ . The adversary clearly pays cost Cbjbj′ . We want to show that ∆(new)−∆(old) =
Φ(new)−Φ(old)−kψ′Cbjbj′ is ≤ 0. Let the minimum matching in Φ(old) be bi → ai∀i.
Then define a new matching as follows. Match bi with ai for i 6= j′, and match bj′
with aj . Clearly,

Φ(new)− Φ(old)− kψ′Cbjbj′
≤ kCbj′aj − kCbjaj − kψ′Cbjbj′
≤ kCbj′aj − kCbjaj − kCbj′bj (by the definition of ψ′)
≤ 0, since Cbj′bj + Cbjaj ≥ Cbj′aj .

Randomized servers’ move. For this half of the proof, it was shown in [8] that
(restrictive as it may sound) it suffices to prove the case when the randomized servers
and the adversary agree on (i.e., share the same vertices) k − 1 positions and differ
in only one position. The same justification applies in our situation as well, and we
omit the straightforward proof.

Thus let us assume without loss of generality that the adversary occupies positions
1 through m− 1 = k, and the randomized servers occupy positions 2 through m. Let
the request be on 1. So, the randomized server moves from j to 1 with probability
p1j/(

∑
j p1j), paying a cost of Cj1. Here and in the claim below,

∑
j represents

∑m
j=2.

Note that
∑
j p1j is equal to 1, if p11 = 0, but in general,

∑
j p1j = 1− p11.

Claim. ∑
j

p1j∑
j p1j

[Φ(new)− Φ(old) + Cj1] = 0.

Proof. Clearly, the minimum matching before the move has cost C1m, since the
minimium matching consists of the (directed) edge (1,m). Similarly, after the move

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1243

(of the server from j to 1), the minimum matching has cost Cjm (match j with m),
since the adversary and the randomized servers are identical everywhere else. Thus

[Φ(new)− Φ(old) + Cj1]

= −
m∑
i=1

Cji +
m∑
i=2

C1i + kCjm − kC1m + Cj1

= −
m∑
i=2

Cji +
m∑
i=2

C1i + kCjm − kC1m

= −
m∑
i=2

Hji +
m∑
i=2

H1i + kHjm − kH1m.

Thus∑
j

p1j∑
j p1j

[Φ(new)− Φ(old) + Cj1]

=
1∑
j p1j

− m∑
i=2

∑
j

p1jHji +
m∑
i=2

H1i

∑
j

p1j

+
1∑
j p1j

k∑
j

p1jHjm − kH1m

∑
j

p1j

=

1∑
j p1j

 m∑
i=2

−∑
j

p1jHji +H1i(1− p11)

+

1∑
j p1j

k
∑

j

p1jHjm −H1m(1− p11)

=

1∑
j p1j

[(
m∑
i=2

1

)
− k
]

(since H1i = 1 + p11H1i +
∑m
j=2 p1jHji)

= 0.

We showed that ∆ is always nonincreasing. This concludes the proof that the
randomized strategy is kΨ′-competitive against an adaptive on-line adversary.

5. Task systems. Recall the description of a task system from the introduction:
We have a task system (S,C) for processing sequences of tasks wherein S is a set of
states, and C is a cost matrix, describing the cost of changing from state i to state
j. The task system problem is to design an on-line schedule (choose si only knowing
T1, . . . , Ti) so that the algorithm is w-competitive—on any input sequence of tasks,
the cost of the on-line algorithm is, barring an additive constant, at most w times
that of the optimal off-line algorithm. In [5] it was shown that w(S,C) = 2|S| − 1
for every metrical task system (MTS), and w(S,C) ≤ (2|S| − 1)Ψ(C) = O(|S|2), for
every task system. Subsequently, [8] gave a (2|S| − 1)-competitive randomized on-line
algorithm for every MTS. It is to be noted that although this is a weaker result in
light of the deterministic algorithm of [5], the randomized algorithm is conceptually
and otherwise much simpler and is, moreover, memoryless.

Our contribution is as follows. We prove the analogous simplification for the
(nonmetrical) task systems using randomization. We prove a lower bound of (2|S| −
1)/Ψ(C) on the competitive ratio of any randomized on-line algorithm and provide a
randomized on-line scheduler with w(S,C) ≤ (2|S| − 1). Note that our results imply

1244 PRASAD TETALI

those of [8] in the case of metrical task systems. In the asymmetric case, we provide
improved bounds to those of [5] with simpler memoryless randomized schedulers.
However, we do have the restriction that the cost matrix should essentially be a
hitting time matrix of an ergodic chain. Thus the random walk we refer to below is
the ergodic walk designed by interpreting the cost matrix as the hitting time matrix
as explained in sections 2 and 3.

5.1. Lower and upper bounds. The following lower bound on the competi-
tiveness of any deterministic or randomized algorithm for the task system problem
is straightforward to prove from the proofs in [5] and [8] for the lower bounds of the
MTS problem.

Theorem 5.1. Any deterministic or randomized on-line algorithm for the task
system problem has a competitive ratio of at least (2n− 1)/Ψ(C) against an adaptive
on-line adversary.

Proof. The proof is similar to the proofs for the symmetric case. For the deter-
ministic part, follow the proof of Theorem 2.2 of [5]. For the randomized part, the
proof is essentially that of Theorem 11 of [8].

For the upper bound we use the basic traversal algorithm first described in [5]
and also used in [8] in the following modified form:

(i) The positions are visited in a sequence, that is, prescribed by a random walk,
but independent of the input task sequence T1, T2,

(ii) There is a sequence of positive threshold costs β1, β2, . . . such that the transi-
tion from si to si+1 occurs when the total task processing cost incurred since entering
si reaches βi.

Please refer to both [5] and [8] for a full account on such traversal algorithms,
especially for the technical difficulties involved. The only originality on our part is in
choosing an appropriate value for βi. We simply choose βi to be the return time Hsisi ;
i.e., when in state j, the random scheduler leaves state j once the task processing cost
incurred since reaching j equals the expected time for a random walk beginning from
j to return to j for the first time. (This has an intuitive appeal!) Once again the
analysis in our case turns out to be quite simple.

Theorem 5.2. There exists a randomized traversal algorithm for task systems
(with ergodic cost matrices) which is (2n− 1)-competitive.

Proof. By total cost we mean the sum of the task processing costs and the moving
costs. We can assume without loss of generality (see [8]) that the adversary is a
“cruel taskmaster,” i.e., changes position only at the time the randomized on-line
algorithm reaches its current position. We further distinguish moving phases, where
the adversary changes positions, and staying phases, where the adversary stays in the
same position but the randomized server moves. Let the current position be i. We first
consider the cost incurred by the (randomized) on-line algorithm. Recall that we set
βi = Hii. Also, from our results in section 3, recall that the expected cost per move is
E ≤ (n− 1). The expected task processing cost per move is

∑
i πiβi =

∑
i πiHii = n,

since πi is the steady state probability of being at i. So, the ratio of the expected
total cost to expected cost per move (of the on-line algorithm) is [n + E]/E. Note
that it suffices to show that the expected moving cost of the on-line algorithm is at
most E times the cost of the adversary—we would then have a competitive ratio of
[n + E] ≤ (2n − 1). We show this in the following two phases, depending on when
the adversary is moving (the moving phase) and when the adversary is staying (the
staying phase):

1. The moving phase. The average cost in this phase can be analyzed as a cat

DESIGN OF ON-LINE ALGORITHMS USING HITTING TIMES 1245

and mouse game, with the adversary playing the mouse’s role, yielding a competitive
ratio of E.

2. The staying phase. The cost of the adversary starting (and ending) at node
i is βi, whereas the expected moving cost of the on-line algorithm in that phase is
E ×Hii = Eβi.

5.2. Memoryless counterpart. The above algorithm needs to store a current
virtual position and a counter for the accumulated task processing cost at that posi-
tion. However, this can also be made memoryless in the spirit of [8], without sacrificing
the competitive ratio with the idea of using a probabilistic counter. We omit further
discussion since the details are the same as those of [8], modulo the following aspect.
We need to bound the stretch of a random walk while allowing for positive costs on
self-loops. We merely state the requisite lemma and outline the proof idea.

Lemma 5.3. The ergodic walk has a stretch of at most (2n− 1), on a graph with
cost matrix C, where Cii are not necessarily zero.

Proof idea. We adopt the procedure that was described in detail in [8]. We merely
suggest the solution and omit the proof, since it is similar to that of Theorem 7 of [8].
Intuitively, the idea is to place a special vertex on each self-loop with the appropriate
transition probabilities and appeal to the case of no self-loops. Since the number
of vertices is doubled (in the worst case), the stretch is at most 2n − 1 rather than
n− 1.

6. Loose ends. The most important issue here is in extending our results to all
cost matrices (say, those that satisfy the triangle inequality). In particular, tighter
upper and lower bounds on a stretch of random walks on directed graphs would con-
stitute significant progress. Coppersmith et al. [8] extend their results from resistive
cost matrices to all cost matrices (at least existentially, if not with an efficient con-
struction); i.e., they show that given any symmetric cost matrix {Cij}, satisfying
the triangle inequality, there exists a resistive (approximation) network (with con-
ductances cij) such that the effective resistance Rij ≤ Cij whenever cij ≥ 0, with
Rij = Cij whenever cij > 0. Much in the same spirit we would like to aim for
an ergodic Markov chain with the property that Hij ≤ Cij , with equality whenever
pij > 0. The existence of such an “approximate chain” is clearly implied by the result
of [8] when we are seeking a reversible chain. The main hurdle in mimicking the
approach taken in [8] for the nonreversible case is the following. Consider the space
of all n− 1× n− 1 matrices, P = {P̄}, where P̄ corresponds (as in Theorem 2.2) to
an ergodic chain on n states. It is easy to see that for 0 ≤ α ≤ 1,

P̄1, P̄2 ∈ P ⇒ αP̄1 + (1− α)P̄2 ∈ P.

Let’s even assume that P is a space of positive definite matrices. Now the function,
log of the determinant, is concave over the space of positive definite symmetric (or
Hermitian) matrices, and symmetry is crucial here. We have examples of asymmetric
P̄ (i.e., nonreversible chains) which show that the log of the determinant is neither
concave nor convex over P. This makes the analogous result for the nonreversible
case much harder. On the other hand, Coppersmith et al. benefit from convexity as
follows. They formulate the approximation as an appropriate convex programming
problem; the existence of the approximate chain (resistive network) is then guaran-
teed by simply appealing to the “Kuhn–Tucker” (necessary and sufficient) conditions
arising in the solution of the convex programming problem. It is still conceivable that
a somewhat different approach works for the nonreversible case.

1246 PRASAD TETALI

Acknowledgments. The author thanks Steve Phillips, Prabhakar Raghavan,
Nick Reingold, and Emre Telatar for many useful discussions. The author would also
like to thank Mike Saks (the no-longer-anonymous referee) for a careful reading and
constructive criticism of the manuscript.

REFERENCES

[1] D. Aldous, Personal communication, 1993.
[2] D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs, draft of

book in preparation.
[3] S. Ben-David, A. Borodin, R. M. Karp, G. Tárdos, and A. Wigderson, On the power of

randomization in on-line algorithms, Algorithmica, 11 (1994), pp. 2–14.
[4] P. Berman, H. J. Karloff, and G. Tárdos, A competitive 3-server algorithm, in Proc. 1st

Annual ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, PA, 1990, pp.
280–290.

[5] A. Borodin, N. Linial, and M. Saks, An Optimal on-line algorithm for metrical task system,
J. Amer. Math. Soc., 39 (1992), pp. 745–763.

[6] M. Chrobak and L. L. Larmore, An optimal on-line algorithm for k-servers on trees, SIAM
J. Comput., 20 (1991), pp. 144–148.

[7] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari, The electri-
cal resistance of a graph captures its commute and cover times, Comput. Complexity, 6
(1996/97), pp. 312–340.

[8] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir, Random walks on weighted graphs,
and applications to on-line algorithms, J. Amer. Math. Soc., 40 (1993), pp. 421–453.

[9] D. Coppersmith, P. Tetali, and P. Winkler, Collisions among random walks on a graph,
SIAM J. Discrete Math., 6 (1993), pp. 363–374.

[10] P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Carus Mathematical
Monographs 22, Mathematical Association of America, Washington, DC, 1984.

[11] A. Fiat, Y. Rabani, and Y. Ravid, Competitive k-server algorithms, J. Comput. System Sci.,
48 (1994), pp. 410–428.

[12] M. Fiedler, C. R. Johnson, T. L. Markham, and M. Neumann, A trace inequality for M-
matrices and the symmetrizability of a real matrix by a positive diagonal matrix, Linear
Algebra Appl., 71 (1985), pp. 81–94.

[13] R. M. Foster, The average impedance of an electrical network, in Contributions to Applied
Mechanics (Reissner Anniversary Volume), Edwards Bros., Ann Arbor, MI, 1949, pp. 333–
340.

[14] R. M. Foster, An extension of a network theorem, IRE Trans. Circuit Theory, 8 (1961), pp.
75–76.

[15] F. Gobel and A. A. Jagers, Random walks on graphs, Stochastic Process. Appl., 2 (1974),
pp. 311–336.

[16] E. Grove, The harmonic online K-server algorithm is competitive, in On-Line Algorithms,
DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 7, AMS, Providence, RI, 1992, pp. 65–
75.

[17] E. Koutsoupias and C. H. Papadimitriou, On the k-server conjecture, J. Amer. Math. Soc.,
42 (1995), pp. 971–983.

[18] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer-Verlag, New York, 1983.
[19] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov Chains, Springer-Verlag,

New York, 1976.
[20] M. S. Manasse, L. A. McGeoch, and D. D. Sleator, Competitive algorithms for server

problems, J. Algorithms, 11 (1990), pp. 208–230.
[21] H. Minc, Nonnegative Matrices, Wiley-Interscience, New York, 1988.
[22] P. Tetali, Random walks and the effective resistance of networks, J. Theoret. Probab., 4

(1991), pp. 101–109.
[23] P. Tetali, An extension of Foster’s network theorem, Combin. Probab. Comput. (special issue

in honor of Paul Erdős’s 80th birthday), 3 (1994), pp. 421–427.

EFFICIENT GENERATION OF MINIMAL LENGTH
ADDITION CHAINS∗

EDWARD G. THURBER†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1247–1263

Abstract. An addition chain for a positive integer n is a set 1 = a0 < a1 < · · · < ar = n of
integers such that for each i ≥ 1, ai = aj + ak for some k ≤ j < i. This paper is concerned with
some of the computational aspects of generating minimal length addition chains for an integer n.
Particular attention is paid to various pruning techniques that cut down the search time for such
chains. Certain of these techniques are influenced by the multiplicative structure of n. Later sections
of the paper present some results that have been uncovered by searching for minimal length addition
chains.

Key words. addition chain, search tree, pruning bounds, backtracking, branch and bound

AMS subject classifications. 11Y16, 11Y55, 68Q25

PII. S0097539795295663

1. Introduction. Dellac [6] asks what is the minimum number of multiplications
required to raise a number A to the power m. Since exponents are added when powers
of the same base are multiplied, this gives rise to the concept of an addition chain.
This topic has been studied somewhat extensively over the intervening 100 years.
Many questions have been posed concerning this deceptively simple problem. While
some of these have been answered, others remain tantalizingly open.

This paper explores some of the computational aspects of generating minimal
length addition chains for an integer n. The emphasis on computation is of interest
in light of the surprising discoveries that the generation of minimal length addition
chains has uncovered, some of which led Knuth [12] to say that perhaps no conjecture
concerning addition chains is safe. Some of these discoveries will be mentioned in
section 10.

The algorithm to be explored for generating minimal length addition chains is
a backtracking algorithm that uses branch and bound methods to prune the search
tree. Since the algorithm is exponential in nature, particular attention will be paid
to pruning the search tree. The pruning bounds dramatically increase the efficiency
of the search and increase the feasibility of pursuing a variety of questions concerning
addition chains. For example, the determination of c(r), the first integer requiring r
steps in an addition chain of minimal length, is greatly facilitated by these methods.

Of course, the trick when pruning a search tree is not to cut off too much. Estab-
lishing the validity of the pruning bounds used in the backtracking algorithm will be
a primary focus of what follows. It will be seen that certain classes of pruning bounds
are affected by the multiplicative structure of n.

The paper is organized as follows. Section 2 includes some notation and prior
results. Section 3 develops the notion of the search tree for addition chains. In
section 4, an algorithm is discussed which will find all the minimal addition chains
for the integer n. The algorithm is adapted easily to find just one such chain. In
section 5, the pruning bounds that come most readily to mind are developed. In

∗Received by the editors December 6, 1995; accepted for publication (in revised form) September
16, 1997; published electronically March 22, 1999.

http://www.siam.org/journals/sicomp/28-4/29566.html
†Department of Math and Computer Science, Biola University, La Mirada, CA 90639

(ed@irvine.com).

1247

1248 EDWARD G. THURBER

section 6, improvements are made to class 1 bounds. Section 7 discusses pruning
bounds that involve more than one member of an addition chain. In section 8, class
1 and class 2 bounds are applied to n and their effectiveness is explored. In section 9,
class 1 pruning bounds are refined in a way that is influenced by the multiplicative
nature of n, and a summary is given of the pruning bounds developed in the paper.
Section 10 further explores the efficiency of the various classes of pruning bounds and
presents some computational results found concerning the addition chain problem.
Finally, in section 11 concluding remarks are made with some reference to future
directions.

2. Preliminaries. An addition chain for a positive integer n is a set 1 = a0 <
a1 < · · · < ar = n of integers such that for every i ≥ 1, ai = aj+ak for some k ≤ j < i.
The minimal length, r, of an addition chain for n is denoted by l(n). As in Knuth [12],
λ(n) = blog2 nc, and ν(n) will denote the number of ones in the binary representation
of n. The function NMC(n) was introduced by the author [19] and denotes the
number of minimal addition chains for n. For n = 29, a minimal addition chain is
1, 2, 4, 8, 9, 13, 16, 29. In base 2, 29 = 111012. Thus, ν(29) = 4, λ(29) = blog2 29c = 4,
l(29) = 7, and, as it turns out, NMC(29) = 132.

As Knuth observed, either λ(ai) = λ(ai−1) or λ(ai) = λ(ai−1) + 1. In the former
case, step i is called a small step and is called a big step otherwise. There are exactly
λ(n) big steps in any chain for n. The number of steps, r, in an addition chain for n
can be expressed as r = λ(n) +N(n), where N(n) denotes the number of small steps
in the chain. It should be noted that N(n) is chain dependent. Minimizing N(n) will
result in a minimal length addition chain for n. If j = i − 1, then step i is called a
star step. An addition chain that consists entirely of star steps is called a star chain.
If j = k = i− 1, then step i is called a doubling.

Theoretically developed lower bounds for l(n) provide starting values from which
to start looking for minimal length addition chains. It is conjectured [12] that l(n) ≥
λ(n) + dlog2 ν(n)e. If ν(n) ≥ 2m + 1, the conjecture states that l(n) ≥ λ(n) +m+ 1.
The conjecture has been established for m = 0, 1, 2, 3 [17], and it is known that
the conjecture holds for all n ≤ 327,678. Schönhage [14] has shown that l(n) ≥
log2 n+ log2 ν(n)− 2.13. Thus, l(n) ≥ dlog2 n+ log2 ν(n)− 2.13e in any event.

3. The search tree. A tree organization for the solution space for finding ad-
dition chains for n is as follows:

1

2

3

4

5 6 7 8

5

6 7 8 10

6

7 8 9 12

4

5

6 7 8 9 10

6

7 8 10 12

8

9 10 12 16

Fig. 3.1.

This tree organization is found in a paper by Chin and Tsai [5] in which they
develop algorithms for finding minimal or near minimal addition chains for integers n.
The tree shall be referred to as the search tree. The algorithm in this paper traverses
the search tree in a fashion similar to that found in [5]. The search is depth first and
considers larger numbers first (i.e., all paths that start 1, 2, 4 are taken before any path
that starts 1, 2, 3). In what follows the emphasis is on developing and establishing the

GENERATION OF MINIMAL LENGTH ADDITION 1249

validity of pruning bounds used in the branch and bound method to greatly speed up
the search for minimal addition chains.

If n = 1 is at level 0, then 2 is at level 1, 3 and 4 are at level 2, etc. The children of
a given node ai at level i are all numbers ai+1 > ai formed as sums aj +ak, k ≤ j ≤ i
of numbers in the path from 1 to ai. Any addition chain for an integer n can be found
by taking the path from 1 down to the appropriate occurrence of n in the search tree.
The tree grows exponentially as can be seen by the fact that each integer at level k
in the tree has at least k + 1 children. This means that the number of paths to level
k is at least k! To find l(n) and NMC(n) is to find on what level n appears first and
how many times it appears on this level. If 1 = a0, a1, . . . , ai is a partial chain, then
br[ai] is the branch of the search tree that has ai for its root.

4. Algorithm for finding all minimal addition chains. The backtracking
algorithm for finding all minimal addition chains for an integer n starts by setting
r = λ(n) + dlog2 ν(n)e if n ≤ 327,678 or ν(n) ≤ 16. Otherwise, it sets r = dlog2 n +
log2 ν(n)− 2.13e. If no chain of length r is found, then set r to r+ 1 and repeat. The
process is continued until a length is tried for which chains for n exist. This length
will be l(n). By the binary chain method [12], l(n) ≤ λ(n) + ν(n)− 1.

Starting with minimum estimates for l(n) and working up is preferable to over
estimating l(n) and working down since it minimizes the number of small steps in the
addition chains being generated. It is the increase in small steps that adds significantly
to the search time.

In what follows, lb, which stands for lower bound, will be used in place of r. The
search commences with a lower bound lb for l(n) and increases this value incrementally
if necessary. The following algorithm traverses the search tree and develops partial
addition chains 1 = a0, a1, . . . , ai into minimal length addition chains for n. A stack
is maintained which holds the possible children of ai at each stage. The children of
ai constitute a stack segment.

Algorithm find–minimum–chains(n).
begin

if n ≤ 327,678 or ν(n) ≤ 16 then
lb = λ(n) + dlog2 ν(n)e

else
lb = dlog2 n+ log2 ν(n)− 2.13e

end if
a0 = 1, a1 = 2 (first two elements of an addition chain)
loop lb–value

determine pruning bounds
i = 1
loop find–chains

if i < lb then
determine whether to retain ai
if ai is retained then

stack the possibilities for ai+1 in increasing order in next stack
segment (all sums aj + ak > ai, k ≤ j < i+ 1)

increment i by 1
let ai be the element on top of the stack
if ai = n then

chain is found

1250 EDWARD G. THURBER

back up in the search tree until a node is found that needs further
expanding (i.e., take the next element off the stack that is not
in the stack segment of ai)

end if
else

back up in the search tree until a node is found that needs further
expanding (i.e., take the next element off of the stack)

let ai be the element on top of the stack
end if

else
back up in the search tree until a node is found that needs further

expanding (i.e., take the next element off of the stack that is not
in the stack segment of ai)

let ai be the element on top of the stack
end if

end loop find chains
if no chains found then

increase lb by 1
else

exit loop lb–value
end if

end loop lb–value.

When an element ai is taken off of the top of the stack, it is either n, in which case
a minimal addition chain for n has been found, or it becomes part of a partial chain
1 = a0, a1, . . . , ai provided that it is not pruned from the search tree. The possible
children ai+1 of ai are put on the stack in increasing order. Some pruning can take
place at this point, also. Backing up in the search tree is accomplished by taking
elements off the stack. The stack is popped until an element is found that cannot be
pruned. If, for instance, it is determined that ai is to be pruned and that this exhausts
all possibilities from ai−1, then the next element on the stack is the next child of ai−2

in decreasing order (if children of ai−2 still remain; otherwise, backtrack further). The
next child of ai−2 (the new ai−1) is added to the partial chain 1 = a0, a1, . . . , ai−2

provided that it is not pruned, and its children are added to the stack. When the
algorithm backs up to a1 = 2, it will terminate since the 1, 2, 4 and 1, 2, 3 branches
(br[4] and br[3]) will have been traversed, and these are the only possibilities from
level 2 in the search tree. At this point, either all the minimal addition chains for n
will have been found or none will have been found, in which case lb is increased by 1
and the process is repeated. The algorithm will exit loop find–chains when the stack
is empty. A slight variation of the algorithm will terminate once the first addition
chain for n is found.

It should be mentioned that this algorithm is particularly well suited for finding
all the minimal length addition chains for n. If one were interested in finding only
one such chain, other strategies might be employed such as limiting the search to star
chains at first and checking only for nonstar chains if no star chains are found. The
pruning bounds, however, apply to whatever strategy is employed for traversing the
search tree.

Two classes of bounds will be discussed. The first class (class 1 bounds) concerns
bounds for ai, while the second class (class 2 bounds) concerns bounds for ai + ai−1.
Class 1 bounds will be refined to further improve the efficiency of the search. Finally,

GENERATION OF MINIMAL LENGTH ADDITION 1251

the somewhat curious phenomenon will be explored of how class 1 bounds can be
improved for integers not divisible by integers of the form 2i + 1.

5. Pruning bounds (class 1). Since ai ≤ 2ai−1 for 1 ≤ i ≤ r, it follows that
if aj and ai are two members of an addition chain such that ai > 2maj , then it will
require more than m steps to get from aj to ai no matter how the chain is constructed.
This can be used as follows to prune the search tree.

The subscript, i, of an integer ai in an addition chain for n represents the number
of steps that have been taken to reach ai. If a chain of a certain length, lb = i+m, is
being sought for an integer n, and if 2mai < n, then it will be impossible to get to n
from ai in m = lb − i steps. The branch br[ai] of the search tree emanating from ai
can be eliminated. If a chain of length 4 is being sought for n = 16, then the partial
chain 1, 2, 3 cannot lead to a 4-step chain for 16 since 223 < 16. This eliminates br[3]
which cuts out 12 possible paths to level 4 (or roughly half of the 25 paths to this
level).

If lb has been set, then there will be lb − i steps in the chain from ai to n if
such a chain exists. If 2lb−iai < n, then no chain for n which includes ai exists of
length lb, and the branch br[ai] can be pruned from the search tree. It follows that if
ai < n/2lb−i, then br[ai] is pruned from the tree. This eliminates at least lb!/i! paths
to search.

If ai < dn/2lb−ie, there are two cases for the integer ai. If n/2lb−i is an integer,
then ai < n/2lb−i, and if it is not an integer, then ai < dn/2lb−ie implies that
ai ≤ bn/2lb−ic. Since n/2lb−i is not an integer, it follows that ai < n/2lb−i. In any
event, if ai < dn/2lb−ie, then br[ai] can be pruned from the tree. This leads to the
set of class 1 bounds

(A) bi = dn/2lb−ie, i = 0, . . . , lb.

We have the following theorem.
Theorem 1. Let {bi} denote bounding sequence (A) for a positive integer n. If

for some step i in an addition chain for n, ai < bi, then the partial chain a0, a1, . . . , ai
cannot lead to a chain of length lb for n, and br[ai] can be pruned from the search
tree.

For example, suppose n = 39 = 1001112. Then lb = λ(39) + dlog2 ν(39)e =
5+2 = 7. The set of bounds {d39/27−ie} = {1, 1, 2, 3, 5, 10, 20, 39}. The partial chain
1, 2, 3, 5, 8, 9 cannot lead to a chain of length 7 for 39 since a5 = 9 < 10 = b5.

At each stage in an addition chain’s development, the possible choices for the
next element ai+1 after ai are added as a new stack segment. This includes all ai+1

such that ai+1 = aj + ak for 0 ≤ k ≤ j ≤ i and ai < ai+1 ≤ n. In the partial
chain 1, 2, 3, 5, 8, 13 for 39 the possible choices for the next element in the chain are
14, 15, 16, 18, 21, and 26. The bound associated with the sixth step in the chain is 20.
Since 18 < 20, it can be discarded, as can 14, 15, and 16. The numbers 21 and 26 are
added to the stack.

The bounds {dn/2lb−ie} can be found by dividing n by 2 and each successive
result by 2. At each stage the result is rounded up to the nearest integer if necessary.
This follows from the fact that ddn/2lb−ie/2e = dn/2lb−i+1e. If ai ≥ bi = dn/2lb−ie,
br[ai] is retained and all possibilities for ai+1 such that ai < ai+1 ≤ n and ai+1 ≥
bi+1 = dn/2lb−(i+1)e are stored for future consideration.

6. Class 1 bounds refined. If n is not a power of 2, the bounds {dn/2lb−ie}
can be improved by the following considerations. For an odd integer n, the last step

1252 EDWARD G. THURBER

in an addition chain for n is n = ar = ar−1 + ak for some k < r − 1. The last step
must be a star step in a minimal chain since otherwise, ar−1 could be eliminated,
resulting in a shorter chain. Also, k < r− 1, or else n would be even. Thus, if r = lb,
then n ≤ alb−1 + alb−2, which implies that n ≤ 3alb−2.

It follows that alb−2 cannot lead to a chain of lb steps for n unless alb−2 ≥
dn/3e. alb−2 will not be greater than or equal to dn/3e unless alb−3 ≥ dn/(3 · 2)e,
alb−4 ≥ dn/(3 · 22)e, etc. Thus, br[ai] is retained only when ai ≥ dn/(3 · 2lb−(i+2)e for
i = 0, . . . , lb− 2, and alb−1 ≥ dn/2e. The bounds are

(B) bi =

{ dn/(3 · 2lb−(i+2))e 0 ≤ i ≤ lb− 2,
dn/2lb−ie lb− 1 ≤ i ≤ lb.

For n = 39, the bounds are {1, 1, 2, 4, 7, 13, 20, 39} which is a significant improve-
ment over bounding sequence (A).

Regardless of whether n is even or odd, it can be expressed uniquely as n = 2tm,
where m is odd and t ≥ 0. Bounding sequence (B) generalizes to

(C) bi =

{ dn/(3 · 2lb−(i+2)e 0 ≤ i ≤ lb− t− 2,
dn/2lb−ie lb− t− 1 ≤ i ≤ lb.

This leads to the following theorem.
Theorem 2. 1Let {bi} denote bounding sequence (C) for a positive integer n. If

for some step i in an addition chain for n, ai < bi, then the partial chain a0, a1, . . . , ai
cannot lead to a chain of length lb for n, and br[ai] can be pruned from the search
tree.

Proof. Suppose n = 2tm where m is odd. Bounding sequence (C) can be split
into two parts.

Region 1. n, n/2, n/22, . . . , n/2t−1,m = n/2t, dm/2e.
These are the bounds in reverse order corresponding to steps i such that lb−t−1 ≤

i ≤ lb.
Region 2. dm/3e, dm/(3 · 2)e, . . . , dm/(3 · 2lb−t−(i+2))e = dn/(3 · 2lb−(i+2))e,
These are the bounds in reverse order corresponding to steps i such that 0 ≤ i ≤

lb− t− 2.
In Region 1, bi = dn/2lb−ie, while in Region 2, bi = dn/(3 · 2lb−(i+2))e. This

latter bound is determined by noting that blb−t−2 = dm/3e, blb−t−3 = dm/(3 · 2)e,
. . . , blb−t−j = dm/(3 · 2j−2)e = dn/(3 · 2t+j−2)e, If i = lb− t− j, then t+ j − 2 =
lb− (i+ 2).

For Region 1, if ai < dn/2lb−ie, then br[ai] can be pruned from the search tree
by the same reasoning used in Theorem 1.

For Region 2, suppose ai < dm/(3 · 2lb−t−(i+2))e = dn/(3 · 2lb−(i+2))e. Then
ai < n/(3 · 2lb−i−2). Assume n is not a power of two since, if it is a power of two,
Region 2 does not apply. Then every step in a chain for n cannot be a doubling.
Suppose step s is a nondoubling in which case as ≤ as−1 + as−2. If s > i+ 1, then

as ≤ as−1 + as−2 ≤ 2(s−1)−iai + 2(s−2)−iai
= 2(s−2)−i(2ai + ai) = 2(s−2)−i(3ai).

1Note that in this theorem and following theorems, ai will often be replaced by 2ai−1 in a set
of inequalities since ai ≤ 2ai−1. More generally, for j < i, ai will be replaced by 2i−jaj since
ai ≤ 2i−jaj . Additional inequalities such as 4ai + ai−1 ≤ 3(ai + ai−1) also follow from the fact that
ai ≤ 2ai−1. These and other similar inequalities will be used frequently.

GENERATION OF MINIMAL LENGTH ADDITION 1253

It follows that n = alb ≤ 2lb−sas ≤ 2lb−s2(s−2)−i(3ai) < (2lb−2−i)(3)(n/(3 ·2lb−i−2) =
n. Of course n < n is a contradiction. Thus, there can be no nondoubling step in the
chain after step i + 1. If every step in the chain after step i + 1 is a doubling, then
n = alb = 2lb−(i+1)ai+1. This means that 2lb−i−1 divides n. Since i ≤ lb − t − 2, it
follows that lb− i− 1 ≥ t+ 1. This is a contradiction since t is the highest power of
2 dividing n.

Thus, for any ai in Region 2 which is less than the corresponding bound, br[ai]
can be pruned from the search tree.

7. Pruning bounds (class 2). More can be done by way of pruning the search
tree by considering the sum ai + ai−1. It is often the case that if this sum is less
than bi+1 of bounding sequence (C), then br[ai] can be pruned from the search tree.
Bounding sequences for ai + ai−1 will be called class 2 bounds. (Note: The same
bounding sequence, when used for ai, is called a class 1 bounding sequence and, when
used for ai + ai−1, is called a class 2 bounding sequence.) It is a somewhat curious
fact that if n is a multiple of 5, then bounding sequence (C) must be replaced by
bounding sequence (A) when used as a class 2 bound. First, the case for odd n will
be considered. Bounding sequence (B) is used when n is odd, and n is not a multiple
of 5. It is convenient to split it into three regions.

Region 1. n, dn/2e.
Region 2. dn/3e.
Region 3. dn/(3 · 2)e, . . . , dn/(3 · 2lb−(i+2))e,
In Region 1, bi+1 is either n or dn/2e; that is, i = lb− 1 or i = lb− 2.
i = lb−1. In this case, ai+ai−1 < bi+1 implies that alb−1+alb−2 < blb = alb = n.

Thus, n must be alb−1 + alb−1 = 2alb−1. This contradicts the fact that n is odd.
i = lb− 2. If alb−2 + alb−3 < blb−1 = dn/2e, then alb−2 + alb−3 < n/2. Since n

is odd, n ≤ alb−1 + alb−2 ≤ 2alb−2 + 2alb−3 < 2(n/2) = n which is a contradiction.
For Region 2, i = lb − 3. If alb−3 + alb−4 < blb−2 = dn/3e, then alb−3 + alb−4 <

n/3. We assume that ai ≥ bi for i = 1, . . . , n, since it has been shown previously
(Theorem 2) that if ai < bi for any i, then a chain of lb steps for n is not possible.
This means that alb−2 ≥ n/3. Since alb−3+alb−4 < n/3, it follows that alb−2 = 2alb−3.
Step lb − 1 must be a star step since step lb − 2 is a doubling. The possibilities for
alb−1 need to be considered. These can be drawn from the set {alb−2 +aj , j ≤ lb−2}.
In what follows, n ≤ alb−1 + alb−2 since n is odd, and alb−2 = 2alb−3.

(i) alb−1 = alb−2 + alb−4:

n = alb ≤ alb−1 + alb−2 = 4alb−3 + alb−4 ≤ 3(alb−3 + alb−4) < 3(n/3) = n.

Clearly, no possibilities alb−2 + aj , j < lb− 4 need be considered.
(ii) alb−1 = alb−2 + alb−3:

Since n is odd and step lb is a star step, the possibilities for step lb can be drawn from
the set {alb−1 + aj , j ≤ lb− 2}.

(iia) If n = alb−1 + alb−2, then n = 5alb−3. Thus, 5 divides n. If n =
95 = 10111112, then λ(95) = 6, and ν(95) = 6. lb = λ(95) + dlog2 ν(95)e = 9. The
bounding sequence {bi} is {1, 1, 1, 2, 4, 8, 16, 32, 48, 95}. An addition chain for 95 is
1, 2, 3, 5, 8, 11, 19, 38, 76, 95. Note that alb−3 + alb−4 = 19 + 11 = 30 < 32 = blb−2.
Thus, when n is divisible by 5, there often exist minimal addition chains for n when
alb−3 + alb−4 < blb−2.

(iib) If n = alb−1 + alb−3, this leads to the contradiction that n < n by
similar reasoning as that used in (i). Again no possibilities n = alb−1 + aj , j < lb− 3
need be considered.

1254 EDWARD G. THURBER

(iii) alb−1 = alb−2 + alb−2:
If n = alb−1 +alb−2, then n = 3(2alb−3) is even, and if n = alb−1 +aj , j < lb− 3, then
n < n as before. Since lb must be a star step, the only possibility is n = alb−1 + alb−3

in which case n = 5alb−3. n is divisible by 5 and, as in case (iia), minimal chains for
n often exist when alb−3 + alb−4 < blb−2.

For Region 3, i ≤ lb− 4. If ai + ai−1 < bi+1 = dn/(2lb−i−3 · 3)e, then ai + ai−1 <
n/(2lb−i−3 · 3). It follows that

alb−3 + alb−4 < 2(lb−3)−iai + 2(lb−4)−(i−1)ai−1

= 2(lb−3)−i(ai + ai−1) < n/3.

It follows from the same arguments as used for Region 2 that br[ai] will be pruned
from the search tree unless n is a multiple of 5.

These considerations establish the following theorem.
Theorem 3. Let n be odd, n not a multiple of 5, and let {bi} be bounding

sequence (B). If ai + ai−1 < bi+1 for some i, then the partial chain 1 = a0, a1, . . . , ai
cannot lead to a minimal addition chain for n.

Comment. From Theorem 1, it is known that ai ≥ bi if 1 = a0, a1, . . . , ai is to
lead to a minimal chain for n. The following example shows that additional branches
can be pruned from the search tree when ai + ai−1 < bi+1.

For n = 39, {bi} = {1, 1, 2, 4, 7, 13, 20, 39}. A partial chain 1, 2, 3, 5, 7 satisfies the
requirement that ai ≥ bi. However, a4 + a3 = 7 + 5 < 13 = b5. Thus, br[7] = br[a4]
can be pruned from the search tree.

A generalization. Theorem 3 generalizes to the case where n = 2tm and m is
odd. In this case, bounding sequence (C) is used, and it is convenient to split it into
the following regions.

Region 1. n, n/2, n/22, . . . , n/2t−1,m = n/2t, dm/2e.
Region 2. dm/3e.
Region 3. dm/(3 · 2)e, . . . , dm/(3 · 2lb−t−(i+2)e = dn/(3 · 2lb−(i+2))e,
Theorem 4. Suppose n is not a multiple of 5 and {bi} is bounding sequence (C).

If ai+ai−1 < bi+1 for some i and n 6= 2lb−iai for i in Region 1, then the partial chain
1 = a0, a1, . . . , ai cannot lead to a minimal addition chain for n.

Note. The condition that n 6= 2lb−iai for i in Region 1 is necessary as can be
seen from the following example. 1, 2, 3, 5, 7, 14, 21, 42, 84, 168, 336 is a minimal chain
for n = 336. Bounding sequence (C) for 336 is 1, 1, 2, 4, 7, 11, 21, 42, 84, 168, 336. Even
though a6 + a5 = 21 + 14 < 42 = b7,br[a6] cannot be pruned from the search tree.

The proof of Theorem 4, while tedious, is analogous to the proof of Theorem 3,
with lb − t − i replacing lb − i, i ≥ 0. Also, some step s ≥ lb − t will need to be a
nondoubling or else 2t+1 will divide n, which contradicts the fact that 2t is the highest
power of 2 dividing n. The element as in Theorem 4 plays a role similar to that of n
in Theorem 3 since they are both formed by nondoublings.

Proof.
Region 1. lb− t− 2 ≤ i ≤ lb− 1. Note that if i ≥ lb− t− 2, then i+ 1 ≥ lb− t− 1,

and bi+1 will be in Region 1. If ai + ai−1 < bi+1 = dn/2lb−(i+1)e, then suppose there
exists a step s > i that is not a doubling. Then

as ≤ as−1 + as−2 ≤ 2(s−1)−iai + 2(s−2)−(i−1)ai−1 = 2(s−1)−i(ai + ai−1).

It follows that

n = alb ≤ 2lb−sas ≤ 2lb−s2(s−1)−i(ai + ai−1) < 2(lb−1)−i(n/2(lb−1)−i) = n.

GENERATION OF MINIMAL LENGTH ADDITION 1255

Thus, every step after step i must be a doubling. This means that n = 2lb−iai if
the partial chain 1 = a0, a1, . . . , ai can be extended to a chain of length lb for n.

Region 2. i = lb− t− 3 for bi+1 = dm/3e.
If alb−t−3 + alb−t−4 < dm/3e = dn/(2t · 3)e, then alb−t−3 + alb−t−4 < n/(2t3).

Since it is assumed that ai ≥ bi for i = 1, . . . , n, then alb−t−2 ≥ blb−t−2 = dn/(2t ·3)e ≥
n/(2t3), and it follows that alb−t−2 = 2alb−t−3. Since step lb−t−2 is a doubling, step
lb− t− 1 must be a star step; that is, alb−t−1 = alb−t−2 + ak for some k ≤ lb− t− 2.
It will be shown that k = lb − t − 2 or k = lb − t − 3. Suppose that k ≤ lb − t − 4
and that there is a nondoubling after step lb − t − 1. Let s be the first such step.
Then alb−t−1 ≤ alb−t−2 + alb−t−4 and by using inequalities as noted in footnote 1 of
Theorem 2, it follows that

as ≤ as−1 + as−2 ≤ 2(s−1)−(lb−t−1)alb−t−1 + 2(s−2)−(lb−t−2)alb−t−2

= 2s−lb+t(alb−t−1 + alb−t−2) ≤ 2s−lb+t(2alb−t−2 + alb−t−4)

< 2s−lb+t3(n/(2t3)) = 2s−lbn.

Thus, n = alb ≤ 2lb−sas < 2lb−s2s−lbn = n. This means that all steps after
step lb− t− 1 are doublings which, as noted, is not possible. Thus, either alb−t−1 =
alb−t−2 + alb−t−3 or alb−t−1 = alb−t−2 + alb−t−2.

So far, if alb−t−3 + alb−t−4 < n/(2t3), then it has been established that:
(1) alb−t−2 = 2alb−t−3; and
(2) alb−t−1 = alb−t−2 + alb−t−3 or alb−t−1 = alb−t−2 + alb−t−2.
Suppose alb−t−1 = alb−t−2 + alb−t−3. Then alb−t−1 = 3alb−t−3. There must

be a step s ≥ lb − t that is a nondoubling or as shown before 2t+1 divides n. Let s
be the first nondoubling after step lb− t− 1. The possibilities for step s that have a
chance can be drawn from the set {as−1 + as−2, as−1 + as−3, 2as−2}.

(i) If as = as−1+as−3, then as ≤ 2(s−1)−(lb−t−1)alb−t−1+2(s−3)−(lb−t−3)alb−t−3.
It follows by inequalities, as noted in footnote 1 that

as ≤ 2s−lb+t(alb−t−1 + alb−t−3) = 2s−lb+t(4alb−t−3)

< 2s−lb+t3(alb−t−3 + alb−t−4) < 2s−lb+t3(n/(2t3)) = 2s−lbn.

Thus, n = alb ≤ 2lb−sas < 2lb−s2s−lbn = n.
(ii) If as = as−1 − as−2, then if s = lb− t, it follows that alb−t = alb−t−1 +

alb−t−2. Since alb−t−1 = alb−t−2 + alb−t−3 and alb−t−2 = 2alb−t−3, this means that
alb−t = 5alb−t−3. If there is a step h > lb−t which is a nondoubling, then by reasoning
similar to that discussed before, it can be shown that n < n. This means that all the
steps after step lb− t must be doublings. Thus

n = alb = 2lb−(lb−t)alb−t = 2t(5alb−t−3).

This contradicts the fact that n is not a multiple of 5.
Now, suppose s > lb− t. This means that alb−t = 2alb−t−1, since step s is

the first nondoubling after step lb − t − 1. The reasoning used before concerning
nondoubling steps can be combined with the fact that alb−t−3 + alb−t−4 < n/(2t3) to
show that as < 2(s−lb+t)3(n/(2t3)) = 2(s−lb)n, and n = alb ≤ 2lb−sas < n.

(iii) If as = 2as−2, then as ≤ 2(2(s−2)−(lb−t−2)alb−t−2) = 2s−lb+t+1alb−t−2 =
2s−lb+t(4alb−t−3). As in case (i), this results in n < n.

Suppose alb−t−1 = 2alb−t−2. Since alb−t−2 = 2alb−t−3, it follows that alb−t−1 =
4alb−t−3. There must be a first step s ≥ lb − t that is a nondoubling or else 2t+1

1256 EDWARD G. THURBER

divides n as before. The possibilities for step s are {as−1 + as−2, as−1 + as−3, as−1 +
as−4, 2as−2}. It will become evident that these are the only cases that need to be
considered.

(i) as = as−1 + as−4 ≤ 2(s−1)−(lb−t−1)alb−t−1 + 2(s−4)−(lb−t−4)alb−t−4

= 2s−lb+t(4alb−t−3 + alb−t−4) ≤ 2s−lb+t3(alb−t−3 + alb−t−4)
< 2s−lb+t3(n/(2t3)).

Thus, as < 2s−lbn, and n = alb ≤ 2lb−sas < 2lb−s2s−lbn = n.
(ii) as = 2as−2 leads to n < n as in (iii) of the case where alb−t−1 = alb−t−2 +

alb−t−3.
(iii) as = as−1 + as−2. This is the most difficult case, since this is the largest

possible value of as for the nondoubling step which must occur somewhere between
steps lb − t and lb. In what follows, alb−t−1 = 2alb−t−2 and alb−t−2 = 2alb−t−3.
Suppose s = lb− t. Then alb−t = alb−t−1 +alb−t−2 = 6alb−t−3. If there are no more
nondoublings in the chain after step lb− t, then n = alb = 2lb−(lb−t)alb−t = 2t6alb−t−3

which means 2t+1 divides n. Thus, there must be a first nondoubling step h > s. The
possibilities for ah are drawn from the set {ah−1 + ah−2, ah−1 + ah−3, 2ah−2}.

(iiia) ah = ah−1 + ah−3 ≤ 2(h−1)−(lb−t)alb−t + 2(h−3)−(lb−t−2)alb−t−2

= 2h−1−lb+t6alb−t−3 + 2h−1−lb+t2alb−t−3 = 2h−lb+t4alb−t−3.
From this it follows, as in prior cases, that n < n.

(iiib) ah = 2ah−2 ≤ 2(2(h−2)−(lb−t−1)alb−t−1 = 2h−lb+t4alb−t−3 which leads
to n < n.

(iiic) ah = ah−1 + ah−2:

ah = ah−1 + ah−2 ≤ 2(h−1)−(lb−t)alb−t + 2(h−2)−(lb−t−1)alb−t−1

= 2h−1−lb+t6alb−t−3 + 2h−1−lb+t4alb−t−3 = 2h−lb+t5alb−t−3.

The 5 in the bound is not sufficient to conclude that n < n. If there is another step l >
h which is a nondoubling, then, as before, it can be shown that al ≤ 2l−lb+t4alb−t−3

from which it follows that n < n. It follows that n = alb = 2lb−hah = 2lb−h(ah−1 +
ah−2). If h > lb− t+ 1, then

n = 2lb−h(ah−1 + ah−2) ≤ 2lb−h(2(h−1)−(lb−t)alb−t + 2(h−2)−(lb−t)alb−t)
= 2lb−h(2h−1−lb+t6alb−t−3 + 2h−2−lb+t6alb−t−3)

= 2t−19alb−t−3 ≤ 2t−16(alb−t−3 + alb−t−4) < 2t3(n/(2t3)) = n.

If h = lb− t+ 1, then n = 2lb−(lb−t+1)(alb−t + alb−t−1) = 2t−110alb−t−3.
From this it follows that 5 divides n.
Now we continue with the case alb−t−1 = 2alb−t−2, where step s is the first

nondoubling after step lb − t − 1 and as = as−1 + as−2. Suppose s > lb− t; then
step s− 1 is a doubling. If there are no more nondoublings after step s, then

n = 2lb−sas = 2lb−2(as−1 + as−2) = slb−s(3as−2)

= 2lb−s3(2(s−2)−(lb−t−1)alb−t−1) = 2t−13alb−t−1 = 2t−13(4alb−t−3).

This implies that 2t+1 divides n, which is a contradiction. As in the previous case,
let step h be the first nondoubling step after step s. The only possibility for ah
that does not lead to n < n is ah = ah−1 + ah−2. As in case (iiic), it can be
shown that there can be no more nondoublings after step h or else n < n. Thus,
n = 2lb−hah = 2lb−h(ah−1 + ah−2). The cases h = s + 1 and h > s + 1 are handled
separately.

GENERATION OF MINIMAL LENGTH ADDITION 1257

Since s > lb− t, step lb− t is a doubling, and alb−t = 8alb−t−3.
If h = s + 1, it can be shown by reasoning similar to that used before that

n = 2t5alb−t−3, which means that 5 divides n while if h > s+ 1; then

n = 2lb−hah = 2lb−h(ah−1 + ah−2) = 2lb−h(2h−1−sas + 2h−2−sas)
= 2lb−h2h−2−s(3as) = 2lb−2−s3(as−1 + as−2)

= 2lb−2−s3(2(s−1)−(lb−t)alb−t + 2(s−2)−(lb−t−1)alb−t−1)

= 3(2t−312alb−t−3) ≤ 3(2t−38(alb−t−3 + alb−t−4)) < 2t3(n/(2t3)) = n.

(iv) as = as−1 + as−3. As before, it can be shown that if there is a step h > s
that is a nondoubling, then n < n. Thus, n = 2lb−sas = 2lb−s(as−1 + as−3). The
cases s = lb− t, s = lb− t+ 1, s = lb− t+ 2, and s ≥ lb− t+ 3 must be considered. In
all cases it can be shown that 5 divides n. It is important to note that s is the first
step after lb− t− 1 that is a nondoubling. For instance, if s = lb− t+ 2, then

n = 2lb−s(as−1 + as−3) = 2lb−(lb−t+2)(alb−t+1 + alb−t−1)

= 2t−2(16alb−t−3 + 4alb−t−3) = 2t(5alb−t−3).

Region 3. i < lb− t− 3.
For this region, the bound ai + ai−1 < bi+1 translates into ai + ai−1 < dm/(3 ·

2lb−t−(i+3)e = dn/(3 · 2lb−(i+3))e which implies ai + ai−1 < n/(2lb−i−33). It follows
that

alb−t−3 + alb−t−4 < 2(lb−t−3)−iai + 2(lb−t−4)−(i−1)ai−1

= 2(lb−t−3)−i(ai + ai−1) < 2(lb−t−3)−in/(2lb−i−33) = n/(2t3).

It follows from the same arguments as used for Region 2 that br[ai] will be pruned
from the search tree unless n is a multiple of 5.

It has been shown that if n = 2tm, m odd, {bi} is bounding sequence (C), and
ai < bi for some i, then br[ai] can be pruned from the search tree and, furthermore,
if n is not a multiple of 5, and ai + ai−1 < bi+1, then br[ai] can be pruned from the
search tree provided that n 6= 2lb−iai for some step i in Region 1. If n is a multiple of
5 and if {bi} is bounding sequence (A), then if ai+ai−1 < bi+1 = n/2lb−(i+1) for some
i, br[ai] can be pruned from the search tree if there exists a step s > i that is not a
doubling since as ≤ as−1 +as−2 ≤ 2(s−1)−iai + 2(s−2)−(i−1)ai−1 = 2(s−1)−i(ai +ai−1)
from which it follows that n < n. Thus, when n is a multiple of 5, Theorem 4 holds
for n provided that bounding sequence (C) is replaced by bounding sequence (A).

8. Pruning bounds applied. When the sequence {bi} is used as a class 1
bounding sequence, it will be called a vertical bounding sequence, and when it is used
as a class 2 bounding sequence, it will be called a slant bounding sequence. If n is
not a multiple of 5, then bounding sequence (C) can be used for both the vertical
and slant bounds. The algorithm for generating addition chains checks to see: (1) if
ai ≥ bi; if this condition is satisfied, it next checks: (2) to see that if n 6= 2lb−iai for
i in Region 1; then is ai + ai−1 ≥ bi+1. If these conditions are met, then the partial
chain 1 = a0, a1, . . . , ai is not rejected and candidates for ai+1 are considered. If (1)
fails, then br[ai] is pruned from the search tree, and if (1) passes but (2) fails, br[ai]
is pruned from the search tree.

If n is a multiple of 5, the same strategy is employed; however, bounding sequence
(C) is used for the vertical bounds while bounding sequence (A) is used for the slant
bounds.

1258 EDWARD G. THURBER

Table 1

Value of n

Test 23 127 191 568 607 1,0152

no bds 293 1,890,353 24,383,588
time: 20.9 time: 327.4

V (A) 193 330,791 2,805,121 1,632,557 63,548,562 5,901,139
time: 1.6 time: 15.1 time: 8.57 time: 372.4 time: 32.0

V (C) 153 208,318 1,789,703 1,587,969 31,649,325 2,146,835
time: 1.0 time: 9.8 time: 8.18 time: 192.1 time: 12.1

V/S (A) 155 241,396 2,025,178 964,319 40,847,534 3,218,491
time: 1.0 time: 9.6 time: 4.39 time: 203.3 time: 14.6

V/S (C) 137 174,788 1,482,328 954,573 24,823,053 1,900,148
time: 0.82 time: 7.5 time: 4.28 time: 139.8 time: 9.9

The effect of these pruning bounds can be measured in terms of time required to
search for chains as well as in terms of the number of “pops” off the stack. In the
latter case, what is being popped off the stack for a given step i is the next candidate
for ai. The pruning bounds eliminate certain branches of the search tree, and the
number of “pops” will diminish as the pruning bounds are put into effect. Several
cases are considered for given values of n. The first case (no bds) has no pruning
bounds. Case V (A) implements vertical pruning bounds using bounding sequence
(A) while case V (C) implements vertical bounds using bounding sequence (C), etc.
Case V/S (A) shows the effect of using bounding sequence (A) for both vertical and
slant bounds. Case V/S (C) uses bounding sequence (C) for both vertical and slant
bounds and when n ≡ 0 (mod 5) replaces bounding sequence (C) with bounding
sequence (A) for the slant bounds. Table 1 shows results for n = 23, 127, 191, 568,
607, and 1,015. These are interesting numbers from the standpoint of not giving
trivial values yet not requiring so much time as to be unreasonable. The times, of
course, are relative to the computer being used and are significant primarily in how
they relate to each other as opposed to their actual values. It should be noted that
when n is odd, bounding sequence (C) reduces to bounding sequence (B).

Table 1 records the number of “pops” that occur in an algorithm that finds all
addition chains of minimal length for the given values of n. Also recorded is the time
in seconds taken by each search. The times for n = 23 are too small to be significant.

A good check that the bounding sequences do not cut too much from the search
tree is the observation that NMC(n) remains the same in all cases. As can be seen,
there is significant improvement in going from V(A) to V/S(C).

9. Pruning bounds (class 1 further refined); the 2i + 1 phenomenon.
For n odd, bounding sequence (B) can be improved as a vertical (class 1) bounding
sequence depending on the multiplicative nature of n. If n is not a multiple of an
integer of the form 2i + 1, then the following sequence can be used for the vertical
bounding sequence.

(D) bi =

{ dn/(2lb−i−1 + 1)e 0 ≤ i ≤ lb− 1,
n i = lb.

Suppose ai < dn/(2lb−i−1 + 1)e. Then ai < n/(2lb−i−1 + 1). The cases i = lb− 1
and i = lb − 2 have been established previously. Let i = lb − k for some k such that

2For n = 1,015, in the V/S (C) case bounding sequence (A) is used for the slant bounds since n
is divisible by 5.

GENERATION OF MINIMAL LENGTH ADDITION 1259

3 ≤ k ≤ lb.
k = 3. alb−3 < n/5. Since n is odd, step lb is not doubling. Yet it must be a

star step. If n = alb = alb−1 + alb−3, then n ≤ 5alb−3 < n. If n = alb = alb−1 + alb−2,
then if alb−1 = 2alb−2, it follows that 3 divides n, and if alb−1 = alb−2 + alb−3, then
n = alb = 2alb−2 + alb−3 ≤ 5alb−3 < n.

k ≥ 4. alb−k < n/(2k−1 + 1). If n = alb = alb−1 + alb−k, then

n = alb = alb−1 + alb−k ≤ 2(lb−1)−(lb−k)alb−k + alb−k = (2k−1 + 1)alb−k < n.

Suppose n = alb = alb−1 + alb−j for some j, 2 ≤ j < k. If alb−1 = 2j−1alb−j ,
then 2j−1 + 1 divides n. If alb−1 6= 2j−1alb−j , then let s be the first integer greater
than or equal to 1 such that step lb − s is a nondoubling. Then 1 ≤ s < j and
n = alb = alb−1 + alb−j = 2s−1alb−s + alb−j . This implies that

n = 2s−1alb−s + alb−j ≤ 2s−1(alb−s−1 + alb−s−2) + 2lb−j−(lb−k)alb−k
≤ 2s−1(2k−s−1alb−k + 2k−s−2alb−k) + 2k−jalb−k
= (2k−2 + 2k−3 + 2k−j)alb−k. (Note: s+ 2 ≤ k).

If j ≥ 3, then 2k−2 + 2k−3 + 2k−j < 2k−1 + 1, and n < n. The only possibility is
j = 2.

Consider n = alb = alb−1 + alb−2. Since 1 ≤ s < 2, it follows that s = 1, and
alb−1 ≤ alb−2 + alb−3. There are two cases for step lb− 1.

(i) alb−1 = alb−2 + alb−h. (Note: h < k. If h = k, then n < n.)
If h = 2, then 3 divides n. Thus, alb = alb−1 + alb−2 = 2alb−2 + alb−h, where h ≥ 3.
Suppose there is a nondoubling between step lb − h and step lb − 2. Suppose lb − p
is the first nondoubling going back in the chain from step lb− 2. Then 2 ≤ p < h.

alb = alb−1 + alb−2 = 2alb−2 + alb−h = 2(2p−2alb−p) + alb−h
≤ 2(2p−2(alb−p−1 + alb−p−2)) + alb−h·
≤ 2p−1(2k−p−1alb−k + 2k−p−2alb−k) + 2k−halb−k
= (2k−2alb−k + 2k−3alb−k) + 2k−halb−k
= (2k−2 + 2k−3 + 2k−h)alb−k < n since h ≥ 3.

Thus, alb−2 = 2h−2alb−h and alb = alb−1 + alb−2 = 2alb−2 + alb−h = 2(2h−2alb−h) +
alb−h = (2h−1 + 1)alb−h. This implies that 2h−1 + 1 divides n.

(ii) alb−1 = 2alb−3. n = alb = alb−1 + alb−2 = alb−2 + 2alb−3.
Then n = alb−2 + 2alb−3 ≤ 2k−2alb−k + 2(2k−3alb−k) = 2k−1alb−k < 2k−1(n/(2k−1 +
1)) < n.

This establishes the result that if n is not divisible by an integer of the form 2i +
1, i ≥ 0, then the sequence (D) is a valid class 1 bounding sequence when generating
addition chains for an integer n.

Theorem 5. If 2j+1, j ≥ 0 does not divide n and {bi} denotes bounding sequence
(D), then if ai < bi for some i,br[ai] can be pruned from the search tree.

It appears that this result can generalized for n = 2tm (m odd) using the following
bounding sequence.

(E) bi =

{ dn/2t(2lb−t−(i+1) + 1)e 0 ≤ i ≤ lb− t− 2,
dn/2lb−ie lb− t− 1 ≤ i ≤ lb.

Theorem 5 then would be restated substituting j > 0 for j ≥ 0 and bounding
sequence (E) for bounding sequence (D).

1260 EDWARD G. THURBER

Table 2

Value of n

Test 23 127 191 568 607 10153

no bds 293 1,890,353 24,383,588
time: 20.9 time: 327.4

V (A) 193 330,791 2,805,121 1,632,557 63,548,562 5,901,139
time: 1.6 time: 15.1 time: 8.57 time: 372.4 time: 32.0

V (C) 153 208,318 1,789,703 1,587,696 31,649,325 2,146,835
time: 1.0 time: 9.8 time: 8.18 time: 192.1 time: 12.1

V (D) 153 186,506 1,566,167 25,381,280
time: 0.9 time: 8.95 time: 164.4

VBEST 94 170,294 1,440,524 1,245,559 23,316,309 1,216,206
time: 0.9 time: 8.84 time: 8.29 time: 162.1 time: 8.24

V/S (A) 155 241,396 2,025,178 964,319 40,847,534 3,218,491
time: 1.0 time: 9.6 time: 4.39 time: 203.3 time: 14.6

V/S (C) 137 174,788 1,482,328 954,573 24,823,053 1,900,148
time: 0.82 time: 7.5 time: 4.28 time: 139.8 time: 9.9

V(D)/S (C) 137 166,120 1,384,000 22,486,525
time: 0.82 time: 7.36 time: 134.4

VBEST/S (C) 92 150,522 1,262,492 792,751 20,485,705 1,087,144
time: 0.82 time: 7.09 time: 4.28 time: 130.4 time: 6.9

The numbers 23, 127, 191, and 607 in Table 1 satisfy the hypothesis of Theorem 5.
Table 2 shows results of using bounding sequence (D) for the vertical bounding se-
quence. Certain rows of the table use what is called VBEST for the vertical bounding
sequence and bounding sequence (C) for slant bounds. VBEST is a bounding sequence
that is obtained à posteriori by running the program and generating all minimal addi-
tion chains for n. For each i, bi is the minimal ai found among all the minimal addition
chains for n. It is the best possible vertical bounding sequence, since lowering any bi
will cut out some of the minimal chains for n. In practice it is not a good bounding
sequence since it cannot be determined until all the minimal addition chains have
been found, but it is a good measure by which to judge the other vertical bounding
sequences. As previously noted, bounding sequence (C) reduces to bounding sequence
(B) when n is odd.

The V(D)/S (C) bounding sequence compares favorably with the VBEST/S (C)
bounding sequence, and in all cases there is significant improvement over using just
V(A) which is the obvious bounding sequence to try first.

While vertical bounding sequence (D) leads to a significant improvement in prun-
ing the search tree, this sequence can only be used when n is not a multiple of an
integer of the form 2i + 1. In other words, if n is a multiple of an integer of the form
2i+1, then less aggressive pruning bounds must be used. More branches on the search
tree must be explored. The search for minimal addition chains for such numbers is,
in a sense, less efficient. Primes, on the other hand, (unless they are Fermat primes)
can use bounding sequence (D) which results in a more efficient search.

A summary of the bounding sequences is included in Table 3.

10. Some test results. Algorithms for generating minimal length addition
chains are significant from the standpoint of what their implementation in a com-
puter program and the subsequent generation of data reveal about the addition chain

3For n = 1015, in the V/S (C) and VBEST/S(C) cases bounding sequence (A) is used for the
slant bounds since n is divisible by 5. Also, sequence (D) cannot be used for vertical bounds since n
is a multiple of 5.

GENERATION OF MINIMAL LENGTH ADDITION 1261

Table 3

Bounding
sequence Sequence Comments

A bi = dn/2lb−ie, i = 0, . . . , lb vertical/slant bounds

B bi =

{
dn/(3 · 2lb−(i+2))e, 0 ≤ i ≤ lb− 2
dn/2lb−ie, lb− 1 ≤ i ≤ lb

n odd, vertical bounds,
slant bounds for n 6= 5k

C bi =

{
dn/(3 · 2lb−(i+2))e, 0 ≤ i ≤ lb− t− 2
dn/2lb−ie, lb− t− 1 ≤ i ≤ lb

n = 2tm, m odd, vertical
bounds, slant bounds if
n 6= 5k and n 6= 2lb−iai
for i ≥ lb− t− 2

D bi =

{
dn/(2lb−i−1 + 1)e, 0 ≤ i ≤ lb− 1
n, i = lb

n odd, vertical
bounds n 6= (2j + 1)k,
j ≥ 0

E bi =

{
dn/2t(2lb−t−(i+1) + 1)e, 0 ≤ i ≤ lb− t− 2
dn/2lb−ie, lb− t− 1 ≤ i ≤ lb

n = 2tm, m odd, vertical
bounds n 6= (2j + 1)k,
j > 0

problem. Knuth [12] found that l(191) = l(382). He found other integers as well for
which l(2n) = l(n). This was a somewhat surprising discovery. Utz [20] had asked if
l(n) < l(2n) for all n > 0, and it had supposedly been proved earlier by Jonquières
[11] that l(2n) = l(n) + 1. Subsequently, it has been proved [17, 18] that there are in-
finite classes of integers for which l(2n) = l(n). If h(x) denotes the number of integers
n ≤ x for which l(2n) = l(n), then computer generated data suggest the possibility
that h(x) is bounded below by some constant times x.

While Hansen [10] proved that there exist integers that do not admit star chains
among their minimal addition chains, Knuth’s computer calculations revealed n =
12,509 as the first number that does not admit a star chain among its minimal chains.
It is very likely that {2m(81) + 17,m ≥ 8} is an infinite class of such integers.

The addition chain problem is exponential in nature [8]. Improving pruning algo-
rithms enables one to generate the next level of data which can reveal properties that
had not previously been observed. For example, n = 49,593 and n = 49,594 are adja-
cent integers, neither of which has a star chain among its minimal chains. n = 13,818
and n = 27,578 are even numbers for which l(2n) = l(n). If n = 2k, this is an exam-
ple of an integer for which l(4k) = l(2k). Are there integers for which l(8k) = l(4k)?
The pairs n = 22,453, n = 22,455 and n = 25,019, n = 25,021 have the property
that l(2n) = l(n). Are there consecutive integers with this property? n = 29,479 is
an integer, all of whose minimal chains start with 1, 2, 3 which verifies a conjecture
of Chin and Tsai [5]. Such integers appear very rarely. The first integer with over
1,000,000 minimal addition chains is 15,126. In fact, NMC(15, 126) = 1, 047, 580.

Knuth found c(r), the first integer for which l(n) = r, for 1 ≤ r ≤ 18. The
algorithms discussed in the paper were instrumental in determining that c(19) =
18,287, c(20) = 34,303, c(21) = 65,131. Flammenkamp and Bleichenbacher have ex-
tended this sequence to c(22) = 110,591, c(23) = 196,591, c(24) = 357,887, c(25) =
685, 951, c(26) = 1, 176, 431, and c(27) = 2, 211, 837. See [12] and the online version
of [15]. n = 65,131 is the first integer that requires six small steps in a minimal
addition chain. The increase in the required number of small steps in an addition
chain greatly increases the computing time. Table 4 shows how the computing time
increases with the number of small steps while λ(n) is held constant. It also shows
how the computing time increases with λ(n) while holding the number of small steps
constant.

1262 EDWARD G. THURBER

Table 4

number of small pops
n binary n λ(n) steps in chain time

10,241 10100000000001 13 2 4,300
0.00 secs.

10,247 10100000000111 13 3 1,212,209
7.14 secs.

10,271 10100000011111 13 4 220,689,095
1441.00 secs.

20,487 101000000000111 14 3 1,682,449
10.33 secs.

20,494 101000000001110 14 3 2,886,936
15.60 secs.

40,967 1010000000000111 15 3 2,279,240
14.50 secs.

40,988 1010000000011100 15 3 5,286,601
28.23 secs.

81,927 10100000000000111 16 3 3,024,682
19.99 secs.

81,976 10100000000111000 16 3 8,593,425
46.20 secs.

Holding λ(n) constant for odd n, while increasing the number of small steps,
greatly increases the computing time. As the number of ones in the binary represen-
tation of n increases, the number of small steps increases in minimal addition chains
for n. In fact N(n), the number of small steps, appears to be bounded below by
dlog2 ν(n)e. As can be seen, computation time is influenced much more strongly by
the size of ν(n) than by the size of n. The minimal addition chains for n = 1,048,577
can be found much more quickly than the minimal addition chains for n = 191.

Increasing λ(n), while holding the number of small steps constant, increases the
computation time relatively slowly. Numbers of the form n = 2tm for m odd and
t ≥ 1 have longer computation times than odd integers with the same values of λ(n)
and N(n). As t increases with λ(n) and N(n) held constant, the computing time
increases. An examination of pruning bounds (C) shows that the bounds are less
severe for integers with a large value of t.

The pruning bounds operate the best on odd integers not divisible by 5 and, in
particular, on odd integers not divisible by integers of the form 2i + 1, i ≥ 1.

Data generated by this algorithm have suggested theorems concerning NMC(n),
some of which have been established in [19]. These mathematical proofs indirectly
confirm the validity of the programs that generated the data that suggested the the-
orems.

11. Conclusion. The pruning bounds that have been developed significantly
improve the efficiency of the search for minimal length addition chains for an integer.
It is of interest to note that, for multiples of 2i + 1, the pruning bounds cannot be as
tight. As can be seen, the best general vertical bounds compare favorably with the
VBEST vertical bounds for the examples cited in Table 2.

Introducing slant bounds (bounds for ai + ai−1) increases the efficiency of the
search. This class of bounds can be extended to bounds for ai + ai−2 and ai−1 + ai−1

and perhaps other sums. It appears likely, however, that improvements in efficiency
are slight and are negated by the time needed to run all the checks on the additional
bounds.

The most famous unsolved problem in addition chains is the Scholz–Brauer con-

GENERATION OF MINIMAL LENGTH ADDITION 1263

jecture which states that l(2n−1) ≤ n+l(n)−1. Brauer [4] proved that the conjecture
is true when n includes a star chain among its minimal chains. Hansen [10] devel-
oped the concept of l0-chains of which star chains are a proper subset. He proved
that the Scholz–Brauer conjecture is true if n includes an l0-chain among its minimal
chains. It remains an open question as to whether every integer includes an l0-chain
among its minimal chains. Computer searches may prove useful in helping to settle
this question.

Acknowledgments. This paper has benefited from fruitful discussions with
Khalaf Haddad, a former student, and Dan Eilers, president of Irvine Compiler Cor-
poration.

REFERENCES

[1] F. Bergeron, J. Berstel, S. Brlek, and C. Duboc, Addition chains using continued frac-
tions, J. Algorithms, 10 (1989), pp. 403–412.

[2] F. Bergeron, J. Berstel, and S. Brlek, Efficient computation of addition chains, J.
de Théor. Nombres Bordeaux, 6 (1994), pp. 21–38.

[3] J. Bos and M. Coster, Addition chain heuristics, in Proceedings CRYPTO ’89, 1990, pp.
400–407.

[4] A. T. Brauer, On addition chains, Bull. Amer Math. Soc., 45 (1939), pp. 736–739.
[5] Y. H. Chin and Y.-H. Tsai, Algorithms for finding the shortest addition chain, in Proceedings

National Computer Symposium, Kaoshiung, Taiwan, Dec. 1985, pp. 1398–1414.
[6] H. Dellac, Question 49, l’Interm. des Math., 1 (1894), p. 20.
[7] D. Dobkin and R. J. Lipton, Addition chain methods for the evaluation of specific polynomi-

als, SIAM J. Comput., 9 (1980), pp. 121–125.
[8] P. Downey, B. Leong, and R. Sethi, Computing sequences with addition chains, SIAM J.

Comput., 10 (1981), pp. 638–646.
[9] P. Erdős, Remarks on number theory III on addition chains, Acta Arith., 6 (1960), pp. 77–81.

[10] W. Hansen, Zum Scholz-Brauerchen Problem, J. Reine Angew. Math., 202 (1959), pp. 129–136
(in German).

[11] E. de Jonquières, Question 393, (A. Goulard), l’Interm. des Math., 2 (1985), pp. 125–126.
[12] D. E. Knuth, The Art of Computer Programming, vol. 2, 3rd ed., Addison–Wesley, Reading,

MA, 1997, pp. 461–485.
[13] A. Scholz, Aufgabe 253, Jahresber. Deutsch. Math.-Verein., 47 (1937), pp. 41–42.
[14] A. Schönhage, A lower bound for the length of addition chains, Theoret. Comput. Sci., 1

(1975), pp. 1–12.
[15] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press,

San Diego, 1995.
[16] M. V. Subbarao, Addition chains—some results and problems, in Number Theory and Appli-

cations, R. A. Mollin, ed., Kluwer Academic Publishers, Dordrecht, 1989, pp. 555–574.
[17] E. G. Thurber, The Scholz–Brauer problem on addition chains, Pacific J. Math., 49 (1973),

pp. 229–242.
[18] E. G. Thurber, Addition chains and solutions of l(2n) = l(n) and l(2n − 1) = n + l(n) − 1,

Discrete Math., 16 (1976), pp. 279–289.
[19] E. G. Thurber, Addition chains—an erratic sequence, Discrete Math., 122 (1993), pp. 287–

305.
[20] W. R. Utz, A note on the Scholz–Brauer problem on addition chains, Proc. Amer. Math. Soc.,

4 (1953), pp. 462–463.

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS∗

JIE WANG†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1264–1283

Abstract. This paper studies the word problem for finitely presented groups under the restric-
tion that words can only be rewritten for a bounded number of times. We obtain a similar result
to the Novikov–Boone theorem in the setting of average-case NP-completeness. The word problem
we consider here is to decide, when given a finite presentation of a group G, words x, y, z, and an
integer k, whether (x−1yx)z can be derived from z(x−1yx) in the presentation of G in k steps. We
show that when each component of the instance is chosen uniformly at random, the problem cannot
be solved fast on average unless every NP problem under every reasonable distribution on instances
can be solved fast on average.

Key words. average-case NP-completeness, finitely presented groups, word problem

AMS subject classifications. 68Q15, 20F05, 20F10, 03D40

PII. S0097539797332263

1. Introduction. The notion of NP-completeness, introduced by Cook [6] and
independently by Levin [19], captures the intrinsic complexity of certain computa-
tional problems that are difficult to solve but whose solutions are easy to verify. Karp
[17] introduced the methodology of many–one reductions and demonstrated the rich
variety of NP-complete problems. By 1979, several hundred additional NP-complete
problems were discovered [8]. Since then, many more problems from almost all areas
involving computing have been identified as NP-complete.

Despite many years of intensive effort, no efficient algorithms have been found
that can solve any NP-complete problem, and so NP-complete problems are gener-
ally thought of as being computationally intractable. However, NP-completeness is a
worst-case concept. Being NP-complete does not provide information about how dif-
ficult a problem might be on the average case. Indeed, several NP-complete problems
have been shown to be tractable “on average.” For example, although Hamiltonian
Path is NP-complete, Gurevich and Shelah [13] showed that if a graph is chosen under
a commonly used distribution on random graphs, then the Hamiltonian Path prob-
lem can be solved by a deterministic algorithm in expected linear time. Thus, the
average-case complexity of a problem is, in many respects, a more significant measure
than its worst-case complexity.

Given a decision problem and a probability distribution on instances—such a pair
is called a distributional problem—it is an important issue to either find an expected
polynomial-time algorithm to solve the problem or prove that such an algorithm does
not exist. Levin [20] provided two central notions for studying this issue. One is
analogous to the class P and provides an easiness notion; the other is analogous to
the class of NP-complete sets and provides a hardness notion. For the first, Levin
defined a robust notion of what it means for the running time of an algorithm to be
polynomial on average. For the second, Levin defined deterministic many–one reduc-
tions that preserve average-polynomial-time solvability. With this machinery in place,

∗Received by the editors December 21, 1997; accepted for publication (in revised form) March 24,
1998; published electronically March 22, 1999.

http://www.siam.org/journals/sicomp/28-4/33226.html
†Department of Mathematical Sciences, University of North Carolina, Greensboro, NC 27402

(wang@uncg.edu). This work was supported in part by NSF grant CCR-9424164 and UNC Greens-
boro in the form of research leave.

1264

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1265

a distributional problem is average-case NP-complete if the decision problem compo-
nent belongs to NP and every distributional problem consisting of an NP problem
and a reasonable distribution1 is reducible to it. Levin [20] showed that distributional
tiling with a simple distribution is average-case NP-complete, and so it cannot be
solved fast on average unless every NP problem under every reasonable distribution
can be solved fast on average.

It is considerably more difficult to obtain average-case completeness results than
to obtain worst-case completeness results. Reductions that work for the worse case
often do not work for the average case. For the reduction to work for the average-case
completeness, the probability distribution of the target instance obtained from the
reduction cannot be too small compared with that of the source instance. So far only
a handful of distributional problems has been shown to be average-case NP-complete.
These problems are the distributional tiling [20], halting [12], Post correspondence
[9, 12], graph edge coloring [27], matrix transformation [4, 11], matrix representability
[28], and string rewritings for semigroups [32]. To advance the theory of average-case
NP-completeness, it is essential to identify a greater number of average-case NP-
complete problems from various areas, which will also help develop the methodology
of reductions to provide tools for proving average-case completeness results. This task
is challenging and is a major concern in the research of average-case NP-completeness.

We contribute to the variety of the list of average-case NP-complete problems by
showing that the distributional word problem for finitely presented groups is average-
case NP-complete. This result may be interesting in its own right in group theory;
for we show that, for all practical purposes, some elementary questions about finitely
presented groups cannot be answered in average polynomial time, although they can
be answered in deterministic exponential time. This paper is the full version of the
extended abstract presented in [29].

The word problem for groups was first considered by Dehn [7] and Thue [25],
which is to decide, when given a group G and words x, y, whether x is equivalent to
y in G. The solution was given by Novikov [22] and, independently, by Boone (1954–
1957), who showed that there exists a finitely presented group with an unsolvable
word problem. In 1959, Boone [5] exhibited a much simpler group than any of those
previously given, and he proved that it has an unsolvable word problem. In 1963,
Britton proved Britton’s lemma in the course of simplifying and shortening Boone’s
proof. Further improvements were made afterward by Boone, Collins, and Miller (see
[24] for these citations). Groups that have finite presentations have nice combinatorics
properties (see, for example, [21]). Moreover, a finite presentation of a group can be
read in as an input to an ordinary computer. A possible application of the word
problem in public-key cryptography was discussed in [33].

Let X = Y be a relation given in a finite presentation of a group. Then X−1Y ,
XY −1, Y −1X, and Y X−1 are called relators. One can obtain an equivalent word
by inserting or deleting a relator at any point on a given word. We assume that
rewriting one symbol in a word takes one step. The word problem we consider here
is to decide, when given a finite presentation of G, words x, y, z, and an integer k,
whether (x−1yx)z can be derived from z(x−1yx) in the presentation of G in k steps.
We show that when each component of the instance is chosen uniformly at random,
the distributional word problem is average-case NP-complete. We prove it using a
deterministic many–one reduction based on the Boone lemma.

1By reasonable distribution we mean a distribution that is polynomial-time computable or is
dominated by a distribution that is polynomial-time computable. See section 2 for the definition.

1266 JIE WANG

This paper is structured as follows. Basic definitions and results of average-case
NP-completeness are given in section 2. We define a distributional word problem for
finitely presented groups in section 3. In section 4, we briefly outline the Boone–
Collins–Miller proof of the Novikov–Boone theorem, which provides building blocks
of our completeness proof. The completeness proof is then given in section 5. Some
related results are given in section 6.

2. Preliminaries. We provide, in this section, basic definitions and results of
average-case complexity theory that we will use in this paper. Motivations regarding
the definitions will also be discussed. For a recent survey on average-case complexity
theory, the reader is referred to Wang’s article [30].

We use the binary alphabet Σ = {0, 1} for encoding strings. Denote by |x| the
length of a binary string x. A probability distribution µ is a real-valued function
from Σ∗ to [0,1] such that

∑
x µ(x) = 1. We assume that µ on the empty string

is always 0. We may also use distribution, probability, weight, or density to denote
probability distribution. The probability distributions we consider are on instances
of computational problems. If a binary string does not encode an instance of the
underlying problem, then that string has zero probability. The distribution function
of µ, denoted by µ∗, is defined by µ∗(x) =

∑
y≤x µ(y), where ≤ is the standard

lexicographical order on Σ∗. For a set A = {x : φ(x)}, we use µ[φ(x)] or µ[A] to
denote

∑
x∈A µ(x), and we use |A| to denote its cardinal. The conditional distribution

of µ on a set A is equal to µ(x)/µ[A] if x ∈ A and µ[A] > 0, and 0 otherwise. For a
function f , we use fε(x) to denote (f(x))ε for ε > 0 and we use f−1 to denote the
inverse of f . We use R+ to denote the positive reals and N the natural numbers.

2.1. Average polynomial time. One would naturally intend to measure average-
case efficiency of an algorithm using expected polynomial time. An algorithm runs
in expected polynomial time over a probability distribution µ if there exist k ≥ 0 such
that for all n,

∑
x,|x|=n t(x)µn(x) ≤ O(nk), where t(x) is the running time of the

algorithm on x, and µn(x) is the conditional distribution of µ on strings of length n.
However, this definition is machine dependent and so cannot be used to build a robust
theory. To define a robust measure of average time, we need to take care of the fol-
lowing subtle and important issues. These issues were either mentioned explicitly or
hinted at by Levin [20], and various aspects of the issues have been elaborated on, for
example, by Johnson [16], Gurevich [10, 12], Venkatesan [26], and Impagliazzo [14].
From this, Levin’s notion of average polynomial time (given here as Definition 2.1)
can be derived naturally and can be well justified.

Model independence. Let Σn = {x : |x| = n}. Let A be a subset of Σn

and |A| be proportional to 2n(1 − 2−0.1n). Suppose an algorithm runs in polyno-
mial time on every x ∈ A, and runs in 20.09n time on every x ∈ Σn − A. Then
it is easy to see that the expected running time on strings of length n is bounded
above by a polynomial in n. However, the expected running time will be exponential
in a machine model that is quadratically slower. If a problem is easy on average
in one model of computation, then it should be easy on average in all polynomi-
ally equivalent models. Even within the same model, if t is polynomial on average,
then for any k > 0, tk should also be polynomial on average. Moreover, if a problem is

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1267

polynomial on average under one encoding method, then it should be polynomial on
average under all polynomially equivalent encodings.

Balancing. Let A be a subset of Σn and |A| be proportional to 2n(1 − n−2).
Suppose an algorithm solves a problem in polynomial time on every x ∈ A. Then we
still have no guarantee of an algorithm that is fast on average, since the algorithm
may take exponential time to solve the instances in Σn − A. A balance is therefore
required between the portion of hard instances and the hardness of these instances.
The portion of the hard instances should be polynomially related to the time needed
to solve them. Clearly, it is at least necessary that only a subpolynomial portion
of instances should require superpolynomial time, though this will not in general be
sufficient.

Under the average-case measurement, an efficient algorithm with input distribu-
tion µ is allowed to run a longer time on instances with smaller weights. One may
measure the “rareness” of instances by a real-valued function r : Σ+ → R+, defined in
such a way that if the weight of an instance x is smaller, then the value of its rareness
r(x) is larger. As discussed above regarding the balancing issue, the portion of inputs
x with high values of rareness should be small. Probably the most general way to sat-
isfy this requirement is to have, for some positive constants k and c and for all l ∈ R+,
µ[r(x) > lk] < c/l or, equivalently,

∑
x r

ε(x)µ(x) < ∞ for some ε > 0.2 One may
then measure the average-case running time of an algorithm on input x as a function
of |x|r(x) rather than |x|. This captures and formalizes the idea that a longer time is
allowed on inputs with smaller weights, and it also guarantees model independence.
The running time t of an algorithm is said to be polynomial on average if there exists
a k > 0 such that, for all x, t(x) ≤ (|x|r(x))k. Hence, t1/k(x)|x|−1 ≤ r(x). Let δ =
min{ε, 1}. Then

∑
x t
δ/k(x)|x|−1µ(x) ≤ ∑x(t1/k|x|−1)δµ(x) <

∑
rδ(x)µ(x) < ∞.

This gives rise naturally to the following definition given by Levin [20].
Definition 2.1. A function f : Σ+ → N is polynomial on µ-average if there

exists an ε > 0 such that
∑
x f

ε(x)|x|−1µ(x) <∞.
Definition 2.1 is model independent and encoding independent. It satisfies the

balancing requirement as shown in footnote 2, based on that the following lemma is
straightforward.

Lemma 2.2. A function f is polynomial on µ-average iff there are constants
k > 0 and c such that, for all l ∈ R+, µ[f(x) > (l|x|)k] < c/l.

Clearly, every polynomial is polynomial on average with respect to any distri-
bution µ. If a function f is an expected polynomial over a distribution µ, then f
is polynomial on µ-average. If f and g are polynomial on µ-average, then so are
max(f, g), f + g, f · g, and f l for any positive real number l [12].

Let A be a problem and µ be a distribution on instances of A. Then (A,µ) is
called a distributional problem. A distributional problem (A,µ) is solvable in average
polynomial time if A can be solved by a deterministic algorithm whose running time
is polynomial on µ-average. (A,µ) is called a distributional decision problem if A is a
decision problem. We will focus on distributional decision problems in this paper; for
simplicity, we will omit the word “decision” hereafter.

Let (D,µ) denote a distributional problem, where D is the set of all positive in-
stances x with µ(x) > 0. The problem is to decide, for a given instance x

2To see the equivalence, assume that µ[r(x) > lk] < c/l. Let ε = 1
2k

. Then, for all l ∈ R+,

µ[rε(x) > l] < c/l2, and so
∑

x
rεµ(x) ≤

∑∞
n=1

nµ[n− 1 < rε(x) ≤ n] =
∑∞

n=0
µ[rε(x) > n] <∞.

The other direction is straightforward by a simple application of Markov’s inequality.

1268 JIE WANG

with µ(x) > 0, whether x ∈ D. If D ∈ NP, then (D,µ) is called a distributional NP
problem.

Denote by AP the class of all distributional problems that are solvable in average
polynomial time.

Remark 2.1. One may impose certain restrictions on the expressions that define
average computation time. One such restriction [23] requires that the expressions that
define average computation time be converged not just on one distribution but on all
distributions of the same rank. Belanger and Wang [1] showed that the class of
distributional NP problems defined with respect to the ranking of distributions does
not provide harder problems than standard average-case NP-complete problems.

2.2. Polynomial-time reductions. Given two distributional problems, we
wish to know which one is computationally more difficult. A standard technique
for such comparisons is to find a reduction from one problem to another.

Let f be a function with input distribution µ. It is reasonable to define the output
distribution on y, denoted by f(µ)(y), to carry all the weights of those instances x
with f(x) = y. Namely, for all y ∈ range(f), f(µ)(y) =

∑
f(x)=y µ(x). Denote by

f∗(µ) the distribution function of f(µ), so f∗(µ)(y) =
∑
f(x)≤y µ(x). Reductions f

from (A,µ) to (B, ν) should be closed for AP, meaning that if (B, ν) ∈ AP then so
is (A,µ). One way to guarantee this is to require that f efficiently reduces A to
B as in the worst case and that it should not reduce an instance of A that has a
large probability to an instance of B that has a very small probability. This means
that the induced weight on the output y = f(x) should be bounded above (within a
polynomial factor) by the weight on y according to the distribution of B. Namely,
f(µ)(y) ≤ |y|O(1)ν(y).3 If |y| ≤ |x|O(1), it follows that there exists a distribution µ1

such that, for all x, it holds that µ(x) ≤ |x|O(1)µ1(x) and ν(f(x)) = f(µ1)(f(x)),4

which turns out to be sufficient for defining reductions. The following definitions are
due to Levin [20], and we state them following Gurevich [12].

Definition 2.3. Let µ and ν be distributions. Then µ is dominated by ν, written
as µ � ν, if there exists a polynomial p such that, for all x, µ(x) ≤ p(|x|)ν(x).

Definition 2.4. Let µ and ν be distributions on instances of the decision prob-
lems A and B, respectively, and let f be a reduction from A to B. Then µ is dominated
by ν with respect to f , written as µ �f ν, if there exists a distribution µ1 on A such
that µ � µ1 and ν(y) = f(µ1)(y) for all y ∈ range(f), i.e., ν(y) =

∑
f(x)=y µ1(x).

Definition 2.5. (A,µ) is polynomial-time reducible to (B, ν) if there is a
polynomial-time computable reduction f such that for all x, x ∈ A iff f(x) ∈ B,
and µ �f ν.

It is straightforward to see that, if a reduction f is one to one, then µ �f ν iff
µ � ν ◦ f [12]. This observation is useful in proving completeness results. In the
sequel, we will often use “p-time” to denote “polynomial-time.” The following lemma
is straightforward and a proof can be found, for example, in [12, 30].

Lemma 2.6. (1) If (A,µ) is p-time reducible to (B, ν) and (B, ν) is in AP, then
so is (A,µ). (2) The p-time reductions are transitive.

3Actually, we are dealing with the conditional probability distribution ν[y|Y] with Y = range(f).
Since ν[y|Y] = ν(y)/ν[Y] and ν[Y] is a positive constant, this is equivalent to using ν(y) in the
inequality.

4The converse is also true if |x| is bounded by a polynomial in |f(x)| [12].

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1269

2.3. Polynomial-time computable distributions. Let (D,µ) be a distribu-
tional NP problem. If every other distributional NP problem is p-time reducible to it,
then (D,µ) is average-case complete. In order for such a complete problem to exist, a
certain condition on allowable distributions is needed.5 Levin [20] suggested that it is
reasonable to require distributions to be p-time computable. A real-valued function
f : Σ∗ → [0, 1] is p-time computable [18] if there is a deterministic algorithm which,
on every string x and every positive integer k, outputs a finite binary fraction y in
time bounded by a polynomial in |x| and k and such that |f(x)− y| ≤ 2−k. Clearly,
if µ∗ is p-time computable then so is µ. Blass showed that the converse is not true
unless P = NP (see [12]). With this fact in mind, we assume throughout this paper
that when we say that a distribution µ is p-time computable we mean that both µ
and µ∗ are p-time computable.

Levin (see [16]) hypothesized that any natural distribution µ is either p-time com-
putable or is dominated by a p-time computable distribution. Strong evidence that
supports this hypothesis is the fact that all the commonly used discrete distributions
do satisfy this hypothesis.

Denote by DistNP the class of all distributional NP problems (D,µ) such that
µ � ν for some p-time computable distribution ν. By Levin’s hypothesis, DistNP
includes all natural distributional NP problems. A distributional problem (A,µ) is
called average-case NP-complete (or complete for DistNP) if (A,µ) ∈ DistNP and
every other distributional problem in DistNP is p-time reducible to (A,µ).

Remark 2.2. Distributions µ that are p-time computable are p-sampleable [10,
2] meaning that there is a probabilistic algorithm that, without reading any input,
outputs x with probability µ(x) in time polynomial in |x|. Although there are p-
sampleable distributions that are not p-time computable under the assumption that
one-way functions exist [2], Impagliazzo and Levin [15] showed that for NP search
problems, p-sampleable distributions do not generate harder instances than simply
picking instances uniformly at random. In particular, they showed that for any distri-
butional NP search problem (A,µ), where µ is p-sampleable, there is a distributional
NP search problem (B, ν), where ν is a p-time computable, uniform distribution,
such that (A,µ) is reducible to (B, ν) under a randomized reduction.6 For decision
problems, the same result can be obtained using a randomized truth-table reduction
[2] (see also [30]). Hence, as far as average-case NP-completeness is concerned, it is
sufficient to focus on distributions that are p-time computable.

2.4. Uniform distributions. Distributions may be defined on all binary strings
by first selecting lengths and then selecting strings of that length. Although it is
mathematically impossible to select strings with equal chance from an infinite sample
space, strings of the same length can be selected with equal likelihood. It is also
impossible to select integers from N with the same probability, but one can select an
integer with a probability close to being “uniform.” A p-time computable distribution
µ on Σ∗ is called uniform if for all x, µ(x) = π(|x|)2−|x|, where

∑
n π(n) = 1 and

there is a polynomial p such that for all but finitely many n, π(n) ≥ 1/p(n).
It is important to note that for the purpose of proving completeness results,

π(n) ≥ 1/p(n) is the only requirement needed since domination allows a polyno-

5If arbitrary distributions are allowed, Wang and Belanger [31] showed that no complete distri-
butional problems can exist with respect to one-to-one p-time reductions.

6We will only use deterministic reductions in this paper. Randomized reductions are weaker
reductions that can be used to establish completeness results when deterministic reductions are not
applicable [9, 12, 27, 32].

1270 JIE WANG

mial factor, and so some longer strings can certainly be given more weights than
shorter ones. Levin [20] used n−2 for π(n) for notational convenience (normalized by
dividing by

∑
n n
−2 = π2/6), and |x|−22−|x| is often referred to as the default uniform

distribution.

2.5. Distribution controlling lemma. Let µ be a p-time computable distri-
bution. Then µ is dominated (with respect to p-time computable functions) by uni-
form distributions, which is an important property for proving completeness results.
Levin [20] first proved this property using a “perfect rounding” technique. Gure-
vich [12] provided a different and easier proof, based on that Wang and Belanger [32]
further showed that if µ(x) ≥ 2−p(|x|) for some fixed polynomial p, then µ will also
dominate the same uniform distribution within a constant factor.

Lemma 2.7 (distribution controlling lemma). Let µ be a p-time computable dis-
tribution.

1. There exists a total, one to one, p-time computable, and p-time invertible
function α : Σ∗ → Σ∗ such that for all x, µ(x) < 4 · 2−|α(x)|.

2. If there exists a polynomial p such that for all x, µ(x) > 2−p(|x|), then there
is a total, one-to-one, p-time computable, and p-time invertible function β :
Σ∗ → Σ∗ such that for all x, 4 · 2−|β(x)| ≤ µ(x) < 20 · 2−|β(x)|.

3. Finitely presented groups and word problems. A finite presentation of
a group consists of a set of generators (abstract symbols) and a set of relations that
relate the freely generated words. To be precise, let A be a finite set. The free group
[A] is a group including all elements that can be uniquely written as a reduced word
in the form a±1 a

±
2 · · · a±n , where ai ∈ A, a±i represents ai or a−1

i , and no ai appears
adjacent to a−1

i . When n = 0, we get the empty word e, which is the identity of the
group. A word is positive if it does not contain negative exponents. The empty word
e is regarded as a positive word. Positive words are also called strings. Words are
multiplied by juxtaposing with all expressions aia

−1
i and a−1

i ai canceled out until a
reduced word is obtained. For each word w, the inverse word w−1 consists of all the
symbols of w written in reverse order, where each ai is replaced by a−1

i and each a−1
i

is replaced by ai.
A relation on A is an expression X = Y , where X and Y are words on A. Let R

be a finite set of relations on A. Let KR denote the normal subgroup of [A] generated
by the XY −1 for X = Y ∈ R. A group G has a set of generators A and a set of
relations R on A if G is isomorphic to the quotient group [A]/KR. A and R form a
finite presentation of G, denoted by [A;R]. We extend the notation [A;R] to allow
several generators or sets of generators before the semicolon and several relations or
sets of relations after the semicolon.

A quantifier may also be used to describe a bunch of similar relations in a com-
pressed form. For instance, ∀x ∈ A : x3 = x2 represents relations a3

i = a2
i for

i = 1, 2, . . . , n. In this case, we say that a3
i = a2

i for a given i is a relation specified by
the quantified statement ∀x ∈ A : x3 = x2. For simplicity, we use the term “quantified
relation” for such a quantified statement.

Recall that if X = Y is a relation, then XY −1, X−1Y , Y X−1, and Y −1X are
called relators. Obviously, if a is a generator, then aa−1 and a−1a are relators.
Let u and v be (not necessarily reduced) words. Then u ≡ v means that u and v
have exactly the same spelling. An equivalent word can be obtained by eliminating
or introducing relators at any point on the original word. We define the following
elementary transformations (rewriting rules) for a finite presentation [A;R] of a group,
denoted by ↔R, where ↔R is a symmetric operation.

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1271

Definition 3.1. Let y be a relator.
1. If x is an empty word, then x↔R y.
2. If x is not empty and X ≡ x1x2 (x1 or x2 could be possibly null), then
x↔R x1yx2.

3. If x ≡ x1Xx2, x′ ≡ x1X
−1x2 (x1 and x2 could be possibly null), and X = Y

is a relation, then X ↔R x1Y x2 and x′ ↔R x1Y
−1x2.

We assume that rewriting one symbol in a word takes one step. So if u ↔R v,
then it will take at most max{|u|, |v|}+O(1) steps to derive v from u, or derive u from
v. Also, if x ≡ a±1 · · · a±m, where each ai is a symbol, then obtaining x−1 = a∓m · · · a∓1
takes O(Σmi=1|ai|) steps. Operations like this that do not involve relations are referred
to as group operations.

Definition 3.2. Let [A;R] be a finite presentation of a group. Let u and v be
two words on A. Then u can be obtained from v in n elementary transformations
in [A;R], written as u

n←→Rv, if there are words u1, . . . , un−1 on A such that u ↔R

u1 ↔R · · · ↔R un−1 ↔R v. Write
∗←→R to denote

k←→R for some k. Write u =k v
(in [A;R]) if v can be derived from u in k steps using relations in R and group
operations.

The subscript R is often omitted from↔R when there is no confusion. Let G be a
finitely presented group. Then G has many different finite presentations. The number
of steps used in derivations depends on the presentation. Let [A;R] and [A′;R′] be
two different presentations of G. If u =k v in [A;R] for some k, then u =k′ v in
[A′;R′] for some k′. When we are not concerned with the number of steps used in
derivations, we simply write u = v (in G) to denote u =k v in some presentation of
G.

Let A be a finite set of binary strings {a1, . . . , am}. We use ‖ A ‖0 to denote∑m
i=1 |ai| and ‖A ‖1 to denote

∏m
i=1 |ai|. For a presentation [A;R], we assume that

words over A and relations (with or without quantifiers) in R are properly coded as
binary strings.

We consider the following distributional word problem for finitely presented groups,
which is a slight modification of the original word problem of Dehn and Thue.

Definition 3.3. The distributional word problem for groups is the following
decision problem.

Instance: A finite presentation [A;R] of a group, binary strings u, v, w, and a
unary notation 1n representing positive integer n, where A = {a1, . . . , al} of generators
and R = {r1, . . . , rm} of relations (with or without quantifiers), all coded in binary
form.

Question: Is (u−1vu)w =k w(u−1vu) in [A;R] for k ≤ n? (u−1vu is called a
conjugation of u on v, denoted by u � v.)

Distribution: Randomly and independently select positive integers l, m, n, and
binary strings u, v, and w. Then randomly and independently choose binary strings
a1, . . . , al and r1, . . . , rm. The random choices are made with respect to the default
uniform distributions on positive integers and binary strings. Hence, the probability
distribution is proportional to

2−(‖A∪R‖0+|u|+|v|+|w|)

(lmn|u||v||w| ‖A ∪R‖1)2
.

The distributional word problem for groups is in DistNP, for we can first guess a
bounded sequence of relations and the locations where elementary transformations will

1272 JIE WANG

be applied and then verify whether we have a correct guess. We will show in section
5 that the distributional word problem for groups is average-case NP-complete.

We can similarly define a word problem for semigroups, where we start with
generators and relations (also called string-rewriting rules) as before but without the
inverses. In defining equivalent strings we can only replace any occurrence of X by
Y and vice versa, where X = Y is a string-rewriting rule. We can similarly define

elementary string-rewriting operation ↔ and operation
k←→, which are symmetric

operations. A string-rewriting system (i.e., the set of all string-rewriting rules) serves
as a bridge in our proof to link a Turing machine computation to a finite presentation
of a group.

We want to know what kind of relations in a finitely presented group would make
the bounded word problem difficult (or easy) to solve in average polynomial time.
Clearly, for free groups, the word problem can be solved in linear time. We also note
that for finitely generated groups with relations ab = ba for all symbols a and b,
the word problem can be solved in polynomial time. To identify relations that will
make the word problem difficult to solve, we will first investigate, in the next section,
undecidable word problems for finitely presented groups.

4. Undecidable word problem for groups. For the reader’s convenience,
we briefly outline the Boone–Collins–Miller proof of the Novikov–Boone theorem in
exactly the same form presented by Rotman [24]. We first describe the Boone lemma.

Let Γ be a semigroup with the following finite presentation:

Γ = [q, q1, . . . , qN , s1, . . . , sM ;Fiqi1Gi = Hiqi2Ki, i ∈ I],

where Fi, Gi, Hi, Ki are (possibly empty) positive words on {s1, . . . , sM} and
qi1 , qi2 ∈ {q, q1, . . . , qN}. Here |I| is the number of relations in the presentation.
(The q and s symbols will be used to represent states and nonstate symbols of some
fixed Turing machine that accepts the halting problem.)

The following notation is convenient. Let X ≡ aε11 · · · aεmm be a (not necessarily
positive) word; then X ≡ a−ε11 · · · a−εmm . If X and Y are words on {s1, . . . , sM}, define

(XqjY)∗ ≡ XqjY,
where qj ∈ {q, q1, . . . , qN}.

A word w is special if w ≡ XqjY , whereX and Y are positive words on {s1, . . . , sM},
and qj ∈ {q, q1, . . . , qN}. We now present a finitely presented group G that has an
undecidable word problem. G has generators

q, q1, . . . , qN , s1, . . . , sM , ri, i ∈ I, χ, τ, κ,
and relations, for all i ∈ I and b = 1, . . . ,M ,

χsb = sbχ
2,

risb = sbχriχ,

r−1
i F iqi1Giri = Hiqi2Ki,

τri = riτ,

τχ = χτ,

κri = riκ,

κχ = χκ,

κ(q−1τq) = (q−1τq)κ.

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1273

Lemma 4.1. (see [5]). If w is a special word, then k(w−1tw) = (w−1tw)k in G
iff w∗ = q in Γ.

The proof of the Boone lemma is based on HNN (Higman–Neumann–Neumann)
extensions on free products of finitely presented groups. For a detailed and compre-
hensive proof of Boone’s lemma, the reader is referred to Rotman [24, pp. 363–371].

To obtain the Novikov–Boone theorem, we first state a special form of the Markov–
Post theorem given as Lemma 4.2 below. Its proof can be found from [24, pp. 360–361].

Lemma 4.2. There is a finitely presented semigroup

Γ = [q, q1, . . . , qN , s1, . . . , sM ;Fiqi1Gi = Hiqi2Ki, i ∈ I]

with unsolvable word problem, where Fi, Gi, Hi, Ki are (possibly empty) positive
words on {s1, . . . , sM} and qi1 , qi2 ∈ {q, q1, . . . , qN}. There is no algorithm to deter-
mine, for arbitrary positive words X and Y on {s1, . . . , sM} and for qj, 1 ≤ j ≤ N ,
whether XqjY = q in Γ.

The symbols q, q1, . . . , qN in Lemma 4.2 are sometimes referred to as states, for
they correspond to states of some fixed Turing machine that accepts the halting
problem.

From Boone’s lemma, we know that if there were an algorithm to determine
whether two words are equivalent inG, then there would be an algorithm to determine,
for an arbitrary special word w, whether w∗ = q in Γ, which is impossible by Lemma
4.2. This gives the following Novikov–Boone theorem.

Theorem 4.3 (see [22, 5]). There exists a finitely presented group having an
undecidable word problem.

5. Main theorem.
Theorem 5.1. The distributional word problem for groups is average-case NP-

complete.
We will devote this entire section to proving this theorem. The proof is as follows.

Given a distributional NP problem (D,µ) ∈ DistNP, we construct a reduction such
that for any instance x of D, the reduction transforms x into a finitely presented group
G = [A;R], strings u, v, w, and a unary notation 1η(|x|) with the following properties,
where η is a polynomial:

1. x ∈ D iff (u−1vu)w = w(u−1vu) in G iff (u−1vu)w =k w(u−1vu) in [A;R] for
k ≤ η(|x|).

2. µ is dominated by the distribution of the distributional word problem with
respect to the reduction.

The reduction construction is based on the Boone lemma. There are some added
difficulties, however. First, we need to show a similar result as Lemma 4.2 in the
setting of average-case NP-completeness. Wang and Belanger [32] have shown that
the distributional word problem for semigroups is average-case NP-complete. But the
relations constructed in the proof there do not have the forms we desire. We would
like all relations to be in the form of EqF = HpK, where p and q are states, E, F ,
H, and K are positive words on nonstate symbols. This can be achieved by carefully
reengineering the proof given in [32].

Second, we note that it is often difficult to satisfy the domination property for
distributions required in the reductions. In general, if the size of the output of a
reduction is a linear growth on the size of its input, then the domination property
could be damaged. To make this point clearer, let us consider the distributional
halting problem.

Let M1,M2, . . . be a fixed enumeration of nondeterministic Turing machines in

1274 JIE WANG

which the index i is an integer in binary form that codes the symbols, states, and
transition table of the ith Turing machine Mi. The distributional halting problem
consists of binary strings i, x, and 1n as instances, where i and n are integers. The
question is to decide whether Mi accepts x within n steps. Denote by K the set of
all positive instances. The probability distribution µK(i, x, 1n) of instance (i, x, 1n)
(positive or negative) is proportional to 2−(l+m)l−2m−2n−2, where l = |i| and m = |x|.
The distributional halting problem (K,µK) is average-case NP-complete as mentioned
in section 1. If we try to reduce (K,µK) to a distributional problem (D,µ) in an
effort to show that (D,µ) is complete, we will need to find a reduction f such that
µK �f µ. If the reduction f transforms (i, x, 1n) to z such that z has a parameter y
with |y| ≥ c|x| for some c > 1, and 2−|y| is an irreducible factor of µ, then µ cannot
dominate µK with respect to f . The only possibility left in this connection is for y to
satisfy |y| = |x|+O(log |x|). This motivated Gurevich [12] to invent a dynamic binary
coding scheme to meet this requirement. Using such a coding scheme, Gurevich [12]
showed that the distributional Post correspondence is average-case NP-complete. We
will use this coding scheme to construct our reduction as well.

5.1. Dynamic coding scheme. Let A be a finite alphabet with |A| > 2. Given
a binary string x (we also assume that x starts with 1), Gurevich [12] designed a
dynamic binary coding scheme to encode symbols in A such that the following state-
ments hold.

1. All coded symbols have the same length l, and l = 2 log |x|+O(1).
2. String x (not coded) is distinguishable from each coded symbol. In other

words, no coded symbol can be a substring of x.
3. If a nonempty suffix z of a coded symbol u is a prefix of a coded symbol v,

then z = u = v.
4. x can be written as a unique concatenation of the following fixed binary

strings 1, 10, 000, 100, which are not prefixes of any coded symbol.
The four strings 1, 10, 000, 100 are called base strings. Gurevich [12] originally

used strings 1, 10, 00, and 000 as base strings, which, in general, does not form a
unique concatenation for strings beginning with 1.

The construction of such a coding system can be done as follows. Let R be the
regular set 0100(00 + 11)∗11. Let l be the least even integer such that 2(l−6)/2 ≥
|x| + |A|. Hence, l = 2 log |x| + O(1). The string x has at most |x| substrings of
length l. So we can select a set S of R-strings of length l such that |S| = |A|, no
string in S is a substring of x, and every string in S starts with 01. Moreover, from
R it is straightforward to show that the third condition also holds [12]. To see that
the fourth condition is satisfied, let y be a string that does not start with 01 and is
different from 0; then it is straightforward to show by induction that y forms a unique
concatenation of the base strings.

So we can use S to code A by assigning one element in S to represent one symbol
in A. This dynamic coding scheme satisfies all of the above four conditions.

5.2. Semigroup construction. For simplicity, we use the standard, nondeter-
ministic, one-tape, single-headed Turing machines as our computation model. The
tape is bounded on the left and unbounded to the right. At the initial state, the input
is left justified on the tape and the head is positioned at the leftmost symbol of the
input.

Let (D,µ) be an arbitrary distributional problem in DistNP. From distribution
controlling lemma (1), there is a total, one-to-one, p-time computable, and p-time
invertible function α such that µ(x) � 2−|α(x)|. Let M be a (nondeterministic) Turing

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1275

machine that accepts D in polynomial time. Without loss of generality we assume
that all the computation paths of M are bounded by a polynomial in the length of
inputs.

We construct a Turing machine M ′ with only one halting state. M ′ takes input
1w and determines whether w = α(x) for some x. If α−1(w) is not defined, then M ′

goes into an infinite loop; otherwise, M ′ simulates M on x. If M on x reaches an
accepting state, then M ′ erases all the tape symbols, moves the head to the left, and
halts. If M on x reaches a rejecting state, then M ′ simply goes into an infinite loop.
We assume that when M ′ enters an infinite loop, it does not change anything on the
tape. Then for all x, M ′ on input 1α(x) has a halting computation if and only if M
accepts x. Because of the time bound on M , it is easy to see that if M ′ on input
1α(x) halts, then the number of steps it takes is bounded by a polynomial in |x|. This
proves the following lemma.

Lemma 5.2. x ∈ D iff M ′ halts on 1α(x) in time polynomial in |x| iff M ′ halts
on 1α(x).

We construct a set Π = Π(M ′) of production rules to describe instantaneous
descriptions of M ′. Let h be the halting state, s the initial state, B the blank symbol,
Q the set of states, and δ the transition function, all for M ′. We use a symbol $ as an
end marker to handle the blank tape detail. Π consists of the following ordered pairs
(productions).

1. For any q ∈ Q − {h}, p ∈ Q, a, b, c ∈ Σ ∪ {B}, if δ(q, a) = (p, b, R), then Π
contains 〈qac, bpc〉; Π also contains 〈qa$, bpB$〉.

2. For any q ∈ Q − {h}, p ∈ Q, a, b, d,∈ Σ ∪ {B}, and c ∈ Σ ∪ {$}, if δ(q, a) =
(p, b, L), then Π contains 〈dqB$, pd$〉; Π also contains 〈dqac, pdbc〉 for a 6= B,
c 6= $, or b 6= B.

We now construct a finite string-rewriting system Γ = Γ(M ′) based on Π. We first
construct a new set of symbols S1 and a disjoint new set of states Q1. As we discussed
earlier, we require that Γ contains rewriting rules only in the form of EqF = HpK,
where p, q are states in Q1, and E,F,H,K are strings on S1.

Since Π is finite, we can fix an order ord : Π→ {1, 2, . . . , |Π|} for the ordered pairs
in Π. We use new symbols di, i = 1, . . . , |Π| to handle nondeterminism in case the
inverse of a production rule is applied. We use two extra states s1 and s2 to transform
input 1α(x) to its coded form before the actual simulation of M ′ on 1α(x) begins.
We use another two extra states s3, s4 and a set of new symbols Q′ = {q′ : q ∈ Q} as
markers to move di around when needed. Let

S1 = {0, 1, B, $} ∪ {di : i = 1, . . . , |Π|} ∪Q′,
Q1 = Q ∪ {s1, s2, s3, s4}.

Γ will contain γ = 24 + |Q|+ 7|Π|+ 3|Π||Q|+ |Π|2 rules, which will be described
later.

Let S2 be a new set defined below:

S2 = S1 ∪Q1 ∪ {χ, κ, τ, ξ}.
Some extra symbols are needed for writing quantified relations. Let S3 be a finite al-
phabet distinct from S2 that is sufficient to describe quantified relations (given in the
construction of G later). So S3 contains quantifier symbols, relational operation sym-
bols, and variable symbols, etc. We also assume that S3 contains {!, ↑, (,)}. Symbols
χ, κ, τ, ξ will be used to construct relations in the construction of finite presentations
for groups, and symbols in S3 will be used to describe relations.

1276 JIE WANG

Let z = 1α(x). Fix a dynamic binary coding scheme for z and the finite set

S4 = S2 ∪ S3.

It follows that all coded symbols have the same length l = 2 log |α(x)| + O(1) =
O(log |x|). For any positive word w on S4, we use w to denote the coded word of w.

Let B = {1, 10, 100, 000}. The string-rewriting system Γ on S1 ∪ Q1 consists of
the following rewriting rules:

Γ1: ∀u ∈ B:

su = $us1,

s1u = us1,

us1$ = s2u$,

us2 = s2u,

$s2 = $s.

Γ2: ∀〈α, β〉 ∈ Π: α = diβ, where i = ord(〈α, β〉).
Γ3: ∀a ∈ {0, 1},∀q ∈ Q,∀di, dj :

diq = dis3q
′,

diaq = dias3q
′,

dias3 = dis3a,

adis3 = dis3a,

djdis3 = djdis4,

$dis3 = $dis4,

s4a = as4,

s4q
′ = q.

Γ4:

∀di : dih = h,

hB = h.

Recall that a string-rewriting system defines a presentation of a semigroup.
Lemma 5.3. There is a polynomial ζ such that M ′ halts on input z iff sz$ = h in

Γ iff sz$
k←→ h in Γ for k ≤ ζ(|x|). Moreover, the length of each word ever obtained

in the transformation process is bounded by ζ(|x|).
Proof. Starting from string sz$, the only rewriting rules that can be applied are

the ones in Γ1, starting with the first one, until sz$ is transformed into sz. In other
words, the rules in Γ2–Γ4 can be applied only after sz is obtained. Since z can
be uniquely written as u1 · · ·um, where ui ∈ B, this transformation can be carried

out in 2m + 1 steps: sz$ ↔ $u1s1u2 · · ·um$
m−1←→ $u1 · · ·ums1$ ↔ $u1 · · · s2um$

m−1←→
$s2u1 · · ·um$↔ sz.

Assume that M ′ halts on z in polynomial time θ(|x|). Using the rules in Γ2,
which duplicate the steps of M ′, and using the rules in Γ3 as necessary, sz can be
transformed into $di1di2 . . . dig(z)hB$. Note that after each application of a Γ2 rule,

it will be necessary to apply at most g(z) ≤ 2θ(|x|) + 3 Γ3 rules to move the symbol
di as far left as possible. This can be seen as follows. When a Γ2 rule is applied,

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1277

we obtain the following string: $udiaqv$ or $udiqv$, where u is a string with some
d’s (possibly null) as a prefix. We consider the second case (the first case is similar).
That is, $udiqv$ ↔ $udis3q

′v$. We assume that u contains some d’s as prefixes
(the case that u contains no d’s is similar). Let u = u′dju′′, where u′ is a string

of (possibly null) d’s. Let ` = |u′′|. It follows that $udis3q
′v$

`←→ u′djdis3u
′′q′v$

↔ u′djdis4u
′′q′v$

`←→ $u′djdiu′′s4q
′v$↔ $u′djdiu′′qv$.

So transforming sz into $di1di2 . . . dig(z)hB$ takes at most θ(|x|)(2θ(|x|) + 3)

steps. Finally, $di1di2 . . . dig(z)hB$ can be transformed into h in θ(|x|) + 1 steps by

Γ4 rules.
Conversely, if sz$ can be transformed into h, then M ′ will halt on x. It is

important to note that the inverse of a production in Π can undo a simulated step of
M ′, but since each simulated step is kept track of through the di’s using the Γ2 rules,
it can only bring the string back to a previous simulated ID of M ′.

By Lemma 5.2, M ′ halts on z iff M ′ halts on z in time θ(|x|). So letting ζ(n) =
(2θ(n)(θ(n) + 2) + 2m + 1)l, where l is the length of a coded symbol, completes the
proof.

Notice that |sz$| = |x| + O(log |x|), which is what we desire. The following
corollary is a direct consequence of Lemmas 5.2 and 5.3.

Corollary 5.4. x ∈ D iff sz$ = h in Γ.

5.3. Group construction and the reduction. We now construct a finitely
presented group G as in Boone’s lemma based on the semigroup Γ constructed in
section 5.2. However, there is an obstacle in the construction in the polynomial
setting. By Boone’s lemma, we know that sz$ = h in Γ iff (sz$ � τ)κ = κ(sz$ � τ) in

G. But there is no guarantee that sz$
k←→ h in Γ with k ≤ ζ(|x|) would imply that

(sz$ � τ)κ
m←→ κ(sz$ � τ) in G with m ≤ η(|x|) for some polynomial η. In fact, m

will be in the exponential in |x|. We observe that such an exponential blow up comes
from a very special type of strings. By carefully introducing some new generators and
relations to serve as “cancellation” rules, we can eliminate the exponential blow up.

The set of generators of G is

A = B ∪ {a : a ∈ S2}.
The symbols ! and ↑ are used to represent negative and power words. The symbols

in S3 are used to represent quantified relations.
We will use words of the form ξ±n in constructing group relations, where ξn ≡

ξξ · · · ξ for n ξ’s, and ξ−n ≡ ξ!ξ! · · · ξ! for n ξ!’s.
For any word w on S4, we use w to denote the coded word of w.
Let x and y be variables; we write xy to denote the concatenation of x for y times.

Symbolically, xy is written as x ↑ y and x−y is written as x! ↑ y.
We assume that all integers are written in the original binary form (i.e., not coded

in the dynamic coding scheme). Recall that each coded symbol is a string of the form
0100(00 + 11)∗11. We code a positive binary integer by replacing 1 with 10, and 0
with 01. A binary number so coded is easily distinguished from any coded symbol
in S4. Let bin(n) denote such a coded binary number for positive integer n. So
|bin(n)| = 2|n|.

We now define a finite set of relations R = R(M ′) to construct a finite presentation
of group

G = [A;R].

1278 JIE WANG

Fix an order for the rewriting rules in Γ. R consists of the following relations,
where relations R1 to R5 are from the proof of the undecidable word problem given
in section 4 and relations R6 to R7 are used to control the length of derivations.

R1: ∀a ∈ S1: χa = aχ2.
R2: ∀a ∈ S1 and ∀ri: ria = aχriχ.

R3: r−1
i EqFri = HpK, if EqF = HpK is the ith relation in Γ in the fixed order.

Here p and q are states in Q1.
R4:

τχ = χτ,

∀ri : τri = riτ .

R5:

κχ = χκ,

∀ri : κri = riκ,

κ(h−1τh) = (h−1τh)κ.

R6: Let W be a variable representing positive words on S1; let t be a variable
representing |W |. For all W with length ≤ ζ(|x|) and for all ri,

1.

riW = Wξtχ−1riξ
tχ−1,

Wr−1
i = ξ−tχr−1

i ξ−tχW,

r−1
i W = Wξ−tχr−1

i ξ−tχ,

Wri = ξtχ−1riξ
tχ−1W ;

2.

τξtχ−1 = ξtχ−1τ ,

τ−1ξ−tχ = ξ−tχτ−1,

κξtχ−1 = ξtχ−1κ,

κ−1ξ−tχ = ξ−tχκ−1.

R7: Let u be a variable representing a number between 1 and ζ(|x|). Let v be a
variable representing 2u. For all u,

ξu = χv.

It is easy to see that R contains finitely many relations. The number of relations
and the number of quantified relations are independent of x. The length of each
relation except for R6 and R7 is independent of x. For the quantified relations in R6
and R7, the only thing that depends on x is the value of ζ(|x|). Anything else can be
symbolically written down as the way it is in our coding system (i.e., without further
evaluations). For example, 2u is symbolically written as bin(2) ↑ u, whose length is
4 + 2l. The length of each relation is therefore O(log |x|).

Next, we show that M ′ halts on input z iff (sz$ � τ)κ =m κ(sz$ � τ) in [A;R],
where m ≤ a fixed polynomial.

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1279

Lemma 5.5. There is a polynomial η such that if sz$
k←→ h in Γ with k ≤ ζ(|x|),

then (sz$ � τ)κ =m κ(sz$ � τ) in [A;R] with m ≤ η(|x|).
Proof. Assume that sz$

k←→ h in Γ with k ≤ ζ(|x|). Then

sz$ ≡W1 ↔W2 ↔ · · · ↔Wk ≡ h,
and each |Wi| is bounded by cζ(|x|) log |x| for a fixed constant c. Suppose Wi ↔Wi+1

by applying a rewriting rule EqF = HpK; then either Wi ≡ UEqFV and Wi+1 ≡
UHpKV , or Wi+1 ≡ UEqFV and Wi ≡ UHpKV , where U and V are positive words
on S1.

Let X be of the form UqV , where U and V are words on S1 and q ∈ Q1. Recall

that X∗ denotes UqV . We have

U(EqF)V
2←→ Uri(r

−1
i EqFri)r

−1
i V .

Using one relation in R3 and two relations specified in R6(1), we have

Uri(r
−1
i EqFri)r

−1
i V ↔ U(riHpKr

−1
i)V

2←→ Ui(UHpKV)Vi,

where Ui = ξ|U |χ−1riξ
|U |χ−1 and Vi = ξ−|V |χr−1

i ξ−|V |χ. Since |Wj |’s are bounded

byO(ζ(|x|) log |x|), it is straightforward to see that |Ui| = 2l|U |+5l ≤ (2cζ(|x|) log |x|+
5)l and |Vi| = 4l|V |+ 4l ≤ 4l(cζ(|x|) log |x|+ 1). So we have

W ∗i
5←→ UiW

∗
i+1Vi.

Write U−1
i ≡ χξ−|U |r−1

i χξ−|U |, and V−1
i ≡ χ−1ξ|V |riχ−1ξ|V |.

We can similarly obtain the same result if Wi ≡ UHpKV and Wi+1 ≡ UEqFV .

In this case, Ui = ξ−|U |χr−1
i ξ−|U |χ and Vi = ξ|V |χ−1riξ

|V |χ−1.
So we have

sz$ ≡W1 ≡W ∗1
O(k)←→ UW ∗kV ≡ UhV in G,(1)

where U = U1U2 · · ·Uk−1,V = Vk−1 · · ·V2V1, |U| ≤ k(2cζ(|x|) log |x| + 5)l ≤
O(ζ2(|x|) log2 |x|), and, similarly, |V| ≤ O(ζ2(|x|) log2 |x|). This implies that there is
a polynomial ϑ such that sz$ =k′ UhV in [A;R] and k′ ≤ ϑ(|x|).

From (1), we have

(sz$)−1 ≡ (sz$)!
O(k)←→ (UhV)! in G.(2)

Thus,

(sz$)−1 =O(k′) V−1h−1U−1 in G,(3)

where U−1 ≡ U−1
k−1 · · ·U−1

1 and V−1 ≡ V−1
k−1 · · ·V−1

1 .
From (1) and (3), and using a polynomial number of relations in R4 and R6(2)

of R, we have

(sz$ � τ)κ =O(k′) V−1h−1(U−1τU)h(Vκ)

O(k)←→ V−1[(h−1τh)κ]V

↔ V−1[κ(h−1τh)]V

O(k)←→ κV−1h−1U−1τUhV
O(k)←→ κ(sz$ � τ).

1280 JIE WANG

Note that each elementary transformation above takes at most O(ζ(|x|) log |x|)
steps to rewrite words. This implies that (sz$�τ)κ =m κ(sz$�τ) in G for m ≤ η(|x|),
where η is some fixed polynomial. This completes the proof.

From Lemmas 5.2, 5.3, and 5.5, we have Lemma 5.6.
Lemma 5.6. If x ∈ D, then (sz$ � τ)κ =m κ(sz$ � τ) in [A;R] for m ≤ η(|x|).
We now consider the reverse direction of Lemma 5.6. We will first use Tietze

transformations to show that G also has presentation [A − {ξ};R1, R2, R3, R4, R5].
For the reader’s convenience, we state the Tietze theorem as Lemma 5.7 below. The
reader is referred to [21, pp. 48–51] for more details.

Lemma 5.7. Given a presentation

[b1, b2, , . . . ;P1, P2, . . .](4)

for a group H, then any other presentation for H can be obtained by a repeated
application of the following Tietze transformations to presentation (4):

T1 If the words T1, T2 . . . are derivable from P1, P2, . . ., then add T1, T2 . . . to the
defining relators in presentation (4).

T2 If some of the relators, say, T1, T2, . . ., listed among the defining relators
P1, P2 . . . are derivable from the others, delete T1, T2, . . . from the defining
relators in presentation (4).

T3 If K1,K2, . . . are any words in b1, b2, . . ., then adjoin the symbols c1, c2, . . . to
the generating symbols in (4) and adjoin the relations c1 = K1, c2 = K2, . . .
to the defining relators in presentation (4).

T4 If some of the defining relators in (4) take the form a1 = V1, a2 = V2, . . .,
where a1, a2, . . . are generators in presentation (4) and V1, V2, . . . are words in
the generators other than a1, a2, . . ., then delete a1, a2, . . . from the generators,
delete a1 = V1, a2 = V2, . . . from the defining relations, and replace a1, a2, . . .
by V1, V2, . . ., respectively, in the remaining defining relators in presentation
(4).

So by Tietze transformation T4, we can obtain another presentation for G by re-
moving ξ from the relator set A, removing relations R7, and replacing ξ±t in relations
R6 with χ±2t . Next, we show that the relations specified in R6 (after replacing ξ±t

with χ±2t) can be derived from relations in R1–R5.

Lemma 5.8. Relations specified in R6 (after replacing ξ±t with χ±2t) can be
derived from relations in R1–R5.

Proof. It suffices to demonstrate how to obtain riV
∗←→ V χ2|V |χ−1riχ

2|V |χ−1

using relations not in R6, where V is a positive word. The other ones can be similarly
obtained. We prove it by induction on |V |. The case of |V | = 1 is obvious. For the

general case, let V = V ′a, where a ∈ S1; then riV
∗←→ V ′χk

′
χ−1riχ

k′χ−1a, where

k′ = 2|V
′|. Keep using relations in R1 and R2; then we have V ′χk

′
χ−1riχ

k′χ−1a =

V ′χk
′−1riχ

k′−2χa ↔ V ′χk
′
riχ

k′−1aχ2 ∗←→ V χ2k′−1riχ
2k′−1 = V χ2k′χ−1riχ

2k′χ−1.
This completes the proof.

Remark 5.1. We note that exponentially many elementary transformations
are required to obtain relations specified in R6 from relations in R1–R5. This is why
there is exponential blow up without using the generator ξ and the relations specified
in R6.

Hence, by Tietze transformation T2, we know that G also has a finite presentation
[A−{ξ};R1, R2, R3, R4, R5], which is exactly the same construction as in the Boone
lemma. So by Boone’s lemma, (sz$ � τ)κ = κ(sz$ � τ) in G iff sz$ = h in Γ. The
following lemma is therefore straightforward.

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1281

Lemma 5.9. If (sz$ � τ)κ =m κ(sz$ � τ) in [A;R] with m ≤ η(|x|), then sz$ = h
in Γ, which implies that x ∈ D by Corollary 5.4.

From Lemmas 5.6 and 5.9, we get Corollary 5.10.
Corollary 5.10. x ∈ D iff (sz$ � τ)κ =m κ(sz$ � τ) in [A;R] with m ≤ η(|x|).
We are now ready to finish the proof of Theorem 5.1. By Corollary 5.10, we define

a reduction f as follows:

f(x) = ([A;R], sz$, τ , κ, 1η(|x|)).

Clearly, f is one to one. As shown earlier, A contains a constant number of symbols
depending on M , and R contains a constant number of relations (some with quan-
tifiers). The length of each coded symbol and the length of each of these relations

are O(log |x|). So ‖A ∪ R ‖0= O(log |x|), and ‖A ∪ R ‖1= O(logO(1) |x|). Note that
|sz$| = |x|+O(log |x|). Recall that z = 1α(x). Hence, the probability distribution of
f(x), which is proportional to

2−(‖ A∪R ‖0+|sz$|+|κ|+|τ |)

(O(1)|sz$||κ||τ | ‖A ∪R‖1)2
≥ 1

P (|x|)2−|α(x)|

for a polynomial P , dominates µ(x). This completes the proof of Theorem 5.1.

6. Some related results.

6.1. Worst-case NP-complete word problem. In the setting of worst-case
complexity, we need not worry about preserving distributions for instances between
the source problem and the target problem, and so we do not need to use dynamic
coding schemes. Also, we can consider a simpler version of the bounded word problem
for groups; namely, instead of taking x, y, z as inputs and asking whether (x−1yx)z
can be derived from z(x−1yx), we will simply take x and y as inputs and ask whether
x can be derived from y.

Definition 6.1. The bounded word problem for groups is the following decision
problem.

Instance: A finite presentation [A;R] of a group, strings x, y, and a unary nota-
tion 1n.

Question: Is x =k y in [A;R] for k ≤ n?
Similar to the proof of Theorem 5.1, we can obtain a much simpler proof to the

following theorem.
Theorem 6.2. The bounded word problem for groups is (worst-case) NP-complete.

6.2. Isomorphisms of average-case NP-complete problems. The issue of
isomorphisms of complete sets is an interesting topic. Berman and Hartmanis [3] were
the first to study isomorphisms of NP-complete sets. Two sets A and B are said to be
p-isomorphic if there is a one to one, onto, p-time computable, and p-time invertible
reduction f such that A is reducible to B via f , and B is reducible to A via f−1.
Berman and Hartmanis showed that all the known (worst-case) NP-complete sets are
p-isomorphic. Wang and Belanger [32] generalized Berman and Hartmanis’s notion of
isomorphisms and defined a notion of isomorphism for distributional problems. Two
distributional problems (A,µA) and (B,µB) are p-isomorphic if there exists a p-time
computable and p-time invertible bijection φ such that (A,µA) is p-time reducible to
(B,µB) via φ, and (B,µB) is p-time reducible to (A,µA) via φ−1. They then showed
the following version of the Cantor–Bernstein–Myhill theorem for distributional prob-
lems.

1282 JIE WANG

Lemma 6.3 (see [32]). Let f and g be one-to-one, p-time computable and p-time
invertible reductions of (A,µA) to (B,µB) and (B,µB) to (A,µA), respectively, such
that f ◦ g and g ◦ f are length increasing.7 Assume also that µA ≈ µB ◦ f and
µB ≈ µA ◦ g, where µ ≈ ν means µ � ν and ν � µ. Then (A,µA) and (B,µB) are
p-isomorphic.

Based on Lemma 6.3 and distribution controlling lemma (2), Wang and Belanger
[32] showed that all the known average-case NP-complete problems under p-time
many–one reductions are indeed p-isomorphic. Based on the proof of Theorem 5.1,
we can show that the distributional word problem for groups is p-ismorphic to the
distributional halting problem.

Theorem 6.4. The distributional word problem for groups is p-ismorphic to the
distributional halting problem.

Proof. We provide a sketch of the proof here. It was shown in [32] that if A ∈ NP
and ν satisfies the hypothesis of distribution controlling lemma (2), then there is a
reduction g from (A, ν) to the distributional halting problem (K,µK) such that g is
one to one, length-increasing, p-time computable, and p-time invertible. Moreover,
µ ≈ µK ◦ g. Let (A, ν) denote the distributional word problem for groups. Then,
clearly, ν satisfies the hypothesis of distribution controlling lemma (2).

In the proof of Theorem 5.1, let (D,µ) be (K,µK). Replace α by β from dis-
tribution controlling lemma (2) for µK , and use the same reduction f . Then f is
one to one, length increasing, p-time computable, and p-time invertible. Moreover,
µK ≈ ν ◦ f . This completes the proof by Lemma 6.3.

Acknowledgments. I am grateful to Paul Duvall and Theresa Vaughan for help-
ing me with some of my algebra questions. I thank Jay Belanger and R. Venkatesan
for asking some interesting questions regarding an early version of this paper.

REFERENCES

[1] J. Belanger and J. Wang, No NP problems over ranking of distributions are harder, Theoret.
Comput. Sci., 181 (1997), pp. 229–245.

[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case com-
plexity, J. Comput. System Sci., 44 (1992), pp. 193–219.

[3] L. Berman and J. Hartmanis, On isomorphisms and density of NP and other complete sets,
SIAM J. Comput., 6 (1977), pp. 305–321.

[4] A. Blass and Y. Gurevich, Matrix transformation is complete for the average case, SIAM
J. Comput., 24 (1995) pp. 3–29.

[5] W. Boone, The word problem, Ann. Math., 70 (1959), pp. 207–265.
[6] S. Cook, The complexity of theorem-proving procedures, in Proc. of the 3rd Annual Symposium

on Theory of Computing, ACM Press, New York, 1971, pp. 151–158.
[7] M. Dehn, Über unendliche diskontinuíerliche gruppen, Math. Ann., 71 (1911), pp. 73–77.
[8] M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory of NP-

Completeness, W. H. Freeman, San Francisco, CA, 1979.
[9] Y. Gurevich, Complete and incomplete randomized NP problems, in Proc. of the 28th An-

nual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los
Alamitos, CA, 1987, pp. 111–117.

[10] Y. Gurevich, The challenger-solver game: Variations on the theme of P =? NP, Bull.
European Assoc. Theoret. Comput. Sci., 1989, pp. 112–121. (Reprinted in Current Trends
in Theoretical Computer Science, G. Rozenberg and A. Salomaa, eds., World Scientific,
River Edge, NJ, 1993, pp. 245–253.)

[11] Y. Gurevich, Matrix decomposition problem is complete for the average case, in Proc. of the
31st Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1990, pp. 802–811.

7A function f is length increasing if |f(x)| > |x|.

DISTRIBUTIONAL WORD PROBLEM FOR GROUPS 1283

[12] Y. Gurevich, Average case completeness, J. Comput. System Sci., 42 (1991), pp. 346–398.
[13] Y. Gurevich and S. Shelah, Expected computation time for Hamiltonian path problem, SIAM

J. Comput., 16 (1987), pp. 486-502.
[14] R. Impagliazzo, A personal view of average-case complexity, in Proc. of the 10th Conference

on Structure in Complexity Theory, IEEE Computer Society Press, Los Alamitos, CA,
1995, pp. 134–147.

[15] R. Impagliazzo and L. Levin, No better ways to generate hard NP instances than picking
uniformly at random, in Proc. of the 31st Annual Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 812–821.

[16] D. Johnson, The NP-completeness column: An ongoing guide, J. Algorithms, 5 (1984),
pp. 284–299.

[17] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tion, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[18] K. Ko, On the definition of some complexity classes of real numbers, Math. Systems Theory,
16 (1993), pp. 95–109.

[19] L. Levin, Universal sorting problems, Problemy Peredachi Informatsii, 9 (1973), pp. 115–116
(in Russian); Problems Inform. Transmission, 9 (1973), pp. 265–266 (in English).

[20] L. Levin, Average case complete problems, SIAM J. Comput., 15 (1986), pp. 285–286.
[21] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Presentation of

Groups in Terms of Generators and Relations, John Wiley & Sons, New York, 1966.
[22] P. Novikov, On the algorithmic unsolvability of the word problem in group theory, Trudy

Mat. Inst. Steklov., 44 (1955), p. 143.
[23] R. Reischuk and C. Schindelhauer, Precise average case complexity, in Proc. of the 10th

Annual Symposium on Theoretical Aspects of Computer, Lecture Notes in Comput. Sci.
665, Springer-Verlag, New York, 1993, pp. 650–661.

[24] J. Rotman, The Theory of Groups, 3rd ed., Wm. C. Brown Publishers, Dubuque, IA, 1988.
[25] A. Thue, Problems über Veränderungen von Zeihenreihen nach gegebenen Regeln, Skr. utzit

av Vid Kristiania, I. Mat.-Naturv. Klasse, 10 (1914).
[26] R. Venkatesan, Average-Case Intractability, Ph.D. thesis, Boston University, Boston, MA,

1991.
[27] R. Venkatesan and L. Levin, Random instances of a graph coloring problem are hard, in

Proc. of the 20th Annual Symposium on Theory of Computing, ACM Press, New York,
1988, pp. 217–222.

[28] R. Venkatesan and S. Rajagopalan, Average case intractability of diophantine and matrix
problems, in Proc. of the 24th Annual Symposium on Theory of Computing, ACM Press,
New York, 1992, pp. 632–642.

[29] J. Wang, Average-case completeness of a word problem for groups, in Proc. of the 27th Annual
Symposium on Theory of Computing, ACM Press, New York, 1995, pp. 325–334.

[30] J. Wang, Average-case computational complexity theory, in Complexity Theory Retrospective
II, L. Hemaspaandra and A. Selman, Eds., Springer-Verlag, New York, 1997, pp. 295–328.

[31] J. Wang and J. Belanger, On average-P vs. average-NP, in Complexity Theory: Current
Research, K. Ambos-Spies, S. Homer, and U. Schönings, eds., Cambridge University Press,
Cambridge, UK, 1993, pp. 47–67.

[32] J. Wang and J. Belanger, On the NP-isomorphism problem with respect to random instances,
J. Comput. System Sci., 50 (1995), pp. 151–164.

[33] N. Wagner and M. Magyarik, A public key cryptosystem based on the word problem, in
Advances in Cryptography—Proceedings of CRYPTO’84, Lecture Notes in Comput. Sci.
196, Springer-Verlag, New York, 1985, pp. 19–37.

LINEAR TIME ALGORITHMS FOR DOMINATING PAIRS IN
ASTEROIDAL TRIPLE-FREE GRAPHS∗

DEREK G. CORNEIL† , STEPHAN OLARIU‡ , AND LORNA STEWART§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1284–1297

Abstract. An independent set of three vertices is called an asteroidal triple if between each pair
in the triple there exists a path that avoids the neighborhood of the third. A graph is asteroidal triple-
free (AT-free) if it contains no asteroidal triple. The motivation for this investigation is provided,
in part, by the fact that AT-free graphs offer a common generalization of interval, permutation,
trapezoid, and cocomparability graphs.

Previously, the authors have given an existential proof of the fact that every connected AT-free
graph contains a dominating pair, that is, a pair of vertices such that every path joining them is
a dominating set in the graph. The main contribution of this paper is a constructive proof of the
existence of dominating pairs in connected AT-free graphs. The resulting simple algorithm, based
on the well-known lexicographic breadth-first search, can be implemented to run in time linear in
the size of the input, whereas the best algorithm previously known for this problem has complexity
O(|V |3) for input graph G = (V,E). In addition, we indicate how our algorithm can be extended to
find, in time linear in the size of the input, all dominating pairs in a connected AT-free graph with
diameter greater than 3. A remarkable feature of the extended algorithm is that, even though there
may be O(|V |2) dominating pairs, the algorithm can compute and represent them in linear time.

Key words. algorithms, dominating pairs, asteroidal triple-free graphs, lexicographic breadth-
first search

AMS subject classifications. 05C85, 68R10

PII. S0097539795282377

1. Introduction. Considerable attention has been paid to exploiting algorith-
mically different aspects of the linear structure exhibited by various families of graphs.
Examples of such families include interval graphs [15], permutation graphs [11], trape-
zoid graphs [6, 10], and cocomparability graphs [13].

The linearity of these four classes is usually described in terms of ad hoc properties
of each of these classes of graphs. For example, in the case of interval graphs, the
linearity property is traditionally expressed in terms of a linear order on the set of
maximal cliques [4, 5]. For permutation graphs the linear behavior is explained in
terms of the underlying partial order of dimension 2 [1]; for cocomparability graphs the
linear behavior is expressed in terms of topological orderings of transitive orientations
of comparability graphs [14], and so on.

As it turns out, the classes mentioned above are all subfamilies of a class of graphs
called the asteroidal triple-free graphs (AT-free graphs). An independent set of three
vertices is called an asteroidal triple if between any pair in the triple there exists a
path that avoids the neighborhood of the third. AT-free graphs were introduced over

∗Received by the editors March 3, 1995; accepted for publication (in revised form) June 20, 1997;
published electronically March 22, 1999.

http://www.siam.org/journals/sicomp/28-4/28237.html
†Department of Computer Science, University of Toronto, Toronto, ON M5S 1A7, Canada

(dgc@cs.utoronto.ca). The research of this author was supported by financial assistance from the
Natural Sciences and Engineering Council of Canada.
‡Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162

(olariu@cs.odu.edu). The research of this author was supported in part by National Science Foun-
dation grants CCR-9407180 and CCR-9522093 and by ONR grant N00014-97-1-0526.
§Department of Computing Science, University of Alberta, Edmonton, AB T6G 2H1, Canada

(stewart@cs.ualberta.ca). The research of this author was supported by financial assistance from the
Natural Sciences and Engineering Council of Canada.

1284

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1285

three decades ago by Lekkerkerker and Boland [15], who showed that a graph is an
interval graph if and only if it is chordal and AT-free. Thus, Lekkerkerker and Boland’s
result may be viewed as showing that the absence of asteroidal triples imposes the
linear structure on chordal graphs that results in interval graphs. Recently, we have
studied AT-free graphs with the stated goal of identifying the “agent” responsible for
the linear behavior observed in the four subfamilies. Specifically, in [9] we presented
evidence that the property of being AT-free is what is enforcing the linear behavior
of these classes.

One strong “certificate” of linearity is the existence of a dominating pair of ver-
tices, that is, a pair of vertices with the property that every path connecting them is
a dominating set. In [9], we gave an existential proof of the fact that every connected
AT-free graph contains a dominating pair.

The main contribution of this paper is a constructive proof of the existence of
dominating pairs in connected AT-free graphs. A remarkable feature of our approach
is that the resulting simple algorithm, based on the well-known lexicographic breadth-
first search of [16], can easily be implemented to run in time O(|V |+ |E|), where the
input is a connected AT-free graph G = (V,E). In addition, our algorithm can be
extended to find, in time linear in the size of the input, all dominating pairs in a
connected AT-free graph with diameter greater than 3.

It should be noted that the fastest algorithm known to us, which recognizes
whether or not a graph G = (V,E) is AT-free, runs in time O(|V |3).

To put our result in perspective, we observe that previously, the most efficient
algorithm for finding a dominating pair in a graph G = (V,E) was the straightforward
O(|V |3) algorithm described in [2].

For each of the four families mentioned above, vertices that occupy the extreme
positions in the corresponding intersection model [12] constitute a dominating pair. It
is interesting to note, however, that a linear time algorithm for finding a dominating
pair was not previously known, even for cocomparability graphs, a strict subclass of
AT-free graphs.

The remainder of this paper is organized as follows. Section 2 contains some
relevant terminology and background. Section 3 is a description of the lexicographic
breadth-first search algorithm of [16] along with some properties of that algorithm.
In section 4 we present an algorithm which finds a dominating pair in a connected
AT-free graph. In sections 5 and 6, we show how to extend the dominating pair
algorithm to find all dominating pairs in a connected AT-free graph with sufficiently
large diameter. Section 7 contains our conclusions.

2. Background. All the graphs in this work are finite with no loops or multiple
edges. In addition to standard graph theoretic terminology compatible with [3], we
shall define some new terms. We let d(v) denote the degree of vertex v; d(u, v) denotes
the distance between vertices u and v in a graph, that is, the number of edges on a
shortest path joining u and v. In addition, we let diam(G) denote the diameter of
the graph G, that is, maxu,v∈G d(u, v). Two vertices u and v with d(u, v) = diam(G)
are said to achieve the diameter. Given a graph G = (V,E) and a vertex x, we let
N(x) denote the set of neighbors of x; N ′(x) denotes the set of neighbors of x in the
complement G of G.

Let π = v1, v2, . . . , vk be a path of graph G. If the subgraph of G induced by
{v1, v2, . . . , vk} has exactly k − 1 edges, i.e., none other than the edges of the path,
then π is said to be an induced, or chordless, path. All the paths in this work are
assumed to be induced unless stated otherwise. We refer to a path joining vertices x

1286 D. G. CORNEIL, S. OLARIU, AND L. STEWART

a b d e

f

g

h

i

j

klq p

c

Fig. 1. A connected AT-free graph G.

and y as an x,y-path. We say that a vertex u intercepts a path π if u is adjacent to
at least one vertex on π; otherwise, u is said to miss π. Let G = (V,E) be a graph,
π a path in G, x a vertex of G, and X a subset of V . Let V (π) be the vertices of
G that are on the path π. We shall use the following notation: π − x refers to the
subgraph of G induced by the vertices V (π)− {x}, π + x refers to the subgraph of G
induced by the vertices V (π) ∪ {x}, and π ∪X refers to the subgraph of G induced
by the vertices V (π) ∪X.

For a connected AT-free graph with a pair of vertices x, y we let D(x, y) denote
the set of vertices that intercept all x,y-paths. Note that (x, y) is a dominating pair if
and only if D(x, y) = V . We say that vertices u and v are unrelated with respect to x if
u 6∈ D(v, x) and v 6∈ D(u, x). A vertex x of an AT-free graph G is called pokable if the
graph obtained from G by adding a pendant vertex adjacent to x is AT-free. It is not
hard to see that if an AT-free graph G contains no unrelated vertices with respect to
x, then x is pokable. A pokable dominating pair is a dominating pair such that both
vertices are pokable. A vertex x is a pokable dominating pair vertex if x is pokable
and there exists y such that (x, y) is a dominating pair. To illustrate these definitions,
consider the graph G = (V,E) of Figure 1. In this graph, D(c, l) = {b, c, d, k, l, p, q},
D(c, e) = V \{a}, and D(a, e) = D(q, i) = V . Any pair consisting of one vertex from
{a, q} and one vertex from {e, f, g, h, i, j, k} is a dominating pair; a is pokable and h is
not pokable (adding a pendant vertex h′ adjacent to h would create the AT {f, j, h′}).

3. Lexicographic breadth-first search. Our dominating pair algorithm in-
vokes Procedure LBFS (short for lexicographic breadth-first search), which, when
given a connected graph G and a vertex x of G, returns a numbering of the vertices
of G. We reproduce below the details of LBFS from [16].
PROCEDURE LBFS(G, x).
{Input: a connected graph G = (V,E) and a distinguished vertex x of G;
Output: a numbering σ of the vertices of G}
begin

label(x) ← |V |;
for each vertex v in V − {x} do

label(v) ← Λ;
for i← |V | downto 1 do begin

pick an unnumbered vertex v with (lexicographically) the largest label;
σ(v)← i; {assign to v number i}
for each unnumbered vertex u in N(v) do

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1287

append i to label(u)
end

end; {LBFS}
Notice that the numbering returned by LBFS is not unique. One numbering

that could result from LBFS(G, q), where G is the graph of Figure 1, is σ(q) = 14,
σ(p) = 13, σ(c) = 12, σ(a) = 11, σ(b) = 10, σ(l) = 9, σ(d) = 8, σ(k) = 7, σ(e) = 6,
σ(i) = 5, σ(h) = 4, σ(j) = 3, σ(g) = 2, σ(f) = 1.

A few definitions relating to LBFS are in order at this point. Let x be an arbitrary
vertex of a connected graph G, and consider running LBFS(G, x). For vertices a, b of
G we write a ≺ b whenever σ(a) < σ(b), and we shall say that b is larger than a. To
make the notation more manageable we shall sometimes write v1 ≺ v2 ≺ · · · ≺ vk as
shorthand for v1 ≺ v2, v2 ≺ v3, . . . , vk−1 ≺ vk. We shall denote by � the lexicographic
total order of the set of LBFS labels. We let λ(a, b) denote the label of a when b was
about to be numbered. Given vertices a, b, c with a ≺ c and b ≺ c, we shall say that
a and b are tied at c if λ(a, c) = λ(b, c). Given a vertex y, an a,b-path is said to be
y-majorizing if all the vertices on the path are larger than y.

We assume that G = (V,E) is an arbitrary connected graph and that LBFS(G, x)
has been invoked, where x is an arbitrary vertex of G. The following fundamental
properties of LBFS will be used later.

Proposition 3.1. Let a, b, and c be vertices of G satisfying a ≺ b, b ≺ c, ac ∈ E,
and bc 6∈ E. Then there exists a vertex d in G adjacent to b but not to a and such
that c ≺ d.

Proof. The existence of d follows immediately from the observation that when
b was about to be processed by LBFS it could not have been tied with a. Since a
inherited c’s label, b must have inherited the label of a larger vertex nonadjacent to
a; this is d.

Proposition 3.2 (monotonicity property). Let a, b, c, and d be vertices of G
such that a ≺ c or a = c, b ≺ c or b = c, and c ≺ d. If λ(a, d) � λ(b, d), then
λ(a, c) � λ(b, c).

Proof. The proof follows directly from the lexicographic ordering of labels.
Lemma 3.3. Let a, b, b′, and c be vertices of G such that a ≺ b ≺ c ≺ b′, bb′ ∈ E,

and b′c 6∈ E. Then a and c cannot be tied at b′.
Proof. By Proposition 3.1 applied to vertices b, c, and b′ we find a vertex c′

adjacent to c but not to b and such that b′ ≺ c′. Write C = {t | tc ∈ E, tb 6∈ E, b′ ≺ t}.
Clearly, c′ ∈ C. In fact, we select c′ to be the largest vertex in C.

If the statement is false, then a and c are tied at b′. Since b′ ≺ c′ and since
cc′ ∈ E, we must have ac′ ∈ E. Now, Proposition 3.1 applied to vertices a, b, and c′

yields a vertex b′′ adjacent to b but not to a such that c′ ≺ b′′.
Since b′ ≺ b′′, the assumption that a and c are tied at b′ guarantees that b′′ is

not adjacent to c. Therefore, Proposition 3.1 can be applied to vertices b, c, and
b′′, yielding a vertex c′′ adjacent to c but not to b and such that b′′ ≺ c′′. Since
b′ ≺ c′ ≺ b′′ ≺ c′′, it must be that c′′ ∈ C, contradicting that c′ is the largest vertex
in C.

Lemma 3.4. Let y, a, and b be pairwise nonadjacent vertices of G such that
y ≺ a and a ≺ b. If a and y are not tied at b, then y misses a y-majorizing a,b-path.

Proof. Assume that a and y are not tied at b. We must exhibit a y-majorizing
a,b-path missed by y.

Since y ≺ a, λ(y, a) �λ(a, a) or λ(y, a) = λ(a, a). Therefore, by the monotonicity
property (Proposition 3.2), λ(y, b) � λ(a, b) or λ(y, b) = λ(a, b). Now, since a and y

1288 D. G. CORNEIL, S. OLARIU, AND L. STEWART

are not tied at b, λ(y, b) � λ(a, b). Consequently, we find a vertex a1 adjacent to a
but not to y and such that b ≺ a1. (Vertex a1 is chosen to be the largest satisfying
these conditions.) We may assume that a1 is not adjacent to b, since otherwise the
path a, a1, b is the desired y-majorizing path.

Now, Lemma 3.3 guarantees that b and y cannot be tied at a1. Thus, we find a
vertex b1 adjacent to b but not to y and such that a1 ≺ b1. (As before, we select as b1
the largest vertex with this property.) Trivially, we may assume that b1 is adjacent to
neither a nor a1; else we have the desired y-majorizing path. Again, Lemma 3.3 tells
us that a1 and y cannot be tied at b1 and so we find a vertex a2 adjacent to a1 but
not to y and such that b1 ≺ a2. (As before, we select as a2 the largest vertex with
this property.) It is easy to verify that a2 is not adjacent to a (by the choice of a1),
b, or b1.

Continuing as above, we obtain two chordless y-majorizing paths a = a0, a1, a2, . . .
and b = b0, b1, b2, . . . , both missed by y. If no vertex on the first path is adjacent to
a vertex on the second one, then the paths are infinite, contradicting that G is finite.
Therefore, such an adjacency must exist, yielding the desired a,b-path.

4. The dominating pair algorithm. Our dominating pair algorithm takes as
input a connected AT-free graph G and returns a pokable dominating pair of G. The
algorithm provides a constructive proof of the existence of pokable dominating pairs
in connected AT-free graphs. (An existential proof of this fact was given in [9].)

The four properties of LBFS specified in the preceding section hold for every
connected graph G. The proof of correctness of the dominating pair algorithm relies
on two additional properties of LBFS which hold when the input graph is a connected
AT-free graph. We present these properties next.

Theorem 4.1. Let G = (V,E) be a connected AT-free graph and let x and y be
arbitrary vertices of G. Let ≺ be the vertex ordering corresponding to a numbering
produced by LBFS(G, x). The subgraph of G induced by y and all vertices z with y ≺ z
contains no unrelated vertices with respect to y.

Proof. First, we give an overview of the proof. The existence of such unrelated
vertices, u and v, and the fact that they are numbered before y in an LBFS from x,
would imply that u and v are connected by a path through x. If y misses such a path,
then {y, u, v} is an AT.

In particular, if the statement is false, we find a vertex y and vertices u, v with
y ≺ u ≺ v, such that u and v are unrelated with respect to y. This implies the
existence of chordless paths π(y, u) : y = u1, u2, . . . , up = u missed by v, and π(y, v) :
y = v1, v2, . . . , vq = v missed by u, with the vertices on both paths, except for y,
numbered by LBFS before y. We claim that

u ≺ v3.(4.1)

If (4.1) is false, then v3 ≺ u and u ≺ v, and we must find a subscript i (3 ≤ i ≤ q− 1)
such that vi ≺ u and u ≺ vi+1. Now, Lemma 3.3 tells us that u and y cannot be tied
at vi+1. In turn, Lemma 3.4 guarantees the existence of a y-majorizing u,vi+1-path
missed by y. This path extends trivially to a y-majorizing u,v-path, implying that
{y, u, v} is an AT. Thus, (4.1) must hold.

Next, we claim that

u and y are tied at v3.(4.2)

The contrary would imply, by virtue of Lemma 3.4, the existence of a y-majorizing

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1289

u,v3-path missed by y. This extends easily into a y-majorizing u,v-path missed by y,
implying that {y, u, v} is an AT. Thus, (4.2) must hold.

We note that v2 ≺ v3; otherwise, since v2 is adjacent to y and not to u, we would
contradict (4.2). Further, we claim that

u ≺ v2.(4.3)

Otherwise, by (4.1) we have v2 ≺ u and u ≺ v3. Now, Lemma 3.3 specifies that u and
y cannot be tied at v3, contradicting (4.2). Thus, (4.3) must be true.

Proposition 3.1 applied to vertices y ≺ u and u ≺ v2 guarantees the existence of a
vertex u′ adjacent to u but not to y and such that v2 ≺ u′. Since u and y are tied at
v3, it must be the case that y ≺ u, u ≺ v2, v2 ≺ u′, and u′ ≺ v3. If u′ is adjacent to v3,
then we have a u,v-path missed by y, contradicting that the graph is AT-free. Thus,
u′ is not adjacent to v3. But now, Lemma 3.3 guarantees that y and u′ cannot be tied
at v3. Further, Lemma 3.4 tells us that there must exist a y-majorizing u′,v3-path
missed by y. This path extends in the obvious way to a y-majorizing u,v-path missed
by y, contradicting that the graph is AT-free. This completes the proof of Theorem
4.1.

We observe that, if G contains no unrelated vertices with respect to vertex v, then
v is pokable. This observation and Theorem 4.1 combined imply that each vertex y
of G is pokable in the subgraph of G induced by y and all vertices z with y ≺ z. In
particular, the last vertex numbered by LBFS(G, x) is pokable in G.

One additional theorem about LBFS, specialized to connected AT-free graphs,
will lead to the dominating pair algorithm.

Theorem 4.2. Let G = (V,E) be a connected AT-free graph and suppose that G
contains no vertices unrelated with respect to vertex x of G. Let ≺ be a vertex ordering
corresponding to a numbering produced by LBFS(G, x). Then, for all vertices u, v in
V with u ≺ v, v ∈ D(u, x).

Proof. The argument proceeds by noting that if v /∈ D(u, x), then there is a
u,x-path missed by v and no v,x-path missed by u (since u and v cannot be unrelated
with respect to x). However, an LBFS from x would number u before v, contradicting
the conditions of the theorem.

Assume that the theorem is false and let v be the largest vertex in V for which
there exists a vertex u with u ≺ v and v 6∈ D(u, x). We now select a specific path π
and a vertex u with u ≺ v such that π is a u,x-path missed by v. Let U be the set
of all vertices u such that u ≺ v and v 6∈ D(u, x) and let P be the set of all chordless
u,x-paths in G that are missed by v. Among all minimum length paths in P, we
choose π to be the one that extends to the largest possible vertex at each step. Now
u is the endpoint of π that is in the set U .

Formally, let PM be the subset of P consisting of all minimum length paths of
P. For paths P = p1, p2, . . . , pk and P ′ = p′1, p

′
2, . . . , p

′
k in PM, we say that P ′ is

greater than P if there exists a subscript i, 1 ≤ i ≤ k, such that σ(p′j) = σ(pj) for
all 1 ≤ j < i and σ(p′i) > σ(pi). Clearly, “greater than” is a total order on PM. We
choose π : u = u1, u2, . . . , uk = x to be the unique greatest element of PM.

Observe that u1 ≺ v and v ≺ u2; otherwise we contradict the fact that π is in
PM. Now Proposition 3.1 guarantees the existence of a vertex v2 adjacent to v = v1

but not to u1 and such that u2 ≺ v2.
It is easily seen that v2 is nonadjacent to ui for all i > 2, since otherwise u and v

are unrelated with respect to x. This immediately implies that v2 ≺ u3 (otherwise we
contradict the choice of v) and u2v2 ∈ E (otherwise we contradict the choice of both
u and v).

1290 D. G. CORNEIL, S. OLARIU, AND L. STEWART

Now apply Proposition 3.1 to vertices u2, v2, and u3; we find a vertex v3 adjacent
to v2 but not to u2 and such that u3 ≺ v3.

Since u2 ≺ v3, v3 cannot miss the path u2, u3, . . . , uk = x. Let t (t ≥ 3) be the
largest subscript for which v3ut ∈ E. Now v3 must be adjacent to u1; else u1 and v1

are unrelated with respect to x. (The v1,x-path missed by u1 is v1, v2, v3, ut, . . . , x.)
Note also that v3 must be adjacent to v1; otherwise we contradict the choice of π.
(To see this, note that u1, v3 extends to a minimum length chordless u,x-path via ut.)
Now, t = 3; else the assignment v ← u2 and u← v contradicts the initial choice of u
and v.

Now assume that we have constructed a sequence v = v1, v2, . . . , vi of vertices
such that vi (i ≥ 3) satisfies the following conditions:

(a) vivi−1, viui ∈ E;
(b) ui ≺ vi and viui−1 6∈ E;
(c) viuj 6∈ E for j > i;
(d) viu1, viv1 ∈ E.

We argue that there exists a vertex vi+1 satisfying conditions (a)–(d) with i + 1 in
place of i. For this purpose, note that ui+1 exists since ui ≺ vi implies that ui 6= x.
Now, vi ≺ ui+1 since otherwise the assignment v ← vi and u← ui+1 contradicts the
initial choice of u and v.

Now, by (c), Proposition 3.1 applied to vertices ui, vi, and ui+1 guarantees the
existence of a vertex vi+1 adjacent to vi but not to ui and such that ui+1 ≺ vi+1.
Thus, (b) is verified. Let t be the largest subscript for which vi+1 is adjacent to ut.
(t exists and t ≥ i+1, since otherwise the assignment v ← vi+1 and u← ui contradicts
the initial choice of u and v.)

Note that ui−1 is adjacent to vi+1, since if it is not, then ui−1 and v1 are unrelated
with respect to x. (By (b) and (d), the path contained in v1, vi, vi+1, ut, ut+1, . . . , x is
missed by ui−1.) Also v1 is adjacent to vi+1, since otherwise we contradict the choice
of π by going down π and picking the first edge ujvi+1, which we know exists (in
particular, we know that ui−1vi+1 ∈ E) and then going to ut and on to x. Now u1 is
adjacent to vi+1, since otherwise u1 and v1 are unrelated with respect to x (the path
v1, vi+1, ut, . . . , x would be missed by u1). Thus, (d) holds.

Note that t = i+1; otherwise we should have picked ui instead of v (for ui misses
the path u1, vi+1, ut, etc.). Thus, both (a) and (c) hold.

But now we have reached a contradiction: vk must exist and it must be that
x = uk ≺ vk, which is absurd.

Theorem 4.2 implies that if G contains no vertices unrelated with respect to x,
then (x, y) is a dominating pair in the subgraph of G induced by y and all vertices z
with y ≺ z. In particular, x and the last vertex numbered by LBFS(G, x) constitute
a dominating pair of G.

We are now in a position to spell out the details of the dominating pair algorithm.
PROCEDURE DP(G).
{Input: a connected AT-free graph G;
Output: (y, z) a pokable dominating pair of G}
begin

choose an arbitrary vertex x of G;
if N ′(x) = ∅ then return (x, x);
LBFS(G, x);
let y be the vertex numbered last by LBFS(G, x);
LBFS(G, y);

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1291

let z be the vertex numbered last by LBFS(G, y);
return(y, z)
end; {DP}

As an example, we refer again to the graph G of Figure 1. We saw earlier that a
possible numbering resulting from LBFS(G, q) corresponds to the ordering

f ≺ g ≺ j ≺ h ≺ i ≺ e ≺ k ≺ d ≺ l ≺ b ≺ a ≺ c ≺ p ≺ q.

LBFS(G, f) may produce the ordering

a ≺ q ≺ b ≺ p ≺ c ≺ l ≺ d ≺ j ≺ i ≺ h ≺ g ≺ k ≺ e ≺ f.

Thus, DP(G) may output the pokable dominating pair (a, f).
Finally, we state the following result.
Theorem 4.3. Procedure DP finds a pokable dominating pair in a connected

AT-free graph, G = (V,E), in O(|V |+ |E|) time.
Proof. Clearly, (x, x) is a pokable dominating pair of G if N ′(x) = ∅. Otherwise,

by Theorem 4.1, G contains no unrelated vertices with respect to y and, hence, by
Theorem 4.2, (y, z) is a dominating pair of G. In addition, Theorem 4.1 implies that
both y and z are pokable in G. It is clear that a linear time implementation is possible
(see [16] for details of a linear time implementation of LBFS).

5. Computing dominated sets. Since dominating pairs play an important role
in the study of AT-free graphs and, intuitively, correspond to the extreme endpoints of
the linear structure of the graph, it is interesting to ask whether the above algorithm
can be the basis of an efficient algorithm to find all of the dominating pairs in a
connected AT-free graph. It turns out that we can indeed extend the algorithm to
efficiently find all dominating pairs in a connected AT-free graph provided that the
graph has diameter greater than 3. The diameter restriction is a consequence of
Theorem 6.1, which states that the set of dominating pairs is precisely the Cartesian
product of two subsets of vertices X and Y , provided the diameter of the graph
is greater than 3. Thus, by computing X and Y , we have a linear-sized implicit
representation of all dominating pairs. Such representations do not seem to hold for
AT-free graphs with diameter less than 4.

Perhaps even more interesting in its own right, and a step in the direction of
computing all dominating pairs, is a method that, given a connected AT-free graph
G and a pokable dominating pair vertex x of G, computes the sets D(v, x) for all
vertices v of G. (Recall that D(v, x) denotes the set of vertices that intercept all
v,x-paths.) We describe this method first and, in the next section, we show how the
information obtained can be used to compute all the dominating pairs in a connected
AT-free graph with diameter greater than 3.

In order to understand our approach, which relies on a variant of LBFS, let us
examine a few details of an efficient LBFS implementation. We use an adjacency list
representation of a graph. Additionally, unnumbered vertices are stored in another
data structure, specifically, a list of lists. At each stage of the algorithm, each list
contains unnumbered vertices having the same label (i.e., vertices that are tied at the
current stage), and lists are stored in decreasing lexicographic order of the correspond-
ing labels. Thus, the largest label can be found in constant time. Let us examine the
evolution of the list of lists during the execution of LBFS(G, x) where G = (V,E).
Initially, there are two lists: one contains the vertex x and corresponds to the label
|V |, and the other contains all other vertices of G and corresponds to the label Λ.

1292 D. G. CORNEIL, S. OLARIU, AND L. STEWART

Each time a new vertex u is numbered, it is removed from its list and its number is
appended to the labels of its unnumbered neighbors. Each list that contains both an
unnumbered neighbor of u and a vertex that is not adjacent to u, is split into two
lists, one for the original label and one corresponding to the original label with σ(u)
appended. The first list follows the second in the ordered list of lists. It is important
to note that, by the monotonicity property (Proposition 3.2), the relative order of the
lists never changes. In order to access and move the neighbors of u in O(d(u)) time,
an array of |V | pointers indicates the location of each unnumbered vertex within the
list of lists, and the lists are doubly linked.

We now return to the problem at hand, namely, given a connected AT-free graph
G = (V,E) and a pokable dominating pair vertex x of G, we wish to compute the
sets D(v, x) for all vertices v of G. We will modify LBFS to obtain a linear time
algorithm for this problem. To begin, we observe that the sum of the cardinalities of
the sets D(v, x), for all v ∈ V , may be O(|V |2), and hence, a linear time algorithm
must use an implicit representation of these sets. We handle this as follows: for each
vertex v we compute a number, span(v), 1 ≤ span(v) ≤ σ(v), with the property
that D(v, x) = {u|σ(u) ≥ span(v)} ∪ N−(v), where σ is a numbering resulting from
LBFS(G, x) and N−(v) = N(v) ∩ {w|σ(w) < σ(v)}. Thus, span(v) indicates an
interval, with respect to σ, of vertices to be included in D(v, x). When all vertices of
a set W ⊆ V have the same span value, we refer to that value as span(W).

The values of span(v) for all vertices v are computed incrementally. It is not
necessary to update the values individually because all vertices on the same list will
have the same span value. Thus, we store span values for each list, rather than for
each vertex. The two initial lists have span values of |V |. Just before a vertex is
numbered, the span value of its list is updated. When a list is split, the two new lists
inherit the span value of the original list. A span value is assigned to an individual
vertex when that vertex is finally numbered. As we maintain the lists, we store the
size of each list. Thus, for the list W in each iteration, W , |W |, and span(W) can be
accessed in constant time. Furthermore, over all iterations, all updates of span values
can be accomplished in linear time. Thus, the overall complexity of the algorithm
below is O(|V |+ |E|).

Procedure DSETS is a modified LBFS which computes implicit representations
of D(v, x) for all v ∈ V .
PROCEDURE DSETS(G, x).
{Input: a connected AT-free graph G = (V,E) and a pokable dominating pair vertex
x of G;
Output: a numbering σ of the vertices of G and, for each vertex v, span(v) such that
D(v, x) = {u|σ(u) ≥ span(v)} ∪N−(v) }
begin

label(x) ← |V |;
for each vertex v in V − {x} do

label(v) ← Λ;
W1 ← {x}; W2 ← V − {x}; {Initialize two lists}
span(W1) ← span(W2) ← |V |;
for i← |V | downto 1 do begin {main for loop}

pick an unnumbered vertex v with (lexicographically) the largest label;
let W be the list containing v and all vertices tied with v;
span(W) ← min {span(W), i+ 1− |W | };
remove v from W ;

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1293

σ(v)← i; {assign to v number i}
span(v) ← span(W);
for each unnumbered vertex u in N(v) do

append i to label(u);
split lists as necessary so that there is a one-to-one correspondence between the
resulting set of lists and the vertex labels
end {main for loop}

end; {DSETS}

Let us look again at the graph G of Figure 1. Suppose that the numbering
returned by DSETS(G, q) corresponds to the ordering

f ≺ g ≺ j ≺ h ≺ i ≺ e ≺ k ≺ d ≺ l ≺ b ≺ a ≺ c ≺ p ≺ q.
Now the span values computed by DSETS(G, q) will be

v a b c d e f g h i j k l p q
span(v) 11 10 11 8 6 1 1 1 1 1 7 9 11 14

It is easy to verify that the corresponding sets are correctly represented in this case.
For example, D(q, q) = {a, c, p, q}, D(l, q) = {a, b, c, d, k, l, p, q}, and D(e, q) = V .

Before presenting the proof of correctness of Procedure DSETS, we examine the
relationship between vertices x (such that there are no vertices unrelated with respect
to x) and pokable dominating pair vertices. The following lemma acts as a bridge
between the results of section 4 and the subsequent results of this section.

Lemma 5.1. Let G be a connected AT-free graph and let x be an arbitrary vertex
of G. Then G contains no vertices unrelated with respect to x if and only if x is a
pokable dominating pair vertex of G.

Proof. The “only if” part follows from Theorem 4.2 and the fact that if G contains
no vertices unrelated with respect to x, then x is pokable (since no AT can be created
by adding a pendant vertex adjacent to x). To prove the “if” part, let y be a vertex
of G such that (x, y) is a dominating pair of G, and consider unrelated vertices u and
v with respect to x. Since (x, y) is a dominating pair, u and v intercept every path
joining x and y. Let π be an x,y-path and let u′ and v′ be vertices on π adjacent to
u and v, respectively. Trivially, both u′ and v′ are distinct from x. But now there
exists a u,v-path in G that does not contain x (this path contains vertices u′, v′ and
a subpath of π), implying that x is not pokable.

The correctness of Procedure DSETS relies on the following theorem.
Theorem 5.2. Let x be a pokable dominating pair vertex of a connected AT-free

graph G = (V,E). For every vertex v of G, D(v, x) = {u|σ(u) ≥ span(v)} ∪N−(v).
Proof. Informally, notice that span(v) is the smallest numbered vertex that is tied

with v at any point in the algorithm. Intuitively, all vertices in {u|σ(u) ≥ span(v)},
as well as all neighbors of v, are in D(v, x). The proof demonstrates that D(v, x) is
exactly equal to this set of vertices.

Formally, let σ : V 7→ {1, 2, . . . , n} be a numbering returned by DSETS(G, x), let
v be an arbitrary vertex of V , and let D(v) = {u|σ(u) ≥ span(v)} ∪N−(v).

Our plan is to prove that D(v) = D(v, x). To implement this plan we first prove
that D(v) ⊆ D(v, x). Suppose that D(v) 6⊆ D(v, x), and let u be a vertex in D(v)
but not in D(v, x). Now uv 6∈ E and, by Theorem 4.2 and Lemma 5.1, σ(u) < σ(v).
Thus, by the algorithm, span(v) ≤ σ(u) < σ(v). (To see this, notice that during the

1294 D. G. CORNEIL, S. OLARIU, AND L. STEWART

iteration of the main for loop in which vertex v is numbered, the list W that contains
v receives a span value less than or equal to i+ 1−|W |. Since W contains v, |W | ≥ 1
and hence span(W) ≤ i. Now, the desired inequality follows, since σ(v) is assigned
the value i and span(v) is assigned the value span(W).)

Let w be the vertex being processed when span(v) was first set to its final value. (It
could be that w = v.) Then u, v, and w were tied at w; that is, N(u)∩{t|σ(t) > σ(w)}
= N(v) ∩ {t|σ(t) > σ(w)} = N(w) ∩ {t|σ(t) > σ(w)}. Since u 6∈ D(v, x) there
exists a v,x-path π : v = v1, v2, . . . , vk = x missed by u. By Theorem 4.2 and
Lemma 5.1, all vertices of π are larger than u. Let i be the greatest index such
that σ(vi) < σ(w). Clearly, i < k, since σ(w) < σ(x). Now σ(u) < σ(vi) < σ(w)
and thus, by the monotonicity property (Proposition 3.2), vi was tied with u, v,
and w at w. But vi is adjacent to vi+1 with σ(w) < σ(vi+1); thus, vi+1 belongs to
N(w)∩ {t|σ(t) > σ(w)} and is therefore adjacent to u, contradicting that π is missed
by u. Thus, D(v) ⊆ D(v, x).

We now prove that D(v, x) ⊆ D(v), thereby completing the proof of the theorem.
Suppose that D(v, x) 6⊆ D(v). Let u be a vertex in D(v, x) but not in D(v). Clearly,
uv 6∈ E and σ(u) < span(v) ≤ σ(v).

If at any stage u and v are tied with the vertex being processed, then span(v) is
set to a value less than or equal to σ(u), and span(v) is never increased. Thus, since
span(v) > σ(u), we know that u and v are never tied with the vertex being processed.
Let z be the largest neighbor of v. Since u cannot be adjacent to any vertex greater
than z (else σ(u) < σ(v) is contradicted), and since there is a z,x-path consisting
entirely of z and vertices larger than z (by the breadth-first nature of the search), u
must be adjacent to z. (Otherwise we contradict the fact that u ∈ D(v, x).) Now let
Z be the vertices of N(v)∩{t|σ(t) > σ(v)} which have a neighbor greater than z, and
let Z ′ be the remaining vertices of N(v) ∩ {t|σ(t) > σ(v)}. Clearly, z ∈ Z. Note that
u is adjacent to all vertices of Z; otherwise there is a v,x-path missed by u, which is
a contradiction. We observe that for every z ∈ Z and every z′ ∈ Z ′, it must be that
z′ ≺ z. This follows from the monotonicity property (Proposition 3.2) and by the
fact that, at z, all vertices of Z ′ have labels lexicographically less than all vertices of
Z. Finally, all vertices of Z ′ are adjacent to all vertices of Z, since any vertex of Z ′

nonadjacent to a vertex of Z would have been processed after v. But when the first
vertex of Z ′ is processed, all vertices of Z ′, u, and v are tied, contradicting our earlier
statement that u and v are not tied at any stage. This completes the proof.

Theorem 5.2, along with the discussion preceding Procedure DSETS, implies the
following result.

Theorem 5.3. Let G = (V,E) be a connected AT-free graph and let x be a pokable
dominating pair vertex of G. Procedure DSETS computes implicit representations for
the sets D(v, x) for every vertex v of G in O(|V |+ |E|) time.

6. Computing all dominating pairs. We now describe how to use the span
values computed by Procedure DSETS to compute all dominating pairs in a connected
AT-free graph with sufficiently large diameter. Our algorithm relies on the following
result, the proof of which appears in [9].

Theorem 6.1 (see [9]). Let G be a connected AT-free graph with diam(G) > 3.
There exist nonempty, disjoint sets X and Y of vertices of G such that (x, y) is a
dominating pair if and only if x ∈ X and y ∈ Y .

We note that Theorem 6.1 is best possible in the sense that, for AT-free graphs
of diameter less than 4, the sets X and Y are not guaranteed to exist. To wit, C5 and
the graph of Figure 2 provide counterexamples of diameters 2 and 3, respectively.

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1295

Fig. 2. An AT-free graph of diameter 3 for which the sets X and Y do not exist.

Procedure ALL-DPs takes as input a connected AT-free graph G = (V,E) with
diameter greater than 3, and returns X and Y , subsets of V such that (x, y) is a
dominating pair if and only if x ∈ X and y ∈ Y . Procedure DSETS is an integral
part of Procedure ALL-DPs.

We begin with an informal description of Procedure ALL-DPs. The first step is to
find a pokable dominating pair vertex, which is done by LBFS in linear time. Then,
Procedure DSETS(G, x) computes span(v) for all vertices v in linear time. From the
resulting span values, and by Theorem 6.1, it is easy to see how to proceed.

Now, Y is the set of all vertices y with D(y, x) = V (whether or not D(y, x) = V
can be computed in O(d(y)) time by scanning the adjacency list of y and checking
whether all vertices w with σ(w) < span(y) are adjacent to v). Finally, we call
DSETS(G, y), where y is the vertex that was numbered last by DSETS(G, x). The
new set of span values can be used to compute the set X in a manner identical to the
above method for computing Y . We now state the procedure more precisely.
PROCEDURE ALL-DPs(G).
{Input: connected AT-free graph G = (V,E) with diam(G) > 3;
Output: X ⊆ V and Y ⊆ V such that (x, y) is a dominating pair of G if and only if
x ∈ X and y ∈ Y }
begin

choose an arbitrary vertex w of G;
LBFS(G,w);
let x be the vertex numbered last by LBFS(G,w);
DSETS(G, x);
Y = ∅;
for every y ∈ V do begin

count ← |V | − span(y); {number of vertices not in {u|σ(u) ≥ span(y)}
for each u ∈ N(y) do

if σ(u) < span(y) then count← count− 1;
if count = 0 then Y ← Y ∪ {y}
end;

let y be the vertex numbered last by LBFS(G, x);
DSETS(G, y);
X = ∅;
for every x ∈ V do begin

count ← |V | − span(x); {number of vertices not in {u|σ(u) ≥ span(x)}
for each u ∈ N(x) do

if σ(u) < span(x) then count← count− 1;
if count = 0 then X ← X ∪ {x}
end;

return(X,Y)
end; {ALL-DPs}

1296 D. G. CORNEIL, S. OLARIU, AND L. STEWART

As an illustration, when run with the graph G of Figure 1 as input, Procedure
ALL-DPs returns X = {a, q}, Y = {e, f, g, h, i, j, k} or X = {e, f, g, h, i, j, k}, Y =
{a, q} (depending upon the initial choice of w).

Theorem 6.2. For a connected AT-free graph G = (V,E) with diam(G) > 3,
Procedure ALL-DPs computes sets X and Y such that (x, y) is a dominating pair of
G if and only if x ∈ X and y ∈ Y in O(|V |+ |E|) time.

Proof. We observe that, by Theorem 4.1 and Lemma 5.1, the vertex x in ALL-
DPs is guaranteed to be a pokable dominating pair vertex. Similarly, by Theorem
4.1 and Lemma 5.1, the vertex y is a pokable dominating pair vertex. (This follows
from the observation that the set of possible numberings produced by DSETS(G, x)
is exactly the set of possible numberings of LBFS(G, x), since DSETS is simply LBFS
with some additional computations.) Thus, the correctness of Procedure ALL-DPs
follows from Theorem 5.3 and Theorem 6.1. Similarly, the complexity of ALL-DPs is
the sum of the complexities of LBFS and DSETS plus an O(|V |+ |E|) term.

Let G = (V,E) be a connected AT-free graph with diam(G) > 3. Notice that,
even though there may be O(|V |2) dominating pairs in G, Procedure ALL-DPs can
compute and represent them in linear time, by virtue of Theorem 6.1. A similar
comment applies to the sets D(v, x) for all v ∈ V ; even though the sum of the
cardinalities of the sets may be O(|V |2), Procedure DSETS can compute an implicit
representation of them in linear time.

We conclude with a corollary, which follows from the fact that some minimum
cardinality connected dominating set must be a shortest path between the vertices of a
dominating pair (proved in [9]). Once X and Y have been found, a minimum distance
dominating pair can be found in linear time by performing a breadth-first search
starting at X until a vertex of Y is encountered. In [7], we presented a linear time
algorithm to compute a dominating path in an arbitrary connected AT-free graph,
but that algorithm does not guarantee a minimum cardinality dominating path. The
method of the present paper does guarantee a minimum cardinality dominating path
for connected AT-free graphs with diameter greater than 3.

Corollary 6.3. Let G = (V,E) be a connected AT-free graph with diameter
greater than 3. A minimum cardinality connected dominating set of G can be computed
in O(|V |+ |E|) time.

7. Conclusions. We have presented a linear time algorithm, based on the well-
known lexicographic breadth-first search of [16], for finding a pokable dominating
pair in a connected AT-free graph, G = (V,E). The algorithm provides a construc-
tive proof of the existence of pokable dominating pairs in connected AT-free graphs
(an existential proof of this fact was given in [9]). It is an improvement over the
previously known O(|V |3) algorithm of [2]. In addition, we extended the dominating
pair algorithm to find all dominating pairs in a connected AT-free graph, G = (V,E),
with diameter greater than 3. Even though there may be O(|V |2) dominating pairs,
the extended algorithm can compute and implicitly represent them in O(|V | + |E|)
time. We remark that the simpler maximum cardinality search (MCS) of Tarjan and
Yannakakis [17] cannot take the place of LBFS in these algorithms.

In [8], we presented a different linear time algorithm for finding a dominating pair
in a connected AT-free graph. This other algorithm is based on a recursive use of a
maximum cardinality breadth-first search. The method does not seem to allow linear
time calculation of D(v, x) for all vertices v where x is a pokable dominating pair
vertex, or of sets X and Y when the diameter of the graph is greater than 3.

DOMINATING PAIRS IN ASTEROIDAL TRIPLE-FREE GRAPHS 1297

REFERENCES

[1] K. A. Baker, P. C. Fishburn, and F. S. Roberts, Partial orders of dimension two, Networks,
2 (1971), pp. 11–28.

[2] H. Balakrishnan, A. Rajaraman, and C. Pandu Rangan, Connected domination and
Steiner set on asteroidal triple-free graphs, in Workshop on Algorithms and Data Struc-
tures, WADS ’93, F. Dehne, J.-R. Sack, N. Santoro, and S. Whitesides, eds., Lecture Notes
in Comput. Sci., 709, Springer-Verlag, New York, 1993, pp. 131–141.

[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, Amster-
dam, 1976.

[4] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[5] K. S. Booth and G. S. Lueker, A linear time algorithm for deciding interval graph isomor-
phism, J. ACM, 26 (1979), pp. 183–195.

[6] D. G. Corneil and P. A. Kamula, Extensions of permutation and interval graphs, Congr.
Numer., 58 (1987), pp. 267–276.

[7] D. G. Corneil, S. Olariu, and L. Stewart, A linear time algorithm to compute a dominating
path in an AT-free graph, Inform. Process. Lett., 54 (1995), pp. 253–257.

[8] D. G. Corneil, S. Olariu, and L. Stewart, Computing a dominating pair in an asteroidal
triple-free graph in linear time, in Workshop on Algorithms and Data Structures, WADS
’95, S. G. Akl, F. Dehne, J.-R. Sack, and N. Santoro, eds., Lecture Notes in Comput. Sci.,
955, Springer-Verlag, New York, 1995, pp. 358–368.

[9] D. G. Corneil, S. Olariu, and L. Stewart, Asteroidal triple-free graphs, SIAM J. Discrete
Math., 10 (1997), pp. 399–430.

[10] I. Dagan, M. C. Golumbic, and R. Y. Pinter, Trapezoid graphs and their coloring, Discrete
Appl. Math., 21 (1988), pp. 35–46.

[11] S. Even, A. Pnueli, and A. Lempel, Permutation graphs and transitive graphs, J. ACM, 19
(1972), pp. 400–410.

[12] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[13] M. C. Golumbic, C. L. Monma, and W. T. Trotter, Jr., Tolerance graphs, Discrete Appl.
Math., 9 (1984), pp. 157–170.

[14] D. Kratsch and L. Stewart, Domination on cocomparability graphs, SIAM J. Discrete Math.,
6 (1993), pp. 400–417.

[15] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[16] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[17] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

GUILLOTINE SUBDIVISIONS APPROXIMATE POLYGONAL
SUBDIVISIONS: A SIMPLE POLYNOMIAL-TIME

APPROXIMATION SCHEME FOR GEOMETRIC TSP, k-MST,
AND RELATED PROBLEMS ∗

JOSEPH S. B. MITCHELL†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1298–1309

Abstract. We show that any polygonal subdivision in the plane can be converted into an “m-
guillotine” subdivision whose length is at most (1 + c

m
) times that of the original subdivision, for

a small constant c. “m-Guillotine” subdivisions have a simple recursive structure that allows one
to search for the shortest of such subdivisions in polynomial time, using dynamic programming. In
particular, a consequence of our main theorem is a simple polynomial-time approximation scheme
for geometric instances of several network optimization problems, including the Steiner minimum
spanning tree, the traveling salesperson problem (TSP), and the k-MST problem.

Key words. approximation algorithms, polynomial-time approximation scheme, traveling sales-
person problem, k-MST, Steiner minimal trees, guillotine subdivisions, computational geometry

AMS subject classifications. 68Q25, 68R10, 68U05

PII. S0097539796309764

1. Introduction. We obtain a simple polynomial-time approximation scheme
for geometric instances of some network optimization problems, including the Steiner
minimum spanning tree, the traveling salesperson problem (TSP), and the k-MST
problem.

The method is based on the concept of an “m-guillotine subdivision,” a simple
extension of the recent approximation method of Mitchell [9], which considered the
case m = 1. Roughly speaking, an “m-guillotine subdivision” is a polygonal subdi-
vision with the property that there exists a line (“cut”), whose intersection with the
subdivision edges consists of a small number (O(m)) of connected components, and
the subdivisions on either side of the line are also m-guillotine. The upper bound
on the number of connected components allows one to apply dynamic programming
to optimize over m-guillotine subdivisions, as there is a succinct specification of how
subproblems interact across a cut.

Key to our method is a theorem showing that any polygonal subdivision can
be converted into an m-guillotine subdivision by adding a set of edges whose total
length is small: at most c

m times that of the original subdivision (where c = 1,
√

2,
depending on the metric). Then, using dynamic programming to optimize over an
appropriate class of m-guillotine subdivisions, we obtain, for any fixed m, (1 + c

m)-

approximation algorithms that run in polynomial-time (nO(m)) for various network
optimization problems.

Related work. Over the last few decades, there has been a wealth of research
on the problems studied here, both in the graph versions of the problems and in
the geometric versions. Almost any standard textbook on algorithms and networks
discusses them; e.g., see [4, 6, 12]. For a survey of work on the TSP, refer to the

∗Received by the editors September 25, 1996; accepted for publication (in revised form) July
18, 1997; published electronically March 22, 1999. This research was supported in part by Hughes
Research Laboratories and NSF grants CCR-9204585 and CCR-9504192.

http://www.siam.org/journals/sicomp/28-4/30976.html
†Department of Applied Mathematics and Statistics, State University of New York, Stony Brook,

NY 11794-3600 (jsbm@ams.sunysb.edu).

1298

A SIMPLE PTAS FOR GEOMETRIC TSP, ETC. 1299

book [7] edited by Lawler et al. For a survey on approximation algorithms, refer to
the recent book [5] edited by Hochbaum.

All of the geometric optimization problems considered here are known to be NP-
hard. Polynomial-time approximation algorithms were known, allowing one to get
within a constant factor of optimal. However, it has been open as to whether or
not one can, in polynomial time, achieve an approximation factor of (1 + ε) for any
fixed ε > 0; i.e., no polynomial-time approximation scheme (PTAS) was known. In
particular, no factor better than the Christofides bound of 1.5 was known for the
Euclidean TSP.

In this paper, we point out how a minor modification to a previous result [9, 11]
(see also [3]) leads to a PTAS for various geometric optimization problems, including
the TSP, Steiner tree, and k-MST.

In an exciting recent development, Arora [1] announced that he had found a
PTAS for the Euclidean TSP, as well as the other problems considered in this paper,
thereby achieving essentially the same results that we report here, using decomposition
schemes that are somewhat similar to our own. Arora’s remarkable results predate this
paper by several weeks. Arora has generalized his method also to higher dimensions,

obtaining a running time of nO(logd−2 n)/εd−1

in d dimensions. For the two-dimensional
TSP, Arora estimates that his analysis yields a time bound of roughly n100/ε; he adds
that a more careful analysis should yield roughly n30/ε. In this paper, we give analysis

giving an explicit exponent: time O(n20m+5) to get within factor (1+ 2
√

2
m) of optimal

in the Euclidean planar TSP; in terms of ε, the time bound is O(n
40
√

2
ε +5).

2. m-Guillotine subdivisions. We follow most of the notation of [9], only
somewhat generalized. We consider a polygonal subdivision (“planar straight-line
graph”) S that has n edges (and hence O(n) vertices and facets). Let E denote the
union of the edge segments of S, and let V denote the vertices of S. We can assume
(without loss of generality) that S is restricted to the unit square, B (i.e., E ⊂ int(B)).
Then, each facet (2-face) is a bounded polygon, possibly with holes. The length of S
is the sum of the lengths of the edges of S. If all edges E are horizontal or vertical,
then we say that S is rectilinear.

A closed, axis-aligned rectangle W is a window if W ⊆ B. In the following
definitions, we fix attention on a given window, W .

A line ` is a cut for E (with respect to W) if ` is horizontal or vertical and
` ∩ int(W) 6= ∅. The intersection, ` ∩ (E ∩ int(W)), of a cut ` with E ∩ int(W)
(the restriction of E to the window W) consists of a discrete (possibly empty) set of
subsegments of `. (Some of these “segments” may be single points, where ` crosses
an edge.) The endpoints of these subsegments are called the endpoints along ` (with
respect to W). (The two points where ` crosses the boundary of W are not considered
to be endpoints along `.) Let ξ be the number of endpoints along `, and let the points
be denoted by p1, . . . , pξ, in order along `.

For a positive integer m, we define the m-span, σm(`), of ` (with respect to W)
as follows. If ξ ≤ 2(m − 1), then σm(`) = ∅; otherwise, σm(`) is defined to be the
(possibly zero-length) line segment, pmpξ−m+1, joining the mth endpoint, pm, with
the mth-from-the-last endpoints, pξ−m+1. (See Figure 2.1.)

A (horizontal or vertical) cut ` is an m-perfect cut with respect to W if σm(`) ⊆ E.
In particular, if ξ ≤ 2(m− 1), then ` is trivially an m-perfect cut (since σm(`) = ∅).
Similarly, if ξ = 2m−1, then ` is m-perfect (since σm(`) is a single point). Otherwise,
if ` is m-perfect, and ξ ≥ 2m, then ξ = 2m. See Figure 2.2 for an example.

1300 JOSEPH S. B. MITCHELL

(ξ = 6)

` ∩ E
σ4(`) = σ5(`) = · · · = ∅

σ1(`) σ2(`) σ3(`)

p3

pξ−2

pξ−1

p2

p1

pξpξ
pξ−1

pξ−2

p3

p2

p1

W

`

Fig. 2.1. Definition of m-span.

W

`3 `4`1 `2

Fig. 2.2. The vertical cuts `1, `2, `3, `4 are 3-perfect (also m-perfect, for m ≥ 4). The cut `4 is
also 2-perfect (but not 1-perfect).

Finally, we say that S is an m-guillotine subdivision with respect to window W if
either (1) E ∩ int(W) = ∅; or (2) there exists an m-perfect cut, `, with respect to W ,
such that S is m-guillotine with respect to windows W ∩ H+ and W ∩ H−, where
H+, H− are the closed half-planes induced by `. We say that S is an m-guillotine
subdivision if S is m-guillotine with respect to the unit square, B. A 1-guillotine
subdivision is illustrated in Figure 2.3, where “cut” is used to indicate where a 1-
perfect cut can be made.

3. The main theorem. For rectilinear subdivisions, the proof of our main the-
orem directly follows that of [9] with only a very minor change: we use the concept
of “m-darkness,” in which we require m walls to block light from the boundary. The
proof in [9] used m = 1; so we copy below the proof from [9] with “m” replacing “1”.

Theorem 3.1. Let S be a rectilinear subdivision, with edge set E, of length L.
Then, for any positive integer m, there exists an m-guillotine rectilinear subdivision,
SG, of length at most (1 + 1

m)L whose edge set, EG, contains E.

A SIMPLE PTAS FOR GEOMETRIC TSP, ETC. 1301

cut

cut

cut

cut

cut

cut

cut

cut
cut

cut

cut

cut

cut

cut

cut

cut

Fig. 2.3. An example of a 1-guillotine rectilinear subdivision.

1302 JOSEPH S. B. MITCHELL

p q

W

`

Fig. 3.1. Subsegment pq ⊂ ` is 3-dark; its length is charged to the 3 levels of E that lie above
it and the 3 levels of E that lie below it.

Proof. We will convert S into an m-guillotine subdivision SG by adding to E a new
set of horizontal/vertical edges whose total length is at most 1

mL. The construction
is recursive; at each stage, we show that there exists a cut, `, with respect to the
current window W (which initially is the box B), such that we can afford to add the
m-span σm(`) to E, while appropriately charging off the length of σm(`). (Once we
add σm(`) to E, ` becomes an m-perfect cut with respect to W .)

In fact, we will restrict ourselves to a special discrete set, L, of horizontal/vertical
cuts, namely those determined by the x- or y-coordinates of original vertices V of the
subdivision, or by the midpoints between consecutive x- or y-coordinates of V .

First, note that if an m-perfect cut (with respect to W) exists, then we can simply
use it and proceed, recursively, on each side of the cut.

We say that a point p on a cut ` is m-dark with respect to ` and W if, along
`⊥ ∩ int(W), there are at least m endpoints (strictly) on each side of p, where `⊥ is
the line through p and perpendicular to `.1 We say that a subsegment of ` is m-dark
(with respect to W) if all points of the segment are m-dark with respect to ` and W .

The important property of m-dark points along ` is the following. Assume, with-
out loss of generality, that ` is horizontal. The m-dark portion of ` is, in general,
a union of subsegments of ` ∩W , some endpoints of which may not be themselves
m-dark points. (In terms of the length (measure) of the m-dark portion, though,
the discrete set of endpoints is not relevant.) Let pq be an open subsegment of the
m-dark portion of `. Then we can charge the length of pq off to the bottoms of the
first m subsegments, E+ ⊆ E, of edges that lie above pq, and the tops of the first m
subsegments, E− ⊆ E, of edges that lie below pq (since we know that there are at
least m edges “blocking” pq from the top/bottom of W). We charge pq’s length half
to E+ (charging each of the m levels of E+ from below, with 1

2m units of charge) and
half to E− (charging each of the m levels of E− from above, with 1

2m units of charge).
In Figure 3.1 we illustrate how a 3-dark subsegment, pq, has its length charged off to
the 3 levels of E that are above/below it.

1We can think of the edges E as being “walls” that are not very effective at blocking light—light
can go through m− 1 walls but is stopped when it hits the mth wall; then, p on a line ` is m-dark
if p is not illuminated when light is shone in from the boundary of W , along the direction of `⊥.

A SIMPLE PTAS FOR GEOMETRIC TSP, ETC. 1303

We call a cut ` favorable if the total length of the m-dark portion of ` is at least
as great as the length of the m-span, σm(`). The lemma below shows that a favorable
cut always exists (even one in the special discrete set, L). For a favorable cut `, we
add its m-span to the edge set (charging off its length, as above), and recurse on each
side of the cut, in the two new windows. After a portion of E has been charged on
one side, due to a cut `, it will be within m levels of the boundary of the windows on
either side of `, and, hence, within m levels of the boundary of any future windows,
found deeper in the recursion that contain the portion. Thus, no portion of E will
ever be charged more than once from each side (top and bottom), so no portion of E
will ever pay more than its total length, times 1

m , in charge (1
2m from each side). Also,

the new edges added (the spans σm(`)) are never themselves charged, since they lie
on window boundaries and cannot therefore serve to make a portion of some future
cut m-dark.

(Note too that, in order for a cut ` to be favorable but not m-perfect, there must
be at least one segment (in fact, at least m segments) of E parallel to ` in each of
the two open half-planes induced by `; thus, the recursion must terminate in a finite
number of steps.)

Since the total length of all m-spans for all favorable cuts is at most 1
mL, and the

total length of all m-spans for all m-perfect cuts is at most L, we are done.

We now prove our key lemma, which guarantees the existence of a favorable cut.
The proof of the lemma uses a particularly simple argument, based on elementary
calculus (reversing the order of integration). It appears already in [9], but we repeat
it here for completeness.

Lemma 3.2. For any subdivision S and any window W , there is a favorable cut.

Proof. We show that there must be a favorable cut that is either horizontal or
vertical.

Let f(x) denote the length of the m-span (with respect to W) of the vertical line
through x. (We define f(x) = 0, if x ∈ [0, 1] lies outside of the projection of W ⊆ B

onto the x-axis.) Then,
∫ 1

0
f(x)dx is simply the area, Ax, of the set Rx of points of

W that are m-dark with respect to horizontal cuts. Similarly, define g(y) to be the

length of the m-span of the horizontal line through y, and let Ay =
∫ 1

0
g(y)dy.

Assume, without loss of generality, that Ax ≥ Ay. We claim that there exists a
horizontal favorable cut; i.e., we claim that there exists a horizontal cut, `, such that
the length of its m-dark portion is at least as large as the length of its m-span, σm(`).
To see this, note that Ax can be computed by switching the order of integration,

“slicing” the region Rx horizontally, rather than vertically; i.e., Ax =
∫ 1

0
h(y)dy,

where h(y) is the length of the intersection of Rx with a horizontal line through y
(i.e., h(y) is the length of the m-dark portion of the horizontal line through y). Thus,

since Ax ≥ Ay, we get that
∫ 1

0
h(y)dy ≥ ∫ 1

0
g(y)dy ≥ 0. Thus, it cannot be that for

all values of y ∈ [0, 1], h(y) < g(y), so there exists a y = y∗ for which h(y∗) ≥ g(y∗).
The horizontal line through this y∗ is a cut satisfying the claim of the lemma. (If,
instead, we had Ax ≤ Ay, then we would get a vertical cut satisfying the claim.)

Finally, we note that, in the rectilinear case, f , g, and h are piecewise-constant,
with discontinuities corresponding to vertices V of S. Then, we can always select y∗

to be at a discontinuity or at a midpoint between two discontinuities.

General polygonal subdivisions. Consider now a subdivision S whose edges
E are not rectilinear. A moment’s reflection reveals that our charging scheme and
the key lemma are quite general and do not really use the rectilinearity of S (or even

1304 JOSEPH S. B. MITCHELL

the straightness of edges in E). In fact, the proof of the main theorem goes through,
almost exactly as before, adding “favorable” cuts that are horizontal or vertical, and
charging the added length off to the original length of the subdivision. However, we
must address the issue of the discretization of cuts (e.g., in order to specify a dynamic
program) and, thereby, the termination of the recursion that converts an arbitrary
subdivision to an m-guillotine subdivision.

One approach (as in earlier drafts of this paper) is to use discretization of ori-
entations, and/or discretization onto a sufficiently fine grid. Here, we opt instead to
modify slightly our previous definition of m-guillotine subdivision as follows.

Assume, without loss of generality, that no two vertices have a common x- or y-
coordinate. We let EW denote the subset of E consisting of the union of segments of
E having at least one endpoint inside (or on the boundary of) W . The combinatorial
type (with respect to E) of a window W is an ordered listing, for each of the four sides
of W , of the identities of the (closed) line segments of EW that intersect it (the side
of W , each considered to be an open line segment), as well as the identities of the
line segments of EW that intersect each of the four corners of W . We say that W
is minimal (with respect to E) if there does not exist a W ′ ⊂ W , strictly contained
in W , having the same combinatorial type as W . By standard critical placement
arguments,2 we see that, since it has four degrees of freedom, a minimal window is
determined by four contact pairs, defined by a vertex v ∈ V in contact with a side of
W or by a corner of W in contact with a segment of EW . (Thus, there are at most
O(n4) minimal windows.) For any window W containing at least one vertex of E, we
let W denote a minimal window, contained within W , having the same combinatorial
type as W . (At least one such W must exist.)

Now, we say that S is an m-guillotine subdivision with respect to window W if
either (1) V ∩ int(W) = ∅; or (2) there exists an m-perfect cut, `, with respect to
a minimal window, W ⊆ W , such that S is m-guillotine with respect to windows
W ∩H+ and W ∩H−, where H+, H− are the closed half-planes induced by `. (Note
that, since W is minimal, necessarily windows W ∩H+ and W ∩H− will each have
a combinatorial type different from that of W .)

Theorem 3.3. Let S be a polygonal subdivision, with edge set E, of length L.
Then, for any positive integer m, there exists an m-guillotine polygonal subdivision,

SG, of length at most (1 +
√

2
m)L whose edge set, EG, contains E.

Proof. The proof exactly follows that of the rectilinear case (Theorem 3.1): We use
a recursive construction, together with our charging scheme, and Lemma 3.2 applied

2In particular, an arbitrary window, W , can be made minimal by the following “shrinking”
process: Slide the right side of W inward until the first event, when (a) the side hits a vertex, or (b)
an endpoint of the side strikes a segment of EW . In case (a), we have “pinned” the right side of W ,
and we move next to the top side (then the left side, and the bottom side). In case (b), we next move
inwards both of the two sides incident on the corner (endpoint) that struck a segment, s ⊂ EW , while
keeping that corner in contact with segment s, until another event (of type (a) or (b)) occurs. (Since
we know that s ∈ EW has one of its endpoints inside W , we know that as we slide the corner along
s, the two sides either both move inward or both move outward.) Again, in case of an event of type
(a), we are done moving those two sides (they are both pinned), and we proceed to move inwards
other sides (processing unpinned sides in the order right, top, left, bottom). In case of an event of
type (b), a second corner of the window has struck a segment, s′ ⊂ EW , and we then proceed to
slide three sides of W inward simultaneously, while keeping both of the pinned corners sliding on
their respective segments of EW . We may end up having all four sides of W moving inwards at once,
with three, or possibly even four (in a degenerate case), corners of W restricted to slide on specific
segments of EW . Since each of these segments of EW must have one endpoint within W , we know
that we will eventually have an event of type (a)—a collision with a vertex. When this happens, all
four sides of W have been pinned.

A SIMPLE PTAS FOR GEOMETRIC TSP, ETC. 1305

to a minimal window W ⊆ W , to show that we can convert S into an m-guillotine
subdivision SG by adding to E a new set of horizontal/vertical bridge segments whose

total length is at most
√

2
m L. (Here, we do not restrict attention to any special subset

of horizontal and vertical cuts (such as L); cuts can be classified according to the
combinatorial types of the new windows they create.)

The only difference that we should mention is the origin of the “
√

2” term in the
bound. This comes from the fact that each side of an inclined segment of E may be
charged twice, once vertically and once horizontally. Specifically, the charge assigned
to a segment is at most 1

m times the sum of the lengths of its x- and y-projections,

i.e., at most
√

2
m times its length.

4. Some applications. We now discuss how our main theorem can be applied,
leading to polynomial-time approximation schemes for some NP-hard optimization
problems on a set P of n sites in the plane.

Steiner tree problem: Determine a tree of minimum total length that spans (visits)
the set of points P . In this problem, as opposed to the minimum spanning tree (MST)
problem (solvable exactly in O(n log n) time for points in the Euclidean plane [13]),
the tree is allowed to have vertices (“Steiner points”) that are not among the points
of P .

Steiner k-MST problem: For a given integer k (k ≤ n), determine a tree, possibly
with Steiner points, of minimum total length that spans at least k of the n points
in P .

TSP: Determine a tour (cycle) of minimum length that visits each point of the set,
P , of sites. Because it is of minimum length, a Euclidean TSP tour will necessarily
visit each site exactly once, and will be a simple polygon (a closed polygonal walk
that does not self-intersect). The k-TSP is to determine a minimum-length tour on a
subset of at least k of the n points.

k-MST problem: For a given integer k (k ≤ n), determine a tree, with vertices in
the set P , of minimum total length that spans at least k of the n points in P .

4.1. Steiner tree. The dynamic programming algorithm of [9, 11], which com-
putes a 2-approximation to the Steiner k-MST (and hence to Steiner tree, for k = n),
in the L1 metric, generalizes immediately to the case of m-guillotine subdivisions.
Now, instead of a factor of 1 + 1

1 = 2, as in [9] (for the case m = 1), we get a factor
1+ 1

m . Exactly the same algorithm works, only now there are up to 2m endpoints per
side of the rectangular subproblem (instead of 2 per side, as in [9]). Thus, there are
O(k) choices of the integer k′ that specifies the number of sites that must be visited
within a subproblem, O(n4) choices of rectangle B bounding a subproblem, O(n4·2m)
choices for the endpoints on each side of the rectangle, O(n2m+1) choices of cut (and
endpoints along the cut), and O(k) choices for how to partition k′. Overall, we get
time O(k2n10m+5). In the case that k = n, we do not need to choose the value of
k′, or how to partition it when we select a cut, since we are forced to visit all sites
within a subproblem; thus, the factor of k2 drops, leaving us with a time bound of
O(n10m+5).

For the Euclidean metric, essentially the same algorithms work, but we first aug-
ment P with a set, G, of candidate (approximate) Steiner points, such that each
Steiner point in an optimal tree can be rounded to one of the candidate points, with-
out increasing the size of the tree by much. (In contrast, in the rectilinear case, we
can assume that all Steiner points lie (exactly) at vertices of the grid induced by hor-
izontal/vertical lines through points of P ; thus, no new candidates need to be added,

1306 JOSEPH S. B. MITCHELL

since these grid points are potential subdivision vertices in the dynamic programming
recursion that searches for a shortest possible m-guillotine subdivision.) One choice
of set G that works is to let G be a regular (square) grid of O(n2M2) points, with

spacing diam(P)
nM , for some M ≥ m. Then, each Steiner point in an optimal tree can

be rounded to such a grid point by adding a segment of length less than diam(P)
nM ; this

adds an overall length of only diam(P)
M ≤ diam(P)

m ≤ (1
m)L∗ to the optimal tree, where

L∗ is the length of the optimal tree. Our dynamic programming algorithm, then,
searches for a minimum-length m-guillotine subdivision that spans all (or at least k)
of the points of P , while allowing vertices of the subdivision to be placed at any of
the points P ∪G.

Corollary 4.1. Given any fixed positive integer m, and any set of n points in
the plane, there is an nO(m)-time algorithm to compute a Steiner spanning tree (or
Steiner k-MST) whose length is within a factor (1 + 1

m) of the minimum.

4.2. TSP. For the TSP, we again apply dynamic programming, since the main
theorem gives us an easy way to decompose the problem recursively.

Corollary 4.2. For any fixed positive integer m, there is an O(n20m+5) al-
gorithm to compute an approximate TSP whose Euclidean length is within a factor

(1 + 2
√

2
m) of optimal. (For the L1 metric, the factor is (1 + 2

m), and the time bound
O(n10m+5).)

Proof. (We present the details for the Euclidean metric; details for the L1 metric
are similar.) Let T ∗ be a minimum-length TSP tour for P , and let L∗ denote its
length.

The structure of the proof is typical of many approximation results: (a) We
show that T ∗ can be transformed into a special type of subdivision of length at most

(1 + 2
√

2
m)L∗; (b) we give a dynamic programming algorithm to compute (exactly) a

shortest subdivision, having edge set E∗G, of this special type; and (c) we show how
to obtain a tour of P from the resulting subdivision, with the tour having length at
most that of the subdivision.

(a) Transforming T ∗. We know that T ∗ is a simple polygon with vertices P .
Following the proof of Theorem 3.1, we add segments (m-spans of favorable cuts),
called “bridges,” to the subdivision T ∗, in order to make it m-guillotine; however,
when we add an m-span segment (corresponding to cut `), we double it, creating
a second copy that lies on top of the first copy. (The reason for the doubling will
be made apparent below, in step (c).) Furthermore, we “slide” the doubled bridge,
parallel to itself and in the direction that decreases (or does not increase) the length
of the bridge, until it lies on a vertical/horizontal line through some point of P . The
result is a pinned double bridge, “pinned” by this line through a point in P . We let S
denote the resulting subdivision, and let E denote its edge set (including the doubled

segments). The length of E is at most (1+ 2
√

2
m)L∗, since, by Theorem 3.1, the bridges

that we add have total length, prior to doubling, of at most
√

2
m L∗.

(b) Dynamic programming algorithm.

Input to Subproblem (see example in Figure 4.1):

1. A rectangle R, corresponding to a minimal window, determined by (up to)
four points of P , together with some subset of the O(m) edges defining the
boundary information (below).

2. Boundary information specifying ≤ 2m crossing segments (each determined
by a pair of points in P) that cross the boundary of R, and at most one

A SIMPLE PTAS FOR GEOMETRIC TSP, ETC. 1307

odd

B1

v3

v4

v5

C1

B2

even

C2

v6

v2

W

v1

Fig. 4.1. Example subproblem for TSP dynamic program: The window W is determined by the
vertices v1, v2, and the segment v3v4 (on which its lower left corner is in contact). There are two
bridges, B1 (which is pinned at some coordinate left of the left boundary of W) and B2 (pinned at
the y-coordinate of v2). Bridge B1 is required to have an odd number of segments incident on it,
while bridge B2 is required to have an even number. The partition P specifies the interconnections
indicated by trees C1 and C2. For vertex v2, both incident edges are required to be within W ; for
vertex v1, only one incident edge must be within W . All points within W , not yet incident on some
segment crossing the boundary, are required to have degree two. Short dashed segments indicate a
feasible possible set of interconnections.

(pinned) bridge, per side of R, together with the parity (odd vs. even) of the
number of edges of E∗G ∩R that must be incident on it.

3. Connectivity constraints, given in the form of a partition, P, of the set of
crossing segments and bridges, indicating which subsets are required to be
connected within subproblem R.

Objective:
Compute a minimum-length m-guillotine subdivision, with edge set E∗G, such
that (1) the subdivision uses only segments joining points of P or doubled
vertical/horizontal bridge segments that are pinned, (2) all boundary infor-
mation is satisfied, (3) every point of P within R has degree two, and (4) all
connectivity constraints within R are satisfied.

Note that there are O(n4 · (n4m)4) = O(n16m+4) possible inputs (subproblems),
since there are O(n4) choices of R, and O(n4m) choices of crossing segments on each
of the four sides of R. (The number of possible connectivity constraints and boundary
information is constant for fixed m.)

The initial call to the recursion will ask for a solution for the case that R is the
bounding box of P , with empty boundary information, and connectivity constraints
that simply say that all points of P inside R must be connected (with each point
having degree 2).

In the base case, if R has no points of P in its interior, then the subproblem is
solved by brute force, since it has only constant size (for fixed m). Otherwise, we can

1308 JOSEPH S. B. MITCHELL

solve the subproblem recursively, optimizing over all choices associated with a cut:

1. O(n) choices of a horizontal/vertical cut.
2. O(n4m) choices of new boundary information on the cut. In particular, we

select ≤ 2m segments (each determined by a pair of points) that cross the
cut, together with the information specifying a possible bridge segment. We
require that boundary information of the new subproblems be consistent with
boundary information of the given problem.

3. O(1) (for fixedm) choices of connectivity constraints for the two new subprob-
lems determined by the cut, subject to the requirement that these constraints
be consistent with the constraints P.

Since there are O(n ·n4m) choices to make in partitioning a subproblem and there are
overall O(n16m+4) subproblems, we obtain an overall time complexity of O(n20m+5).

(c) Obtaining a tour. Given the solution, S∗G, to the dynamic program, we claim
that there is an Eulerian subgraph of E∗G (the edge set of S∗G, including doubled
bridges) that covers P , so that any Eulerian cycle defines a tour of P , and the length
of this tour is at most the length of E∗G.

Now, by the constraints imposed in the subproblems of the dynamic programming
algorithm, all vertices of S∗G have even degree, except possibly those that lie along a
bridge segment (that is an m-span of some perfect cut). But the fact that bridge
segments have their lengths doubled allows us to make all vertices along bridges have
even degree as well, by keeping an appropriate subset (selection of subsegments) of
the second copy of a bridge: Consider the vertices along a single copy of the bridge,
and use subsegments from the second copy of the bridge to link, consecutively, those
vertices along the bridge that have odd degree. There will necessarily be an even
number of odd-degree vertices along a bridge, since we require that a bridge segment
be incident to an even number of other segments.

Thus, by deleting some portions of the second copy of bridge segments, we obtain
a subdivision covering P all of whose vertices have even degree. Then, an Eulerian
cycle on the edges of this subdivision is a tour of P , whose length is at most

(1 + 2
√

2
m)L∗.

4.3. k-MST. Suppose now that we are given an integer k ≤ n and asked to find
a minimum spanning tree on some subset of k of the n points P , without using Steiner
points. Since we are not allowed to introduce Steiner points, e.g., where segments are
incident on bridges, we use the same bridge-doubling trick as we did in writing the
dynamic program for the TSP. This ensures that the only odd-degree vertices that we
end up with in our optimized subdivision are those at original points of P , thereby
allowing us to replace Eulerian paths, linking original sites of P , with shortcut paths
that bend only at the sites P . (Naturally, we drop the requirement in the dynamic
program that the points in P have degree two, and we add the parameter k to the
specification of a subproblem.)

5. Conclusion. We suspect that there are many other potential applications and
improvements of the results reported here. We do not yet know a characterization of
the general class of problems for which our method leads to a PTAS.

While we have concentrated on L1 and Euclidean metrics, our results generalize to
other metrics on points in the plane. We are currently examining possible extensions
to higher dimensions.

Finally, we mention some recent results that have been discovered since the time
that this paper was originally submitted. Arora [2] has recently obtained a randomized

A SIMPLE PTAS FOR GEOMETRIC TSP, ETC. 1309

algorithm with expected running time that is nearly linear in n: O(n logO(1/ε) n).
His new results also allow the d-dimensional problem to be solved in expected time

O(n(log n)(O(dε))d−1

).
Further, in a follow-up to this paper, Mitchell [10] has shown how a variant of

m-guillotine subdivisions (termed “grid-rounded m-guillotine subdivisions”) yields a
(deterministic) PTAS with worst-case time bound nO(1), for any fixed ε > 0, for the
same set of (two-dimensional) problems we have studied in this paper.

Acknowledgments. I thank Esther Arkin, Rafi Hassin, Samir Khuller, Günter
Rote, and the referees for several useful comments and suggestions that improved the
presentation of the paper.

REFERENCES

[1] S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric
problems, in Proc. 37th Ann. IEEE Sympos. Found. Comput. Sci., Burlington, VT, IEEE
Comput. Soc. Press, Los Alamitos, CA, 1996, pp. 2–12.

[2] S. Arora, Nearly linear time approximation schemes for Euclidean TSP and other geometric
problems, in Proc. 38th Ann. IEEE Sympos. Found. Comput. Sci., Miami Beach, FL, IEEE
Comput. Soc. Press, Los Alamitos, CA, 1997, pp. 554–563.

[3] A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation for the k-MST
problem in the plane, in Proc. 27th Ann. ACM Sympos. Theory Comput., Las Vegas, NV,
ACM Press, New York, 1995, pp. 294–302.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[5] D. Hochbaum, editor, Approximation Problems for NP-Complete Problems, PWS Publica-
tions, Boston, MA, 1997.

[6] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, New York, 1976.

[7] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., The Traveling
Salesman Problem, Wiley, New York, 1985.

[8] C. Mata and J. S. B. Mitchell, Approximation algorithms for geometric tour and network
design problems, in Proc. 11th Ann. ACM Sympos. Comput. Geom., Vancouver, Canada,
ACM Press, New York, 1995, pp. 360–369.

[9] J. S. B. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple new
method for the geometric k-MST problem, in Proc. 7th ACM-SIAM Sympos. Discrete
Algorithms, SIAM, Philadelphia, 1996, pp. 402–408.

[10] J. S. B. Mitchell, Approximation algorithms for geometric optimization problems, in Proc.
9th Canadian Conference Comput. Geom., Kingston, Canada, 1997, pp. 229–232.

[11] J. S. B. Mitchell, A. Blum, P. Chalasani, and S. Vempala, A constant-factor approx-
imation for the geometric k-MST problem in the plane, SIAM J. Comput., 28 (1999),
pp. 771–781.

[12] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-
plexity, Prentice Hall, Englewood Cliffs, NJ, 1982.

[13] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, 1985.

FINE SEPARATION OF AVERAGE-TIME COMPLEXITY CLASSES∗

JIN-YI CAI† AND ALAN L. SELMAN†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1310–1325

Abstract. We extend Levin’s definition of average polynomial time to arbitrary time-bounds in
accordance with the following general principles: (1) It essentially agrees with Levin’s notion when
applied to polynomial time-bounds. (2) If a language L belongs to DTIME(T (n)) for some time-
bound T (n), then every distributional problem (L, µ) is T on the µ-average. (3) If L does not belong
to DTIME(T (n)) almost everywhere, then no distributional problem (L, µ) is T on the µ-average.

We present hierarchy theorems for average-case complexity, for arbitrary time-bounds, that are
as tight as the well-known Hartmanis–Stearns hierarchy theorem for deterministic complexity. As a
consequence, for every time-bound T (n), there are distributional problems (L, µ) that can be solved
using only a slight increase in time but that cannot be solved on the µ-average in time T (n).

Key words. computational complexity, average-time complexity classes, hierarchy, Average-P,
logarithmico-exponential functions

AMS subject classifications. 68Q10, 68Q15

PII. S0097539796311715

1. Introduction. One of the central issues for any complexity-theoretic mea-
sure is the question of fine hierarchies. Here we consider this issue for average-case
complexity. The average complexity of a problem is, in many cases, a more significant
measure than its worst-case complexity. This has motivated a rich area in algorithm
research, but Levin [14] was the first to advocate the general study of average-case
complexity. An average-case complexity class consists of pairs called distributional
problems. Each pair consists of a decision problem and a probability distribution on
problem instances. Most papers to date have focused their attention on polynomial
time and on the concept of average polynomial time. The primary motivation has
concerned the question of whether DistNP ⊆ Average-P, where DistNP and Average-
P are the distributional analogues of NP and P, respectively. Many beautiful results
have been obtained. Levin, for example, has proved the existence of complete prob-
lems in DistNP.

Ben-David et al. [4] were the first to suggest a general formulation of average-case
complexity for time-bounds other than polynomials. We will prove a fine hierarchy
theorem using their definition for time-bounds that are bounded above by some poly-
nomial. (Our proof uses properties of a class of functions defined by Hardy, called the
logarithmico-exponential functions. We present this result in section 3.) However, we
will observe that the definition of Ben-David et al. cannot distinguish time-bounds
of the form 2cn for different values of c. Thus, there fails to be a fine hierarchy for
exponential or more general time-bounds.

Then, we will use the definition of Ben-David et al. as the point of departure from
which we develop a new formulation of average-case complexity. A complexity class
AVTIME(T (n)) is to consist of all distributional problems (L, µ) such that L is solv-
able in “time T (n) on the µ-average.” This is the notion that we must make precise.
We approach our formulation with the following intuitions in mind. If a language L

∗Received by the editors November 4, 1996; accepted for publication (in revised form) October
17, 1997; published electronically March 22, 1999.

http://www.siam.org/journals/sicomp/28-4/31171.html
†Department of Computer Science, University at Buffalo, State University of New York, Buf-

falo, NY 14260 (cai@cse.buffalo.edu, selman@cse.buffalo.edu). The work of the second author was
supported in part by NSF grant CCR-9400229.

1310

AVERAGE-TIME COMPLEXITY 1311

belongs to DTIME(T (n)) for some time-bound T (n), then the distributional problem
(L, µ) should belong to the class AVTIME(T (n)). Furthermore, if L is outside of
DTIME(T (n)) almost everywhere (i.e., every Turing machine that accepts L requires
more than T (|x|) steps for all but a finite number of input words x), then it should
follow that (L, µ) does not belong to AVTIME(T (n)).

Our definition will satisfy these conditions and in addition will agree with the
definitions of Levin [14] and Ben-David et al. [4] when we apply it to polynomial
time-bounds and reasonable distributions. Readers who are familiar with Levin’s the-
ory of average polynomial time will recall that a naive, intuitive formulation suffers
from serious problems. This issue is discussed in detail by previous authors includ-
ing, notably, Gurevich [8] and Ben-David et al. [4]. Similarly, the path to a correct
formulation of average-case complexity for arbitrary time-bounds is intricate. We will
develop our new definition in section 4.

We will present a hierarchy theorem for average-case complexity, for arbitrary
time-bounds, that is as tight as the well-known Hartmanis–Stearns [11] hierarchy
theorem for deterministic complexity. As a consequence, for every time-bound T (n),
there are distributional problems (L, µ) that can be solved using only a slight increase
in time but that cannot be solved on the µ-average in time T (n).

2. Preliminaries. We assume that all languages are subsets of Σ∗ = {0, 1}∗,
and we assume that Σ∗ is ordered by standard lexicographic ordering denoted ≤.
(We will ignore the empty string ε and start with 0. The predecessor of x in this
order is denoted by x− 1.) We use ⊂ to denote proper inclusion.

2.1. Turing machine running times. Although Turing machine running times
are frequently given as functions on the natural numbers, T : N → N, we will
often need the more accurate view that a Turing machine running time is a func-
tion S : Σ∗ → N. In this case, the relation between the two interpretations is
clear. Namely, T (n) = max{S(x) | |x| = n}. For two functions T and T ′, where
T, T ′ : N → N, recall that T ′(n) = o(T (n)) if limn→∞ T ′(n)/T (n) = 0. Similarly, if
S, S′ : Σ∗ → N, then S′(x) = o(S(x)) if lim|x|→∞ S′(x)/S(x) = 0. We adhere to the
customary convention that T (n) ≥ n + 1 (S(x) ≥ |x| + 1) for any Turing machine
running time T (S, respectively).

The following proposition is one of the main theorems of Geske, Huynh, and
Seiferas [6]. (See also the paper by Geske, Huynh, and Selman [7].)

Proposition 2.1. If S(x) is fully time constructible, then there is a language
L ∈ DTIME(O(S(x))) such that for every function S′, if S′(x) logS′(x) = o(S(x)),
then every Turing machine M that accepts L requires more than S′(x) steps for all
but finitely many input strings x.

2.2. Distributional problems. A distribution function µ : {0, 1}∗ → [0, 1] is
a nondecreasing function from strings to the closed interval [0, 1] that converges to
1. The corresponding density function µ′ is defined by µ′(0) = µ(0) and µ′(x) =
µ(x) − µ(x − 1) for x 6= 0. Clearly, µ(x) =

∑
y≤x µ

′(y). For any subset of strings
S, we will denote by µ(S) =

∑
x∈S µ

′(x) the probability of the event S. Define
un = µ({x | |x| = n}). For each n, let µ′n(x) be the conditional probability of
x in {x | |x| = n}. That is, µ′n(x) = µ′(x)/un, if un > 0, and µ′n(x) = 0 for
x ∈ {x | |x| = n}, if un = 0.

A function µ from Σ∗ to [0, 1] is computable in polynomial time [13] if there is a
polynomial time-bounded transducer T such that for every string x and every positive
integer n, |µ(x) − T (x, 1n)| < 1

2n . We restrict our attention to distributions µ that

1312 JIN-YI CAI AND ALAN L. SELMAN

are computable in polynomial time. If the distribution function µ is computable in
polynomial time, then the density function µ′ is computable in polynomial time. (The
converse is false unless P = NP [8].)

Levin [14] defines a function f from Σ∗ to nonnegative reals to be linear on
µ-average if ∑

|x|≥1

µ′(x)
f(x)

|x| <∞,(2.1)

and f is polynomial on µ-average if f is bounded by a polynomial of a function that
is linear on µ-average. Thus, a function f is polynomial on µ-average if and only if
there is an integer k > 0 such that∑

|x|≥1

µ′(x)
(f(x))1/k

|x| <∞.(2.2)

Finally, Levin defines Average-P to be the class of distributional problems (L, µ),
where L is a language and µ is a polynomial time computable distribution, such that
L can be decided by some Turing machine M whose running time TM is polynomial
on µ-average.

Starting with Levin, a number of researchers have observed that the more naive
notion that for each length n the expectation of the running time TM of a Turing
machine M that accepts L is bounded above by a polynomial in n∑

|x|=n
µ′n(x)TM (x) ≤ p(n),(2.3)

is unsuitable for a number of good reasons [8, 4]. The definition that arises from
using (2.3) is not robust under functional composition of algorithms. (There are
distributional problems A and B so that A can be solved in average polynomial time
by using an oracle B, B can be solved in average (or even deterministic) polynomial
time, and A cannot be solved in average polynomial time.) Nor is the definition closed
under application of polynomials. (There are functions f that satisfy (2.3) for which
f2 does not.) As a consequence, from (2.3), one loses machine independence of the
definition of the class of average polynomial time.

Levin’s definition is just as intuitively justified as that given by (2.3). This can be
seen as follows: The worst-case time complexity for P requires for all n, and for all x
such that |x| = n, that TM (x) ≤ p(n). Therefore for the case of bounding complexity
on the average by some polynomial p(n), it appears natural to require for all n that
(2.3) holds. However, TM (x) ≤ nk is equivalent to TM (x)/nk ≤ 1, which is also
equivalent to (TM (x))1/k/n ≤ 1. Thus we might as well take the expectation now,
after this manipulation, which results in the established definition. (We will discuss
this point further in section 4.)

2.3. Hardy’s class of logarithmico-exponential functions. We will need
the notion of a class of functions L defined by Hardy [10], called the logarithmico-
exponential functions. Every function in L is a real-valued function of one variable
that is defined on all sufficiently large real numbers. The class L is defined to be the
smallest class of functions containing

(i) every constant function t(x) = c for all real c,
(ii) the identity function t(x) = x

and that are closed under the following operations:

AVERAGE-TIME COMPLEXITY 1313

(i) if t(x) and s(x) belong to L, then so does t(x)− s(x);
(ii) if t(x) belongs to L, then so does et(x);
(iii) if t(x) is eventually positive and belongs to L, then so does ln(t(x)).

The closure properties are more inclusive than perhaps they first appear. For
example, if t(x) and s(x) are in L, then so are t(x) + s(x), t(x)s(x), and t(x)/s(x).

Also, functions such as k
√
x = e

1
k ln x and ec

√
ln x/ ln ln x belong to L.

Hardy [10] proved the following facts regarding the logarithmico-exponential func-
tions. He showed that every function in L is either eventually positive or eventually
negative or identically zero. Note that it is easily shown by induction that every
function t(x) in L is differentiable and its derivative t′(x) is also in L (thus infinitely
differentiable). Thus, it follows that every function in L is eventually monotonic. The
main theorem of Hardy regarding the logarithmico-exponential functions is that they
form an asymptotic hierarchy: for any t(x) and s(x) in L, either t(x) = o(s(x)) or
s(x) = o(t(x)), or there exists a nonzero constant c, such that limx→∞ t(x)/s(x) = c.

Let f (`) denote the function that iterates ` applications of f . That is, f (1)(x) =
f(x) and f (`+1)(x) = f(f (`)(x)) for ` ≥ 1. Hardy proved [9] that for every function

t ∈ L, if limx→∞ t(x) =∞, then there is some constant ` so that log(`)(x) = o(t(x)),
as well as t(x) = o(exp(`)(x)). Informally, a logarithmico-exponential function that
goes to infinity cannot increase more slowly than every iterated logarithm function
nor faster than every iterated exponential function.

Hardy’s purpose in introducing the class of logarithmico-exponential functions
was to provide what he called “a scale of infinities.” We propose to use only logarithmico-
exponential functions as time-bounds in defining average-case complexity classes. In-
deed, we propose that for most purposes it suffices to use only logarithmico-exponential
functions as time-bounds for complexity classes in general. (To be pedantic for a mo-
ment, we believe that it suffices to consider as time-bounds for complexity classes only
functions f : N → N that result from first restricting some logarithmico-exponential
function to the domain of natural numbers and then further restricting the range to N
by taking the floor of the result. For notational ease, we will call these logarithmico-
exponential functions as well.) These functions are at the same time sufficiently
well behaved and sufficiently expressive for the purpose of bounding time complex-
ity of most meaningful classes of computational problems. While functions such as
x(1+sinx) or ex

2 sin x that gyrate infinitely often as x→∞ are excluded, as are func-
tions that are, say, bounded on even length strings but tend to infinity on odd length
strings, it is reasonable to assume that bounding the running time, average case or
otherwise, of a class of problems by such a function is hardly necessary or natural.
This is in contrast to the case of bounding the complexity of an individual problem,
say, some number theoretic computation where the problem is interesting only for
certain lengths. The elegance that results from the exclusion of these pathological
cases compensates well for the price we pay for its restriction. However, by restricting
to the logarithmico-exponential functions we do lose some very slow growing functions
such as log∗ x or the inverse of Ackermann’s function. We leave it as an interesting
open problem to extend the class of Hardy’s logarithmico-exponential functions to
include functions such as log∗ x and still retain all its desirable properties.

Our proof of the first hierarchy theorem in the next section depends crucially on
the properties of Hardy’s logarithmico-exponential functions.

We will need the following lemma.
Lemma 2.2. If t(n) belongs to L, limn→∞ t(n) = +∞, and t(n) is polynomially

bounded, then there exist a constant c and an integer k such that, for all n ≥ c and

1314 JIN-YI CAI AND ALAN L. SELMAN

a > 1,

t(an) < akt(n).

Proof. Let k be an integer such that limn→∞ t(n)/nk = 0. Since t(n) is polynomi-
ally bounded, such an integer exists. Let q(x) = t(x)/xk. Then q(x) belongs to L and
limn→∞ q(n) = 0. Since q(n) is eventually positive and approaches 0, it is eventually
monotonic decreasing. This is because q(x) is not identically 0, it cannot possibly be
monotonic increasing, and these are the only alternatives for functions in L. Thus,
for some constant c, if x ≥ c, then q(x) is monotonic decreasing. It follows that

t(an)

akt(n)
=
q(an)(an)k

akq(n)nk

=
q(an)

q(n)

< 1

for all n ≥ c and for all a > 1. (Note that c does not depend on a.) This implies that
t(an) < akt(n).

3. The first hierarchy theorem. Ben-David et al. [4] propose the following
definition.

Definition 3.1 (Ben-David et al.). For a time complexity function T : N→ N,
a function f is T on µ-average if f is bounded by T of a function that is linear on
µ-average; i.e., f(x) ≤ T (`(x)), where ` is linear on µ-average. AverDTime(T (n))
denotes the class of distributional problems (L, µ), where L is a language and µ is a
polynomial time computable distribution, such that L can be decided by some Turing
machine M whose running time TM is T on µ-average.

If T is monotonically increasing and thus invertible, then f is T on µ-average if
and only if ∑

|x|≥1

µ′(x)
T−1(f(x))

|x| <∞.(3.1)

This definition is a direct adaptation of Levin’s notion of average polynomial
time, where the time-bound T is polynomially bounded. Indeed, Average-P =⋃
k AverDTime(nk).

3.1. Inadequacy of Definition 3.1. Definition 3.1 for time-bounds T beyond
polynomial time has serious difficulties, which we will now explain.

It follows from the result of Geske, Huynh, and Seiferas [6], our Proposition 2.1,
that there exists a language L ∈ DTIME(22n) that cannot be recognized in time
3n almost everywhere—every Turing machine that accepts L requires more than 3n

steps on all but some finite number of inputs. Yet, it follows easily from the definition
that every distributional problem that belongs to AverDTime(22n) also belongs to
AverDTime(2n). This is inconceivable. How can a language L require more than 3n

time almost everywhere but be 2n on the µ-average for every distribution µ?
To see that AverDTime(22n) ⊆ AverDTime(2n), let M accept L in time TM ,

where TM is 22n = 4n on µ-average. Then, by definition,∑
|x|≥1

µ′(x)
log4(TM (x))

|x| <∞.

AVERAGE-TIME COMPLEXITY 1315

Thus,

2
∑
|x|≥1

µ′(x)
log4(TM (x))

|x| =
∑
|x|≥1

µ′(x)
log2(TM (x))

|x| <∞

also; thus according to Definition 3.1, TM is also 2n on µ-average.
The same argument implies that AverDTime(2n) = AverDTime(cn) for all con-

stants c > 0. This is another weakness of the definition. Usually a time complexity
class should be defined in such a way that it is sufficiently fine to distinguish vary-
ing inherent time complexities of problems. In other words, one likes to have a fine
time hierarchy theorem. The fact that AverDTime(2n) = AverDTime(4n) prevents
us from having such a fine theorem.

Previous researchers have raised the question of hierarchies for average time but
in all cases have been implicitly stymied by the inadequacy that we illuminate here.
For example, Li and Vitányi [15] and Ben-David et al. [4] obtain results demonstrating
languages for which average-case and worst-case complexity are the same. However,
both use distributions that cannot be computed in polynomial time, and the latter
uses a nonstandard notion of worst-case complexity. Reischuk and Schindelhauer [20]
introduce a concept of average-time complexity according to “rankable” distributions
that possess a tight hierarchy. Their concept is different than Levin’s notion. Belanger
and Wang [3] contains a discussion. In addition, Belanger and Wang [3] obtain a weak
hierarchy theorem for the notion of average time given by Definition 3.1.

We believe that it is interesting and useful to have a meaningful, robust defini-
tion of average exponential time. Our notion of average-time complexity is supported
by the hierarchy theorem that we will develop in section 4, an important test of its
meaningfulness and robustness. With regard to complexity theory studies, average-
case exponential time is interesting for the same reasons as worst-case exponential
time. For example, in general one would like to understand why certain problems
are complete and to grasp the inherent properties that make a set complete. Natural
complete problems are not as common for exponential time as they are for smaller
classes such as NP. However, exponential time permits techniques and constructions
that are not possible with smaller time-bounds. For this reason, much more is known
about complete problems for exponential time than is currently known about NP com-
plete problems [12]. We can anticipate the same situation for average-case complexity.
With regard to applications of average-case complexity theory, here too, average-case
exponential time is worth exploring. For example, any distributional problem that is
complete for average exponential time is provably intractable even in the average case.
Therefore, such a problem might be useful as a basis for cryptographic protocols.

3.2. First hierarchy theorem. We can prove a hierarchy theorem when we
restrict our attention to functions that are bounded above by some polynomial. More
precisely, we shall require that the time complexity bounds T and T ′ belong to Hardy’s
class of logarithmico-exponential functions L and that they are bounded above by a
polynomial. Under these conditions, we show that if T ′(n) log T ′(n) = o(T (n)), then
there is a distributional problem (L, µ) in AverDTime(T (n)) that does not belong to
AverDTime(T ′(n)).

Theorem 3.2. Let T, T ′ : N → N be logarithmico-exponential functions and
assume that T is fully time constructible. Assume that T ′(n) log T ′(n) = o(T (n)) and
that T ′(n) is bounded above by a polynomial. Then

AverDTime(T ′(n)) ⊂ AverDTime(T (n)).

1316 JIN-YI CAI AND ALAN L. SELMAN

The general idea of the proof is to use Proposition 2.1 to obtain a language L
that is in DTIME(T (n)) but almost everywhere not in DTIME(T ′(n)). Then we use
properties of the logarithmico-exponential functions to show that (L, µ) belongs to
AverDTime(T (n)) but does not belong to AverDTime(T ′(n)).

We need the following lemmas.
Lemma 3.3. Let T be a logarithmico-exponential and fully time constructible

function. If L ∈ DTIME(O(T (n))), then for every polynomial time computable dis-
tribution µ, (L, µ) ∈ AverDTime(T (n)).

Proof. By the hypotheses, T (n) ≥ n + 1 for all n, and T is monotonically in-
creasing. Since T is logarithmico-exponential, either (i) n = o(T (n)) or (ii) for some
constant c ≥ 1, T (n) ≤ cn for all sufficiently large n. If case (i) holds, then the
well-known linear-speedup theorem applies [11]. In this case L ∈ DTIME(T (n)) and
the result follows immediately. If case (ii) holds, then L ∈ DTIME(cn). Let M be
a Turing machine that witnesses L ∈ DTIME(cn), and let TM be the running time
of M . By definition, TM is linear on µ-average. Thus, by Definition 3.1 and the fact
that T (n) ≥ n+ 1, TM is T on µ-average. This completes the proof.

Lemma 3.4. If a, b > 0 and 1/h = 1/a+ 1/b, then min(a, b)/2 ≤ h ≤ min(a, b).
Proof.

h =
1

1
a + 1

b

=
ab

a+ b
= min(a, b) · max(a, b)

a+ b
≤ min(a, b).

Also,

1

h
≤ 2

min(a, b)
,

and therefore h ≥ min(a, b)/2.
As a corollary, if a(n) and b(n) are functions such that both a(n), b(n) → +∞,

then h(n)→ +∞ also, where

h(n) =
a(n)b(n)

a(n) + b(n)
,

but no faster than either a(n) and b(n). Furthermore, if both a(n), b(n) ∈ L, the class
of logarithmico-exponential functions, then so is h(n).

Now we prove our theorem.
Proof. Since T ′(n) = o(T (n)), it follows that

AverDTime(T ′(n)) ⊆ AverDTime(T (n)).

We need to show that the classes are distinct. Without loss of generality, we assume
that limn→∞ T ′(n) = +∞. Otherwise, the theorem is trivial.

Define sequences αn and βn by

αn =
T (n)

T ′(n) log T ′(n)

and

βn =
log T ′(n)

log log T ′(n)
.

Then, both

αn and βn → +∞.

AVERAGE-TIME COMPLEXITY 1317

Take Bn =
√
αnβn/(αn + βn). By Lemma 3.4, Bn → +∞, and yet Bn = o(αn)

and Bn = o(βn).
Define S(n) by S(n) = Bn · T ′(n). We claim that

lim
n→∞

S(n) logS(n)

T (n)
= 0.

In fact,

S(n) logS(n)

T (n)
=
Bn · T ′(n) · (logBn + log T ′(n))

T (n)

= Bn logBn
T ′(n)

T (n)
+Bn

1

αn

= Bn
1

αn
+
Bn logBn
log T ′(n)

· 1

αn
.

We have Bn/αn → 0. Also, Bn/βn → 0, which implies that logBn ≤ log βn ≤
log log T ′(n), so for the second term, we have

Bn logBn
log T ′(n)

= o

(
βn · log log T ′(n)

log T ′(n)

)
= o(1).

Thus, Proposition 2.1 applies: there is a language L ∈ DTIME(O(T (n))) such
that for every Turing machine M that accepts L there is a constant n0 such that
the running time TM requires more than S(|x|) steps for all inputs of length ≥ n0.
That is, TM (x) > S(|x|) for all x such that |x| ≥ n0. By Lemma 3.3, (L, µ) ∈
AverDTime(T (n)) for every polynomial time computable distribution µ. Now our
task is to define a polynomial time computable distribution µ such that (L, µ) 6∈
AverDTime(T ′(n)).

By our assumption that T ′ is bounded by a polynomial and belongs to L, by
Lemma 2.2, there is an integer k and a constant c such that T ′(an) < akT ′(n), for

all a > 1 and all n ≥ c. In particular T ′(B1/k
n · n) < Bn · T ′(n). Since T ′ ∈ L and

limn→∞ T ′(n) = +∞, it follows that T ′ is monotonically increasing. Hence,

T ′−1(Bn · T ′(n)) ≥ B1/k
n · n.(3.2)

Now, let bn = B
1/k
n . Since bn ∈ L and bn → +∞, there is some constant ` so that

log(`)(n) = o(bn). For this value `, there is some value n` so that for all n ≥ n`, the
expression

1

n log n log log n · · · (log(`) n)2

is defined. Define

an =
1

n log n log log n · · · (log(`) n)2

for all n ≥ n`. Define an = 1 otherwise. Then, the series
∑∞
n=1 an converges, but the

series
∑∞
n=1 anbn diverges.

Let µ be the distribution function whose density function is defined by

µ′(x) =
1

s
· a|x| · 1

2|x|
,

where
∑∞
n=1 an = s.

1318 JIN-YI CAI AND ALAN L. SELMAN

Clearly, µ is polynomial time computable.
Let M be a Turing machine that accepts L. For all x such that |x| ≥ n0, TM (x) >

S(|x|) = B|x|T ′(|x|). Hence, by (3.2),

T ′−1(TM (x)) ≥ B1/k
n · |x| = b|x||x|.

Thus, ∑
|x|≥max(n0,c)

µ′(x) · T
′−1(TM (x))

|x| ≥
∑

n≥max(n0,c)

anbn
s

=∞,

so (L, µ) 6∈ AverDTime(T ′(n)).
Corollary 3.5. For c ≥ 1 and ε > 0, AverDTime(nc) ⊂ AverDTime(nc+ε).

4. The new definition and second hierarchy theorem. We have shown
that there is a problem with the existing definition of average-case complexity for
time-bounds beyond those that are bounded by a polynomial. Now we will develop a
new definition of “T on the µ-average,” based on the following guiding principles.

1. Our definition should be essentially the same as Levin’s notion when we apply
it to polynomial time-bounds.

2. If L belongs to DTIME(T (n)) for some time-bound T , then any distributional
problem (L, µ) is T on the µ-average.

3. If L is not in DTIME(T (n)) almost everywhere, then, for any distibutional
problem (L, µ), L is not T on the µ-average.

To begin, let us revisit the intuitive justification that we discussed in section 2.2.
Let T ∈ L be some fully time constructible function, let TM be some Turing machine
running time, and let µ be some polynomial time computable distribution, for which
we want to say that TM is T on the µ-average. As earlier, we might want to say that
TM (x) ≤ T (|x|) for a µ-average x. Equivalently, we want T−1(TM (x)) ≤ |x|, or

T−1(TM (x))

|x| ≤ 1,

for a µ-average x. Thus, let us require that the expectation be bounded above by 1:

E
[
T−1(TM (x))

|x|
]

=
∑
|x|≥1

µ′(x) · T
−1(TM (x))

|x| ≤ 1.(4.1)

At this point Levin and subsequent researchers, including Ben-David et al., took (4.1)
to say that the expectation E over all x is finite. But, the requirement of (4.1) adds
nothing new. One can always modify M so that, for some fixed but arbitrarily long
initial segment of inputs, M takes little time. However, the tail of a convergent sum
can be made arbitrarily small, so the total sum with respect to the new machine is
bounded by 1.

Since we are primarily concerned with the asympotic behavior of algorithms on
average inputs, we want to avoid the possibility that the sum in the expectation is
dominated by an initial segment. For this reason, it is perfectly reasonable, with

identical justification, to require that for all n ≥ 1 the expectation of T−1(TM (x))
|x| , for

all x of length |x| ≥ n, be bounded above by 1:

E|x|≥n
[
T−1(TM (x))

|x|
]

=
∑
|x|≥n

µ′≥n(x) · T
−1(TM (x))

|x| ≤ 1,(4.2)

AVERAGE-TIME COMPLEXITY 1319

where µ′≥n is the conditional probability distribution on {z | |z| ≥ n}. That is, let
Wn = µ({z | |z| ≥ n}); for x of length |x| ≥ n,

µ′≥n(x) = µ′(x)/Wn if Wn > 0 and µ′≥n(x) = 0 if Wn = 0.

Thus (4.2) is equivalent to requiring that, for all n ≥ 1,∑
|x|≥n

µ′(x) · T
−1(TM (x))

|x| ≤Wn.(4.3)

This is the condition that we will take for our definition.
Comparing this with the simpler requirement that∑

|x|≥1

µ′(x) · T
−1(TM (x))

|x| <∞,(4.4)

we require not only that the infinite sum converges but that it converges at a certain
rate. Note that Wn → 0 as n→∞.

A persistent criticism of the theory of average-time complexity is that for any
reasonable definition of “default” distribution on the set of all positive integers, such
as un = 1/n2 or 1/n3, inevitably a disproportionate weight of the total distribution is
on the first few (or few dozen?) integers. For instance, in (4.4), the first terms might be
somewhat dominating, thus masking the true asymptotic behavior. The requirement
that we impose in (4.3), which stipulates that each sum is bounded above, explicitly
addresses this criticism. As it turns out, we will demonstrate in Theorem 4.2 that our
definition agrees with Levin’s definition for polynomial time-bounds and reasonable
distributions. Thus, this criticism is indeed unfounded for those cases. However, this
phenomenon of masking the asymptotic behavior by the concentration of measures
on the initial few strings is magnified at superpolynomial time-bounds; in this case,
the criticism is valid and our formulation corrects the problem.

Thus, we arrive at our definition.
Definition 4.1. For any time constructible function T (n) ∈ L, a function f is

T on the µ-average1 if, for all n ≥ 1,∑
|x|≥n

µ′(x) · T
−1(f(x))

|x| ≤Wn.(4.5)

AVTIME(T (n)) denotes the class of distributional problems (L, µ), where L is a lan-
guage and µ is a polynomial time distribution, such that L can be decided by some
Turing machine M whose running time TM is T on the µ-average.

To summarize, we departed from the previous definition by imposing two new
criteria. We insist (i) that the expectation given in (4.1) is bounded by 1, rather than
asking only that it be finite, and we insist (ii) that each conditional expectation given
in (4.2) is bounded (indeed, bounded by 1). If we were to have added either one of
these requirements without the other, the result would have been trivially equivalent
to the previous definition. We have already shown that requirement (i) alone adds
nothing new. To see that requiring each conditional expectation to converge adds
nothing new, we simply note that every tail series of a convergent series converges
as well. Thus, it is the combination of the two modifications, which amounts to
restricting the rate of convergence, that adds something new.

1We are redefining this expression, and henceforth all references to this expression will refer to
the meaning given herein.

1320 JIN-YI CAI AND ALAN L. SELMAN

4.1. Equivalence theorem. Before proceeding to establish that Definition 4.1
satisfies our guiding principles, we introduce the following Condition W. Condition
W will limit our consideration to distributions that do not put too much weight on
the first few strings. (For example, we don’t consider un = 2−n to be an acceptable
default distribution on the natural numbers.)

Condition W. There exists s > 0 such that Wn = Ω
(

1
ns

)
.

All the usual distributions that have been used in the past in this area satisfy
Condition W. These include various uniform distributions on graph properties, as well
as distributions used by Levin [14], Gurevich [8], and others to prove their average-
case hard problems. We also note that all the previous work on average-case NP-hard
problems is not altered by our reformulation of average-time complexity.

Now we prove that average polynomial time under Levin’s definition is unchanged
by our new definition, for distributional problems that satisfy Condition W.

Theorem 4.2. Let µ be a polynomial time computable distribution that satis-
fies Condition W. Then (L, µ) belongs to Average-P if and only if (L, µ) belongs to⋃
k AVTIME(nk).

Proof. Since our definition requires at least as much as the old definition, the
inclusion in one direction is trivial. So, let µ be a polynomial time computable distri-
bution that satisfies Condition W, let M accept L with running time TM , and let k
be a positive integer such that∑

|x|≥1

µ′(x)
(TM (x))1/k

|x| = C <∞.

Define p(n) = (Cn)k, and observe that∑
|x|≥1

µ′(x)
p−1(TM (x))

|x| ≤ 1.

Since µ satisfies Condition W, there exists s > 0 such that Wn = Ω
(

1
ns

)
. Define

the polynomial q by q(n) = p(nc) for c > s+ 2. We will show that∑
|x|≥n

µ′(x)
q−1(TM (x))

|x| ≤Wn

for all but a finite number of n. Observe that this suffices to complete our proof.
Namely, let n0 be a fixed positive integer; if (4.5) holds for all n ≥ n0, then as we
explained above, we can modify M to contain a lookup table in order to quickly decide
all strings of length smaller than n0. By doing so, we make the first terms of the sum
sufficiently small so that the nth sum is bounded by Wn for all n ≥ 1.

Now our goal is to estimate the sum∑
k≥n

∑
|x|=k

µ′(x) · q
−1(TM (x))

k

for all n ≥ 1.
Note that q−1(y) = (p−1(y))1/c. Recall that uk = µ({z | |z| = k}). By convexity,

for all k such that uk > 0,

∑
|x|=k

µ′(x)

uk
· q
−1(TM (x))

k
≤
∑
|x|=k

µ′(x)

uk
· p
−1(TM (x))

kc

1/c

.

AVERAGE-TIME COMPLEXITY 1321

Thus, ∑
k≥n

∑
|x|=k

µ′(x) · q
−1(TM (x))

k
=
∑
k≥n
uk>0

∑
|x|=k

µ′(x) · q
−1(TM (x))

k

=
∑
k≥n
uk>0

uk
∑
|x|=k

µ′(x)

uk
· q
−1(TM (x))

k

≤
∑
k≥n
uk>0

uk

∑
|x|=k

µ′(x)

uk
· p
−1(TM (x))

kc

1/c

.

Since for all n ≥ 1, ∑
|x|=n

µ′(x) · p
−1(TM (x))

n
≤ 1,

we have ∑
k≥n

∑
|x|=k

µ′(x) · q
−1(TM (x))

k
≤
∑
k≥n
uk>0

uk

[
1

uk
· 1

kc
· k
]1/c

=
∑
k≥n

(uk
k

)1−1/c

.

By Hölder’s inequality,

∑
k≥n

(uk
k

)1−1/c

≤
(∑
k≥n

uk

)1/p(∑
k≥n

1

kc−1

)1/q

,

where 1/p = 1− 1/c and q = c. Hence,

∑
k≥n

∑
|x|=k

µ′(x) · q
−1(TM (x))

k
≤W 1−1/c

n ·
(∑
k≥n

1

kc−1

)1/c

.

Finally, we have∑
k≥n

∑
|x|=k

µ′(x) · q
−1(TM (x))

k
≤W 1−1/c

n ·
(∫ ∞

n−1

1

xc−1
dx

)1/c

= Wn ·
(

1

(c− 2)nc−2Wn

)1/c

.

As we have taken c > s + 2, and Wn = Ω
(

1
ns

)
, the last term is at most Wn for

almost all n.

4.2. Second hierarchy theorem. Now we verify that our definition satisfies
the remaining guiding principles, and we prove a tight hierarchy theorem for AVTIME
classes.

Theorem 4.3. Let T ∈ L be fully time constructible. If L ∈ DTIME(T (n)), then
for every polynomial time computable distribution µ, (L, µ) ∈ AVTIME(T (n)).

1322 JIN-YI CAI AND ALAN L. SELMAN

The proof is easy: for any Turing machine that accepts L in time T , the ratio
T−1(TM (x))

|x| is ≤ 1 for every input x.

Theorem 4.4. Let T ∈ L be fully time constructible and suppose that L 6∈
DTIME(T (n)) almost everywhere. Then, for every polynomial time computable dis-
tribution µ, (L, µ) 6∈ AVTIME(T (n)).

Again, the proof is easy. For any Turing machine that accepts L, choose nM so

that TM (x) > T (|x|) for all x such that |x| ≥ nM . Observe that the ratio T−1(TM (x))
|x| is

> 1 for every input x such that |x| ≥ nM . The proof follows immediately by observing
that ∑

|x|≥nM
µ′(x) · T

−1(TM (x))

|x| > WnM .(4.6)

The fact that these theorems follow immediately attests to the naturalness of
Definition 4.1.

Theorem 4.5. Let T, T ′ : N → N be logarithmico-exponential functions and
assume that T and T ′ are fully time constructible. Assume T ′(n) log T ′(n) = o(T (n)).
Then

AVTIME(T ′(n)) ⊂ AVTIME(T (n)).

Further, there is a language L such that for every polynomial time computable distri-
bution µ, (L, µ) ∈ AVTIME(T (n)), but (L, µ) 6∈ AVTIME(T ′(n)).

When we use Proposition 2.1, the proof follows immediately from Theorems 4.3
and 4.4. This result is as tight as the well-known Hartmanis–Stearns hierarchy theo-
rem [11] for deterministic time.

Corollary 4.6. For all c ≥ 1 and for all ε > 0, AVTIME(nc) ⊂ AVTIME(nc+ε).
For all c > 1 and for all ε > 0, AVTIME(cn) ⊂ AVTIME((c+ ε)n).

In analogy with traditional complexity theory, consider the following average-case
complexity classes:

(i) AVP =
⋃
k≥1 AVTIME(nk).

(ii) AVE =
⋃
k≥1 AVTIME(2cn).

(iii) AVEXP =
⋃
k≥1 AVTIME(2n

k

).
Corollary 4.7. AVP ⊂ AVE and AVE ⊂ AVEXP.
A language L is bi-immune to a complexity class C if L is infinite, no infinite

subset of L belongs to C, and no infinite subset of L belongs to C. Balcázar and
Schöning [1] proved that for every time constructible function T , L does not belong
to DTIME(T (n)) almost everywhere if and only if L is bi-immune to DTIME(T (n)).

Recall that DistNP is the class of distributional problems (L, µ) such that L ∈
NP and µ is computable in polynomial time [14, 4]. The important open question
that motivates studies of average-time complexity classes is the question of whether
DistNP ⊆ AVP.

Corollary 4.8. If NP contains a language L that is bi-immune to P, then
for every polynomial time computable distribution µ, the distributional problem (L, µ)
belongs to DistNP but does not belong to AVP.

The proof follows from Theorem 4.4. A weaker conclusion is known to follow
from a weaker hypothesis. To wit, Lutz and Mayordomo [16] proved that if NP
contains a language L that is bi-immune to P, then E 6= NE. Ben David et al. [4]
proved that if E 6= NE, then there is a tally language L in NP − P such that the
distributional problem (L, ν) belongs to DistNP but does not belong to Average-P,
where ν′(1n) = n−2.

AVERAGE-TIME COMPLEXITY 1323

Furthermore, Mayordomo [17] proved that if NP does not have p-measure 0, then
NP contains a language that is bi-immune to P. Thus, the following corollary follows
immediately.

Corollary 4.9. If NP does not have p-measure 0, then there is a language
L such that, for every polynomial time computable distribution µ, the distributional
problem (L, µ) belongs to DistNP but does not belong to AVP.

Schuler and Yamakami [21] have proved independently that if L is bi-immune to
P, then there is a polynomial time computable distribution µ such that (L, µ) does
not belong to Average-P. They observed from this result that if DistNP ⊆ Average-P,
then NP has p-measure 0. By Theorem 4.2, (L, µ) 6∈ Average-P for every bi-immune
set L and every polynomial time computable distribution µ that satisfies Condition
W. Thus, if NP does not have p-measure 0, then there is a language L such that
for every polynomial time computable distribution µ that satisfies Condition W , the
distributional problem (L, µ) belongs to DistNP but does not belong to Average-P.

4.3. Pathological distributions. We arrived at our current definition of average-
case complexity for arbitrary time-bounds after a careful analysis of the intuitive
justifications and after considering the demands of a well-formed complexity theory.
The new definition is supported by the equivalence theorem, Theorem 4.2, and the
second hierarchy theorem, Theorem 4.5.

Here we briefly address the exceptional cases where the distribution does not
satisfy Condition W, so that our equivalence theorem, Theorem 4.2, does not apply.
We show in this case that our notion of polynomial on the µ-average indeed differs
from that of Levin. Thus, the restriction to distributions that satisfy Condition W in
Theorem 4.2 is essential.

To illustrate, let’s consider a (pathological) distribution µ where un = 1/2n;
i.e., all strings of length n have total measure 1/2n. It follows from the theorem of
Geske, Huynh, and Seiferas [6], our Proposition 2.1, that there is a language L that
is decidable in time 2n/n but that almost everywhere requires more than, say, 2n/n3

steps. Then according to Levin’s definition, the distributional problem (L, µ) is in
Average-P; indeed it is linear on the µ-average according to the definition in [4], since∑

n≥1

1

2n
2n

n2
<∞.

However, according to our definition, by Theorem 4.4 the problem (L, µ) is not in
time 2n/n3 on the µ-average. Thus, the two definitions differ.

We believe that distributions, such as this µ, that fail to satisfy Condition W are
pathological. Such distributions put too much weight on short strings, so that the
problem we are really dealing with becomes essentially a finitary problem, not one
with an asymptotic behavior. However, if we must consider such distributions in the
context of average-case analysis, we still stand by our guiding principle that a language
that requires more than polynomial time almost everywhere is not polynomial time
on the average for any distribution.

Earlier we informally wrote of “default” distributions such as un = 1/n2 or 1/n3.
(More formally un = 1/(ζ(2)n2) or un = 1/(ζ(3)n3), where ζ(s) =

∑∞
n=1 1/ns is the

Riemann zeta function.) Indeed, we had in mind distributions that satisfy Condition
W. It is not merely a matter of convenience that these are the common default distri-
butions. As we show by the example here, Levin’s notion of average polynomial time
yields counterintuitive results when applied to pathological distributions; i.e., mere
convergence of

∑∞
n=1 un <∞ is not sufficient.

1324 JIN-YI CAI AND ALAN L. SELMAN

4.3.1. Worst-case average case. In a discussion of a preliminary draft of this
paper, Rackoff [19] suggested the following more stringent requirement as a possible
definition for a distributional problem (L, µ) to be T on the µ-average: There exists a
Turing machine M that accepts L such that, for all n, the running time TM satisfies

∑
|x|=n

µ′(x) · T
−1(TM (x))

|x| ≤ un.(4.7)

Clearly, if TM satisfies (4.7) it also satisfies our definition in (4.3).
For the notion of polynomial time on average, Gurevich [8] has shown that the

definition given by (4.7) is equivalent to Levin’s, and therefore to ours, for distributions
that satisfy the additional condition (call it condition W∗) that there exists s > 0 such
that un = Ω

(
1
ns

)
.

It is not hard to show that the class of distributional problems that are polynomial
on the µ-average is not the same as the class that (4.7) defines for distributions that
do not satisfy condition W∗.

The notion expressed in (4.7) is an interesting one. For example, since it refines
ours, one can prove a fine hierarchy theorem. Also, it reflects the intuitive notion
of average-case problems when it is important to bound the average hardness of a
problem for every length n. This is especially relevant in areas such as cryptography
and number theoretic problems. In a sense it is a hybrid requirement, best described
as the worst-case bound (over all lengths n) of the average-case complexity (within
each length n).

4.4. Final comments. Levin [14] provided central notions toward the devel-
opment of a theory of average polynomial time. One is the class Average-P, which
provides a classification of easy problems on average; the other is the class Dist-NP,
which, together with complete distributional problems under appropriate reductions,
provides a hardness notion. In this paper we have focused on extending the classifi-
cation to arbitrary time-bounds. We refer the reader to papers by Belanger, Pavan,
and Wang [2] and Pavan and Selman [18] for research on issues concerning reductions
and complete problems as they relate to the new definitions we have given here.

5. Random-access machines. In order to illustrate our technique one more
time, we complete this paper by giving a hierarchy theorem for random-access ma-
chines.

Theorem 5.1. Let T, T ′ : N → N be logarithmico-exponential functions and
assume that T and T ′ are fully time constructible. Assume that T ′(n) = o(T (n)). Then
there is a language L such that for every polynomial time computable distribution µ
there is a random-access machine M that decides L, whose running time TM is O(T)
on the µ-average, but for every random-access machine M ′ that decides L, the running
time of M ′ is not T ′ on the µ-average.

Proof. It is known [6] that there is a language L that is decided by a random-
access machine in time O(T (n)) such that the running time of every random-access
machine M ′ that decides L exceeds T ′(n) almost everywhere. (This result is an
almost-everywhere version of a hierarchy theorem of Cook and Reckow for random-
access machines [5].) Let µ be any polynomial time computable distribution that
satisfies Condition W. It is immediately apparent that the running time of M is
O(T (n)) on the µ-average. However, it is also immediately apparent, as in the proof
of Theorem 4.4, that the running time of M ′ is not T ′ on the µ-average.

AVERAGE-TIME COMPLEXITY 1325

Acknowledgments. We thank Steve Cook, Leonid Levin, Charlie Rackoff, and
Jie Wang for helpful comments and discussions on a preliminary draft of this paper.
We also thank the two anonymous referees for their comments and criticisms, which
have improved the paper.

REFERENCES

[1] J. Balcázar and U. Schöning, Bi-immune sets for complexity classes, Math. Systems Theory,
18 (1985), pp. 1–10.

[2] J. Belanger, A. Pavan, and J. Wang, Reductions do not preserve fast convergence rates in
average time, Algorithmica, 23 (1999), pp. 363–378.

[3] J. Belanger and J. Wang, Rankable distributions do not provide harder instances than uni-
form distributions, in Proceedings of the First Annual International Computing and Com-
binatorics Conference, Lecture Notes in Comput. Sci. 959, Springer-Verlag, Berlin, 1995,
pp. 410–419.

[4] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case com-
plexity, J. Comput. System Sci., 44 (1992), pp. 193–219.

[5] S. Cook and R. Reckow, Time bounded random access machines, J. Comput. System Sci., 7
(1973), pp. 353–375.

[6] J. Geske, D. Huynh, and J. Seiferas, A note on almost-everywhere-complex sets and sepa-
rating deterministic-time-complexity classes, Inform. Comput., 92 (1991), pp. 97–104.

[7] J. Geske, D. Huynh, and A. Selman, A hierarchy theorem for almost everywhere complex sets
with application to polynomial complexity degrees, in Proceedings of the Fourth Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 247, Springer-
Verlag, Berlin, 1987, pp. 125–135.

[8] Y. Gurevich, Average case completeness, J. Comput. System Sci., 42 (1991), pp. 346–398.
[9] G. Hardy, Properties of logarithmico-exponential functions, Proc. London Math. Soc., 10

(1911), pp. 54–90.
[10] G. Hardy, Orders of Infinity. The Infinitärcalcül of Paul du Bois-Reymond, Reprint of the

1910 Edition, Cambridge Tracts in Math. and Math. Phys. 12, Hafner Publishing Co., New
York, 1971.

[11] J. Hartmanis and R. Stearns, On the computational complexity of algorithms, Trans. Amer.
Math. Soc., 117 (1965), pp. 285–306.

[12] S. Homer, Structural properties of complete problems for exponential time, in Complexity
Theory Retrospective II, L. Hemaspaandra and A. Selman, eds., Springer-Verlag, New
York, 1997, pp. 135–153.

[13] K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci., 26 (1983), pp. 209–
211.

[14] L. Levin, Average case complete problems, SIAM J. Comput., 15 (1986), pp. 285–286.
[15] M. Li and P. Vitányi, Average case complexity under the universal distribution equals worst-

case complexity, Inform. Process. Lett., 42 (1992), pp. 145–149.
[16] J. Lutz and E. Mayordomo, Cook versus Karp-Levin: Separating completeness notions if NP

is not small, in Proceedings of the Eleventh Annual Symposium on Theoretical Aspects
of Computer Science, Lecture Notes in Comput. Sci. 755, Springer-Verlag, Berlin, 1994,
pp. 415–426.

[17] E. Mayordomo, Almost every set in exponential time is P-bi-immune, Theoret. Comput. Sci.,
136 (1994), pp. 487–506.

[18] A. Pavan and A. Selman, Complete distributional problems, hard languages, and resource-
bounded measure, Theoret. Comput. Sci., to appear.

[19] C. Rackoff, personal communication.
[20] R. Reischuk and C. Schindelhauer, Precise average case complexity, in Proceedings of the

Tenth Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Comput. Sci. 665, Springer-Verlag, Berlin, 1993, pp. 400–409.

[21] R. Schuler and T. Yamakami, Sets computable in polynomial time on the average, in Proceed-
ings of the First Annual International Computing and Combinatorics Conference, Lecture
Notes in Comput. Sci. 959, Springer-Verlag, Berlin, 1995, pp. 650–661.

BUCKETS, HEAPS, LISTS, AND MONOTONE PRIORITY QUEUES∗

BORIS V. CHERKASSKY† , ANDREW V. GOLDBERG‡ , AND CRAIG SILVERSTEIN§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1326–1346

Abstract. We introduce the heap-on-top (hot) priority queue data structure that combines the
multilevel bucket data structure of Denardo and Fox with a heap. Our data structure has superior
operation bounds than either structure taken alone. We use the new data structure to obtain an
improved bound for Dijkstra’s shortest path algorithm. We also discuss a practical implementation
of hot queues. Our experimental results in the context of Dijkstra’s algorithm show that this imple-
mentation of hot queues performs very well and is more robust than implementations based only on
heap or multilevel bucket data structures.

Key words. data structures, priority queues, shortest paths

AMS subject classifications. 05C85, 06Q25, 90C35

PII. S0097539796313490

1. Introduction. A priority queue is a data structure that maintains a set of
elements and supports operations insert, decrease-key, and extract-min. Priority
queues are fundamental data structures with many applications. Typical applications
include graph algorithms (e.g., [14]) and event simulation (e.g., [5]).

An important subclass of priority queues, used in applications such as event simu-
lation and in Dijkstra’s shortest path algorithm [13], is the class of monotone priority
queues. In monotone priority queues, the extracted keys form a monotone, non-
decreasing sequence. In this paper we develop a new data structure for monotone
priority queues.

Consider an event simulation application, in which we use a monotone priority
queue to maintain a set of items. Item keys are times at which the items will be
processed. At each step, we extract an item with the smallest key t and process it.
This precipitates several events e1, . . . , ei, of nonnegative event durations t1, . . . , ti.
Each event j causes an item with key t+ tj to be inserted into the queue. We denote
the maximum event duration by C.

We refer to priority queues whose operations are more efficient when the number
of elements on the queue is small as s-heaps.1 For example, in a binary heap containing
n elements, all priority queue operations take O(log n) time, so the binary heap is an
s-heap. (Operation bounds may depend on parameters other than the number of
elements.) The fastest implementations of s-heaps are described in [4, 14, 22].

∗Received by the editors December 1, 1996; accepted for publication (in revised form) March 19,
1998; published electronically March 30, 1999. A previous version of this paper appeared in Proc.
8th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1997, pp. 83–92.

http://www.siam.org/journals/sicomp/28-4/31349.html
†Central Econ. and Math. Inst., Krasikova St. 32, 117418, Moscow, Russia (cher@cemi.msk.su).

This work was done while the author was visiting NEC Research Institute.
‡InterTrust Technologies Corp., 460 Oakmead Parkway, Sunnyvale, CA 94086 (goldberg@

intertrust.com, http://www.intertrust.com/star/goldberg). This work was done while the author
was at NEC Research Institute, Princeton, NJ.
§Computer Science Department, Stanford University, Stanford, CA 94305 (csilvers@

cs.stanford.edu). This author was supported by the Department of Defense and an ARCS fellowship,
with partial support from NSF Award CCR–9357849 and matching funds from IBM, Mitsubishi,
Schlumberger Foundation, Shell Foundation, and Xerox Corporation.

1Here “s” stands for “size.”

1326

HEAP-ON-TOP PRIORITY QUEUES 1327

Alternative implementations of priority queues use buckets (e.g., [2, 8, 11, 12]).
Operation times for bucket-based implementations depend on the maximum event
duration C and are not very sensitive to the number of elements. See [3] for a related
data structure.

s-heaps are particularly efficient when the number of elements on the s-heap is
small. Bucket-based priority queues are particularly efficient when the maximum
event duration C is small. Furthermore, some of the work done in bucket-based im-
plementations can be amortized over elements in the buckets, so bucket-based priority
queues actually have better bounds if the number of elements is large. In this sense,
s-heaps and buckets complement each other.

We introduce heap-on-top priority queues (hot queues), which combine the mul-
tilevel bucket data structure of Denardo and Fox [11] and a monotone s-heap.2 The
resulting implementation takes advantage of the best performance features of both
data structures. In order to describe hot queues, we give an alternative and more in-
sightful description of the multilevel bucket data structure. Independently, a similar
description has been given in [18].

We illustrate efficiency of hot queues by implied bounds for Dijkstra’s shortest
path algorithm; detailed operation bounds appear in section 4. In the following
discussion, n is the number of vertices, m the number of arcs, C the largest arc
length, and ε any positive constant. We assume integral arc lengths.

The best time bounds in the standard RAM model of computation appear in [2,
3, 14]. Out of these algorithms, the algorithm of Ahuja et al., based on the radix
heap data structure, is closest to our algorithm. Their algorithm runs in O(m +

n(logC)
1
2) time. Fredman and Willard [15] showed that better bounds are possible

in a stronger RAM model; the fastest currently known algorithm [22] in this model
runs in O(m log log n) time.

Efficiency of a hot queue depends on that of the heap used to implement it.
Using Fibonacci heaps [14], we match the radix heap bounds in the standard model.
Our data structure, however, is simpler. In a stronger model, we use the s-heap
of Thorup [22] to obtain better monotone priority queue bounds. In particular, we

get an O(m+n(logC)
1
3 +ε) expected time implementation of Dijkstra’s shortest path

algorithm.

Hot queues work well both in theory and in practice. This is often not the case
for low-complexity data structures, including priority queues. Asymptotic bound
improvements often come at the expense of constant factors, which come to dominate
the running time for all reasonable problem sizes. A preliminary version of the hot
queue data structure [6] did not perform well in practice. Based on experimental
feedback, we modified the data structure to be more practical. As an added bonus,
hot queues became simpler. We also developed implementation techniques that make
hot queues efficient in practice.

We compare the implementation of hot queues to implementations of multilevel
buckets and d-heaps [23] in the context of Dijkstra’s shortest paths algorithm. Our
experimental results show that hot queues perform best overall and are more robust
than either of the other two data structures. This is especially significant because
a multilevel bucket implementation of Dijkstra’s algorithm compared favorably with
other implementations of the algorithm in a previous study [8] and was shown to

2Actually, our data structure can use any heap. However, hot queues are designed so that the
number of elements on the heap is small, so s-heaps lead to the best bounds.

1328 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

be very robust [16]. For many problem classes, the hot queue implementation of
Dijkstra’s algorithm is the best both in theory and in practice.

This paper is organized as follows. Section 2 introduces basic definitions. Our
description of the multilevel bucket data structure appears in section 3. Section 4
describes hot queues and their application to Dijkstra’s algorithm. Details of our
implementation, including heuristics we used, are described in section 5. Section 6
describes our experimental setup, including the problem families we use. Section 7
contains experimental results. Section 8 contains concluding remarks.

2. Preliminaries. A priority queue is a data structure that maintains a set
of elements and supports operations insert, decrease-key, and extract-min. We
assume that elements have keys used to compare the elements, and we denote the key
of an element u by ρ(u). Unless mentioned otherwise, we assume that the keys are
integral. By the value of an element we mean the key of the element. The insert

operation adds a new element to the queue. The decrease-key operation assigns
a smaller value to the key of an element already on the queue. The extract-min

operation removes a minimum element from the queue and returns the element. We
denote the number of insert operations in a sequence of priority queue operations
by N .

To gain intuition about the following definition, think of event simulation ap-
plications where keys correspond to event durations. An event is an insert or a
decrease-key operation on the queue. Given an event, let v be the element that is
inserted into the queue or has its key decreased. Let u be the most recent element
extracted from the queue. The event duration is ρ(v) − ρ(u). In Dijkstra’s shortest
path algorithm, event durations correspond to arc lengths. We denote the maximum
event duration by C. A monotone priority queue is a priority queue for monotone
applications. To make these definitions valid for the first insertion, we assume that
during initialization, a special element is inserted into the queue and deleted immedi-
ately afterward. Without loss of generality, we assume that the value of this element
is zero. (If it is not, we can subtract this value from all element values.)

In this paper, by s-heap we mean a priority queue that is sensitive to the number
of elements in the queue and is more efficient if the number of elements on the queue
is small.

We call a sequence of operations on a priority queue balanced if the sequence
starts and ends with an empty queue. In particular, implementations of Dijkstra’s
shortest path algorithm produce balanced operation sequences.

All logarithms in this paper are base two.
Hot queues work in the word RAM model of computation (see, e.g., [1]): they need

array addressing and the following unit-time word operations: addition, subtraction,
comparison, and arbitrary shifts (which are equivalent to multiplication and division
by powers of two). However, hot queues use s-heaps, and some heaps assume a strong
RAM model where certain other word operations take unit time. The most common
operations are AC0 operations and multiplication; different variants allow different
operations. See [15, 22].

The multilevel bucket data structure, one of the main building blocks of hot
queues, works in the word RAM model. In section 3, we describe a strong RAM
variant of this data structure that uses word operations including bitwise logical op-
erations and the operation of finding the index of the most significant bit in which
two words differ. The latter operation is in AC0; see [10] for a discussion of a closely
related operation. The use of this more powerful model does not improve the amor-

HEAP-ON-TOP PRIORITY QUEUES 1329

tized operation bounds, but it improves some worst case bounds and simplifies the
description.

In the context of Dijkstra’s algorithm, we assume that we are given a directed
graph with n vertices, m arcs, and integral arc lengths in the range [0, . . . , C], where
C fits in one machine word.

3. Multilevel buckets. In this section we describe the k-level bucket data struc-
ture of Denardo and Fox [11]. By using a strong RAM model, we give a simpler
description of this data structure than that given in [11]. We treat the element keys
as base-∆ numbers for a certain parameter ∆. Consider a bucket structure B that
contains k levels of buckets, where k is a positive integer. Except for the top level, a
level contains an array of ∆ buckets. The top level contains infinitely many buckets.
Each top level bucket corresponds to an interval [i∆k, (i + 1)∆k − 1]. We chose ∆
so that at most ∆ consecutive buckets at the top level can be nonempty; we need to
maintain only these buckets.3

We denote bucket j at level i by B(i, j); i ranges from 1 (bottom level) to k (top),
and j ranges from 0 to ∆−1. A bucket contains a set of elements in a way that allows
constant-time insertion and deletion, e.g., in a doubly linked list.

Given k, we choose ∆ as small as possible subject to two constraints. First, each
top level bucket must span a key range of at least (C + 1)/∆. Then, by the definition
of C, keys of elements in B belong to at most ∆ consecutive top level buckets. Second,
∆ must be a power of two so that we can manipulate base-∆ numbers efficiently using
RAM operations on words of bits. With these constraints in mind, we set ∆ to the
smallest power of two greater than or equal to (C + 1)1/k.

We maintain µ, the key of the latest element extracted from the queue. Consider
the base-∆ representation of the keys and an element u in B. Let µi−j denote the
ith through jth least significant digits of µ. µi−∞ denotes the ith and higher least
significant digits, while µi denotes the ith least significant digit alone. Similarly, ui
denotes the ith least significant digit of ρ(u), and likewise for the other definitions.
By the definitions of C and ∆, µ and the k least significant digits of the base-∆
representation of ρ(u) uniquely determine ρ(u). Thus, ρ(u) = µ + (u0−k − µ0−k) if
u0−k > µ0−k and µ+ ∆k + (u0−k − µ0−k) otherwise.

Let i be the index of the most significant digit in which ρ(u) and µ differ, or 1
if ρ(u) = µ. (The least significant digit index is 1.) Given µ and u with ρ(u) ≥ µ,
we denote the position of u with respect to µ by (i, ui). If u is inserted into B, it is
inserted into B(i, ui). For each element in B, we store its position. If an element u is
in B(i, j), then only the i least significant digits of ρ(u) differ from the corresponding
digits of µ. Furthermore, ui = j.

The fact that keys of all elements on the queue are at least µ implies the following
lemma.

Lemma 3.1. For every level i, buckets B(i, j) for 0 ≤ j < µi are empty.
At each level i, we maintain the number of elements at this level. We also maintain

the total number of elements in B.
The extract-min operation can change the value of µ. As a side effect, positions

of some elements in B may change. Suppose that a minimum element is deleted and
the value of µ changes from µ′ to µ′′. By definition, keys of the elements on the queue
after the deletion are at least µ′′. Let i be the position of the most significant digit
in which µ′ and µ′′ differ. If i = 1 (µ′ and µ′′ differ only in the last digit), then for

3The simplest way to implement the top level is to “wrap around” modulo ∆.

1330 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

any element in B after the deletion its position is the same as before the deletion.
If i > 1, then the elements in bucket B(i, µ′′i) with respect to µ′ are exactly those
whose position is different with respect to µ′′. These elements have a longer prefix in
common with µ′′ than with µ′, and therefore they belong to a lower level with respect
to µ′′.

The bucket expansion procedure moves these elements to their new positions. The
procedure removes the elements from B(i, µ′′i) and puts them into their positions with
respect to µ′′. The two key properties of bucket expansions are as follows:

• After the expansion of B(i, µ′′i), all elements of B are in correct position with
respect to µ′′.
• Every element of B moved by the expansion is moved to a lower level.

Now we are ready to describe the multilevel bucket implementation of the priority
queue operations.

insert: To insert an element u, compute its position (i, j) and insert u into B(i, j).
decrease-key: Decrease the key of an element u in position (i, j) as follows. Remove

u from B(i, j). Set ρ(u) to the new value and insert u as described above.
extract-min: (We need to find and delete the minimum element, update µ, and move

elements affected by the change of µ.)
Find the lowest nonempty level i. Find j, the first nonempty bucket at level
i. If i = 1, delete an element from B(i, j), set µ = ρ(u), and return u. (In
this case all element positions remain the same.)
If i > 1, examine all elements of B(i, j) and delete a minimum element u
from B(i, j). Set µ = ρ(u) and expand B(i, j). Return u.

Next we deal with efficiency issues.

Lemma 3.2. Given µ and u, we can compute the position of u with respect to µ
in constant time.

Proof. By definition, ∆ = 2δ for some integer δ, so each digit in the base-
∆ representation of ρ(u) corresponds to δ bits in the binary representation. It is
straightforward to see that if we use appropriate masks and the fact that the index
of the first bit in which two words differ can be computed in constant time [10], we
can compute the position in constant time.

Iterating through the levels, we can find the lowest nonempty level in O(k) time.
Using binary search, we can find the level in O(log k) time. We can do even better
using the power of the strong RAM model.

Lemma 3.3. If k ≤ logC, then the lowest nonempty level of B can be found in
O(1) time.

Proof. Define D to be a k-bit number with Di = 1 if and only if level i is
nonempty. If k ≤ logC, D fits into one RAM word, and we can set a bit of D and
find the index of the first nonzero bit of D in constant time.

As we will see, the best bounds are achieved for k ≤ logC.

A simple way of finding the first nonempty bucket at level i is to go through the
buckets. This takes O(∆) time.

Lemma 3.4. We can find the first nonempty bucket at a level in O(∆) time.

Remark. One can do better [11]. Divide buckets at every level into groups of
size dlogCe, each group containing consecutive buckets. For each group, maintain a
dlogCe-bit number with bit j equal to 1 if and only if the jth bucket in the group is
not empty. We can find the first nonempty group in O (∆/ logC) time and the first
nonempty bucket in the group in O(1) time. This construction gives a logC factor
improvement for the bound of Lemma 3.4. By iterating this construction p times, we

HEAP-ON-TOP PRIORITY QUEUES 1331

get an O (p+ (∆/ logp C)) bound. Note that we can use word-size groups instead of
dlogCe-size groups.

Although the above observation improves the multilevel bucket operation time
bounds for small values of k, the bounds for the optimal value of k do not improve.
To simplify the presentation, we use Lemma 3.4, rather than its improved version, in
the rest of the paper.

Theorem 3.5. Amortized bounds for the multilevel bucket implementation of
priority queue operations are as follows: O(k) for insert, O(1) for decrease-key,
and O(C1/k) for extract-min.

Proof. The insert operation takes O(1) worst case time. We assign it an amor-
tized cost of k because we charge moves of elements to a lower level to the insertions
of the elements.

The decrease-key operation takes O(1) worst case time, and we assign it an
amortized cost of O(1).

The worst case time of the extract-min operation is O(log k + ∆) plus the cost
of bucket expansions. The cost of a bucket expansion is proportional to the number
of elements in the bucket. This cost can be charged to the corresponding insert

operations, because, except for the minimum element, each element examined during
a bucket expansion is moved to a lower level. An element can move down at most
k − 1 times. We charge the log k factor to the insertions as well. This completes the
proof since ∆ = O(C1/k).

Note that in any sequence of operations the number of insert operations is at
least the number of extract-min operations. In a balanced sequence, the two numbers
are equal, and we can modify the above proof to obtain the following result.

Theorem 3.6. For a balanced sequence, amortized bounds for the multilevel
bucket implementation of priority queue operations are as follows: O(1) for insert,
O(1) for decrease-key, O(k + C1/k) for extract-min.

Remark. We can easily obtain an O(1) implementation of the delete operation
for multilevel buckets. Given a pointer to an element, we delete it by removing the
element from the list of elements in its bucket.

For k = 1, the extract-min bound is O(C). For k = 2, the bound is O(
√
C).

The best bound of O (logC/ log logC) is obtained for k = dlogC/2 log logCe.
Remark. The original multilevel bucket data structure [11] works in the word

RAM model of computation. This implementation maintains ranges for each bucket
level and finds element positions by first finding the appropriate level (using sequential
or binary search) and then computing the element’s bucket index (using shifts). For
this implementation, some operations take longer; for example, insert is not constant
time. However, the amortized bounds of Theorem 3.5 are valid.

Remark. The k-level bucket data structure uses Θ(kC1/k) space for the buckets.

A major bottleneck of the multilevel bucket implementation is bucket scans. A
natural idea is to maintain nonempty bucket indices in a heap. A variant of this idea
leads to radix heaps, which maintain a heap containing all elements, with element
positions serving as keys. The number of distinct keys is O(kC1/k). Radix heaps use
a modification of Fibonacci heaps with amortized O(1) insert and decrease-key

operations, and amortized O(logN ′) extract-min operation, where N ′ is the num-
ber of distinct keys on the heap. Setting k =

√
logC gives the following operation

costs for the balanced case: O(1) for insert and decrease-key, and O(
√

logC) for
extract-min.

We use a different idea to improve on multilevel buckets. We scan a bucket level

1332 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

only if many elements “went through” this level and charge bucket scans to these
elements.

4. Hot queues. A hot queue uses an s-heap H and a multilevel bucket structure
B. Intuitively, the hot queue data structure works like the multilevel bucket data
structure, except we do not expand a bucket containing fewer than t elements, where
t is a parameter set to optimize performance. Elements of the bucket are copied into
H and processed using the s-heap operations. If the number of elements in the bucket
exceeds t, the bucket is expanded. In the analysis, we charge scans of buckets at the
lower levels to the elements in the bucket during the expansion into these levels.

A k-level hot queue uses the k-level bucket structure. For technical reasons, we
must add an additional special level k+ 1, which is needed to account for scanning of
buckets at level k. Only two buckets at the top level can be nonempty at any time,
µk+1 and µk+1 + 1. Note that if the queue is nonempty, then at least one of the two
buckets is nonempty. Thus bucket scans at the special level add a constant amount to
the work of processing an element found. We use wrap around at level k + 1 instead
of k.

An active bucket is the bucket whose elements are in H. At most one bucket
is active at any time, and H is empty if and only if there is no active bucket. We
denote the active bucket by B(a, b). We make a bucket active by making H into a
heap containing the bucket elements and inactive by resetting H to an empty heap.
(Elements of the active bucket are both in the bucket and in H.)

To describe the details of hot queues, we need the following definitions. We denote
the number of elements in B(i, j) by c(i, j). Given µ, i : 1 ≤ i ≤ k + 1, and j : 0 ≤
j < ∆, we say that an element u is in the range of B(i, j) if u(i+1)−∞ = µ(i+1)−∞
and ui = j. Using word operations, we can check if an element is in the range of a
bucket in constant time.

We maintain the invariant that µ is in the range of B(a, b) if there is an active
bucket. The detailed description of the queue operations is as follows.
insert: If H is empty or if the element u being inserted is not in the range of the

active bucket, we insert u into B as in the multilevel case. Otherwise u
belongs to the active bucket B(a, b). If c(a, b) < t, we insert u into H and
B(a, b). If c(a, b) ≥ t, we make B(a, b) inactive, add u to B(a, b), and expand
the bucket.

decrease-key: Decrease the key of an element u as follows. If u is in H, decrease
the key of u in H. Otherwise, let (i, j) be the position of u in B. Remove u
from B(i, j). Set ρ(u) to the new value and insert u as described above.

extract-min: If H is not empty, extract and return the minimum element of H.
Otherwise, proceed as follows. Find the lowest nonempty level i. Find the
first nonempty bucket at level i by examining buckets starting from B(i, µi).
If i = 1, delete an element from B(i, j), set µ = ρ(u), and return u. If i > 1,
examine all elements of B(i, j) and delete a minimum element u from B(i, j).
Set µ = ρ(u). If c(i, j) > t, expand B(i, j). Otherwise, make B(i, j) active.
Return u.

Correctness of the hot queue operations follows from the correctness of the mul-
tilevel bucket operations, Lemma 3.1, and the observation that if u is in H and v is
in B but not in H, then ρ(u) < ρ(v).

Note that at any time, H contains a (possibly empty) subset of the smallest
elements of the hot queue. Consider a time interval when H is nonempty. It is easy
to see that during each time interval while H is nonempty, the sequence of operations

HEAP-ON-TOP PRIORITY QUEUES 1333

Table 4.1
The bounds for hot queues using Fibonacci heaps. The best bounds are obtained with k = log

1
2 C

and t = 2log
1
2 C. Radix heaps achieve the same bounds but are more complicated.

Fibonacci heaps Heap bounds Hot queue bounds Hot queue, best k and t

insert O(1) O(k + kC1/k

t
) O(log

1
2 C)

decrease-key O(1) O(1) O(1)

extract-min O(logN) O(log t) O(log
1
2 C)

Table 4.2
The bounds for hot queues using Thorup’s heaps. Here ε is any constant. The best bounds are

obtained with k = log
1
3 C and t = 2log

2
3 C .

Thorup’s heaps Heap bounds Hot queue bounds Hot queue, best k and t

insert O(1) O(k + kC1/k

t
) O(log

1
3 C)

decrease-key O(1) O(1) O(1)

extract-min O(log
1
2

+εN) O(log
1
2

+ε t) O(log
1
3

+ε C)

on H is monotone. Thus we can use a monotone s-heap H.

Lemma 4.1. The cost of finding the first nonempty bucket at a level, amortized
over the insert operations, is O(k∆/t).

Proof. It is enough to bound the number of empty buckets scanned during the
search. We scan an empty bucket at level i at most once during the period of time
that µi−∞ remains unchanged. This can happen only if a higher-level bucket has been
expanded during the period that µi−∞ does not change. We charge bucket scans to
insertions into the queue of the elements contained in the expanded bucket. For each
level scan, we charge ∆ to a group of over t elements, and each element’s share is less
than ∆/t. Each time we charge an element it moves down at least one level, so the
total charge for an element is less then k∆/t.

Theorem 4.2. Let I(N), D(N), and X(N) be the time bounds for monotone
heap insert, decrease-key, and extract-min operations. Then amortized times for

the hot queue operations are as follows: O(k+I(t)+ kC1/k

t) for insert, O(D(t)+I(t))
for decrease-key, and O(X(t)) for extract-min.

Proof. The result follows from Lemma 4.1, Theorem 3.5, and the fact that the
number of elements in H never exceeds t.

Remark. All bounds are valid only when t ≤ N . For t > N , one should use an
s-heap instead of a hot queue.

The bounds for Fibonacci heaps are given in Table 4.1. The bounds for Thorup’s
heaps are in Table 4.2. Similarly to Theorem 3.6, we can get bounds for a balanced
sequence of operations.

Theorem 4.3. Let I(N), D(N), and X(N) be the time bounds for heap insert,
decrease-key, and extract-min operations, and consider a balanced sequence of
the hot queue operations. The amortized bounds for the operations are as follows:

O(I(t)) for insert, O(D(t) + I(t)) for decrease-key, and O(k +X(t) + kC1/k

t) for
extract-min.

Using Fibonacci heaps, we get O(1), O(1), and O(k + log t + kC1/k

t) amortized
bounds for the queue operations. Consider extract-min, the only operation with a
nonconstant bound. Setting k = 1 and t = C

logC , we get an O(logC) bound. Setting

k = 2 and t =
√
C

logC , we get an O(logC) bound. Setting k = log
1
2 C and t = 2log

1
2 C ,

1334 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

we get an O(log
1
2 C) bound.

Remark. Consider the 1- and 2-level implementations. Although the time bounds
are the same, the 2-level implementation has two advantages: it uses less space, and
its time bounds remain valid for a wider range of values of C.

Using Thorup’s heaps and setting k = log
1
3 C and t = 2log 2

3C , we get O(1), O(1),

and O(log
1
3 +ε C) expected amortized time bounds for the queue operations insert,

decrease-key, and extract-min, respectively.
The above time bounds allow us to get an improved bound on Dijkstra’s shortest

path algorithm. The running time of Dijkstra’s algorithm is dominated by a balanced
sequence of priority queue operations that includes O(n) insert and extract-min

operations and O(m) decrease-key operations (see, e.g., [21]). The maximum event
duration for this sequence of operations is C. The hot queue bounds immediately
imply the following result.

Theorem 4.4. On a network with n vertices, m arcs, and integral lengths in the
range [0, C], the shortest path problem can be solved in O(m+ n(logC)

1
3 +ε) expected

time.
This improves the deterministic bound of O(m + n log

1
2 C) achieved using radix

heaps [2].
Remark. Like multilevel buckets, hot queues do not need a strong RAM model

unless the s-heap used needs it.
Space bounds. Suppose n is the maximum number of elements in a k-level hot

queue and assume that the underlying s-heap requires constant space per element.
Then the additional space needed for the hot queue isO(kC1/k+n). Here the first term
reflects the space used by the buckets and the second term reflects the space needed
to maintain element lists and the O(t) space used by the s-heap. For comparison, the
multilevel buckets require the same space minus the s-heap space.

The number of buckets needed for C = 260 by a 4-level hot queue is 215. The
space needed for these buckets is comparable with cache sizes of current computers.

From a theoretical point of view, it is interesting to obtain a per-element space
bound. We get such a bound by “lazy allocation”: only the two special-level buckets
are allocated unless the other buckets are needed, i.e., unless n > t. Then the per-
element space bound is constant unless the buckets are allocated, in which case the

bound is O(kC
1/k

n) = O(kC
1/k

t). Then, since k and C1/k

t are small, the per-element
space is small as well. For example, for the

√
logC-level hot queue using Fibonacci

heaps, the per-element bound is O(
√

logC). The corresponding space bounds for the
faster hot queues described above are even better.

5. Implementation details. Our previous papers [8, 16] describe implementa-
tions of multilevel buckets. Our implementation of hot queues augments the multilevel
bucket implementation of [16]. See [16] for details of the multilevel bucket implemen-
tation.

Consider a k-level hot queue. As in the multilevel bucket implementation, we set
∆ to the smallest power of two greater than or equal to C1/k. Based on the analysis
of section 4 and experimental results, we set t, the maximum size of an active bucket,
to
⌈
C1/k/(4 logC)

⌉
.

The number of elements in an active bucket is often small. For example, for k = 3
and C = 100, 000, 000, we have t = 5. We take advantage of this fact by maintaining
elements of an active bucket in a sorted list instead of an s-heap until operations on
the list become expensive. At this point we switch to an s-heap. We use a 4-heap,
which worked best in our tests.

HEAP-ON-TOP PRIORITY QUEUES 1335

To implement priority queue operations using a sorted list, we use a doubly linked
list sorted in nondecreasing order. Our implementation is tuned for the shortest
path application. In this application, the number of decrease-key operations on the
elements of the active bucket tends to be very small and elements inserted into the
list or moved by the decrease-key operation tend to be close to the beginning of the
list. A different implementation may be better for a different application.

The insert operation searches for the element’s position in the list and puts
the element at that position. One can start the search in different places. Our
implementation starts the search at the beginning of the list. Starting at the end of
the list or at the point of the last insertion, may work better in some applications.

The extract-min operation removes the first element of the list.
The decrease-key operation removes the element from the list, finds its new

position, and puts the element in that position. Our implementation starts the search
from the beginning of the list. Starting at the previous position of the element, at
the end of the list, or at the place of the last insertion may work better in some
applications.

When a bucket becomes active, we put its elements in a list if the number of
elements in the bucket is below T1 and in an s-heap otherwise. (Our code uses
T1 = 2, 000.) We switch from the list to the heap using the following rule, suggested
by Satish Rao [20]: Switch if insert and decrease-key operations examine more
than T2 = 5, 000 list elements from the time the current bucket became active. An
alternative, which may work better in some applications but which performed worse
in ours, is to switch when the number of elements in the list exceeds T1. Once we
started using a heap, we continued using it until the next bucket expansion.

6. Experimental setup. Our experiments were conducted on a computer with
a 166 MHz Pentium Pro processor running Solaris x86 2.5.1. The machine has 96
MHz of main memory and all problem instances fit into main memory. Our code was
written in C++ and compiled using gcc 2.7.2.2 with the -O6 compilation option.

We made an effort to make our code efficient. In particular, we set the bucket
array sizes to be powers of two. This allows us to use word shift operations when
computing bucket array indices.

We report experimental results for five types of directed graphs. Two of the
graph types were chosen to exhibit the properties of the algorithm at two extremes:
one where the paths from the start vertex to other vertices tend to be order Θ(n),
and one in which the path lengths are order Θ(1). The third graph type is random
graphs. The fourth type was constructed to have a lot of decrease-key operations in
the active bucket. This is meant to test the robustness of our implementations when
we violate the assumption (section 5) that there are few decrease-key operations.
The fifth type of graph is meant to be easy or hard for a specific implementation with
a specific number of bucket levels.

We tested each type of graph on seven implementations: d-heaps, with d=4; k-
level buckets, with k ranging from 1 to 3; and k-level hot queues, with k ranging from
1 to 3. Each of these has parameters to tune, and the results we show are for the best
parameter values we tested.

Most of the problem families we use are the same as in our previous paper [16].
The next two sections describe the problem families.

6.1. Graph types. Two types of graphs we explored were grids produced using
the GRIDGEN generator [8]. These graphs can be characterized by a length x and
width y. The graph is formed by constructing x layers, each of which is a path of

1336 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

Table 6.1
The graph types used in our experiments; p is the number of buckets at each level.

Name Type Description Salient feature

long grid grid 16 vertices high path lengths are Θ(n)
n/16 vertices long

wide grid grid n/16 vertices high path lengths are Θ(1)
16 vertices long

random random degree 4 path lengths are Θ(log n)
cycle cycle d(i, j) = (i− j)2 results in many decrease-key operations
hard two d(S, path 1) = 0 vertices occupy first and last

paths d(S, path 2) = p− 1 buckets in bottom level bins

length y. We order the layers, as well as the vertices within each layer, and we connect
each vertex to its corresponding vertex on adjacent layers. All the vertices on the first
layer are connected to the source.

The first type of graph we used, the long grid, has a constant width—16 vertices
in our tests. We used graphs of different lengths, ranging from 512 to 32, 768 vertices.
The arcs had lengths chosen independently and uniformly at random in the range
from 1 to C. C varied from 1 to 100, 000, 000.

The second type of graph we used was the wide grid type. These graphs have
length limited to 16 layers, while the width can vary from 512 to 32, 768 vertices. C
was the same as for long grids.

The third type of graph includes random graphs with uniform arc length distri-
bution. A random graph with n vertices has 4n arcs.

The fourth type of graph is the only type that is new compared with [16]. These
are based on a cycle of n vertices, numbered 1 to n. In addition, each vertex is
connected to d− 1 distinct random vertices.

The length of an arc (i, j) is equal to 2k1.5, where k is the number of arcs on
the cycle path from i to j. The fifth type of graph includes hard graphs. These
are parameterized by the number of vertices, the desired number of levels k, and a
maximum arc length C. From C we compute p, the number of buckets in each level
assuming the implementation has k levels. The graphs consist of two paths connected
to the source. The vertices in each path are at distance p from each other. The
distance from the source to path 1 is 0; vertices in this path will occupy the first
bucket of bottom level bins. The distance from the source to path 2 is p− 1, making
these vertices occupy the last bucket in each bottom level bin. In addition, the source
is connected to the last vertex on the first path by an arc of length 1, and to the last
vertex of the second path by an arc of length C.

A summary of our graph types appears in Table 6.1.

6.2. Problem families. For each graph type, we examined how the relative
performance of the implementations changed as we increased various parameters.
Each type of modification constitutes a problem family. The families are summarized
in Table 6.2. In general, each family is constructed by varying one parameter while
holding the others constant. Different families can vary the same parameter, using
different constant values. For instance, one problem family modifies x as C = 16,
another modifies x as C = 10, 000, and a third modifies x as C = 100, 000, 000.

7. Experimental results. The results of this section should be taken in proper
context. The 4-heap implementation has the worst case operation bound of O(log4 n)
with a relatively small constant. For most shortest path problems, only a fraction of

HEAP-ON-TOP PRIORITY QUEUES 1337

Table 6.2
The problem families used in our experiments. C is the maximum arc length; x and y the

length and width, respectively, of grid graphs; d is the degree of vertices in the cycle graph; and p is
the number of buckets at each level.

Graph type Graph family Range of values Other values

long grid Modifying C C = 1 to 1, 000, 000 x = 8192
Modifying x x = 512 to 32, 768 C = 16

C = 10, 000
C = 100, 000, 000

Modifying C and x x = 512 to 32, 768 C = x
wide grid Modifying C C = 1 to 1, 000, 000 y = 8192

Modifying y y = 512 to 32, 768 C = 16
C = 10, 000
C = 100, 000, 000

Modifying C and y y = 512 to 32, 768 C = y
random graph Modifying C C = 1 to 1, 000, 000 n = 131, 072

Modifying n n = 8192 to 524, 288 C = 16
C = 10, 000
C = 100, 000, 000

Modifying C and n n = 8192 to 524, 288 C = n
cycle Modifying n n = 300 to 1, 200 d = 20

d = 200
hard Modifying C C = 100 to 10, 000, 000 n = 131, 072, p = 2

n = 131, 072, p = 3

vertices are on the heap at any given time. The problems in our study are big enough
to establish the relative performance of the codes but not big enough to see a drastic
difference in performance.

A previous study [7] suggested that the multilevel bucket implementations com-
pare well with other implementations of Dijkstra’s algorithm. This motivated a further
study of the multilevel buckets [16] and the discovery of hot queues. The problem
families presented here are designed to test the multilevel bucket and hot queue codes
at extremes, and not to test these codes against the 4-heap.

Another study [16] showed that the multilevel buckets are efficient and robust ex-
cept on a limited class of problems which cause a large number of empty bucket scans.
One cannot expect hot queues to outperform the buckets when the number of such
scans is moderate. The data presented below show that the additional complexity
of hot queues does not significantly increase the constant factors in our implemen-
tations. Hot queues are competitive with multilevel buckets when the latter scan a
moderate number of empty buckets and outperform the buckets when the number is
large. The improved robustness of hot queues comes at essentially no cost to typical
performance.

In the following discussion of our computational results, we present data for some,
but not all, problem families from Table 6.2. Qualitative results for the other problem
families can be interpolated from the data we present. An earlier technical report [9]
contains data for all listed problem families. Our codes are publicly available, and
interested readers can run their own experiments.

We tabulate our experimental data. In all the tables, k denotes the implementa-
tion: “h” for heap, “bi” for buckets with i levels, and “hi” for hot queue with i levels.
In addition to reporting running time, we report counts for operations that give in-
sight into algorithm performance. For the heap implementation, we count the total
number of insert and decrease-key operations. For the bucket implementations,
we count the number of empty buckets examined (empty operations). For the hot

1338 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

Table 7.1
The performance on long grids as the grid length increases for C = 16.

k nodes 8193 16385 32769 65537 131073 262145 524289

h time 0.03 s 0.06 s 0.12 s 0.23 s 0.46 s 0.91 s 1.82 s
heap ops. 18533 37124 74224 148476 296799 593577 1187401

b1 time 0.03 s 0.05 s 0.10 s 0.20 s 0.39 s 0.77 s 1.55 s
empty 175 327 664 1303 2585 5120 10377

b2 time 0.03 s 0.05 s 0.11 s 0.21 s 0.42 s 0.83 s 1.66 s
empty 129 248 502 990 1937 3861 7823

b3 time 0.03 s 0.06 s 0.11 s 0.22 s 0.44 s 0.89 s 1.77 s
empty 85 157 325 631 1237 2459 5009

h1 time 0.03 s 0.05 s 0.10 s 0.20 s 0.41 s 0.81 s 1.62 s
empty 167 308 635 1250 2471 4899 9932
act. bucket 3 3 4 3 4 3 3

h2 time 0.03 s 0.05 s 0.11 s 0.21 s 0.42 s 0.84 s 1.69 s
empty 128 245 498 984 1926 3840 7791
act. bucket 5 5 5 4 6 4 7

h3 time 0.03 s 0.06 s 0.11 s 0.22 s 0.45 s 0.89 s 1.78 s
empty 74 139 288 553 1089 2160 4380
act. bucket 70 124 268 517 1031 1950 4206

Table 7.2
The performance on long grids as the grid length increases for C = 100, 000, 000.

k nodes 8193 16385 32769 65537 131073 262145 524289

h time 0.03 s 0.06 s 0.12 s 0.24 s 0.47 s 0.94 s 1.87 s
heap ops. 18861 37751 75550 151025 302002 604132 1208105

b1 time 0.63 s 1.55 s 4.20 s 9.00 s 27.84 s 137.39 s 399.30 s
empty 12065884 30372824 83348762 179705524 563449790 2820960848 3932274035

b2 time 0.03 s 0.07 s 0.13 s 0.26 s 0.52 s 1.10 s 2.45 s
empty 119761 302294 594361 1321307 2639569 7066638 21872187

b3 time 0.03 s 0.07 s 0.13 s 0.26 s 0.53 s 1.10 s 2.27 s
empty 51586 119623 256824 516687 1213386 4116075 10405346

h1 time 0.04 s 0.08 s 0.15 s 0.26 s 0.51 s 1.03 s 2.05 s
empty 0 0 0 0 0 0 0
act. bucket 9607 19212 38454 76910 153640 307515 615035

h2 time 0.03 s 0.06 s 0.12 s 0.23 s 0.46 s 0.98 s 1.98 s
empty 24239 53988 144058 288742 770482 2944406 5590656
act. bucket 1171 1994 3023 5996 9150 43279 250373

h3 time 0.03 s 0.06 s 0.12 s 0.23 s 0.46 s 0.91 s 1.80 s
empty 12117 19554 38965 47720 108401 226167 462957
act. bucket 3065 6870 12983 27484 51835 97991 154045

queue implementations, we count the number of empty operations and the number of
insert and decrease-key operations on the active bucket.

For some problem families we also plot the data. The plots help to identify
crossover points and asymptotic trends. In the plots, we use a logarithmic scale
whenever appropriate. With one exception (the hard-2 problem family), we omit
the curves for the b3 and h3 implementations. These curves would always be close to
those for b2 and h2, respectively.

We were unable to run 1-level bucket and hot queue implementations on some
problems because of memory limitations. We leave the corresponding table entries
blank.

Network structure and arc length distribution determine the distribution of the
priority queue operations. We organize the discussion according to graph types.

7.1. Long grids. For long grids, during a shortest path computation the priority
queue contains a small number of elements. Because of this, the heap performs very
well.

When C is small, all codes perform similarly, with the growth rate that is very
close to linear. (See Table 7.1.) As C grows, the relative performance of b1 becomes
worse, due to the large number of empty operations it executes. In Table 7.2 we show
results for C = 100, 000, 000. One can see that b1 performs very poorly. In contrast,
the dependence of h1 on C is slight. For 2 and 3 levels, hot queues perform slightly
better than the corresponding bucket codes.

HEAP-ON-TOP PRIORITY QUEUES 1339

0.1

1

10

100

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

tim
e

MaxArcLen

Comparison of slong_len data set

heap
bck1
bck2
hot1
hot2

Fig. 7.1. The performance on long grids as C increases. n = 131, 073.

Table 7.3
The performance on long grids as C increases. n = 131, 073.

k MaxArcLen 1 10 100 1000 10000

h time 0.42 s 0.45 s 0.47 s 0.47 s 0.47 s
heap ops. 262143 293966 301124 301916 301996

b1 time 0.34 s 0.39 s 0.39 s 0.46 s 1.31 s
empty 0 346 164121 2492467 26194603

b2 time 0.36 s 0.42 s 0.43 s 0.45 s 0.47 s
empty 0 169 112918 487717 1377280

b3 time 0.36 s 0.43 s 0.47 s 0.48 s 0.50 s
empty 0 169 66895 209566 505269

h1 time 0.36 s 0.40 s 0.44 s 0.48 s 0.47 s
empty 0 316 160231 505444 0
act. bucket 3 3 5 118910 156758

h2 time 0.37 s 0.43 s 0.46 s 0.47 s 0.46 s
empty 0 166 93807 40378 113032
act. bucket 3 10 8165 56133 32072

h3 time 0.37 s 0.43 s 0.47 s 0.48 s 0.48 s
empty 0 166 19900 58450 229964
act. bucket 3 12 44872 35397 36976

k MaxArcLen 100000 1000000 9999994 99999937

h time 0.47 s 0.47 s 0.47 s 0.47 s
heap ops. 302001 302002 302002 302002

b1 time 11.95 s 25.87 s 26.44 s 27.84 s
empty 236114678 522926842 534441194 563449790

b2 time 0.51 s 0.51 s 0.53 s 0.52 s
empty 2636417 2349095 3213545 2639569

b3 time 0.52 s 0.52 s 0.54 s 0.53 s
empty 1108578 911898 1547187 1213386

h1 time 0.48 s 0.49 s 0.52 s 0.50 s
empty 0 0 0 0
act. bucket 153196 148773 157053 153640

h2 time 0.45 s 0.48 s 0.46 s 0.46 s
empty 395585 883981 599877 770482
act. bucket 14597 8344 11346 9150

h3 time 0.46 s 0.47 s 0.46 s 0.46 s
empty 175194 74555 226660 108401
act. bucket 57888 46121 57082 51835

Table 7.3 shows the dependence on C for long grids. With the exception of b1,
the performance is robust. Even 1-level hot queues had consistent performance across
a wide range of C values. On this family, h, h2, and h3 are the best codes, and b2

and b3 perform somewhat worse than their hot queue counterparts.

1340 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

0.01

0.1

1

10

1000 10000 100000 1e+06

tim
e

nodes

Comparison of swide_large data set

heap
bck1
bck2
hot1
hot2

Fig. 7.2. The performance on wide grids as the grid width increases. C = 100, 000, 000.

Table 7.4
The performance on wide grids as the grid width increases. C = 100, 000, 000.

k nodes 8193 16385 32769 65537 131073 262145 524289

h time 0.04 s 0.10 s 0.21 s 0.48 s 1.12 s 2.64 s 6.13 s
heap ops. 18935 37871 75656 151330 302768 603635 1207172

b1 time 0.08 s 0.13 s 0.23 s 0.40 s 0.79 s 1.73 s 3.32 s
empty 519767 676382 898934 966873 1527813 3901062 5620110

b2 time 0.04 s 0.07 s 0.14 s 0.29 s 0.62 s 1.46 s 3.85 s
empty 254236 439268 667632 769506 1241470 6213185 37317210

b3 time 0.03 s 0.07 s 0.14 s 0.30 s 0.65 s 1.44 s 3.16 s
empty 43744 110229 243210 423860 835800 3507272 12187746

h1 time 0.07 s 0.12 s 0.24 s 0.42 s 0.85 s 1.85 s 3.77 s
empty 29512 78997 257215 751682 1215514 2841845 5804273
act. bucket 6030 12404 14835 3859 5343 15860 26190

h2 time 0.03 s 0.08 s 0.15 s 0.31 s 0.66 s 1.49 s 3.00 s
empty 117655 358586 623911 737503 1185921 5023437 6993795
act. bucket 1457 892 468 317 473 8638 105214

h3 time 0.03 s 0.07 s 0.14 s 0.31 s 0.68 s 1.45 s 3.05 s
empty 9899 23825 85944 268493 705023 2301808 5420782
act. bucket 2551 5926 10198 10779 7409 24449 62292

Operation counts give insight into performance of the code. Consider, for in-
stance, Table 7.3. For b1, the number of empty bucket operations grows with C.
For C = 1, 000, the number of empty operations exceeds the graph size (n+m) and
soon thereafter these operations dominate the running time. Note that at the values
of C around 1, 000, operation distribution for the corresponding hot queue code, h1,
changes. For the smaller values of C, h1 performs almost no active bucket operations
because t is small and the active bucket is usually expanded. For the larger values of
C, the top level bucket is usually not expanded and the code performs no empty oper-
ations. Different hot queue codes have different trade-offs between empty operations
and active bucket operations.

The data presented above show that, on long grids, hot queue codes, especially h2

and h3, perform very well and are very robust. Other tests we conducted, including
those where C grows with n, confirm this conclusion.

HEAP-ON-TOP PRIORITY QUEUES 1341

0.1

1

10

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

tim
e

MaxArcLen

Comparison of swide_len data set

heap
bck1
bck2
hot1
hot2

Fig. 7.3. The performance on wide grids as C increases. n = 131, 073.

Table 7.5
The performance on wide grids as C increases. n = 131, 073.

k MaxArcLen 1 10 100 1000 10000 100000 1000000 9999994 99999937

h time 0.81 s 0.98 s 1.05 s 1.10 s 1.12 s 1.12 s 1.12 s 1.12 s 1.12 s
heap ops. 262143 294257 301848 302672 302758 302767 302768 302768 302768

b1 time 0.44 s 0.51 s 0.53 s 0.55 s 0.60 s 0.69 s 0.77 s 0.80 s 0.79 s
empty 0 1 29 895 22778 577430 1413606 1439151 1527813

b2 time 0.47 s 0.57 s 0.58 s 0.57 s 0.59 s 0.60 s 0.62 s 0.62 s 0.62 s
empty 0 0 18 372 14931 479394 1133272 1186499 1241470

b3 time 0.48 s 0.59 s 0.62 s 0.62 s 0.62 s 0.63 s 0.65 s 0.65 s 0.65 s
empty 0 0 11 248 11682 373938 719020 853076 835800

h1 time 0.48 s 0.54 s 0.56 s 0.58 s 0.63 s 0.74 s 0.83 s 0.85 s 0.85 s
empty 0 1 22 483 22777 474794 1135801 1240804 1215514
act. bucket 3 3 4 38 290 2176 4135 4811 5343

h2 time 0.49 s 0.58 s 0.58 s 0.60 s 0.61 s 0.63 s 0.66 s 0.65 s 0.66 s
empty 0 0 15 252 14157 464270 1092710 1131198 1185921
act. bucket 3 4 4 19 29 161 404 440 473

h3 time 0.50 s 0.58 s 0.61 s 0.63 s 0.64 s 0.66 s 0.68 s 0.67 s 0.68 s
empty 0 0 6 176 10564 354793 554144 772748 705023
act. bucket 3 4 7 22 158 1294 11694 3744 7409

7.2. Wide grids and random graphs. For wide grids and random graphs,
most of the time during a shortest path computation the priority queue contains a
large number of elements. The distribution of the keys depends on the arc length
distribution. For the same arc length distribution, computational results for the
random graphs are similar to those for wide grids, and we present only the latter. For
wide grids, h is consistently the worst performer because of the large heap size.

The key distribution is nonclustered and, when C is not much larger than the
number of elements on the heap, one would expect bucket codes to perform well. The
data presented in Table 7.4 confirm the expected behavior for large enough values of
n. For C = 100, 000, 000, the 1-level bucket and hot queue codes outperform the heap
code even for the smallest n.

Table 7.5 gives data for wide grids as C grows. All codes are robust; b1 and h1

show a slight dependence of C but outperform h for all values of C we test.

1342 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

0.01

0.1

1

10

100 1000 10000

tim
e

nodes

Comparison of cycle_200 data set

heap
bck1
bck2
hot1
hot2

Fig. 7.4. The performance on cycle graphs as n increases. Degree d = 200.

Table 7.6
The performance on cycle graphs as n increases. Degree d = 200.

k nodes 512 1024 2048 4096 8192

h time 0.04 s 0.08 s 0.16 s 0.33 s 0.76 s
heap ops. 51855 103927 207893 415548 831172

b1 time 0.07 s 0.15 s 0.35 s 0.79 s 2.08 s
empty 0 0 0 0 0

b2 time 0.06 s 0.13 s 0.26 s 0.53 s 1.18 s
empty 0 0 0 0 0

b3 time 0.06 s 0.12 s 0.24 s 0.48 s 1.07 s
empty 0 0 0 0 0

h1 time 0.08 s 0.16 s 0.34 s 0.69 s 1.64 s
empty 0 0 0 0 0
act. bucket 51344 102904 205846 411453 822981

h2 time 0.07 s 0.14 s 0.27 s 0.55 s 1.21 s
empty 0 0 0 0 0
act. bucket 3 3 6 22 53

h3 time 0.07 s 0.13 s 0.26 s 0.52 s 1.13 s
empty 0 0 0 0 0
act. bucket 84 11 229 74 1371

Further experiments confirm that on wide grids and random graphs, even if C
grows with the graph size, all bucket and hot queue codes perform well, outperforming
the heap for all but the smallest graphs.

7.3. Cycle graphs. For many shortest path problems, including our grid and
random graph problems, the number of decrease-key operations is much less than
the worst case bound of m. The average-case analysis of [17] gives a theoretical
explanation for this phenomena.

For the cycle graph problems, the number of decrease-key operations is large.
Table 7.6 gives data for the cycle family with d = 200. Cycle graphs cause many
decrease-key operations and no empty operations. For d = 200, decrease-key

operations dominate the running time.
Experimental results for this problem family are surprising. One would expect

b1 to perform the best, since it is not hampered by examining many empty buckets

HEAP-ON-TOP PRIORITY QUEUES 1343

0.1

1

10

100 1000 10000 100000 1e+06 1e+07

tim
e

MaxArcLen

Comparison of hard_2 data set

heap
bck1
bck2
bck3
hot1
hot2
hot3

Fig. 7.5. A graph designed to be hard for the 2-level bucket implementation. n = 131, 072.

Table 7.7
A graph designed to be hard for the 2-level bucket implementation. n = 131, 072.

k MaxArcLen 100 1000 10000 100000 1000000 10000000

h time 0.22 s 0.22 s 0.22 s 0.22 s 0.22 s 0.22 s
heap ops. 262143 262143 262143 262143 262143 262143

b1 time 0.28 s 0.31 s 0.52 s 1.96 s 3.80 s
empty 917488 1966048 8257408 33422848 66976768

b2 time 0.32 s 0.35 s 0.54 s 1.31 s 2.36 s 8.68 s
empty 917488 1966048 8257408 33422848 66976768 268300288

b3 time 0.32 s 0.31 s 0.31 s 0.32 s 0.32 s 0.34 s
empty 3 7 131085 393209 393209 917489

h1 time 0.29 s 0.28 s 0.28 s 0.31 s 0.45 s
empty 0 0 0 0 0
act. bucket 122880 129024 130560 130816 131008

h2 time 0.29 s 0.28 s 0.28 s 0.28 s 0.28 s 0.28 s
empty 0 0 0 0 0 0
act. bucket 126976 129024 130560 130944 131008 131056

h3 time 0.28 s 0.28 s 0.28 s 0.28 s 0.28 s 0.28 s
empty 0 0 0 0 0 0
act. bucket 129024 130560 130816 130944 131040 131056

and has constant-time decrease-key performance. Likewise, one would expect h,
with its O(log n) implementation of decrease-key, to perform the worst. However,
h is the fastest overall, while b1 is the slowest.

To explain this phenomenon, we measured the average number of heap levels an
element goes up during a decrease-key operation. This number is less then two
even for the biggest problem size. As a result, for these problems the decrease-key

operation in the heap is more efficient than in the buckets.

To decrease a key in the b1 implementation, one needs to remove an element
from a list, compute its new position, and insert it into a list. This is more work than
moving an element up one level in our array-based implementation of the heap.

The 2- and 3-level bucket implementations perform better than the 1-level imple-
mentation. This is because in many cases a decrease-key operation does not move
the element. We must compute the new bucket position in any case (as a witness

1344 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

that the element does not move), and the work involved in this computation is non-
negligible compared with the work to perform a decrease-key operation in the heap.
Because of this, the 2- and 3-level buckets perform worse than the heap.

Next we discuss the hot queue implementations. Compared with b1, h1 moves
fewer elements from one bucket to another. This is because some of the operations
happen within the active bucket, while others take place in the large, special top level
bucket. Because of this, h1 is a little faster. The h2 and h3 codes perform similarly
to the corresponding bucket codes.

7.4. Hard problems. Hard problems were designed to separate the perfor-
mance of various multilevel bucket implementations. Experimental results on these
problems motivated the development of hot queues, which were designed to improve
performance on such problems. Table 7.7 shows that, indeed, hot queues perform
much better on hard-2 than their bucket-only counterparts. With at most two ele-
ments on the heap at any time, the heap implementation is the most efficient on the
hard problems.

For the hot queue implementations, no bucket is expanded and the action is
confined to the two special top level buckets. Thus hot queues perform well, although
not quite as well as the heap. The only exception is h1 for the largest value of C it
could handle, where its running time is significantly greater than for other values of
C. We attribute this to the time taken to initialize the buckets, which we do even if
the buckets are never used.

The hard-2 problems are hard for b1 and b2, and, as expected, these imple-
mentations are asymptotically worse than the other codes on this family. One can
also design hard problems for buckets with more levels. In particular, we tested hard
problems for 3-level buckets, with predictable results: b3 performed asymptotically
worse, although the difference between its performance and that of h and the hot
queue codes was not as drastic as for the hard-2 problems.

8. Concluding remarks. The hot queue data structure can use any monotone
s-heap. Concurrently with our work, Raman [18] developed a deterministic s-heap
that implies a deterministic hot queue that is almost as fast as that described in our
paper; in particular, this result implies an O(m+n(logC)

1
3 log logC)-time determin-

istic implementation of Dijkstra’s algorithm. In a latter paper, Raman [19] develops
a faster randomized s-heap that leads to a faster randomized hot queue and to an
improved shortest path bound.

The hot queue data structure combines the best features of heaps and multilevel
buckets in a natural way. In theory, if C is very small compared with N , the data
structure performs as the multilevel bucket structure. If C is very large, the data
structure performs as the heap used in it. For intermediate values of C, the data
structure performs better than either the heap or the multilevel bucket structure.

Implementing the hot queue data structure efficiently is nontrivial. Our im-
plementation uses carefully chosen parameter values as well as the sorted list data
structure for small heaps. Our experiments show that, in the context of Dijkstra’s
algorithm, the resulting implementations with appropriate number of levels are more
robust than the heap or the multilevel bucket implementations. Our previous stud-
ies [8, 16] have shown that multilevel bucket implementations of Dijkstra’s algorithm
compare favorably with other implementations. The fact that in the current study,
hot queues were always competitive with, and in some cases more efficient than, mul-
tilevel buckets is very interesting, in spite of the fact that the performance difference
is often small.

HEAP-ON-TOP PRIORITY QUEUES 1345

The 3-level structure is very robust for a very wide range of values of C. For
small values of C, 1- or 2-level hot queues may be more efficient, but the win is
not big. It is possible that for extremely huge values of C more 3 levels are better.
A variable number of levels, dependent on C, may be used in practice. Our data
suggest that performance of the resulting data structure will not be sensitive to the
exact switchover values.

The 1-level hot queue can be viewed as a robust version of the calendar queue [5],
a data structure developed for event simulation applications. It would be interesting
to see how hot queues perform for these applications.

Acknowledgments. We would like to thank Bob Tarjan and Rajeev Raman for
stimulating discussions and insightful comments, Satish Rao for suggesting an adap-
tive strategy for switching from lists to heaps, and Harold Stone for useful comments
on a draft of this paper.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison–Wesley, Reading, MA, 1974.

[2] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, Faster algorithms for the
shortest path problem, J. Assoc. Comput. Mach., 37 (1990), pp. 213–223.

[3] P. V. E. Boas, R. Kaas, and E. Zijlstra, Design and implementation of an efficient priority
queue, Math. Systems Theory, 10 (1977), pp. 99–127.

[4] G. S. Brodal, Worst-case efficient priority queues, in Proc. 7th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SIAM, Philadelphia, 1996, pp. 52–58.

[5] R. Brown, Calendar queues: A fast O(1) priority queue implementation for the simulation
event set problem, Comm. Assoc. Comput. Mach., 31 (1988), pp. 1220–1227.

[6] B. V. Cherkassky and A. V. Goldberg, Heap-on-Top Priority Queues, Tech. re-
port 96-4, NEC Research Institute, Princeton, NJ, 1996. Available online at
http://www.neci.nj.nec.com/tr/index.html

[7] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest paths algorithms: Theory
and experimental evaluation, in Proc. 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, Philadelphia, 1994, pp. 516–525.

[8] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, Shortest paths algorithms: Theory and
experimental evaluation, Math. Programming, 73 (1996), pp. 129–174.

[9] B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, Buckets, Heaps, Lists, and Mono-
tone Priority Queues, Tech. report 96-070, NEC Research Institute, Princeton, NJ, 1996.

[10] R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel list
ranking, Inform. and Control, 70 (1986), pp. 32–53.

[11] E. V. Denardo and B. L. Fox, Shortest-route methods: 1. Reaching, pruning, and buckets,
Oper. Res., 27 (1979), pp. 161–186.

[12] R. B. Dial, Algorithm 360: Shortest path forest with topological ordering, Comm. Assoc.
Comput. Mach., 12 (1969), pp. 632–633.

[13] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[14] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. Assoc. Comput. Mach., 34 (1987), pp. 596–615.

[15] M. L. Fredman and D. E. Willard, Trans-dichotomous algorithms for minimum spanning
trees and shortest paths, J. Comput. System Sci., 48 (1994), pp. 533–551.

[16] A. V. Goldberg and C. Silverstein, Implementations of Dijkstra’s algorithm based on multi-
level buckets, in Lecture Notes in Econom. and Math. Systems 450, P. M. Pardalos, D. W.
Hearn, and W. W. Hages, eds., Springer-Verlag, New York, 1997, pp. 292–327.

[17] K. Noshita, A theorem on the expected complexity of Dijkstra’s shortest path algorithm, J.
Algorithms, 6 (1985), pp. 400–408.

[18] R. Raman, Priority queues: Small, monotone and trans-dichotomous, in Proc. 4th Annual
European Symposium Algorithms, Lecture Notes in Comput. Sci. 1136, Springer-Verlag,
New York, 1996, pp. 121–137.

[19] R. Raman, Recent results on single-source shortest paths problem, SIGACT News, 28 (1997),
pp. 81–87.

1346 B. CHERKASSKY, A. GOLDBERG, AND C. SILVERSTEIN

[20] S. Rao, personal communication, 1996.
[21] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, 1983.
[22] M. Thorup, On RAM priority queues, in Proc. 7th Annual ACM-SIAM Symposium on Discrete

Algorithms, SIAM, Philadelphia, 1996, pp. 59–67.
[23] J. W. J. Williams, Algorithm 232 (Heapsort), Comm. Assoc. Comput. Mach., 7 (1964),

pp. 347–348.

DISTRIBUTED ANONYMOUS MOBILE ROBOTS:
FORMATION OF GEOMETRIC PATTERNS∗

ICHIRO SUZUKI† AND MASAFUMI YAMASHITA‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1347–1363

Abstract. Consider a system of multiple mobile robots in which each robot, at infinitely many
unpredictable time instants, observes the positions of all the robots and moves to a new position
determined by the given algorithm. The robots are anonymous in the sense that they all execute the
same algorithm and they cannot be distinguished by their appearances. Initially they do not have a
common x-y coordinate system. Such a system can be viewed as a distributed system of anonymous
mobile processes in which the processes (i.e., robots) can “communicate” with each other only by
means of their moves. In this paper we investigate a number of formation problems of geometric
patterns in the plane by the robots. Specifically, we present algorithms for converging the robots
to a single point and moving the robots to a single point in finite steps. We also characterize the
class of geometric patterns that the robots can form in terms of their initial configuration. Some
impossibility results are also presented.

Key words. distributed algorithms, anonymous robots, mobile robots, multiagent systems,
formation of geometric patterns

AMS subject classification. 68Q99

PII. S009753979628292X

1. Introduction. Suppose that a schoolteacher wants her 100 children in the
playground to form a circle so that, for instance, they can play a game. She might
draw a circle on the ground as a guideline or even give each child a specific position
to move to. What if the teacher does not provide such assistance? Even without such
assistance, the children may still be able to form a sufficiently good approximation
of a circle if each of them moves adaptively based on the movement of other children
and knowledge of the shape of a circle. If successful, this method can be called a
distributed solution to the circle formation problem for children.

A similar distributed approach can be used for controlling a group of multiple
mobile robots. The main idea is to let each robot execute a simple algorithm and
plan its motion adaptively based on the observed movement of other robots, so that
the robots as a group will achieve the given goal. The objective of this paper is to give
a formal discussion on the power and limitations of the distributed control method in
the context of the formation problems of geometric patterns in the plane.

The problem of forming an approximation of a circle having a given diameter by
identical mobile robots was first discussed by Sugihara and Suzuki [13].1 Assuming

∗Received by the editors November 13, 1996; accepted for publication (in revised form) July 24,
1997; published electronically March 30, 1999. This work was supported in part by a Scientific
Research Grant-in-Aid from the Ministry of Education, Science and Culture in Japan (0668032,
07243219, 076803604), the National Science Foundation under grant IRI-9307506, the Office of Naval
Research under grant N00014-94-1-0284, and an endowed chair supported by Hitachi Ltd. at the
Faculty of Engineering Science, Osaka University. An earlier version of some of the results contained
in this paper appears as “Formation and agreement problems for anonymous mobile robots” in Proc.
31st Annual Allerton Conference on Communication, Control, and Computing, University of Illinois,
Urbana, 1993, pp. 93–102.

http://www.siam.org/journals/sicomp/28-4/28292.html
†Department of Electrical Engineering and Computer Science, University of Wisconsin–

Milwaukee, P.O. Box 784, Milwaukee, WI 53201 (suzuki@cs.uwm.edu).
‡Department of Electrical Engineering, Faculty of Engineering, Hiroshima University, Kagami-

yama, Higashi-Hiroshima 739, Japan. Presently with Department of Computer Science and Com-
munication Engineering, Kyushu University, Fukuoka, 812-8581, Japan (mak@csce.kyushu-u.ac.jp).

1In our terminology, the problem they consider is a convergence problem for a circle.

1347

1348 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

Fig. 1.1. Reuleux’s triangle.

that the positions of the robots are the only information available, they proposed a
simple heuristic distributed algorithm (to be executed independently by all robots),
which, according to simulation results, sometimes brings the robots to a pattern
reminiscent of a Reuleaux’s triangle (Figure 1.1) rather than a circle. Tanaka [16] later
improved their algorithm and demonstrated, using simulation, that his new algorithm
avoids this problem and generates a better approximation of a circle. In essence, in
his algorithm each robot simply adjusts its position regarding the midpoint of the
positions of the nearest and farthest neighbors as the center of the circle to which the
robots are converging, while moving away from its nearest neighbor if the distance
to that midpoint is approximately equal to the given target radius. Figure 1.2 shows
the behavior of 50 robots executing his algorithm starting from an initial distribution
generated randomly. This extremely simple algorithm demonstrates the potential of
the distributed method. The circle formation problem was also discussed recently
by Debest [2] from the viewpoint of self-stabilization. A system is said to be self-
stabilizing if it recovers from any finite number of transient errors [12], and thus self-
stabilizing robot algorithms are robust against a finite number of sensor and control
errors.

Formation problems of geometric patterns are closely related to certain agreement
problems. Agreement on a common x-y coordinate system by the robots, for instance,
can greatly reduce the complexity of motion coordination algorithms; e.g., convergence
toward a single point can easily be solved by moving all the robots toward point (0, 0)
of the common coordinate system. However, such a simple solution is not possible
if the robots have only their own local coordinate systems, whose origins may or
may not agree. It is sometimes assumed in the literature, therefore, that either there
exists a global coordinate system or that some navigation devices (e.g., a variety of
potential functions [18], compasses [3], or beacons and lighthouses [4]) are available to
compensate for the lack of such a system. Note here that the agreement problem on a
common coordinate system can (partially) be reduced to certain formation problems:
If the robots can form (i.e., gather at) a single point, then they can agree to use
that point as the origin of the common coordinate system. Similarly, formation of
a circle implies agreement on both the origin and the unit distance (i.e., the center
and the radius of the circle). Formation of a symbol “>” implies agreement on the
origin, the unit distance, and the positive x-direction, i.e., agreement on a common
x-y coordinate system.

Related work on the distributed robot control method includes the following.
Wang and Beni [17] considered a cellular robotic system consisting of a large number

DISTRIBUTED MOBILE ROBOTS 1349

Fig. 1.2. Hollow circles are the initial positions of 50 robots. Solid circles are their final
positions after execution of Tanaka’s algorithm. Small dots represent their intermediate positions.

of robots that operate in a cellular space under distributed control. They discussed
the problem of generating certain one- and two-dimensional cellular patterns using
distributed control and showed how the technique can be applied to the design of sen-
sor arrays and escape systems. Fukuda and Nakagawa [6] and Kawauchi, Inaba, and
Fukuda [7] considered a dynamically reconfigurable robotic system called CEBOT,
which consists of many simple cells that can detach and combine autonomously to
change its overall shape, depending on the task and the environment. Kokaji [8] and
Murata, Kurokawa, and Kokaji [10] designed self-reorganizing systems called Fractal
Machine and Fractum, respectively, based on a similar idea (but unlike CEBOT, these
systems consist of homogeneous units) and discussed dynamic reconfiguration based
on a set of local rules. Fujimura [5] investigated how planning algorithms, knowledge
about the environment, and action intervals of the robots affect the overall perfor-
mance of two robots moving toward their respective goal positions while avoiding
collision. Sugihara and Suzuki [13], [14], and Suzuki and Yamashita [15] considered
formation and agreement problems for anonymous mobile robots in the plane. Work
by others includes swarm intelligence [1] and collective behavior of multiple robots
[9], [11].

The main emphasis of most of the work mentioned above has been on the de-
velopment of heuristic algorithms for various problems, and rigorous proofs of the
correctness of these algorithms have not been given. In contrast, as we stated earlier
in this paper, we conduct a formal investigation on the power and limitations of the
distributed control method.

We model a robot as a mobile processor with infinite memory and a sensor for
detecting the positions of other robots2 that repeatedly becomes active at infinitely

2We assume that the sensor cannot measure the velocity or acceleration of other robots and that
other navigation devices such as compasses and beacons are not available.

1350 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

many unpredictable time instants. (At other times it is inactive.) We assume that
initially the robots do not have a common x-y coordinate system and that the local
x-y coordinate systems of the robots may not agree on the location of the origin,
the unit distance, or the direction of the positive x-axis. Each time a robot becomes
active, using its sensor it observes the positions of all the robots in terms of its own
local x-y coordinate system and moves to a new position determined by the given
deterministic algorithm.3 The algorithm is oblivious if the new position is determined
only from the positions of the robots observed at that time instant. Otherwise, it
is nonoblivious, and the new position may depend also on the observations made in
the past. Note that oblivious algorithms are self-stabilizing by definition. To simplify
the discussion and bring forth the fundamental issues of the problem, in this paper
we assume that (1) the initial positions of the robots are all distinct, (2) the time it
takes for a robot to move to its new position is negligibly small, and (3) a robot is a
point (so two robots can occupy the same position simultaneously and never collide).
The robots are anonymous in the sense that (1) they do not know their identifiers,
(2) they all use the same algorithm for determining the next position, and (3) they
cannot be distinguished by their appearances.

Let π be a predicate describing a geometric pattern, such as a point, a regular
polygon, a line segment, etc. On the one hand, we say that an algorithm ψ solves the
convergence problem for π if the robots’ distribution converges to one that satisfies π,
regardless of the number n of robots, their initial distribution, and the timing with
which they become active. On the other hand, we say that ψ solves the formation
problem for π if the robots eventually reach a distribution that satisfies π in a finite
number of steps, regardless of n, their initial distribution, and the timing with which
they become active. (See section 2 for formal definitions of these concepts.)

We begin with a simple problem of converging the robots toward a single point.
(That is, this is the convergence problem for a predicate π that describes a point.
Note that the process of convergence need not terminate in finite steps.) Note again
that since the robots do not have a common x-y coordinate system, we cannot simply
use an algorithm such as “move toward the origin (0, 0).” For this problem we give a
simple oblivious algorithm.

We also consider the formation problem for a point, in which the robots must
form (i.e., gather at) a single point in finite steps. We show that this problem can be
solved by a nonoblivious algorithm for any n ≥ 2 and by an oblivious algorithm for
any n ≥ 3, but it is not solvable by any oblivious algorithm for the case n = 2, where
n is the total number of robots.

Finally, we characterize the class of geometric patterns for which the formation
problem is solvable in our model. We do so by first examining the class of patterns that
the robots can form, starting from a given initial configuration. Our main observation
is that since the robots may happen to become active simultaneously all the time
(i.e., their motions turn out to be synchronized) and (by definition) algorithms are
required to solve the given problem regardless of the timing with which the robots
become active, the robots may not be able to break the “symmetry” that exists in their
initial distribution by executing an algorithm (which is deterministic by definition).
Based on this and using techniques that have been developed for anonymous complete
networks in [19], [20], we prove that the formation problem is solvable by an algorithm
(in the sense defined above) only for two patterns: a point and a regular n-gon. The

3In this paper we do not consider nondeterministic algorithms that allow a robot to randomly
select its next position from two or more candidates.

DISTRIBUTED MOBILE ROBOTS 1351

algorithm we present for the formation of a regular n-gon is nonoblivious. Whether
an oblivious algorithm exists for this problem remains open.

We present necessary definitions and basic assumptions in section 2. Convergence
and formation problems for a point are discussed in section 3. Section 4 gives a
characterization of the class of geometric patterns that the robots can form in our
model. Discussions and concluding remarks are presented in section 5.

2. Definitions and basic assumptions. We formalize the concepts described
in section 1. Let r1, r2, . . . , rn be the robots in a two-dimensional space. (The sub-
script i of ri is used for convenience of explanation. The robots do not know their
identifiers.) We denote by Zi = (oi, di, ui), 1 ≤ i ≤ n, the local x-y coordinate system
of ri, where oi, di, and ui denote the position of the origin, direction of the positive
x-axis, and size of the unit distance, respectively, under Zi. It is possible that Zi 6= Zj
for some i and j, but the robots are assumed to have a common sense of orientation
so that in each Zi, the positive y-direction is 90 degrees counterclockwise from the
positive x- direction. As we describe below, all robot positions that ri observes and
computes are given in terms of Zi.

We assume discrete time 0, 1, 2, . . . and let pi(t) be the position of ri at time instant
t, where pi(0) is the initial position of ri. We assume that p1(0), p1(0), . . . , pn(0) are
all distinct. Define P (t) = {pi(t)|1 ≤ i ≤ n} to be the multiset of the positions of
the robots at time t. (P (t) is a multiset, since we assume that two robots can occupy
the same position simultaneously.) For any point p, we denote by [p]j the position of
p given in terms of Zj and define [P (t)]j = {[pi(t)]j |1 ≤ i ≤ n}. Thus [P (t)]j shows
how rj views the distribution P (t) in terms of its own Zj . Note that if Zj 6= Zk,
then it is possible that [P (t)]j 6= [P (t)]k; i.e., rj and rk may observe distribution P (t)
differently. However, [P (t)]j = [P (t)]k may hold even if pj(t) 6= pk(t). In this case, rj
and rk are located at different positions, but P (t) looks identical to them.

At each time instant t, every robot ri is either active or inactive. Without loss of
generality we assume that at least one robot is active at every time instant. We use
At to denote the set of active robots at t, and call the sequence A = A0, A1, . . . an
activation schedule. We assume that every robot becomes active at infinitely many
time instants, but no additional assumptions are made on the timing with which
the robots become active. Thus A need satisfy only the condition that every robot
appears in infinitely many At’s. Note that a special case is when every robot appears
in At for every t; in this case we say that the robots are synchronized.

The algorithm that a robot uses is a function ψ such that, for any given sequence
(Q1, p1), (Q2, p2), . . . , (Qm, pm) of pairs of a multiset Q` of points and a point p` ∈ Q`,
ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) is a point such that the distance between pm and
ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) is at most 1. The position of a robot at t ≥ 1 is
determined by P (0), A, and ψ, as follows.

For any t ≥ 0, if ri 6∈ At (ri is inactive), then pi(t + 1) = pi(t); i.e., ri does
not move. If ri ∈ At (ri is active), then let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm = t be the
time instants when ri has been active, and for each 1 ≤ ` ≤ m, let Q` = [P (t`)]i
and p` = [pi(t`)]i be the distribution that ri observed and the position of ri at t`,
respectively. (Note that Q` and p` are given in terms of Zi.) Then pi(t + 1) = p,
where p is the point such that [p]i = ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)). That is,
ri moves to point ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) of Zi. By the restriction on ψ
stated above, the maximum distance that ri can move in one step is the unit distance
1 of Zi, which corresponds to some physical distance εi > 0. Note that every robot is
then capable of moving over distance at least ε = min{ε1, ε2, . . . , εn} > 0 in one step.

1352 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

That is, ri observes the distribution of the robots only when it is active, and its
next position depends only on ψ and the distributions that ri has observed so far. The
p` in pair (Q`, p`) shows that ri is always aware of its current position in Zi. Algorithm
ψ is said to be oblivious if ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) = ψ((Qm, pm)) for any
(Q1, p1), (Q2, p2), . . . , (Qm, pm). In this case, the move of a robot depends only on
the current configuration of the robots. Otherwise, ψ is nonoblivious. Note that the
robots are anonymous in the following sense: (1) function ψ is common to all the
robots, (2) the identifier i of robot ri is not an argument of ψ, and (3) [P (t)]i contains
only the positions of the robots (but not their identities).

Let π be a predicate over the set of multisets of points that is invariant under
any rotation, translation, and uniform scaling. For example, π might be true iff the
given points are on the circumference of a circle or on a line segment. For such π, we
consider two types of problems: the convergence problem and the formation problem.
An algorithm ψ is said to solve the convergence problem for π if, as t goes to infinity,
P (t) converges to a distribution that satisfies π, regardless of the number n of robots,
initial distribution P (0), and activation schedule A. In contrast, in the formation
problem the robots must reach a distribution satisfying π in finite steps and “halt.”
That is, an algorithm ψ is said to solve the formation problem for π if there exists
some time instant t′ such that P (t′) satisfies π and pi(t

′) = pi(t
′ + 1) = · · · for all

1 ≤ i ≤ n, regardless of n, P (0), and A. Since the robots have no knowledge of
the underlying coordinate system, the robots can only converge to or form a pattern
similar to the given goal pattern. The restriction on π stated above was introduced for
this reason. All predicates discussed in the following sections satisfy this condition.

3. Convergence and formation problems for a point. Formally, the prob-
lem of converging the robots to a point is stated as the convergence problem for
predicate πpoint, where πpoint(p1, . . . , pn) = true iff pi = pj for any 1 ≤ i, j ≤ n. We
call this problem C-POINT. The corresponding formation problem for πpoint is called
F-POINT. Note that in F-POINT, all robots must occupy a single point in finite
steps, whereas in C-POINT they need only converge to a single point. These are per-
haps some of the simplest problems one could consider. Nevertheless, the discussions
presented in this section can serve as an introduction to the technical results given in
the rest of the paper. An algorithm that solves F-POINT also solves C-POINT.

For convenience, we present all algorithms by giving an informal description of the
behavior of the robots executing it, instead of giving a formal definition of function ψ.
Converting the informal description into a formal definition of ψ is straightforward.

It is easy to show that the following oblivious algorithm ψc−point(2) solves
C-POINT for the case n = 2.

ALGORITHM ψc−point(2)—OBLIVIOUS.
Each time ri becomes active, it moves toward4 the midpoint m of its current

position and that of the other robot rj .
Suppose that we modify ψc−point(2) so that each robot moves toward the position

of the other robot. Then the two robots will continue to swap their positions if they
are mutually reachable in one step and always become active simultaneously. (Recall
that we assume robots never collide with each other.) Thus this modified algorithm
does not solve C-POINT for n = 2.

Note that if exactly one robot becomes active at every time instant, then the

4Unless otherwise stated, “a robot moves toward point p” means that “a robot moves to the
point p′ closest to p that is reachable in one step from the current position.” Of course, p = p′ if p
is reachable in one step.

DISTRIBUTED MOBILE ROBOTS 1353

two robots executing ψc−point(2) will never occupy the same point. Thus oblivious
algorithm ψc−point(2) does not solve F-POINT for n = 2. In fact, we have the following
theorem.

Theorem 3.1. There is no oblivious algorithm for solving F-POINT for the case
n = 2.

Proof. Suppose that there is an oblivious algorithm ψ that solves F-POINT for
two robots ri and rj . Note that since ψ is oblivious, the moves of the robots depend
only on Zi, Zj and their current positions.

We first show that there exist distinct positions p and q of ri and rj , respectively,
such that either (1) ψ moves ri from p to q and rj from q to q, or (2) ψ moves ri
from p to p and rj from q to p. (That is, ψ moves exactly one robot to the position of
the other if both robots become active simultaneously.) To see this, assume that such
positions do not exist. Consider a scenario S in which ri and rj , located at distinct
positions p and q, respectively, at time t − 1 occupy the same position r at time t.
Now we show that we can modify this scenario and obtain another scenario in which
the robots never occupy the same position simultaneously. There are two cases.

Case 1. Both ri and rj are active at time t− 1 in S. By assumption, r 6= p and
r 6= q. Thus if exactly one robot, say, ri, happens to be active at t− 1, then at time
t, ri is located at r and rj at q, where r 6= q.

Case 2. Exactly one robot is active at t − 1 in S. Suppose that ri is active at
t− 1 but rj is not. Then r = q. So if both robots happen to be active at t− 1, then
at time t, ri is located at q and rj at some point s, where by assumption s 6= q.

Using this argument repeatedly, we can construct an infinite sequence of moves
in which the robots never occupy the same position simultaneously. (We can do so in
such a way that each robot becomes active infinitely many times, since either of the
robots can be chosen to be inactive in Case 1.) So ψ does not solve F-POINT. This
is a contradiction.

Now consider an initial distribution P (0) = {p, q} in which ri and rj are at p and
q, respectively, and ψ moves ri from p to q, and rj from q to q; see Figure 3.1(a).
(The case in which ψ moves rj to the positions of ri is similar.) Now, by modifying Zi
through translation and rotation, we can construct another configuration in which ri
observes distribution P (0) the same way as rj ; i.e., [P (0)]i = [P (0)]j and [p]i = [q]j ;
see Figure 3.1(b). Then ψ moves ri and rj in the same manner in the new configuration
and, of course, ψ moves rj in the same manner in both configurations (namely, from
q to q). Therefore, in the new configuration ψ moves ri from p to p and rj from q to
q. Then, since ψ is oblivious, both robots remain in their respective initial positions
forever. Thus ψ does not solve F-POINT. This is a contradiction.

However, F-POINT can be solved for two robots by the following nonoblivious
algorithm ψf−point(2).

5

ALGORITHM ψf−point(2)—NONOBLIVIOUS.
When ri becomes active for the first time, it translates and rotates its coordinate

system6 Zi so that
1. ri is at (0, 0) of Zi, and
2. the other robot rj is on the positive y-axis of Zi, say, at (0, a) for some a > 0.

5If all robots are known to be active at every time instant (i.e., the robots are “synchronous”),
then a simple oblivious algorithm that moves both robots toward the midpoint of their current
positions solves F-POINT for two robots.

6Formally, ri cannot modify Zi in our framework, but the effect of such a transformation can
easily be simulated within the framework.

1354 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

Fig. 3.1. (a) ri moves but rj does not. (b) After modification of Zi.

Then it moves in the positive x direction of Zi, over any nonzero distance. It then
continues to move in the same direction each time it becomes active until it observes
that the position of rj has changed twice.

Now, ri knows line ` that contains the first two distinct positions of rj that ri
has observed. (Note that by symmetry ` is the x-axis of rj ’s coordinate system Zj .)
Then using Lemma 3.2, ri finds the initial position of rj and moves to the midpoint
of the initial positions of ri and rj .

Lemma 3.2, which follows immediately from the description of ψf−point(2), shows
that robots ri and rj executing ψf−point(2) eventually find out which of them became
active first for the first time and what their initial distribution was.

Lemma 3.2. Let ti and tj be the time instants at which ri and rj, respectively,
become active for the first time in ψf−point(2). Then the following hold.

1. The trajectory of ri and the trajectory of rj are parallel iff ti = tj. In this case,
each robot sees the other robot at its initial position at ti(= tj) (Figure 3.2(a)).

2. The trajectory of rj intersects the negative x-axis of Zi iff ti < tj. In this
case, ri sees rj at its initial position, and ri’s initial position is the foot of
the perpendicular drop from rj’s initial position to the line containing the
trajectory of ri (Figure 3.2(b)).

3. The trajectory of ri intersects the negative x-axis of Zj iff tj < ti. In this
case, rj sees ri at its initial position, and rj’s initial position is the foot of
the vertical drop from ri’s initial position to the line containing the trajectory
of rj.

Theorem 3.3. Algorithm ψf−point(2) solves problem F-POINT for n = 2.
Proof. A key observation is the following: When ri observes that the position of

rj has changed twice, rj must have already observed that ri’s position has changed
at least once and thus rj knows where the x-axis of Zi is. Similarly, rj will know that
ri knows where the x-axis of Zj is. Then the correctness of ψf−point(2) follows from
Lemma 3.2.

DISTRIBUTED MOBILE ROBOTS 1355

Fig. 3.2. Illustration for ψf−point(2); (a) ti = tj , (b) ti < tj .

Finally, we have the following result on F-POINT and C-POINT for n ≥ 3.
Theorem 3.4. There is an oblivious algorithm for solving F-POINT (and thus

C-POINT) for n ≥ 3.
Proof. It suffices to give an oblivious algorithm ψf−point(n) that solves F-POINT.

The idea is the following. Starting from distinct initial positions, we move the robots
in such a way that eventually there will be exactly one position, say, p, that two
or more robots occupy. Once such a distribution is reached, all robots that are not
located at p move toward p in such a way that no two robots will occupy the same
position at any location other than p. Then all robots eventually occupy p, solving
F-POINT.

Such a distribution can be obtained if each robot, each time it becomes active,
determines which of the following cases applies and moves to a new position (or
remains stationary) as specified. Since a robot’s action is based only on the current
robot distribution, this strategy can be implemented as an oblivious algorithm.

Case 1. n = 3; p1, p2, and p3 denote the positions of the three robots.
1.1. If n = 3 and p1, p2, and p3 are collinear with p2 in the middle, then the robots

at p1 and p3 move toward p2 while the robot at p2 remains stationary. Then
eventually two robots occupy p2.

1.2. If n = 3 and p1, p2, and p3 form an isosceles triangle with |p1p2| = |p1p3| 6=
|p2p3|, then the robot at p1 moves toward the foot of the perpendicular drop
from its current position to p2p3 in such a way that the robots do not form
an equilateral triangle at any time, while the robots at p2 and p3 remain
stationary. Then eventually the robots become collinear and the problem is
reduced to part 1.1.

1.3. If n = 3 and the lengths of the three sides of triangle p1p2p3 are all different,
say, |p1p2| > |p1p3| > |p2p3|, then the robot at p3 moves toward the foot of
the perpendicular drop from its current position to p1p2 while the robots at
p1 and p2 remain stationary. Then eventually the robots become collinear
and the problem is reduced to part 1.1.

1.4. If n = 3 and p1, p2, and p3 form an equilateral triangle, then every robot
moves towards the center of the triangle. Since all robots can move up to
at least a constant distance ε > 0 in one step, if part 1.4 continues to hold
then eventually either the robots meet at the center, or the triangle they form
becomes no longer equilateral and the problem is reduced to part 1.2 or part
1.3.

1356 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

Case 2. n ≥ 4; Ct denotes the smallest enclosing circle of the robots at time t.
2.1. If n ≥ 4 and there is exactly one robot r in the interior of Ct, then r moves

toward the position of any one robot, say, r′, on the circumference of Ct while
all other robots remain stationary. Then eventually r and r′ occupy the same
position.

2.2. If n ≥ 4 and there are two or more robots in the interior of Ct, then these
robots move toward the center of Ct while all other robots remain stationary
(so that the center of Ct remains unchanged). Then eventually at least two
robots reach the center.

2.3. If n ≥ 4 and there are no robots in the interior of Ct, then every robot moves
toward the center of Ct. Since all robots can move up to at least a constant
distance ε > 0 in one step, if part 2.3 continues to hold, then eventually the
radius of Ct becomes at most ε. Once this happens, then the next time some
robot moves, say, at t′, either (i) two or more robots occupy the center of Ct
or (ii) there is exactly one robot r at the center of Ct, and therefore there is a
robot that is not on Ct′ (and the problem is reduced to part 2.1 or part 2.2)
since a cycle passing through r and a point on Ct intersects with Ct at most
at two points.

Suppose that for 1 ≤ i ≤ n, robot ri has (privately) chosen a directed line `i that
passes through its initial position. Algorithm ψf−point(2) uses a technique with which
all robots can simultaneously “broadcast” the locations and directions of `1, `2, . . . , `n.
The basic idea is that each robot ri moves repeatedly along `i in the given direction
until it observes that every rj , j 6= i has changed positions at least twice (i.e., until
ri sees rj at three or more distinct positions). Then, as we explained in the proof
of Theorem 3.3, every rj , j 6= i must have (become active and) seen ri at two or
more distinct positions along `i, and thus rj can conclude that the `i that ri has
chosen passes through the first two distinct positions of ri that rj has observed and
that `i is oriented in the direction from the first to the second positions of ri that
rj has observed. Care must be taken so that ri continues to move at least one more
time (to any distinct position) after observing that every rj has changed position at
least twice, since at this moment some rj might have observed ri only at two distinct
positions.

Another problem is that, since the robots are indistinguishable by their appear-
ances, if n > 2, then rj may not be able to determine how ri has moved, given the
robot distributions at two time instants. To cope with this, if n > 2, then we let each
robot ri memorize the distance ai > 0 to its nearest neighbor when it becomes active
for the first time and move at most distance ai/2

k+1 in the kth move. Then each ri
will remain in the interior of the ai/2-neighborhood of its initial position, and thus
every robot can correctly determine which robot has moved to which position even
after it has remained inactive for a long time.

4. Achievable geometric patterns. In this section we characterize the class
of geometric patterns that the robots can form regardless of the activation schedule
A, starting from a fixed initial configuration. For simplicity of explanation we assume
that each robot ri is located at the origin of its coordinate system Zi at time 0.
Essentially the same result holds even without this assumption.

Whether or not a particular geometric pattern can be formed depends not only on
the given initial positions of the robots but also on their local x-y coordinate systems.
For example, suppose that, initially, four robots r1, r2, r3, and r4 form a square in
counterclockwise order, where r2 is at position (1, 0) of Z1, r3 is at position (1, 0)

DISTRIBUTED MOBILE ROBOTS 1357

Fig. 4.1. Two configurations of four robots that are (a) symmetric, (b) not symmetric.

Fig. 4.2. ri, rj , and views Vi(0) and Vj(0).

of Z2, and so on, as shown in Figure 4.1(a). Intuitively, the robots have the same
“view,” and thus, if they are synchronized, then they will never be able to break
symmetry and form a pattern other than a square, but if the direction of the positive
x-axis happens to be the same for all four robots, as shown in Figure. 4.1(b), then
intuitively every robot has a unique “view,” and hence the robots may be able break
symmetry and form a pattern that is not a square. (In fact, the result given below
shows that the robots can form any pattern for this case.) We now formalize this
observation.

Following [19], [20], the view of robot ri at time t, denoted Vi(t), is defined
recursively as a rooted infinite tree as follows. See Figure 4.2.

1. The root of Vi(t) has n− 1 subtrees, one for each robot rj , j 6= i.
2. The edge from the root of Vi(t) to the subtree corresponding to rj is labeled

((a, b), (c, d)), where (a, b) is the position of rj in terms of Zi and (c, d) is the
position of ri in terms of Zj .

3. The subtree corresponding to rj is the view Vj(t) of rj at time t.
Note that each vertex of Vi(t) corresponds to a robot, but it is not labeled as such.
Two views Vi(t) and Vj(t

′) are said to be equivalent, written Vi(t) ≡ Vj(t′), if they are
isomorphic to each other, including the labels. A view is defined as an infinite tree

1358 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

for convenience of discussion; the relevant information is contained in the subtree of
height 2 from the root.

Vi(0) is thus the view of ri at time 0. Note that since the robots occupy distinct
positions at time 0, the edges incident on the root of Vi(0) have distinct labels. Since
at time 0 the robots have no knowledge of other robots’ local coordinate systems,
at time 0 robot ri does not know its view Vi(0). Using the following algorithm, the
robots can obtain sufficient information to construct their views at time 0.

ALGORITHM ψgetview—NONOBLIVIOUS.
The robots first broadcast the x-axes of their respective local coordinate systems

by moving in the respective positive x directions, return straight to their respective
initial positions, broadcast the y-axes of their respective local coordinate systems by
moving in the respective positive y directions, and finally return straight to their
respective initial positions. Since different robots may start the second broadcast (of
their local y-axes) at different time instants, every robot ri broadcasting its y-axis
must continue to move along its y-axis until it observes that every rj , j 6= i has
changed positions at least twice along a line perpendicular to the first line that rj
broadcasted.

At this moment every robot ri has discovered the initial distribution P (0) (in
terms of Zi) as well as the direction of the positive x-axis of Zj for every robot
rj . Then ri measures the minimum distance di between any two robots in P (0)
in terms of Zi and “announces” the value of di to all other robots by broadcasting
the directed line through its initial position with direction f(di) of Zi, where for
x > 0, f(x) = (1 − 1/2x) × 360◦ is a monotonically increasing function with range
(0◦, 360◦). Then, any robot observing the movement of ri can determine the value of
di (and hence the unit distance of Zi) from its knowledge on the positive x direction
of Zi and direction f(di) of Zi. Finally, the robots return to their respective initial
positions.

When ψgetview is completed, each robot ri can determine the positions of all other
robots in terms of Zj for any j. Using this information, ri can construct its view Vi(0).

Let m be the size of a largest subset of robots having an equivalent view at time
0. If m = 1, then every robot has a unique view, and thus once Algorithm ψgetview is
executed the robots can be ordered using a suitable total ordering of the views. Then
for any multiset F of n points, using a predetermined total ordering of the points in F ,
the ith robot in the ordering can compute the location of the ith point in F relative
to some reference points (e.g., the positions of the first and second robots at time 0
if the first and second points of F are distinct) and move to that point. Therefore, if
m = 1, the robots can form a pattern similar to F for arbitrary F .

Therefore, in the following, we consider the case m ≥ 2. Lemmas 4.1, 4.2, 4.3,
and 4.4 refer to a fixed initial configuration with m ≥ 2.

Lemma 4.1. The robots can be partitioned into n/m groups of m robots each,
such that two robots have an equivalent view iff they belong to the same group.

Proof. The claim is trivial if m = n. Thus assume that m < n, and without loss of
generality suppose that V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0) but V1(0) 6≡ Vm+1(0). That is,
r1, r2, . . . , rm have an equivalent view at time 0 but rm+1 does not. Let ((a, b), (c, d))
be the label of the edge from the root of V1(0) to the vertex corresponding to rm+1.
Since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0) for each `, 1 ≤ ` ≤ m, there exists an edge
with label ((a, b), (c, d)) from the root of V`(0) to a vertex corresponding to some
robot ri` , where ri1 = rm+1. Now we show that the robots ri1 , ri2 , . . . , rim are all
distinct. Note that by symmetry there is an edge with label ((c, d), (a, b)) from the

DISTRIBUTED MOBILE ROBOTS 1359

Fig. 4.3. Illustration for the proof of Lemma 4.2, for the case m = 4.

root of Vi`(0), leading to a vertex that corresponds to robot r`. Thus if ri1 = ri2 , for
instance, then we have r1 = r2, a contradiction. Thus ri1 ,ri2 ,. . . ,rim are all distinct.
Furthermore, since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0) and Vi`(0) is a subtree of V`(0)
connected to the root of V`(0) by an edge with label ((a, b), (c, d)) for each `, we have
Vi1(0) ≡ Vi2(0) ≡ · · · ≡ Vim(0). Thus there are at least m robots (including rm+1)
having a view equivalent to that of rm+1. But then there must be exactly m such
robots, since there cannot exist more than m such robots by the definition of m. The
lemma follows from this observation.

Lemma 4.2. At time 0, the robots in the same group form a regular m-gon, and
the regular m-gons formed by all the groups have a common center.7 (See Figure 4.3.)

Proof. Suppose that V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), that is, r1, r2, . . . , rm have
an equivalent view at time 0. Consider the initial positions p1(0), p2(0), . . . , pm(0) of
these robots. Clearly, at least one of p1(0), p2(0), . . . , pm(0) is a corner of the convex
hull C of {p1(0), p2(0), . . . , pm(0)}. Then, since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), each
of p1(0), p2(0), . . . , pm(0) must be a corner of C. Without loss of generality, assume
that p1(0), p2(0), . . . , pm(0) occur in counterclockwise order around the convex hull.
(See Figure 4.3.)

Since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), the internal angles of C at the corners
p1(0), p2(0), . . . , pm(0) must all be identical, and the lengths of the edges of the
convex hull must all be identical. (If p1(0)p2(0) looks shorter than p2(0)p3(0) to
r2, then p2(0)p3(0) should look shorter than p3(0)p4(0) to r3, and so on, leading
to a conclusion that p1(0)p2(0) is shorter than p1(0)p2(0), a contradiction.) Thus
p1(0), p2(0), . . . , pm(0) form a regular m-gon.

Suppose that at time 0, rm+1, rm+2, . . . , r2m also have an equivalent view and that
their respective positions pm+1(0), pm+2(0), . . . , p2m(0) appear in counterclockwise
order around the regular m-gon they form. Then again, since V1(0) ≡ V2(0) ≡
· · · ≡ Vm(0), the position of pm+1(0) relative to p1 is the same as the position of
pm+2(0) relative to p2, and so on. (See Figure 4.3.) So the regular m-gon formed by
p1(0), p2(0), . . . , pm(0) and the regular m-gon formed by pm+1(0), pm+2(0), . . . , p2m(0)
have the same center.

7A regular 2-gon is simply a line segment whose center is the midpoint of the endpoints.

1360 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

Lemma 4.3. For any algorithm ψ, if the robots are synchronized, then at any
time instant t, the robots in the same group form a regular m-gon and the regular
m-gons formed by all the groups have a common center.

Proof. Suppose that V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), that is, r1, r2, . . . , rm have
an equivalent view at time 0. Now, since the initial distribution of the robots looks
identical to r1, r2, . . . , rm, the new positions they compute using ψ in their respective
Z1, Z2, . . . , Zm are all identical. Also, since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), the center
of the regular m-gon that r1, r2, . . . , rm form at time 0 has the same x-y coordinates
in all of Z1, Z2, . . . , Zm. This means that r1, r2, . . . , rm move in a symmetric manner
relative to the center of the regular m-gon, and thus at time 1 they again form a
regular m-gon with the same center. The same applies to all n/m groups, and since
the robots are synchronized, at time 1 they together form a collection of n/m regular
m-gons all having the same center. Since the robots in the same group have observed
the same robot distributions, their next moves at time 1 are also symmetric relative
to the center of the regular m-gon they currently form. Therefore, again, at time
2 the robots form a collection of n/m regular m-gons all having the same center.
Continuing in the same manner, we can prove that at any time instant t the robots
form a collection of n/m regular m-gons all having the same center.

Since the robots may happen to be synchronized, by Lemma 4.3 there exists
an algorithm ψ for forming a pattern similar to F starting from the given initial
configuration only if F can be partitioned into n/m regular m-gons all having the
same center. Conversely, we have the next lemma.

Lemma 4.4. For any multiset F of points that can be partitioned into n/m regular
m-gons all having the same center, there exists an algorithm ψ for forming a pattern
similar to F starting from the initial configuration. (The algorithm does not depend
on the initial configuration.)

Proof. We fix a total ordering over views and we fix an ordering of the n/m regular
m-gons in F . The idea is to move the robots in the jth group in the ordering of the
views to the corners of the jth regular m-gon, as in the case m = 1. Specifically, first
the robots execute Algorithm ψgetview and obtain their views. The robots in the first
group need not move any more, since the m-gon they form is similar to the corners
of the first m-gon of F (except when the first m-gon is a point, in which case the
robots must move to the center of the m-gon they form). Each robot in the second
group computes the position of a corner of the second m-gon of F (relative to the
location of the first m-gon of F) that is closest to its current position, breaking ties
in any deterministic manner. (If the first m-gon is a point and the second m-gon is
not, then the robots in the second group need not move.) The robots in other groups
also compute their final positions in a similar manner. Then the robots move to their
respective final positions and form a pattern similar to F .

The following theorem summarizes the discussion given above.
Theorem 4.5. Let m be the size of a largest subset of robots having an equivalent

view at time 0. Let F be a multiset of n points. There exists an algorithm ψ for
forming a pattern similar to F , starting from the given initial configuration iff either
(1) m = 1 or (2) m ≥ 2 and F can be partitioned into n/m regular m-gons all having
the same center.

Proof. The theorem follows from Lemmas 4.3 and 4.4.
We introduced in section 3 a predicate πpoint such that πpoint(p1, . . . , pn) =

true iff pi = pj for any 1 ≤ i, j ≤ n. Consider another predicate πregular, where
πregular(p1, . . . , pn) = true iff p1, . . . , pn form a regular n-gon. The following theo-

DISTRIBUTED MOBILE ROBOTS 1361

rem, which follows as a corollary to Theorem 4.5, states that these two are the only
predicates for which the formation problem is solvable.

Theorem 4.6. There exists an algorithm for solving the formation problem for
a predicate π iff either π = πpoint or π = πregular.

Proof. The if part for πregular follows immediately from Theorem 4.5, and that
for πpoint follows from Theorem 4.5 and the observation that, for any m that divides
n, a point can be viewed as a collection of n/m degenerate regular m-gons all having
the same center. The only-if part follows from the fact that if m = n, where m is
the size of a largest subset of robots having an equivalent view at time 0, then by
Theorem 4.5 an algorithm exists for the formation problem only for a single regular
n-gon (which reduces to a point if the polygon is degenerate).

5. Concluding remarks. We formally modeled the system of anonymous mo-
bile robots and characterized the class of geometric patterns that the robots can form.
In this section, we discuss other related issues.

5.1. Agreement on a common x-y coordinate system. In section 1 we
briefly mentioned that the agreement problem on a common x-y coordinate system is
reducible to the formation problem of certain geometric patterns. By Theorem 4.6 it
is always possible for the robots to form a point and a regular n-gon, hence the robots
can always agree on both the origin and unit distance (of a common x-y coordinate
system). On the one hand, the agreement problem on direction is unsolvable in
general, since otherwise the formation problem of a line segment would be solvable,
contradicting Theorem 4.6. On the other hand, it can be shown that if the robots
have a sense of direction (i.e., their local coordinate systems agree on the positive x
direction), then they have distinct views at time 0 (i.e., m = 1 where m is as defined
in section 4). As we have shown, in this case the robots can form (a pattern similar
to) any geometric pattern. This means that the difficulty of forming certain geometric
patterns lies in the difficulty of agreeing on direction (and break symmetry).

5.2. Issues of fault tolerance. As we mentioned in section 1, Debest [2] dis-
cussed the problem of forming a circle from the viewpoint of self-stabilizing systems.
Algorithms for controlling robots must be sufficiently robust against sensor and con-
trol errors. Oblivious algorithms are, by definition, self-stabilizing in the sense that
they achieve their goal even in the presence of a finite number of sensor and control
errors. In contrast, nonoblivious algorithms are sensitive to errors in general, and it
is a challenging open problem to enhance fault tolerance in such algorithms.

Another interesting issue in fault tolerance arises when the number of robots
changes dynamically a finite number of times during the execution of an algorithm,
where by this we mean that a robot becomes visible (or invisible) when it is added to
(or removed from) the system. Again by definition, an oblivious algorithm correctly
solves the given problem even if the number of robots changes a finite number of
times. One way to make nonoblivious algorithms robust against such changes is to
adopt an additional assumption that, if the number of robots changes, then it never
changes again until all robots have noticed the change. Under this assumption, it can
be shown that any nonoblivious algorithm works correctly when it is modified so that
a robot noticing a change in the number of robots “resets its memory and restarts the
algorithm” (i.e., it ignores the pairs (Q`, p`) for the observations made previously).

5.3. Time complexity. Since a robot may remain inactive for an unpredictable
period of time, we cannot use the total number of steps for measuring the time
complexity of a formation algorithm. An alternative measure of the complexity of

1362 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

an algorithm is the total distance that a robot must move to form a given pattern.
Under this measure, a robot moves over distance O(d) by the method used in the
proof of Lemma 4.4, where d is the diameter of the smallest enclosing circle of the
initial positions of the robots. (Note that the total distance that a robot moves while
executing ψgetview can be limited to O(1).) The bound of O(d) is tight for some
patterns (e.g., a point), since a robot can move at most a constant distance at a time.

5.4. Other open problems. Algorithms for solving a formation problem based
on the method given in the proof of Lemma 4.4 are nonoblivious. Thus Theorem 4.6
implies that a point and a regular n-gon can be formed by n robots regardless of the
initial distribution P (0) and the activation schedule A, by a nonoblivious algorithm.
An interesting question is whether these patterns can also be formed, regardless of
P (0) and A, by an oblivious algorithm. For the case of a point we already have
the answer: an oblivious algorithm for forming a point exists for the case n ≥ 3
(Theorem 3.4), but not for the case n = 2 (Theorem 3.1). However, the question
remains open for the formation of a regular n-gon. We are currently working on this
issue and also are conducting similar investigations on (1) randomized algorithms,
(2) the case in which the motion of a robot is not instantaneous, and (3) the three-
dimensional case.

REFERENCES

[1] G. Beni, S. Hackwood, and X. Liu, High-order strictly local swarms, in Distributed Au-
tonomous Robotic Systems, Asama, Fukuda, Arai, and Endo, eds., Springer-Verlag, New
York, 1994, pp. 267–278.

[2] X. A. Debest, Remark about self-stabilizing systems, Communications of the ACM, 38 (1995),
pp. 115–117.

[3] B. R. Donald, Information invariants in robotics: Part I—State, communication, and side-
effects, in Proceedings of the IEEE International Conference on Robotics and Automation,
Atlanta, GA, 1993, pp. 276–283.

[4] B. R. Donald, Information invariants in robotics: Part II—Sensors and computation, in
Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta,
GA, 1993, pp. 284–290.

[5] K. Fujimura, Model of reactive planning for multiple mobile agents, in Proceedings of the
IEEE International Conference on Robotics and Automation, Sacramento, CA, 1991, pp.
1503–1509.

[6] T. Fukuda and S. Nakagawa, Approach to the dynamically reconfigurable robot systems,
Journal of Intelligent and Robotics Systems, 1 (1988), pp. 55–72.

[7] Y. Kawauchi, M. Inaba, and T. Fukuda, A principle of decision making of cellular robotic
system (CEBOT), in Proceedings of the IEEE International Conference on Robotics and
Automation, Los Alamitos, CA, 1993, pp. 833–838.

[8] S. Kokaji, A fractal mechanism and a decentralized control method, in Proceedings of the
USA-Japan Symposium on Flexible Automation, Minneapolis, MN, 1988, pp. 1129–1134.

[9] M. J. Mataric, Designing emergent behaviors: From local interactions to collective intelli-
gence, in From Animals to Animates 2: Proceedings of the Second International Confer-
ence on Simulation of Adaptive Behavior, Meyer, Roitblat, and Wilson, eds., MIT Press,
Cambridge, MA, 1993, pp. 432–441.

[10] S. Murata, H. Kurokawa and S. Kokaji, Self-assembling machine, in Proceedings of the
IEEE International Conference on Robotics and Automation, San Diego, CA, 1994, pp.
441–448.

[11] L. E. Parker, Designing control laws for cooperative agent teams, in Proceedings of the IEEE
International Conference on Robotics and Automation, Los Alamitos, CA, 1993, pp. 582–
587.

[12] M. Schneider, Self–stabilization, ACM Computing Surveys, 25 (1993), pp. 45–67.
[13] K. Sugihara and I. Suzuki, Distributed motion coordination of multiple mobile robots, in

Proceedings of the 5th IEEE International Symposium on Intelligent Control, Philadelphia,
PA, 1990, pp. 138–143.

DISTRIBUTED MOBILE ROBOTS 1363

[14] K. Sugihara and I. Suzuki, Distributed algorithms for formation of geometric patterns with
many mobile robots, Journal of Robotic Systems, 13 (1996), pp. 127–139.

[15] I. Suzuki and M. Yamashita, Formation and agreement problems for anonymous mobile
robots, in Proceedings of the 31st Annual Allerton Conference on Communication, Control,
and Computing, University of Illinois, Urbana, IL, 1993, pp. 93–102.

[16] O. Tanaka, Forming a Circle by Distributed Anonymous Mobile Robots, Bachelor thesis, De-
partment of Electrical Engineering, Hiroshima University, Hiroshima, Japan, 1992.

[17] J. Wang and G. Beni, Cellular robotic systems: Self-organizing robots and kinetic pattern
generation, in Proceedings of the 1988 IEEE International Workshop on Intelligent Robots
and Systems, Tokyo, Japan, 1988, pp. 139–144.

[18] L. L. Whitcomb, D. E. Koditschek, and J. B. D. Cabrera, Toward the automatic control
of robot assembly tasks via potential functions: The case of 2-D sphere assemblies, in
Proceedings of the IEEE International Conference on Robotics and Automation, Nice,
France, 1992, pp. 2186–2191.

[19] M. Yamashita and T. Kameda, Computing on anonymous networks Part I: Characterizing
the solvable cases, IEEE Transactions on Parallel and Distributed Systems, 7 (1996), pp.
69–89.

[20] M. Yamashita and T. Kameda, Computing on anonymous networks Part II: Decision and
membership problems, IEEE Transactions on Parallel and Distributed Systems, 7 (1996),
pp. 90–96.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY
FUNCTION∗

JOHAN HÅSTAD† , RUSSELL IMPAGLIAZZO‡ , LEONID A. LEVIN§ ,
AND MICHAEL LUBY¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1364–1396

Abstract. Pseudorandom generators are fundamental to many theoretical and applied aspects
of computing. We show how to construct a pseudorandom generator from any one-way function.
Since it is easy to construct a one-way function from a pseudorandom generator, this result shows
that there is a pseudorandom generator if and only if there is a one-way function.

Key words. one-way function, pseudorandom generator, cryptography, complexity theory

AMS subject classifications. 68P25, 68Q25, 68Q99

PII. S0097539793244708

1. Introduction. One of the basic primitives in the study of the interaction
between randomness and feasible computation is a pseudorandom generator. Intu-
itively, a pseudorandom generator is a polynomial time-computable function g that
stretches a short random string x into a long string g(x) that “looks” random to any
feasible algorithm, called an adversary. The adversary tries to distinguish the string
g(x) from a random string the same length as g(x). The two strings “look” the same
to the adversary if the acceptance probability for both strings is essentially the same.
Thus, a pseudorandom generator can be used to efficiently convert a small amount of
true randomness into a much larger number of effectively random bits.

The notion of randomness tests for a string evolved over time: from set-theoretic
tests to enumerable [K65], recursive, and finally limited time tests. Motivated by cryp-
tographic applications, the seminal paper [BM82] introduced the idea of a generator
which produces its output in polynomial time such that its output passes a general
polynomial time test. The fundamental paper [Yao82] introduced the definition of a
pseudorandom generator most commonly used today and proves that this definition
and the original of [BM82] are equivalent.

The robust notion of a pseudorandom generator, due to [BM82], [Yao82], should
be contrasted with the classical methods of generating random looking bits as de-
scribed in, e.g., [Knuth97]. In studies of classical methods, the output of the generator
is considered good if it passes a particular set of standard statistical tests. The lin-
ear congruential generator is an example of a classical method for generating random
looking bits that pass a variety of standard statistical tests. However, [Boyar89] and
[K92] show that there is a polynomial time statistical test which the output from this

∗Received by the editors February 22, 1993; accepted for publication (in revised form) August 18,
1997; published electronically April 7, 1999.

http://www.siam.org/journals/sicomp/28-4/24470.html
†Department of Numerical Analysis and Computer Science, Royal Institute of Technology, S-

100 44 Stockholm 70, Sweden (Johanh@nada.kth.se). This research was supported by the Swedish
National Board for Technical Development.
‡Department of Computer Science, University of California at San Diego, La Jolla, CA 92093

(Russell@cs.ucsd.edu). This research was supported by NSF grant CCR 88-13632.
§Computer Science Department, Boston University, 111 Cummington St., Boston, MA 02215

(Lnd@cs.bu.edu). This research was supported by NSF grants CCR-9015276 and CCR-9610455.
¶International Computer Science Institute, University of California at Berkeley, 1947 Center

Street, Berkeley, CA 94704 (Luby@icsi.berkeley.edu). This research was supported by NSERC grant
A8092 and NSF grants CCR-9016468 and CCR-9304722.

1364

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1365

generator does not pass.
The distinction between the weaker requirement that the output pass some par-

ticular statistical tests and the stronger requirement that it pass all feasible tests is
particularly important in the context of many applications. As pointed out by [BM82],
in cryptographic applications the adversary must be assumed to be as malicious as
possible, with the only restriction on tests being computation time. A pseudorandom
generator can be directly used to design a private key cryptosystem secure against all
such adversaries.

In the context of Monte Carlo simulation applications, a typical algorithm uses
long random strings, and a typical analysis shows that the algorithm produces a cor-
rect answer with high probability if the string it uses is chosen uniformly. In practice,
the long random string is not chosen uniformly, as this would require more random
bits than it is typically reasonable to produce (and store). Instead, a short random
string is stretched into a long string using a simple generator such as a linear congru-
ential generator, and this long string is used by the simulation algorithm. In general,
it is hard to directly analyze the simulation algorithm to prove that it produces the
correct answer with high probability when the string it uses is produced using such a
method. A pseudorandom generator provides a generic solution to this problem. For
example, [Yao82] shows how pseudorandom generators can be used to reduce the num-
ber of random bits needed for any probabilistic polynomial time algorithm and thus
shows how to perform a deterministic simulation of any polynomial time probabilistic
algorithm in subexponential time based on a pseudorandom generator. The results
on deterministic simulation were subsequently generalized in [BH89], [BFNW96].

Since the conditions are rather stringent, it is not easy to come up with a natural
candidate for a pseudorandom generator. On the other hand, there seem to be a vari-
ety of natural examples of another basic primitive: the one-way function. Informally,
f is one-way if it is easy to compute but hard on average to invert. If P=NP, then
there are no one-way functions, and it is not even known if P 6= NP implies there
are one-way functions. However, there are many examples of functions that seem
to be one-way in practice and that are conjectured to be one-way. Some examples
of conjectured one-way functions are the discrete logarithm problem modulo a large
randomly chosen prime (see, e.g., [DH76]), factoring a number that is the product of
two large randomly chosen primes (see, e.g., [RSA78]), problems from coding theory
(see, e.g., [McEl78], [GKL93]), and the subset sum problem for appropriately chosen
parameters (see, e.g., [IN96]).

The paper [BM82] is the first to construct a pseudorandom generator based on a
one-way function. They introduce an elegant construction that shows how to construct
a pseudorandom generator based on the presumed difficulty of the discrete logarithm
problem. The paper [Yao82] substantially generalizes this result by showing how to
construct a pseudorandom generator from any one-way permutation. (Some of the
arguments needed in the proof were missing in [Yao82] and were later completed by
[Levin87]. Also, [Levin87] conjectured that a much simpler construction would work
for the case of one-way permutations, and this was eventually shown in [GL89].)

There are several important works that have contributed to the expansion of
the conditions on one-way functions under which a pseudorandom generator can be
constructed. [GMT82] and [Yao82] show how to construct a pseudorandom generator
based on the difficulty of factoring, and this was substantially simplified in [ACGS88].
When f is a one-way permutation, the task of inverting f(x) is to find x. In the case
when f is not a permutation, the natural extension of successful inversion is finding

1366 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

any x′ such that f(x′) = f(x). The paper [Levin87] introduces one-way functions
which remain one-way after several iterations and shows them to be necessary and
sufficient for the construction of a pseudorandom generator. The paper [GKL93]
shows how to construct a pseudorandom generator from any one-way function with
the property that each value in the range of the function has roughly the same number
of preimages. This expanded the list of conjectured one-way functions from which
pseudorandom generators can be constructed to a variety of nonnumber theoretic
functions, including coding theory problems.

However, the general question of how to construct a pseudorandom generator from
a one-way function with no structural properties was left open. This paper resolves
this question. We give several successively more intricate constructions, starting with
constructions for one-way functions with a lot of structure and finishing with the
constructions for one-way functions with no required structural properties.

This paper is a combination of the results announced in the conference papers
[ILL89] and [H90].

1.1. Concepts and tools. Previous methods, following [BM82], rely on con-
structing a function that has an output bit that is computationally unpredictable
given the other bits of the output, but is nevertheless statistically correlated with
these other bits. [GL89] provide a simple and natural input bit which is hidden from
(a padded version of) any one-way function. Their result radically simplifies the pre-
vious constructions of pseudorandom generators from one-way permutations and in
addition makes all previous constructions substantially more efficient. We use their
result in a fundamental way.

Our overall approach is different in spirit from previous constructions of pseu-
dorandom generators based on one-way functions with special structure. Previous
methods rely on iterating the one-way function many times, and from each iteration
they extract a computationally unpredictable bit. The approach is to make sure that
after many iterations the function is still one-way. In contrast, as explained below in
more detail, our approach concentrates on extracting and smoothing entropy in par-
allel from many independent copies of the one-way function. Our overall construction
combines this parallel approach with a standard method for iteratively stretching the
output of a pseudorandom generator.

The notion of computational indistinguishability provides one of the main con-
ceptual tools in our paper. Following [GM84] and [Yao82], we say that two probability
distributions D and E are computationally indistinguishable if no feasible adversary
can distinguish D from E . In these terms, a pseudorandom generator is intuitively the
following: let g be a polynomial time computable function that maps strings of length
n to longer strings of length `n > n. Let X be a random variable that is uniformly
distributed on strings of length n and let Y be a random variable that is uniformly
distributed on strings of length `n. Then g is a pseudorandom generator if g(X) and
Y are computationally indistinguishable.

The Shannon entropy of a distribution is a good measure of its information con-
tent. A fundamental law of information theory is that the application of a function
cannot increase entropy. For example, because X has n bits of entropy, g(X) can also
have at most n bits of entropy (see Proposition 2.6). The work presented in this pa-
per focuses on a computational analogue of Shannon entropy, namely computational
entropy. We say the computational entropy of g(X) is at least the Shannon entropy of
Y if g(X) and Y are computationally indistinguishable. If g(X) is a pseudorandom
generator, the computational entropy of g(X) is greater than the Shannon entropy of

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1367

its input X, and in this sense g amplifies entropy.
We introduce the following generalizations of a pseudorandom generator based

on computational entropy. We say that g(X) is a pseudoentropy generator if the
computational entropy of g(X) is significantly more than the Shannon entropy of X.
We say that g(X) is a false-entropy generator if the computational entropy of g(X)
is significantly more than the Shannon entropy of g(X).

We show how to construct a false-entropy generator from any one-way function,
a pseudoentropy generator from any false-entropy generator, and finally a pseudo-
random generator from any pseudoentropy generator. (The presentation of these
results in the paper is in reverse order.)

We use hash functions and their analysis in a fundamental way in our construc-
tions. This approach has its roots in [GKL93]. In [GL89], it turns out that the easily
computable bit that is hidden is the parity of a random subset of the input bits, i.e.,
the inner product of the input and a random string. This random inner product can
be viewed as a hash function from many bits to one bit.

Due to its importance in such basic algorithms as primality testing, randomness
has become an interesting computational resource in its own right. Recently, various
studies for extracting good random bits from biased “slightly random” sources that
nevertheless possess a certain amount of entropy have been made; these sources model
the imperfect physical sources of randomness, such as Geiger counter noise and Zener
diodes, that would have to actually be utilized in real life. (See [Blum84], [SV86],
[V87], [VV85], [CG88], and [McIn87].) One of our main technical lemmas (Lemma 4.8)
can be viewed as a hashing lemma which is used to manipulate entropy in various
ways: it can be viewed as a method for extracting close to uniform random bits from
a slightly random source using random bits as a catalyst.

1.2. Outline. An outline of the paper is as follows.
In section 2 we give notation, especially as related to probability distributions

and ensembles. In section 3, we define the basic primitives used in the paper and a
general notion of reduction between primitives. We spend a little more time on this
than is conventional in papers on cryptography, since we want to discuss the effects
of reductions on security in quantitative terms.

Section 4 introduces the basic mechanisms for finding hidden bits and manipulat-
ing entropy with hash functions. The main result of the section is a reduction from a
false-entropy generator to a pseudorandom generator via a pseudoentropy generator.

In section 5, we present a construction of a pseudorandom generator from a one-
way function where preimage sizes can be estimated. Although such one-way func-
tions are very common, and so this is an important special case, the main reason for
including this is to develop intuition for general one-way functions.

Section 6 presents the most technically challenging construction: that of a false-
entropy generator from any one-way function. Combined with section 4, this yields
the main result of the paper: the construction of a pseudorandom generator from any
one-way function.

In section 7, we present a somewhat more direct and efficient construction of
a pseudorandom generator from any one-way function. This section uses the ideas
from sections 4, 5, and 6, but avoids some redundancy involved in combining three
generic reductions. Section 8 concludes by placing our results in the context of modern
cryptographic complexity.

2. Basic notation. N is the set of natural numbers. If S is a set, then]S is
the number of elements in S. If S and T are sets, then S \ T is the set consisting of

1368 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

all elements in S that are not in T . If a is a number, then |a| is the absolute value of
a, dae is the smallest integer greater than or equal to a, and log(a) is the logarithm
base two of a.

Let x and y be bit strings. We let 〈x, y〉 denote the sequence x followed by y, and
when appropriate we also view this as the concatenation of x and y. If x ∈ {0, 1}n,
then xi is the ith bit of x, x{i,...,j} is 〈xi, . . . , xj〉, and x⊕ y is 〈x1 ⊕ y1, . . . , xn ⊕ yn〉.

An m × n bit matrix x is indicated by x ∈ {0, 1}m×n. We write xi,j to refer to
the (i, j)-entry in x. We can also view x as a sequence x = 〈x1, . . . , xm〉 of m strings,
each of length n, where in this case xi is the ith row of the matrix, or we can view x
as a bit string of length mn, which is the concatenation of the rows of the matrix.

The � operation indicates matrix multiplication over GF[2]. If x ∈ {0, 1}n ap-
pears to the left of �, then it is considered to be a row vector, and if it appears to the
right of �, it is considered to be a column vector. Thus, if x ∈ {0, 1}n and y ∈ {0, 1}n,
then x� y =

∑n
i=1 xi · yi mod 2. More generally, if x ∈ {0, 1}`×m and y ∈ {0, 1}m×n,

then x � y is the ` × n bit matrix, where the (i, j)-entry is r � c, where r is the ith
row of x and c is the jth column of y.

2.1. Probability notation. In general, we use capital and Greek letters to
denote random variables and random events. Unless otherwise stated, all random
variables are independent of all other random variables.

A distribution D on a finite set S assigns a probability D(x) ≥ 0 to each x ∈ S,
and thus

∑
x∈S D(x) = 1. We say a random variable X is distributed according

to D on S if for all x ∈ S, Pr[X = x] = D(x), and we indicate this by X ∈D S.
We write D : {0, 1}`n to indicate that D is supported on strings of length `n. We
sometimes, for convenience, blur the distinction between a random variable and its
distribution. If X1 and X2 are random variables (that are not necessarily indepen-
dent), then (X1|X2 = x2) denotes the random variable that takes on value x1 with the
conditional probability Pr[X1 = x1|X2 = x2] = Pr[X1 = x1 ∧X2 = x2]/Pr[X2 = x2].

If f is a function mapping S to a set T , then f(X) is a random variable that
defines a distribution E , where for all y ∈ T , E(y) =

∑
x∈S,f(x)=y D(x). We let f(D)

indicate the distribution E .
We let X ∈U S indicate that X is uniformly distributed in S; i.e., for all x ∈ S,

Pr[X = x] = 1/]S. We let Un indicate the uniform distribution on {0, 1}n; i.e., X is
distributed according to Un if X ∈U {0, 1}n.

We sometimes want to indicate a random sample chosen from a distribution, and
we do this by using the same notation as presented above for random variables except
that we use lowercase letters; i.e., x ∈D S indicates that x is a fixed element of S
chosen according to distribution D.

If X is a real-valued random variable, then E[X] denotes the expected value X.
If E is a probabilistic event, then Pr[E] denotes the probability that event E occurs.

Definition 2.1 (statistical distance). Let D and E be distributions on a set S.
The statistical distance between D and E is

L1(D, E) =
∑
x∈S
|Pr[D(x)]− Pr[E(x)]| /2.

Proposition 2.2. For any function f with domain S and for any pair of distri-
butions D and E on S, L1(f(D), f(E)) ≤ L1(D, E).

2.2. Entropy. The following definition of entropy is from [S48].
Definition 2.3 (information and entropy). Let D be a distribution on a set

S. For each x ∈ S, define the information of x with respect to D to be ID(x) =

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1369

− log(D(x)). Let X ∈D S. The (Shannon) entropy of D is H(D) = E[ID(X)]. Let D1

and D2 be distributions on S that are not necessarily independent, and let X1 ∈D1
S

and X2 ∈D2
S. Then the conditional entropy of D1 with respect to D2, H(D1|D2), is

Ex2∈D2
S [H(X1|X2 = x2)].

We sometimes refer to the entropy H(X) of random variable X, which is equal to
H(D). We sometimes refer to the conditional entropy H(X1|X2) of X1 conditioned
on X2, which is equal to H(D1|D2).

The following variant definition of entropy is due to [Renyi70].
Definition 2.4 (Renyi entropy). Let D be a distribution on a set S. The Renyi

entropy of D is HRen(D) = − log(Pr[X = Y]), where X ∈D S and Y ∈D S are
independent.

There are distributions that have arbitrarily large entropy but have only a couple
of bits of Renyi entropy.

Proposition 2.5. For any distribution D, HRen(D) ≤ H(D).
We sometimes use the following proposition implicitly. This proposition shows

that a function cannot increase entropy in a statistical sense.
Proposition 2.6. Let f be a function and let D be a distribution on the domain

of f . Then H(f(D)) ≤ H(D).
The following definition characterizes how much entropy is lost by the application

of a function f to the uniform distribution.
Definition 2.7 (degeneracy of f). Let f : {0, 1}n → {0, 1}`n and let X ∈U

{0, 1}n. The degeneracy of f is Dn(f) = H(X|f(X)) = H(X)−H(f(X)).

2.3. Ensembles. We present all of our definitions and results in asymptotic
form. Ensembles are used to make the asymptotic definitions, e.g., to define primitives
such as one-way functions and pseudorandom generators, and to define the adversaries
that try to break the primitives. In all cases, we use n ∈ N as the index of the ensemble
and, implicitly, the definition and/or result holds for all values of n ∈ N .

In our definitions of ensembles, the input and output lengths are all polynomially
related. To specify this, we use the following.

Definition 2.8 (polynomial parameter). We say parameter kn is a polynomial
parameter if there is a constant c > 0 such that for all n ∈ N ,

1

cnc
≤ kn ≤ cnc.

We say kn is a P-time polynomial parameter if in addition there is a constant c′ > 0
such that, for all n, kn is computable in time at most c′nc

′
.

In many uses of a polynomial parameter kn, kn is integer valued, but it is some-
times the case that kn is real valued.

Definition 2.9 (function ensemble). We let f : {0, 1}tn → {0, 1}`n denote a
function ensemble, where tn and `n are integer-valued P-time polynomial parameters
and where f with respect to n is a function mapping {0, 1}tn to {0, 1}`n . If f is
injective, then it is a one-to-one function ensemble. If f is injective and `n = tn,
then it is a permutation ensemble. We let f : {0, 1}tn ×{0, 1}`n → {0, 1}mn denote a
function ensemble with two inputs. In this case, we sometimes consider f as being a
function of the second input for a fixed value of the first input, in which case we write
fx(y) in place of f(x, y).

Definition 2.10 (P-time function ensemble). We say f : {0, 1}tn × {0, 1}`n →
{0, 1}mn is a Tn-time function ensemble if f is a function ensemble such that, for all
x ∈ {0, 1}tn , for all y ∈ {0, 1}`n , f(x, y) is computable in time Tn. We say f is a P-

1370 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

time function ensemble if there is a constant c such that, for all n, Tn ≤ cnc. We say
f is a mildly nonuniform P-time function ensemble if it is a P-time function ensemble
except that it has an additional input an called the advice, that is, an integer-valued
polynomial parameter that is not necessarily P-time computable.

These definitions generalize in a natural way to functions with more than two
inputs. Sometimes we describe functions that have variable length inputs or outputs;
in these cases we implicitly assume that the string is padded out with a special blank
symbol to the appropriate length.

In some of our intermediate reductions, we use certain statistical quantities in
order to construct our new primitive. For example, we might use an approximation
of the entropy of a distribution in our construction of a pseudoentropy generator.
Although in many cases these quantities are not easy to approximate, the number
of different approximation values they can take on is small. This is the reason for
the definition of a mildly nonuniform P-time function ensemble in the above defini-
tion. In all the definitions we give below, e.g., of one-way functions, false-entropy
generators, pseudoentropy generators, and pseudorandom generators, there is also an
analogous mildly nonuniform version. In Proposition 4.17, we show how to remove
mild nonuniformity in the final construction of a pseudorandom generator.

Definition 2.11 (range and preimages of a function). Let f : {0, 1}n → {0, 1}`n
be a function ensemble. With respect to n, define

rangef = {f(x) : x ∈ {0, 1}n}.

For each y ∈ rangef , define

pref (y) = {x ∈ {0, 1}n : f(x) = y}.

Definition 2.12 (regular function ensemble). We say function ensemble f :
{0, 1}n → {0, 1}`n is σn-regular if]pref (y) = σn for all y ∈ rangef .

Definition 2.13 (D̃f). Let f : {0, 1}n → {0, 1}`n be a P-time function ensem-
ble. For z ∈ rangef , define the approximate degeneracy of z as

D̃f (z) =
⌈
log(]pref (z))

⌉
.

Notice that D̃f (z) is an approximation to within an additive factor of 1 of the

quantity n− If(X)(z). Furthermore, E[D̃f (f(X))] is within an additive factor of 1 of

the degeneracy of f . If f is a σn-regular function then, for each z ∈ rangef , D̃f (z) is
within an additive factor of 1 of log(σn), which is the degeneracy of f .

Definition 2.14 (probability ensemble). We let D : {0, 1}`n denote a probability
ensemble, where `n is an integer-valued P-time polynomial parameter and where D
with respect to n is a probability distribution on {0, 1}`n .

Definition 2.15 (P-samplable probability ensemble). We let D : {0, 1}`n denote
a probability ensemble that, with respect to n, is a distribution on {0, 1}`n that can
be generated from a random string of length rn for some rn; i.e., there is a function
ensemble f : {0, 1}rn → {0, 1}`n such that if X ∈U {0, 1}rn then f(X) has the distri-
bution D. We say D is a Tn-samplable probability ensemble if, for all x ∈ {0, 1}rn ,
f(x) is computable in time Tn. We say D is P-samplable if f is a P-time function
ensemble, and D is mildly nonuniformly P-samplable if f is a mildly nonuniform
P-time function ensemble.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1371

Definition 2.16 (copies of functions and ensembles). Let kn be an integer-valued
P-time polynomial parameter. If D : {0, 1}`n is a probability ensemble, then Dkn :
{0, 1}`nkn is the probability ensemble where, with respect to parameter n, Dkn consists
of the concatenation of kn independent copies of D. Similarly, if f : {0, 1}mn →
{0, 1}`n is a function ensemble, then fkn : {0, 1}mnkn → {0, 1}`nkn is the function
ensemble where, for y ∈ {0, 1}kn×mn ,

fkn(y) = 〈f(y1), . . . , f(ykn)〉.
3. Definitions of primitives and reductions. Primitives described in this

paper include one-way functions and pseudorandom generators. The primitives we
describe can be used in cryptographic applications but are also useful as described
in the introduction in other applications. In the definition of the primitives, we need
to describe what it means for the primitive to be secure against an attack by an
adversary. We first introduce adversaries and security and then describe the basic
primitives that we use thereafter.

3.1. Adversaries and security. An adversary is, for example, trying to invert
a one-way function or trying to distinguish the output of a pseudorandom generator
from a truly random string. The time–success ratio of a particular adversary is a mea-
sure of its ability to break the cryptographic primitive. (Hereafter, we use “primitive”
in place of the more cumbersome and sometimes misleading phrase “cryptographic
primitive.”) The security of a primitive is a lower bound on the time–success ratio of
any adversary to break the primitive.

In the constructions of some primitives, we allow both private and public inputs.
A public input is part of the output of the primitive and is known to the adversary
at the time it tries to break the primitive. When we construct one primitive based
on another, the constructed primitive often has public inputs. At first glance it could
seem that these public inputs are not useful because an adversary knows them at the
time it tries to break the constructed primitive. On the contrary, public inputs turn
out to be quite useful. Intuitively, this is because their value is randomly chosen,
and the adversary cannot a priori build into its breaking strategy a strategy for all
possible values.

The private input to a primitive is not directly accessible to the adversary. The
security parameter of a primitive is the length of its private input. This is because
the private input to the primitive is what is kept secret from the adversary, and thus
it makes sense to measure the success of the adversary in terms of this.

Definition 3.1 (breaking adversary and security). An adversary A is a function
ensemble. The time–success ratio of A for an instance f of a primitive is defined as
Rtn = Tn/spn(A), where tn is the length of the private input to f , Tn is the worst-
case expected running time of A over all instances parameterized by n, and spn(A) is
the success probability of A for breaking f . In this case, we say A is an R-breaking
adversary for f . We say f is R-secure if there is no R-breaking adversary for f .

A mildly nonuniform adversary for a mildly nonuniform P-time function ensem-
ble f that has advice an is a function ensemble A which is given an as an additional
input. The success probability and time–success ratio for a mildly nonuniform adver-
sary is the same as for uniform adversaries.

The definition of the success probability spn(A) for f depends on the primitive
in question; i.e., this probability is defined when the primitive is defined. Intuitively,
the smaller the time–success ratio of an adversary for a primitive, the better the
adversary is able to break the primitive, i.e., it uses less time and/or has a larger

1372 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

success probability.
The above definitions are a refinement of definitions that appear in the literature.

Previously, an adversary was considered to be breaking if it ran in polynomial time and
had inverse polynomial success probability. The advantage of the definition introduced
here is that it is a more precise characterization of the security of a primitive. This
is important because different applications require different levels of security. For
some applications polynomial security is enough (e.g., Rtn = tn

10) and for other

applications better security is crucial (e.g., Rtn = 2log2(tn), or even better Rtn =

2
√
tn).

3.2. One-way function.
Definition 3.2 (one-way function). Let f : {0, 1}tn → {0, 1}`n be a P-time

function ensemble and let X ∈U {0, 1}tn . The success probability of adversary A for
inverting f is

spn(A) = Pr[f(A(f(X))) = f(X)].

Then f is an R-secure one-way function if there is no R-breaking adversary for f .
A function cannot be considered to be “one-way” in any reasonable sense in case

the time to invert it is smaller than the time to evaluate it in the forward direction.
Thus, for example, if there is an O(tn)-breaking adversary for f , then it is not secure
at all. On the other hand, an exhaustive adversary that tries all possible inputs to

find an inverse is t
O(1)
n · 2tn -breaking. Thus, the range of securities that can be hoped

for falls between these two extremes.

3.3. Pseudorandom generator. The following definition can be thought of
as the computationally restricted adversary definition of statistical distance. The
original idea is from [GM84] and [Yao82].

Definition 3.3 (computationally indistinguishable). Let D : {0, 1}`n and E :
{0, 1}`n be probability ensembles. The success probability of adversary A for distin-
guishing D and E is

spn(A) = |Pr[A(X) = 1]− Pr[A(Y) = 1]|,

where X has distribution D and Y has distribution E. D and E are R-secure compu-
tationally indistinguishable if there is no R-breaking adversary for distinguishing D
and E.

The following alternative definition of computationally indistinguishable more
accurately reflects the trade-off between the running time of the adversary and its
success probability. In the alternative definition, success probability is defined as
sp′n(A) = (spn(A))2. This is because it takes 1/sp′n(A) trials in order to approximate
spn(A) to within a constant factor.

Definition 3.4 (computationally indistinguishable (alternative)). This is ex-
actly the same as the original definition, except the success probability of adversary
A is sp′n(A) = (spn(A))2.

In all cases except where noted, the strength of the reduction is the same under
either definition of computationally indistinguishable, and we find it easier to work
with the first definition. However, there are a few places where we explicitly use the
alternative definition to be able to claim the reduction is linear-preserving.

Strictly speaking, there are no private inputs in the above definition, and thus
by default we use n as the security parameter. However, in a typical use of this

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1373

definition, D is the distribution defined by the output of a P-time function ensemble
(and thus D is P-samplable), in which case the length of the private input to this
function ensemble is the security parameter. In some circumstances, it is important
that both D and E are P-samplable; e.g., this is the case for Proposition 4.12.

The paper [Yao82] originally gave the definition of a pseudorandom generator as
below, except that we parameterize security more precisely.

Definition 3.5 (pseudorandom generator). Let g : {0, 1}tn → {0, 1}`n be a
P-time function ensemble where `n > tn. Then g is an R-secure pseudorandom
generator if the probability ensembles g(Utn) and U`n are R-secure computationally
indistinguishable.

The definition of a pseudorandom generator only requires the generator to stretch
the input by at least one bit. The following proposition provides a general way to
produce a pseudorandom generator that stretches by many bits from a pseudorandom
generator that stretches by at least one bit. This proposition appears in [BH89] and
is due to O. Goldreich and S. Micali.

Proposition 3.6. Suppose g : {0, 1}n → {0, 1}n+1 is a pseudorandom generator
that stretches by one bit. Define g(1)(x) = g(x), and inductively, for all i ≥ 1,

g(i+1)(x) = 〈g(g(i)(x){1,...,n}), g(i)(x){n+1,...,n+i}〉.
Let kn be an integer-valued P-time polynomial parameter. Then g(kn) is a pseudoran-
dom generator. The reduction is linear-preserving.

In section 3.6 we give a formal definition of reduction and what it means to be
linear-preserving, but intuitively it means that g(kn) as a pseudorandom generator is
almost as secure as pseudorandom generator g.

3.4. Pseudoentropy and false-entropy generators. The definitions in this
subsection introduce new notions (interesting in their own right) which we use as
intermediate steps in our constructions.

The difference between a pseudorandom generator and a pseudoentropy generator
is that the output of a pseudoentropy generator doesn’t have to be computationally
indistinguishable from the uniform distribution; instead it must be computationally
indistinguishable from some probability ensemble D that has more entropy than the
input to the generator. Thus, a pseudoentropy generator still amplifies randomness
so that the output randomness is more computationally than the input randomness,
but the output randomness is no longer necessarily uniform.

Definition 3.7 (computational entropy). Let f : {0, 1}tn → {0, 1}`n be a P-
time function ensemble and let sn be a polynomial parameter. Then f has R-secure
computational entropy sn if there is a P-time function ensemble f ′ : {0, 1}mn →
{0, 1}`n such that f(Utn) and f ′(Umn) are R-secure computationally indistinguishable
and H(f ′(Umn)) ≥ sn.

Definition 3.8 (pseudoentropy generator). Let f : {0, 1}tn → {0, 1}`n be a P-
time function ensemble and let sn be a polynomial parameter. Then f is an R-secure
pseudoentropy generator with pseudoentropy sn if f(Utn) has R-secure computational
entropy tn + sn.

If f is a pseudorandom generator, then it is easy to see that it is also a
pseudoentropy generator. This is because f(Utn) and U`n are computationally indis-
tinguishable and by definition of a pseudorandom generator, `n > tn. Consequently,
H(U`n) = `n ≥ tn + 1; i.e., f is a pseudoentropy generator with pseudoentropy at
least 1.

A false-entropy generator is a further generalization of pseudoentropy generator.

1374 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

A false-entropy generator doesn’t necessarily amplify the input randomness; it just
has the property that the output randomness is more computationally than it is
statistically.

Definition 3.9 (false-entropy generator). Let f : {0, 1}tn → {0, 1}`n be a P-
time function ensemble and let sn be a polynomial parameter. Then f is an R-secure
false-entropy generator with false entropy sn if f(Utn) has R-secure computational
entropy H(f(Utn)) + sn.

Note that, in the definition of computational entropy, the function ensemble f ′

that is computationally indistinguishable from f is required to be P-time computable.
This is consistent with the definition of a pseudorandom generator, where the distri-
bution from which the pseudorandom generator is indistinguishable is the uniform
distribution. There is also a nonuniform version of computational entropy, where f ′

is not necessarily P-time computable, and corresponding nonuniform versions of a
pseudoentropy generator and false-entropy generator. It turns out to be easier to
construct a false-entropy generator f , where f ′ is not necessarily P-time computable
from a one-way function, than it is to construct a false-entropy generator f , where f ′ is
P-time samplable. Using this approach and a nonuniform version of Proposition 4.12,
[ILL89] describes a nonuniform reduction from a one-way function to a pseudorandom
generator. However, a uniform reduction using Proposition 4.12 requires that f ′ be
P-time computable. Thus, one of the main difficulties in our constructions below is
to build a false-entropy generator f , where f ′ is P-time computable.

3.5. Hidden bits. In the construction of a pseudorandom generator from a one-
way function, one of the key ideas is to construct from the one-way function another
function which has an output bit that is computationally unpredictable from the
other output bits (it is “hidden”) and yet statistically somewhat predictable from the
other output bits. This idea is used in the original construction of a pseudorandom
generator from the discrete logarithm problem [BM82] and has been central to all
such constructions since that time.

Definition 3.10 (hidden bit). Let f : {0, 1}tn → {0, 1}`n and b : {0, 1}tn →
{0, 1} be P-time function ensembles. Let D : {0, 1}tn be a P-samplable probability
ensemble, let X ∈D {0, 1}tn , and let β ∈U {0, 1}. Then b(X) is R-secure hidden given
f(X) if 〈f(X), b(X)〉 and 〈f(X), β〉 are R-secure computationally indistinguishable.

3.6. Reductions. All the results presented in this paper involve a reduction
from one type of primitive to another.

We make the following definitions to quantify the strength of reductions. The
particular parameterization of security and the different quantitative measures of the
security-preserving properties of a reduction are derived from [Luby96], [HL92].

Intuitively, a reduction constructs from a first primitive f on inputs of length tn a
second primitive g(f) on inputs of length t′n. The reduction also specifies an oracle TM
M (·) such that if there is an adversary A for breaking g(f), then M (A) is an adversary
for breaking f . How much security is preserved by the reduction is parameterized by S.

Definition 3.11 (reduction). Let tn and t′n be polynomial parameters and let
S : N ×<+ → <+. An S-reduction from primitive 1 to primitive 2 is a pair of oracles
g(·) and M (·) so that the following hold:

• For each P-time function ensemble f : {0, 1}tn → {0, 1}`n that instantiates
primitive 1, g(f) : {0, 1}t′n → {0, 1}`′n instantiates primitive 2.
• g(f) is a P-time function ensemble, and on inputs of length t′n, it only makes

calls to f on inputs of length tn.
• Suppose A is an adversary with time–success ratio R′t′n for g(f) on inputs

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1375

of length t′n. Define Rtn = S(n,R′t′n). Then M (A) is an adversary with
time–success ratio Rtn for f on inputs of length tn.

To discuss the security-preserving properties of the reduction, we compare how well
A breaks g(f) with how well M (A) breaks f on inputs of similar size. We say the
reduction is

• linear-preserving if RN = NO(1) · O(R′N),

• poly-preserving if RN = NO(1) ·R′O(N)
O(1)

,

• weak-preserving if RN = NO(1) ·R′
NO(1)

O(1)
.

A mildly nonuniform reduction has the same properties except that g(·) and M (·)

are both allowed access to an integer-valued polynomial parameter an that depends on
f . The same notions of security preservation apply to mildly nonuniform reductions.

f can always be broken in time exponential in tn. Therefore, if R′t′n ≥ 2tn , or even

R′t′n ≥ 2t
Ω(1)
n = 2n

Ω(1)

in the case of a weak-preserving reduction, M (A) can ignore the
oracle and break f by brute force. Therefore, we can assume without loss of generality
that R′t′n ≤ 2tn .

Obvious from the definition of reduction are the following propositions that say
that security is preserved by reductions and that reductions can be composed.

Proposition 3.12. If (g(·),M (·)) is a (mildly nonuniform) S-reduction from
primitive 1 to primitive 2 and f is a (mildly nonuniform) P-time function ensemble
that instantiates primitive 1 with security Rtn , then g(f) is a (mildly nonuniform)
P-time function ensemble that instantiates primitive 2 with security R′t′n .

Proposition 3.13. If (g
(·)
1 ,M

(·)
1) is a (mildly nonuniform) S1-reduction from

primitive 1 to primitive 2, and if (g
(·)
2 ,M

(·)
2) is a (mildly nonuniform) S2-reduction

from primitive 2 to primitive 3, then (g
(g

(·)
2)

1 ,M
(M

(·)
2)

1) is a (mildly nonuniform) S-
reduction from primitive 1 to primitive 3, where S(N,R) = S2(N,S1(N,R)).

Although we phrase our definitions in terms of asymptotic complexity, one can
easily interpret them for fixed length inputs in the context of an actual implementa-
tion, just as one does for algorithm analysis.

Clearly, in standard situations, t′n ≥ tn and Rtn ≥ R′t′n , and the closer these two
inequalities are to equalities the more the security of f is transferred to g. We now
describe how the slack in these inequalities affects the security-preserving properties
of the reduction.

The number of calls M (A) makes to A is invariably either a constant or depends
polynomially on the time–success ratio of A, and thus Rtn is at most polynomial in
R′t′n . The slackness in this inequality turns out not to be the major reason for a loss
in security in the reduction; instead the loss primarily depends on how much larger
t′n is than tn. If t′n is much larger than tn, then Rtn is much larger as a function of
tn than R′t′n is as a function of t′n. We can formalize this as follows.

Proposition 3.14.
• If t′n = tn, M (A) runs in time polynomial in n (not counting the running time

of A), and spn(M (A)) = spn(A)/nO(1), then the reduction is linear-preser-
ving.
• If t′n = O(tn), M (A) runs in time polynomial in R′t′n , and spn(M (A)) =

sp
O(1)
n (A)/nO(1), then the reduction is poly-preserving.

• If t′n = t
O(1)
n , M (A) runs in time polynomial in R′t′n , and spn(M (A)) =

sp
O(1)
n (A)/nO(1), then the reduction is weak-preserving.

1376 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

It is important to design the strongest reduction possible. The techniques de-
scribed in this paper can be directly used to yield poly-preserving reductions from
regular or nearly regular (with polynomial time computable degree of regularity) one-
way functions to pseudorandom generators [Luby96], and this covers almost all the
conjectured one-way functions. However, the reduction for general one-way functions
is only weak-preserving.

4. Hidden bits, hash functions, and computational entropy.

4.1. Constructing a hidden bit. How do we go about constructing a function
such that one of its output bits is computationally unpredictable yet statistically cor-
related with its other output bits? The following fundamental proposition of [GL89]
(strengthened in [Levin93]) provides the answer.

Proposition 4.1. Let f : {0, 1}n → {0, 1}`n be a one-way function. Then X�R
is hidden given 〈f(X), R〉, where X,R ∈U {0, 1}n. The reduction is linear-preserving
with respect to the alternative definition of computationally indistinguishable.

Proposition 4.1 presents an elegant, simple, and general method of obtaining a
hidden bit from a one-way function. We need the following stronger proposition of
[GL89] (see also [Levin93]) in some of our proofs.

Proposition 4.2. There is an oracle TM M with the following properties: Let
A be any adversary that accepts as input n bits and outputs a single bit. Then M (A)

on input parameter δn > 0 outputs a list L of n-bit strings with the following property:
For any fixed x ∈ {0, 1}n, if it is the case that

|Pr[A(R) = x�R]− Pr[A(R) 6= x�R]| ≥ δn,
where R ∈U {0, 1}n, then, with probability at least 1/2, it is the case that x ∈ L. (The
probability here depends only on the values of the random bits used by M (A).) The
running time of M (A) is polynomial in n, 1/δn, and the running time of A. Also, the
number of n-bit strings in L is bounded by O(1/δ2

n).
The following proposition is an immediate consequence of Proposition 4.1 and

Definition 3.10.
Proposition 4.3. Let f : {0, 1}n → {0, 1}`n be a one-way function. Then

〈f(X), R,X�R〉 and 〈f(X), R, β〉 are computationally indistinguishable, where X,R ∈U
{0, 1}n and β ∈U {0, 1}. The reduction is linear-preserving with respect to the alter-
native definition of computationally indistinguishable.

4.2. One-way permutation to a pseudorandom generator. We describe
a way to construct a pseudorandom generator from any one-way permutation which
is substantially simpler (and has stronger security-preserving properties) than the
original construction of [Yao82]. The construction and proof described here is due to
[GL89].

Proposition 4.4. Let f : {0, 1}n → {0, 1}n be a one-way permutation. Let
x, r ∈ {0, 1}n and define P-time function ensemble g(x, r) = 〈f(x), r, x� r〉. Then g
is a pseudorandom generator. The reduction is linear-preserving with respect to the
alternative definition of computationally indistinguishable.

Proof. Let X,R ∈U {0, 1}n, and β ∈U {0, 1}. Because f is a permutation,
〈f(X), R, β〉 is the uniform distribution on {0, 1}2n+1. By Proposition 4.3, g(X,R)
and 〈f(X), R, β〉 are computationally indistinguishable, where the reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able.

Proposition 4.4 works when f is a permutation because

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1377

(1) f(X) is uniformly distributed and hence already looks random;
(2) for any x ∈ {0, 1}n, f(x) uniquely determines x. So no entropy is lost by the

application of f .
For a general one-way function neither (1) nor (2) necessarily holds. Intuitively, the
rest of the paper constructs a one-way function with properties (1) and (2) from
a general one-way function. This is done by using hash functions to smooth the
entropy of f(X) to make it more uniform and to recapture the entropy of X lost by
the application of f(X).

Proposition 4.4 produces a pseudorandom generator that only stretches the input
by one bit. To construct a pseudorandom generator that stretches by many bits,
combine this with the construction described previously in Proposition 3.6.

4.3. One-to-one one-way function to a pseudoentropy generator. We
now describe a construction of a pseudoentropy generator from any one-to-one one-
way function. This construction, together with Theorem 4.14, yields a pseudorandom
generator from any one-to-one one-way function. The overall construction is different
in spirit than the original construction of [GKL93]: it illustrates how to construct
a pseudoentropy generator in a particularly simple way using [GL89]. Although the
assumptions and the consequences are somewhat different, the construction is the
same as described in Proposition 4.4.

Proposition 4.5. Let f : {0, 1}n → {0, 1}`n be a one-to-one one-way function.
Let x, r ∈ {0, 1}n and define P-time function ensemble g(x, r) = 〈f(x), r, x�r〉. Then
g is a pseudoentropy generatorw̃ith pseudoentropy 1. The reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able.

Proof. Let X,R ∈U {0, 1}n and β ∈U {0, 1}. Proposition 4.3 shows that g(X,R)
and 〈f(X), R, β〉 are computationally indistinguishable, where the reduction is linear-
preserving with respect to the alternative definition of computationally indistinguish-
able. Because f is a one-to-one function and β is a random bit, H(f(X), R, β) = 2n+1,
and thus g(X,R) has pseudoentropy 1.

Note that it is not possible to argue that g is a pseudorandom generator. For
example, let f(x) = 〈0, f ′(x)〉, where f ′ is a one-way permutation. Then f is a one-
to-one one-way function and yet g(X,R) = 〈f(X), R,X �R〉 is not a pseudorandom
generator, because the first output bit of g is zero independent of its inputs, and thus
its output can easily be distinguished from a uniformly chosen random string.

4.4. Universal hash functions. The concept of a universal hash function, in-
troduced in [CW79], has proved to have a far-reaching and broad spectrum of appli-
cations in the theory of computation.

Definition 4.6 (universal hash functions). Let h : {0, 1}`n ×{0, 1}n → {0, 1}mn
be a P-time function ensemble. Recall from Definition 2.9 that for fixed y ∈ {0, 1}`n ,
we view y as describing a function hy(·) that maps n bits to mn bits. Then h is a
(pairwise independent) universal hash function if, for all x ∈ {0, 1}n, x′ ∈ {0, 1}n \
{x}, and for all a, a′ ∈ {0, 1}mn ,

Pr[(hY (x) = a) and (hY (x′) = a′)] = 1/22mn ,

where Y ∈U {0, 1}`n .
Intuitively, a universal hash function has the property that every distinct pair x

and x′ are mapped randomly and independently with respect to Y .
In all of our constructions of function ensembles using universal hash functions,

the description of the hash function y is viewed as a public input to the function

1378 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

ensemble and thus is also part of the output. The following construction of a universal
hash function is due to [CW79].

Definition 4.7 (matrix construction). Let

h : {0, 1}(n+1)mn × {0, 1}n → {0, 1}mn

be the following P-time function ensemble: For x ∈ {0, 1}n and y ∈ {0, 1}(n+1)×mn ,
hy(x) = 〈x, 1〉 � y.

We concatenate a 1 to x in the above definition to cover the case when x =
0n. Hereafter, whenever we refer to universal hash functions, one can think of the
construction given above. However, any universal hash function that satisfies the
required properties may be used. We note that there are more efficient hash functions
in terms of the number of bits used in specification. One such example is using Toeplitz
matrices (see for example [GL89] or [Levin93]). A Toeplitz matrix is a matrix that is
constant on any diagonal, and thus to specify an n×m Toeplitz matrix we can specify
values for the m+ n− 1 diagonals. This is the simplest bit-efficient construction of a
universal hash function, so we adopt it as the default for the remainder of the paper.

4.5. Smoothing distributions with hashing. The following lemma is a key
component in most of the subsequent reductions we describe.

Lemma 4.8. Let D : {0, 1}n be a probability ensemble that has Renyi entropy at
least mn. Let en be a positive-integer-valued parameter. Let h : {0, 1}`n × {0, 1}n →
{0, 1}mn−2en be a universal hash function. Let X ∈D {0, 1}n, Y ∈U {0, 1}`n , and
Z ∈U {0, 1}mn−2en . Then

L1(〈hY (X), Y 〉, 〈Z, Y 〉) ≤ 2−(en+1).

This lemma is a generalization of a lemma that appears in [S83]. There, D is the
uniform distribution on a set S ⊆ {0, 1}n with]S = 2mn . The papers [McIn87] and
[BBR88] also proved similar lemmas. For the special case of linear hash functions,
this lemma can be derived from [GL89] by considering unlimited adversaries. A
generalization to a broader class of hash functions appears in [IZ89].

The lemma can be interpreted as follows: the universal hash function smooths
out the Renyi entropy of X to the almost uniform distribution on bit strings of length
almost mn. The integer parameter en controls the trade-off between the uniformity of
the output bits of the universal hash function and the amount of entropy lost in the
smoothing process. Thus, we have managed to convert almost all the Renyi entropy of
X into uniform random bits while maintaining our original supply of random bits Y .

Proof. Let ` = `n, e = en, m = mn, and s = m − 2e. For all y ∈ {0, 1}`,
a ∈ {0, 1}s, and x ∈ {0, 1}n, define X (hy(x) = a) = 1 if hy(x) = a and 0 otherwise.
We want to show that

EY

 ∑
a∈{0,1}s

|EX [X (hY (X) = a)]− 2−s|
 /2 ≤ 2−(e+1).

We show below that for all a ∈ {0, 1}s,

EY
[∣∣EX [X (hY (X) = a)]− 2−s

∣∣] ≤ 2−(s+e),

and from this the proof follows.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1379

For any random variable Z, E[|Z|2] ≥ E[|Z|]2 by Jensen’s inequality. Letting
Z = E[X (hY (X) = a)]− 2−s, we see that it is sufficient to show for all a ∈ {0, 1}s,

EY [(EX [X (hY (X) = a)]− 2−s)2] ≤ 2−2(s+e).

Let X ′ ∈D {0, 1}n. Using some elementary expansion of terms and rearrangements
of summation, we can write the above as

EX,X′ [EY [(X (hY (X) = a)− 2−s)(X (hY (X ′) = a)− 2−s)]].

For each fixed value of X to x and X ′ to x′, where x 6= x′, the expectation with
respect to Y is zero because of the pairwise independence property of universal hash
functions. For each fixed value of X to x and X ′ to x′, where x = x′,

E[(X (hY (x) = a)− 2−s)2] = 2−s(1− 2−s) ≤ 2−s.

Because the Renyi entropy of D is at least m, it follows that Pr[X = X ′] ≤ 2−m.
Thus, the entire sum is at most 2−(m+s), which is equal to 2−2(s+e) by the definition
of s.

In this lemma, D is required to have Renyi entropy at least mn. In many of our
applications, the distribution in question has at least Renyi entropy mn, and thus the
lemma applies because of Proposition 2.5. For other applications, we need to work
with Shannon entropy. The following technical result due to [S48] allows us to convert
Shannon entropy to Renyi entropy by looking at product distributions.

Proposition 4.9. Let kn be an integer-valued polynomial parameter.
• Let D : {0, 1}n be a probability ensemble. There is a probability ensemble
E : {0, 1}nkn satisfying

– HRen(E) ≥ knH(D)− nk2/3
n ,

– L1(E ,Dkn) ≤ 2−k
1/3
n .

• Let D1 : {0, 1}n and D2 : {0, 1}n be not necessarily independent probability
ensembles; let D = 〈D1,D2〉. There is a probability ensemble E : {0, 1}2nkn ,
with E = 〈E1, E2〉, satisfying the following:

– For every value E1 ∈ {0, 1}nkn such that PrE1 [E1] > 0, HRen(E2|E1 =

E1) ≥ knH(D2|D1)− nk2/3
n .

– L1(E ,Dkn) ≤ 2−k
1/3
n .

Corollary 4.10. Let kn be an integer-valued P-time polynomial parameter.

• Let D : {0, 1}n be a probability ensemble, let mn = knH(D) − 2nk
2/3
n , and

let h : {0, 1}pn × {0, 1}nkn → {0, 1}mn be a universal hash function. Let
X ′ ∈Dkn {0, 1}kn×n and let Y ∈U {0, 1}pn . Then

L1(〈hY (X ′), Y 〉,Umn+pn) ≤ 21−k1/3
n .

• Let D1 : {0, 1}n and D2 : {0, 1}n be not necessarily independent probabil-

ity ensembles, and let D = 〈D1,D2〉. Let mn = knH(D2|D1) − 2nk
2/3
n .

Let h : {0, 1}pn × {0, 1}nkn → {0, 1}mn be a universal hash function. Let
〈X ′1, X ′2〉 ∈Dkn {0, 1}kn×2n and let Y ∈U {0, 1}pn . Then

L1(〈hY (X ′2), Y,X ′1〉, 〈Umn+pn , X
′
1〉) ≤ 21−k1/3

n .

Proof. For the proof, combine Proposition 4.9, Lemma 4.8, Proposition 2.2, and
Proposition 2.5.

1380 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

4.6. Pseudoentropy generator to a pseudorandom generator. Let f :
{0, 1}n → {0, 1}`n be a pseudoentropy generator with pseudoentropy sn. In this sub-
section, we construct a pseudorandom generator based on f . We first start with two
preliminary propositions. The following proposition is the computational analogue of
Proposition 2.2.

Proposition 4.11. Let D : {0, 1}n and E : {0, 1}n be two probability ensembles
and let f : {0, 1}n → {0, 1}`n be a P-time function ensemble. Let D and E be computa-
tionally indistinguishable. Then f(D) and f(E) are computationally indistinguishable.
The reduction is linear-preserving.

The following proposition first appeared in [GM84].
Proposition 4.12. Let kn be an integer-valued P-time polynomial parameter.

Let D : {0, 1}`n and E : {0, 1}`n be P-samplable probability ensembles. Let D and E
be computationally indistinguishable. Then Dkn and Ekn are computationally indis-
tinguishable. The reduction is weak-preserving.

More precisely, there is a probabilistic oracle TM M with the following properties:
If A is an R′nkn-breaking adversary for distinguishing Dkn and Ekn , then M (A) is an
Rn-breaking adversary for distinguishing D and E , where Rn is essentially equal to
knR′nkn . It is crucial that D and E are P-samplable because the sampling algorithms

are used by M . The reduction is only weak-preserving because distinguishing Dkn and
Ekn with respect to private inputs of length nkn only translates into distinguishing D
and E on private inputs of length n.

We now give the construction of a pseudorandom generator g from a pseudo-
entropy generator f .

Construction 4.13. Let f : {0, 1}n → {0, 1}mn be a P-time function ensemble
and let sn be a P-time polynomial parameter. Let kn = (d(2mn + 1)/sne)3 and jn =

bkn(n+ sn)− 2mnk
2/3
n c. Let h : {0, 1}pn ×{0, 1}knmn → {0, 1}jn be a universal hash

function. Let u ∈ {0, 1}kn×n, y ∈ {0, 1}pn , and define P-time function ensemble
g(u, y) = 〈hy(fkn(u)), y〉.

Theorem 4.14. Let f and g be as described in Construction 4.13. Let f be a
pseudoentropy generator with pseudoentropy sn. Then g is a pseudorandom generator.
The reduction is weak-preserving.

Proof. Let f ′ : {0, 1}n′n → {0, 1}mn be the P-time function ensemble that wit-
nesses the pseudoentropy generator of f as guaranteed in Definition 3.7 of computa-
tional entropy; i.e., f ′(X ′) and f(X) are R-secure computationally indistinguish-
able and H(f ′(X ′)) ≥ n + sn, where X ∈U {0, 1}n and X ′ ∈U {0, 1}n′n . Let
U ∈U {0, 1}kn×n, W ∈U {0, 1}kn×n′n , and Y ∈U {0, 1}pn . By Proposition 4.12,

fkn(U) and f ′kn(W) are computationally indistinguishable. From Proposition 4.11,

it follows that g(U, Y) = 〈hY (fkn(U)), Y 〉 and 〈hY (f ′kn(W)), Y 〉 are computationally
indistinguishable. Because H(f ′(X ′)) ≥ n+ sn, by choice of kn and jn, using Corol-

lary 4.10, it follows that L1(〈hY (f ′kn(W)), Y 〉,Ujn+pn) ≤ 2−k
1/3
n . Thus, it follows

that g(U, Y) and Ujn+pn are computationally indistinguishable. Note that by choice
of kn, the output length jn + pn of g is longer than its input length nkn + pn.

4.7. False entropy generator to a pseudoentropy generator. Let f :
{0, 1}n → {0, 1}`n be a false-entropy generator with false entropy sn. In this sub-
section, we construct a mildly nonuniform pseudoentropy generator based on f . An
idea is to extract D̃f (f(X)) bits of entropy out of X without compromising the false

entropy. (See section 2.3 for the definition of D̃f .) Let X ∈U {0, 1}n. The major

obstacles are that D̃f is not necessarily a P-time function ensemble and that f could

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1381

be a very nonregular function, and thus the variance of D̃f (f(X)) could be quite high
as a function of X, and we cannot guess its value consistently with accuracy.

Let kn be an integer-valued P-time polynomial parameter and let U ∈U {0, 1}kn×n.
The intuition behind the following construction is that the false entropy of fkn is kn
times that of f and that the degeneracy of fkn is kn times that of f . Furthermore,
if kn is large enough then, with high probability with respect to U , D̃fkn (fkn(U)) is
close to the degeneracy of fkn . Thus we use a universal hash function h to extract
roughly the degeneracy of fkn(U) bits of entropy out of U without compromising the
false entropy of fkn(U).

Construction 4.15. Let f : {0, 1}n → {0, 1}`n be a P-time function ensemble.
Let sn be a P-time polynomial parameter and assume for simplicity that sn ≤ 1. Let
en be an approximation of H(f(X)) to within an additive factor of sn/8, where X ∈U
{0, 1}n. Fix kn =

⌈
(4n/sn)3

⌉
and jn = dkn(n− en)− 2nk

2/3
n e. Let h : {0, 1}pn ×

{0, 1}nkn → {0, 1}jn be a universal hash function. For u ∈ {0, 1}kn×n and r ∈
{0, 1}pn , define P-time function ensemble

g(en, u, r) = 〈fkn(u), hr(u), r〉.

Lemma 4.16. Let f and g be as described in Construction 4.15. Let f be a false-
entropy generator with false entropy sn. Then g is a mildly nonuniform pseudoentropy
generator with pseudoentropy 1. The reduction is weak-preserving.

Proof. Let Z ∈U {0, 1}jn . First, note that H(X|f(X)) = n−H(f(X)) = n− en.
From this and Corollary 4.10 (letting X1 = f(X), X2 = X in the corollary), it follows

that L1(g(en, U,R,), 〈fkn(U), Z,R〉) ≤ 2−k
1/3
n .

We now prove that g(en, U,R) has computational entropy at least pn + nkn + 1.
Let D : {0, 1}`n be the P-samplable probability ensemble such that D and f(X) are
computationally indistinguishable and such that

H(D) ≥ H(f(X)) + sn.

Since D and f(X) are computationally indistinguishable, 〈fkn(U), Z,R〉 and
〈Dkn , Z,R〉 are computationally indistinguishable by Proposition 4.12, which together
with the first claim implies that g(en, U,R) and 〈Dkn , Z,R〉 are computationally in-
distinguishable. Now,

H(Dkn , Z,R) ≥ kn · (H(f(X)) + sn) + jn + pn ≥ kn(en + 7sn/8) + jn + pn,

and because by choice of kn and jn this is at least pn + nkn + 1. Thus g has compu-
tational entropy at least pn + nkn + 1, and the lemma follows.

4.8. Mildly nonuniform to a uniform pseudorandom generator.
Proposition 4.17. Let an be any value in {0, . . . , kn}, where kn is an integer-

valued P-time polynomial parameter. Let g : {0, 1}dlog(kn)e × {0, 1}n → {0, 1}`n be a
P-time function ensemble, where `n > nkn. Let x′ ∈ {0, 1}kn×n and define P-time
function ensemble g′(x′) = ⊕kni=1g(i, x′i). Let g be a mildly nonuniform pseudorandom
generator when the first input is set to an. Then g′ is a pseudorandom generator.
The reduction is weak-preserving.

Proof. Let X ∈U {0, 1}n, X ′ ∈U {0, 1}kn×n, and Z ∈U {0, 1}`n . Suppose there is
an adversary A that has distinguishing probability

spn(A) = |Pr[A(g′(X ′)) = 1]− Pr[A(Z) = 1]| .

1382 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

We describe an oracle TM M such that, for all i = 1, . . . , kn, M (A)(i) has spn(A)
distinguishing probability for g(i,X) and Z. For all i, the running time for M (A)(i)
is the running time for A plus the time to compute the output of g on kn − 1 inputs.
This works with respect to all i, in particular when i = an, from which the result
follows.

For each i = 1, . . . , kn, M (A)(i) works as follows. On input u (and i), M (A)(i)
randomly generates x′1, . . . , x

′
i−1, x

′
i+1, . . . , x

′
kn
∈U {0, 1}n and computes v =

⊕j 6=ig(j, x′j) ⊕ u. Then M (A)(i) runs A on input v and outputs A(v). By the na-

ture of ⊕, if u is chosen randomly according to Z, then M (A)(i) = 1 with probability
Pr[A(Z) = 1], whereas if u is chosen randomly according to g(i,X), then M (A)(i) = 1
with probability Pr[A(g′(X ′)) = 1]. Thus, for each value of i, M (A)(i) has distin-
guishing probability spn(A) for g(i,X) and Z.

Note that it may be the case that, for most fixed values of i ∈ {1, . . . , kn}, g(i,X)
is completely predictable. On the other hand, even if there is a value an for each n
such that g(an, X) is pseudorandom, the value of an may not be P-time computable.
This is exactly the case when the lemma is useful; i.e., it is useful to transform the
mildly nonuniform pseudorandom generator g into a pseudorandom generator g′.

Note that in the given construction the length of the output of g′ on inputs of
length nkn is `n > nkn, and thus g′ stretches the input to a string of strictly greater
length.

This reduction is only weak-preserving, and the reason is the usual one; i.e., the
breaking adversary for g′(X ′) on inputs of length nkn is transferred into a breaking
adversary for g(i,X) on inputs of length only n.

If g in Proposition 4.17 does not satisfy the property that `n > nkn, then for
each fixed i we can use Proposition 3.6 to stretch the output of g(i, x) (viewed as a
function of x) into a string of length longer than nkn and then exclusive-or together
the stretched outputs.

4.9. Summary. Putting together the results in this section, we have
• a reduction from a one-way permutation to a pseudorandom generator

(from subsection 4.2);
• a reduction from a one-to-one one-way function to a pseudorandom genera-

tor(combining subsections 4.3 and 4.6);
• a reduction from a pseudoentropy generator to a pseudorandom generator

(from subsection 4.6);
• a reduction from a false-entropy generator to a pseudorandom generator

(combining subsections 4.7, 4.6, and 4.8).

5. Extracting entropy from one-way functions. In this section we show
how to construct a pseudoentropy generator from any one-way function f with the
additional property that the number of inverses of f can be computed in polynomial
time; i.e., the function D̃f is a P-time function ensemble. Combined with the results
summarized in subsection 4.9, this gives a construction of a pseudorandom generator
from a one-way function with this property.

One of the reasons for giving the first construction is because it illustrates some of
the additional ideas needed for our construction of a false-entropy generator from any
one-way function. A general one-way function f does not necessarily have the property
that D̃f is a P-time function ensemble, and considerably more effort is needed to
construct a pseudorandom generator from it. In the next section, we describe how to
construct a false-entropy generator from any one-way function. Combined with the

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1383

results summarized in subsection 4.9, this gives a construction of a pseudorandom
generator from any one-way function.

5.1. One-way function with approximable preimage sizes to a pseu-
doentropy generator. To see where we get into trouble with the construction given
in Proposition 4.5, suppose f : {0, 1}n → {0, 1}`n is a 2n/4-regular one-way function,
and let X,R ∈U {0, 1}n and β ∈U {0, 1}. Then, although 〈f(X), R,X � R〉 and
〈f(X), R, β〉 are computationally indistinguishable, H(f(X), R,X �R) is only about
7n/4 + 1, and thus we have lost about n/4 bits of the input entropy through the ap-
plication of f . Similarly, although X �R is hidden given 〈f(X), R〉, it is also almost
completely statistically uncorrelated.

The way to overcome these problems is to create a new function which is the
original one-way function concatenated with the degeneracy of the function number
of bits hashed out of its input to regain the lost entropy. Then Proposition 4.5 can
be applied to the new function to obtain a pseudoentropy generator. We first show
how to construct a pseudoentropy generator in the case when D̃f is a P-time function
ensemble.

Construction 5.1. Let f : {0, 1}n → {0, 1}`n be a P-time function ensemble
and suppose that D̃f is a P-time function ensemble. Let h : {0, 1}pn × {0, 1}n →
{0, 1}n+2 be a universal hash function. For x ∈ {0, 1}n and y ∈ {0, 1}pn , define
P-time function ensemble

f ′(x, y) = 〈f(x), hy(x){1,...,D̃f (f(x))+2}, y〉.

Lemma 5.2. Let f and f ′ be as described in Construction 5.1.
(1) Let f be a one-way function. Then f ′ is a one-way function. The reduction

is poly-preserving.
(2) Let X ∈U {0, 1}n and Y ∈U {0, 1}pn . Then H(f ′(X,Y)) ≥ n+ pn − 1/2.
Proof of Lemma 5.2(1). Suppose adversary A inverts f ′(X,Y) with probability

δn in time Tn. We prove that the following oracle TM M using A on input z = f(x)
finds x′ ∈ pref (z) with probability at least δ3

n/128 when x ∈U {0, 1}n.

Description of M (A)(z).
Compute D̃f (z).

Choose α ∈U {0, 1}D̃f (z)+2.
Choose y ∈U {0, 1}pn .
If A(z, α, y) outputs x′ with f(x′) = z then output x′.

Let jn = 2 dlog(2/δn)e. For all z ∈ rangef , for all y ∈ {0, 1}pn , define random
variable

βz,y = hy(W){1,...,D̃f (z)−jn},

where W ∈U pref (z). Then the probability that there is a γ ∈ {0, 1}2+jn such that
A inverts f on input 〈f(X), 〈βf(X),Y , γ〉, Y 〉 is at least δn.

Fix z ∈ rangef , and let β′z ∈U {0, 1}D̃f (z)−jn . By Lemma 4.8,

L1(〈βz,Y , Y 〉, 〈β′z, Y 〉) ≤ δn/2.

Therefore, the probability that there is a γ ∈ {0, 1}2+jn such that A inverts f on
input 〈f(X), 〈β′f(X), γ〉, Y 〉 is at least δn/2. If we choose γ ∈U {0, 1}2+jn , we have

1384 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

that the probability that A inverts f(X) on input 〈f(X), 〈β′f(X), γ〉, Y 〉 is at least

2−(2+jn) · δn
2
≥ δ3

n

128
.

Note that this is the input distribution in the call to A within M (A). Note also that
the run time of M (A) is dominated by the time to run A. Thus, the time–success
ratio of M (A) for inverting f ′ is about 128Tn/δ

3
n.

Proof of Lemma 5.2(2). Fix z ∈ rangef and let x, x′ ∈ pref (z) such that x 6= x′.
From the properties of a universal hash function,

Pr[hY (x){1,...,D̃f (z)+2} = hY (x′){1,...,D̃f (z)+2}] = 2−(D̃f (z)+2) ≤ 1

4 ·]pref (z)
.

By calculating the Renyi entropy it follows that

H(f ′(X,Y)) ≥ − log

(
5

4
· 2−n+pn

)
= n+ pn + 2− log(5).

The result follows since log(5) ≤ 5/2.
Corollary 5.3. Let f , h, and f ′ be as described in Construction 5.1. Let

r ∈ {0, 1}n and define P-time function ensemble g(x, y, r) = 〈f ′(x, y), r, x� r〉. Let f
be a one-way function. Then g is a pseudoentropy generator with pseudoentropy 1/2.
The reduction is poly-preserving.

Proof. The proof is the same as the proof of Proposition 4.5. Let X,R ∈U {0, 1}n,
Y ∈U {0, 1}pn , and β ∈U {0, 1}. From Lemma 5.2 (1) and Proposition 4.3 it follows
that g(X,Y,R) and 〈f ′(X,Y), R, β〉 are computationally indistinguishable, where the
reduction is poly-preserving. From Lemma 5.2 (2) it follows that H(f ′(X,Y), R, β) ≥
2n + pn + 1/2. On the other hand, the input entropy to g(X,Y,R) is 2n + pn, and
thus it follows that g has pseudoentropy 1/2.

Theorem 5.4. A pseudorandom generator can be constructed from a one-way
function f where D̃f is a P-time function ensemble. The reduction is weak-preser-
ving.

Proof. For the proof, combine Construction 5.1 with Construction 4.13, and use
Corollary 5.3 and Theorem 4.14.

The following theorem, an easy corollary of Theorem 5.4, was previously obtained
by [GKL93] using a different construction and proof techniques.

Theorem 5.5. Let f : {0, 1}n → {0, 1}`n be a σn-regular one-way function,
where σn is a P-time polynomial parameter. Then a pseudorandom generator can be
constructed from f . The reduction is weak-preserving.

Proof. Note that in this case D̃f (f(x)) = dlog(σn)e for all x ∈ {0, 1}n. Fur-
thermore, dlog(σn)e ∈ {0, . . . , n}. Using this, combining Construction 5.1 with Con-
struction 4.13, and using Corollary 5.3 and Theorem 4.14 yield a mildly nonuniform
pseudorandom generator. Then Proposition 4.17 shows how to construct a pseudo-
random generator from this.

Based on the ideas presented above, [Luby96, Theorems 10.1 and 9.3] gives ver-
sions of Theorems 5.4 and 5.5 where the reduction is poly-preserving when the security
parameter is P-time computable.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1385

6. Any one-way function to a false-entropy generator.

6.1. Finding determined hidden bits. The final step in the general con-
struction of a pseudorandom generator from a one-way function is to construct a
false-entropy generator from any one-way function. This is the technically most diffi-
cult part of this paper. This construction uses some of the ideas from Construction 5.1.
Let

f : {0, 1}n → {0, 1}`n(6.1)

be a one-way function and let

h : {0, 1}pn × {0, 1}n → {0, 1}n+dlog(2n)e(6.2)

be a universal hash function. Similar to Construction 5.1, for x ∈ {0, 1}n, i ∈
{0, . . . , n− 1}, and r ∈ {0, 1}pn , define P-time function ensemble

f ′(x, i, r) = 〈f(x), hr(x){1,...,i+dlog(2n)e}, i, r〉.(6.3)

Note that from Lemma 5.2, the restricted function f ′(x, D̃f (f(x)), r) is an almost
one-to-one one-way function, except that this is not necessarily a P-time function
ensemble since D̃f may not be a P-time function ensemble, and this is the main
difficulty we must overcome.

Let X ∈U {0, 1}n, R ∈U {0, 1}p(n), Y ∈U {0, 1}n, and β ∈U {0, 1}. From the proof
of Lemma 5.2 and Corollary 5.3, we claim and formalize below that if i ≤ D̃f (f(X)),
then a time limited adversary cannot distinguishX�Y from β given Y and f ′(X, i,R).

Let

T = {〈x, i〉|x ∈ {0, 1}n, i ∈ {0, . . . , D̃f (f(x))}},
T = {〈x, i〉|x ∈ {0, 1}n, i ∈ {D̃f (f(x)) + 1, . . . , n− 1}}.

Lemma 6.1. Let W = 〈X̃, Ĩ〉 ∈U T , R ∈U {0, 1}p(n), Y ∈U {0, 1}n, and β ∈U
{0, 1}. Let f be a one-way function. Then

〈f ′(W,R), X̃ � Y, Y 〉 and 〈f ′(W,R), β, Y 〉

are computationally indistinguishable. The reduction is poly-preserving.
Proof. Let A be an R′-breaking adversary for distinguishing the two distributions.

Then A is also an R′-breaking adversary for hidden bit X̃ � Y given 〈f ′(W,R), Y 〉.
Then, from Proposition 4.2, there is an oracle TM M ′ such that M ′(A) is an R′′-
breaking adversary for inverting f ′(W,R), where R′′(n) = nO(1) ·R′(n)O(1). Finally,
we use the same idea as in Lemma 5.2; i.e., the success probability of M ′(A) on
input 〈f(x), α, i, R〉 for α ∈U {0, 1}i+dlog(2n)e is at least inverse polynomial in the
success probability of M ′(A) on input f ′(x, i, R) for each fixed 〈x, i〉 ∈ T . Consider
the following oracle TM N : NA on input f(x) chooses i ∈U {0, . . . , n− 1}, α ∈U
{0, 1}i+dlog(2n)e, and r ∈U {0, 1}pn and runs M ′(A) on input 〈f(x), α, i, r〉. Since
Pr[〈x, i〉 ∈ T] ≥ 1/n when i ∈U {0, . . . , n− 1}, it follows that NA(f(X)) produces an
inverse with probability at least 1/n times the probability M ′(A)(f ′(W,R)) produces
an inverse.

If i ≥ D̃f (f(X)), then X is almost completely determined by f ′(X, i,R), and
thus X � Y is almost completely determined by f ′(X, i,R) and Y .

1386 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

The interesting case is when i = D̃f (f(X)), in which case, from Lemma 6.1, the
adversary is unable to distinguish X � Y from β given Y and f ′(X, i,R), and yet
from Lemma 5.2(2), X � Y is almost completely determined by f ′(X, i,R) and Y . It
is from this case that we can extract a little bit of false entropy.

6.2. Construction and main theorem. We now describe the construction of
a false-entropy generator g based on f ′. Let

kn ≥ 125n3.(6.4)

Part of the construction is to independently and randomly choose kn sets of in-
puts to f ′ and concatenate the outputs. In particular, let X ′ ∈U {0, 1}kn×n, I ′ ∈U
{0, 1}kn×dlog(n)e, R′ ∈U {0, 1}kn×pn . Part of the construction is then f ′kn(X ′, I ′, R′).

Let I ∈U {0, . . . , n− 1}, let

pn = Pr[I ≤ D̃f (f(X))],(6.5)

and let

mn = knpn − 2k2/3
n .(6.6)

We show later that it is sufficient to have an approximation of pn to within an additive
factor of 1/n for the entire construction to work. We need this to be able to claim
that g described below is mildly nonuniform. For now we assume we have the exact
value of pn. Let Y ′ ∈U {0, 1}kn×n. The value of kn is chosen to be large enough so
that with high probability it is the case that I ′j ≤ D̃f (f(X ′j)) for at least mn of the kn
possible values of j, and in this case, from Lemma 6.1, X ′j � Y ′j looks like a random
bit to a time limited adversary given Y ′j and f ′(X ′j , I

′
j , R

′
j).

The problem is that we don’t know for which set of mn values of j the bit X ′j�Y ′j
looks random to a time limited adversary. Instead, the idea is to hash mn bits
out of all kn such bits and release the hashed bits. The intuition is that these mn

hashed bits will look random to a time limited adversary, even though there are really
at most (pn − 1/n)kn bits of randomness left in these kn bits after seeing Y ′ and

f ′kn(X ′, I ′, R′), and thus there are approximately mn − (pn − 1/n)kn ≈ n2 bits of
false entropy. Let

h′ : {0, 1}p′n × {0, 1}kn → {0, 1}mn(6.7)

be a universal hash function, let U ∈U {0, 1}p′n , and define P-time function ensemble

g(pn, X
′, Y ′, I ′, R′, U)(6.8)

= 〈h′U (〈X ′1 � Y ′1 , . . . , X ′kn � Y ′kn〉), f ′
kn(X ′, I ′, R′), U, Y ′〉.

Theorem 6.2. Let f be a one-way function and g be as described above in (6.1)–
(6.8). Then g is a mildly nonuniform false-entropy generator with false entropy 10n2.
The reduction is weak-preserving.

Proof. Let Z ∈U {0, 1}mn , and let

D = 〈h′U (〈X ′1 � Y ′1 , . . . , X ′kn � Y ′kn〉), f ′
kn(X ′, I ′, R′), U, Y ′〉,

E = 〈Z, f ′kn(X ′, I ′, R′), U, Y ′〉.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1387

Note that D is the distribution of the output of g, and E is the same except that
the mn output bits of h′ have been replaced by random bits. Lemma 6.4 shows that
H(E) ≥ H(D) + 10n2. Corollary 6.6 shows that if f is a one-way function, then we
have that D and E are computationally indistinguishable, where the overall reduction
is weak-preserving.

What remain to prove Theorem 6.2 are the proofs of Lemmas 6.4 and 6.5 of
the next subsection. (Corollary 6.6 follows immediately from Lemmas 6.5 and 6.1.)
Before we turn to this, we state the main result of this paper based on Theorem 6.2.

Theorem 6.3. There are one-way functions iff there are pseudorandom genera-
tors.

Proof. That pseudorandom generators imply one-way functions follows from
[Levin87]. The converse now follows from Theorem 6.2 and the results are summarized
in subsection 4.9.

6.3. The main lemmas.
Lemma 6.4. H(E) ≥ H(D) + 10n2.
Proof. The entropy of D and E excluding the first mn bits is exactly the same.

The additional entropy in the first mn bits of E is equal to mn. An upper bound on
the additional entropy in the first mn bits of D is the additional entropy in 〈X ′1 �
Y ′1 , . . . , X

′
kn
� Y ′kn〉. For each j ∈ {1, . . . , kn} where I ′j < D̃f (f(X ′j)), the amount of

entropy added by X ′j � Y ′j is at most 1. On the other hand, under the condition

that I ′j ≥ D̃f (f(X ′j)), X
′
j � Y ′j is determined by 〈f ′(X ′j , I ′j , R′j), Y ′j 〉 with probability

at least 1 − 1/2n, and thus the additional entropy under this condition is at most
1/2n. Since I ′j < D̃f (f(X ′j)) with probability pn− 1/n, it follows that the additional
entropy added by X ′j �Y ′j is at most pn− 1/2n. Therefore, the additional entropy in

the first mn bits of D is at most kn(pn − 1/2n) = mn + 2k
2/3
n − kn/2n < mn − 10n2

by choice of kn.
Lemma 6.5. Let A be an adversary with distinguishing probability

δn = Pr[A(D) = 1]− Pr[A(E) = 1]

for D and E. (We assume without loss of generality that Pr[A(D) = 1] > Pr[A(E) =
1].) Let W = 〈X̃, Ĩ〉 ∈U T , R ∈U {0, 1}p(n), Y ∈U {0, 1}n, and β ∈U {0, 1}. There is
an oracle TM M such that M (A) distinguishes between

〈f ′(W,R), X̃ � Y, Y 〉 and 〈f ′(W,R), β, Y 〉

with probability at least δn/(16kn). The running time of M (A) is polynomial in the
running time of A.

The proof of Lemma 6.5 is the most technically involved in this paper. Before
proving this lemma, we give the main corollary to this lemma, and then we give some
motivation for the proof of the lemma.

Corollary 6.6. Let f be a one-way function. Then D and E are computationally
indistinguishable. The reduction is weak-preserving.

Proof. For the proof, combine Lemma 6.1 with Lemma 6.5.
We now give some intuition to the proof of Lemma 6.5. The oracle TM M (A) will

use a nonstraightforward hybrid of distributions argument to be able to distinguish
the two distributions in the statement of the lemma. To give some intuition about
this nonstraightforward hybrid, we first describe a related straightforward hybrid
argument that we do not know how to implement efficiently.

1388 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

Consider the following distribution. For j ∈ {1, . . . , kn}, let Cj = 1 with probabil-

ity pn and Cj = 0 with probability 1−pn. For all j, if Cj = 1 then let 〈X̃ ′j , Ĩ ′j〉 ∈U T ,

and if Cj = 0 then let 〈X̃ ′j , Ĩ ′j〉 ∈U T . Let R′, Y ′, and U be as defined previously. If
these random variables are used to define a distribution using the same construction
as used to define D, with 〈X̃ ′j , Ĩ ′j〉 replacing 〈X ′j , I ′j〉, then the distribution is D, ex-
cept that it is described in a slightly different way. Now, suppose this distribution is
altered as follows: if Cj = 1, then change the jth input bit of hU from X̃ ′j � Y ′j to
Bj ∈U {0, 1}. Call this distribution D′.

From Lemma 6.1 intuitively it should be the case that a time limited adversary
should not be able to distinguish D from D′. On the other hand, it is not hard to see
using Lemma 4.8 that the statistical distance between D′ and E is exponentially small
in n. Thus, if adversary A can distinguish between D and E , we should be able to
use this to distinguish 〈f ′(W,R), X̃ � Y, Y 〉 and 〈f ′(W,R), β, Y 〉 as in the statement
of Lemma 6.5.

The question is whether we can really prove that D′ is computationally indis-
tinguishable from D. Toward resolving this question, consider the following family
of hybrid distributions. For all j ∈ {0, . . . , kn}, let F (j) be the hybrid distribution
between D and E , which is the same as D′ up to position j and the same as D there-
after; i.e., it is the same as D except that for all i ≤ j, if Ci = 1 then change the ith
input bit of hU from X̃ ′i � Y ′i to Bi ∈U {0, 1}. Then F (0) = D and F (kn) ≈ E . Let
J ∈U {1, . . . , kn}. Then EJ [A(F (J−1))−A(F (J))] = δn/kn.

An inefficient oracle TM could work as follows on input 〈f ′(w, r), b, y〉: the first
phase chooses j ∈U {1, . . . , kn} and chooses a sample from F (j). If cj = 0, then
the oracle TM produces a random bit and stops. In the more interesting case, where
cj = 1, it replaces the inputs corresponding to the jth position in the sample according
to f ′(w, r) and y, and the jth input bit of hu is set to b ∈U {0, 1}. Then the second
phase runs the adversary A on this input and outputs the bit produced by A. The
distinguishing probability for this oracle TM is δn/kn. The problem is that this is
not an efficient oracle TM, because it may not be possible to efficiently uniformly
sample from T and T as required. However, it is possible to sample uniformly from
{0, 1}n × {0, . . . , n− 1}: a pn fraction of the samples will be randomly distributed
in T and a 1 − pn fraction of the samples will be randomly distributed in T . This
simple idea is used to construct the efficient adversary described below.

The efficient adversary M (A) described in detail in the proof of Lemma 6.5 pro-
ceeds in two phases similar to the inefficient oracle TM described above. The first
phase of M (A) consists of kn stages, where stage j produces a coupled pair of distribu-
tions, D(j) and E(j), both of which are polynomially samplable. Each stage consists of
using adversary A and sampling from the distributions produced in the previous stage
to produce the pair of output distributions for the current stage. Initially, D(0) = D
and E(0) = E , and it will turn out that D(kn) ≈ E(kn).

The first j − 1 positions in both D(j) and E(j) are already fixed in essentially the
same way in D(j−1) and E(j−1), and these positions will be fixed the same way in D(j)

and E(j). To fill in position j in D(j) and E(j), many samples of 〈xj , ij〉 are drawn
uniformly from {0, 1}n×{0, . . . , n− 1}, and then with high probability many of them
will be in T and many will be in T . We cannot directly tell for each sample whether
it is in T or T . Thus, we must use another criterion to decide which of the samples
to keep to fill in position j. The criterion employed is to use the sample for which the
distinguishing probability of A between D(j) and E(j) is highest when the jth position
is fixed according to the sample.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1389

Let δ(j) = Pr[A(D(j)) = 1]− Pr[A(E(j)) = 1]. Because δ(0) = δn and δ(kn) ≈ 0, it
follows that

Ej∈U{1,...,kn}[δ
(j−1) − δ(j)] ≥ δn/kn.

It is because of this discrepancy between the value of δ(j) and δ(j−1) that f ′ can be
inverted in the second phase.

Intuitively, stage j of the first phase works as follows. A bit cj is chosen randomly
to be one with probability pn and to be zero with probability 1−pn. In the distribu-
tion D(j), the jth input 〈x′j , i′j , r′j〉 to f ′kn is chosen randomly, y′j is chosen randomly,
u is chosen randomly, and then the jth input bit of h′u is set to a random bit bj if
cj = 1 and to the correct inner product bit if cj = 0. In the distribution E(j), the

jth input of f ′kn is set the same way it is set in D(j), and thus the two distributions
D(j) and E(j) are correlated. The choice of the jth inputs is done several times (cj is
chosen only once at the beginning, i.e., it is not rechosen for each of the times) and
each time the distinguishing probability of A for D(j) and the corresponding E(j) is
approximated, and the choice that maximizes the difference between these accepting
probabilities determines how D(j) and E(j) are finally set.

The second phase of M (A) chooses j ∈U {1, . . . , kn} and then uses the pair of dis-
tributions D(j) and E(j) produced in the first stage. The idea is to choose a random
sample from both D(j) and E(j), modify portions of the D(j) part according to the in-
put to M (A), run A on both the modified D(j) sample and the E(j) sample, and, based
on the outputs, produce a one bit output. The intuition is that the distinguishing
probability will be δ(j), which on average over all j is at least δn/kn.

We now turn to the formal proof of Lemma 6.5.
Proof of Lemma 6.5. The oracle TMM (A) works as follows on input 〈f ′(w, r), b, y〉.
Phase 1. Define D(0) = D and E(0) = E . Let B ∈U {0, 1}kn . Let ρ = δn/(16kn)

and τ = 64n2/ρ. Stage j = 1, . . . , kn works as follows: randomly choose cj ∈ {0, 1}
so that cj = 1 with probability pn. Choose x̂1, . . . , x̂τ ∈U {0, 1}n and î1, . . . , îτ ∈U
{0, . . . , n− 1}. For each m ∈ {1, . . . , τ}, define wm = 〈x̂m, îm〉 and let D(j−1)

cj (wm) be

the same as D(j−1) except that 〈X ′j , I ′j〉 is fixed to wm and the jth input bit of h′ is
set to {

x̂m � Y ′j if cj = 0,
Bj if cj = 1.

Similarly, define E(j−1)(wm) to be the same as E(j−1) except that 〈X ′j , I ′j〉 is fixed to
wm. Let

δ(j−1)
cj (wm) = Pr[A(D(j−1)

cj (wm)) = 1]− Pr[A(E(j−1)(wm)) = 1].

Using A and sampling O(n/ρ2) times from D(j−1)
cj (wm) and E(j−1)(wm), produce an

estimate ∆
(j−1)
cj (wm) so that

Pr[|∆(j−1)
cj (wm)− δ(j−1)

cj (wm)| > ρ] ≤ 2−n.

Let m0 ∈ {1, . . . , τ} be the index for which ∆
(j−1)
cj (wm0) is maximized. Set 〈x′j , i′j〉 =

wm0 , D(j) = D(j−1)
cj (wm0

), E(j) = E(j−1)(wm0
) and go to the next stage.

1390 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

Phase 2. Pick j ∈U {0, . . . , kn − 1}. Let D(j)(w, r, b, y) be the distribution D(j)

except that f ′(X ′j+1, I
′
j+1, R

′
j+1) is set to f ′(w, r) and the j + 1rst input bit of h′

is set to b and Y ′j+1 is set to y. Let E(j)(w, r, y) be the same as E(j) except that
f ′(X ′j+1, I

′
j+1, R

′
j+1) is set to f ′(w, r) and Y ′j+1 is set to y. Let β ∈U {0, 1}, let D be

a sample of D(j)(w, r, b, y), and let E be a sample of E(j)(w, r, y). If A(D) = A(E),
then output β else output A(D).

We now prove that the oracle adversary M (A) as just described distinguishes
as claimed in the lemma. Let w = 〈x, i〉, d(j)(w, r, b, y) = E[A(D(j)(w, r, b, y))] and
e(j)(w, r, y) = E[A(E(j)(w, r, y))]. Then

Pr[M (A)(f ′(w, r), b, y) = 1] = 1/2 + (d(j)(w, r, b, y)− e(j)(w, r, y))/2.

Also, it follows directly from the definitions that

E[d(j)(w,R, x� Y, Y)− e(j)(w,R, Y)] = δ
(j)
0 (w)

and

E[d(j)(w,R, β, Y)− e(j)(w,R, Y)] = δ
(j)
1 (w).

Let ε(j) = E[δ
(j)
0 (W)− δ(j)

1 (W)]. Thus, the distinguishing probability of M (A) is

E[M (A)(f ′(W,R), X̃ � Y, Y)]− E[M (A)(f ′(W,R), β, Y)]

= Ej [δ
(j)
0 (W)− δ(j)

1 (W)]/2 = Ej [ε
(j)]/2,

where j ∈U {0, . . . , kn − 1} in the last two expectations. To prove the lemma, it is
sufficient to show that Ej [ε

(j)]/2 ≥ ρ or, equivalently,

E

 ∑
j∈{0,...,kn−1}

ε(j)

 ≥ 2ρkn = δn/8.(6.9)

The expectation here is over the random choices of M (A) in the first phase. Let
δ(j) = Pr[A(D(j)) = 1] − Pr[A(E(j)) = 1]. We prove (6.9) by showing the following
below:

(a) E[δ(kn)] ≤ 2−n. The expectation is over the random choices of M (A) in the
first phase.

(b) E[δ(j) − δ(j+1)] ≤ ε(j) + 4ρ. The expectation is over random choices in the
j + 1rst stage of Phase 1 conditional on any set of choices in the previous
stages.

From (a) and (b), and because δ(0) = δn, it follows that

δn/2 < δn − E[δ(kn)]

=
∑

j∈{0,...,kn−1}
E[δ(j) − δ(j+1)]

≤ 4knρ+ E

 ∑
j∈{0,...,kn−1}

ε(j)

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1391

= δn/4 + E

 ∑
j∈{0,...,kn−1}

ε(j)

 ,
and this proves the bound in (6.9). Thus, it suffices to prove (a) and (b) above.

Proof of (a). Since Pr[cj = 1] = pn, applying Chernoff bounds (e.g., see [MR95]),
we get that, with probability at least 1− 2−n,∑

j∈{0,...,kn−1}
cj ≥ knpn − k2/3

n = mn + kn
2/3.

The entropy of the input to h′ conditional on the rest of the bits of D(kn) is at
least

∑
j∈{0,...,kn−1} cj . So, if this sum is at least mn + kn

2/3, applying Lemma 4.8,

L1(D(kn), E(kn)) ≤ 2−n. Thus, δ(kn) = E[A(D(kn))]− E[A(E(kn))] ≤ 2−n.
Proof of (b). Let W̄ ∈U T , and recall that W ∈U T . Then, since the j + 1st

input of h′ is always X ′j+1 � Y ′j+1 in D(j),

δ(j) = pnE[δ
(j)
0 (W)] + (1− pn)E[δ

(j)
0 (W̄)]

= pnE[δ
(j)
1 (W)] + pn(E[δ

(j)
0 (W)]− E[δ

(j)
1 (W)]) + (1− pn)(E[δ

(j)
0 (W̄)])

= pnE[δ
(j)
1 (W)] + pnε

(j) + (1− pn)(E[δ
(j)
0 (W̄)])

< ε(j) + pnE[δ
(j)
1 (W)] + (1− pn)(E[δ

(j)
0 (W̄)]).

We now show that E[δ(j+1)] ≥ pnE[δ
(j)
1 (W)]+(1−pn)(E[δ

(j)
0 (W̄)])−4ρ, and this

concludes the proof. Let c ∈ {0, 1} and consider stage j in Phase 1. From our choice
of τ and the fact that 1/n ≤ pn ≤ 1 − 1/n, it follows that, with probability at least
1− 2−n, at least n/ρ of the wm’s are in T , and at least n/ρ of the wm’s are in T . It
then follows using Chernoff bounds that

Pr[max
1≤m≤τ

{δ(j)
c (wm)} ≥ max{E[δ(j)

c (W)],E[δ(j)
c (W̄)]} − ρ]

is at least 1 − 2−n. Also, with probability at least 1 − 2−n, ∆
(j)
c (wm) is within ρ of

the corresponding δ
(j)
c (wm), and thus (recalling how wm0

is chosen above in stage j)

δ(j)
c (wm0

) ≥ ∆(j)
c (wm0

)− ρ
= max
m∈{1,...,τ}

{∆(j)
c (wm)} − ρ

≥ max
m∈{1,...,τ}

{δ(j)
c (wm)} − 2ρ

≥ max{E[δ(j)
c (W)],E[δ(j)

c (W̄)]} − 3ρ

with probability at least 1− 3 · 2−n. Let δ
(j+1)
c be the value of δ(j+1) conditional on

cj+1 = c. From this we can conclude that

E[δ(j+1)
c] ≥ max{E[δ(j)

c (W)],E[δ(j)
c (W̄)]} − 4ρ.

Since cj+1 = 1 with probability pn,

E[δ(j+1)] = pnE[δ
(j+1)
1] + (1− pn)E[δ

(j+1)
0]

≥ pnE[δ
(j)
1 (W)] + (1− pn)(E[δ

(j)
0 (W̄)])− 4ρ.

1392 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

Before we continue let us just check that a good approximation of pn is sufficient.
Suppose that pn ≤ p̃n ≤ pn + 1

n and do the entire construction with p̃n replacing
pn. Enlarge T to density p̃n by making it contain some elements 〈x, i〉 with i =
D̃f (f(x)) + 1. Lemma 6.1 is easily seen to remain valid, and Lemma 6.4 just becomes
more true in that the entropy of D decreases. This implies that it is sufficient to try
O(n) different values of pn.

7. A direct construction. We have shown how to construct a false-entropy
generator from an arbitrary one-way function, a pseudoentropy generator from a
false-entropy generator, and finally a pseudorandom generator from a pseudoentropy
generator. The combinations of these constructions give a pseudorandom generator
from an arbitrary one-way function as stated in Theorem 6.3. By literally composing
the reductions given in the preceding parts of this paper, we construct a pseudorandom
generator with inputs of length n34 from a one-way function with inputs of length n.
This is obviously not a suitable reduction for practical applications. In this subsection,
we use the concepts developed in the rest of this paper, but we provide a more direct
and efficient construction. However, this construction still produces a pseudorandom
generator with inputs of length n10, which is clearly still not suitable for practical
applications. (A sharper analysis can reduce this to n8, which is the best we could
find using the ideas developed in this paper.) The result could only be considered
practical if the pseudorandom generator had inputs of length n2, or perhaps even
close to n. (However, in many special cases of one-way functions, the ideas from this
paper are practical; see, e.g., [Luby96].)

The improvement in the direct construction given here comes from the observation
that more than one of the reductions involves a product distribution, whereas only
one product distribution is needed for the overall proof.

We start with a one-way function f : {0, 1}n → {0, 1}`n . We construct f ′ as in
(6.3), and let pn be the probability that I ≤ D̃f (f(X)) as in the previous section. Let
X = 〈X, I,R〉 represent the input distribution to f ′, and let cn be the length of X and
c′n the length of f ′(X). Let en = H(f ′(X)). Let b(X , y) = x� y. Set kn = 2000n6.

Intuitively, we generate pseudorandom bits as follows: let X ′ = X kn and Y ′ =
Y kn . We first compute f ′kn(X ′) and bkn(X ′, Y ′). Intuitively, we are entitled to
recapture

kncn −H〈f ′kn(X ′), bkn(X ′, Y ′)〉
bits from X ′, because this is the conditional entropy left after we have computed f ′kn

and bkn . We are entitled to recapture knpn bits from the bkn(X ′, Y ′) (since we get
a hidden bit out of each copy whenever I ≤ D̃f (f(X))). Finally, we should be able

to extract enkn bits from f ′kn(X ′), since en is the entropy of f ′(X). Since b(n) is
almost totally predictable for almost all inputs where I ≥ D̃f (f(X)),

H〈f ′(X), b(X , Y)〉 ≤ en + pn − 1/n+ 1/(2n).

(See the proof of Lemma 6.4.) Thus, if we add up all the output bits, we are entitled

to kn(cn+1/(2n)), or kn/(2n) more bits than the input to f ′kn . However, our methods
of extracting entropy are not perfect, so we need to sacrifice some bits at each stage;

to use Corollary 4.10, we need to sacrifice 2nk
2/3
n at each stage, so we chose kn to

satisfy kn/(2n) > 6nkn
2/3.

Formally, let mn = kn(cn − en − pn + 1/(2n))− 2nkn
2/3, m′n = knpn − 2nkn

2/3,

and m′′n = knen − 2nkn
2/3. Let R1, R2, and R3 be indices of hash functions so that

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1393

hR1
maps kncn bits to mn bits, hR2

maps kn bits to m′n bits, and hR3
maps knc

′
n bits

to m′′n bits. Our construction is as follows.
Construction 7.1.

g(X ′, Y ′, R1, R2, R3) = 〈hR1(X ′), hR2(bkn(X ′, Y ′)), hR3(f ′kn(X ′)), Y ′, R1, R2, R3〉.
Theorem 7.2. If f is a one-way function and g is as in Construction 7.1, then g

is a mildly nonuniform pseudorandom generator. The reduction is weak-preserving.
Proof. It is easy to check that g outputs more bits than it inputs.
As noted above, the conditional entropy of X given f ′(X) and b(X , Y) is at

least cn − en − pn + (1/2n). Thus, from Corollary 4.10, we have that 〈hR1
(X ′), R1〉

is statistically indistinguishable from random bits given 〈f ′kn(X ′), bkn(X ′, Y ′), Y ′〉.
Hence, g(X ′, Y ′, R1, R2, R3) is statistically indistinguishable from

〈Z1, hR2(bkn(X ′, Y ′)), hR3(f ′kn(X ′)), Y ′, R1, R2, R3〉,
where Z1 ∈U {0, 1}mn . Now, from Lemmas 6.5 and 6.1, it follows that hR2(bkn(X ′, Y ′))
is computationally indistinguishable from random bits given 〈f ′kn(X ′), R2, Y

′〉. Thus,
g(X ′, Y ′, R1, R2, R3) is computationally indistinguishable from

〈Z1, Z2, hR3
(f ′kn(X ′)), Y ′, R1, R2, R3〉,

where Z2 ∈U {0, 1}m′n . Finally, from Corollary 4.10, 〈hR3
(f ′kn(X ′)), R3〉 is sta-

tistically indistinguishable from 〈Z3, R3〉, where Z3 ∈U {0, 1}m′′n . Thus, the output
of g is computationally indistinguishable from a truly random output of the same
length.

If we use hash functions constructed as Toeplitz matrices, then O(m) bits are
sufficient to construct a hash function on m bits and the inputs needed for the hash
function is just a constant fraction of all inputs. Then the input length to g is
O(nkn) = O(n7).

We still need to use Proposition 4.17 to get rid of the mild nonuniformity. From
the arguments above, it is clear that an approximation of both en and pn that is
within 1/(8n) of their true values is sufficient. Since 0 ≤ en ≤ n, and 0 ≤ pn < 1,
there are at most O(n3) cases of pairs to consider. This means that we get a total of
O(n3) generators, each needing an input of length O(n7). Thus the total input size
to the pseudorandom generator is O(n10), as claimed.

8. Conclusions. A general problem is to characterize the conditions under
which cryptographic applications are possible. By conditions we mean complexity the-
oretic conditions, e.g., P 6= NP, the existence of one-way functions, etc. Examples of
cryptographic applications are private key cryptography, identification/authentication,
digital signatures, bit commitment, exchanging secrets, coin flipping over the tele-
phone, etc.

For a variety of cryptographic applications it is known that a secure protocol can
be constructed from a pseudorandom generator, e.g., the work of [GGM86], [LR88],
[GMR89], [Naor88], [GMW91], shows that applications ranging from private key en-
cryption to zero-knowledge proofs can be based on a pseudorandom generator. The
results presented in this paper show that these same protocols can be based on any
one-way function. The paper [NY89] gives a signature scheme that can be based on
any one-way permutation, and [R90] substantially improves this by basing such a
scheme on any one-way function.

1394 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

Using the notion of a false-entropy generator, [G89] shows that the existence of
pseudorandom generators is equivalent to the existence of a pair of P-samplable dis-
tributions which are computationally indistinguishable but statistically very different.

The paper [IL89] provides complementary results; a one-way function can be con-
structed from a secure protocol for any one of a variety of cryptographic applications,
including private key encryption, identification/authentication, bit commitment, and
coin flipping by telephone. The paper [OW93] shows that a one-way function can be
constructed from any nontrivial zero-knowledge proof protocol. Thus, secure proto-
cols for any of these applications are equivalent to the existence of one-way functions.

The results described in this paper and the previous three paragraphs show that
the existence of a one-way function is central to modern complexity-based cryptogra-
phy.

Some applications seem unlikely to be shown possible based on any one-way func-
tion; e.g., [IR89] gives strong evidence that exchanging secrets over a public channel
is an application of this type.

A fundamental issue is that of efficiency, both in size and time; the general
construction we give for a pseudorandom generator based on any one-way function
increases the size of the input by a large polynomial amount and thus is only weak-
preserving. This is not good news for practical applications; it would be nice to have
a general poly-preserving or a linear-preserving reduction.

Acknowledgments. This research evolved over a long period of time and was
greatly influenced by many people. We thank Amos Fiat, Moni Naor, Ronitt Rubin-
feld, Manuel Blum, Steven Rudich, Noam Nisan, Lance Fortnow, Umesh Vazirani,
Charlie Rackoff, Oded Goldreich, Hugo Krawczyk, and Silvio Micali for their insights
and contributions to this work. We in particular thank Charlie, Umesh, and Manuel
for their advice and enthusiasm, and Oded and Hugo for exposing the fourth author to
their wealth of insights on this problem. Finally, Oded’s insightful comments on every
aspect of earlier versions of this paper have improved the presentation tremendously.

REFERENCES

[ACGS88] W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr, RSA and Rabin functions:
Certain parts are as hard as the whole, SIAM J. Comput., 17 (1988), pp. 194–209.

[BFNW96] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential
time simulations unless EXPTIME has publishable proofs, Comput. Complexity, 3
(1993), pp. 307–318.

[BBR88] C. H. Bennett, G. Brassard, and J.-M. Robert, Privacy amplification by public
discussion, SIAM J. Comput., 17 (1988), pp. 210–229.

[Blum84] M. Blum, Independent unbiased coin flips from a correlated biased source—a finite
state Markov chain, Combinatoria, 6 (1986), pp. 97–108.

[BM82] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-
random bits, SIAM J. Comput., 13 (1984), pp. 850–864.

[BH89] R. Boppana and R. Hirschfeld, Pseudo-random generators and complexity classes,
in Advances in Comp. Research 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989,
pp. 1–26.

[Boyar89] J. Boyar, Inferring sequences produced by pseudo-random number generators, J. Assoc.
Comput. Mach., 36 (1989), pp. 129–141.

[CW79] L. Carter and M. Wegman, Universal classes of hash functions, J. Comput. System
Sci., 18 (1979), pp. 143–154.

[CG88] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and
probabilistic communication complex, SIAM J. Comput., 17 (1988), pp. 230–261.

[DH76] D. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform.
Theory, 22 (1976), pp. 644–654.

A PSEUDORANDOM GENERATOR FROM ANY ONE-WAY FUNCTION 1395

[G89] O. Goldreich, A note on computational indistinguishability, Inform. Process. Lett.,
34 (1990), pp. 277–281.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions,
J. Assoc. Comput. Mach., 33 (1986), pp. 792–807.

[GKL93] O. Goldreich, H. Krawczyk, and M. Luby, On the existence of pseudorandom gen-
erators, SIAM J. Comput., 22 (1993), pp. 1163–1175.

[GL89] O. Goldreich and L. A. Levin, A hard-core predicate for any one-way function, in
Proc. 21st ACM Sympos. on Theory of Computing, ACM, New York, 1989, pp.
25–32.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their
validity, or all languages in NP have zero-knowledge proofs, J. Assoc. Comput.
Mach., 38 (1991), pp. 691–729.

[GM84] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28
(1984), pp. 270–299.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive
proof systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[GMT82] S. Goldwasser, S. Micali, and P. Tong, Why and how to establish a private code on
a public network, in Proc. 23rd IEEE Sympos. on Found. of Comput. Sci., IEEE,
New York, 1982, pp. 134–144.

[H90] J. Håstad, Pseudo-random generators under uniform assumptions, in Proc. 22nd ACM
Sympos. on Theory of Computing, ACM, New York, 1990, pp. 395–404.

[HL92] A. Herzberg and M. Luby, Public randomness in cryptography, in Advances in Cryp-
tology, Proc. 12th Annual Cryptology Conf. (CRYPTO ’92), Santa Barbara, CA,
1992, Lecture Notes in Comput. Sci. 740, Springer-Verlag, Berlin, 1993, pp. 421–
432.

[IL89] R. Impagliazzo and M. Luby, One-way functions are essential for information based
cryptography, in Proc. 30th IEEE Sympos. on Found. of Comput. Sci., IEEE, New
York, 1989, pp. 230–235.

[ILL89] R. Impagliazzo, L. Levin, and M. Luby, Pseudo-random number generation from
one-way functions, in Proc. 21st ACM Sympos. on Theory of Computing, ACM,
New York, 1989, pp. 12–24.

[IN96] R. Impagliazzo and M. Naor, Efficient cryptographic schemes provably as secure as
subset sum, J. Cryptology, 9 (1996), pp. 192–216.

[IR89] R. Impagliazzo and S. Rudich, Limits on the provable consequences of one-way func-
tions, in 21st ACM Sympos. on Theory of Computing, ACM, New York, 1989, pp.
44–56.

[IZ89] R. Impagliazzo and D. Zuckerman, How to recycle random bits, in Proc. 30th IEEE
Sympos. on Found. of Comput. Sci., IEEE, New York, 1989, pp. 248–253.

[Knuth97] D. E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms,
3rd ed., Addison-Wesley, Bonn, 1998.

[K65] A. N. Kolmogorov, Three approaches to the concept of the amount of information,
Problems Inform. Transmission, 1 (1965), pp. 1–7.

[K92] H. Krawczyk, How to predict congruential generators, J. Algorithms, 13 (1992), pp.
527–545.

[Levin87] L. A. Levin, One-way function and pseudorandom generators, Combinatorica, 7 (1987),
pp. 357–363.

[Levin93] L. A. Levin, Randomness and non-determinism, J. Symbolic Logic, 58 (1993), pp.1102–
1103.

[Luby96] M. Luby, Pseudorandomness and Cryptographic Applications, Princeton Computer
Science Notes, Princeton University Press, Princeton, NJ, 1996.

[LR88] M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseu-
dorandom functions, SIAM J. Comput., 17 (1988), pp. 373–386.

[McEl78] R. J. McEliece, A Public Key Cryptosystem Based on Algebraic Coding Theory, DSN
Progress report, Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, 1978.

[McIn87] J. McInnes, Cryptography Using Weak Sources of Randomness, Tech. report 194/87,
University of Toronto, 1987.

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, 1995.

[Naor88] M. Naor, Bit commitment using pseudorandom generators, J. Cryptology, 4 (1991),
pp. 151–158.

1396 J. HÅSTAD, R. IMPAGLIAZZO, L. LEVIN, AND M. LUBY

[NY89] M. Naor and M. Yung, Universal one-way hash functions and their applications, in
Proc. 21st ACM Sympos. on Theory of Computing, ACM, New York, 1989, pp.
33–43.

[OW93] R. Ostrovsky and A. Wigderson, One-way functions are essential for non-trivial
zero-knowledge, in Proc. 2nd Israel Sympos. on the Theory of Computing and
Systems, IEEE Computer Society Press, Los Alamitos, CA, 1993, pp. 3–17.

[Renyi70] A. Renyi, Probability Theory, North–Holland, Amsterdam, 1970.
[RSA78] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures

and public-key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126.
[R90] J. Rompel, One-way functions are necessary and sufficient for secure signatures, in

Proc. 22nd ACM Sympos. on Theory of Computing, ACM, New York, 1990, pp.
387–394.

[SV86] M. Santha and U. Vazirani, Generating quasi-random sequences from slightly-random
sources, J. Comput. System Sci., 33 (1986), pp. 75–87.

[S48] C. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948),
pp. 379–423; 623–656.

[S83] M. Sipser, A complexity theoretic approach to randomness, in Proc. 15th ACM Sympos.
on Theory of Computing, ACM New York, 1983, pp. 330–335.

[V87] U. Vazirani, Towards a strong communication complexity theory or generating quasi-
random sequences from two communicating slightly-random sources, Combinator-
ica, 7 (1987), pp. 375–392.

[VV85] U. Vazirani and V. Vazirani, Random polynomial time is equal to slightly-random
polynomial time, in Proc. 26th IEEE Sympos. on Found. of Comput. Sci., IEEE,
New York, 1985, pp. 417–428.

[Yao82] A. C. Yao, Theory and applications of trapdoor functions, in Proc. 23rd IEEE Sympos.
on Found. of Comput. Sci., IEEE, New York, 1982, pp. 80–91.

LOCAL LABELING AND RESOURCE ALLOCATION USING
PREPROCESSING∗

HAGIT ATTIYA† , HADAS SHACHNAI† , AND TAMI TAMIR†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1397–1413

Abstract. This paper studies the power of nonrestricted preprocessing on a communication
graph G, in a synchronous, reliable system. In our scenario, arbitrary preprocessing can be performed
on G, after which a sequence of labeling problems has to be solved on different subgraphs of G. We
suggest a preprocessing that produces an orientation of G. The goal is to exploit this preprocessing
for minimizing the radius of the neighborhood around each vertex from which data has to be collected
in order to determine a label. We define a set of labeling problems for which this can be done. The
time complexity of labeling a subgraph depends on the topology of the graph G and is always less
than min{χ(G), O((logn)2)}. On the other hand, we show the existence of a graph for which even
unbounded preprocessing does not allow fast solution of a simple labeling problem. Specifically, it is
shown that a processor needs to know its Ω(log n/ log logn)-neighborhood in order to pick a label.

Finally, we derive some results for the resource allocation problem. In particular, we show
that Ω(log n/ log logn) communication rounds are needed if resources are to be fully utilized. In this
context, we define the compact coloring problem, for which the orientation preprocessing provides fast
distributed labeling algorithm. This algorithm suggests efficient solution for the resource allocation
problem.

Key words. locality, preprocessing, orientation, labeling, resource allocation, response time

AMS subject classifications. 68P05, 68Q10, 68Q20, 68Q22, 68R10

PII. S0097539795285643

1. Introduction. The time required to perform certain computations in message-
passing systems depends, in many cases, on the locality of information, i.e., the dis-
tance to which information should be forwarded. Clearly, within t communication
rounds, a processor can get information only from processors located within distance
t. The study of problems that are local, i.e., in which the value of a processor depends
only on its local neighborhood, has attracted much attention, e.g., [13, 16, 12, 18, 11].
This study assumed that processors have no knowledge about the network topology.
In many common scenarios, this is not the situation: If the same problem has to be
solved many times on different subnetworks of a fixed network G, then it might be
worthwhile to conduct some preliminary preprocessing on G.

We study labeling problems, in which each processor has to pick a label, subject
to some restrictions on the labeling of the whole network. We allow arbitrary prepro-
cessing on G. Afterward, several instances of the same labeling problem need to be
solved on different subnetworks G′ of G. All processors of G can participate in the
algorithm when a particular subnetwork G′ is labeling itself, but only the processors
of G′ have to pick labels. It is assumed that the system is synchronous and operates

∗Received by the editors May 4, 1995; accepted for publication (in revised form) October 9, 1997;
published electronically April 7, 1999. A preliminary version of this paper appeared in Distributed
Algorithms: Proceedings of the 8th International Workshop, Terschelling, The Netherlands, Septem-
ber/October 1994, Lecture Notes in Comput. Sci. 857, G. Tel and P. Vitanyi, eds., Springer-Verlag,
Berlin, 1994, pp. 194–208. This work was supported by grant 92-0233 from the United States–Israel
Binational Science Foundation (BSF), Jerusalem, Israel, by the fund for the promotion of research
in the Technion, and by Technion VPR funds.

http://www.siam.org/journals/sicomp/28-4/28564.html
†Department of Computer Science, The Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il,

hadas@cs.technion.ac.il, tami@cs.technion.ac.il). Part of the work of the third author was done
while at IBM T.J. Watson Research Center, Yorktown Heights, NY.

1397

1398 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

in rounds; there is no bound on message length, and local computation is unlim-
ited. Furthermore, we assume the system is completely reliable. The preprocessing
attempts to increase the locality of the problem, that is, decrease the radius of the
neighborhood a processor v needs to know in order to pick a label.

The preprocessing we present produces an orientation that assigns priorities to
the processors. Later, when a processor has to compute its label in some subgraph
G′, it considers only processors with higher priorities. We define a parameter that
quantifies the quality of these orientations, denoted by t(G). t(G) depends on the
topology of G and it is always less than min{χ(G), O((logn)2)}.

We define extendible labeling problems, in which a labeled graph can be extended
by an independent set of vertices to a larger labeled graph without invalidating the
original labels. The maximal independent set problem and the (∆ + 1)-coloring prob-
lem are extendible. We suggest an efficient preprocessing on G which allows us to
solve these problems within t(G) rounds on any subgraph of G. We also discuss a
distributed randomized preprocessing on G that takes O((logn)2) rounds and enables
us to solve these problems on any subgraph of G within O((logn)2) rounds. This
gives a distributed randomized algorithm for compact coloring. Bar-Noy et al. [6]
have shown that this algorithm provides efficient solutions to the resource allocation
problem for a large class of graphs.

We introduce a problem in which processors have to communicate with processors
at a nonconstant distance, even after unbounded preprocessing. The problem is k-
dense coloring, which is a restricted coloring problem. A coloring is k-dense if every
vertex with color c > k has a neighbor with color c′, c − k ≤ c′ ≤ c − 1. Note that
validating that a coloring is k-dense requires only checking with the neighbors (i.e.,
processors that are at distance 1). We prove that there exists a network on which
processors must know their Ω(log n/ log log n)-neighborhood in order to pick a color.
That is, for some networks, even unbounded preprocessing does not allow us to solve
the problem locally.

The locality of distributed computations was first studied by Cole and Vishkin,
who showed in [9] that a 3-coloring of a ring requires only the knowledge of an
O(log∗ n)-neighborhood; this bound was shown to be tight by Linial [12]. The more
general problem of computing labels locally was studied by Naor and Stockmeyer [16]
in the case where no preprocessing is allowed. They present local algorithms for some
labeling problems whose validity can be checked locally, and they also show that
randomization does not help in making a labeling problem local. In follow-up work,
Mayer, Naor, and Stockmeyer [15] consider the amount of initial symmetry-breaking
needed in order to solve certain labeling problems.

Other, less related, works studied coloring and the maximal independent set
problem in graphs (e.g., Goldberg, Plotkin, and Shannon [11], Szegendy and Vish-
wanathan [18], and Panconesi and Srinivasan [17]). Another use of graph-theoretic
techniques for local algorithms appears in works on sparse partitions [2, 14]. In these
works, preprocessing is applied in order to partition a graph into graphs with small
diameters. Given such a partition, it is possible to solve the problem locally for each
subgraph and then compose the resulting labels. See also the survey by Linial [13],
which describes other works on locality in distributed computation.

Preprocessing is very helpful in the context of ongoing problems, such as resource
allocation [7], where jobs with conflicting resource requirements have to be scheduled
efficiently. An instance of the problem is a communication graph G. The vertices
represent processors, and there is an edge between a pair of processors if they may

LOCAL LABELING AND RESOURCE ALLOCATION 1399

compete on a resource. The resource requirements of a processor may vary, and
current requirements are represented by a dynamic conflict graph C, where the ver-
tices are processors waiting to execute their jobs, and there is an edge between two
processors that currently compete on some resource. (Note that C ⊆ G.)

We consider a restricted version of the resource allocation problem: A schedule is
k-compact if, for every waiting processor pi in every k rounds, either pi runs or there
exists some conflicting neighbor of pi which runs. This guarantees that pi is delayed
only because one of its conflicting neighbors is running.

The lower bound for the k-dense coloring problem implies that no preprocessing
enables a distributed k-compact schedule within less than Ω(log n/ log log n) rounds.
We present a distributed algorithm which is µ-compact, where µ is a known upper
bound on the execution time of a job; the algorithm uses preprocessing that produces
a t-orientation. The response time of our algorithm is δiµ+ t(G), with δi the degree
of pi in C.

The resource allocation problem was introduced by Chandy and Misra [7]. In
their definition, known as the dining philosophers problem, the resource requirements
of the processors are static. We consider the dynamic version of the problem, known
as the drinking philosophers problem. Several algorithms for the drinking philosophers
problem are known. Without preprocessing, the best algorithm to date [5] achieves
O(δiµ+ δ log n) response time, where δi is the degree of pi in C and δ is the maximal
degree in C. In contrast, by using preprocessing, our algorithm achieves a response
time of δiµ + t(G). An algorithm that relies on preprocessing (which colors the
communication graph to induce priorities between processors) and achieves a response
time of O(δ2µ) was presented in [8].

The usage of a preprocessing that induces an orientation of the conflict graph was
first considered in [7]; Barbosa and Gafni [4] present theoretical results concerning the
maximal concurrence which may be achieved using orientation. Like our algorithms,
in these papers the orientation is used to induce priorities between processors to
decrease the waiting time of processors. However, in this work the quality of a graph
orientation is measured as the maximal directed length in the graph, which corresponds
to the maximal waiting chain for a particular processor. In contrast, our measure
for the quality of an orientation is the maximal undirected distance between two
processors that are connected by a directed path. This allows us to combine the
orientation preprocessing with a local distributed labeling algorithm, such that the
resulting waiting time for each processor is bounded by a small constant, although
the length of the maximal directed path may be equal to the size of the graph.

The rest of this paper is organized as follows. In section 2 we give some basic
definitions. In section 3 we study labeling problems: we derive a lower bound for a la-
beling problem that also holds for the case where unbounded preprocessing is allowed,
we introduce the t-orientation preprocessing, and we prove that this preprocessing
provides efficient labeling algorithms for certain problems. Section 4 deals with the
resource allocation problem: we present the lower bound for k-compact resource al-
location as well as a distributed algorithm for µ-compact resource allocation using
t-orientation. We conclude in section 5 with some problems, which are left open by
our work.

2. Preliminaries.

Model of computation. We consider a distributed message-passing system with n
processors p1, . . . , pn. The network connecting the processors is modeled as a graph
where vertices correspond to processors and there is a bidirectional communication

1400 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

link between every pair of adjacent processors.

We assume that the system is synchronous and operates in rounds. That is, at
the beginning of round k + 1, each processor receives all the messages sent to it by
its neighbors at the end of round k; after some local computation, the processor may
send a message to (some or all of) its neighbors. There is no bound on message length,
and local computation is unlimited.

Graph-theoretic notions. Consider a directed/undirected graph G = (V,E). For
any two vertices v, u ∈ V , let d(u, v) be the undirected distance between v and u in
G; note that even if G is directed, the distance is measured on the shortest undirected
path in G between v and u. The diameter of the G, diam(G), is maxv,u∈V d(v, u).
Given a vertex v, the r-neighborhood of v for some integer r ≥ 0 is the subgraph of G
induced by all vertices u such that d(v, u) ≤ r. The girth of G, g(G), is the length of
the shortest cycle in G.

A set of vertices V ′ ⊆ V is an independent if no two vertices in V ′ are adjacent.
An independent set is maximal if it is not contained in a strictly larger independent
set. A c-coloring of G is a partition of V into c independent sets. Equivalently, a
c-coloring is a mapping Ψ : V → {1, . . . , c} specifying for each vertex its color, such
that two adjacent vertices do not have the same color. The chromatic number of G,
χ(G), indicates the smallest number c for which G has a c-coloring.

Given a graph G, denote by δ(v) the degree of the vertex v, i.e., the number of
vertices adjacent to it; let ∆ be the maximal degree of a vertex in G.

If G is directed, then a vertex v is a source in G if it has no incoming edges.

Labeling problems. A labeling of a graph G = (V,E) with some alphabet Σ is a
mapping λ : V → Σ. A labeling problem L is a set of labelings. Intuitively, this is
the set of labelings that satisfy certain requirements. For example, c-coloring is a
labeling problem with Σ = {1, . . . , c} and the requirement that for every edge 〈v, u〉,
λ(v) 6= λ(u).

A distributed algorithm solves a labeling problem L if, after performing some
rounds of communication, each processor picks a label such that the labeling of the
graph is in L.

3. Labeling problems.

3.1. A lower bound. We present a labeling problem and prove that every dis-
tributed algorithm for solving this problem requires at least Ω(logn/ log logn) rounds,
even with unbounded preprocessing. The problem is a restricted coloring problem,
where adjacent vertices should have different labels, and, in addition, the labels have
to be close to each other. Formally, we have the following definition.

Definition 3.1. A coloring is k-dense for a fixed k ≥ 1 if every vertex with color
c > k has a neighbor with color c′ ∈ [c− k, c− 1].

Intuitively, in a k-dense coloring of a graph, every vertex with color c > k has
at least one neighbor with a smaller color which is relatively close to c; k captures
the maximal gap between the colors. Given a labeling of a graph, every vertex v
with color c can validate its label by examining its 1-neighborhood: the label is legal
if v has no neighbor with label c, and if c > k, then v has a neighbor with color
c′, c − k ≤ c′ ≤ c − 1. (This means that k-dense coloring is 1-checkable, in the
terminology of [16].)

We now present our lower bound result. The proof shows a graph G and a vertex
v ∈ G, such that v must pick different labels in two different subgraphs G1 and G2 of
G, but v has the same 1

2k (log n/ log log n)-neighborhoods in G1 and G2.

LOCAL LABELING AND RESOURCE ALLOCATION 1401

The proof uses graphs which have both a large chromatic number and a large
girth; the existence of these graphs is guaranteed by the following theorem.

Theorem 3.2 (Erdös [10]). For any n ≥ 1 and `, 4 < ` < n, there exists a graph
G with n vertices such that χ(G) > 1

2 (logn) and g(G) > 1
2 (log n/ log `).

The following is immediate when taking ` = blognc in the Theorem 3.2.

Corollary 3.3. For any n ≥ 1 and 2 ≤ k < 1
2 logn(1 − 1/ log logn), there

exists a graph G with n vertices such that χ(G) > 1
2 (log n/ log log n) + k and g(G) >

1
k (log n/ log log n).

The next lemma shows that the maximal color in a k-dense coloring of a tree is
a lower bound on the tree’s depth.

Lemma 3.4. In every k-dense coloring of a tree T , if there is a vertex v with
color c, then there is a vertex at distance at least c

k − 1 from v.

Proof. Since the coloring is k-dense, v must have a neighbor v1, such that c(v1) ≥
c− k. Similarly, v1 must have a neighbor v2, such that c(v2) ≥ c− 2k, and in general
vi−1 must have a neighbor vi with color at least c − ik. The path v, v1, v2, . . . , vi−1

can be extended to vi as long as i ≤ (c− 1)/k. Therefore, the length of the path is at
least c

k−1. Clearly, this is a simple path. Since T is a tree, there is no other
simple path from v to vd ck e−1. Therefore, d(v, vd ck e−1) ≥ c

k−1, which proves the
lemma.

We can now prove the main theorem of this section.

Theorem 3.5. For every k > 1 and n ≥ 1 such that k < 1
2 logn(1−1/ log logn),

there is a communication graph G of size n and a subgraph G′ of G such that every dis-
tributed algorithm that finds a k-dense coloring of G′ requires at least 1

2k (logn/ log logn)
rounds.

Proof. Assume, by way of contradiction, that there exists an algorithm A which
finds a k-dense coloring within R rounds such that R < 1

2k (log n/ log log n). Clearly,
within R rounds a vertex knows only about its R-neighborhood, as we see in the
following proposition.

Proposition 3.6. Let G1 and G2 be two subgraphs of G, and let v be a vertex
of G. If the R-neighborhood of v in G1 is identical to the R-neighborhood of v in G2,
then v picks the same label when executing A on G1 and on G2.

By Corollary 3.3, there exists a graph G of size n such that χ(G) > kR + k
and g(G) > 2R. By this assumption, A finds a k-dense coloring of any subgraph G′

of G within R rounds. In particular, A finds a k-dense coloring of G itself. Since
χ(G) > kR + k there exists a vertex v with color c > kR + k. Let G′ be the R-
neighborhood of v in G. Since g(G) > 2R and G′ includes only vertices at distance
R from v, it follows that G′ is a tree. Clearly, v has the same R-neighborhood in G
and G′. Therefore, by Proposition 3.6, v is colored c also in G′.

Since G′ is a tree, Lemma 3.4 implies that there is vertex at distance d ck e−1 from
v. Hence, R ≥ c

k − 1. On the other hand, since c > kR+ k, it follows that R < c
k − 1,

which is a contradiction.

Remark. For stating the lower bound in Theorem 3.5 we assume that k > 1. For
k = 1, the existence of a graph G1 with n vertices, χ(G1) > 1

2 (log n/ log log n) + 1,
and g(G1) > 1

2 (log n/ log log n), implies, in a similar way, that every distributed
algorithm that finds a 1-dense coloring requires at least 1

4 (log n/ log log n) rounds.

3.2. Efficient labeling using t-orientation. In this section we define a class
of labeling problems, and show a specific preprocessing which allows us to solve them
efficiently.

1402 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

Fig. 3.1. Optimal t-orientations of some graphs.

Let G′ ⊆ G be a graph that has to be labeled. Clearly, within diam(G′)+1 rounds,
each processor v ∈ G′ can learn G′, and therefore can pick a label.1 Intuitively,
the preprocessing presented in this section orients the edges between neighboring
processors, thereby assigning priorities in such a way that a processor is close to
vertices it is oriented to (i.e., with higher priority). We show that for some problems
(including coloring and maximal independent set) there exists a labeling algorithm
in which a processor’s label depends only on the vertices with higher priority. This
allows the processor to communicate only with these vertices, which by assumption
are relatively close.

3.2.1. t-orientation of graphs. We require an acyclic orientation in which
every vertex is close to vertices that have a directed path to it.

Definition 3.7. A t-orientation of a graph G is an acyclic orientation (that
is, without any directed cycles) of G, such that for every two vertices v and u, if
there is a directed path from v to u in the directed graph, then d(u, v) ≤ t. The
orientation number of a graph G, denoted by t(G), is the smallest t such that G has
a t-orientation.

Note that for every graph G, topological sorting implies an acyclic orientation,
and therefore, we have the following proposition.

Proposition 3.8. For every graph G, t(G) ≤ diam(G).

However, in most cases we can do much better. For example, any c-coloring of G
implies a (c − 1)-orientation by directing each edge (v, u) from v to u if and only if
color(v) < color(u). This is a (c− 1)-orientation since all directed paths have length
at most c. This implies the following proposition.

Proposition 3.9. For every graph G, t(G) < χ(G).

For example, the orientation number of a ring is 1 if the ring is of even length and
2 if the ring is of odd length (using a 2-coloring or 3-coloring, respectively). Figure
3.1 includes examples of optimal t-orientations for several graphs.

Recall that our definition of t-orientation requires only that the undirected dis-
tance between any two vertices u and v that are connected by a directed path is
bounded by t. We note that Proposition 3.9 holds also for a stronger definition that
requires the directed distance between u and v to be bounded by t. Therefore, we

1Note that if G′ is not connected, then diam(G′) = ∞. For some labeling problems, such as
coloring, it is sufficient for a processor to know its connected component in G′ in order to pick a
label. For these problems, the number of rounds needed in order to label G′ is diam(G′m) + 1, where
G′m is the connected component with maximal diameter in G′. For other labeling problems, such
as finding the number of processors in G′, the whole graph G′ should be known. For this kind of
problem, diam(G) rounds are needed in order to label G′.

LOCAL LABELING AND RESOURCE ALLOCATION 1403

expect that the upper bound of χ(G), as given in Proposition 3.9, can be tightened.2

A simple way to construct an optimal t-orientation is by a preprocessing that
collects the complete graph topology to some node and then locally finds the best
orientation. (This relies on the fact that local computation power is unbounded.) It
requires O(diam(G)) communication rounds. In the following we show that while
a moderate computational effort may not yield an optimal orientation, it allows us
to find orientations that are good, in the sense that t is always bounded by a small
polylogarithm of n.

Theorem 3.10. For every graph G of size n, it is possible to find an O((log n)2)-
orientation of G by a randomized distributed algorithm within O((log n)2) rounds.

Proof. Every graph can be partitioned into O(log n) subgraphs V1, V2, . . ., such
that the diameter of every connected component in these subgraphs is at mostO(log n).
This is done by the randomized distributed algorithm of Linial and Saks [14] within
O((log n)2) rounds. At the end of the algorithm, every vertex knows the identity, i,
of the subgraph Vi to which it belongs, and the ids of the vertices that belong to its
connected component in Vi.

This partition can be used to construct an O((log n)2)-orientation of G within
O(logn) (additional) rounds as follows. Every connected component of every sub-
graph is oriented acyclically (e.g., by centralized topological sorting) within O(log n)
rounds. Edges whose endpoints are at different subgraphs are oriented according to
the ids of the subgraphs; that is, an edge 〈v, u〉, with v ∈ Vi and u ∈ Vj , i < j, is
oriented v → u.

Clearly, this orientation is acyclic. Furthermore, assume that there is a directed
path from v to u. That path visits the subgraphs defined for G in a strictly in-
creasing order; therefore, it visits each subgraph at most once. Since the diameter of
every connected component in each subgraph is at most O(logn), we have d(v, u) =
O((logn)2).

3.2.2. Extendible labeling problems. We now define a class of labeling prob-
lems for which the t-orientation preprocessing is helpful. These are problems for which
the labeling can be constructed by extending the part of the graph which is already
labeled.

Definition 3.11. Let G = (V,E) be a graph. An extension of G is a graph
G′ = (V ∪ V ′, E ∪ E′), where V ∩ V ′ = ∅ and E′ ⊆ V × V ′. Note that V ′ is an
independent set in G′.

Definition 3.12. Let L be a labeling problem. A is an extension labeling
algorithm for L if, for every graph G with a labeling in L and every extension to
G′ = (V ∪ V ′, E ∪ E′), A gives a label for each v ∈ V ′ such that

• the labeling of G′ is in L;
• for each v ∈ V ′, the label of v depends only on the connected components of
G to which v is connected—that is, the labeling of v is independent of the
labeling of other vertices in V ′ and of the other components of G.

Definition 3.13. A labeling problem is extendible if it has a deterministic ex-
tension labeling algorithm.

We now argue that some important labeling problems are extendible. Consider
the following extension algorithm for a labeling ϕ, denoted by Am:

For every v ∈ V ′, ϕ(v) = 0 if and only if v has a neighbor u ∈ V with ϕ(u) = 1.

2The possible gap between t(G) and χ(G) is well demonstrated in a clique G of n vertices, where
χ(G) = n and t(G) = 1.

1404 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

Proposition 3.14. Finding a maximal independent set is an extendible labeling
problem.

Proof. Let G = (V,E) be a graph which is legally labeled; i.e., every vertex
v ∈ V has a label ϕ(v) ∈ {0, 1} such that the vertices with ϕ(v) = 1 form a maximal
independent set of G. Let G′ = (V ∪ V ′, E ∪E′) be an extension of G. Am is clearly
an extension algorithm for the maximal independent set problem.

Proposition 3.15. (∆ + 1)-coloring is an extendible labeling problem.

Proof. Let G = (V,E) be a graph which is legally colored; i.e., every vertex v ∈ V
has a label ψ(v) ∈ {1, . . . ,∆ + 1}, and for every c ∈ {1, . . . ,∆ + 1} all vertices with
ψ(v) = c form an independent set. Let G′ = (V ∪ V ′, E ∪ E′) be an extension of G.
The following is clearly an extension algorithm for this problem:

For every v ∈ V , define ψ(v) to be the smallest c ∈ {1, . . . , δ(v) + 1} such that
no neighbor u of v has ψ(u) = c. Such c exists because v has δ(v) neighbors, and
therefore at most δ(v) colors are used by v’s neighbors. For each v ∈ V ′, δ(v) ≤ ∆;
thus G′ is (∆ + 1)-colored.

An extension algorithm that labels a vertex with the smallest color not used by
its neighbors is suitable for the k-dense coloring problem. Therefore, we have the
following proposition.

Proposition 3.16. For every k ≥ 1, the k-dense coloring problem is extendible.

3.2.3. An algorithm for extendible labeling problems. Here we show the
following theorem.

Theorem 3.17. Given a t-orientation of a graph G, for any extendible labeling
problem L there is a distributed algorithm that solves L within t rounds on every
subgraph of G.

Proof. Let L be an extendible labeling problem, and let A be a deterministic
extension algorithm for L. We describe a distributed algorithm that solves L on any
subgraph of G within t rounds.

Let G be a graph with an acyclic orientation, and let G′ be a subgraph of G. Note
that the t-orientation of G induces an acyclic orientation of G′. Consider a partition
of G′ into layers L0(G′), L1(G′), . . . , Lmax(G′), where max is the length of the longest
directed path in G′. For any v ∈ G′, v ∈ Li(G′) if and only if the longest directed
path to v in G′ is of length i. Note that this partition is well defined since G is finite
and the orientation is acyclic.

Claim 3.1. Each layer Li(G
′) forms an independent set.

Proof. Let v and u be neighbors in G′, such that v → u. Every directed path to
v can be extended to u, and in particular the longest path to v can be extended to u.
Thus, u belongs to a layer higher than v’s layer.

For every vertex v ∈ G′, let G′in(v) be the subgraph of G′ induced by v and all
the vertices in G′ that have a directed path to v. For each v ∈ G′, we partition G′in(v)
into the layers L0(G′in(v)), L1(G′in(v)), . . . , Lk(G′in(v)), where k is the length of the
longest directed path in G′in(v). This partition has the following properties:

• If u ∈ G′in(v), then every directed path to u in G′ is in G′in(v); that is,
G′in(u) ⊆ G′in(v).
• In particular, if u ∈ G′in(v), then the longest directed path to u is in G′in(v);

therefore, for every i and v, Li(G
′
in(v)) ⊆ Li(G′).

• Consequently, if u ∈ G′in(v), then for every i, Li(G
′
in(u)) ⊆ Li(G′in(v)).

The algorithm consists of two stages. In the first stage, information is collected.
Specifically, during the first t rounds, every vertex v ∈ G′ distributes to distance t the

LOCAL LABELING AND RESOURCE ALLOCATION 1405

i← 0
Already-labeled ← ∅
repeat

Execute A(Already-labeled , Li(G
′
in(v)))

Already-labeled ← Already-labeled ∪Li(G′in(v))
i← i+ 1

until v is labeled.

Fig. 3.2. The labeling algorithm: code for v ∈ G′.

fact that it belongs to G′. All the vertices of G participate in this stage. Since G is
t-oriented, each vertex v ∈ G′ knows G′in(v) within t rounds.

In the second stage of the algorithm, every vertex v ∈ G′ uses A, the extension
algorithm, to label G′in(v). The labeling is computed in iterations. In the ith iteration,
v labels Li(G

′
in(v)). The code for v ∈ G′ for this stage appears in Figure 3.2.

We denote by A(H,V) the application of A when the labeled graph H ⊆ G′in(v)
is extended by an independent set V and all the edges which connect H and V in G′.
On each iteration of the repeat loop, an additional layer of G′in(v) is labeled. Denote
by labelv(u) the label assigned by v to u ∈ G′in(v), when v executes A. In particular,
labelv(v) is the label that v assigns to itself.

The next lemma shows that the labels v assigns to vertices in G′in(v) are identical
to the labels those vertices assign to themselves.

Lemma 3.18. If u ∈ G′in(v), then labelu(u) = labelv(u).
Proof. We show, by induction on i ≥ 0, that labelu(u) = labelv(u) for every

u ∈ (G′in(v) ∩ Li(G′)).
The base case is i = 0. Note that L0(G′) contains the sources of G′. Consider

some u ∈ L0(G′) and note that labelu(u) is determined in the first iteration, when
u executes A(∅, u). Every v such that u ∈ G′in(v) assigns a label to u in the first
iteration by executing A(∅, L0(G′in(v))). There may be some other vertices in addition
to u in L0(G′in(v)), but since the label of u depends only on its connected component
which includes only u, and since A is deterministic, labelu(u) = labelv(u).

For the induction step, assume that the claim holds for all vertices in Li(G
′)

for i < j. Consider u ∈ Lj(G
′), and note that labelu(u) is determined in the jth

iteration, when u executes A(
⋃
i<j Li(G

′
in(u)), u). Every v such that u ∈ G′in(v)

assigns labelv(u) when it executes A(
⋃
i<j Li(G

′
in(v)), Lj(G

′
in(v))). The connected

component of u in
⋃
i<j Li(G

′
in(v)) is

⋃
i<j Li(G

′
in(u)). By the induction assumption,

all the vertices of both
⋃
i<j Li(G

′
in(u)) and

⋃
i<j Li(G

′
in(v)) are labeled identically

by v and by u. Thus, since A is deterministic, labelu(u) = labelv(u).
The entire labeling of G′ consists of the labels labelv(v). By Lemma 3.18, it is

identical to the labeling produced by A when applied to G′ sequentially, layer by
layer. Thus, it is in L.

By Theorem 3.10, we have the following corollary.
Corollary 3.19. For every graph G of size n, after a randomized preprocessing

that takes O((log n)2) rounds, any extendible labeling problem can be solved on every
G′ ⊆ G within O((log n)2) rounds.

Note that for the preprocessing suggested in the above results we assume that n
is known in advance.

Proposition 3.16 and Theorem 3.17 imply that for every graph G and a fixed
k ≥ 1, a k-dense coloring of every G′ ⊆ G can be found distributively within t rounds,

1406 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

assuming the existence of a t-orientation of G. In particular, by Corollary 3.19, there
is a randomized distributed preprocessing that takes O((logn)2) rounds, and enables
us to find a k-dense coloring of every G′ ⊆ G, within O((logn)2) rounds. Note that
the lower bound for k-dense coloring, from Theorem 3.5, is Ω(log n/ log log n).

Since the k-dense coloring problem is extendible, Theorem 3.5 and Theorem 3.17
imply the following corollary.

Corollary 3.20. Let t(n) be the maximal t(G) among graphs of size n. Then
t(n) = Ω(log n/ log log n).

4. Resource allocation. In this section we study the resource allocation prob-
lem. This problem, in contrast to labeling problems, has an “ongoing” nature and
has to be repetitively solved for each instance. However, as will be shown below, we
employ techniques and results that were developed for labeling problems.

An instance of the resource allocation problem is a communication graph G, where
the vertices represent processors, and there is an edge between any pair of processors
that may compete on some resource. The resource requirements of a processor may
vary. The current requirements are represented formally in a dynamic conflict graph
C, where the vertices are processors waiting to execute their jobs, and there is an edge
between two processors that compete on some resource. Clearly, C ⊆ G. We denote
the degree of processor pi in the conflict graph C by δi and the maximum number of
rounds required to complete a job by µ.

An algorithm for the resource allocation problem decides when each waiting pro-
cessor can use the resources and execute its job; it should satisfy the following prop-
erties:

1. Exclusion: No two conflicting jobs are executed simultaneously. (This is a
safety property.)

2. No starvation: The request of any processor is eventually granted. (This is a
liveness property.)

The response time for a request is the number of rounds that elapse from the
processor’s request to use resources until it executes the job. A good algorithm should
minimize the response time. We also consider the following property, which guarantees
better exploitation of the resources and reduces the average response time.

Definition 4.1. An algorithm for the resource allocation is k-compact for every
waiting processor pi if in every k rounds either pi runs or some conflicting neighbor
of pi runs.

In section 4.1 we prove by reduction to the lower bound for k-dense coloring (which
was proved earlier) that for every k ≥ 1 there is no efficient distributed algorithm
which is k-compact. Specifically, we show a lower bound of Ω(lgn/ lg lgn) on the
response time of any resource allocation algorithm that is k-compact for any k ≥ 1.
Section 4.2 presents the compact coloring problem, which is used later for compact
resource allocation. In section 4.3 we present a distributed µ-compact algorithm for
resource allocation, which uses the t-orientation preprocessing.

4.1. A lower bound for k-compact resource allocation. We show that
given a conflict graph C and k ≥ 1, any k-compact resource allocation algorithm can
be used to label C such that the labeling is a d kµe-dense coloring. Together with the
lower bound proved in Theorem 3.5 this implies the lower bound for compact resource
allocation.

Let G be a communication graph and let C be a conflict graph. The one-shot
resource allocation problem is to schedule the resources for C in a way that satisfies
the safety and liveness conditions. A slow execution for a given set of jobs is an

LOCAL LABELING AND RESOURCE ALLOCATION 1407

execution where each job uses the resources for exactly µ rounds. (This terminology
is borrowed from Rhee [19].)

For a specific algorithm, consider a slow execution with respect to the one-shot
resource allocation problem. That is, the algorithm has to schedule only one “batch”
of jobs, each of which needs the resources for the same running time, µ. Clearly, this
is a special case of the resource allocation problem and any lower bound for this case
applies to the general problem.

Let t0 be the first round in which some processor starts executing its job; the
no-starvation property guarantees the existence of t0. Associate with each processor
pi a label λ(pi) such that λ(pi) = c if and only if pi starts executing its job in the
interval [t0 + (c− 1)µ , t0 + cµ). Such an interval exists by the no-starvation property,
and hence the labeling is well defined.

Claim 4.1. The labeling λ is a (d kµe+ 2)-dense coloring of the conflict graph.
Proof. By the mutual exclusion property, and since the execution is slow, λ is a

legal coloring.
Assume now that λ(pi) = c > d kµe+ 2. That is, pi starts executing its job in the

interval [t0 + (c− 1)µ , t0 + cµ). Since the algorithm is k-compact, in every k rounds,
either pi starts executing its job, or there exists some conflicting processor pj which
executes its job. In the latter case, there is a conflicting processor, pj , which starts
executing its job in the interval [t0 + (c − 2)µ − k , t0 + (c − 1)µ). By the definition
of λ, pj is labeled c′, (c− 2)− k

µ ≤ c′ ≤ c− 1, as needed.
Together with Theorem 3.5, this implies the following theorem.
Theorem 4.2. For every k ≥ 1, there is no k-compact distributed algorithm for

the resource allocation problem with response time less than µ
2k+6µ (log n/ log log n).

4.2. Compact coloring. In this section we introduce the compact coloring
problem and its properties. In the next section, we use these properties to show
that processors joining the conflict graph C at different times in our algorithm agree
on the same colors for processors in C.

Definition 4.3. A coloring is compact if every vertex v with color j has neigh-
bors with all colors 1, . . . , j − 1.

Note that every compact coloring is 1-dense. On the other hand, consider a graph
that is a line of length 4, whose vertices are colored 1, 2, 3, 4. This is a 1-dense coloring
which is not compact.

For a given compact coloring, let Ci denote the set of vertices colored with i; since
the coloring is compact, Ci is a maximal independent set in V \ ⋃j<i Cj . Consider
the following extension algorithm for a labeling Ψ, denoted by Ac: For every v ∈ V ,
define Ψ(v) to be the smallest number c such that no neighbor u of v has Ψ(u) = c.
Clearly the following lemma holds.

Lemma 4.4. Compact coloring is an extendible labeling problem.
The next lemma claims that if we remove all the vertices colored 1 by Ac from a

graph G, we obtain a graph G′ such that, for every vertex v in G′, if v was colored c
in G, then v is colored c− 1 when applying Ac to G′.

Lemma 4.5. Let G = (V,E) be a graph, and let Ψ : V → N be the compact
coloring of G produced by Ac. Let G′ = (V ′, E′) be the graph obtained by deleting all
the vertices for which Ψ(v) = 1 from G, and let Ψ′ : V ′ → N be the compact coloring
of G′ produced by Ac. Then for every v ∈ V ′,Ψ′(v) = Ψ(v)− 1.

Proof. To prove the lemma, we consider the algorithm A∗m which iteratively
executes the maximal independent set (MIS) extension algorithm, Am, on a given
graph G (see Figure 4.1). Recall that Am labels a vertex v with 1 if v has no neighbor

1408 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

V1 = V
E1 = E
i← 1
Repeat

Execute Am on Gi = (Vi, Ei)
MISi ← MIS(Gi) produced by Am
For every v ∈ MISi, Φ(v)← i
Vi+1 ← Vi \MISi
Ei+1 ← Ei \ {(u, v) | u, v ∈ MISi}
i← i+ 1

Until Gi is empty

Fig. 4.1. Algorithm A∗m.

from a lower layer which is labeled 1; otherwise, v is labeled with 0. A∗m is useful for
studying Ac, due to the following claim.

Claim 4.2. For every graph G, the labeling Φ produced by A∗m is identical to the
labeling Ψ produced by Ac.

Proof. Recall that, given an acyclically oriented graph G, a vertex v is in the ith
layer, Li(G), if and only if the longest directed path to v is of length i. The proof is
by induction on the layers of G.

For the base case, consider a vertex v ∈ L0(G). Note that L0(G) contains the
sources of G. Both Ac and A∗m color every source v with 1.

For the induction step, assume that the claim holds for all vertices in Lj(G), j < i,
and let v ∈ Li(G). Assume that Φ(v) = k, that is, v ∈ MISk. Consider the neighbors
of v from lower layers at the end of iteration k of A∗m in which v joins MISk. By
Ac, v is colored k if and only if v has neighbors from lower layers with all colors
{1, . . . , k − 1}, and no neighbor from lower layers which is colored k.

Since every iteration of A∗m produces a maximal independent set, v has neighbors
from lower layers in MIS1,MIS2, . . . ,MISk−1. By the induction hypothesis, this
implies that v has neighbors which are colored 1, . . . , k − 1 by Ac. By Am, v joins
MISk if and only if v has no neighbor from lower layers in MISk. Thus, by the
induction hypothesis, v has no neighbor from a lower layer which is colored k by Ac.
Therefore, Ψ(v) = k, as needed.

Proof of Lemma 4.4. By Claim 4.2, Φ(v) = Ψ(v) for every v ∈ G. In particular,
MIS1(G) is the set of vertices with Ψ(v) = 1. Remove MIS1(G) from G. By Claim
4.2, the resulting graph is G′. Let Φ′ be the coloring produced by applying A∗m to G′.

Consider the execution of A∗m on G. By A∗m, MIS1(G) is removed from G after
the first iteration of that execution. Since the resulting graph is G′, the remainder of
this execution on G is identical to the execution of A∗m on G′. That is, the execution
of A∗m on G′ is identical to the suffix of the execution on G starting from the second
iteration. Hence, v ∈ MISi(G) if and only if v ∈ MISi−1(G′). This implies that
for every v ∈ V ′, Φ′(v) = Φ(v) − 1. By Claim 4.2, for every v ∈ V ′, Ψ′(v) =
Ψ(v)− 1.

By repeatedly removing the set of vertices which are colored 1, we obtain the
following corollary.

Corollary 4.6. Let G = (V,E) be a graph, and let Ψ : V → N be the compact
coloring of G, produced by the extension algorithm Ac. For a fixed integer z ≥ 0,
let G′ = (V ′, E′) be the graph obtained by deleting all the vertices for which Ψ(v) ∈

LOCAL LABELING AND RESOURCE ALLOCATION 1409

{1, . . . , z} from G, and let Ψ′ : V ′ → N be the compact coloring of G′ produced by Ac.
Then for every v ∈ V ′, Ψ′(v) = Ψ(v)− z.

This corollary is used in our resource allocation algorithm to show that processors
joining the conflict graph C at different times agree on the same colors for processors
in C.

4.3. A distributed µ-compact resource allocation algorithm. In this sec-
tion we describe a µ-compact distributed algorithm for the resource allocation problem
whose response time is δiµ+ 2(t(G) + 1), where t(G) is the orientation number of the
communication graph G.

We assume that µ is known in advance and processors can fix running phases,
each consisting of µ rounds. In addition, processors submit their requests for resources
in entrance phases, each consisting of t(G)+1 rounds. A processor wishing to execute
a job waits for the beginning of the next entrance phase and then submits its request.
This adds at most t(G)+1 rounds to the response time of every request. The partitions
of rounds to entrance phases and running phases are identical with respect to all the
processors. Therefore, processors submit requests in batches, with t(G) + 1 rounds
between two successive batches.

The algorithm uses a preprocessing which finds an acyclic orientation of G which
achieves the orientation number of G; we use pi → pj to denote that pi is oriented to
pj . The orientation and entrance phases induce an orientation of the dynamic conflict
graph C as follows: An edge 〈pi, pj〉 is directed pi ⇒ pj if pi requests resources in an
earlier entrance phase than pj or if pj and pi request resources in the same entrance
phase and pi → pj .

For each entrance phase, the processors are partitioned into the following three
sets:

1. Idle. Processors that do not need resources, and processors that are currently
executing their jobs.

2. Requesting. Processors that request resources in the current entrance phase.
3. Waiting. Processors that requested resources in previous entrance phases and

are still waiting for their running phase.
The object of the algorithm is to use the t-orientation in order to merge the requesting
processors with the waiting processors in a manner that does not delay the waiting
processors and provides short response time for the new requests. The code for pro-
cessor pi appears in Figure 4.2. As in section 3.2, we denote by Cin(pi) the subgraph
of C such that pj ∈ Cin(pi) if and only if there is a directed path pj ⇒ · · · ⇒ pi in C.

Intuitively, the algorithm proceeds as follows. Each requesting processor pi trans-
mits its requests and collects the current state of Cin(pi). Upon having the initial
state of Cin(pi), denoted by C0

in(pi), the running phase of pi is determined by a com-
pact coloring of C0

in(pi). If pi is colored k, then pi executes its job in the kth running
phase, counting from the first running phase that begins after the end of the current
entrance phase. The waiting processors update the conflict graph and transmit it to
the requesting processors. At the beginning of each entrance phase the updated state
of Cin(pi) is obtained from the previous state by deleting the set of processors that
will begin executing their jobs in the next t(G) + 1 rounds.

First, we prove that every requesting processor pi learns about processors that
may influence its color during its entrance phase.

Lemma 4.7. A requesting processor, pi, knows C0
in(pi) within at most t(G) + 1

rounds after the beginning of its entrance phase.
Proof. The proof is by induction on the entrance phase. For the base case,

1410 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

Do every entrance phase:
If you do not need resources:

In the next t(G) + 1 rounds:
Transmit to your neighbors all the messages you receive.

In order to execute a job:
In the next round:

Receive from your neighbors the part of Cin(pi) which consists
of processors who made requests in previous entrance phases.

In the next t(G) rounds:
Distribute that part of Cin(pi) and your request.
Transmit to your neighbors all the messages you receive.

Construct Cin(pi) by combining the old part you already know
with the parts you received in the last t(G) rounds.

Use Ac to find a compact coloring of Cin(pi).
If you are colored k, then execute your job in the kth running phase.
For every pj ∈ Cin(pi),

If pj is colored k, then pj executes its job in the kth running phase.
If you are waiting:

Update Cin(pi):
Remove processors that will start executing their job in the

next t(G) + 1 rounds according to your compact coloring.
Remove processors which are not connected to you anymore.

Distribute Cin(pi) to your neighbors.
In the next t(G) rounds:

Transmit to your neighbors all the messages you receive.

Fig. 4.2. The distributed algorithm: code for pi.

consider a processor pi that requests resources in the first entrance phase. Directed
paths to pi contain only other processors that request resources in the first entrance
phase. Since G was t-oriented, the distance between each processor in Cin(pi) and pi
is at most t(G). Therefore, pi knows Cin(pi) after at most t(G) rounds.

For the induction step, let pi be a processor that requests resources in the rth
entrance phase, r > 1. Let ρ = pj ⇒ · · · ⇒ pi be a directed path to pi in C. By the
algorithm, no processor that enters with pi is directed to a processor from an earlier
entrance phase. Thus, ρ can be divided into two parts pj ⇒ · · · ⇒ pk ⇒ pl ⇒ · · · ⇒
pi such that pj , . . . , pk request resources strictly before the rth entrance phase and
pl, . . . , pi request resources in the rth entrance phase.

Two successive entrance phases are separated by t(G) + 1 rounds. Therefore, by
the inductive hypothesis, when pi joins, pk already knows the path pj ⇒ · · · ⇒ pk. By
the algorithm, pl receives from pk this part of ρ in the first round of the rth entrance
phase. Since the graph is t-oriented, pi receives messages from all the vertices in
pl ⇒ · · · ⇒ pi within t(G) rounds and can reconstruct ρ.

The next lemma states that for every pj ∈ C0
in(pi), the assignments of a running

phase to pj as done by pi and pj are identical. That is, pj is colored k in the compact
coloring of C0

in(pi) if and only if pj is going to execute its job in the kth running
phase, counting from the first running phase that begins after the end of pi’s entrance
phase.

Lemma 4.8. For every requesting processor pi and for every pj ∈ C0
in(pi), the

LOCAL LABELING AND RESOURCE ALLOCATION 1411

running phase assigned to pj by pi is k if and only if pj executes its job in phase k.

Proof. The proof is by induction on the entrance phase. For the base case,
consider a processor pi that requests resources in the first entrance phase. Since pj
is in C0

in(pi), pj also submits requests in the first entrance phase. By Lemma 4.7, pi
knows C0

in(pi) within t(G) + 1 rounds. By Lemma 4.4, the compact coloring problem
is extendible. Therefore, by Lemma 3.18 (which refers to Algorithm Ac), pj assigns
color k to itself if and only if pi assigns color k to pj in C0

in(pi). Since pi and pj start
counting from the same round, the running phases are counted identically by pi and
pj . This implies the lemma.

For the induction step, assume that the induction hypothesis holds for all proces-
sors that request resources before the rth entrance phase, and let pi be a processor
that submits requests at the rth entrance phase. By the algorithm, at the first round
of phase r, every waiting processor pl removes from Cin(pl) processors that will start
executing their jobs during entrance phase r, according to the compact coloring cal-
culated by pl. Cin(pl) includes only processors that request resources before the rth
entrance phase. Thus, by the induction hypothesis, these updates reflect correctly the
current state of Cin(pl). This fact, together with Lemma 4.7, implies that pi obtains
C0
in(pi) within t(G) + 1 rounds. Consider a processor pj ∈ C0

in(pi). There are two
cases.

Case 1. pj is a processor that requests resources in entrance phase r. By the
definition of Cin(p), C0

in(pj) ⊆ C0
in(pi), and using Lemma 3.18, pj assigns color k to

itself if and only if pi assigns color k to pj in C0
in(pi).

Case 2. pj is a processor that requests resources in entrance phase r′. Note that
r > r′, since C0

in(pi) does not include any processors that request resources after pi.
Let x be the ratio between the length of one entrance phase and the length of one
running phase, that is, t(G) + 1 = x · µ. Let s denote the number of the first running
phase to begin after the rth entrance phase, and let s′ denote the number of the first
running phase to begin after the r′th entrance phase, that is, s′ = s − bx(r − r′)c.
Assume that pj assigns to itself color c′ at entrance phase r′. By the algorithm, pj
will execute its job at running phase s′ + c′. In addition, during the r − r′ entrance
phases between r′ and r, pj removes from Cin(pj) all the processors that will start
executing their jobs during that period. Formally, all the processors colored by pj
with 1, . . . , bx(r − r′)c are removed from Cin(pj). The induction hypothesis implies
that the updated Cin(pj) at the beginning of the rth entrance phase contains only
processors which are still waiting.

By Corollary 4.6, a compact coloring of the updated Cin(pj) assigns color c =
c′ − bx(r − r′)c to pj . Since Cin(pj) ⊆ C0

in(pi), Lemma 3.18 implies that pi assigns
color c to pj in C0

in(pi). Thus, pi determines that pj executes its job in running phase
number s+ c = s′ + bx(r − r′)c+ c = s′ + c′, and that completes the proof.

We can now prove the main properties of the algorithm.

Lemma 4.9 (safety). For every two processors pi and pj, if needi ∩ needj 6= ∅,
then pi and pj do not run simultaneously.

Proof. If needi ∩ needj 6= ∅, then pi and pj are neighbors in C. Assume, without
loss of generality, that pi ⇒ pj and hence pj ∈ Cin(pi). Since Cin(pi) is legally
colored, pi and pj have different colors in Cin(pi). By Lemma 4.8, the running phase
that pi determines for pj is identical to the running phase that pj determines for itself.
Therefore, pi and pj belong to different running phases. Thus, by the algorithm, pi
and pj do not run simultaneously.

We now show that the schedule becomes µ-compact at most 2(t(G) + 1) rounds

1412 HAGIT ATTIYA, HADAS SHACHNAI, AND TAMI TAMIR

after a processor initiates a request for resources.

Lemma 4.10. For every waiting processor pi, after the first 2(t(G) + 1) rounds,
in every µ rounds either pi runs or some conflicting neighbor of pi runs.

Proof. By the algorithm, for every waiting processor pi, the coloring of Cin(pi)
is compact. Thus, if pi is colored c, it has neighbors with all colors 1, . . . , c − 1.
Therefore, there is at least one neighbor of pi which runs in each of the running
phases 1, . . . , c−1. The first running phase in this count of the running phases begins
at most 2(t(G) + 1) rounds after the request was initiated by pi. Hence, after that
round the schedule is µ-compact.

The response time for a processor pi consists of three components: First, pi waits
for the beginning of the next entrance phase, which takes at most t(G) + 1 rounds.
Then, during the entrance phase, pi collects C0

in(pi). By Lemma 4.7, this takes
t(G) + 1 rounds. Finally, pi waits for its running phase. By the µ-compact property
(Lemma 4.10), pi waits at most δi running phases, each taking µ rounds. This implies
the following theorem.

Theorem 4.11. There exists an algorithm for the resource allocation problem
whose response time is δiµ+ 2(t(G) + 1).

Remark. In our algorithm, δi captures the number of processors that issued
competing resource requests before or simultaneously with pi. That is, a processor
is not delayed because of processors that request resources after it. Note that, in
general, it does not mean that the algorithm guarantees a FIFO ordering. Thus, a
processor pj that issued its request later than pi may execute its job earlier (while
pi is still waiting). This happens only if pi needs a “popular” resource that was not
requested by pj .

4.4. Discussion. As presented, the algorithm assumes that the system is syn-
chronous and that the local computing power at the processors is unlimited.

First, we remark that the algorithm can easily be changed to work in asynchronous
systems by employing a simple synchronizer, such as α [1]. Since our algorithm relies
on synchronization only between neighboring processors, synchronizer α allows us to
run the algorithm correctly. The details, which are straightforward, are omitted.

Second, we remark that the local computation performed in our algorithm is fairly
moderate. The most consuming step is the computation of a compact coloring; this
is done by repeated application of Am, which in turn greedily assigns colors to nodes.
Furthermore, this computation can be integrated with the collection of information
from neighboring nodes. In this way, the compact coloring is computed in iterations
that overlap the iterations in which information is collected; the local computation at
each node reduces to choosing a color based on the colors of its neighbors.

5. Conclusions and open problems. This work addressed the power of un-
restricted preprocessing, in particular, the t-orientation preprocessing. Several open
questions remain.

1. We derive a lower bound on the number of communication rounds needed
for a k-compact resource allocation. Is there a lower bound on the number
of communication rounds needed for a resource allocation algorithm that
guarantees only the safety and liveness properties?

2. Our lower bound for k-dense coloring depends on k, while our upper bound for
this problem is the same for all values of k. Can these bounds be tightened?
In particular, is there an algorithm for k-dense coloring whose complexity
depends on k?

LOCAL LABELING AND RESOURCE ALLOCATION 1413

3. We show that the t-orientation preprocessing helps in some labeling problems.
Are there other helpful types of preprocessing?

4. We show that t(G) ≤ O((logn)2) for every graph G of size n, and that
there exists a graph G of size n such that t(G) = Ω(log n/ log logn). Can
the upper bound be reduced to O(logn/ log logn)? In particular, is there
a distributed algorithm that achieves a better orientation? Is there a non-
randomized distributed algorithm that achieves a good orientation?

5. Is it NP-hard to determine t(G) for a given graph?

Acknowledgments. We would like to thank Roy Meshulam for bringing Erdös’
theorem to our attention and for pointing out the existence of graphs with t(G) =
Ω(logn/ log logn). We also thank Amotz Bar-Noy for helpful discussions. An anony-
mous referee provided many comments that improved the presentation.

REFERENCES

[1] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804–823.
[2] B. Awerbuch and D. Peleg, Sparse partitions, in Proc. IEEE Symposium on Foundation of

Computer Science, St. Louis, MO, 1990, pp. 503–513.
[3] B. Awerbuch and M. Saks, A dining philosophers algorithm with polynomial response time,

in Proc. IEEE Symposium on Foundation of Computer Science, St. Louis, MO, 1990,
pp. 65–74.

[4] V. C. Barbosa and E. Gafni, Concurrency in heavily loaded neighborhood-constrained sys-
tems, ACM Trans. Programming Languages and Systems, 11 (1989), pp. 562–584.

[5] J. Bar-Ilan and D. Peleg, Distributed resource allocation algorithms, in Proc. International
Workshop on Distributed Algorithms, Haifa, Israel, 1992, pp. 276–291.

[6] A. Bar-Noy, M. Bellare, M. Halldórsson, H. Shachnai, and T. Tamir, On chromatic
sums and distributed resource allocation, Inform. and Comput., 140 (1998), pp. 183–202.

[7] K. Chandy and J. Misra, The drinking philosophers problem, ACM Trans. Programming
Languages and Systems, 6 (1984), pp. 632–646.

[8] M. Choy and A. K. Singh, Efficient fault tolerant algorithms in distributed systems, in Proc.
24th ACM Symposium on Theory of Computing, Victoria, BC, Canada, 1992, pp. 593–602.

[9] R. Cole and U. Vishkin, Deterministic coin tossing and accelerating cascades: Micro and
macro techniques for designing parallel algorithms, in Proc. 18th ACM Symposium on
Theory of Computing, Berkeley, CA, 1986, pp. 206–219.

[10] P. Erdös, Graph theory and probability, Canad. J. Math., 11 (1959), pp. 34–38.
[11] A. Goldberg, S. Plotkin, and G. Shannon, Parallel symmetry-breaking in sparse graphs, in

Proc. 19th ACM Symposium on Theory of Computing, New York, NY, 1987, pp. 315–324.
[12] N. Linial, Distributive algorithms—Global solutions from local data, in Proc. IEEE Symposium

on Foundation of Computer Science, Los Angeles, CA, 1987, pp. 331–335.
[13] N. Linial, Local-Global Phenomena in Graphs, Technical Report 9, Dept. Computer Science,

Hebrew University, Jerusalem, Israel, 1993.
[14] N. Linial and M. Saks, Decomposing graphs into regions of small diameter, in Proc. 2nd An-

nual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, SIAM, Philadel-
phia, 1991, pp. 320–330.

[15] A. Mayer, M. Naor, and L. Stockmeyer, Local computations on static and dynamic graphs,
in Proc. 3rd Israel Symposium on Theory and Computing Systems, Tel Aviv, Israel, 1995,
pp. 268–278.

[16] M. Naor and L. Stockmeyer, What can be computed locally?, in Proc. 25th ACM Symposium
on Theory of Computing, San Diego, CA, 1993, pp. 184–193.

[17] A. Panconesi and A. Srinivasan, Improved distributed algorithms for coloring and network
decomposition problems, in Proc. 24th ACM Symposium on Theory of Computing, Victoria,
BC, Canada, 1992, pp. 581–592.

[18] M. Szegendy and S. Vishwanathan, Locality based graph coloring, in Proc. 25th ACM Sym-
posium on Theory of Computing, San Diego, CA, 1993, pp. 201–207.

[19] I. Rhee, Efficiency of Partial Synchrony, and Resource Allocation in Distributed Systems,
Ph.D. thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC, 1994.

SPACE-EFFICIENT ROUTING TABLES FOR ALMOST ALL
NETWORKS AND THE INCOMPRESSIBILITY METHOD∗

HARRY BUHRMAN† , JAAP-HENK HOEPMAN‡ , AND PAUL VITÁNYI†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1414–1432

Abstract. We use the incompressibility method based on Kolmogorov complexity to determine
the total number of bits of routing information for almost all network topologies. In most models
for routing, for almost all labeled graphs, Θ(n2) bits are necessary and sufficient for shortest path
routing. By “almost all graphs” we mean the Kolmogorov random graphs which constitute a fraction
of 1− 1/nc of all graphs on n nodes, where c > 0 is an arbitrary fixed constant. There is a model for
which the average case lower bound rises to Ω(n2 logn) and another model where the average case
upper bound drops to O(n log2 n). This clearly exposes the sensitivity of such bounds to the model
under consideration. If paths have to be short, but need not be shortest (if the stretch factor may
be larger than 1), then much less space is needed on average, even in the more demanding models.
Full-information routing requires Θ(n3) bits on average. For worst-case static networks we prove an
Ω(n2 logn) lower bound for shortest path routing and all stretch factors < 2 in some networks where
free relabeling is not allowed.

Key words. computer networks, routing algorithms, compact routing tables, Kolmogorov
complexity, incompressibility method, random graphs, average-case complexity, space complexity

AMS subject classifications. 68M10, 68Q25, 68Q30, 68R10, 90B12

PII. S0097539796308485

1. Introduction. In very large communication networks, like the global tele-
phone network or the Internet connecting the world’s computers, the message volume
being routed creates bottlenecks, degrading performance. We analyze a tiny part of
this issue by determining the optimal space to represent routing schemes in commu-
nication networks for almost all static network topologies. The results also give the
average space cost over all network topologies.

A universal routing strategy for static communication networks will, for every
network, generate a routing scheme for that particular network. Such a routing scheme
comprises a local routing function for every node in the network. The routing function
of node u returns for every destination v 6= u, an edge incident to u on a path from
u to v. This way, a routing scheme describes a path, called a route, between every
pair of nodes u, v in the network. The stretch factor of a routing scheme equals
the maximum ratio between the length of a route it produces and the shortest path
between the endpoints of that route.

It is easy to see that we can do shortest path routing by entering a routing table
in each node u, which for each destination node v indicates to what adjacent node w
a message to v should be routed first. If u has degree d, it requires a table of at most
n log d bits,1 and the overall number of bits in all local routing tables never exceeds
n2 log n.

∗Received by the editors August 20, 1996; accepted for publication (in revised form) June 26,
1997; published electronically April 20, 1999. A preliminary version of this work was presented at
the 15th ACM Conference on Principles Distribut. Comput., Philadelphia, PA, 1996. This research
was partially supported by the European Union through NeuroCOLT ESPRIT Working Group 8556
and by NWO through NFI project ALADDIN NF 62-376.

http://www.siam.org/journals/sicomp/28-4/30848.html
†CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands (buhrman@cwi.nl, paulv@cwi.nl).
‡Department of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The

Netherlands (hoepman@cs.utwente.nl).
1Throughout, “log” denotes the binary logarithm.

1414

SPACE-EFFICIENT ROUTING TABLES 1415

The stretch factor of a routing strategy equals the maximal stretch factor attained
by any of the routing schemes it generates. If the stretch factor of a routing strategy
equals 1, it is called a shortest path routing strategy because then it generates for every
graph a routing scheme that will route a message between arbitrary u and v over a
shortest path between u and v.

In a full-information shortest path routing scheme, the routing function in u must,
for each destination v, return all edges incident to u on shortest paths from u to v.
These schemes allow alternative, shortest paths to be taken whenever an outgoing
link is down.

We consider point to point communication networks on n nodes described by an
undirected graph G. The nodes of the graph initially have unique labels taken from
a set {1, . . . ,m} for some m > n. Edges incident to a node v with degree d(v) are
connected to ports, with fixed labels 1, . . . , d(v), by a so-called port assignment. This
labeling corresponds to the minimal local knowledge a node needs to route: (a) a
unique identity to determine whether it is the destination of an incoming message,
(b) the guarantee that each of its neighbors can be reached over a link connected to
exactly one of its ports, and (c) the guarantee that it can distinguish these ports.

1.1. Cost measures for routing tables. The space requirements of a routing
scheme are measured as the sum over all nodes of the number of bits needed on each
node to encode its routing function. If the nodes are not labeled with {1, . . . , n}—the
minimal set of labels—we have to add to the space requirement, for each node, the
number of bits needed to encode its label. Otherwise, the bits needed to represent
the routing function could be appended to the original identity yielding a large label
that is not charged for but does contain all necessary information to route.

The cost of representing a routing function at a particular node depends on the
amount of (uncharged) information initially there. Moreover, if we are allowed to
relabel the graph and change its port assignment before generating a routing scheme
for it, the resulting routing functions may be simpler and easier to encode. On a
chain, for example, the routing function is much less complicated if we can relabel
the graph and number the nodes in increasing order along the chain. We list these
assumptions below and argue that each of them is reasonable for certain systems. We
start with the options IA, IB, and II for the amount of information initially available
at a node:

I. Nodes do not initially know the labels of their neighbors and use ports to
distinguish the incident edges. This models the basic system without prior
knowledge.
IA. The assignment of ports to edges is fixed and cannot be altered. This

assumption is reasonable for systems running several jobs where the
optimal port assignment for routing may actually be bad for those other
jobs.

IB. The assignment of ports to edges is free and can be altered before
computing the routing scheme (as long as neighboring nodes remain
neighbors after reassignment). Port reassignment is justifiable as a local
action that usually can be performed without informing other nodes.

II. Nodes know the labels of their neighbors and over which edge to reach them.
This information is free. Or, to put it another way, an incident edge carries
the same label as the node to which it connects. This model is concerned only
with the additional cost of routing messages beyond the immediate neighbors
and applies to systems where the neighbors are already known for various

1416 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

other reasons.2

Orthogonal to that, the following three options regarding the labels of the nodes are
distinguished:

α Nodes cannot be relabeled. For large scale distributed systems, relabeling
requires global coordination that may be undesirable or simply impossible.

β Nodes may be relabeled before computing the routing scheme, but the range
of the labels must remain 1, . . . , n. This model allows a bad distribution of
labels to be avoided.

γ Nodes may be given arbitrary labels before computing the routing scheme,
but the number of bits used to store the node’s label is added to the space re-
quirements of a node. Destinations are given using the new, complex labels.3

This model allows us to store additional routing information, e.g., topological
information, in the label of a node. This sort of network may be appropri-
ate for centrally designed interconnected networks for multiprocessors and
communication networks. A common example of architecture of this type is
the binary n-cube network, where the 2n nodes are labeled with elements of
{0, 1}n such that there is an edge between each pair of nodes iff their labels
differ in exactly one bit position. In this case one can shortest path route
using only the labels by successively traversing edges corresponding to flip-
ping successive bits in the positions where source node and destination node
differ.

These two orthogonal sets of assumptions, IA, IB, or II and α, β, or γ, define the nine
different models we will consider in this paper. We remark that the lower bounds for
models without relabeling are less surprising and easier to prove than the bounds for
the other models.

1.2. Outline. We determine the optimum space used to represent shortest path
routing schemes on almost all labeled graphs, namely, the Kolmogorov random graphs
with randomness deficiency at most c log n, which constitute a fraction of at least
1− 1/nc of all graphs for every fixed constant c > 0. These bounds straightforwardly
imply the same bounds for the average case over all graphs, provided we choose c ≥ 3.
For an overview of the results, refer to Table 1.1.4

We prove that for almost all graphs, Ω(n2) bits are necessary to represent the
routing scheme, if relabeling is not allowed and nodes know their neighbors (II ∧
α) or nodes do not know their neighbors (IA ∨ IB).5 Partially matching this lower
bound, we show that O(n2) bits are sufficient to represent the routing scheme if the

2We do not consider models that give neighbors for free and, at the same time, allow free
port assignment. Given a labeling of the edges by the nodes to which they connect, the actual
port assignment doesn’t matter at all and can in fact be used to represent d(v) log d(v) bits of the
routing function. Namely, each assignment of ports corresponds to a permutation of the ranks of the
neighbors—the neighbors at port i move to position i. There are d(v)! such permutations.

3In this model it is assumed that a routing function cannot tell valid from invalid labels and that
a routing function always receives a valid destination label as input. Requiring otherwise makes the
problem harder.

4In this table, arrows indicate that the bound for that particular model follows from the bound
found by tracing the arrow. In particular, the average-case lower bound for model IA ∧ β is the
same as the IA ∧ γ bound found by tracing →. The reader may have guessed that a ? marks an
open question.

5We write A ∨ B to indicate that the results hold under model A or model B. Similarly, we
write A ∧ B to indicate the result holds only if the conditions of both model A and model B hold
simultaneously. If only one of the two “dimensions” is mentioned, the other may be taken arbitrarily
(i.e., IA is shorthand for (IA ∧ α) ∨ (IA ∧ β) ∨ (IA ∧ γ)).

SPACE-EFFICIENT ROUTING TABLES 1417

Table 1.1
Size of shortest path routing schemes, overview of results. The results presented in this paper are

quoted with exact constants and asymptotically (with the lower order of magnitude terms suppressed).
This table contains only results on shortest path routing, not the other results in this paper.

No relabeling Permutation Free relabeling
(α) (β) (γ)

Worst case—lower bounds
Port assignment free (IB) → Ω(n2 logn) [5] n2/32 [Thm 4.2]

Neighbors known (II) (n2/9) logn [Thm 4.4] Ω(n2) [4] Ω(n7/6) [10]

Average case—upper bounds
Port assignment fixed (IA) (n2/2) logn [Thm 3.6] ← ←
Port assignment free (IB) 3n2 [Thm 3.1] ← ←
Neighbors known (II) 3n2 [Thm 3.1] ← 6n log2 n [Thm 3.2]

Average case—lower bounds
Port assignment fixed (IA) (n2/2) logn [Thm 4.3] → n2/32 [Thm 4.2]
Port assignment free (IB) n2/2 [Thm 4.1] → n2/32 [Thm 4.2]
Neighbors known (II) n2/2 [Thm 4.1] ? ?

port assignment may be changed or if nodes do know their neighbors (IB ∨ II). In
contrast, for almost all graphs, the lower bound rises to asymptotically (n2/2) log n
bits if both relabeling and changing the port assignment are not allowed (IA ∧ α),
and this number of bits is also sufficient for almost all graphs. And, again for almost
all graphs, the upper bound drops to O(n log2 n) bits if nodes know the labels of their
neighbors and nodes may be arbitrarily relabeled (II ∧ γ).

Full-information shortest path routing schemes are shown to require, on almost
all graphs, asymptotically n3/4 bits to be stored if relabeling is not allowed (α), and
this number of bits is also shown to be sufficient for almost all graphs. (The obvious
upper bound for all graphs is n3 bits.)

For stretch factors larger than 1 we obtain the following results. When nodes
know their neighbors (II), for almost all graphs, routing schemes achieving stretch
factors s with 1 < s < 2 can be stored using a total of O(n log n) bits.6 Similarly, for
almost all graphs in the same models (II), O(n log log n) bits are sufficient for routing
with stretch factor ≥ 2. Finally, for stretch factors ≥ 6 log n on almost all graphs
again in the same model (II), the routing scheme occupies only O(n) bits.

For worst-case static networks we prove, by construction of explicit graphs, an
Ω(n2 log n) lower bound on the total size of any routing scheme with stretch factor
< 2 if nodes may not be relabeled (α).

The novel incompressibility technique based on Kolmogorov complexity [9] has
already been applied in many areas but not so much in a distributed setting. A
methodological contribution of this paper is to show how to apply the incompressibility
method to obtain results in distributed computing for almost all objects concerned,
rather than for the worst-case object. This hinges on our use of Kolmogorov random
graphs in a fixed family of graphs. Our results also hold averaged over all objects
concerned.

Independent recent work [8, 7] applies Kolmogorov complexity to obtain related
worst-case results mentioned in the next section. They show, for example, that for
each n there exist graphs on n nodes which may not be relabeled (α) that require in
the worst case Ω(n3) bits to store a full-information shortest path routing scheme.

6For Kolmogorov random graphs which have diameter 2 by Lemma 2.6, routing schemes with
s = 1.5 are the only ones possible in this range.

1418 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

We prove for the same model that for almost all graphs, full-information routing n3/4
bits in total is necessary and sufficient (asymptotically).

1.3. Related work. Previous upper and lower bounds on the total number of
bits necessary and sufficient to store the routing scheme in worst-case static commu-
nication networks are due to Peleg and Upfal [10] and Fraigniaud and Gavoille [4].

In [10] it was shown that for any stretch factor s ≥ 1, the total number of bits
required to store the routing scheme for some n-node graph is at least Ω(n1+1/(2s+4))
and that there exist routing schemes for all n-node graphs, with stretch factor s =
12k+3, using O(k3n1+1/k log n) bits in total. For example, with stretch factor s = 15
we have k = 1 and their method guarantees O(n2 log n) bits to store the routing
scheme. The lower bound is shown in the model where nodes may be arbitrarily
relabeled and where nodes know their neighbors (II ∧ γ). Free port assignment in
conjunction with a model where the neighbors are known (II), however, cannot be
allowed. Otherwise, each node would gain n log n bits to store the routing function
(see footnote 2).

Fraigniaud and Gavoille [4] showed that for stretch factors s < 2 there are routing
schemes that require a total of Ω(n2) bits to be stored in the worst case if nodes may
be relabeled by permutation (β). This was improved for shortest path routing by
Gavoille and Pérennès [5], who showed that for each d ≤ n there are shortest path
routing schemes that require a total of Ω(n2 log d) bits to be stored in the worst case
for some graphs with maximal degree d if nodes may be relabeled by permutation and
the port assignment may be changed (IB ∧ β). This last result is clearly optimal for
the worst case both for general networks (d = Θ(n)) and bounded degree networks
(d < n). In [7] it was shown that for each d ≥ 3 there are networks for which any
routing scheme with stretch factor < 2 requires a total of Ω(n2/ log2 n) bits.

Interval routing on a graph G = (V,E), V = {1, . . . , n}, is a routing strategy
where for each node i, for each incident edge e of i, a (possibly empty) set of pairs
of node labels represents disjoint intervals with wraparound. Each pair indicates the
initial edge on a shortest path from i to any node in the interval, and for each node
j 6= i there is such a pair. We are allowed to permute the labels of graph G to optimize
the interval setting.

Gavoille and Pérennès [5] show that there exist graphs for each bounded degree
d ≥ 3 such that for each interval routing scheme, each of Ω(n) edges are labeled by
Ω(n) intervals. This shows that interval routing can be worse than straightforward
coding of routing tables, which can be trivially done in O(n2 log d) bits total. (This
improves [7], showing that there exist graphs such that for each interval routing scheme
some incident edge on each of Ω(n) nodes is labeled by Ω(n) intervals and that for
each d ≥ 3 there are graphs of maximal node degree d such that for each interval
routing scheme some incident edge on each of Ω(n) nodes is labeled by Ω(n/ log n)
intervals.)

Flammini, van Leeuwen, and Marchetti-Spaccamela [3] provide history and back-
ground on the compactness (or lack thereof) of interval routing using probabilistic
proof methods. To the best of our knowledge, one of the authors of that paper, Jan
van Leeuwen, was the first to formulate explicitly the question of what exactly is the
minimal size of the routing functions, and he also recently drew our attention to this
group of problems.

2. Kolmogorov complexity. The Kolmogorov complexity [6] of x is the length
of the shortest effective description of x. That is, the Kolmogorov complexity C(x)
of a finite string x is simply the length of the shortest program, say, in Fortran

SPACE-EFFICIENT ROUTING TABLES 1419

(or in Turing machine codes) encoded in binary, which prints x without any input.
A similar definition holds conditionally in the sense that C(x|y) is the length of
the shortest binary program which computes x given y as input. It can be shown
that the Kolmogorov complexity is absolute in the sense of being independent of the
programming language up to a fixed additional constant term which depends on the
programming language but not on x. We now fix one canonical programming language
once and for all as a reference and thereby C().

For the theory and applications, see [9]. Let x, y, z ∈ N , where N denotes the nat-
ural numbers. IdentifyN and {0, 1}∗ according to the correspondence (0, ε), (1, 0), (2, 1),
(3, 00), (4, 01), Hence, the length |x| of x is the number of bits in the binary string
x. Let T1, T2, . . . be a standard enumeration of all Turing machines. Let 〈·, ·〉 be a
standard invertible effective bijection from N × N to N . This can be iterated to
〈〈·, ·〉, ·〉.

Definition 2.1. Let U be an appropriate universal Turing machine such that
U(〈〈i, p〉, y〉) = Ti(〈p, y〉) for all i and 〈p, y〉. The Kolmogorov complexity of x given
y (for free) is

C(x|y) = min{|p| : U(〈p, y〉) = x, p ∈ {0, 1}∗}.
2.1. Kolmogorov random graphs. One way to express irregularity or ran-

domness of an individual network topology is by a modern notion of randomness like
Kolmogorov complexity. A simple counting argument shows that for each y in the con-
dition and each length n, there exists at least one x of length n which is incompressible
in the sense of C(x|y) ≥ n; 50% of all x’s of length n are incompressible but for one bit
(C(x|y) ≥ n− 1), 75% of all x’s are incompressible but for two bits (C(x|y) ≥ n− 2),
and in general a fraction of 1−1/2c of all strings cannot be compressed by more than
c bits [9].

Definition 2.2. Each labeled graph G = (V,E) on n nodes V = {1, 2, . . . , n} can
be coded by a binary string E(G) of length n(n− 1)/2. We enumerate the n(n− 1)/2
possible edges (u, v) in a graph on n nodes in standard lexicographical order without
repetitions and set the ith bit in the string to 1 if the ith edge is present and to 0
otherwise. Conversely, each binary string of length n(n− 1)/2 encodes a graph on n
nodes. Hence we can identify each such graph with its corresponding binary string.

We define the high complexity graphs in a particular family G of graphs.
Definition 2.3. A labeled graph G on n nodes of a family G of graphs has

randomness deficiency at most δ(n) and is called δ(n)-random in G if it satisfies

C(E(G)|n, δ,G) ≥ log |G| − δ(n).(2.1)

In this paper G is the set of all labeled graphs on n nodes. Then, log |G| = n(n− 1)/2,
that is, precisely the length of the encoding of Definition 2.2. In what follows we just
say “δ(n)-random” with G understood.

Elementary counting shows that a fraction of at least

1− 1/2δ(n)

of all labeled graphs on n nodes in G has that high complexity [9].

2.2. Self-delimiting binary strings. We need the notion of self-delimiting
binary strings.

Definition 2.4. We call x a proper prefix of y if there is a z such that y = xz
with |z| > 0. A set A ⊆ {0, 1}∗ is prefix-free if no element in A is the proper

1420 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

prefix of another element in A. A 1:1 function E : {0, 1}∗ → {0, 1}∗ (equivalently,
E : N → {0, 1}∗) defines a prefix-code if its range is prefix-free. A simple prefix-
code we use throughout is obtained by reserving one symbol, say 0, as a stop sign and
encoding

x̄ = 1|x|0x,
|x̄| = 2|x|+ 1.

Sometimes we need the shorter prefix-code x′:

x′ = |x|x,
|x′| = |x|+ 2dlog(|x|+ 1)e+ 1.

We call x̄ or x′ a self-delimiting version of the binary string x. We can effectively
recover both x and y unambiguously from the binary strings x̄y or x′y. For example,
if x̄y = 111011011, then x = 110 and y = 11. If x̄ȳ = 1110110101, then x = 110
and y = 1. The self-delimiting form x′ . . . y′z allows the concatenated binary sub-
descriptions to be parsed and unpacked into the individual items x, . . . , y, z; the code
x′ encodes a separation delimiter for x using 2dlog(|x|+ 1)e extra bits, and so on [9].

2.3. Topological properties of Kolmogorov random graphs. High com-
plexity labeled graphs have many specific topological properties, which seems to
contradict their randomness. However, randomness is not “lawlessness” but rather
enforces strict statistical regularities, for example, to have diameter exactly 2. Note
that randomly generated graphs have diameter 2 with high probability. In another
paper [2] two of us explored the relationship between high probability properties of
random graphs and properties of individual Kolmogorov random graphs. For this
discussion it is relevant to mention that, in a precisely quantified way, every Kol-
mogorov random graph individually possesses all simple properties which hold with
high probability for randomly generated graphs.

Lemma 2.5. The degree d of every node of a δ(n)-random labeled graph on n
nodes satisfies

|d− (n− 1)/2| = O
(√

(δ(n) + logn)n
)
.

Proof. Assume that there is a node such that the deviation of its degree d from
(n − 1)/2 is greater than k, that is, |d − (n − 1)/2| > k. From the lower bound
on C(E(G)|n, δ,G) corresponding to the assumption that G is random in G, we can
estimate an upper bound on k, as follows.

In a description of G = (V,E) given n, δ, we can indicate which edges are inci-
dent on node i by giving the index of the interconnection pattern (the characteristic
sequence of the set Vi = {j ∈ V − {i} : (i, j) ∈ E} in n− 1 bits, where the jth bit is
1 if j ∈ Vi and 0 otherwise) in the ensemble of

m =
∑

|d−(n−1)/2|>k

(
n− 1

d

)
≤ 2ne−2k2/3(n−1)(2.2)

possibilities. The last inequality follows from a general estimate of the tail probability
of the binomial distribution with sn the number of successful outcomes in n experi-
ments with probability of success p = 1

2 . Namely, by Chernoff’s bounds, in the form
used in [1, 9],

Pr(|sn − pn| > k) ≤ 2e−k
2/3pn.(2.3)

SPACE-EFFICIENT ROUTING TABLES 1421

To describe G, it then suffices to modify the old code of G by prefixing it with
(i) a description of this discussion in O(1) bits;
(ii) the identity of node i in dlog(n+ 1)e bits;
(iii) the value of k in dlog(n+ 1)e bits, possibly adding nonsignificant 0’s to pad

up to this amount;
(iv) the index of the interconnection pattern in logm bits (we know n, k, and

hence logm); followed by
(v) the old code for G with the bits in the code denoting the presence or absence

of the possible edges that are incident on node i deleted.
Clearly, given n we can reconstruct the graph G from the new description. The

total description we have achieved is an effective program of

logm+ 2 log n+ n(n− 1)/2− n+O(1)

bits. This must be at least the length of the shortest effective binary program, which
is C(E(G)|n, δ,G), satisfying (2.1). Therefore,

logm ≥ n− 2 log n−O(1)− δ(n).

Since we have estimated in (2.2) that

logm ≤ n− (2k2/3(n− 1)) log e,

it follows that k ≤
√

3
2 (δ(n) + 2 logn+O(1))(n− 1)/ log e.

Lemma 2.6. Every o(n)-random labeled graph on n nodes has diameter 2.
Proof. The only graphs with diameter 1 are the complete graphs which can be

described in O(1) bits, given n, and hence are not random. It remains to consider
G = (V,E) is an o(n)-random graph with diameter greater than 2, which contradicts
(2.1) from some n onwards.

Let i, j be a pair of nodes with distance greater than 2. Then we can describe G
by modifying the old code for G as follows:

(i) a description of this discussion in O(1) bits;
(ii) the identities of i < j in 2 logn bits;
(iii) the old code E(G) of G with all bits representing presence or absence of an

edge (j, k) between j and each k with (i, k) ∈ E deleted. We know that all the bits
representing such edges must be 0 since the existence of any such edge shows that
(i, k), (k, j) is a path of length 2 between i and j, contradicting the assumption that i
and j have distance > 2. This way we save at least n/4 bits since we save bits for as
many edges (j, k) as there are edges (i, k), that is, the degree of i, which is n/2± o(n)
by Lemma 2.5.

Since we know the identities of i and j and the nodes adjacent to i (they are in
the prefix of code E(G) where no bits have been deleted), we can reconstruct G from
this discussion and the new description, given n. Since by Lemma 2.5 the degree of i
is at least n/4, the new description of G, given n, requires at most

n(n− 1)/2− n/4 +O(log n)

bits, which contradicts (2.1) for large n.
Lemma 2.7. Let c ≥ 0 be a fixed constant, and let G be a c log n-random labeled

graph. Then from each node i all other nodes are either directly connected to i or are
directly connected to one of the least (c+ 3) logn nodes directly adjacent to i.

1422 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Proof. Given i, let A be the set of the least (c + 3) logn nodes directly adjacent
to i. Assume by way of contradiction that there is a node k of G that is not directly
connected to a node in A

⋃{i}. We can describe G as follows:
(i) a description of this discussion in O(1) bits;
(ii) a literal description of i in logn bits;
(iii) a literal description of the presence or absence of edges between i and the

other nodes in n− 1 bits;
(iv) a literal description of k and its incident edges in logn+n−2− (c+ 3) logn

bits;
(v) the encoding E(G) with the edges incident with nodes i and k deleted,

saving at least 2n− 2 bits.
Altogether the resultant description has

n(n− 1)/2 + 2 log n+ 2n− 3− (c+ 3) logn− 2n+ 2

bits, which contradicts the c log n-randomness of G by (2.1).
In the description we have explicitly added the adjacency pattern of node i, which

we deleted again later. This zero-sum swap is necessary to be able to unambiguously
identify the adjacency pattern of i in order to reconstruct G. Since we know the
identities of i and the nodes adjacent to i (they are the prefix where no bits have been
deleted), we can reconstruct G from this discussion and the new description, given n.

3. Upper bounds. We give methods to route messages over Kolmogorov ran-
dom graphs with compact routing schemes. Specifically, we show that in general
(on almost all graphs) one can use shortest path routing schemes occupying at most
O(n2) bits. If one can relabel the graph in advance, and if nodes know their neighbors,
shortest path routing schemes are shown to occupy only O(n log2 n) bits. Allowing
stretch factors larger than 1 reduces the space requirements—to O(n) bits for stretch
factors of O(log n).

Let G be an O(log n)-random labeled graph on n nodes. By Lemma 2.7 we know
that from each node u we can shortest path route to each other node through the least
O(log n) directly adjacent nodes of u. So we route through node v. Once the message
reaches node v, its destination is either node v or a direct neighbor of node v (which
is known in node v by assumption). Therefore, routing functions of size O(n log log n)
bits per node can be used to do shortest path routing. However, we can do better.

Theorem 3.1. Let G be an O(log n)-random labeled graph on n nodes. Assume
that the port assignment may be changed or nodes know their neighbors (IB ∨ II).
Then for shortest path routing it suffices to have local routing functions stored in 3n
bits per node. Hence the complete routing scheme is represented by 3n2 bits.

Proof. Let G be as in the statement of the theorem. By Lemma 2.7 we know
that from each node u we can route via shortest paths to each node v through the
O(log n) directly adjacent nodes of u that have the least indexes. Assume we route
through node v. Once the message has reached node v, its destination is either node
v or a direct neighbor of node v (which is known in node v by assumption).

Let A0 ⊆ V be the set of nodes in G which are not directly connected to u. Let
v1, . . . , vm be theO(log n) least indexed nodes directly adjacent to node u (Lemma 2.7)
through which we can shortest path route to all nodes in A0. For t = 1, 2 . . . , l define
At = {w ∈ A0 −

⋃t−1
s=1As : (vt, w) ∈ E}. Let m0 = |A0|, and define mt+1 =

mt− |At+1|. Let l be the first t such that mt < n/ log log n. Then we claim that vt is
connected by an edge in E to at least 1/3 of the nodes not connected by edges in E
to nodes u, v1, . . . , vt−1.

SPACE-EFFICIENT ROUTING TABLES 1423

Claim 1. |At| > mt−1/3 for 1 ≤ t ≤ l.
Proof. Suppose, by way of contradiction, that there exists a least t ≤ l such that

||At| −mt−1/2| ≥ mt−1/6. Then we can describe G, given n, as follows:
(i) A description of this discussion in O(1) bits;
(ii) a description of nodes u, vt in 2 logn bits, padded with 0’s if necessary;
(iii) a description of the presence or absence of edges incident with nodes

u, v1, . . . , vt−1 in r = n − 1 + · · · + n − (t − 1) bits. This gives us the characteristic
sequences of A0, . . . , At−1 in V , where a characteristic sequence of A in V is a string
of |V | bits with, for each v ∈ V , the vth bit equal to 1 if v ∈ A and the vth bit equal
to 0 otherwise;

(iv) a self-delimiting description of the characteristic sequence of At in A0 −⋃t−1
s=1As, using Chernoff’s bound (2.3), in at mostmt−1− 2

3 (1
6)2 mt−1 log e+O(logmt−1)

bits;
(v) the description E(G) with all bits corresponding to the presence or absence

of edges between vt and the nodes in A0 −
⋃t−1
s=1As deleted, saving mt−1 bits. Fur-

thermore, we also delete all bits corresponding to the presence or absence of edges
incident with u, v1, . . . , vt−1, saving a further r bits.

This description of G uses at most

n(n− 1)/2 +O(log n) +mt−1 − 2

3

(
1

6

)2

mt−1 log e−mt−1

bits, which contradicts the O(log n)-randomness of G by (2.1), because mt−1 >
n/ log log n.

Recall that l is the least integer such that ml < n/ log log n. We construct the
local routing function F (u) as follows:

(i) A table of intermediate routing node entries for all the nodes in A0 in in-

creasing order. For each node w in
⋃l
s=1As we enter in the wth position in the table

the unary representation of the least intermediate node v with (u, v), (v, w) ∈ E fol-

lowed by a 0. For the nodes that are not in
⋃l
s=1As we enter a 0 in their position in

the table, indicating that an entry for this node can be found in the second table. By
Claim 1, the size of this table is bounded by

n+

l∑
s=1

1

3

(
2

3

)s−1

sn ≤ n+

∞∑
s=1

1

3

(
2

3

)s−1

sn ≤ 4n.

(ii) A table with explicitly binary coded intermediate nodes on a shortest path
for the ordered set of the remaining destination nodes. Those nodes had a 0 entry in
the first table and there are at most ml < n/ log log n of them, namely, the nodes in

A0−
⋃l
s=1As. Each entry consists of the code of length log logn+O(1) for the position

in increasing order of a node out of v1, . . . , vm with m = O(log n) by Lemma 2.7.
Hence this second table requires at most 2n bits.

The routing algorithm is as follows: The direct neighbors of u are known in node
u and are routed without a routing table. If we route from start node u to target
node w, which is not directly adjacent to u, then we do the following: If node w has
an entry in the first table, then route over the edge coded in unary; otherwise find an
entry for node w in the second table.

Altogether, we have |F (u)| ≤ 6n. Adding another n−1 in case the port assignment
may be chosen arbitrarily, this proves the theorem with 7n instead of 6n. Slightly

1424 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

more precise counting and choosing l such that ml is the first such quantity < n/ log n
shows |F (u)| ≤ 3n.

If we allow arbitrary labels for the nodes, then shortest path routing schemes of
O(n log2 n) bits suffice on Kolmogorov random graphs, as witnessed by the following
theorem.

Theorem 3.2. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that nodes know their neighbors and that nodes may be
arbitrarily relabeled (II ∧ γ), and we allow the use of labels of (1 + (c+ 3) logn) log n
bits. Then we can shortest path route with local routing functions stored in O(1) bits
per node (hence the complete routing scheme is represented by (c+3)n log2 n+n log n+
O(n) bits).

Proof. Let c and G be as in the statement of the theorem. By Lemma 2.7 we
know that from each node u we can shortest path route to each node w through the
first (c + 3) logn directly adjacent nodes f(u) = v1, . . . , vm of u. By Lemma 2.6, G
has diameter 2. Relabel G such that the label of node u equals u followed by the
original labels of the first (c + 3) logn directly adjacent nodes f(u). This new label
occupies (1 + (c+ 3) logn) log n bits. To route from source u to destination v do the
following.

If v is directly adjacent to u, we route to v in one step in our model (nodes
know their neighbors). If v is not directly adjacent to u, we consider the immediate
neighbors f(v) contained in the name of v. By Lemma 2.7, at least one of the neighbors
of u must have a label whose original label (stored in the first logn bits of its new
label) corresponds to one of the labels in f(v). Node u routes the message to any
such neighbor. This routing function can be stored in O(1) bits.

Without relabeling, routing using less than O(n2) bits is possible if we allow
stretch factors larger than 1. The next three theorems clearly show a trade-off between
the stretch factor and the size of the routing scheme.

Theorem 3.3. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that nodes know their neighbors (II). For routing with
any stretch factor > 1 it suffices to have n− 1− (c+ 3) logn nodes with local routing
functions stored in at most dlog(n+ 1)e bits per node and 1 + (c+ 3) logn nodes with
local routing functions stored in 3n bits per node (hence the complete routing scheme
is represented by less than (3c+20)n log n bits). Moreover, the stretch is at most 1.5.

Proof. Let c and G be as in the statement of the theorem. By Lemma 2.7 we know
that from each node u we can shortest path route to each node w through the first
(c+3) logn directly adjacent nodes v1, . . . , vm of u. By Lemma 2.6, G has diameter 2.
Consequently, each node in V is directly adjacent to some node in B = {u, v1, . . . , vm}.
Hence it suffices to select the nodes of B as routing centers and store, in each node
w ∈ B, a shortest path routing function F (w) to all other nodes occupying 3n bits
(the same routing function as constructed in the proof of Theorem 3.1 if the neighbors
are known). Nodes v ∈ V − B route any destination unequal to their own label to
some fixed directly adjacent node w ∈ B. Then |F (v)| ≤ dlog(n+ 1)e + O(1), and
this gives the bit count in the theorem.

To route from an originating node v to a target node w, the following steps are
taken. If w is directly adjacent to v, we route to w in one step in our model. If w is not
directly adjacent to v, then we first route in one step from v to its directly connected
node in B and then via a shortest path to w. Altogether, this takes either two or three
steps, whereas the shortest path has length 2. Hence the stretch factor is at most 1.5,
which for graphs of diameter 2 (i.e., all c log n-random graphs by Lemma 2.6) is the

SPACE-EFFICIENT ROUTING TABLES 1425

only possibility between stretch factors 1 and 2. This proves the theorem.

Theorem 3.4. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that the nodes know their neighbors (II). For routing with
stretch factor 2 it suffices to have n− 1 nodes with local routing functions stored in at
most log log n bits per node and one node with its local routing function stored in 3n
bits (hence the complete routing scheme is represented by n log log n+ 3n bits).

Proof. Let c and G be as in the statement of the theorem. By Lemma 2.6, G has
diameter 2. Therefore the following routing scheme has stretch factor 2: Let node 1
store a shortest path routing function. All other nodes store only a shortest path to
node 1. To route from an originating node v to a target node w, the following steps
are taken: If w is an immediate neighbor of v, we route to w in one step in our model.
If not, we first route the message to node 1 in at most two steps and then from node
1 through a node v to node w in, again, two steps. Because node 1 stores a shortest
path routing function, either v = w or w is a direct neighbor of v.

Node 1 can store a shortest path routing function in at most 3n bits using the
same construction as used in the proof of Theorem 3.1 (if the neighbors are known).
The immediate neighbors of 1 route either to 1 or directly to the destination of the
message. For these nodes, the routing function occupies O(1) bits. For nodes v at
distance 2 of node 1 we use Lemma 2.7, which tells us that we can shortest path
route to node 1 through the first (c + 3) logn directly adjacent nodes of v. Hence,
to represent this edge takes log log n + log(c + 3) bits, and hence the local routing
function F (v) occupies at most log log n+O(1) bits.

Theorem 3.5. Let c ≥ 0 be a constant, and let G be a c log n-random labeled
graph on n nodes. Assume that nodes know their neighbors (II). For routing with
stretch factor (c+ 3) logn it suffices to have local routing functions stored in O(1) bits
per node (hence the complete routing scheme is represented by O(n) bits).

Proof. Let c and G be as in the statement of the theorem. From Lemma 2.7
we know that from each node u we can shortest path route to each node v through
the first (c + 3) logn directly adjacent nodes of u. By Lemma 2.6, G has diameter
2. So the local routing function—representable in O(1) bits—is to route directly to
the target node if it is a directly adjacent node, otherwise simply traverse the first
(c+ 3) logn incident edges of the starting node and look in each of the visited nodes
to see whether the target node is a directly adjacent node. If so, the message is
forwarded to that node, otherwise it is returned to the starting node in order to try
the next node. Hence each message for a destination at distance 2 traverses at most
2(c+ 3) logn edges.

Strictly speaking we do not use routing tables at all. We use the fact that a
message can go back and forth several times to a node. The header of the message can
code some extra information as a tag “failed.” In this case it is possible to describe
an O(1) bit size routing function which allows one to extract the destination from
the header without knowing about logn, for example, by the use of self-delimiting
encoding.

Theorem 3.6. Let G be an O(log n)-random labeled graph on n nodes. Assume
that nodes do not know their neighbors and relabeling and changing the port assignment
are not allowed (IA ∧ α). Then for shortest path routing it suffices that each local
routing function uses (n/2) log n(1 + o(1)) bits (hence the complete routing scheme
uses at most (n2/2) log n(1 + o(1)) bits to be stored).

Proof. At each node we can give the neighbors by the positions of the 1’s in a
binary string of length n − 1. Since each node has at most n/2 + o(n) neighbors by

1426 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Lemma 2.5, a permutation of port assignments to neighbors can have Kolmogorov
complexity at most (n/2) log n(1+o(1)) [9]. This permutation π describes part of the
local routing function by determining, for each direct neighbor, the port through which
to route messages for that neighbor. If G is O(log n)-random, then by Theorem 3.1
we require only O(n) bits of additional routing information in each node. Namely,
because the assignment of ports (outgoing edges) to direct neighbors is known by
permutation π, we can use an additional routing table in 3n bits per node to route to
the remaining nonneighbor nodes as described in the proof of Theorem 3.1. In total
this gives (n2/2) log n(1 + o(1)) bits.

Our last theorem of this section determines the upper bounds for full-information
shortest path routing schemes on Kolmogorov random graphs.

Theorem 3.7. For full-information shortest path routing on o(n)-random labeled
graphs on n nodes where relabeling is not allowed (α), the local routing function oc-
cupies at most n2/4 + o(n2) bits for every node (hence the complete routing scheme
takes at most n3/4 + o(n3) bits to be stored).

Proof. Since for o(n)-random labeled graphs on n the node degree of every node
is n/2 + o(n) by Lemma 2.5, we can describe in each source node the appropriate
outgoing edges (ports) for each destination node by the 1’s in a binary string of
length n/2 + o(n). For each source node it suffices to store at most n/2 + o(n) such
binary strings corresponding to the nonneighboring destination nodes. In each node
we can give the neighbors by the positions of the 1’s in a binary string of length n−1.
Moreover, in each node we can give the permutation of port assignments to neighbors
in (n/2) log n(1 + o(1)) bits. This leads to a total of at most (n2/4)(1 + o(1)) bits per
node and hence to (n3/4)(1 + o(1)) bits to store the overall routing scheme.

4. Lower bounds. The first two theorems of this section together show that
Ω(n2) bits are indeed necessary to route on Kolmogorov random graphs in all mod-
els we consider, except for the models where nodes know their neighbors and label
permutation or relabeling is allowed (II ∧ β or II ∧ γ). Hence the upper bound in
Theorem 3.1 is tight up to order of magnitude.

Theorem 4.1. For shortest path routing in o(n)-random labeled graphs where
relabeling is not allowed and nodes know their neighbors (II ∧ α), each local routing
function must be stored in at least n/2−o(n) bits per node (hence the complete routing
scheme requires at least n2/2− o(n2) bits to be stored).

Proof. Let G be an o(n)-random graph. Let F (u) be the local routing function
of node u of G, and let |F (u)| be the number of bits used to store F (u). Let E(G)
be the standard encoding of G in n(n − 1)/2 bits as in Definition 2.2. We now give
another way to describe G using some local routing function F (u):

(i) a description of this discussion in O(1) bits;
(ii) a description of u in exactly logn bits, padded with 0’s if necessary;
(iii) a description of the presence or absence of edges between u and the other

nodes in V in n− 1 bits;
(iv) a self-delimiting description of F (u) in |F (u)|+ 2 log |F (u)| bits;
(v) the code E(G) with all bits deleted corresponding to edges (v, w) ∈ E for each

v and w such that F (u) routes messages to w through the least intermediary node v.
This saves at least n/2−o(n) bits since there are at least n/2−o(n) nodes w such that
(u,w) /∈ E by Lemma 2.5, and since the diameter of G is 2 by Lemma 2.6, there is a
shortest path (u, v), (v, w) for some v. Furthermore, we delete all bits corresponding
to the presence or absence of edges between u and the other nodes in V , saving another
n − 1 bits. This corresponds to the n − 1 bits for edges connected to u, which we

SPACE-EFFICIENT ROUTING TABLES 1427

added in one connected block (item (iii)) above.
In the description, we have explicitly added the adjacency pattern of node u,

which we deleted elsewhere. This zero-sum swap is necessary to be able to unam-
biguously identify the adjacency pattern of u in order to reconstruct G given n, as
follows. Reconstruct the bits corresponding to the deleted edges using u and F (u)
and subsequently insert them in the appropriate positions of the remnants of E(G).
We can do so because these positions can be simply reconstructed in increasing order.
In total this new description has

n(n− 1)/2 +O(1) +O(log n) + |F (u)| − n/2 + o(n)

bits, which must be at least n(n− 1)/2− o(n) by (2.1). Hence, |F (u)| ≥ n/2− o(n),
which proves the theorem.

Theorem 4.2. Let G be an o(n)-random labeled graph on n nodes. Assume
that the neighbors are not known (IA ∨ IB) but relabeling is allowed (γ). Then for
shortest path routing the complete routing scheme requires at least n2/32− o(n2) bits
to be stored.

Proof. In the proof of this theorem we need the following combinatorial result.
Claim 2. Let k and n be arbitrary natural numbers such that 1 ≤ k ≤ n. Let xi

for 1 ≤ i ≤ k be natural numbers such that xi ≥ 1. If
∑k
i=1 xi = n, then

k∑
i=1

dlog xie ≤ n− k.

Proof. The proof is by induction on k. If k = 1, then x1 = n, and clearly
dlog ne ≤ n − 1 if n ≥ 1. Supposing the claim holds for k and arbitrary n and

xi, we now prove it for k′ = k + 1, n, and arbitrary xi. Let
∑k′

i=1 xi = n. Then∑k
i=1 xi = n− xk′ . Now

k′∑
i=1

dlog xie =
k∑
i=1

dlog xie+ dlog xk′e.

By the induction hypothesis the first term on the right-hand side is less than or equal
to n− xk′ − k, so

k′∑
i=1

dlog xie ≤ n− xk′ − k + dlog xk′e = n− k′ + dlog xk′e+ 1− xk′ .

Clearly dlog xk′e+ 1 ≤ xk′ if xk′ ≥ 1, which proves the claim.
Recall that in model γ each router must be able to output its own label. Using

the routing scheme we can enumerate the labels of all nodes. If we cannot enumerate
the labels of all nodes using less than n2/32 bits of information, then the routing
scheme requires at least that many bits of information and we are done. So assume
we can (this includes models α and β, where the labels are not charged for, but can
be described using logn bits). Let G be an o(n)-random graph.

Claim 3. Given the labels of all nodes, we can describe the interconnection pattern
of a node u using the local routing function of node u plus an additional n/2 + o(n)
bits.

1428 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Proof. Apply the local routing function to each of the labels of the nodes in turn
(these are given by assumption). This will return for each edge a list of destinations
reached over that edge. To describe the interconnection pattern, it remains to encode
for each edge which of the destinations reached is actually its immediate neighbor. If
edge i routes xi destinations, this will cost dlog xie bits. By Lemma 2.5 the degree

of a node in G is at least n/2 − o(n). Then in total,
∑n/2−o(n)
i=1 dlog xie bits will be

sufficient; separations need not be encoded because they can be determined using the
knowledge of all xi’s. Using Claim 2 finishes the proof.

Now we show that there are n/2 nodes in G whose local routing function requires
at least n/8− 3 log n bits to describe (which implies the theorem).

Assume, by way of contradiction, that there are n/2 nodes in G whose local
routing function requires at most n/8−3 log n bits to describe. Then we can describe
G as follows:

(i) a description of this discussion in O(1) bits;
(ii) the enumeration of all labels in at most n2/32 (by assumption);

(iii) a description of the n/2 nodes in this enumeration in at most n bits;
(iv) the interconnection patterns of these n/2 nodes in n/8− 3 log n plus n/2 +

o(n) bits each (by assumption and using Claim 3); this amounts to n/2(5n/8 −
3 log n) + o(n2) bits in total with separations encoded in another n log n bits;

(v) the interconnection patterns of the remaining n/2 nodes only among them-
selves using the standard encoding, in 1/2(n/2)2 bits.

This description altogether uses

O(1) + n2/32 + n+ n/2(5n/8− 3 log n)

+ o(n2) + n log n+ 1/2(n/2)2

= n2/2− n2/32 + n+ o(n2)− n/2 log n

bits, contradicting the o(n)-randomness of G by (2.1). We conclude that on at least
n/2 nodes, a total of n2/16− o(n2) bits are used to store the routing scheme.

If neither relabeling nor changing the port assignment is allowed, the next the-
orem implies that for shortest path routing on almost all such “static” graphs one
cannot do better than storing part of the routing tables literally, in (n2/2) log n bits.
Note that it is known [5] that there are worst-case graphs (even in models where
relabeling is allowed) such that n2 log n−O(n2) bits are required to store the routing
scheme, and this matches the trivial upper bound for all graphs exactly. But in our
Theorem 4.3 we show that in a certain restricted model for almost all graphs asymp-
totically (n2/2) log n bits are required and by Theorem 3.6 that many bits are also
sufficient.

Theorem 4.3. Let G be an o(n)-random labeled graph on n nodes. Assume that
nodes do not know their neighbors and relabeling and changing the port assignment
are not allowed (IA ∧ α). Then for shortest path routing each local routing function
must be stored in at least (n/2) log n−O(n) bits per node (hence the complete routing
scheme requires at least (n2/2) log n−O(n2) bits to be stored).

Proof. If the graph cannot be relabeled and the port assignment cannot be
changed, the adversary can set the port assignment of each node to correspond to a
permutation of the destination nodes. Since each node has at least n/2− o(n) neigh-
bors by Lemma 2.5, such a permutation can have Kolmogorov complexity as high as
(n/2) log n−O(n) [9]. Because the neighbors are not known, the local routing function
must determine, for each neighbor node, the port through which to route messages
for that neighbor node. Hence the local routing function completely describes the

SPACE-EFFICIENT ROUTING TABLES 1429

v3k−1

vk

v1

v2k+1 vk+1

v2k+2

v2k

v3k

vk+2

v2k+3

vk+3

v2k−1

Fig. 4.1. Graph Gk.

permutation, given the neighbors, and thus it must occupy at least (n/2) log n−O(n)
bits per node.

Note that in this model (IA ∧ α) we can trivially find by the same method a lower
bound of n2 log n − O(n2) bits for specific graphs like the complete graph and this
matches exactly the trivial upper bound in the worst case. However, Theorem 4.3
shows that for this model for almost all labeled graphs asymptotically 50% of this
number of bits of total routing information is both necessary and sufficient.

Even if stretch factors between 1 and 2 are allowed, the next theorem shows that
Ω(n2 log n) bits are necessary to represent the routing scheme in the worst case.

Theorem 4.4. For routing with stretch factor < 2 in labeled graphs where relabel-
ing is not allowed (α), there exist graphs on n nodes (almost (n/3)! such graphs) where
the local routing function must be stored in at least (n/3) log n−O(n) bits per node at
n/3 nodes (hence the complete routing scheme requires at least (n2/9) log n − O(n2)
bits to be stored).

Proof. Consider the graph Gk with n = 3k nodes depicted in Figure 4.1. Each
node vi in vk+1, . . . , v2k is connected to vi+k and to each of the nodes v1, . . . , vk. Fix a
labeling of the nodes v1, . . . , v2k with labels from {1, . . . , 2k}. Then any labeling of the
nodes v2k+1, . . . , v3k with labels from {2k + 1, . . . , 3k} corresponds to a permutation
of {2k + 1, . . . , 3k} and vice versa.

Clearly, for any two nodes vi and vj with 1 ≤ i ≤ k and 2k + 1 ≤ j ≤ 3k, the
shortest path from vi to vj passes through node vj−k and has length 2, whereas any
other path from vi to vj has length at least 4. Hence any routing function on Gk with
stretch factor < 2 routes such vj from vi over the edge (vi, vj−k). Then at each of
the k nodes v1, . . . , vk the local routing functions corresponding to any two labelings
of the nodes v2k+1, . . . , v3k are different. Hence each representation of a local routing
function at the k nodes vi, 1 ≤ i ≤ k, corresponds one-to-one to a permutation
of {2k + 1, . . . , 3k}. So given such a local routing function, we can reconstruct the
permutation (by collecting the response of the local routing function for each of the
nodes k + 1, . . . , 3k and grouping all pairs reached over the same edge). The number
of such permutations is k!. A fraction of at least 1− 1/2k of such permutations π has
Kolmogorov complexity C(π) = k log k − O(k) [9]. Because π can be reconstructed
given any of the k local routing functions, these k local routing functions must each
have Kolmogorov complexity k log k − O(k), too. This proves the theorem for n a
multiple of 3. For n = 3k − 1 or n = 3k − 2 we can use Gk, dropping vk and vk−1.

1430 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

Note that the proof requires only that there be no relabeling; apart from that the
direct neighbors of a node may be known and ports may be reassigned.

By the above calculation there are at least (1− 1/2n/3)(n/3)! labeled graphs on
n nodes for which the theorem holds.

Our last theorem shows that for full-information shortest path routing schemes
on Kolmogorov random graphs one cannot do better than the trivial upper bound.

Theorem 4.5. For full-information shortest path routing on o(n)-random labeled
graphs on n nodes where relabeling is not allowed (α), the local routing function oc-
cupies at least n2/4 − o(n2) bits for every node (hence the complete routing scheme
requires at least n3/4− o(n3) bits to be stored).

Proof. Let G be a graph on nodes {1, 2, . . . , n} satisfying (2.1) with δ(n) = o(n).
Then we know that G satisfies Lemmas 2.5 and 2.6. Let F (u) be the local routing
function of node u of G, and let |F (u)| be the number of bits used to encode F (u).
Let E(G) be the standard encoding of G in n(n− 1)/2 bits as in Definition 2.2. We
now give another way to describe G using some local routing function F (u):

(i) a description of this discussion in O(1) bits;
(ii) a description of u in logn bits (if it is less, pad the description with 0’s);
(iii) a description of the presence or absence of edges between u and the other

nodes in V in n− 1 bits;
(iv) a description of F (u) in |F (u)|+O(log |F (u)|) bits (the logarithmic term to

make the description self-delimiting);
(v) the code E(G) with all bits deleted corresponding to the presence or absence

of edges between each w and v such that v is a neighbor of u and w is not a neighbor
of u. Since there are at least n/2 − o(n) nodes w such that (u,w) /∈ E and at least
n/2−o(n) nodes v such that (u, v) ∈ E, by Lemma 2.5, this saves at least (n/2−o(n))2

bits.
From this description we can reconstruct G, given n, by reconstructing the bits

corresponding to the deleted edges from u and F (u) and subsequently inserting them
in the appropriate positions to reconstruct E(G). We can do so because F (u) repre-
sents a full-information routing scheme implying that (v, w) ∈ E iff (u, v) is among
the edges used to route from u to w. In total this new description has

n(n− 1)/2 +O(log n) + |F (u)| − n2/4 + o(n2)

bits, which must be at least n(n − 1)/2 − o(n) by (2.1). We conclude that |F (u)| =
n2/4− o(n2), which proves the theorem.

Note that the proof requires only that there be no relabeling; apart from that the
direct neighbors of a node may be known and ports may be reassigned.

5. Average case. What about the average cost, taken over all labeled graphs of
n nodes, of representing a routing scheme for graphs over n nodes? The results above
concerned precise overwhelmingly large fractions of the set of all labeled graphs. The
numerical values of randomness deficiencies and bit costs involved show that these
results are actually considerably stronger than the corresponding average case results
which are straightforward.

Definition 5.1. For each labeled graph G, let TS(G) be the minimal total number
of bits used to store a routing scheme of type S (where S indicates shortest path
routing, full-information routing, and the like). The average minimal total number
of bits to store a routing scheme for S-routing over labeled graphs on n nodes is∑
TS(G)/2n(n−1)/2 with the sum taken over all graphs G on nodes {1, 2, . . . , n}. (That

is, the uniform average over all the labeled graphs on n nodes.)

SPACE-EFFICIENT ROUTING TABLES 1431

The results on Kolmogorov random graphs above have the following corollaries.
The set of (3 log n)-random graphs constitutes a fraction of at least (1− 1/n3) of the
set of all graphs on n nodes. The trivial upper bound on the minimal total number
of bits for all routing functions together is O(n2 log n) for shortest path routing on
all graphs on n nodes (or O(n3) for full-information shortest path routing). Simple
computation shows that the average total number of bits to store the routing scheme
for graphs of n nodes is (asymptotically and ignoring lower order of magnitude terms
as in Table 1.1) as follows:

1. ≤ 3n2 for shortest path routing in model IB ∨ II (Theorem 3.1);
2. ≤ 6n log2 n for shortest path routing in model II ∧ γ, where the average is

taken over the initially labeled graphs on n nodes with labels in {1, 2, . . . , n} before
they were relabeled with new and longer labels giving routing information (Theo-
rem 3.2);

3. ≤ 38n log n for routing with any stretch factor s for 1 < s < 2 in model II
(Theorem 3.3);

4. ≤ n log log n for routing with stretch factor 2 in model II (Theorem 3.4);
5. O(n) for routing with stretch factor 6 logn in model II (Theorem 3.5 with

c = 3);
6. ≥ n2/2 for shortest path routing in model α (Theorem 4.1);
7. ≥ n2/32 for shortest path routing in model IA and IB (under all relabeling

conventions, Theorem 4.2);
8. = (n2/2) log n for shortest path routing in model IA ∧ α (Theorems 3.6 and

4.3);
9. = n3/4 for full-information shortest path routing in model α (Theorems 3.7

and 4.5).

6. Conclusion. The space requirements for compact routing for almost all la-
beled graphs on n nodes, and hence for the average case of all graphs on n nodes,
are conclusively determined in this paper. We introduce a novel application of the
incompressibility method. The next question arising in compact routing is the follow-
ing: For practical purposes the class of all graphs is too broad in that most graphs
have high node degree (around n/2). Such high node degrees are unrealistic in real
communication networks for large n. So the question that arises is: How do we ex-
tend the current treatment to almost all graphs on n nodes of maximal node degree
d, where d ranges from O(1) to n? Clearly, for shortest path routing O(n2 log d) bits
suffice, and [5] showed that for each d < n there are shortest path routing schemes
that require a total of Ω(n2 log d) bits to be stored in the worst case for some graphs
with maximal degree d, where we allow that nodes are relabeled by permutation and
the port assignment may be changed (IB ∧ β). This does not hold for average routing,
since by our Theorem 3.1 O(n2) bits suffice for d = Θ(n). (Trivially, O(n2) bits suffice
for routing in every graph with d = O(1).) We believe it may be possible to show
by an extension of our method that Θ(n2) bits (independent of d) are necessary and
sufficient for shortest path routing in almost all graphs of maximum node degree d,
provided d grows unboundedly with n.

Another research direction is to resolve the questions addressed in this paper for
Kolmogorov random unlabeled graphs, in particular with respect to the free relabeling
model (insofar as they do not follow a fortiori from the results presented here).

Acknowledgments. We thank Jan van Leeuwen, Evangelos Kranakis, and Danny
Krizanc for helpful discussions and the anonymous referees for comments and
corrections.

1432 HARRY BUHRMAN, JAAP-HENK HOEPMAN, AND PAUL VITÁNYI

REFERENCES

[1] L.G. Valiant and D. Angluin, Fast probabilistic algorithms for Hamiltonian circuits and
matchings, J. Comput. System Sci., 18 (1979), pp. 155–193.

[2] H.M. Buhrman, M. Li, J. Tromp, and P.M.B. Vitányi, Kolmogorov random graphs and the
incompressibility method, SIAM J. Comput., to appear.

[3] M. Flammini, J. van Leeuwen, and A. Marchetti-Spaccamela, The complexity of interval
routing on random graphs, in Proceedings 20th International Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in Comput. Sci. 969, Springer-Verlag,
Heidelberg, 1995, pp. 37–49.

[4] P. Fraigniaud and C. Gavoille, Memory requirement for universal routing schemes, in Pro-
ceedings 14th Annual ACM Symposium on Principles of Distributed Computing, ACM
Press, New York, 1995, pp. 223–230.

[5] C. Gavoille and S. Pérennès, Memory requirements for routing in distributed networks, in
Proceedings 15th Annual ACM Symposium on Principles of Distributed Computing, ACM
Press, New York, 1996, pp. 125–133.

[6] A.N. Kolmogorov, Three approaches to the quantitative definition of information, Problems
Inform. Transmission, 1 (1965), pp. 1–7.

[7] E. Kranakis and D. Krizanc, Lower bounds for compact routing schemes, in Proceedings
Thirteenth Symposium on Theoretical Aspects in Computer Science, Lecture Notes in
Comput. Sci. 1046, Springer-Verlag, Heidelberg, 1996, pp. 529–540.

[8] E. Kranakis, D. Krizanc, and J. Urrutia, Compact routing and shortest path information,
in Proceedings Second International Colloquium on Structural Information and Commu-
nication Complexity, vol. 2, Carleton University Press, Ottawa, 1996, pp. 101–112.

[9] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications,
2nd ed., Springer-Verlag, New York, 1997.

[10] D. Peleg and E. Upfal, A trade-off between space and efficiency for routing tables, J. ACM,
36 (1989), pp. 510–530.

COMPUTING WITH VERY WEAK RANDOM SOURCES∗

ARAVIND SRINIVASAN† AND DAVID ZUCKERMAN‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1433–1459

Abstract. We give an efficient algorithm to extract randomness from a very weak random
source using a small additional number t of truly random bits. Our work extends that of Nisan and
Zuckerman [J. Comput. System Sci., 52 (1996), pp. 43–52] in that t remains small even if the entropy
rate is well below constant. A key application of this is in running randomized algorithms using such
a very weak source of randomness. For any fixed γ > 0, we show how to simulate RP algorithms
in time nO(logn) using the output of a δ-source with min-entropy Rγ . Such a weak random source
is asked once for R bits; it outputs an R-bit string according to any probability distribution that
places probability at most 2−R

γ
on each string. If γ > 1/2, our simulation also works for BPP; for

γ > 1 − 1/(k + 1), our simulation takes time nO(log(k) n) (log(k) is the logarithm iterated k times).
We also give a polynomial-time BPP simulation using Chor–Goldreich sources of min-entropy RΩ(1),
which is optimal. We present applications to time-space tradeoffs, expander constructions, and to
the hardness of approximation. Of independent interest is our randomness-efficient Leftover Hash
Lemma, a key tool for extracting randomness from weak random sources.

Key words. derandomization, expander graphs, hashing lemmas, hardness of approximation,
imperfect sources of randomness, measures of information, pseudorandomness, pseudorandom gen-
erators, randomized computation, time-space tradeoffs

AMS subject classifications. 60C05, 68Q15, 94A17

PII. S009753979630091X

1. Introduction. Randomness plays a vital role in almost all areas of computer
science, including simulations, algorithms, network constructions, cryptography, and
distributed algorithms. In practice, programs get their “random” bits by using pseudo-
random number generators. Yet even in practice there are reports of algorithms giving
quite different results under different pseudorandom generators; see, e.g., [FLW] for
such reports on Monte-Carlo simulations, and [Hsu, HRD] for the deviant performance
of some RNC algorithms for graph problems.

Other approaches involve using a physical source of randomness, such as a Zener
diode, or using the last digits of a real-time clock. Not only is it unclear whether
such bits will be random, but it is impossible to test them for “randomness.” We
can run certain statistical tests on the bits, but we cannot run all possible ones. It is

∗Received by the editors March 25, 1996; accepted for publication (in revised form) December 11,
1997; published electronically April 20, 1999. Part of this work was done while the authors attended
the Workshop on Probability and Algorithms organized by Joel Spencer and Michael Steele, which
was held at the Institute for Mathematics and Its Applications at the University of Minnesota,
Minneapolis, MN, September 20–24, 1993. A preliminary version of this work appears in Proc. IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1994, pp. 264–275.

http://www.siam.org/journals/sicomp/28-4/30091.html
†Dept. of Information Systems and Computer Science, National University of Singapore, Singa-

pore 119260, Republic of Singapore (aravind@iscs.nus.edu.sg). The research of this author was done
in parts at the Institute for Advanced Study, Princeton, NJ (partially supported by grant 93-6-6
of the Alfred P. Sloan Foundation), at the DIMACS Center, Rutgers University, Piscataway, NJ
(partially supported by NSF grant STC91-19999 and by the New Jersey Commission on Science and
Technology), and at the National University of Singapore (partially supported by National University
of Singapore Academic Research Fund grant RP960620).
‡Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

(diz@cs.utexas.edu). The research of this author was partially supported by NSF NYI grant CCR-
9457799. Part of this work was done while this author was visiting The Hebrew University of
Jerusalem and was supported by a Lady Davis Postdoctoral Fellowship.

1433

1434 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

therefore natural and important to ask whether randomness is just as helpful even if
the source of randomness is defective or weak. Thus we model a weak random source
as outputting bits that are slightly random but not perfectly random.

There have been two different directions taken in the study of weak random
sources. The first is an attempt to describe a weak random source arising in practice.
Thus Blum [Blu] looked at the model where bits are output by a Markov chain and
showed how to extract perfectly random bits from such a source. Santha and Vazirani
[SV] then looked at a model where the only fact known about the source is that each
bit has some randomness. More precisely, we have the following.

Definition 1.1 (see [SV]). A semirandom source with parameter α outputs bits
X1X2, . . . , XR, such that for all i ≤ R, and for all x1, . . . , xi ∈ {0, 1},

α ≤ Pr[Xi = xi|X1 = x1, . . . , Xi−1 = xi−1] ≤ 1− α.

Simulations must work for all such sources; we do not want to assume any knowl-
edge about the source, except that it is semirandom with the value of the parameter α
being known. Santha and Vazirani proved that it is impossible to extract even a single
almost-random bit from one such source (so Vazirani [Va1, Va3] used two indepen-
dent sources). In light of this result, one might give up hope of simulating randomized
algorithms with one semirandom source. Nevertheless, [VV] and [Va2] showed how to
efficiently simulate all algorithms in RP and BPP, with one semirandom source, for
any constant α > 0.

Note that these simulations use R = poly(n) bits from the semirandom source,
where n denotes the length of the input to the RP or BPP machine; we shall let n and
R denote “length of the input” and “number of bits requested,” respectively, when
discussing RP or BPP simulations in this paper.

Chor and Goldreich [CG] generalized the Santha–Vazirani model by assuming
that no sequence of l bits has too high a probability of being output. More precisely,
we have the following.

Definition 1.2 (see [CG]). A blockwise δ-source outputs bits as blocks Y1, . . . , Ys,
where Yi has length li, such that for all i, y1, . . . , yi, P r[Yi = yi|Y1 = y1, . . . , Yi−1 =
yi−1] ≤ 2−δli .1

Note that δ and the block-lengths li are assumed to be known parameters of these
sources. Later we will allow the li to vary, but for the first four sections we assume that
all li = l. A semirandom source corresponds to l = 1. For l = O(log n) and constant
δ > 0, Chor and Goldreich showed how to efficiently simulate any BPP algorithm
using one blockwise δ-source. They further showed how to obtain almost-random bits
from four independent such sources at a constant rate.

The other direction researchers have taken is natural mathematically, although
it does not appear to correspond as well to weak sources in practice. These models
are called bit-fixing models: some of the bits are perfectly random, while others are
controlled by an adversary. Cohen and Wigderson [CW] distinguish three models
based on three different adversaries: oblivious bit-fixing sources [CG+], nonoblivious
bit-fixing sources [BL, KKL], and adaptive bit-fixing sources [LLS]. Only for the first
model could researchers do something better than they could for general weak random
sources (see [CW]).

The two directions in weak random sources were united by the model of δ-sources
[Zu1, Zu2], which generalizes all the previous models.

1We modify the notation in [CG] to better conform with ours.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1435

Definition 1.3. For any number R of random bits requested, a δ-source outputs
an R-bit string such that no string has probability more than 2−δR of being output.

As usual, we associate a source with its distribution D. Let D(x) denote the
probability assigned to x under distribution D.

Definition 1.4. The min-entropy of a distribution D is minx{− log2D(x) | D(x)
> 0}.

Thus, a δ-source is equivalent to a source with min-entropy at least δR. We often
go back and forth between these two terminologies.

In [Zu2], Zuckerman showed how to efficiently simulate any BPP algorithm using a
δ-source, for any fixed δ > 0. Because a δ-source is the most general model, this implies
that BPP algorithms can be simulated using any model of a source where randomness
is output at a constant rate. In light of this, what is left to do? The answer is to extend
the result for subconstant δ. From an information-theoretic viewpoint, it is necessary
for the R bits to have min-entropy only Rγ , for an arbitrary but fixed γ > 0 [CW].
(Of course, if BPP = P, then no random bits are necessary: this information-theoretic
result holds for an abstract model of BPP, where random bits are really necessary.
Such an abstract model, wherein the “witness set” W can be any sufficiently large
set, is introduced in Definition 2.3.) Can we achieve this information-theoretic lower
bound? Previously, the only weak source where this information-theoretic lower bound
could be achieved was the oblivious bit-fixing source: Cohen and Wigderson showed
how to simulate BPP even if the adversary fixes all but Rγ bits and leaves the other
bits unbiased and independent, matching the above lower bound [CW].

In this paper, we come close to our goal: we give a time nO(log n) simulation for any
RP algorithm using a δ-source with min-entropy Rγ . For γ > 1/2, our simulations
also work for BPP and approximation algorithms. Moreover, for γ > 1 − 1/(k +

1), our simulations take time nO(log(k) n), giving a polynomial-time simulation for

γ > 1 − 1/(2 log∗ n). (Here log(k) denotes the logarithm base 2, iterated k times;

i.e., log(1) x = log2 x, log(2) x = log2 log2 x, etc.) Furthermore, we give a simple
algorithm to simulate BPP and approximation algorithms using the Chor–Goldreich
blockwise δ-source, as long as there are at least Rγ blocks and the min-entropy of
the R bits is at least Rγ (i.e., δR ≥ Rγ), for any fixed γ > 0. (The second condition
may not be implied by the first condition if δl < 1.) Using l = 1, this gives a
simulation of BPP and approximation algorithms for the Santha–Vazirani source with
min-entropy Rγ . We also generalize Cohen and Wigderson’s result on oblivious bit-
fixing sources: it is not necessary for nγ bits to be perfectly independent and uniform,
but only “weakly independent” (see section 7). Our BPP simulations also work for
approximation algorithms, such as the one for approximating the volume of a convex
body [DFK].

Our BPP simulations are corollaries of something even stronger: extractor con-
structions. An extractor is an algorithm which extracts randomness from a weak
source, using a small additional number t of truly random bits. We modify the defi-
nition given in [NZ] to account for general families of sources.

Definition 1.5. Let E : {0, 1}n × {0, 1}t → {0, 1}m, and ε > 0 be a parameter.
E is called an extractor with quasi-randomness ε for a family of sources S on {0, 1}n
if, for any S ∈ S, the distribution of E(x, y) ◦ y induced by choosing x according to S
and y independently and uniformly from {0, 1}t is quasi-random (on {0, 1}m×{0, 1}t)
to within ε. In particular, when S is the class of δ-sources on {0, 1}n, E is called an

1436 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

Table 1

Min-entropy t truly random bits (N,M, d,K)-disperser
nγ for for extractor construction

γ > 0 NA (2n, 2Ω(nγ/2/ logn), nO(logn), 2n
γ

)

γ > 1/2 O(log2 n) (2n, 2n
2γ−1/ logn, nO(logn), 2n

γ
)

γ > 2/3 O((logn) log logn) (2n, 2n
3γ−2/ log3 n, nO(log logn), 2n

γ
)

γ > 1− 1/k O((logn) log(k) n) (2n, 2n
kγ−k+1/ log2k−1 n, nO(log(k) n), 2n

γ
)

γ > 1− 1/(2 log∗ n) O(logn) (2n, 2
√
n, nO(1), 2n

γ
)

(n,m, t, δ, ε)-extractor.2

As in [NZ], we observe that an extractor that adds t random bits yields a BPP
simulation taking time 2tpoly(n).

In the case when S is the class of δ-sources, it is often convenient to view the
extractors graph theoretically, as in [Sip, San, CW]. Namely, construct a bipartite
graph on {0, 1}n × {0, 1}m, where x ∈ {0, 1}n is adjacent to z ∈ {0, 1}m if and only
if z = E(x, y) for some y. Then any set in {0, 1}n of size at least 2δn expands almost
uniformly into {0, 1}m. In particular, it yields efficient constructions of graphs, which
are called dispersers in [CW].

Definition 1.6. An (N,M, d,K)-disperser is a bipartite graph with N nodes on
the left side, each with degree at most d, and M nodes on the right side, such that
every subset of K nodes on the left side is connected to at least M/2 nodes on the
right. By an efficient construction of a disperser, we mean that given a node on the left
side, its neighbor set can be found in poly(logN + logM + d) time deterministically.

Lemma 1.7. If there is an efficient (n,m, t, δ, ε)-extractor for ε ≤ 1/2, then there
is an efficiently constructible (2n, 2m, 2t, 2δn)-disperser.

Our RP simulation also yields a disperser, although it is not an extractor. In
Table 1 we summarize our results for δ-sources. The simulations and running times
for the five entries of the table are as follows: The first entry implies an RP simulation,
while the other four are for BPP. The respective running times are nO(log n), nO(log n),

nO(log log n), nO(log(k) n), and poly(n).

Just as extractors and dispersers for constant δ have important applications [NZ,
WZ], so, too, do our results for subconstant δ. The first application is to a relationship
between the RP=P question and time-space tradeoffs. Sipser [Sip] showed that if
certain expander graphs can be constructed efficiently, then for some ε > 0 and
any time bound t(n), either RP = P or all unary languages in DTIME(t(n)) are
accepted infinitely often in SPACE(t(n)1−ε). If we had a polynomial-time simulation
of RP using a δ-source with min-entropy Rγ for some γ < 1, we could construct his

expanders as a corollary. Because our simulations take time nO(log(k) n), we instead

show unconditionally that either RP ⊆ ⋂kDTIME(nlog(k) n) or all unary languages

in DTIME(t(n)) are accepted infinitely often in
⋂
k SPACE(t(n)1−1/ log(k) n).

Our second application is to improve the expanders constructed in [WZ], and
hence all of the applications given there. In [WZ], graphs on n nodes were constructed
such that for every pair of disjoint subsets S1 and S2 of the vertices with |S1| ≥ nδ

and |S2| ≥ nδ, there is an edge joining S1 and S2; the graphs so constructed had

2To remember the five parameters, it may be helpful to note that the first three refer to lengths
of inputs and outputs in (typically) decreasing order of length. The last two parameters refer to the
quality of the sampler.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1437

essentially optimal maximum degree n1−δ+o(1). These expanders were used in [WZ]
to explicitly construct

(i) a k-round sorting algorithm using n1+1/k+o(1) comparisons;

(ii) a k-round selection algorithm using n1+1/(2k−1)+o(1) comparisons;
(iii) a depth-2 superconcentrator of size n1+o(1); and
(iv) a depth-k wide-sense nonblocking generalized connector of size n1+1/k+o(1).
The reader is referred to [WZ] for the definitions and motivations for these con-

structions. All of these results are optimal to within factors of no(1). In [WZ], these

no(1) factors were 2(log n)4/5+o(1)

, improved to 2(log n)2/3+o(1)

in the final version of [WZ].

Our results further improve these no(1) factors to 2(log n)1/2+o(1)

. In addition, explicit
linear-sized n-superconcentrators of depth (logn)2/3+o(1) were presented in [WZ]; we
improve this to (logn)1/2+o(1) depth. These might seem like small improvements, given
the major improvement of simulations using δ-sources. The reasons for this are that
our extractors require nΩ(1) min-entropy from an n-bit source and that our extractors
do not extract a sufficiently good fraction of the min-entropy.

Our third application is to the hardness of approximating log logω(G), where
ω(G) is the maximum size of a clique in an input graph G. Let P̃ denote quasi-
polynomial time, ∪c>0 DTIME(2(log n)c). In [Zu2], it was shown that ifNP̃ 6= P̃ , then
approximating logω(G) to within any constant factor is not in P̃ . In [Zu3], a random-
ized reduction was given showing that any iterated log is hard to approximate under
a slightly stronger assumption than NP̃ 6= ZPP̃ . In particular, if NP̃ 6= ZPP̃ , then
approximating log logω(G) to within a constant factor is not in co− RP̃ . This used
the fact that, with high probability, certain graphs are highly expanding. Our work
allows us to deterministically construct graphs that are almost as highly expanding
as the nonexplicit constructions, thus making this last reduction deterministic, with

a slight loss of efficiency: if NP̃ 6⊆ DTIME(2(log n)O(log logn)

), then approximating
log logω(G) to within any constant factor is not in P̃ .

As in [Zu1, Zu2, NZ], we achieve our results using only elementary methods; in
particular, we do not need expander graphs. Our main technical tool is a modification
of the Leftover Hash Lemma. This very useful lemma was first proved in [ILL] and
has been used extensively in simulations using δ-sources [Zu1, Zu2, NZ]. This lemma
is a pseudorandom property of hash functions. However, a drawback of the lemma is
that to hash from s bits to t bits, one needs at least s random bits. We show how
a similar lemma can be achieved using only O(log s + t) random bits. Because this
modification was so useful to us here, we believe it will be useful elsewhere, too. A
similar lemma was proved independently in [GW]; however, our proof is somewhat
simpler. One key consequence of our lemma is an improvement of the extractor of
[NZ]. That is, we show how to add a small number t of truly random bits to a δ-source
in order to extract almost-random bits; we make t much smaller than in [NZ]. By
using this with the ideas of [NZ], we get our first main extractor (see Theorem 5.7).
Section 5.5 then introduces some new techniques for using such extraction procedures
recursively; this helps improve the quality of our extractor when δ is not “too small.”

Section 2 sets up the required preliminary notions. Section 3 presents our first
technical tool, the improved Leftover Hash Lemma; section 4 shows how this new
Leftover Hash Lemma can be used to run BPP algorithms using very weak Chor–
Goldreich sources, and also serves in part as motivation for some of our techniques of
sections 5 and 6. Sections 5 and 6 contain some of our main results: simulating BPP
and RP algorithms using general weak sources with very low min-entropy. Section
7 uses the result of section 4 to generalize a result of [CW] on oblivious bit-fixing

1438 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

sources. Applications of our results are presented in section 8. Section 9 concludes
with some recent work that our work has led to, in part, and presents open questions.
In the Appendix, we show some technical details that are largely borrowed from [NZ].

2. Preliminaries. We use capital letters to denote random variables, sets, dis-
tributions, and probability spaces; lowercase letters denote other variables. We often
use a correspondence where the lowercase letter denotes an instantiation of the capital
letter, e.g., ~x might be a particular input and ~X the random variable being uniformly
distributed over all inputs. We ignore round-off errors, assuming when needed that
a number is an integer; it can be seen that this does not affect the validity of our
arguments. All logarithms are to base 2 unless specified otherwise.

2.1. Basic definitions.
Definition 2.1. RP is the set of languages L ⊆ {0, 1}∗ such that there is a

deterministic polynomial-time Turing machine ML(·, ·) for which

a ∈ L⇒ Pr[ML(a, x) accepts] ≥ 1/2,

and

a 6∈ L⇒ Pr[ML(a, x) accepts] = 0,

where the probabilities are for an x chosen uniformly in {0, 1}p(|a|) for some polynomial
p = pL. BPP is the set of languages L ⊆ {0, 1}∗ such that there is a deterministic
polynomial-time Turing machine ML(·, ·) for which

a ∈ L⇒ Pr[ML(a, x) accepts] ≥ 2/3

and

a 6∈ L⇒ Pr[ML(a, x) accepts] ≤ 1/3,

where the probabilities are for an x chosen uniformly in {0, 1}p(|a|) for some polynomial
p = pL.

As is well known, by running ML on independent random tapes we can change the
probabilities 1/2, 2/3, and 1/3 above to 1− 2−poly(|a|), 1− 2−poly(|a|), and 2−poly(|a|),
respectively, while still retaining a polynomial running time.

Distance between distributions. Let D1 and D2 be two distributions on the
same space X. The variation distance between them is

‖D1 −D2‖ .= max
Y⊆X

|D1(Y)−D2(Y)| = 1

2

∑
x∈X
|D1(x)−D2(x)|.

A distribution D on X is called ε-quasi-random (on X) if the variation distance
between D and the uniform distribution on X is at most ε.

A convenient fact to remember is that distance between distributions cannot be
created out of nowhere. In particular, if f : X → Y is any function and D1, D2 are
distributions on X, then ‖f(D1) − f(D2)‖ ≤ ‖D1 − D2‖. Also, if E1 and E2 are
distributions on Y , then ‖D1 × E1 − D2 × E2‖ ≤ ‖D1 − D2‖ + ‖E1 − E2‖. Since
this inequality holds for any function, it also holds for random functions f . Next, the
triangle inequality is obvious: ‖D1 −D3‖ ≤ ‖D1 −D2‖+ ‖D2 −D3‖.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1439

2.2. Simulations using weak random sources. A source that outputs R
bits is a probability distribution on {0, 1}R; we often go back and forth between these
two notions. By a simulation using, say, a Chor–Goldreich source, we really mean
a simulation that will work for all Chor–Goldreich sources. Thus, we talk about a
simulation for a family of sources.

To define what simulating RP means, say we wish to test whether a given string a
is in an RP language L. If a 6∈ L, then all random strings cause ML to reject, so there
is nothing to do. Suppose a ∈ L; then we wish to find with high probability a witness
to this fact. Let W be the set of witnesses, i.e., W = {x ∈ {0, 1}r|ML(a, x) accepts},
where r denotes the number of random bits used by ML. One might think that to
simulate RP using a source we would need a different algorithm for each language
in RP. Instead, we exhibit one simulation that works for all W with |W | ≥ 2r−1; in
particular, we do not use the fact that W can be recognized in P.

We note that s ≥ r − O(log r) random bits are required for this “abstract-RP”
problem. For if s random bits are used and the algorithm can output rO(1) r-bit
strings, then the number of possible outputs 2srO(1) must exceed 2r−1. As we can ask
for at most rO(1) bits from the source, this is what gives the Rγ min-entropy lower
bound of [CW].

Definition 2.2. A polynomial-time algorithm simulates RP using a source from
a family of sources S if, on input any constant c > 0 and R = poly(r) bits from
any S ∈ S, it outputs a polynomial number of r-bit strings zi, such that for all W ⊆
{0, 1}r, |W | ≥ 2r−1, P r[(∃i)zi ∈W] ≥ 1− r−c.

If we had a perfect random source, we could make the error exponentially small.
Indeed, with sources like the Chor–Goldreich blockwise δ-source, where we can request
more bits with independence conditions from the first bits, we can always repeat the
algorithm to achieve an exponentially small error. However, with arbitrary sources,
it is not obvious that this can be done. Yet it seems reasonable to insist only on a
polynomially small error, as we want the error to fool polynomial-time machines.

For BPP, we have no “witnesses” to membership, but by an abuse of notation
we use W to denote the set of random strings producing the right answer. As before,
a simulation of BPP will produce strings zi and use these to query whether a ∈ L.
The simulation does not have to take the majority of these answers as its answer, but
since we do so it makes it simpler to define it that way.

Definition 2.3. A polynomial-time algorithm simulates BPP using a source
from a family of sources S if, on input any constant c > 0 and R = poly(r) bits
from any S ∈ S, it outputs a polynomial number of r-bit strings zi, such that for all
W ⊆ {0, 1}r, |W | ≥ 2

32r, P r[majority of zi’s lie in W] ≥ 1− r−c.
Such an algorithm A can also be used to simulate approximation algorithms since,

if a majority of numbers lie in a given range, then their median also lies in it. Thus
by taking medians instead of majorities, a good approximation can be obtained with
probability at least 1− r−c.

Our BPP simulations are actually extractor constructions. As in [NZ], an extrac-
tor construction yields a BPP simulation; the idea is to run the extractor using all
possible 2t strings y, and then produce an appropriate output.

Lemma 2.4. If there is a polynomial-time extractor for S with parameters ε =
n−Ω(1), m = nΩ(1), and t, then there is a simulation of BPP using any source S from
S and running in time 2tnO(1).

Remark. In fact, as observed in [Zu2], for δ-sources we need only ε ≤ 1/3, say, to
achieve even an exponentially small error for δ′ > δ.

1440 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

In order to make our statements cleaner and boost the size of the output from
Ω(m) to m for reasonable m, we use the following lemma, which is a corollary of a
lemma in [WZ].

Lemma 2.5 (see [WZ]). Suppose m ≤ δn/4 and, for some integer k, ε ≥
2−δn/(5k). If there is an efficient (n,m/k, t, δ/2, ε/(2k))-extractor, then there is an
efficient (n,m, kt, δ, ε)-extractor.

Finally, although we focus on extractors that run in polynomial time, all our
extractors can actually be made to run in NC; see the remark at the end of section 3.

3. The Leftover Hash Lemma using fewer random bits. To understand
the Leftover Hash Lemma intuitively, imagine that we have an element x chosen
uniformly at random from an arbitrary set A ⊆ {0, 1}s with |A| = 2t, t < s. Thus we
have t bits of randomness, but not in a usable form. If we use some additional random
bits, the Leftover Hash Lemma allows us to convert the randomness in x into a more
usable form. These extra bits are used to pick a uniformly random hash function h
mapping s bits to t− 2k bits, where k is a security parameter. Recall that given finite
sets A and B, a family H of functions mapping A to B is a universal family of hash
functions if for any a1 6= a2 ∈ A, and any b1, b2 ∈ B, Pr[h(a1) = b1 and h(a2) = b2] =
1/|B|2, where the probability is over h chosen uniformly at random from H. The
Leftover Hash Lemma guarantees that the ordered pair (h, h(x)) is almost random.

Leftover hash lemma (see [ILL]). Let A ⊆ {0, 1}s, |A| ≥ 2t. Let k > 0, and let
H be a universal family of functions mapping {0, 1}s to {0, 1}t−2k. Then the distri-
bution of (h, h(x)) is quasi-random within 2−k (on the set H × {0, 1}t−2k) if (h, x) is
chosen uniformly at random from H ×A.

One drawback of this lemma is that to pick a universal hash function mapping
s bits to t − 2k bits, one needs at least s bits. One way around this is to use the
extractor of [NZ]; however, that is only useful if t/s is large. Here we show how to
use only O(t+ log s) bits and achieve a good result. We first recall the following.

Definition 3.1 (see [NN]). A “d-wise ρ-biased” sample space S of n-bit vectors

has the property that if ~X = (X1, . . . , Xn) is sampled uniformly at random from S,
then for all I ⊆ {1, 2, . . . , n}, |I| ≤ d, for all b1, b2, . . . , b|I| ∈ {0, 1},∣∣∣∣∣Pr ~X∈S

[∧
i∈I

Xi = bi

]
− 2−|I|

∣∣∣∣∣ ≤ ρ.(1)

Simplifying the construction in [NN], d-wise ρ-biased spaces of cardinality
O((d log n/ρ)2) were constructed explicitly in [AG+]. In addition, given the random

bits to sample from S, any bit of ~X can be computed in poly(d, log n, log(ρ−1)) time.
Lemma 3.2. Let A ⊆ {0, 1}s, |A| ≥ 2t, k > 0, and ε ≥ 21−k. There is an explicit

construction of a family F of functions mapping s bits to t − 2k bits, such that the
distribution of (f, f(x)) is quasi-random within ε (on the set F ×{0, 1}t−2k), where f
is chosen uniformly at random from F, and x uniformly from A. A random element
from F can be specified using 4(t−k)+O(log s) random bits; given such a specification
of any g ∈ F using 4(t − k) + O(log s) bits and given any y ∈ {0, 1}s, g(y) can be
computed in time poly(s, t− k).

Proof. Any g : {0, 1}s → {0, 1}t−2k can be represented in the natural way by a
vector in {0, 1}`, where ` = (t− 2k)2s. Now let F be a 2(t− 2k)-wise ρ-biased sample
space for `-length bit vectors, where ρ = (ε222k − 1)2−2t+2k; ρ is nonnegative since
ε ≥ 21−k. (That is, F is a family of functions, where each element of F is a function
that maps {0, 1}s to {0, 1}t−2k.) F can be sampled using 2(log(t − 2k) + log log ` +

COMPUTING WITH VERY WEAK RANDOM SOURCES 1441

log ρ−1) + O(1) ≤ 4(t − k) + O(log s) random bits. The lemma’s claim about g(y)
being efficiently computable follows from the above mentioned fact that individual
bits of any string in the support of a small-bias space can be computed efficiently.

We now show that the distribution of (f, f(x)) is quasi-random. We follow the
proof of the Leftover Hash Lemma due to Rackoff (see [IZ]).

Definition 3.3. The collision probability cp(D) of a distribution D on a set S
is Pr[y1 = y2], where y1 and y2 are chosen independently from S according to D.

For the distribution D of (f, f(x)),

cp(D) = Prx1,x2∈A,f1,f2∈F [f1 = f2, f1(x1) = f2(x2)],

where all the random choices are uniform and independent. We show that the collision
probability using F is almost the same as it would be using a universal family of hash
functions. Now,

cp(D) =
1

|F |Prx1,x2∈A,f∈F [f(x1) = f(x2)]

≤ 1

|F | (Prx1,x2∈A[x1 = x2] + Prx1,x2∈A,f∈F [f(x1) = f(x2)|x1 6= x2])

= 2−t/|F |+ 1

|F |Prx1,x2∈A,f∈F [f(x1) = f(x2)|x1 6= x2]

≤ 2−t/|F |+ 1

|F | max
a1 6=a2

Prf∈F [f(a1) = f(a2)].(2)

For any a1, a2 ∈ A, a1 6= a2,

1

|F |Prf∈F [f(a1) = f(a2)] =
1

|F |
∑
b∈{0,1}t−2kPrf∈F [f(a1) = f(a2) = b]

≤ 1

|F |
∑
b∈{0,1}t−2k(2−2(t−2k) + ρ) (by (1))

=
1

|F |2t−2k
(1 + ε2 − 2−2k).

Thus, from (2), cp(D) ≤ (1 + ε2)/(|F |2t−2k). Now, the rest of Rackoff’s proof shows
that if U is the uniform distribution on F ×{0, 1}t−2k, then cp(D) ≤ (1 + ε2)cp(U) =
(1 + ε2)/(|F |2t−2k) implies the ε-quasi-randomness of D. This concludes the
proof.

Corollary 3.4. The conclusion to Lemma 3.2 holds if x is chosen from any
δ-source, δ = t/s.

Proof. The only place where the distribution of x is needed in the above proof is
in showing that its collision probability is 2−t; note that 2−t is an upper bound on
the collision probability if x is chosen from a δ-source with δ = t/s. This concludes
the proof.

Remark. In order to use Lemma 3.2, we need an irreducible polynomial over GF [2]
for the d-wise ρ-biased spaces. For this we use an algebraic result stating that if an
integer m is of the form 2 · 3t, then f(z) = zm + zm/2 + 1 is an explicit irreducible
polynomial over GF [2] of degree m (see exercise 3.96, page 146 of [LN]). This allows
our extractors to run in NC.

1442 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

4. Simulating BPP using a blockwise δ-source with min-entropy Rγ .
We now show how to simulate BPP using a Chor–Goldreich source with min-entropy
Rγ for any fixed γ > 0; in fact, we build an extractor for Chor–Goldreich sources.
Note that δ-sources are much weaker than these sources: in these sources, we know
that each block has “a lot of randomness,” even conditional on the previous blocks’
values. In a δ-source, an adversary can, for instance, locate a lot of the randomness
in certain positions that are unknown to us. Nevertheless, there are two reasons for
the material of this section: to motivate our main results and the reasons for their
difficulty and to construct an extractor that works with sources of min-entropy Rγ

for any fixed γ > 0. Furthermore, this section will be useful in generalizing a result
of [CW] on oblivious bit-fixing sources; see also section 7.

Note that since we are talking about extractors, we use the more usual symbol n
(rather than R) in this section to denote the number of random bits requested from
the source.

Suppose we are given a blockwise δ-source with m (= n/l) = nΩ(1) blocks and
with the min-entropy δn of the n bits being at least nΩ(1). First note that we may
always increase the block length by grouping successive blocks together. Suppose we
want the output of E to be quasi-random to within n−c. By choosing the block-
length l appropriately, we may assume that the min-entropy of a block, b = δl,
satisfies b ≥ 4(c + 2) logn. We may also assume that b = Θ(logn), since a blockwise
δ-source is trivially a blockwise δ-source, if δ′ < δ. We then choose a family F that
satisfies Lemma 3.2 with parameters k = (c + 2) logn and ε = n−(c+1). Now we use
the following modification of a lemma from the final version of [Zu2] which, using the
Leftover Hash Lemma in the manner of [IZ], essentially strengthened related lemmas
in [Va2] and [CG].

Lemma 4.1. Let F be a function family mapping l bits to b − 2k bits, satisfying
Lemma 3.2 with parameters k = (c + 2) logn and ε = n−(c+1). Let D be a blockwise

δ-source on {0, 1}ml. If ~Y = Y1, . . . , Ym is chosen according to D, and f is chosen
uniformly at random from F, then the distribution of (f, f(Y1), . . . , f(Ym)) is quasi-
random to within mε.

Proof. The proof is by backward induction, as in [NZ]. We proceed by induction
from i = m to i = 0 on the statement that, for any sequence of values y1, . . . , yi,
the distribution of (f, f(Yi+1), . . . , f(Ym)) conditioned on Y1 = y1, . . . , Yi = yi is
quasi-random to within (m − i)ε. This is obvious for i = m. Suppose it is true for
i + 1. Fix the conditioning Y1 = y1, . . . , Yi = yi from now on, and let Di+1 denote
the induced distribution on Yi+1. We now use the obvious fact that if a statement is
true for each element of a set, then it is also true for an element chosen randomly
from the set, using any probability distribution. Since, by the induction hypothesis,
for every yi+1, the induced distribution on (f, f(Yi+2), . . . , f(Ym)) is quasi-random
to within (m − i − 1)ε, we have that the distribution (Yi+1, f, f(Yi+2), . . . , f(Ym)) is
within (m− i− 1)ε of the distribution Di+1×Ui+1, where Ui+1 is the uniform distri-
bution on F × {0, 1}(m−i−1)(b−2k). Thus, the distribution of (f, f(Yi+1), . . . , f(Ym))
is within (m − i − 1)ε of the distribution of (f, f(Yi+1), zi+2, . . . , zm) obtained by
choosing Yi+1 according to Di+1, and (f, zi+2, . . . , zm) independently and uniformly
at random from F ×{0, 1}(m−i−1)(b−2k) (since ‖g(D1)− g(D2)‖ ≤ ‖D1−D2‖ for any
two distributions D1 and D2 and any function g). Using Corollary 3.4, the distribu-
tion of (f, f(Yi+1), zi+2, . . . , zm) is quasi-random to within ε, and the lemma follows
from the triangle inequality for variation distance.

Sampling from F requires O(log l+b+log(1/ε)) = O(log n) random bits, and thus

COMPUTING WITH VERY WEAK RANDOM SOURCES 1443

we have a good extractor for these sources. Using Lemma 2.4, we get the following.
Theorem 4.2. For any fixed γ > 0, BPP can be simulated using a blockwise

δ-source as long as there are at least nγ blocks and if the min-entropy of the n bits is
at least nγ (i.e., δn ≥ nγ). In fact, an explicit extractor E : {0, 1}n×{0, 1}t → {0, 1}s
that runs in NC can be built for this family of sources, with t = O(log n), s = nΩ(1),
and with the quasi-randomness of the output being n−Ω(1).

5. Simulating BPP using a δ-source with min-entropy R1/2+ε. We first
present some intuition and preliminary ideas behind our extractor construction.

5.1. Intuition and preliminaries. To construct an extractor for a given δ-
source D outputting n-bit strings, we follow the same high-level approach as does
[NZ]; the crucial differences arise from the fact that the work of [NZ] focused on
constant δ, while we need to work with a δ that goes to zero (fairly quickly) with n.
We then introduce additional new ideas to bootstrap this construction in subsection
5.5.

The high-level idea is to first convert the output of D into a blockwise δ′-source
with suitable block-lengths l1, l2, . . . , ls; this construction is called a blockwise con-
verter and is described in subsection 5.3. (δ′ = δ1−o(1).) This construction is a
slight modification of that in [NZ] and hence, many of the details are shown in the
Appendix (one important difference is that the li values are chosen differently). We
output O(log n) blocks, expending O(log n) truly random bits for each block; hence,
we use O(log2 n) random bits here in total. Once this is done, we need to extract
quasi-random bits from such a blockwise δ′-source, and such a construction, called a
blockwise extractor, is presented in subsection 5.2. Here is where we need to replace
the application of the Leftover Hash Lemma by our improved version; only O(log n)
truly random bits are needed for this task.

The reason why the above approach works only for min-entropy n1/2+Ω(1) is as
follows. In constructing the blockwise converter, our approach can ensure an output
that is (close to) a blockwise δ′-source only if, in particular,

∑
i li = O(δn). Given

O(δn) bits from a δ-source, one can intuitively expect these to have at most O(δ2n)
bits of randomness; thus, since we wish to extract nΩ(1) (quasi-)random bits, we need
δ2n = nΩ(1), i.e., δ = n−1/2+Ω(1), which is equivalent to min-entropy n1/2+Ω(1).

The above outline suggests an extractor for min-entropy n1/2+Ω(1), usingO(log2 n)
bits. How can this be improved (to O(log n) ideally)? We present a partial solution
as a bootstrapping approach in subsection 5.5, which has a lesser randomness require-
ment for relatively “large” δ, e.g., for δ = n−1/3+Ω(1). An interesting open question is
whether we can efficiently construct an appropriate blockwise converter that outputs
a total of O(n) bits using only O(log n) truly random bits; this will suffice to give a
near-optimal extractor.

We now proceed formally. We use our new Leftover Hash Lemma to modify the
extractor developed in [NZ]. Part of the extractor there used the original Leftover
Hash Lemma to show how to extract quasi-random bits from a certain kind of block-
wise δ-source B. However, since the original Leftover Hash Lemma needs a number
of random bits proportional to the logarithm of the size of the domain of the hash
functions, the block-sizes in B had to decrease at the rate of (1 + δ/4), thus requir-
ing O((log n)/δ) blocks overall. However, our new construction allows the block-sizes
of B to decrease at a constant rate independent of δ, thus requiring only O(log n)
blocks. This is because now, if we need to hash from a δ-source on l bits to δl/2 bits,
Lemma 3.2 and Corollary 3.4 guarantee a hash function family having error 21−δl/4

which can be described using 3δl + O(log l) bits (this is at most 4δl bits, provided

1444 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

1/δ ≤ cl/ log l for a sufficiently small constant c). To see this, just plug in s = l,
t = δl, k = δl/4, and ε = 21−k in Corollary 3.4.

As in [NZ], our extractor first converts a δ-source into a blockwise δ-source with
blocks of varying lengths and then extracts good bits from the blockwise δ-source.
Unlike [NZ], we define these two intermediate constructions explicitly here.

Definition 5.1. (i) E : {0, 1}n × {0, 1}t → {0, 1}l1+···+ls is an (n, (l1, . . . , ls),
t, δ, δ′, ε) blockwise converter if, for x chosen from a δ-source on {0, 1}n and y inde-
pendently and uniformly at random from {0, 1}t, E(x, y) ◦ y is within ε of a distribu-
tion D × U, where D is some blockwise δ′-source with block-lengths l1, . . . , ls and U
is the uniform distribution on {0, 1}t. (ii) E : {0, 1}l1+···+ls × {0, 1}t → {0, 1}m is
an ((l1, . . . , ls),m, t, δ, ε) blockwise extractor if, for x chosen from a blockwise δ-source
with block-lengths l1, . . . , ls and y independently and uniformly at random from {0, 1}t,
E(x, y) ◦ y is ε-quasi-random on {0, 1}m.

Lemma 5.2, implicit in [NZ], shows how to combine a blockwise converter and a
blockwise extractor.

Lemma 5.2. Suppose we are given an efficient (n, (l1, . . . , ls), t1, δ, δ
′, ε1) blockwise

converter and an efficient ((l1, . . . , ls),m, t2, δ
′, ε2) blockwise extractor. Then we can

construct an efficient (n,m, t1 + t2, δ, ε1 + ε2)-extractor.
Proof. For the proof, just run the converter on the output of the δ-source and

then run the extractor on the output of the converter.
Given Lemma 5.2, we now focus on constructing an appropriate blockwise con-

verter and a blockwise extractor; these are described in subsections 5.2 and 5.3,
respectively.

5.2. A blockwise extractor. Lemma 4.1 gives a blockwise extractor. However,
our blockwise converter will be useful only if the number of blocks s in the blockwise
δ-source is small; Lemma 4.1 results in s = nΘ(1), which is too high for our purposes.
We therefore use the following blockwise extractor C, which is similar to the one in
[NZ] except that we use our improved version of the Leftover Hash Lemma.

Function C. The function C has four parameters: r, the number of bits used to
describe a member of the hash family; s, the number of blocks; ls, the smallest block
size; and δ, the quality of the source. (To avoid details that may be distracting at
this point, we discuss the reasons for the bounds on some of these parameters at the
end of this subsection.) C works only if r bits suffice to hash from ls bits to δls/2
bits to get a distribution that is quasi-random to within 21−r/16, as prescribed by
Corollary 3.4. Thus, as explained in the last paragraph of this subsection,

c log ls ≤ r ≤ 3δls +O(log ls) ≤ 4δls(3)

for a suitably large constant c.
We define rs= r and ri−1/ri=9/8, and then the block lengths li=max(ri/(4δ), ls).

Then Lemma 3.2 ensures for each i a fixed family of hash functions Hi = {h :
{0, 1}li → {0, 1}δli/2} with |Hi| ≤ 2ri , so we assume |Hi| = 2ri .

1. INPUT: x1 ∈ {0, 1}l1 , . . . , xs ∈ {0, 1}ls ; y ∈ {0, 1}r.
2. hs ← y.
3. For i = s down to 1 do hi−1 ← hi ◦ hi(xi).
4. OUTPUT (a vector in {0, 1}r0−r): h0, excluding the bits of hs.

By choosing s large enough, we can ensure that l0 = r0/(4δ). Specifically, suppose
s ≥ log9/8(4δls/r). Then, r0/(4δ) = r(9/8)s/(4δ) ≥ ls and hence, by the definition of
li, r0 = 4δl0.

Lemma 5.3. C is an ((l1, . . . , ls), r0 − r, r, δ, 4 · 2−r/16) blockwise extractor.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1445

Proof. This proof is very similar to a corresponding proof in [NZ]. Let ~X =
X1, . . . , Xl be chosen according to D, a blockwise δ-source on {0, 1}l1+···+ls , and Y
be chosen uniformly from {0, 1}r. Let rs = r and ri−1/ri = 9/8. Then ri ≤ 4δli. We
will prove by induction from i = s down to i = 0 the following claim, which clearly
implies the lemma.

Claim. For any sequence of values x1, . . . , xi, the distribution of hi conditioned
on X1 = x1, . . . , Xi = xi is quasi-random to within εi, where εi =

∑s
j=i+1 21−rj/16.

This claim is clearly true for i = s. Now suppose it is true for i + 1. Fix the
conditioning X1 = x1, . . . , Xi = xi, and let Di+1 denote the induced distribution on
Xi+1. Since, by the induction hypothesis, for every xi+1 the induced distribution on
hi+1 is quasi-random, we have that the distribution (Xi+1, hi+1) is within εi+1 of the
distribution Di+1 × Ui+1, where Ui+1 is the uniform distribution on Hi+1. Thus,
the distribution of hi is within εi+1 of the distribution obtained by choosing xi+1

according to Di+1, and hi+1 independently and uniformly at random in Hi+1. Using
Corollary 3.4 this second distribution is quasi-random to within 21−ri+1/16.

We now explain (3). If the upper bound on r does not hold, then the error cannot
be made small enough: the error will be O(2−δls/4) rather than O(2−r/16). If the lower
bound does not hold, then the domain is too large for our hash family to work. Next,
to understand the equations li = max(ri/(4δ), ls), the reader should first think of
r = 4δls and li−1/li = 9/8. The reason we choose ls larger is to reduce the error ε
of the blockwise converter in Lemma 5.5. Note that Lemma A.1 allows smaller errors
for larger values of l.

5.3. A blockwise converter. Our blockwise converter is a small modification
of that in [NZ]. For our simulations of RP and BPP, it would suffice to change the
k-wise independence in [NZ] to pairwise independence, as was done in [Zu2]. However,
by using an improved analysis of k-wise independence from [BR], we can give a good
extractor for a wider range of parameters. The results of this subsection are essentially
taken from [NZ], with the only changes being this improved analysis of [BR]. Thus,
in order to not obscure the main new ideas, we just present a sketch of the blockwise
converter and leave the necessary details to the Appendix.

In order to define our blockwise converter, we first show how to extract one block
from a δ-source. The way to do this is as follows. Intuitively, a δ-source has many
bits which are somewhat random. We wish to obtain l of these somewhat random
bits. This is not straightforward, as we do not know which of the n bits are somewhat
random. We therefore pick the l bits at random using k-wise independence.

Choosing l out of n elements. We divide the n elements into disjoint sets
A1, . . . , Al of size m = n/l, i.e., Ai = {(i − 1)m + 1, (i − 1)m + 2, . . . , im}. We then
use k log n random bits to choose X1, . . . , Xl k-wise independently, where the range
of Xi is Ai. (In other words, each Xi is uniformly distributed in Ai, and any k of the
Xi’s are mutually independent.) Our (random) output is S = {X1, . . . , Xl}. Methods
to construct such k-wise independent random variables using k log n random bits are
well known; see, e.g., [ABI, Lub].

Extracting one block. The function B. B has two parameters: l, the size of
the output, and k, the amount of independence used.

1. INPUT: x ∈ {0, 1}n; y ∈ {0, 1}t (where t = k log n).
2. Use y to choose a set {i1, . . . , il} ⊂ {1, . . . , n} of size l using k-wise indepen-

dence, as described above.
3. OUTPUT (a vector in {0, 1}l): xi1 , . . . , xil (here xj is the jth bit of x).

The next key lemma, Lemma 5.4, is proved in the Appendix.

1446 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

Lemma 5.4. If D is a δ-source on {0, 1}n and ~X is chosen according to D, then

for all but an ε fraction of y ∈ {0, 1}t the distribution of B(~X, ~y) is within ε from a
δ′-source. Here δ′ = cδ/ log δ−1, k ≤ (δ′l)1−β , and ε = (δ′l)−cβk for some sufficiently
small positive constant c.

5.3.1. The blockwise converter. We can now define our blockwise converter
A. A has parameters (l1, . . . , ls), the lengths of the output blocks, and k, the amount
of independence.

1. INPUT: x ∈ {0, 1}n; y1 ∈ {0, 1}k logn, . . . , ys ∈ {0, 1}k logn.
2. For i = 1, . . . , s do zi ← B(x, yi). (We use B with parameters li and k.)
3. OUTPUT: z1 ◦ · · · ◦ zs.

Using essentially the same proof as in [NZ], we can show the following.

Lemma 5.5. Let lmin = min(l1, . . . , ls), and suppose k ≤ (δ′lmin)1−β and
l1 + · · ·+ ls < δn/4. Then A is an (n, (l1, . . . , ls), sk log n, δ, δ′, ε) blockwise converter.
Here δ′ = cδ/ log δ−1 and ε = 2s(δ′lmin)−c

′βk, where c′ is from Lemma 5.4 and
c = c′/4.

In order to make the error small for the blockwise converter, we set the length of
the smallest block ls = nΘ(1). This gives the following.

Corollary 5.6. Suppose l1 + · · ·+ ls < δn/4 and, for some constant β > 0, all
li ≥ nβ(log ε−1)/δ. Then we can construct an efficient (n, (l1, . . . , ls), O(s log ε−1), δ,
δ′, ε) blockwise converter, where δ′ = cδ/ log δ−1, c from Lemma 5.5.

Proof. Choose k = c′′(log ε−1/ log n) for a large enough constant c′′.

5.4. Choosing parameters and the basic extractor. It may help the reader,
in the following discussion, to keep in mind the sample parameter values δ = n−1/4

and ε = 1/n. The general parameter list for the extractor is given after Corollary 5.8
for reference.

From the discussion about the parameters of function C, all parameter lengths
are determined by the smallest block-length ls. We choose ls ≥ n1/4 and large enough
so that the error from C is small, but small enough to ensure s ≥ log9/8(4δls/r).
Therefore, by the remark after the description of C, r0 = 4δ′l0 and the output m is
large enough. These choices are summarized below. E is our main extractor, obtained
by combining the converter A with the blockwise extractor C and invoking Lemma 5.2
using the following values for the parameters.

Parameters of E for δ = n−1/4, ε = 1/n, and β = 1/4.

1. The parameter n is given.
2. δ′ = cδ/ log δ−1, where c is from Lemma 5.5. Thus δ′ = Θ(n−1/4/ log n).
3. r is chosen to be the smallest integer such that 4 · 2−r/16 ≤ ε/2. So, r =

Θ(logn).
4. ls = nβ/2r/δ′; thus ls = Θ(n3/8 log2 n).
5. Set li = max((r/4δ′)(9/8)s−i, ls).
6. s is chosen to be the largest integer such that

∑s
i=1 li ≤ δn/4; thus s =

Θ(logn).
7. k is chosen so that 2s(δ′ls)−c

′kβ/2 ≤ ε/2, where c′ is from Lemma 5.4. So,
k = Θ(1).

8. The length of the second parameter to E is given by t = s(k log n) + r. Thus
t = Θ(log2 n).

9. The length of the output of E is m = 4δ′l0 − r = Θ(
√
n/ log n).

Thus, by Lemmas 5.2 and 2.5, we deduce the following.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1447

Theorem 5.7. For any β > 0 and any parameters δ = δ(n) and ε = ε(n)

with 1/
√
n ≤ δ ≤ 1/2 and 2−δ

2n1−β ≤ ε ≤ 1/n, there is an efficient (n,m =
δ2n/ log δ−1, t = O((log n) log ε−1), δ, ε)-extractor.

Proof. Using Lemma 5.2 gives output m = Ω(δ2n/ log δ−1); by applying Lemma
2.5 we can improve this to m = δ2n/ log δ−1 while increasing t by a constant
factor.

Then Lemma 2.4 gives Corollary 5.8.
Corollary 5.8. Any BPP algorithm can be simulated in nO(log n) time using a

δ-source, if the min-entropy of the R output bits is at least Rγ for any fixed γ > 1/2.
We now present the parameter list of E in full generality.

Parameters of E. General case.
1. The parameters n, δ, and ε are given. We assume 1/

√
n ≤ δ ≤ 1/2 and for

some constant β > 0, 2−δ
2n1−β ≤ ε ≤ 1/n.

2. δ′ = cδ/ log δ−1, where c is from Lemma 5.5.
3. r is chosen to be the smallest integer such that 4 · 2−r/16 ≤ ε/2. Thus r =

Θ(log ε−1) = O(δ2n1−β).
4. ls = nβ/2r/δ′. We need 4δ′ls ≥ r for function C. Also, ls = O(δn1−β/2 log δ−1).
5. Set li = max((r/4δ′)(9/8)s−i, ls).
6. s is chosen to be the largest integer such that

∑s
i=1 li ≤ δn/4. Since s =

O(log n), sls = o(δn); this and l0 = Θ(δn) imply (r/4δ′)(9/8)s = Θ(δn).
Therefore s ≥ log9/8(4δ′ls/r), as required for the function C.

7. k is chosen so that 2s(δ′ls)−c
′kβ/2 ≤ ε/2, where c′ is from Lemma 5.4. Since

δ′ls ≥ nβ/2, k = Θ((log ε−1)/ log n). Also, since δ′ls ≥ nβ/2 log ε−1, k ≤
(δ′l)1−β/2.

8. The length of the second parameter to E is given by t = s(k log n) + r. Thus
t = O((log n) log ε−1).

9. The length of the output of E is given by m = 4δ′l0 − r. Thus m = Ω(δ2n/
log δ−1).

5.5. Bootstrapping to improve the extractor. We now use extractor E
above recursively to get extractors which need fewer truly random additional bits, if δ
is “much larger” than n−1/2, say, δ = n−1/4. In particular, we show that BPP can be
simulated in polynomial time if δlog∗ RR = RΩ(1), where R is the number of random
bits requested from the δ-source. Thus, taking R ≥ n2, say, as long as δ > n−1/ log∗ n,
we can simulate BPP in polynomial time; this is a significant extension of the work
of [Zu2]. All of this follows from Lemma 5.9, which shows how, by bootstrapping, to
get away with fewer truly random bits than E above needs. Basically, we replace one
of the hash functions in the function C by the t bits output by an extractor. This
way, we replace truly random bits by quasi-random bits that we extract from the
source itself (i.e., we use the source’s own randomness to further extract more bits).
Therefore, instead of repeatedly hashing to build up an nΩ(1)-bit string, we need only
build up a t-bit string and then apply the extractor.

Lemma 5.9. Suppose we are given an efficient (n, (n0, l1, l2, . . . , ls−1), t1, δ, δ
′, ε1)

blockwise converter A, an efficient ((l1, . . . , ls−1),m0, t2, δ
′, ε2) blockwise extractor C,

and an efficient (n0,m, t0 = m0, δ
′, ε3)-extractor E. Then we can construct an efficient

(n,m, t1 + t2, δ, ε1 + ε2 + ε3)-extractor.
Proof. Use A to add t1 bits Y1 and output a blockwise δ-source with blocks

X0, X1, . . . , Xs−1 with lengths n0, l1, . . . , ls−1. Use C to add t2 bits Y2 and convert
X1, . . . , Xs−1 into a nearly uniform string Y0 of length m0 = t0. As in the proof of

1448 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

Lemma 5.3, the distribution of (X0, Y0, Y1, Y2) is within ε1 + ε2 of some distribution
D × U , where D is a δ′-source and U is the uniform distribution on t0 + t1 + t2-
bit strings. Therefore, by the extractor property for E, (E(X0, Y0), Y1, Y2) is quasi-
random to within ε1 + ε2 + ε3.

Ideally, the extractor would add O(log ε−1) truly random bits (for ε ≤ 1/n). The
following corollary shows how an extractor using u log ε−1 truly random bits can be
improved to one using O((log u)(log ε−1)) additional bits.

Corollary 5.10. Suppose n, δ, and ε are such that 1/
√
n ≤ δ ≤ 1/2 and for

some constant β > 0, 2−δ
2n1−β ≤ ε ≤ 1/n. Set n0 = δn/8 and δ′ = cδ/ log δ−1, where

c is from Lemma 5.5. Then, given an efficient (n0,m, t = u log ε−1, δ′, ε′)-extractor
for t ≤ c′δn/ log n for a sufficiently small constant c′, we can construct an efficient
(n,m,O((log u)(log ε−1)), δ, ε+ ε′)-extractor.

Proof. We first modify the blockwise extractor defined in subsection 5.2 so that
its output is of length t = u log ε−1. This requires only s = O(log u) blocks. More
precisely, we define ls and li as in subsection 5.4, but we choose s to ensure that
the output length r0 − r = t. Since r = Θ(log ε−1) and ri−1/ri = 9/8, this gives s =
O(log u), as claimed. We therefore have an ((l1, . . . , ls), t, O(log ε−1), δ′, ε/2) blockwise
extractor.

We then use an (n, (n0, l1, l2, . . . , ls−1), O((log u) log ε−1), δ, δ′, ε/2) blockwise con-
verter defined in subsection 5.3. Note that we have n0 + l1 + l2 + · · · + ls < δn/4 as
needed for Lemma 5.5. This inequality follows from l1 + l2 + · · ·+ ls ≤ s · t ≤ c′ ·O(δn),
and we can choose c′ small enough. Now apply Lemma 5.9.

Let log(k) denote the logarithm iterated k times. We can now show the following.
Theorem 5.11. For any β > 0 and any parameters δ = δ(n), ε = ε(n), and

k = k(n) with n−1/k ≤ δ ≤ 1/2 and 2−δ
kn1−β ≤ ε ≤ 1/n, there is an efficient

(n,m = δkn/(log δ−1)2k−3, t = O((log(k−1) n) log ε−1), δ, ε)-extractor. For the value
k = log∗ n− 1, this gives an efficient (n,m = (δ/ log2 δ−1)log∗ nn, t = O(log ε−1), δ, ε)-

extractor for δ ≥ n−1/2 log∗ n and 2−δ
log∗ nn1−β ≤ ε ≤ 1/n.

Proof. Apply Corollary 5.10 repeatedly k times. Letting m(n, δ) denote the output
length of the current extractor as a function of the input n and the quality δ, we see
that each application of Corollary 5.10 causes the output length to decrease by a factor
of m(n0, δ

′)/m(n, δ), which in our case is Θ(δ/ log2 δ−1). Finally, use Lemma 2.5 to
eliminate the Ω in front of the output m.

Corollary 5.12. For any constant γ > 1 − 1/(k + 1), any BPP algorithm

can be simulated using a δ-source with min-entropy Rγ in time nO(log(k) n). For γ >
1− 1/(2 log∗ n), any BPP algorithm can be simulated using a δ-source in polynomial
time.

Remark. By applying random walks on expanders instead of k-wise independence,
as in Lemma A.3, we can construct extractors for slightly smaller values of ε than

given in Theorem 5.11: ε ≥ 2−δ
2 log∗ nn. However, this is not usually in the range of

interest.

6. Simulating RP using a δ-source with min-entropy Rγ . Recall the RP
simulation problem. We are given some fixed γ > 0, an error parameter κ ∈ [0, 1), any
r, and some hidden W ⊆ {0, 1}r such that |W | ≥ 2r−1; we want to use a distribution
on {0, 1}R with min-entropy Rγ to produce a set of strings which intersects W with
probability at least 1− κ. (Corollary 5.8 solves this for γ > 1/2; we now focus on an
arbitrary fixed γ > 0.) Call this problem RPSIM(R, γ, κ, r). Since r will not change
throughout our discussion (but R will), we let T (R, γ, κ) denote its time complexity.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1449

We shall focus on this problem for R = R0
.
= rc(γ), where the constant c(γ) will be

spelled out later; henceforth, R will denote an arbitrary integer in [rγ , R0].
The difficulty in achieving any simulation with min-entropy less than

√
R is that

the basic extractor outputs a string of length less than δ2R. One factor of δ is lost
by the blockwise extractor, Lemma 5.3, and the other by the blockwise converter,
Lemma 5.5. Our approach is to have the converter output a larger string with the
hope of getting a larger blockwise source. If this works, we are done; if not, we show
that the converter’s output is a higher quality source than the original source. We
can then proceed recursively.

This approach will lead to some problems with the error κ becoming too large.
We handle this by using a remark in section 2.3 of [Zu2]. That remark implies the
following useful inequality, which holds for any R, γ′ < γ, and κ < 1:

T (R, γ, κ2R
γ′−Rγ) ≤ T (R, γ′, κ).(4)

Here, it will be useful to think of κ as “large,” i.e., close to 1. The bound (4) therefore

says that we can get a high-quality solution for γ (i.e., the “error” κ2R
γ′−Rγ is very

low) as long as we can get even a rather low-quality solution (i.e., the error κ is “large”)
for an appropriate γ′ < γ. Concretely, define T1(R, γ)

.
= T (R, γ, 1 − 1/ log2R) and

T0(R, γ)
.
= T (R, γ, 1/ log2R0) (the subscripts 0 and 1 refer to κ close to 0 and 1);

recall that R denotes an arbitrary integer in [rγ , R0]. Then (4) shows, for instance,
that

T0(R, γ) ≤ T1(R, γ′ = γ − 1/ logR0).(5)

Our approach will yield an algorithm upper bounding T1(R, γ′) in terms of T0, thus
leading to a recurrence for T0 via (5). Before that, we present some useful prelimi-
naries.

6.1. Some useful results. Given random variablesX and Y and elements x and
y in the respective supports of X and Y , let PX,Y (y|x) denote Pr[(Y = y)|(X = x)].
Given this, we can define P(Y |X) to be the random variable which, for all x and y
in the respective supports of X and Y , takes on the deterministic value of PX,Y (y|x)
if X = x and Y = y. Thus, for instance,

PrX,Y [P(Y |X) > b] =
∑

x,y: PX,Y (y|x)>b

Pr[(X = x) ∧ (Y = y)].

Lemma 6.1. Given a source outputting an R-bit string X with associated distri-
bution D, partition {1, 2, . . . , R} into any two sets S1 and S2. Let X1 and X2 be the re-
strictions of X to S1 and S2, respectively, and let D1 be the distribution induced on S1.
If PrX [D(X) ≤ 2−`] ≥ p, then for any p′ ∈ [0, p], either PrX1

[D1(X1) ≤ 2−`/2] ≥ p′

or PrX1,X2
[P(X2|X1) ≤ 2−`/2] ≥ p− p′.

Proof. Given any x ∈ {0, 1}R, let xS1
and xS2

denote its restrictions to S1 and
S2, respectively. Now,

PrX [D(X) ≤ 2−`] =
∑

x∈{0,1}R: D(x)≤2−`
D(x).(6)

For any x ∈ {0, 1}R, D(x) = D1(xS1
) · PX1,X2

(xS2
|xS1

); thus, if D(x) ≤ 2−`, then
D1(xS1) ≤ 2−`/2 or PX1,X2(xS2 |xS1) ≤ 2−`/2. Thus,

1450 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN∑
x∈{0,1}R: D(x)≤2−`

D(x) ≤
∑

x∈{0,1}R: D1(xS1
)≤2−`/2

D(x)(7)

+
∑

x∈{0,1}R: PX1,X2
(xS2

|xS1
)≤2−`/2

D(x).

However, by definition, the first and second terms in the right-hand side are, re-
spectively, PrX1 [D1(X1) ≤ 2−`/2] and PrX1,X2 [P(X2|X1) ≤ 2−`/2]. The lemma
now follows from (6) and (7), using the given assumption that PrX [D(X) ≤ 2−`] ≥
p.

Lemma 6.2. Suppose random variables U ∈ {0, 1}r1 and V ∈ {0, 1}r2 are such that
PrU,V [P(V |U) > 2−`] ≤ p. Then, if r2 ≥ `, there is a random variable W ∈ {0, 1}r2
such that (i) for all u and w in the respective supports of U and W, PrU,W [(W =
w)|(U = u)] ≤ 2−`; and (ii) the distribution of U ◦ V is within p of the distribution of
U ◦W.

Proof. Fix any u in the support of U , and let Du denote the distribution of V
conditional on U = u. Let Vu = {v : PU,V (v|u) > 2−`}. Consider a distribution
D′u obtained by altering Du such that for all v ∈ Vu, D′u(v) = 2−`; this is done
by increasing the probabilities Du(v′) for v′ ∈ {0, 1}r2 − Vu in some way. Now the
condition r2 ≥ ` guarantees a way of doing this such that for all v′ ∈ {0, 1}r2 − Vu,
D′u(v′) ≤ 2−`; it is now immediate that we have satisfied requirement (i) of the lemma.

In the above process, the only strings u◦v whose probabilities were decreased were
those such that PU,V (v|u) > 2−`. Now, it is easily seen that for any two distributions
D1 and D2 on the same set S,

‖D1 −D2‖ =
∑

a∈S:D1(a)>D2(a)

(D1(a)−D2(a)) ≤
∑

a∈S:D1(a)>D2(a)

D1(a).

Thus, since PrU,V [P(V |U) > 2−`] ≤ p by assumption, requirement (ii) of the lemma
is proved.

6.2. The algorithm. We now present an algorithm for RPSIM(R, γ′ = γ −
1/ logR0, 1 − 1/ log2R, r); we will bound its running time T1(R, γ′) in terms of T0.
Fix a δ-source outputting R-bit strings with min-entropy Rγ

′
; thus, δ = δ(R, γ′)

is given by δR = Rγ
′

(so δ = Rγ
′−1). We may assume that the number of bits

used to describe a hash function in the function C is r = 4δls, because a larger ls
was necessary only to reduce the error ε of the extractor. Since r = Θ(logR), we
have ls = Θ(R1−γ′/ logR). We also set k = 2 in the function B, i.e., use pairwise
independence; thus, the error parameter ε in the statement of Lemma 5.4 is at most
R−α, where α is a positive constant that depends only on γ. We also let δ′ denote
c(δ/2)/ log(2/δ) = Θ(δ/ logR), where c is from the statement of Lemma 5.4. The
block-lengths li are given by li = ls(9/8)s−i; we defer the presentation of s for now,
but just note here that s will be Θ(logR).

Since k = 2, the function B from subsection 5.3 uses strings of length 2 logR to
index l-element subsets of {1, 2, . . . , R}. For y ∈ {0, 1}2 logR, denote this subset by
S(l, y). Given x ∈ {0, 1}R and any S ⊆ {1, 2, . . . , R}, let xS denote the sequence of bits
of x indexed by S. Thus Bl(x, y) = xS(y,l) (note that we are subscripting the function
B by the output length l). Recall that the output of the blockwise converter A, with
parameters (l1, . . . , ls) and k = 2, is A(x, (y1, . . . , ys)) = Bl1(x, y1) ◦ Bl2(x, y2) ◦ · · · ◦
Bls(x, ys).

The following lemma will be crucial.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1451

Lemma 6.3. Let ~X denote a random string drawn from the given δ-source. For
each i, 1 ≤ i ≤ s, at least one of the following holds:

(P1) There exist y1, y2, . . . , yi ∈ {0, 1}2 logR such that the distribution of Bl1(~X, y1)◦
· · ·◦Bli(~X, yi) is within i(ε+1/(3s)) of the distribution of a blockwise δ′-source
with block-lengths l1, l2, . . . , li; or

(P2) there exist y1, y2, . . . , yi−1 ∈ {0, 1}2 logR such that the distribution of Bl1(~X, y1)

◦· · ·◦Bli−1(~X, yi−1) is within 1−1/(3s) of a distribution on {0, 1}l1+l2+···+li−1

with min-entropy Rγ
′
/2.

Proof. The proof is by induction on i. (P1) is true for the base case i = 1, by
Lemma 5.4. We assume the lemma for i = j ≥ 1 and prove for i = j + 1. If (P2) is
true for i = j, so it is for i = j+ 1; so we assume that (P1) is true for i = j and prove
the lemma for i = j + 1.

Let y∗1 , y
∗
2 , . . . , y

∗
j be the values of y1, y2, . . . , yj that make (P1) true for i = j. Let

S = S(y∗1 , l1) ∪ S(y∗2 , l2) ∪ · · · ∪ S(y∗j , lj), and let D1 denote the distribution placed

by the given δ-source on ~XS . Substituting p = 1, p′ = 1/(3s), ` = Rγ
′
, S1 = S,

and S2 = {1, 2, . . . , n} − S1 in Lemma 6.1, we see that one of two cases holds: (a)

Pr ~X [D1(~XS) ≤ 2−R
γ′/2] ≥ 1/(3s) or (b) Pr ~X [P(~XS2

| ~XS) > 2−R
γ′/2] ≤ 1/(3s).

If case (a) holds, we see by substituting r1 = 0 in Lemma 6.2 that (P2) holds for
i = j + 1, with y∗1 , y

∗
2 , . . . , y

∗
j being the corresponding values of y1, y2, . . . , yj .

So, let us suppose case (b) holds. Then, it is easy to see that Pr ~X [P(~X| ~XS) >

2−R
γ′/2] ≤ 1/(3s). So Lemma 6.2 shows that the distribution of ~XS ◦ ~X is within

1/(3s) of the distribution of ~XS ◦ V , where (i) V ∈ {0, 1}R; and (ii) for all x in the

support of ~XS and for all v ∈ {0, 1}R, Pr[(V = v)|(~XS = x)] ≤ 2−(δ/2)R. Thus,
by Lemma 5.4, there is at least one y∗j+1 ∈ {0, 1}2 logR such that the distribution

of ~XS ◦ ~XS(y∗
j+1

,lj+1) is within ε + 1/(3s) of the distribution of ~XS ◦ V ′, where (i′)

V ′ ∈ {0, 1}lj+1 ; and (ii′) for all x in the support of ~XS and for all v′ ∈ {0, 1}lj+1 ,

Pr[(V ′ = v′)|(~XS = x)] ≤ 2−δ
′lj+1 . This, combined with the inductive assumption

that y∗1 , . . . , y
∗
j are values of y1, . . . , yj that make (P1) true for i = j, shows that (P1)

is also true for i = j + 1, with y1 = y∗1 , y2 = y∗2 , . . . , yj+1 = y∗j+1.
Recall that if (P2) is true for i, it is also true for i+ 1. Thus, substituting i = s

in Lemma 6.3 and noting that the min-entropy does not decrease if we add more bits,
we deduce the following.

Corollary 6.4. There exist y1, y2, . . . , ys ∈ {0, 1}2 logR such that the distribu-

tion of A(~X, (y1, . . . , ys)) = Bl1(~X, y1) ◦ Bl2(~X, y2) ◦ · · · ◦ Bls(~X, ys) is either (a)
within sε + 1/3 = 1/3 + o(1) of the distribution of a blockwise δ′-source with block-
lengths l1, l2, . . . , ls; or (b) within 1−1/(3s) of a distribution on {0, 1}l1+l2+···+ls with
min-entropy Rγ

′
/2.

Recall that we want an algorithm for RPSIM(R, γ′, 1 − 1/ log2R, r). Also recall
that li = ls(9/8)s−i; we now choose s = Θ(logR) as the largest integer such that∑s
i=1 li ≤ R1−γ′/2. We first apply our function C (we deterministically cycle through

all the RO(1) possible choices for the random input seed for C) one by one on ~XS(y1,l1)◦
~XS(y2,l2) ◦· · ·◦ ~XS(ys,ls), for all the RO(logR) possible choices for (y1, y2, . . . , ys). Thus,
if case (a) of Corollary 6.4 were true, at least one of the strings output would be quasi-
random to within 1/3+o(1). Note that all the output strings will have length Ω(δ′l1) =
Ω(Rγ/2/ logR). Thus, as long as this is at least r, the probability of at least one of the
output strings hitting W is at least 1/2−1/3−o(1) = 1/6−o(1), which is much greater
than the required 1− (1− 1/ log2R) = 1/ log2R for RPSIM(R, γ′, 1− 1/ log2R, r).

1452 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

However, since we do not know if case (a) of Corollary 6.4 holds, we also have
to consider the remaining possibility (case (b) of Corollary 6.4) that there exist

y1, y2, . . . , ys ∈{0, 1}2 logR such that the distribution of A(~X, (y1, . . . , ys))=Bl1(~X, y1)

◦ Bl2(~X, y2) ◦ · · · ◦ Bls(~X, ys) is within 1 − 1/(3s) of a distribution on {0, 1}l1+···+ls
with min-entropy Rγ

′
/2. To handle this possibility, we once again exhaustively con-

sider all the RO(logR) possible choices for (y1, y2, . . . , ys); for each such choice we run

RPSIM(R1−γ′/2, γ
′−1/ logR
1−γ′/2 , 1/ log2R0, r) on A(~X, (y1, . . . , ys)). Thus, if case (b) of

Corollary 6.4 holds, then by the definition of RPSIM, we will hit W with probability
at least 1 − (1 − 1/(3s)) − 1/ log2R0 = Θ(1/ logR), which is again greater than the
required 1/ log2R for RPSIM(R, γ′, 1− 1/ log2R, r).

The total time taken is

RO(logR) +RO(logR)T

(
R1−γ′/2,

γ′ − 1/ logR

1− γ′/2 , 1/ log2R0

)
,

= RO(logR)T0

(
R1−γ′/2,

γ′ − 1/ logR

1− γ′/2
)
.

Thus, noting that γ′−1/ logR
1−γ′/2 = (γ − Θ(1/ log r))/(1 − γ/2), the time complexity of

this algorithm can be summarized as

T1(R, γ′) ≤ RO(logR)T0(R1−γ′/2, (γ −Θ(1/ log r))/(1− γ/2)).

Combining with (5), we see that

T0(R, γ) ≤ RO(logR)T0(R1−γ′/2, (γ −Θ(1/ log r))/(1− γ/2)).(8)

The termination condition for this recurrence given by our extractor E is, say,
T0(R, 2/3) = rO(log r). Letting γ0 = γ > 0 be the initial value of γ, the sequence of
values taken by the second argument in (8) is given by γi+1 ≥ (γi−Θ(1/ log r))/(1−
γi/2). Since the Θ(1/ log r) term can be made sufficiently small relative to γ0 by taking
r large enough, it is not hard to prove by induction on i that γi ≥ γ0/(1−γ0/4)i. Hence,
the termination condition γi ≥ 2/3 is achieved after a constant number of iterations,
for any given constant γ0 > 0; thus, T0(R, γ) = rO(log r). It is also not hard to check
that all the output strings have length Ω(Rγ/2/ logR). Thus, there are constants c1(γ)

and c2(γ) such that as long as we choose R0 such that R
γ/2
0 / logR0 ≥ c1(γ)r, i.e., as

long as R0 ≥ c2(γ)(r log r)2/γ , then all the output strings will have length at least r,
which suffices for the above process to work.

Theorem 6.5. Any RP algorithm can be simulated in nO(log n) time using a
δ-source, if the min-entropy of the R output bits is at least Rγ for any fixed γ > 0.

Correspondingly, there is an efficient construction of a (2n, 2Ω(nγ/2/logn), nO(log n), 2n
γ

)-
disperser.

7. Sources with many weakly independent bits. As an application of The-
orem 4.2, we now show how to simulate BPP using a generalization of the oblivious
bit-fixing source of [CW], using Lemma 4.1. Here again, we actually build an extractor
for these sources. We need the following definition.

Definition 7.1. A bit Xi from a distribution on X1X2, . . . , Xn has weak inde-
pendence α if α is the maximum value in [0, 1/2] such that for every setting X1 =
x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn of all the other bits,

α ≤ Pr[Xi = 0|X1 = x1, . . . , Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xn = xn] ≤ 1− α.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1453

Thus, a bit of the oblivious bit-fixing source that is not fixed has weak indepen-
dence 1/2. Note the difference between this definition and the semirandom source of
[SV]: we look at a bit conditioned on all the other bits, not just on the previous
bits. Indeed, it is not necessarily true that every bit of a semirandom source with
parameter α has weak independence close to α.

Theorem 7.2. For a source S outputting n bits (X1, X2, . . . , Xn), let αi denote
the weak independence αi of bit Xi. For any fixed γ > 0, there is an efficient (explicitly
given) extractor E : {0, 1}n×{0, 1}t → {0, 1}m for the class of sources with

∑n
i=1 αi ≥

nγ , where t = O(log n) and m = nΩ(1); the output of the extractor is n−Θ(1)-quasi-
random. The extractor need only know the value γ and not the quantities αi.

Note that this is best possible: if the Xi’s are independent with Pr(Xi = 0) = αi,
then the entropy of (X1, X2, . . . , Xn) is k

.
=
∑n
i=1H(αi), where H(x) = −x log2 x −

(1 − x) log2(1 − x) is the usual binary entropy function, with H(0) = H(1)
.
= 0. If∑n

i=1 αi = β, then k is maximized when each αi equals β/n, by the concavity of H;
so k = O(β log(n/β)). Thus if β = no(1), then the entropy of (X1, X2, . . . , Xn) is also
no(1); hence such an extractor construction would not be possible. Thus we indeed
need

∑n
i=1 αi ≥ nγ , for some fixed γ > 0.

Proof. Although the min-entropy is at least nγ , we do not know as much about
the “location” of the “good bits” as we do for Chor–Goldreich sources. We proceed
by showing how to use O(log n) purely random bits to obtain a source that is a Chor–
Goldreich source with high probability; the theorem then follows from Lemma 4.1.
The idea is to take a pairwise independent permutation of the bits as in [Zu2] and
then divide our string into blocks. We then argue that many weakly independent bits
fall in each block. The reason we need weak independence is because a bit’s weak
independence does not change if the bits are permuted. Thus, we do not need to pick
the blocks independently, as in [NZ], or use more complicated methods, as in [Zu2].

Assume, without loss of generality, that n is prime and that
∑n
i=1 αi = nγ , and

associate the finite field on n elements with {1, 2, . . . , n}. Pick a to be a random
nonzero element of the field and b to be a random field element; the map π is then
π(i) = ai+ b. Since a 6= 0, π is a permutation. Divide the n bits into m = nγ/3 blocks
B1, . . . , Bm of length l = n1−γ/3, according to π; i.e.,

Bi = (Xπ−1((i−1)l+1), Xπ−1((i−1)l+2), . . . , Xπ−1(il)).

It suffices to show that with high probability, each of these blocks gets many weakly
independent bits: this will give a Chor–Goldreich source. Fix i ∈ {1, 2, . . . ,m} ar-
bitrarily. Define the random variable Wi as the weak independence of block Bi, i.e.,∑n
j=1 Yj , where Yj = αj if π(j) ∈ {(i− 1)l+ 1, (i− 1)l+ 2, il}, and 0 otherwise. Note

that E[Yj] = αj l/n = αj/n
γ/3 and hence, E[Wi] =

∑n
j=1E[Yj] = n2γ/3. Now since π

is a pairwise independent permutation, Pr[π(i1) = j1 and π(i2) = j2] = 1/(n(n− 1)),
for any distinct i1 and i2, and any distinct j1 and j2. Thus for any j, k, j 6= k,

E[YjYk] = |Bi||Bi − 1| αjαk
n(n− 1)

≤ αjαk
n2γ/3

= E[Yj]E[Yk].

Thus, the variance V ar[Wi] of Wi is

V ar[Wi] =
∑
j

(E[Y 2
j]− (E[Yj])

2) + 2
∑
j<k

(E[YjYk]− E[Yj]E[Yk])

≤
∑
j

(E[Y 2
j]− (E[Yj])

2) ≤
∑
j

E[Y 2
j] =

∑
j

α2
j

nγ/3
≤ n2γ/3/2.

1454 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

So, using Chebyshev’s inequality, Pr[Wi < n2γ/3/2] ≤ 2n−2γ/3 and hence, Pr[(∃i)Wi

< n2γ/3/2] ≤ 2n−γ/3. Hence, with probability at least 1 − 2n−γ/3, we have the
output of a Chor–Goldreich source with min-entropy nΩ(1). Thus, if we now run
the extractor of Lemma 4.1 on this output, the quasi-randomness of the final output
is at most ε′+2n−γ/3 = n−Θ(1), where ε′ = n−Θ(1) is the amount of quasi-randomness
introduced by the extractor of Lemma 4.1.

8. Applications. Our applications rely heavily on previous work involving these
applications. It is often helpful to use the graph-theoretic, or disperser, view of our
results.

8.1. Time-space tradeoffs. Our first application is to time-space tradeoffs.
Sipser defined the class strong-RP [Sip] as follows.

Definition 8.1. A ∈ strong-RP if there is an RP machine accepting A using
q(n) random bits and achieving an error probability of at most 2−(q(n)−q(n)α) for some
fixed α < 1.

He then showed the following.
Theorem 8.2 (see [Sip]). P equals strong-RP or, for some ε > 0 and for any

time bound t(n) ≥ n, all unary languages in DTIME(t(n)) are accepted infinitely often
in SPACE(t(n)1−ε).

We would like to replace strong-RP in the above theorem by RP. Note the rele-
vance of δ-sources to strong-RP as follows.

Lemma 8.3. Strong-RP equals RP if and only if RP can be simulated using a
δ-source with min-entropy Rα for some α < 1. (For the equivalence, we assume
nonoblivious simulations; i.e., the simulation could be different for different languages.)

Proof of Lemma 8.3. Let L ∈ RP , and suppose M recognizes L using a δ-source
with min-entropy Rα for some α < 1. Then M errs on fewer than 2R

α

R-bit strings.
Setting q(n) = R shows that M is a strong-RP machine recognizing L. Conversely,
suppose strong-RP equals RP, and again let L ∈ RP . Say M accepts L with error
probability at most 2−(q(n)−q(n)α) for some α < 1. Then M errs on at most 2q(n)α

strings. Thus for a fixed β, α < β < 1, M accepts L with error probability at most

2q(n)α−q(n)β if the random bits come from a δ-source with min-entropy Rβ .
As we did not quite show that RP equals strong-RP, substituting our result into

Sipser’s proof gives the following.
Theorem 8.4. RP ⊆ ⋂k DTIME (n log (k)n) or, for any time bound t (n)

≥ n, all unary languages in DTIME (t (n)) are accepted infinitely often in⋂
k SPACE(t(n)1−1/ log(k) n).

8.2. Explicit expanders and related problems. Our second application is
to improving the expanders constructed in [WZ], and hence all the applications given
there. Call an N -vertex undirected graph N δ-expanding if there is an edge connecting
every pair of disjoint subsets of the vertices, of size N δ each. In [WZ], such graphs
with essentially optimal maximum degree N1−δ+o(1) were constructed in polynomial
time. They were used to explicitly construct some useful combinatorial structures, as
mentioned in section 1. All of these results are optimal to within factors of No(1). In

[WZ], these No(1) factors were 2(logN)2/3+o(1)

. Our results improve these No(1) factors

to 2(logN)1/2+o(1)

.
We first borrow the following lemmas from the final version of [WZ].
Lemma 8.5 (see [WZ]). If there is an (n,m, t, δ, 1/4)-extractor computable in

linear space, then there is an N δ-expanding graph on N = 2n nodes with maximum
degree N21+2t−m constructible in Logspace.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1455

The next lemma shows how to modify an extractor so it extracts almost all the
randomness of a δ-source. The intuition is that if x is output from a δ-source and the
output of the extractor E(x, y) has length m = βn, then the string E(x, y)◦x is close
in distribution to a uniform m-bit string concatenated with a (δ − β)-source. Thus,
we can apply an extractor E′ for a (δ−β)-source with an independent t-bit string y′,
and output E(x, y) ◦ E′(x, y′). The following is based on recursing on this idea.

Lemma 8.6 (see [WZ]). Fix positive integers n and k. Suppose that for each
δ ∈ [η, 1] we are given an efficient (n,m(δ), t(δ), δ, ε(δ))-extractor, where t and ε are
nonincreasing functions of δ. Let f(δ) = m(δ)/(δn). Let r = ln(δ/η)/f(η) or, if f
grows at least linearly (i.e., f(cδ) ≥ cf(δ)), let r = 2/f(η). Then we can construct an
efficient (n, (δ − η)n− k, r · t(η), δ, r(ε(η) + 2−k))-extractor.

We can now prove our improved construction.
Theorem 8.7. There is a polynomial-time algorithm that, on input N (in unary)

and δ, where 0 < δ = δ(N) < 1, constructs N δ-expanding graphs on N nodes with

maximum degree N1−δ2(logN)1/2+o(1)

.
Proof. Assume, without loss of generality, that N is a power of 2, with N = 2n. Set

η = (log3 n/n)1/2, ε = 1/n, and k = log n. If δ < 2η, then the complete graph satisfies
the theorem. Otherwise, apply Lemma 8.6 to the extractor given by Theorem 5.7 to
build an

(n,m = (δ − η)n− log n, t = O(log2 n log η−1/η), δ, ε = O(1/ηn))-extractor.

Then Lemma 8.5 gives an N δ-expanding graph with maximum degree N1−δ2O(nη),

i.e., N1−δ2(logN)1/2+o(1)

.

8.3. The hardness of approximating NP-hard problems. Our third ap-
plication is to the hardness of approximating log logω(G), where ω(G) is the clique
number of G. In [Zu2], it was shown that if NP̃ 6= P̃ , then approximating logω(G)
to within any constant factor is not in P̃ (recall that P̃ denotes quasi-polynomial
time). In [Zu3], a randomized reduction was given showing that any iterated log is
hard to approximate; in particular, if NP̃ 6= ZPP̃ , then approximating log logω(G)
to within a constant factor is not in co−RP̃ . This used the fact that with high prob-
ability, certain graphs are dispersers. The disperser implied by our RP construction is
almost as good. This makes the last reduction above deterministic, with a slight loss

of efficiency: if NP̃ 6⊆ DTIME(2(log n)O(log logn)

), then approximating log logω(G) to
within any constant factor is not in P̃ .

Let quasi-poly(x) be shorthand for 2(log x)O(1)

. We now present a lemma, which is
implicit in the results of [Zu2, Zu3] on the hardness of approximation.

Lemma 8.8 (see [Zu2, Zu3]). Suppose there is an explicit construction of an (N =
N(n), nΘ(1), d = d(n),K = K(n))-disperser, for all integers n. Let g1, g2: [1,∞) →
<+ be functions satisfying g1(y) ≤ g2(y) for all y ∈ [1,∞). Suppose that for any
input graph G, a number h(G) ∈ [g1(ω(G)), g2(ω(G))] can be computed in P̃ . Then if
g1(N) > g2(K), we have NP ⊆ DTIME(quasi-poly (N + 2d)).

Theorem 8.9. If NP̃ 6⊆ DTIME(2(log n)O(log logn)

), then approximating log log
ω(G) to within any constant factor is not in P̃ . In other words, if we can compute,
for some fixed t > 1, a number in the range

[2(logω(G))1/t

, 2(logω(G))t]

in P̃ , then NP̃ ⊆ DTIME(2(log n)O(log logn)

).

1456 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

Proof. For any fixed γ ∈ (0, 1], Theorem 6.5 implies that an (N,nΘ(1), d,K)-
disperser is efficiently constructible in the notation of Lemma 8.8, where N =

2(log n)O(1/γ)

, d = (logn)O(log log n), and K = 2(logN)γ . Thus, by taking γ < 1/t2, g1(y)

=2(log y)1/t

, and g2(y) = 2(log y)t , we invoke Lemma 8.8 to conclude that NP and hence

NP̃ , by a simple padding argument, is contained in DTIME(2(log n)O(log logn)

).

9. Later work and open problems. Some of our main contributions—the
improved Leftover Hash Lemma and its use in extractors—have served as building
blocks for several recent results. First, Saks, Srinivasan, and Zhou [SSZ] have im-
proved our RP simulation to poly(n) time. Second, substantial progress on the BPP

simulation question has been made by Ta-Shma [Ta-S], where an RO(log(k) R) algo-
rithm is given for every fixed positive integer k. Third, ideas from this paper have
been extended by Zuckerman to give optimal extractors for constant-rate sources, as
well as randomness-optimal samplers [Zu4]. In an exciting new result, Andreev et al.
have shown how to simulate BPP using δ-sources with min-entropy Rγ for any fixed
γ > 0, in polynomial time [AC+].

An important open question is to efficiently construct, for the class of δ-sources
with min-entropy Rγ for any fixed γ > 0, efficient extractors which use O(logR)
purely random bits to extract as many as (1− o(1))Rγ bits, which are quasi-random
to within R−Θ(1). It is easy to show that such extractors exist nonconstructively. In
[Ta-S] it is shown that polylog(R) bits suffice to do this. Constructing a near-optimal
family of dispersers may be an interesting step in this direction.

See [Nis] for a survey of some of the recent results in this area.

Appendix. Details of the blockwise converter. A property of such k-wise
independent random variables that we will require follows.

Lemma A.1. Let T ⊆ {1, 2, . . . , n}, |T |/n ≥ δ. Suppose k is even, 4 ≤ k ≤
(δl)1−β/8 for some β > 0. If S is chosen at random as described above, then

Pr[|S ∩ T | ≤ δl/2] ≤ 8(δl)−βk/2.

We use the following lemma from [BR].
Lemma A.2. For k ≥ 4 an even integer, let Y1, . . . , Yl be k-wise independent 0-1

random variables, Y =
∑l
i=1 Yi, and µ = E[Y]. Then for α > 0, P r[|Y − µ| ≥ α] ≤

8((kµ+ k2)/α2)k/2.
Proof of Lemma A.1. Define the random variables Yi to be 1 if and only if Xi ∈ T ,

and 0 otherwise. Then, E[Yi] = |T ∩Ai|/m. Thus for Y =
∑l
i=1 Yi, E[Y] =

∑l
i=1 |T ∩

Ai|/m = |T |/m ≥ δl. Setting α = δl/2 in Lemma A.2 concludes the proof.
We remark that for certain parameters of the extractor (e.g., if δ = Ω(1)), it may

be better to use the following lemma from [NZ]. The parameters where this is useful

are mostly uninteresting: ε = 2−δ
2n1−o(1)

.
Lemma A.3 (see [NZ]). There is an absolute constant c > 0 such that the follow-

ing holds: Suppose ck ≤ δ2l. Then we can use O(k/δ+log n) random bits to pick l ran-
dom variables X1, . . . , Xl in {1, 2, . . . , n} such that Pr[≥ δ2l/16 of the Xi’s lie in T] ≥
1− 2−k.

Proof of Lemma 5.4. To prove Lemma 5.4, we proceed as in [NZ]. Fix a δ-source
D. We need the following definitions that are relative to D.

Definition A.4. For ~x ∈ {0, 1}n and 1 ≤ i ≤ n, let pi(~x) = Pr ~X∈D[Xi =
xi|X1 = x1, . . . , Xi−1 = xi−1]. Index i is called good in ~x if pi(~x) < 1/2 or if pi(~x) =
1/2 and xi = 0.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1457

The part of the definition with pi(~x) = 1/2 ensures that exactly one of xi = 0
and xi = 1 is good, for a given prefix.

Definition A.5. ~x is α-good if there are at least αn indices which are good in
x. For S ⊆ {1, 2, . . . , n}, ~x is α-good in S if there are at least α|S| indices in S which

are good in ~x; S is α-informative to within β if Pr ~X∈D[~X is α-good in S] ≥ 1− β.
Denote by Sy the set of l indices chosen using the (k-wise independent) random

bits ~y, as described in section 5.3. A useful result shown in [NZ] is that for any set of
indices {i1, . . . , il} that is δ′-informative to within ε, the distribution of Xi1 , . . . , Xil

induced by choosing ~X according to D is ε-near a δ′-source. This result, together with
Lemma A.6, will clearly prove Lemma 5.4.

Lemma A.6. Pr~Y [SY is δ′-informative to within ε] ≥ 1− ε.
Proof. We first need the following result from [NZ]:

Pr ~X∈D[~X is not α-good] ≤ 2−c1δn,(9)

where α = c1δ/ log δ−1 for some absolute positive constant c1.
For any fixed α-good string ~x, we can apply Lemma A.1 to the set of good indices

and obtain PrY [~x has ≤ αl/2 good indices in SY] ≤ 8(αl)−βk/2. Using (9), it follows
that

Pr ~X,Y [~X has ≤ αl/2 good indices in SY] ≤ 8(αl)−βk/2 + 2−c1δn.

Set δ′ = α/2 and ε =
√

8(αl)−βk/2 + 2−c1δn. We will now use Markov’s inequal-

ity in the following way: Let Ay = Pr ~X∈D[~X is not δ′-good in Sy]. Thus AY is a

random variable determined by Y . From the above analysis, EY [AY] ≤ ε2. There-
fore, by Markov’s inequality, PrY [AY ≥ ε] ≤ ε. In other words, PrY [SY is δ′-
informative to within ε] ≥ 1− ε.

Note that in the sources considered in section 4, we know that each block has
“many” good bits; thus, since we know the block boundaries, working with the good
bits was much easier there. Since we have no idea of the location of good bits in
general δ-sources, we have to work much harder here.

Acknowledgments. We thank Avi Wigderson for helpful discussions, and the
two referees for their detailed and helpful suggestions.

REFERENCES

[ABI] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567–583.

[AC+] A. E. Andreev, A. E. F. Clementi, J. P. D. Rolim, and L. Trevisan, Weak random
sources, hitting sets, and BPP simulations, in Proc. 38th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1997, pp. 264–272.

[AG+] N. Alon, O. Goldreich, J. Håstad, and R. Peralta, Simple constructions of almost
k–wise independent random variables, Random Structures Algorithms, 3 (1992), pp.
289–303.

[BR] M. Bellare and J. Rompel, Randomness-efficient oblivious sampling, in Proc. 35th An-
nual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1994, pp. 276–287.

[BL] M. Ben-Or and N. Linial, Collective coin flipping, in Advances in Computing Research
5: Randomness and Computation, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp.
91–115.

[Blu] M. Blum, Independent unbiased coin flips from a correlated biased source: A finite Markov
chain, Combinatorica, 6 (1986), pp. 97–108.

1458 ARAVIND SRINIVASAN AND DAVID ZUCKERMAN

[CG] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.

[CG+] B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and R. Smolensky, The
bit extraction problem or t-resilient functions, in Proc. 26th Annual IEEE Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, 1985, pp. 396–407.

[CW] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak random
sources, in Proc. 30th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1989, pp. 14–19.

[DFK] M. Dyer, A. Frieze, and R. Kannan, A random polynomial time algorithm for approxi-
mating the volume of a convex body, J. ACM, 38 (1991), pp. 1–17.

[FLW] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Monte Carlo simulations: Hidden
errors from “good” random number generators, Phys. Rev. Lett., 69 (1992), pp. 3382–
3384.

[GW] O. Goldreich and A. Wigderson, Tiny families of functions with random properties:
A quality-size trade-off for hashing, Random Structures Algorithms, 11 (1997), pp.
315–343.

[HRD] T.-S. Hsu, V. Ramachandran, and N. Dean, Parallel implementation of algorithms for
finding connected components in graphs, in Parallel Algorithms, 3rd DIMACS Im-
plementation Challenge, October 17–19, 1994, DIMACS, Ser. Discrete Math. Theor.
Comput. Sci. 30, Sandeep N. Bhatt, ed., AMS, Providence, RI, 1997, pp. 23–41.

[Hsu] T.-S. Hsu, Graph Augmentation and Related Problems: Theory and Practice, Ph.D. thesis,
Department of Computer Sciences, University of Texas at Austin, Austin, TX, October
1993.

[ILL] R. Impagliazzo, L. Levin, and M. Luby, Pseudo-random generation from one-way func-
tions, in Proc. 21st Annual ACM Symposium on Theory of Computing, ACM, New
York, 1989, pp. 12–24.

[IZ] R. Impagliazzo and D. Zuckerman, How to recycle random bits, in Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Los Alamitos, CA, 1989, pp. 248–253.

[KKL] J. Kahn, G. Kalai, and N. Linial, The influence of variables on Boolean functions,
in Proc. 29th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1988, pp. 68–80.

[LLS] D. Lichtenstein, N. Linial, and M. Saks, Some extremal problems arising from discrete
control processes, Combinatorica, 9 (1989), pp. 269–287.

[LN] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983.
[Lub] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.

Comput., 15 (1986), pp. 1036–1053.
[NN] J. Naor and M. Naor, Small–bias probability spaces: Efficient constructions and applica-

tions, SIAM J. Comput., 22 (1993), pp. 838–856.
[Nis] N. Nisan, Extracting randomness: How and why, in Proc. IEEE Conference on Computa-

tional Complexity (formerly Structure in Complexity Theory), IEEE Computer Society
Press, Los Alamitos, CA, 1996, pp. 44–58.

[NZ] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci., 52
(1996), pp. 43–52.

[San] M. Santha, On using deterministic functions in probabilistic algorithms, Inform. Comput.,
74 (1987), pp. 241–249.

[SV] M. Santha and U. Vazirani, Generating quasi-random sequences from slightly random
sources, J. Comput. System Sci., 33 (1986), pp. 75–87.

[Sip] M. Sipser, Expanders, randomness, or time versus space, J. Comput. System Sci., 36
(1988), pp. 379–383.

[SSZ] M. Saks, A. Srinivasan, and S. Zhou, Explicit OR-dispersers with polylogarithmic degree,
J. ACM, 45 (1998), pp. 123–154.

[Ta-S] A. Ta-Shma, On extracting randomness from weak random sources, in Proc. 28th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 276–285.

[Va1] U. Vazirani, Efficiency considerations in using semi-random sources, in Proc. 19th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1987, pp. 160–168.

[Va2] U. Vazirani, Randomness, Adversaries and Computation, Ph.D. thesis, University of Cal-
ifornia, Berkeley, CA, 1986.

[Va3] U. Vazirani, Strong communication complexity or generating quasi-random sequences from
two communicating semi-random sources, Combinatorica, 7 (1987), pp. 375–392.

COMPUTING WITH VERY WEAK RANDOM SOURCES 1459

[VV] U. Vazirani and V. Vazirani, Random polynomial time is equal to slightly-random poly-
nomial time, in Proc. 26th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1985, pp. 417–428. See
also U. Vazirani and V. Vazirani, Random Polynomial Time is Equal to Semi-random
Polynomial Time, Tech. Report 88-959, Department of Computer Science, Cornell
University, Ithaca, NY, 1988.

[WZ] A. Wigderson and D. Zuckerman, Expanders that beat the eigenvalue bound: Explicit
construction and applications, Combinatorica, to appear. Also see Technical Report
CS-TR-95-21, Computer Science Dept., The University of Texas at Austin, Austin,
TX. Preliminary version appears in Proc. 25th Annual ACM Symposium on Theory of
Computing, ACM, New York, 1993, pp. 245–251.

[Zu1] D. Zuckerman, General weak random sources, in Proc. 31st Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA,
1990, pp. 534–543.

[Zu2] D. Zuckerman, Simulating BPP using a general weak random source, Algorithmica, 16
(1996), pp. 367–391.

[Zu3] D. Zuckerman, On unapproximable versions of NP-complete problems, SIAM J. Comput.,
25 (1996), pp. 1293–1304.

[Zu4] D. Zuckerman, Randomness-optimal oblivious sampling, Random Structures Algorithms,
11 (1997), pp. 345–367.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT
OPERATIONS∗

KETAN MULMULEY†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1460–1509

Abstract. We define a natural and realistic model of parallel computation called the PRAM
model without bit operations. It is like the usual PRAM model, the main difference being that no bit
operations are provided. It encompasses virtually all known parallel algorithms for (weighted) com-
binatorial optimization and algebraic problems. In this model we prove that for some large enough
constant b, the mincost-flow problem for graphs with n vertices cannot be solved deterministically
(or with randomization) in

√
n/b (expected) time using 2

√
n/b processors; this is so even if we restrict

every cost and capacity to be an integer (nonnegative if it is a capacity) of bitlength at most an for
some large enough constant a. A similar lower bound is also proved for the max-flow problem. It
follows that these problems cannot be solved in our model deterministically (or with randomization)
in Ω(Nc) (expected) time with 2Ω(Nc) processors, where c is an appropriate positive constant and N
is the total bitlength of the input. Since these problems were known to be P-complete, this provides
concrete support for the belief that P-completeness implies high parallel complexity and for the
P 6= NC conjecture. Our lower bounds also extend to the PRAM model with limited bit operations,
which provides instructions for parity and left or right shift by one bit.

Our proof is based on basic algebraic geometry. So we investigate if the algebrogeometric ap-
proach could also work for the P versus NC problem. Our results support this possibility, and a
close analysis of the limitation of our technique in this context suggests that such a proof of P 6= NC
should somehow use geometric invariant theory in a deep way.

Key words. computational complexity, parallel algorithms, lower bounds

AMS subject classifications. 68Q05, 68Q15, 68Q22, 68Q25

PII. S0097539794282930

1. Overview.

1.1. Introduction. One fundamental question in computer science is whether
P = NC. It is generally believed that the answer is no. We are specifically interested
in weighted combinatorial optimization problems in P , such as mincost-flow and max-
flow, which have the so-called strongly polynomial time algorithms [17]—these are fast,
i.e., polynomial time, sequential algorithms that do not use bit operations and the
number of whose basic arithmetic steps depends polynomially only on the number of
input parameters, not on the input bitlength. For these problems it is natural to ask if
they also have fast parallel algorithms that do not use bit operations. Of course, if we
assume that P 6= NC, then the answer for the mincost-flow and max-flow problems
is no, whether bit operations are available or not, because they are P-complete [15].
In this paper we prove this unconditionally, i.e., without assuming P 6= NC, when
bit operations are not available. This provides concrete support for the belief that
P-completeness implies high parallel complexity, and for the P 6= NC conjecture
itself, by proving its implications in a model that is restricted but realistic.

The model. What do we mean by a parallel algorithm that does not use bit
operations? Formally, we mean an algorithm in a PRAM model without bit operations

∗Received by the editors December 1, 1994; accepted for publication (in revised form) April 15,
1998; published electronically April 27, 1999. Extended abstracts of parts of this paper appeared in
the Proceedings of the ACM Symposium on the Theory of Computing, 1994 and 1997.

http://www.siam.org/journals/sicomp/28-4/28293.html
†Department of Computer Science, University of Chicago, Chicago, IL 60637 and Indian Institute

of Technology, Bombay, India (mulmuley@cs.uchicago.edu, http://www.cs.uchicago.edu/˜mulmuley).
The work in this paper was partially supported by a David and Lucille Packard Foundation fellowship.

1460

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1461

(section 2). It is like the usual PRAM model, the main difference being that it does
not provide instructions for any bit operations such as ∧, ∨, or extract-bit. The model
provides usual arithmetic (+,−,×), comparison (=,≤, <), store, indirect reference,
and branch operations. Each memory location can hold an integer; a rational number
is represented by a pair of integers—its numerator and denominator—both of which
can be accessed by the processors separately. The processors communicate as in the
usual PRAM model. The model does not provide instructions for truncation or integer
division with rounding. The lower bounds are proved in the conservative unit-cost
model in which each operation is assigned unit cost regardless of the bitlengths of the
operands. The PRAM model does not satisfactorily address the issue of interprocessor
communication, so important in practice, but it is ideal for proving lower bounds since
a lower bound in this model automatically applies to any other realistic parallel model
of computation.

Although our model does not provide bit operations, the issue of bitlengths is
not ignored. This means two things. First, the running time of an algorithm (in
the unit-cost model) is allowed to depend on the input bitlength. For example, the
running time of Neff’s parallel algorithm [39] for computing approximate roots of a
polynomial—which lies in our model—depends on the input bitlength and the bit
precision level desired in the output. Second, our lower bounds are expressible in
terms of the total bitlength of the input and are applicable even when this bitlength
is small, i.e., polynomial in the number of input parameters. In other words, we prove
existence of hard instances of small bitlength. Such a result allows connections to
the P versus NC problem by expressing lower bounds in terms of bitlength of the
input. In contrast, the lower bounds in the models such as the algebraic computation
tree model [46, 53] are in terms of the number of input parameters and require their
bitlengths to be extremely large or unbounded to be applicable.

Unlike some earlier models used for proving lower bounds, such as the constant-
depth [12, 19, 52] or monotone circuit model [42, 1, 5], the PRAM model without
bit operations is realistic and natural. It encompasses virtually all known parallel
algorithms for weighted optimization and algebraic problems. These include fast par-
allel algorithms for solving linear systems [11]; minimum-weight-spanning trees [32];
shortest paths [32]; global mincuts in weighted, undirected graphs [30, 31]; blocking
flows and max-flows [13, 45]; approximate computation of roots of polynomials [3, 39];
sorting [32]; and several problems in computational geometry [43].

If in our model we require that the running time of a parallel algorithm depend
only on the number of input parameters but not on their bitlengths, the resulting
arithmetic PRAM model is much weaker but still very interesting; many of the pre-
ceding parallel algorithms [11, 13, 30, 31, 32, 45] actually belong to this model. Our
lower bounds in the PRAM model without bit operations automatically yield ones
in the arithmetic PRAM model too—just ignore the bitlength restrictions in their
statements.

Lower bounds. We show that for some large enough constant b, the mincost-flow
problem for networks with n nodes cannot be solved in the PRAM model without bit
operations deterministically (or with randomization) in

√
n/b (expected) time using

2
√
n/b processors; this is so even if we restrict every cost and capacity to be an integer

(nonnegative if it is a capacity) of bitlength at most an for some large enough constant
a. We prove the same lower bound for the max-flow problem, which holds even if we
restrict every edge-capacity to be a nonnegative integer of bitlength at most an2 for
some large enough constant a. The restriction on the bitlengths implies that these

1462 KETAN MULMULEY

problems cannot be solved in our model deterministically (or with randomization)
in Ω(N c) (expected) time with 2Ω(Nc) processors, where c is an appropriate positive
constant and N is the total bitlength of the input. Our lower bound also applies to
the weighted s-t-mincut problem (for directed or undirected graphs) since it is the
dual of the max-flow problem.

Our lower bounds hold for both the decision and the additive approximation
versions of these problems. In the decision version, one is given an additional integer
parameter w, called threshold, and the problem is to decide if the optimum exceeds
w. (Thus for max-flow, the problem is to decide if the max-flow value exceeds w; for
mincost-flow, the problem is to decide if there exists a flow with value v, specified in
the input, and cost at most w.) In the additive approximation version, the goal is to
compute the optimum within a small, say, less than 1/8, additive error.

Our lower bounds also imply some separation results of complexity theoretic
nature. Let SP be the class of languages in P that have strongly polynomial time
algorithms [17]; for example, the mincost-flow and max-flow problems belong to
SP . (By a language we mean in this paper a set of integer sequences rather than
boolean strings.) Let C[t(N), p(N)] be the class of languages that can be recognized
in the PRAM model without bit operations in t(N) time (in the unit cost model)
using p(N) processors, where N denotes the input bitlength. The randomized class
RC[t(N), p(N)] is defined similarly. Let Ci = C[O(logi(N)),poly(N)] be the analogue
of the class NCi and C = ∪iCi the analogue of the class NC. For detailed definitions
of these complexity classes see section 2.3.

In our model an analogue of the P 6⊆ NC conjecture would be that SP 6⊆ C. This
is not just an analogue but also an implication, i.e., P 6⊆ NC implies that SP 6⊆ C
(Proposition 2.2). Since the mincost-flow and max-flow problems belong to SP , our
lower bounds imply unconditionally that SP 6⊆ C; in fact, they imply something much
stronger:

SP 6⊆ RC[N c, 2N
c

]

for a suitable positive constant c.
We also prove that the hierarchies {Ci} and {RCi}, which are analogues of the

hierarchies {NCi} and {RNCi}, do not collapse. This follows from the following
stronger statement: For some positive constant c,

Ci 6⊆ RCbi/cc+1

for all i.

PRAM with limited bit operations. It appears that the P 6= NC conjecture
is hard essentially due to the issue of bits. There are actually two issues: (1) the
running time of a parallel algorithm can depend on the input bitlength, and (2) the
algorithm can access an arbitrary bit of the operand. The first issue is addressed
satisfactorily in our model, the second issue is not. The higher order bits of an
operand are easy to access in our model—it is the middle and lower order bits that
are hard (though not impossible) to access (section 2.2). We can extend our lower
bound to the PRAM model with limited bit operations, which provides instructions
for parity and left or right shift by one bit; in this model even the lower order bits are
easy to access. This is as far as one can go. If one allows shift by an arbitrary number
of bits, the model would become as powerful as the usual unrestricted PRAM-model,
and that is beyond the scope of our techniques for reasons outlined in section 7. Parity

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1463

is a nonalgebraic operation, or, if it is considered algebraic, it has high exponential
degree. Therefore it is interesting that our techniques can handle it.

P versus NC. Our lower bounds are proved using basic algebraic geometry
(Milnor–Thom result [34], Collins’s decomposition [10], and transversality techniques
[16]) in conjunction with diophontine techniques over integer lattices. We also need
lower bounds for the so-called parametric complexity (section 3) of the mincost-flow
and max-flow problems; these were proved earlier in some other contexts combina-
torially [38, 14, 57, 7] (see also Theorem 3.8). Our proof should be contrasted with
the combinatorial proofs of the lower bounds for, say, constant-depth [12, 19, 52] or
monotone circuits [42, 1, 5, 56], and also with the proofs of the lower bounds in the
algebraic computation tree model [2, 46, 53]—these are for sequential sorting-related
problems, and the issue of bitlengths is not addressed.

In view of the effectiveness of the algebrogeometric approach in a restricted yet
realistic PRAM model of computation in this paper, we investigate its potential in
the unrestricted PRAM model. Toward this end, we formulate a certain conjecture
(section 7), which if true would imply that P 6= NC. Of course, a proof of P 6= NC
may not go via this conjecture; it has been formulated mainly to bring out what is
lacking in our current approach and what more is needed. Roughly, the conjecture says
that for every positive constant a, linear pullbacks of the well-known algebraic group
variety SLm(C), where m satisfies some dimension constraints, cannot have a certain
separation property that depends on the constant a. We then prove the conjecture for
every large enough constant a. Our technique is insufficient for proving the conjecture
in full generality, i.e., for every positive constant a—as expected, since it relies on the
restricted nature of the PRAM model without bit operations. But a careful analysis
of its limitation reveals what a proof of P 6= NC ought to exploit: it should somehow
use properties of varieties admitting good group actions—as investigated in geometric
invariant theory [6, 37]—in a deep way. (In the terminology of [44], these techniques
would not be “natural,” but calling them so would not do justice to their depth and
beauty. The framework of [44] is not meaningful in the PRAM model without bit
operations in this paper just as it is not in the monotone circuit model.1)

1.2. The issue of bitlengths. Our lower bounds for mincost-flow and max-
flow depend on the fact that the edge-capacities can have polynomial—i.e., Ω(n) or
Ω(n2)—bitlengths. This is necessary: if the bitlengths were small, these problems can,
in fact, be solved fast in parallel in our model. For example, consider the max-flow
problem. Suppose all edge-capacities have O(log n) bitlengths. Then in our model
all these bits can be extracted in parallel in logarithmic time using the available
instructions (section 2.2). Once all bits in the input are extracted, the model becomes
as powerful as the usual unrestricted PRAM model. One can thereafter use an RNC-
algorithm for unweighted matching [24, 36] to get a polylogarithmic time algorithm.
More generally, if all edge-capacities have polylog(n) bitlengths, the problem can be
solved in our model in polylog(n) time using 2polylog(n) processors; by a variation
of our lower bound, this is close to optimal. The problem can also be solved in
O(n2 log n) time with O(n) processors without any restriction on the bitlengths by a
parallel algorithm of Shiloach and Vishkin [45] or of Goldberg and Tarjan [13], both

1This is because a lower bound in our model is meaningful only for a language that can be
recognized by an efficient sequential algorithm that does not use bit operations (section 2.2); for a
language in P , this means it should have a strongly polynomial time algorithm. But there is no
natural way to define a random language of this kind as would be required in [44] for its largeness
criterion to make sense.

1464 KETAN MULMULEY

of which lie in our model. Our lower bound should be contrasted with these upper
bounds.

Recall that a strongly polynomial time sequential algorithm [17] is a polynomial
time algorithm with poly(n) basic arithmetic steps, where n is the number of input
parameters not the input bitlength. Similarly, let us define a strongly polylogarithmic
time parallel algorithm to be an algorithm in the PRAM model without bit oper-
ations which runs in polylog(n) time. For example, the algorithms of Karger [30]
and Karger and Motwani [31] for the global mincut problem for weighted undirected
graphs are strongly polylogarithmic. Our lower bound implies that the mincost-flow
and max-flow problems, which have strongly polynomial time sequential algorithms,
have no analogous strongly polylogarithmic time parallel algorithms; but actually it
even rules out in our model algorithms that work in Ω(N c) (expected) time with
2Ω(Nc) processors, where c is a small enough positive constant and N is the total
bitlength of the input. In other words, for each of these problems it rules out a
fast parallel algorithm that has the main characteristic of the ellipsoid algorithm:
namely, even if it does not use any bit operations, its running time can depend
on the input bitlength—this may happen if the algorithm computes the optimum
value or some other numerical quantities with high precision. One example of a
parallel algorithm in our model that has this characteristic is Neff’s algorithm [39] for
computing approximate roots of polynomials.

Our lower bound also rules out in our model a fast parallel algorithm for mincost-
flow or max-flow that computes the optimum value approximately with high precision—
this is what the interior-point algorithm [22] does—and then rounds it up to get
the exact value. This is because our lower bound also applies to the approximate
computation of the optimum value within a small, say, less than 1/8, additive error.
Hence, even though rounding is not available in our model, the final rounding can be
ignored: all that matters is that the answer just before this rounding is within a small
additive error of the exact answer.

Since truncations are not available in our model, they cannot be used to control
the bitsizes as in the ellipsoid or the interior-point algorithm. But our lower bounds
are proved in the unit-cost model, so the algorithm need not worry about intermediate
bitsizes. The ellipsoid and the interior-point algorithms also perform some basic alge-
braic operations such as solving linear systems and computing approximate roots of
polynomials—these can be simulated fast in parallel in our model using the algorithms
in [11] and [3, 39], respectively.

1.3. Statement of the results. Now we shall formally state our main results.
Theorem 1.1. The mincost-flow problem for networks with k nodes cannot be

solved in the PRAM model without bit operations deterministically (or with random-

ization) in
√
k/b (expected) time using 2

√
k/b parallel processors, even assuming that

every cost and capacity is an integer with bitlength at most ak for some large enough
positive constants a and b.

Similarly, the max-flow problem for directed or undirected networks with k nodes
cannot be solved in the PRAM model without bit operations deterministically (or

with randomization) in
√
k/b (expected) time using 2

√
k/b parallel processors, even

assuming that every capacity is a nonnegative integer of bitlength at most ak2 for
some large enough positive constants a and b. The same lower bound also applies to
the dual s-t-mincut problem for weighted graphs.

All lower bounds apply for the decision as well as the additive approximation
versions of the problems. The lower bounds also apply in the PRAM model with

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1465

limited bit operations.
The total bitsize N of a network with k-nodes and O(k) or O(k2)-bit edge-

capacities and costs is polynomial in k. This allows us to express the preceding
lower bounds in terms of the input bitlength N .

Corollary 1.2. The mincost-flow or the max-flow problem cannot be solved in
the PRAM model without bit operations (or with limited bit operations) determinis-
tically (or with randomization) in Ω(N c) (expected) time using 2Ω(Nc) processors for
some positive constant c.

Remark. The theorem implies c = 1/6 for mincost-flow and c = 1/8 for max-flow;
for mincost-flow the value of c can be reduced to 1/4 (see section 3.1.1).

Since the mincost-flow problem belongs to the class SP , we also conclude the
following.

Corollary 1.3.

SP 6⊆ RC[N1/4/b, 2N
1/4/b]

for a large enough constant b.
We shall also prove that the {Ci} and {RCi} hierarchies do not collapse; these are

analogues of the conjectures that the {NCi} and {RNCi} hierarchies do not collapse.
Theorem 1.4. Ci 6⊆ RCi/c for some positive constant c.
Corollary 1.5 follows.
Corollary 1.5. The {Ci} and {RCi} hierarchies do not collapse.
For the P versus NC problem and related results, see section 7.

1.4. Basic idea of the proof. We shall actually prove a general result (The-
orem 3.3), which says that if the so-called parametric complexity of the problem is
high, then it is hard to parallelize in our model. This implies our lower bounds
for the mincost-flow and max-flow problems because their parametric complexity is
exponential, as was shown by Carstensen [7, 8] and Zadeh [57]. Our proof has two
steps. In the first step we show that if the problem with high parametric complexity
had a fast parallel algorithm in our model, then there would exist a certain low-degree
algebraic decomposition of a small subset of the three-dimensional integer lattice. In
the second step—the heart of the proof—we show that such algebraic decomposition
cannot exist. We shall now elaborate this a bit more.

Let n denote the number of integer parameters in the input and N the total
bitlength of the input. Let Z denote the set of integers. Suppose, to the contrary, that
there is a (nonuniform) machine M in the PRAM model without bit operations that
efficiently solves a given combinatorial optimization problem with high parametric
complexity for all inputs with number of parameters n and bitlength at most N . Let
L ⊆ Zn denote the language corresponding to the problem; i.e., L is the set of all
points in Zn for which the answer is yes. For reasons that will become clear soon,
we shall parametrize input to this machine using a constant d number of integer
parameters. The parameterization is given by an integral linear map I : Zd → Zn.
Thus any integer point z ∈ Zd corresponds to the input I(z) to the machine. For
example, if L is the max-flow language, one can choose a suitable flow network whose
edge-capacities are integral linear forms in two integer parameters z1 and z2, and let
z3 denote the threshold. This specifies a linear map from z = (z1, z2, z3) to the input
I(z) consisting of a flow network and a threshold.

Since the machine works correctly only for inputs of bitlength at most N , we shall
only be interested in those z ∈ Zd such that the bitlength of I(z) is at most N—such
z will be called permissible. Let us color a permissible point z ∈ Zd green if I(Z)

1466 KETAN MULMULEY

belongs to the language L; otherwise color it red. The points that are not permissible
are colorless. The first step in our proof (Theorems 4.6 and 5.6) is to show that if M
recognizes L efficiently, then the green and the red points in Zd can be separated by a
set of algebraic (hyper)surfaces of “small” total degree. Here the total degree depends
exponentially on d; so we need d to be as small as possible—in fact, we shall be able
to choose d = 3 in our parameterization. This first step uses the Milnor–Thom result
[34] from algebraic geometry, which has also been used earlier [2, 46] in the algebraic
computation tree model.

When the parametric complexity of the problem is high, one can choose a pa-
rameterization I so that the green and the red points are distributed badly in some
sense. The heart of our proof (Theorem 5.9) lies in showing that when the permis-
sible points are badly colored, the red and the green points cannot be separated by
any set of algebraic surfaces of small degree. The algebraic surfaces that arise in
our proof can be highly singular and they can intersect badly. Therefore, without
disturbing the separation property, first we smooth the surfaces and ensure that their
intersections and “silhouettes” are also smooth using transversality techniques from
differential geometry [16]. Next we refine the partition formed by these surfaces further
by Collins’ decomposition method [10] so that all regions in the resulting partition
are “cylinders” of simple shape. Then using diophontine techniques, especially the
pigeonhole principle, we show that if this partition were to separate the green and the
red points, then some region in it must be too warped. However, since all surfaces
have small degree, this cannot happen, a contradiction.

It turns out that the parametric complexity of a combinatorial optimization
problem is essentially the maximum number of pivot steps the simplex algorithm
would need using the so-called Gass–Saaty pivot rule. It was studied in this and
related contexts in operations research. Klee and Minty [26] had shown in their
classic paper that the simplex algorithm can take exponentially many steps for some
simple pivot rules. The same was shown for the Gass–Saaty pivot rule by Goldfarb
[14] and Murty [38] for general linear programming, by Zadeh [57] for mincost-flow,
and by Carstensen [7, 8] for max-flow. This provides exponential lower bounds for the
parametric complexity of these problems. Lower bounds on their parallel complexity
in our model then follow from our general lower bound (Theorem 3.3) mentioned
above.

1.5. Organization of the paper. In section 2 we describe the PRAM model
without bit operations formally. In section 3 we explain the connection between
parametric and parallel complexity. In section 4 we first prove our general lower
bound in a restricted linear PRAM model without bit operations; this model does
not provide general multiplication. The proof here is elementary and shows the basic
ideas in a very simple setting. Moreover, we even get a stronger lower bound that
is sensitive to processor-time trade-off. In section 5 the proof is extended to the
general PRAM model without bit operations. In section 6 we extend the lower bound
to randomized algorithms and to the PRAM model with limited bit operations. In
section 7 we analyze the limitations of our approach in the context of the general P
versus NC problem and indicate what more may be needed.

2. The model. Here we shall formally define the PRAM model without bit
operations. This model is like the usual PRAM model [23], the essential difference
being that the instruction set of the processors does not contain any bit operations.

Input to the machine is supposed to be a sequence of integers, rather than boolean
numbers. In other words, each integer in the input is used as a specification for itself;

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1467

each rational number is specified in terms of its numerator and denominator; and the
remaining information, such as graph specification, is encoded as an integer sequence
of zeroes and ones. The input is supposed to be divided into two parts: nonnumeric
data and numeric data. For the max-flow problem, the nonnumeric data would
specify the underlying graph and the numeric data would specify the nonnegative
edge-capacities. Let n denote the cardinality of the input, i.e., the total number of its
integer parameters and N its total bitlength.

2.1. PRAM without bit operations. First, we shall define the model in
the nonuniform setting. A nonuniform machine for cardinality n and bitsize N is
supposed to work correctly on all inputs of cardinality n and bitlength at most
N . Our machine will consist of p(n,N) processors ordered in some fashion, where
p(n,N) is some function of n and N . The processors have private memories, and they
communicate through a shared global memory. EREW, CREW, and CRCW modes
of communication are defined as usual. Each memory location can contain an integer
of any size that can arise in the course of execution. Accordingly, instructions can be
assigned costs that depend on the bitlengths of the operands. This is important when
one proves an upper bound on the running time of an algorithm. However, our lower
bounds also work in a stronger sense when one assigns unit cost to each instruction
regardless of the bitsizes of the operands; since the actual cost of any instruction is
Ω(1), such lower bounds hold in any cost model. For the purpose of lower bounds, we
shall assume this unit-cost model in the paper.

In our machine, a rational number is represented as a pair of its denominator
and numerator, which need not be relatively prime, and each of which can be ac-
cessed separately by a processor. Rational operations, including division, can then
be simulated by integer operations. It is important that the machine can access the
numerator and the denominator separately; if we were to treat a rational number as
an abstract data type (i.e., a black box) so that only its value is visible to the outside
world, then the model would be far weaker. Initially, the shared memory will contain
n, the cardinality of the input, in its first location, followed by the nonnumeric data,
followed by the numeric data. The remaining memory locations are initialized to zero.
At the end of execution, the first location in the shared memory should contain the
output value.

In the nonuniform setting, it is best to think that the program of each processor
has been unfolded in the form of a computation tree, quite like in the algebraic
computation tree model [2, 46]. This means the length of a program can depend on n
and N . Each node in this tree has a label and an instruction associated with it. No
instructions for bit manipulations are provided. The instructions are of the following
kinds:

1. w = u◦v, where w denotes a memory location, u and v denote either memory
locations or constants, which in the nonuniform setting can depend on n and
N . Finally, ◦ denotes a binary operation +, −, or ×.

2. go to l, where l is a label of some instruction.
3. if u : 0 go to l, where u denotes a memory location and : denotes either <,
≤, or =.

4. u := v: Store contents of the memory location v into the location u.
5. u :=↑ v (indirect reference): Treat the value in the memory location v as a

pointer. Store into the memory location u the value in the pointed memory
location. We assume that the value in v is a valid pointer in a sense specified
below.

1468 KETAN MULMULEY

6. stop.
We assume that the pointer involved in an indirect reference is not some numeric

argument in the input or a quantity that depends on it. For example, in the max-
flow problem the algorithm should not use an edge-capacity as a pointer—which is a
reasonable condition. To enforce this restriction, one initially puts an invalid-pointer
tag on every numeric argument in the input. During the execution of an arithmetic
instruction, the same tag is also propagated to the result if any operand has that tag.
Trying to use a memory value with invalid-pointer tag results in error.

To allow randomization, we provide an additional instruction: random-branch l.
When it is encountered, the processor flips a fair coin. If the toss is head, it branches
to the instruction labeled l; otherwise, it proceeds to the next instruction. We allow
two-sided errors in randomized algorithms.

In this model the higher order bits of an operand can be easily accessed using
available instructions, but the lower order bits are hard to access (section 2.2): more
precisely, the lth bit from the left can be extracted in O(l+log x) operations, where x is
the value of the operand. Our model does not provide integer division with rounding,
because if it did, an arbitrary bit in the input could be extracted fast and the model
would become as powerful as the usual PRAM model. Nevertheless, small roundings in
which the rounded quotient is guaranteed to have small, say, polylogarithmic, bitsize
can be simulated efficiently using available operations. Since general truncations are
not provided in our model, one cannot use them to control bitsizes as in the ellipsoid
or the interior-point algorithm. This does not matter because our lower bounds
are proved in the unit-cost model, and hence the algorithm need not worry about
intermediate bitsizes.

The model just described was nonuniform. In its uniform version we assume that
there is a Turing machine that, given n and N , generates programs for all p(n,N)
processors using space that is logarithmic in their total size. In the uniform version we
also assume that the size of each processor’s program is constant; in other words, it is
not meant to be unfolded in the form of a computation tree. Since we have provided
instructions for jump and indirect reference, unfolding is not necessary.

2.1.1. Arithmetic PRAM model. The arithmetic PRAM model is obtained
when one restricts the PRAM model without bit operations by requiring the running
time t(n,N) and the number of processors p(n,N) to depend only on n but not
on the bitlength N . In this model the issue of bitlengths is ignored just as in
Yao’s algebraic computation tree model for integer inputs [53]. Nevertheless it is
interesting because many parallel algorithms that have been designed for (weighted)
combinatorial optimization or algebraic problems lie in this model. If one is interested
only in showing that a given problem does not have a strongly polylogarithmic time
parallel algorithm, as defined in section 1.2, then this is the model to be used. All
our lower bounds automatically hold in this weaker model, just ignore the bitsize
restrictions in their statements.

2.1.2. Linear PRAM model. The linear PRAM model results if we restrict
the PRAM model without bit operations by requiring that at least one operand of the
× instruction be a constant. If in addition we require that the running time t(n,N)
and the number of processors p(n,N) depend only on n but not on the bitlength N ,
then the resulting model is called the arithmetic linear PRAM model .

2.1.3. Examples. We now list various versions of our models in the increasing
order of power. For each model we give examples of algorithms which lie in that

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1469

model but not in the weaker model preceding it.

Arithmetic linear PRAM model. Contains parallel algorithms for many
weighted combinatorial optimization problems, such as shortest paths [32], minimum-
weight spanning trees [32], max-flows and blocking flows [45, 13], global mincuts in
undirected weighted graphs [31], and many problems in computational geometry [43].

Arithmetic PRAM model. Also contains parallel algorithms for solving linear
systems over rationals and other problems in linear algebra, due to Csanky [11] and
others (e.g., [21]), and for evaluating arithmetic circuits (straight line codes) over
rationals [55]. In Csanky’s algorithm [11], as it is, the bitsizes of intermediate operands
can become superpolynomial in the bitlength of the input. This is fine since we are
using the unit-cost model. (Of course, one can keep the bitsizes under control, but
this requires integer division with rounding, an operation not available in our model.)

PRAM model without bit operations. Also contains Neff’s algorithm for
computing approximate roots of polynomials [39], the earlier algorithm of Ben-Or et
al. [3] for a restricted class of polynomials, the numerical algorithm of Pan and Reif
[40] for solving linear systems iteratively, and numerical parallel algorithms for several
other problems (see the book [4] for a survey). These algorithms use truncations,
which are not available in our model, to keep intermediate bitsizes under control, but,
again, this is not necessary in our unit-cost model, as we already pointed out.

We do not know a natural example that is in the linear PRAM model but not
in the arithmetic linear PRAM model—in this paper the linear PRAM model is used
more as a medium for showing basic ideas of the proof in an elementary setting.

As one nontrivial example in weighted combinatorial optimization, let us explain
why Karger and Motwani’s NC-algorithm [31] for computing global mincuts in undi-
rected weighted graphs falls in our model; in fact, it lies in the arithmetic PRAM
model. It begins by normalizing weights in the graph so that they have polynomial
magnitudes, i.e., logarithmic bitsizes. This requires rounding a ratio of two integers
to the nearest integer, where the ratio is guaranteed to have logarithmic bitsize. Such
small roundings can be carried out efficiently in our model in logarithmic time using
the available operations. After this, Karger and Motwani give an NC-algorithm to
compute all approximate global mincuts in the resulting normalized graph. But since
all bits of the edge-weights in the normalized graph are now known to our algorithm,
it can simulate any algorithm in the unrestricted PRAM model hereafter. Thus the
subsequent NC-computation on the normalized graph can be simulated in our model
without any problem. Once all approximate global mincuts in the normalized graph
are computed—which, by Karger’s result [30], are polynomial in number—Karger
and Motwani’s algorithm computes the weights of these cuts in the original graph
and selects one with minimum weight. This too poses no problem in our model.

2.1.4. Algebraic operations. Since the parallel algorithms in [3, 39] for com-
puting of approximate roots of polynomials lie in the PRAM model without bit
operations, this operation can be simulated efficiently. Thus all our lower bounds
also hold with appropriate modifications to take into account the cost of simulation,
even if we were to allow this approximate algebraic operation in the model. In the
sequential setting it plays a crucial role in the ellipsoid and interior-point algorithms.

2.1.5. PRAM with limited bit operations. The PRAM with limited bit
operations is obtained by extending the PRAM model without bit operations by
adding to the instruction set operations for left or right shift by one bit and parity, or
equivalently an assignment operation u := bu/2c, or, more generally, an assignment

1470 KETAN MULMULEY

u := bu/pc for any constant p. If we were to allow shift by arbitrary number of bits,
the model would become as strong as the unrestricted PRAM model.

2.2. Bit extraction. In the arithmetic PRAM model the running time of an
algorithm is required to depend only on the cardinality n but not on the total bitlength
N , so extracting arbitrary bit of the operand is, in general, impossible. The situation
here is like in the monotone circuit model [42], where the not operation is impossible,
or like in Yao’s algebraic computation tree model for integer inputs [53], where bit
extraction is impossible.

In the PRAM model without bit operations, bits can be extracted using the
available instructions but this can be hard, although not impossible. More precisely,
all bits of an operand x with bitlength l can be extracted in O(l) time sequentially
as follows. First estimate the bitlength l in O(log l) operations, starting with 2 and
squaring repeatedly until the value of x is exceeded. After this the bits of x can be
extracted one by one, starting at the most significant bit, using available arithmetic
and comparison operations. More generally, all bits can be extracted in O(

√
l) time

using 2
√
l processors as follows. Conceptually divide x into

√
l blocks of equal length,

and extract the blocks one by one, starting with the most significant block. For
example, to extract the most significant block, one can guess in parallel all of its
possible values. Whether a guessed value is the correct one can be verified easily
using the available operations.

However, if l is large, bit extraction is hard. In fact, it is provably so (Propo-
sition 2.1). Of course, a lower bound for bit extraction in our model does not have
much meaning as a lower bound statement; saying that bit extraction is hard in the
PRAM model without bit operations is analogous to saying that the not operation is
impossible in the monotone circuit model or that bit extraction is impossible in the
algebraic computation tree model or in the arithmetic PRAM model. Just as a lower
bound in the monotone circuit model is interesting only if the problem is monotone,
a lower bound in the PRAM model without bit operations is interesting only if the
problem has an efficient sequential algorithm that does not use bit operations: for a
problem in P , this means it should have a strongly polynomial time algorithm [17]
(see also section 2.3 for more discussion of this issue). This is true of all combinatorial
optimization problems we consider. One trivial example of a problem that does
not have a strongly polynomial time algorithm is bit extraction itself (because such
an algorithm for bit extraction must work within O(1) arithmetic and comparison
operations, which is impossible).

Proposition 2.1. The lowest order bit of an n-bit operand cannot be extracted
in the PRAM model without bit operations in

√
n/a time using 2

√
n/a processors for

some large enough constant a.
Proof. Suppose, to the contrary, that there is a parallel machine M in the model

that outputs the value of the lowermost bit in t(n) =
√
n/a time using p(n) = 2t(n) =

2
√
n/a processors; here a is a large enough constant to be chosen later. Given a

nonnegative integer t, call two inputs x and x̄ t-equivalent if the behavior of the
machine M up to time t on the input x is the same as that on the input x̄; more
formally, the branches taken by all processors in M up to time t are the same for both
x and x̄. We say that x and x̄ are equivalent if they are t(n)-equivalent.

Now assume that the input x to the machine is guaranteed to be in a fixed
t-equivalence class σ. This fixes all branches taken by every processor in M up to
time t; then each memory location is a certain fixed polynomial in the input x, and the
degree of this polynomial is at most 2t. Now consider all comparisons, at most p(n) in

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1471

number, that M would execute at time t+1. Since the value of each memory location
just before time t+1 is a predetermined polynomial in x, once we are told that x ∈ σ,
each such comparison amounts to evaluating the sign of some polynomial, which is +,
−, or 0. Let f1(x), . . . fp(x), where p ≤ p(n), be these polynomials. Each fi(x) has
degree at most 2t and hence at most 2t real roots. Consider the set of all roots of all
polynomials fi(x), i ≤ p. They divide the real line into at most 2tp(n) + 1 intervals.
If x1, x2 ∈ σ lie in the same open interval, or if they are equal and coincide with
some root, then the signs of fi(x1) and fi(x2) coincide for each i, and consequently
all processors in M would take the same branching path at time t + 1. This means
that any t-equivalence class σ is split into at most

2 · 2tp(n) + 1 ≤ 2 · 4t(n) + 1

(t + 1)-equivalence classes. By induction, it follows that the total number of equiva-

lence classes, i.e., t(n)-equivalence classes, is at most (2 · 4t(n) + 1)t(n) < 5t(n)2

.
Now consider a fixed equivalence class ζ. Once ζ is fixed, the branches taken by

all processors during the entire execution of M are fixed and the comparison carried
out at every such branch corresponds to evaluating the sign of a fixed polynomial
in x of degree at most 2t(n). Let P (ζ) denote the set of all these polynomials that
correspond to all branches of all processors during the entire execution. The size
of P (ζ) is at most t(n)p(n). Let P be the union of all P (ζ), as ζ ranges over all

equivalence classes, at most 5t(n)2

in number. The size of P is at most t(n)p(n)5t(n)2

,
and each polynomial in P has degree at most 2t(n). Consider the set R of real roots
of all polynomials in P ; its size is at most t(n)p(n)5t(n)2

2t(n). These roots divide the
real line into at most

t(n)p(n)5t(n)2

2t(n) + 1 < 6t(n)2

= 6n/a
2

intervals. If two inputs x1 and x2 lie in the same open interval, then the behavior
of all processors in M on the input x1 is the same as that on x2; thus the output
would be the same, too—in other words, the lowermost bits of x1 and x2 must be the
same. However, we have already seen that the number of intervals is at most 6n/a

2

.
If a is large enough, this number is much less than 2n/2. But then, by the pigeonhole
principle, at least one such open interval would contain two integers x1 and x2 with
the same lowermost bit, a contradiction.

More generally, the same method also proves that extracting the ith bit from the
left is hard for every “large” i. In the PRAM model with limited bit operations, one
can prove similarly that the middle bits are hard to extract.

The essential weakness of a machine in our model lies in accessing bits. But if
the language is boolean, i.e., if all its input parameters are either 0 or 1, then all bits
of the input are available to our machine right at the outset. In this case, our model
is as powerful as the unrestricted PRAM model. Thus proving a lower bound for a
boolean language in our model is equivalent to proving it in the unrestricted PRAM
model. On the other hand, using our model for proving a lower bound for a boolean
language would not make much sense.

2.3. Complexity classes. We shall now formally define, both in the sequential
and the parallel setting, complexity classes of problems having efficient algorithms
that do not use bit operations; however, their running times may or may not depend
on the input bitlengths and we need to distinguish between these two cases carefully.

First consider the sequential setting. If we allow the running time to depend on
the bitlength, then we need to be very careful. One cannot simply define a sequential

1472 KETAN MULMULEY

algorithm that does not use bit operations to be an algorithm in the restricted RAM
model without bit operations. This is because all bits in the input of bitlength N
can be extracted in this model sequentially with O(n) arithmetic and comparison
operations. After this, any algorithm in the unrestricted RAM model can be simulated
in the restricted RAM model without bit operations. This means a polynomial time
algorithm in the restricted RAM model without bit operations is as powerful as a
polynomial time algorithm in the unrestricted RAM model. Thus it is somewhat
tricky to define a fast sequential algorithm whose running time can depend on the
input bitlength but which does not use bit operations in a “real sense.” Intuitively,
such an algorithm should be like the ellipsoid or the interior-point algorithm for linear
programming [22, 25] (the truncations that occur in these algorithms for controlling
bitlengths are not bit operations in a real sense). This can be made precise and formal,
but we shall not do so here.

If we do not allow the running time to depend on the input bitlength, the mat-
ter becomes much simpler. An efficient sequential algorithm that does not use bit
operations and whose running time (in the unit-cost model) also does not depend
on the input bitlength is nothing but a strongly polynomial time algorithm [17]. By
this we mean that (1) the running time of the algorithm in the unit-cost model is
polynomial in the number of integer parameters in the input, and (2) the bitsize
of any intermediate operand that arises in the course of execution is bounded by a
polynomial in the total bitlength of the input.

Let SP ⊆ P (strongly polynomial) be the class of languages in P which can be
recognized by strongly polynomial time algorithms. (Recall that a language in this
paper means a set of integer sequences rather than boolean strings.) The class SP
is quite rich. It contains decision problems associated with solving linear systems,
network flow problems such as min-cost flow and max-flow, minimum-weight match-
ing, combinatorial linear programming [47], ε-approximate knapsack problem [20],
3/2-approximate traveling salesman problem [9], and large-enough-constant-factor
approximation of weighted MAX-SNP problems [41].

Next, let us turn to the parallel setting. Here an analogue of the class SP is the
class SNC (strong-NC). It is the class of problems that have strongly polylogarithmic
time algorithms, i.e., the algorithms in the PRAM model without bit operations that
work in polylog(n) time using poly(n) processors, where n denotes the number of
integer parameters in the input. Since we are following the unit-cost model, we are
not requiring the bitlengths of intermediate operands to remain polynomial in the
input bitlength. Therefore strictly speaking SNC need not be a subclass of NC;
whether this is indeed so is open. The class SNC is also quite rich. Some problems
in this class are solving linear systems over rationals [11], minimum-weight-spanning
trees [32], shortest paths [32], global mincuts in undirected graphs [31], and several
problems in computational geometry such as constructing convex hulls [43].

Now let us allow the running time of a parallel algorithm to depend on the input
bitlength; however, it should not use any bit operations. Formally, let C be the
class of problems that can be solved in the PRAM model without bit operations
in polylog(N) time using poly(N) processors, where N denotes the input bitlength.
Again, there is no restriction on the bitlengths of intermediate operands, so strictly
speaking C need not be a subclass of NC or even P ; the formal inclusion question
remains open. An important problem that is in the class C but not in SNC is that of
computing approximate roots of real polynomials up to a specified bit-precision level
[3, 39]. Neff’s algorithm [39] uses truncations, which are not available in our model, to

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1473

keep bitsizes of intermediate operands under control, but they can be ignored. Then
bitsizes of intermediate operands can become superpolynomial, which is fine since we
are following the unit-cost model. This also explains why we did not impose any
restriction on the bitsizes of intermediate operands.

More generally, let C[t(n,N), p(n,N)] be the class of languages that can be rec-
ognized in the PRAM model without bit operations in t(n,N) time in the unit-cost
model using p(n,N) processors, where n is the number of parameters in the input
and N is the total bitlength of the input. Let Ci = C[O(logi(N)),poly(N)] be the
analogue of the classNCi. One can define the randomized classRC, or more generally,
RC[t(n,N), p(n,N)] similarly. The class RC is the analogue of the class RNC.

In our model, an analogue of the P 6⊆ NC conjecture would be that SP 6⊆ SNC
or, more strongly, that SP 6⊆ C. This is not just an analogue but also an implication.

Proposition 2.2. P 6⊆ NC implies SP 6⊆ C.
Proof. Suppose P 6⊆ NC. Consider the restricted linear programming problem in

which all integer parameters in the input have O(1) bitsizes. It belongs to SP [47].
It is also known to be P-complete, so it cannot belong to NC. If it belonged to C it
would also belong to NC, because when all integer parameters in the input have O(1)
bitsizes the PRAM model without bit operations is as powerful as the unrestricted
PRAM model (section 2.2).

Our results in this paper imply, unconditionally, that SP 6⊆ C and much more
(Corollary 1.3). They also imply that the hierarchies {Ci} and {RCi} do not collapse.

3. Parametric versus parallel complexity. All our lower bounds follow from
a general lower bound (Theorem 3.3) on the parallel complexity of a general op-
timization problem in our model in terms of its parametric complexity. In this
section we explore the relationship between parametric and parallel complexity in
detail. In section 3.1 we state our general lower bound and derive from it our main
results stated in section 1.3. In section 3.2 we give a simpler proof of Carstensen’s
exponential lower bound [8] for the parametric complexity of the max-flow and the
dual weighted s-t-mincut problem. In section 3.3 we prove a polynomial upper bound
on the parametric complexity of the weighted global mincut problem for undirected
graphs. This should explain why the weighted s-t-mincut problem for undirected
graphs has no fast parallel algorithm in our model, whereas the global mincut problem
has, e.g., the one in [30] or [31].

3.1. A general lower bound. First, let us define parametric complexity. For
the max-flow problem it is defined as follows. Consider a graph with n vertices
whose edge-capacities are linear functions of a parameter λ with rational coefficients
of bitsize at most β(n) for some function β(n). We also require that all capacities
remain nonnegative as λ varies over reals in some interval [p, q] of definition. We
use real capacities only for the sake of defining parametric complexity; the actual
capacities in the input will always be nonnegative integers. Let f(λ) be the max-flow
value for a particular λ ∈ [p, q]. The function f(λ) is piecewise linear. Let ρ(f) be the
number of breakpoints, i.e., slope changes in the function graph of f in the interval
[p, q]. Parametric complexity φ(n, β(n)) of the max-flow problem for cardinality n
and bitsize β(n) is defined to be the maximum possible value of ρ(f) over all valid
edge-capacity parameterizations, as above, of graphs with n vertices.

One can similarly define parametric complexity of an arbitrary homogeneous
optimization problem. Consider a general combinatorial optimization problem, where
the input consists of two parts: nonnumeric data and numeric data. Given an
input I, the problem is to compute the optimum value of some quantity; we shall

1474 KETAN MULMULEY

denote this optimum value for I by F (I). For example, in the max-flow problem the
nonnumeric data would specify the network and the numeric data would specify the
edge-capacities. Given an input I, F (I) would be the max-flow value. In the decision
version of the optimization problem one is given an additional integer parameter w,
called threshold , and the problem is to decide if w ≤ F (I).

We will mainly be interested in the integral version of the optimization problem,
wherein numeric parameters are integers. However, for the sake of defining parametric
complexity we assume that the quantity F (I) is well defined even when the numeric
parameters are reals, possibly with some constraints; for example, we can require them
to be nonnegative. We also assume that the problem is homogeneous; this means if we
multiply all numeric parameters in I by a positive number α, then the optimum value
F (I) also gets multiplied by α. For example, the max-flow problem is well defined
even when all capacities are nonnegative reals, and it is homogeneous, too.

Definition 3.1. By a linear parameterization for cardinality n, we mean a map
P that associates with each real number λ in some interval [p, q] an input I(λ) such
that the following hold:

1. The nonnumeric part of the input I(λ) remains the same for every λ ∈ [p, q].
2. The number of numeric parameters in I(λ) is n for every λ ∈ [p, q].
3. Each numeric parameter is a linear function of λ with rational coefficients

and it satisfies any required constraints in the problem (such as nonnegativity)
for every λ ∈ [p, q].

4. The function graph of F (λ) = F (I(λ)) as λ varies over [p, q] is piecewise lin-
ear and convex; we shall denote it by G(P). (The function graph is convex for
a maximization problem. For a minimization problem it would be concave.)

The interval [p, q] is called the interval of definition. The bitsize of P is defined
to be the maximum among the bitsizes of the coordinates of the vertices of G(P) and
of the coefficients of the linear functions in P specifying numeric parameters. These
coordinates and coefficients are in general rational. We define the bitsize of a rational
to be the sum of the bitsizes of its denominator and numerator. We shall denote the
bitsize of P by β(P). The number of bounded linear segments in G(P) is called the
complexity of P; it will be denoted by ρ(P).

For example, in the max-flow problem, we can fix a graph with n edges and let
the capacities of its edges be linear functions of λ so that as λ varies over some interval
[p, q] all these capacities remain nonnegative; this specifies a linear parameterization.
It is well known that the optimum function of such parameterization is piecewise
linear and convex.

Definition 3.2. Fix a homogeneous optimization problem. Its parametric com-
plexity for cardinality n is defined to the maximum of ρ(P) as P ranges over all linear
parameterizations for cardinality n; we denote it by φ(n).

More generally, parametric complexity for cardinality n and bitsize β(n) is defined
to the maximum of ρ(P) as P ranges over all linear parameterizations for cardinality
n with bitsize β(n); we denote it by φ(n, β(n)).

So far, n has denoted the number of numeric parameters in the input. We shall
abuse the notation on some occasions and let n stand for something different but
similar. For example, in the max-flow problem we shall let n denote the number of
nodes in the flow network. The precise meaning of n in the given context should be
clear.

We shall show that if the parametric complexity of a problem is high, then it is
hard to parallelize in our model.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1475

Theorem 3.3. Fix a homogeneous optimization problem. Let φ(n, β(n)) be its
parametric complexity for input cardinality n and bitsize β(n). Then there exists
a large enough constant b such that the decision version of the problem cannot be
solved in the PRAM model without bit operations in

√
log[φ(n, β(n))]/b time using

2
√

log[φ(n,β(n))]/b processors; this is so even if we restrict every numeric parameter in
the input to be an integer with bitlength at most aβ(n) for a large enough constant a.

We shall prove this result in sections 4 and 5. It will be extended to the random-
ized setting in section 6.

Corollary 3.4. The lower bound in Theorem 3.3 also applies to the additive
approximation version of the problem in which the goal is to compute the optimum
within a small, say, less than 1/8, additive error. (The constant 1/8 here is replaceable
by any ε < 1/2.)

Proof. Suppose there is a fast parallel algorithm in our model for the additive
approximation version. This will yield a fast parallel algorithm for the decision version
as follows. First we compute the approximate optimum v with additive error less than,
say, 1/8. Since we are assuming that the input is integral, we know that the exact
optimum is integral. Thus we compare v with the integral threshold w in the input;
w is less than or equal to the exact optimum iff w ≤ v + 1/8.

Theorem 3.5.
1. For combinatorial linear programming, φ(n,O(n)) = 2Ω(n), where n denotes

the total number of variables and constraints (see Murty [38]).
2. For the mincost-flow problem, φ(n,O(n)) = 2Ω(n), where n denotes the num-

ber of nodes in the flow network (see Zadeh [57]).
3. For the max-flow problem for directed or undirected networks, φ(n,O(n2)) =

2Ω(n), where n denotes the number of nodes in the flow network (see Carsten-
sen [8] and Theorem 3.8).

By combinatorial linear programming we mean restricted linear programming
problem of the form “maximize {cx | Ax ≤ b},” where all entries of A have logarithmic
bitlengths; it has a strongly polynomial time algorithm [47]. The result of Murty [38] is
subsumed by the later results [57, 7] since the max-flow and mincost-flow are instances
of linear programming; however, Murty’s proof is much simpler than these later ones.

3.1.1. Applications. We shall now derive the main results stated in section 1.3
from Theorem 3.3.

In the deterministic setting, our lower bounds for the mincost-flow and max-flow
(Theorem 1.1) follow directly from Theorem 3.3, Corollary 3.4, and Theorem 3.5.
For randomized algorithms and the PRAM model with limited bit operations, see
section 6. (For the mincost-flow problem the improvement in the constant c mentioned
after the statement of Corollary 1.2 follows from the fact that the total bitsize of
Zadeh’s [57] parametrized flow network with k nodes is only O(k2), even though some
of its edges may have O(k)-bit costs.)

We now proceed to prove that Ci 6⊆ RCi/c for some positive constant c (The-
orem 1.4). Fix a positive integer j. From the usual max-flow problem, we shall
first construct a padded language L that belongs to the class C. A valid input
instance of L for cardinality n has the following form: It contains a flow network G on
nodes 1, . . . , blogj nc with edge-capacities of bitlength at most a log2j n for a suitable
constant a to be specified later. The remaining nodes are dummy and isolated. The
input also specifies the threshold w.

The input is accepted iff the max-flow value for G is less than or equal to w. Let
us show that L ∈ Cbj for a suitable constant b. It is easy to check fast in parallel if

1476 KETAN MULMULEY

the input is valid, i.e., if the nodes blogj nc+ 1, . . . , n are indeed dummy and isolated,
and if all edge-capacities have bitlengths at most a log2j n. If the input is not valid
it is rejected right away. Otherwise dummy nodes are discarded. After this, one is
left with a small network G with blogj nc nodes. The max-flow problem for G can be
solved by just one processor using, say, a version of Dinic’s strongly polynomial time
algorithm [48] in O(log3j n) time. If one uses the parallel algorithm of Shiloach and
Vishkin [45] or Goldberg and Tarjan [13], it can be solved in O(log2j n log log n) time
using O(logj n) processors. The total bitlength N of a valid input instance in L is
O(n+ log4j n). Hence L ∈ Cbj for a suitable constant b.

Now we shall get a lower bound on the parametric complexity of the padded
problem. For this we use Carstensen’s [8] or our (section 3.2) parametric construction
with padding. This means we form a padded graph with n nodes in which all but
k = logj n nodes are dummy. The edge-capacities of the network G on the remaining
k nodes are then linear functions of the parameter λ with coefficients of O(k) bitsize as
in [8] or section 3.2. It follows from Theorem 3.5 (third statement) that the parametric
complexity φ(n,O(k2)) of the padded max-flow problem is 2Ω(k), where k = logj n.
Therefore, by Theorem 3.3, it cannot be solved in the PRAM model without bit

operations in logj/2 n/a′ time using 2logj/2 n/a′ processors for a large enough constant
a′, even assuming that every edge-capacity in the input has at most a log2j n bitlength
for a suitable large enough constant a. Thus L does not belong to RCj/2−1. But we
have already seen that L ∈ Cbj for a suitable positive constant b. Thus it follows that
Ci 6⊆ RCi/c for a suitable positive constant c.

The role of the max-flow problem in this proof can be played by any problem in SP
whose parametric complexity has a good exponential lower bound. For example, we
could as well have used the mincost-flow problem or the general combinatorial linear
programming problem. Then we have to use Zadeh’s [57] or Murty’s [38] parametric
construction.

3.2. s-t-mincuts in weighted undirected graphs. Carstensen [8] proved that
the parametric complexity of the s-t-mincut problem for weighted undirected graphs
with n vertices is 2Ω(n). The same lower bound also applies to the dual max-flow
problem for undirected graphs. Carstensen’s proof is very intricate, however. In this
section we give a much simpler proof using similar construction.

Let G be a weighted undirected graph with two distinguished vertices s and t.
Each edge has a nonnegative weight. By an s-t-cut (U, V), we shall mean a disjoint
partition (U, V) of the vertex set of G such that U contains s and V contains t. The
weight w(U, V) of this cut is the total weight of all edges going from U to V . By an
s-t-mincut in G, we mean an s-t-cut (U, V) with minimum weight. We say that an
s-t-cut J = (U, V) contains a vertex u if u ∈ U .

For each positive integer n, we shall construct a weighted undirected graph Gn
with 2n+2 vertices whose weights are linear functions of a parameter λ such that the
following hold:

1. In the interval (−T, T), where T = 2n+1, all edge-weights are nonnegative.
2. Let g(λ) denote the weight of a mincut in G for a particular λ. Then the

function graph of g(λ) has at least 2n − 1 breakpoints, i.e., slope changes in
the interval (−T, T).

3. The coefficients of the vertices of this function graph are rationals with O(n2)
bitlengths.

The graph Gn is defined as follows. The vertices of Gn consist of s, t, the vertices
labeled 1, . . . , n, and the vertices labeled 1̄, . . . , n̄. There are edges connecting s to

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1477

every vertex i and ī and edges connecting every vertex i and ī to t. For all i 6= j,
there are also edges connecting the vertices i and ī to the vertices j and j̄. Let
w(u, v) = w(v, u) denote the weight of the edge between u and v. Let wi for 1 ≤ i ≤ n
be positive integers such that wn = 1 and for i < n

wi > 2T
∑
i<l≤n

wl.(3.1)

The choice wi = (2nT)n−i for i ≤ n would suffice. Let tj = 2n−j+1. The edge-weights
are then defined as follows:

1. For all i, w(s, i) = w(s, ī) = wiT .
2. For all i, w(i, t) = wi(T + λ) and w(̄i, t) = wi(T − λ)
3. For all i > j, w(i, j) = w(̄i, j̄) = wi(T − tj) and w(i, j̄) = w(̄i, j) = wiT .

Note that all edge-weights are positive in the interval (−T, T) of interest to us.

Theorem 3.6. The graph of the mincut cost function g(λ) for Gn has at least
2n − 1 breakpoints in the interval (−T, T).

Before we prove the theorem, we shall prove a lemma. Let part(0) denote the
interval (−T, T). For i ≥ 1, define part(i) to be the partition obtained by splitting
each interval of part(i−1) at its midpoint. Thus part(i) contains 2i intervals of length
2n+2−i. Consider a complete binary tree of depth n whose nodes at depth i from the
root are labeled with the intervals of part(i). Any sequence σ of +1’s and −1’s with
length i ≤ n denotes a unique node of this tree. Let J(σ) denote the corresponding
interval; it is the unique interval of part(i) containing the point p(σ) with coefficient
t(σ) =

∑
j≤i σ(j)tj , where σ(j) denotes the jth symbol of σ. By convention t(σ) = 0

and J(σ) denotes the interval (−T, T) if σ is empty. Let I(σ) be the interval of
positive length 2n+2−i − 2 obtained by removing from both ends of J(σ) intervals of
length 1.

Lemma 3.7. Fix any i ≤ n and a sequence σ of length i. Fix any λ ∈ I(σ). Let
C(λ) = (U(λ), V (λ)) be a mincut in Gn at this λ; it need not be unique. Then, for
every j ≤ i,

1. U(λ) contains j iff σ(j) = −1, and
2. U(λ) contains j̄ iff σ(j) = +1.

Proof. Notice that the weighted graph Gn remains invariant if we switch all pairs
(i, ī) of vertices and replace λ by −λ. Hence, the first statement is equivalent to the
second so we shall prove only the former. The proof proceeds by induction on i.

Basis case, i = 1. Consider the case when σ(1) = +1. Suppose, to the contrary,
that U(λ) contains the vertex 1. If we move 1 from U(λ) to V (λ), the value of the
cut would decrease by

w(1, t) +
∑
j>1:j∈V (λ) w(j, 1) +

∑
j>1:j̄∈V (λ) w(j̄, 1)

−w(s, 1)−∑j>1:j∈U(λ) w(j, 1)−∑j>1:j̄∈U(λ) w(j̄, 1)

= w1(T + λ) +
∑
j>1:j∈V (λ) wj(T − t1) +

∑
j>1:j̄∈V (λ) wjT

−w1T −
∑
j>1:j∈U(λ) wj(T − t1)−∑j>1:j̄∈U(λ) wjT

= w1(λ) + h(λ, 1),

1478 KETAN MULMULEY

where h(λ, 1) is the lower order term∑
j>1:j∈V (λ)

wj(T − t1) +
∑

j>1:j̄∈V (λ)

wjT −
∑

j>1:j∈U(λ)

wj(T − t1)−
∑

j>1:j̄∈U(λ)

wjT ;

it is bounded in absolute value by 2T
∑
j>1 wj , which by (3.1) is strictly less than

w1. It follows that in the interval I(σ) = [1, T − 1] the decrease in the weight of the
mincut is positive. This contradicts the fact that J is a mincut. Thus U(λ) cannot
contain 1. It follows similarly that if σ(1) = −1 and V (λ) contained the vertex 1,
then moving it from V (λ) to U(λ) would decrease the weight of the cut by

−w1λ− h(λ, 1),

which is positive if λ ∈ I(σ) = (−T,−1). Thus V (λ) cannot contain 1 if σ(1) = −1.
It follows that U(λ) contains 1 iff σ(1) = −1.

Now let us turn to the general case. In general, let σ̂ be the string obtained from
σ by removing its last, i.e., the ith, symbol. Clearly, I(σ) ⊂ I(σ̂). Hence, by the
inductive hypothesis applied to σ̂, U(λ) at any λ ∈ I(σ) must contain for every j < i
the vertex j iff σ(j) = −1 and the vertex j̄ iff σ(j) = 1. It remains to show that U(λ)
contains i iff σ(i) = −1.

First, consider the case when σ(i) = 1. Suppose, to the contrary, that U(λ)
contains i. Then moving i from U(λ) to V (λ) would decrease the weight of the cut
by

w(i, t)− w(s, i) +
∑
j 6=i:j,j̄∈V (λ) w(i, j) + w(i, j̄)

−∑j 6=i:j,j̄∈U(λ)[w(j, i)− w(j̄, i)]

= wiλ+
∑
j<i:j,j̄∈V (λ) w(i, j) + w(i, j̄)

−∑j<i:j,j̄∈U(λ)[w(i, j)− w(i, j̄)] + h(λ, i),

(3.2)

where h(λ, i) is the lower order term∑
j>i:j,j̄∈V (λ)

w(j, i) + w(j̄, i)−
∑

j>i:j,j̄∈U(λ)

[w(j, i)− w(j̄, i)];

it is bounded in absolute value by 2T
∑
j>i wj , which by (3.1) is strictly less than wi.

By the inductive hypothesis, the decrease given by (3.2) is equal to

wiλ+
∑
j<i:σ(j)=1 w(i, j) +

∑
j<i:σ(j)=−1 w(i, j̄)

−∑j<i:σ(j)=−1 w(i, j)−∑j<i:σ(j)=1 w(i, j̄) + h(λ, i)

= wiλ+
∑
j<i:σ(j)=1 wi(T − tj) +

∑
j<i:σ(j)=−1 wiT

−∑j<i:σ(j)=−1 wi(T − tj)−
∑
j<i:σ(j)=1 wiT + h(λ, i)

= wiλ−
∑
j<i:σ(j)=1 witj +

∑
j<i:σ(j)=−1 witj + h(λ, i)

= wiλ− wi(
∑
j<i σ(j)tj) + h(λ, i)

= wi(λ− t(σ̂)) + h(λ, i),

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1479

where t(σ̂) =
∑
j<i σ̂(j)tj =

∑
j<i σ(j)tj . If λ ∈ I(σ) and σ(i) = 1, then λ− t(σ̂) ≥ 1.

Since the absolute value of h(λ, i) is less than wi, this decrease is positive in that
case. Hence moving i from U(λ) to V (λ) would strictly decrease the weight of the
cut, which contradicts the fact the C(λ) is a mincut. Thus U(λ) cannot contain i if
σ(i) = 1.

Now consider the case when σ(i) = −1. Suppose to the contrary that V (λ)
contains i. Then it follows similarly that moving i from V (λ) to U(λ) would decrease
the weight of the cut by

wi(t(σ̂)− λ)− h(λ, i).

If λ ∈ I(σ) and σ(i) = −1, then t(σ̂)− λ ≥ 1. Hence this decrease is strictly positive,
which contradicts the fact that C(λ) is a mincut. It follows that V (λ) cannot contain
i if σ(i) = −1.

Thus U(λ) contains i iff σ(i) = −1.
If σ is any sequence of 1 and −1 of length n, then it follows from the preceding

lemma that throughout the interval I(σ) the mincut remains the same; let us call
it C(σ) = (U(σ), V (σ)). It also follows that U(σ) contains i iff σ(i) = −1 and ī iff
σ(i) = 1. The weight of C(σ) at any λ ∈ I(σ) is of the form A(σ)λ + B(λ), where
A(σ) = −∑σ(i)wi. Thus the slopes of the weight functions of all 2n cuts C(σ)
as σ ranges over all strings of 1 and −1 of length n are distinct. This proves Theorem
3.6.

Bitlengths of the edge-capacities in our construction remain O(n2) in the interval
[−T, T] of interest. Hence Theorem 3.8 follows.

Theorem 3.8. Parametric complexity φ(n,O(n2)) of the s-t-mincut problem for
weighted undirected graphs of cardinality n is 2Ω(n). This also holds for the dual
max-flow problem.

3.3. Global mincuts in weighted undirected graphs. In this section we
show that the parametric complexity of the global mincut problem for weighted
undirected graphs is at most polynomial in the number of vertices; this should explain
why this problem has fast parallel algorithms in our model [30, 31]. By a global mincut
we mean a nontrivial cut; there is no restriction that some distinguished vertices s
and t be separated by the cut.

We shall make use of the following combinatorial result and its proof in [30].
Lemma 3.9. In any positively weighted undirected graph, the number of cuts

within a constant multiplicative factor of a global mincut is polynomial in the number
of vertices.

We shall also use a result by Chandrasekharan and Gusfield [18] that the para-
metric complexity of the maximum-weight spanning tree problem is O(n4); this is in
fact true for any matroidal optimization problem having a greedy algorithm.

Let G be an undirected graph with n vertices whose edge-weights are linear
functions of a parameter λ. It is furthermore guaranteed that in some interval [p, q] all
edge-weights remain positive. Let g(λ) denote the cost of a mincut in G at a given λ.

Theorem 3.10. The number of breakpoints in the function graph of g(λ) in the
interval [p, q] is at most polynomial in n.

Proof. The coefficients of the linear weight functions of the edges in G may be
arbitrary reals. But one can show that without of loss of generality these coefficients
can be assumed to be rationals with bitsizes at most polynomial in n. This follows
from the fact that the parametric complexity of the mincut problem is the same as
the maximum size of a two-dimensional projection of the corresponding combinatorial

1480 KETAN MULMULEY

polytope, which is the convex hull of the incidence vectors of all cuts in G. Since the
coefficients of the linear weight functions have polynomial size bitlengths, all vertices
of the function graph of g(λ) have rational coefficients with polynomial bitlengths.
For this reason one can also assume that p and q have polynomial bitlengths.

The parametric complexity of the maximum-weight spanning tree problem is
O(n4) [18]. Thus by dividing [p, q] into at most O(n4) subintervals if necessary, one
can assume that a maximum-weight spanning tree in G remains the same throughout
[p, q], i.e., as λ varies in the interval [p, q]. This tree has n edges since G can be
assumed to be connected. Thus subdividing [p, q] further into at most n subintervals,
one can also assume without loss of generality that the edge of minimum weight in this
maximum-weight spanning tree remains the same throughout [p, q]. Let this edge be
e and let its weight function be we(λ). By subdividing the interval [p, q] further into
at most n subintervals if necessary, one can also assume that the set of edges whose
weights exceed n2 times the weight of e also remains the same throughout [p, q]. As
in Karger [30], we can contract these edges in G without changing the mincut. Let us
assume that all edges in G have weights at most n2 times that of e throughout [p, q].
This means the weight of any cut at any λ ∈ [p, q] is at most n4 times the weight
we(λ) of e throughout [p, q]. It also follows, as in [30], that the weight of any cut at
any λ ∈ [p, q] is at least we(λ).

By our assumption, both we(p) and we(q) must be positive. Assume without loss
of generality that we(p) < we(q), the other case being similar. Since the coefficients
of the linear weight functions, and also p and q, have polynomial size bitlengths,
log(we(q))−log(we(p)) is polynomial in n. Thus by subdividing [p, q] further into poly-
nomially many subintervals, if necessary we can assume that log(we(q))−log(we(p)) ≤
1/n, which means that we(q) ≤ 2we(p).

For any cut J , let wJ(λ) denote its weight function. Then our interval [p, q] has
the following properties. First,

we(p) ≤ we(q) ≤ 2we(p).(3.3)

Second, for any cut J and any λ ∈ [p, q],

we(λ) ≤ wJ(λ) ≤ n4we(λ).(3.4)

Divide [p, q] further into, say, n5 subintervals of equal length. Let [a, b] denote
any such subinterval.

Claim. For any λ ∈ [a, b] and any cut J , |wJ(λ)− wJ(b)| ≤ 2we(b)/n.
Proof of the claim. By (3.4), wJ(q) ≤ n4we(q), and similarly wJ(p) ≤ n4we(p) ≤

n4we(q) by (3.4) and (3.3). Hence, the slope of the weight function wJ(λ) is at most
n4we(q)/(q − p). Therefore, for any λ ∈ [a, b], |wJ(λ)− wJ(b)| is at most

n4we(q)(b− λ)

(q − p) ≤ we(q)n
4

n5
=
we(q)

n
≤ 2we(p)

n
≤ 2we(b)

n
.

This proves the claim.
Let K denote a mincut at b.
Claim. A cut I whose weight becomes minimum at some λ ∈ [a, b] has its weight

at b at most twice that of K at b.
Proof of the claim. First, note that wI(b)− wK(b) is equal to

(wI(b)− wI(λ)) + (wI(λ)− wK(λ)) + (wK(λ)− wK(b)).

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1481

Since K is a mincut at b, wI(b)−wK(b) is nonnegative, and similarly wK(λ)−wI(λ)
is nonnegative. Therefore, wI(b)− wK(b) is at most

(wI(b)− wI(λ)) + (wK(λ)− wK(b)) ≤ 4we(b)/n

by the previous claim. But wK(b) is at least we(b) by (3.4). Thus, the last quantity
is at most 4wK(b)/n. Now the claim follows.

By Lemma 3.9 there are only polynomially many cuts whose weights at b are at
most four times the weight of the mincut K at b. Let Γb denote the set of such cuts.
Now the preceding claim implies that any cut that can become minimum during [a, b]
must belong to the set Γb whose size |Γb| is polynomial in n. In other words, in the
interval [a, b] the mincut weight function is given by

g(λ) = min{wK(λ) | K ∈ Γb}

and so can have at most |Γb| breakpoints within the interval [a, b]. This is true for
each of the polynomially many subintervals into which [p, q] was divided. Thus the
theorem follows.

4. Linear PRAM. In this section we prove our general lower bound (Theo-
rem 3.3) for the linear PRAM model. Actually we get a stronger lower bound that
takes into account processor-time trade-off.

Theorem 4.1. Fix any homogeneous optimization problem. Let φ(n, β(n)) be
its parametric complexity for input cardinality n and bitsize β(n). Then there exists
a large enough constant b such that the decision version of the problem cannot be

solved in the linear PRAM model in
√

log[φ(n, β(n))]/b time using 2
√

log[φ(n,β(n))]/b

processors or, more generally, in log[φ(n, β(n))]/(b log p) time using p processors; this
is so even if we restrict every numeric parameter in the input to be an integer with
bitlength at most aβ(n) for a large enough constant a.

This also holds for approximate computation of the optimum within a small, say,
less than 1/8, additive error.

In conjunction with Theorem 3.5 this leads to a somewhat stronger lower bound
for the linear PRAM than in Theorem 1.1.

Theorem 4.2. The mincost-flow problem for networks with k nodes cannot
be solved in the linear PRAM model deterministically (or with randomization) in
k/(b log p) (expected) time using p processors, even assuming that every cost and ca-
pacity is an integer with bitlength at most ak, for some large enough positive constants
a and b; in particular, it cannot be solved in o(k/logk) time using polynomial number
of processors. The same lower bound also applies for the max-flow problem with the
bitlength restriction ak2 instead of ak.

Compare with the upper bound provided by the parallel algorithms of Shiloach
and Vishkin [45] and Goldberg and Tarjan [13] (which lie in the linear PRAM model);
these work in O(k2 log k) time with O(k) processors without any restriction on the
bitlengths.

Here we shall consider only deterministic algorithms. For randomized algorithms,
see section 6.1.

4.1. The number of possible branchings. In this section we describe a gen-
eral technique for bounding the number of possible ways in which the processors can
branch in the linear PRAM model. The technique is language independent. Thus we
shall describe it in a general setting.

1482 KETAN MULMULEY

Let Σ = Σ(x1, . . . , xn), xi ∈ Z, be the language for which we want to prove a lower
bound. Here x1, . . . , xn denote the integer parameters in the input. We shall denote
the total bitsize of the input by N . We shall denote the integer tuple (x1, . . . , xn) by x.
Consider any nonuniform machine for n and N . It is required to work correctly only
on inputs with n parameters of total bitlength at most N . Hence, we shall confine
ourselves to only those values of xi for which the total bitsize of x is bounded by N .
Let p(n,N) be the number of processors in the machine. Let t(n,N) be the maximum
time taken by the machine on any input of bitlength at most N . Let x, x′ ∈ Zn be
any two n-tuples of bitsize at most N . For any positive integer t, we say that x and
x′ are t-equivalent if on the input x the instruction executed by any processor in our
machine at any time less than or equal to t is the same as the instruction that would
have been executed if the input were x′ instead. We say that x and x′ are equivalent
if they are t-equivalent for all t ≤ t(n,N). By a t-equivalence class, we mean the
set of all t-equivalent k-tuples of bitsize at most N . An equivalence class is defined
similarly. Let φ(t) be the number of t-equivalence classes and φ be the number of
equivalence classes.

Ideally, we would like to get good bounds on φ(t) and φ. Unfortunately, this seems
difficult. Therefore, we shall get around this problem by specializing the possible
inputs to our machine; this corresponds to restricting one’s attention to inputs that
lie within some affine subspace. We shall then obtain a good bound on the number
of equivalence classes among specialized inputs.

Specifically, let us imagine running our machine on the set of possible inputs
defined by xi = li(z) = li(z1, . . . , zd), where for each i ≤ n, li is a certain integral
linear form (possibly nonhomogeneous) in d variables and zj ranges over all integer
values of bitlength bounded by some integer rj . When xi is a nonnumeric parameter,
we shall assume that li(z) is constant. In other words, we assume that the nonnumeric
parameters do not change as we change the parameters zi. The forms li will depend
on the problem under consideration. We shall turn to this issue in section 4.2. Here
we need only to assume that the integers rj and the forms li are such that the total
bitsize of the tuple x = (x1, . . . , xn) remains bounded by N as we let zi range over
all permissible values. This implies that the machine must work correctly on this
parametrized set of inputs within a given time bound t(n,N). In what follows, we
shall assume that every d-tuple z = (z1, . . . , zd) under consideration is permissible.
This means each zi is an integer of bitlength at most ri. In our applications d will be
constant.

Let Σ(z1, . . . , zd) denote the set of permissible d-tuples accepted by the machine.
We say that z is accepted if x = l(z) = (. . . , li(z), . . .) is accepted. Two permissible
d-tuples z, z′ are said to be t-equivalent if l(z) and l(z′) are t-equivalent. The notion
of equivalence is defined similarly. Let σ(t) denote the number of t-equivalence
classes among the permissible values of z. Let σ = σ(t(n,N)) denote the number
of equivalence classes.

Theorem 4.3. For all t, σ(t) is bounded by [2p(n,N)]dt.

Proof. Let C denote a fixed t-equivalence class. Let z denote a (permissible)
integral value in this equivalence class. In what follows, we pretend that z is a generic
variable. We are told that it belongs to C. But we are not told its actual value. We
imagine running our machine on the input x = l(z). We have to specify what is meant
by executing an arithmetic operation in this setting. Naturally, we cannot expect the
operands to be integers, unless they happen to be constants. Rather they will be
functions of z. Since there is no general multiplication in the linear PRAM model,

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1483

these functions will be linear. By an arithmetic operation + or −, we simply mean
the corresponding operation on the linear forms (functions). We are also allowed
multiplication by constants. This amounts to multiplying the corresponding linear
form by a constant. The nonnumeric parameters are fixed in our parameterization.
Since in our model the memory pointers are allowed to depend only on the nonnumeric
parameters, indirect memory references are no problem. In other words, whenever an
instruction involving a memory pointer is encountered during the course of execution,
the value of the pointer would be completely determined at that time, because it
cannot depend on the generic parameter z. This in turn completely determines which
memory locations are to be fetched (or stored into) during the execution of that
instruction. In case several processors are planning to write into the same memory
location, it is also determined which processor’s writing is going to prevail (in the
CRCW mode of communication). We assume that when a processor is executing a
comparison it is simply told the result of that comparison, which, at any time less
than or equal t, is completely determined by the class C; i.e., it is the same for all
permissible values in C.

Lemma 4.4. Let C be a fixed t-equivalence class. For every memory location j,
there exists a linear form gj [C, t](z) that gives the content of that location at time t
for every z ∈ C.

Proof. Once C is fixed, the execution path of each processor up to time t is fixed.
Thus the lemma follows easily by induction on t.

Let us now see what happens at time t given that the generic variable z belongs
to a fixed t-equivalence class C as above. If a processor is to execute an arithmetic
operation at time t, then the result of that operation will be a certain uniquely
determined linear form to be stored in a certain uniquely determined location in
the memory. If the operation is a branch, the branching path will be determined by
a comparison between the contents of two uniquely determined memory locations,
which are certain fixed linear forms in z. In other words, each branch is determined
by testing a certain linear equality or inequality in z of the form g(z) : 0, where the
comparison : is >, ≥, or =. The number of such linear constraints is at most p(n,N),
one per processor. Let g1(z), g2(z), . . . be the nonzero linear forms involved in these
constraints. Consider the arrangement in Rd formed by the hyperplanes gi(z) = 0.
The hyperplanes naturally partition Rd into a disjoint union of (open) j-faces, where
each j-face of the arrangement is a j-dimensional convex polytope. When d is fixed,
the total number of faces in the arrangement (of all dimensions) is O(md), or at most
(2m)d to be more precise, where m is the number of hyperplanes, i.e., the number
of linear forms gi. There are at most p(n,N) forms, one per processor. Hence the
number of faces in the arrangement is at most (2p(n,N))d.

Now we make the following crucial observation: Any two z, z′ ∈ C belong to the
same (t + 1)-equivalence class if they belong to the same face of this partition. This
is because the sign of each linear function gi(z) is the same at any point of the face
(the sign is either +, −, or 0). It immediately follows that

σ(t+ 1) ≤ (2p(n,N))dσ(t).

Induction on t proves Theorem 4.3.
The proof of the theorem also yields the following lemma.
Lemma 4.5. For every t-equivalence class C, there exists a set Φ(C, t) of at most

p(n,N)t linear constraints (equalities or inequalities) in d variables such that z ∈ C
iff all these constraints are satisfied.

1484 KETAN MULMULEY

Proof. The constraints correspond to the branches before time t, at most t per
processor, which are all fixed by the class C.

By Lemma 4.5, each equivalence class D of permissible z-values is characterized by
a set Φ(D) = Φ(D, t(n,N)) of linear constraints. Let Φ = ∪DΦ(D), where D ranges
over all equivalence classes. By Theorem 4.3 and Lemma 4.5, it follows that Φ contains
at most [2p(n,N)]dt(n,N)p(n,N)t(n,N) linear forms. Consider the arrangement in Rd

formed by the hyperplanes defined by these linear forms. It is easy to see that each
face of this arrangement can be labeled yes or no in such a way that a permissible z
is accepted by the machine iff it lies in a face labeled yes. Thus we have proved the
following.

Theorem 4.6. Assume that the language Σ(z1, . . . , zd) is accepted in the linear
PRAM model using p(n,N) processors in t(n,N) time. Then Rd can be partitioned
by a set of at most

[2p(n,N)]dt(n,N)p(n,N)t(n,N)

hyperplanes and each face of the arrangement can be labeled yes or no so that a
permissible z ∈ Zd belongs to Σ(z1, . . . , zd) iff it lies in a face labeled yes.

4.2. Parameterization. The preceding theorem suggests the following strategy
for reducing a global lower bound problem to a local problem in small dimensions.
Parametrize the input to the machine using a small (constant) number of param-
eters. Then for this parameterization prove that a partition having the properties
mentioned in Theorem 4.6 cannot exist. As a byproduct, we shall actually end up
proving a stronger lower bound (Theorem 4.7) that is nonuniform with respect to
parameterization. This means for any parameterization P we get a lower bound that
applies even to nonuniform machines whose programs can depend on P arbitrarily.
Theorem 4.1 would be a consequence of this stronger lower bound.

Fix a general optimization problem as in section 3.1 and any parameterization
P for cardinality n and bitsize β(n). Let the complexity of P be ρ(n). For a given
rational parameter λ, each numeric parameter in the input P(λ) is a linear function of
the form uλ+ v; we can assume that u and v are integers because if they are not, we
can clear all denominators by multiplying all numeric parameters by a large enough
integer, and since the problem is homogeneous, the optimum value gets multiplied by
the same integer. When λ is rational, uλ + v is in general rational, too. This is not
allowed, since in our optimization problem every numeric parameter has to be integral.
However, with every such parameterization P, one can associate a homogeneous
integral parameterization P̃ with two integer parameters z1 and z2—which can be
thought of as the denominator and numerator of the parameter λ—by replacing each
linear form uλ+v in the definition of P by the corresponding integral form uz2 +vz1.
For any integer pair (z1, z2), each numeric parameter of the input P̃(z1, z2) is now an
integer as required. The bitsize β(n) or the complexity ρ(n) of P̃ is defined to be the
same as that of P.

Remark. Integral nature of our optimization problem—i.e., the assumption that
F (I) and each numeric parameter in I is an integer—is important; it is crucial in
proving the lower bound for the approximate version (Corollary 3.4) from the one
for the decision version (Theorem 3.3). Even if we were to allow rational values
of numeric parameters, the situation would not be any easier or different, since the
machine in our model can access the numerator and the denominator of a rational
number separately.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1485

Now given a large enough positive integer a, called the permissibility constant, let
I be the set of inputs of the form (z3, I) in the decision version of our optimization
problem, where the following holds:

1. The integer w = z3 denotes the threshold and its bitsize is at most aβ(n).
2. I is of the form P̃(z1, z2) for some integers z1 and z2 of bitsize at most aβ(n).

We shall prove the following theorem.
Theorem 4.7. Assume that the permissibility constant a is large enough. Then

no machine in the linear PRAM model can decide whether w ≤ F (I) correctly for

every I ∈ I within
√

log ρ(n)/a′ parallel time using 2
√

[log ρ(n)/a′ processors for some
large enough constant a′ that does not depend on the permissibility constant a.

More generally, no machine in the linear PRAM model can decide whether w ≤
F (I) correctly for every I ∈ I within log ρ(n)/(a′ log p) parallel time using p processors
for some large enough constant a′ that does not depend on the permissibility constant
a.

In the deterministic setting, Theorem 4.1 follows from this theorem by applying it
to a parameterization P for cardinality n and bitsize β(n) whose complexity is equal
to φ(n, β(n)), the maximum possible value. The randomized setting is considered
in section 6.1. In what follows, we shall denote ρ(n) and β(n) by simply ρ and β,
respectively.

Let us apply Theorem 4.6 with d = 3 to the linear parameterization of the input
as in Theorem 4.7. It is defined by the linear map

(z1, z2, z3)→ I(z1, z2, z3) = (z3, P̃(z1, z2)).

Thus in Theorem 4.6 Σ(z1, z2, z3) consists of those tuples (z1, z2, z3) such that z3 ≤
P̃(z1, z2). This gives the following theorem.

Theorem 4.8. Let a′ be any positive constant. If a linear PRAM machine works
correctly on the input I(z1, z2, z3) for every permissible z1, z2, and z3 in t =

√
log ρ/a′

time using 2t processors, then R3 can be partitioned by at most 25t2 planes and each
face of the resulting arrangement can be labeled yes or no so that a permissible integer
point (z1, z2, z3) lies in a face labeled yes iff I(z1, z2, z3) is feasible. (The constant 5
is just chosen to be large enough.)

More generally, if a linear PRAM machine works correctly on the input I(z1, z2, z3)
for every permissible z1, z2, and z3 in log ρ/(a′ log p) time using p processors, then
R3 can be partitioned by at most 2(5 log ρ)/a′ planes and each face of the resulting
arrangement can be labeled yes or no so that a permissible integer point (z1, z2, z3)
lies in a face labeled yes iff I(z1, z2, z3) is feasible.

4.3. A lattice problem. We are thus led to the problem of showing that an
arrangement as in Theorem 4.8 cannot exist for large enough constants a and a′; this
will prove Theorem 4.7. Let F (λ) be the optimum function associated with P (as in
section 3.1) and G = G(P) its function graph. Since our parameterization is assumed
to be homogeneous, I(z1, z2, z3) is feasible iff z3 ≤ P̃(z1, z2), i.e., z3/z1 ≤ F (z2/z1).
(Here and in what follows, we assume that a permissible z1 is always positive.) This
suggests that we think of G as lying in the affine plane z1 = 1 in R3, where R3

is now considered as the two-dimensional projective space. We let z2, z3 play the
role of coordinates in the affine plane. Then the point (z1, z2, z3) in R3 is naturally
projected onto the point in the affine plane that lies on the ray emanating from the
origin and passing through (z1, z2, z3). In what follows, by the projection onto the
affine plane we shall always mean this natural projection. Given any set φ of points

1486 KETAN MULMULEY

z

x

y

Origin

fan(G)

G

Bounding Box

z=1

Fig. 4.1. The graph G and its fan.

in the affine plane, let fan(φ), the fan through φ, denote the points in R3 that project
onto the points in φ. Then I(z1, z2, z3) is feasible iff (z1, z2, z3) lies below fan(G) in
the z3-direction; this also includes the case when (z1, z2, z3) lies on fan(G).

For the sake of simplicity, let us rename the coordinates z1, z2, z3 as z, x, and
y, respectively. Thus z = 1 now serves as the affine plane in R3. The preceding
discussion implies that in the partition of Theorem 4.8, a permissible integer point in
Z3 is labeled yes iff it lies below fan(G) in the y-direction (Figure 4.1).

Since P has bitsize β = β(n) and complexity ρ = ρ(n) it follows that (1) the
graph G is piecewise linear and convex with ρ bounded segments, and (2) all vertices
of G have rational coordinates that can be expressed in terms of numerators and
denominators of absolute value at most µ = 2β , or in other words, of bitsize at most
β = logµ. Trivially ρ ≤ 4µ2. Moreover, all vertices of G lie in the interior of the
bounding box defined by |x| ≤ 2µ and |y| ≤ 2µ (Figure 4.1). Consider two horizontal
planes, parallel to the affine plane, defined by z = µ̄ and z = 2µ̄, where µ̄ would
be chosen to be much larger than µ. Let B denote the region (slab) between these
two planes that is enclosed by the fan through the boundary of the bounding box
in the affine plane. The coordinates of all integer points in this slab have bitsizes at
most twice of β̄ = log µ̄. The following theorem would imply that the partition as in
Theorem 4.8 cannot exist.

Theorem 4.9. Let S be any set of δ planes in R3. Assume that β̄ = log µ̄ is
greater than a large enough constant multiple of β = logµ and that ρ is greater than
a large enough constant multiple of δ4. (Since ρ ≤ 4µ2, this also means that log µ̄ is
greater than a sufficiently large constant multiple of log δ.) Then at least one face in
the arrangement (partition) in B formed by the planes in S contains an integer point
lying below fan(G) and also an integer point strictly above this fan.

Remark. If ρ were less than δ, then one can let S be the set of planes that contain

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1487

the fans through the edges of G. No face in the resulting partition can contain an
integer point below fan(G) and also an integer point strictly above fan(G) (in its
interior). What the theorem says is that one cannot do much better than this trivial
scheme.

Remark. It is possible to strengthen the theorem slightly so that ρ is only required
to be greater than a large enough constant multiple of δ3 instead of δ4.

In the arithmetic linear PRAM model the issue of bitlengths is ignored; i.e.,
the running time of the algorithm cannot depend on the bitlengths of the input
parameters. In that case we only need to prove the theorem when the slab B is
unbounded, i.e., when its upper bounding plane goes to infinity. This is quite easy
(as the reader can verify). In fact, then S must contain every plane containing the
origin and an edge of G, so δ has to be at least ρ; this completes our lower bound
proof for the arithmetic linear PRAM model.

Proof of Theorem 4.7 from Theorem 4.9. Before we prove the theorem, let us
see why it implies that the partition as in Theorem 4.8 cannot exist. This will prove
Theorem 4.7. Let t =

√
log ρ/a′, as in Theorem 4.8. Let S be the set of planes

mentioned in its statement. Their total number δ is at most 25t2 , so log δ ≤ 5t2 =
5 log ρ/a′2. Choose the constant a′ large enough so that log ρ is sufficiently larger than
log δ as required in Theorem 4.9. Next fix µ̄ so that log µ̄ is a sufficiently large multiple
of logµ, also as required in Theorem 4.9. If we choose the permissibility constant a
(cf. the statement of Theorems 4.1 and 4.7) large enough, then all integer points in
the slab B will be permissible. Now Theorem 4.9 implies that the arrangement as in
the first part of Theorem 4.8 cannot exist for such constants a and a′. The proof of
the second part is similar.

Proof of Theorem 4.9. Assume, to the contrary, that no face in the partition of
B contains an integer point below fan(G) and also an integer point strictly above
fan(G). In what follows, this property of the partition will be called the separation
property. Without loss of generality, we can assume that no integer point in the slab
B lies on any plane in S; otherwise, one can ensure this without losing the separation
property by replacing each plane with two planes obtained by infinitesimal translation
in the positive and negative normal directions. The regions of the partition of B are
convex polytopes that can have many facets in general. Therefore we shall refine
this partition, using a well-known idea in computational geometry (e.g., see [35])
so that each region in the resulting decomposition is a “cylinder” with at most six
facets. Then using the pigeonhole principle we shall show that some cylinder in this
decomposition must violate the separation property.

Decomposition. Let Q be the set that contains the planes in S and the planes
bounding the slab B. Project onto the affine plane the intersection between every pair
of planes in Q (restricted to the slab B). This yields an arrangement of lines within
the bounding box in the affine plane (Figure 4.2). We refine this arrangement further
by passing vertical lines (parallel to the y-axis) through all intersections among these
lines and also intersections with the bounding box (Figure 4.2). Let us denote the
resulting partition of the bounding box by A(Q).

The affine partition A(Q) can be lifted to the slab B in a natural fashion: We
pass fans through all projected lines in the affine plane; these are the same as the
fans through pairwise intersections of the planes in Q. We also pass fans through all
auxiliary vertical lines that we added in the affine plane. These fans along with the
planes in Q yield a decomposition of B; we shall denote it by D(Q). The total number
d(Q) of cells (three-dimensional regions) in D(Q) is O(δ4), and each cell is a convex

1488 KETAN MULMULEY

Fig. 4.2. Decomposition A(Q) in the affine plane.

cylinder with at most six facets. By a cylinder we mean a convex polytope which has
a unique top facet, called the roof, and a bottom facet, called the floor, as seen from
the origin; by the floor we mean the facet that is hit first by any ray coming from the
origin toward the cell, and the roof is defined similarly.

Sample points. Next, we choose rational sample points on all (bounded) edges
of the graph G; in what follows we just ignore the two unbounded edges of G. Let
c be a large enough positive integer constant to be specified later. Divide each edge
of the graph into intervals of equal spans along the x-direction by placing δc points
in its interior. These points will be called sample points. The x-coordinates of any
two sample points differ by at least 1/(µδc), because the coordinates of all vertices
in G are rationals that can be expressed in terms of denominators and numerators of
absolute value at most µ.

Given a sample point p on e, we say that a cell R in D(Q) is good for p if its
interior contains an integer (lattice) point lying on the ray through p (coming from
the origin). We say that R is good for an edge e in the graph G if it is good for
[1/d(Q)]th fraction of the sample points on e.

Lemma 4.10. D(Q) contains a cell that is good for [1/d(Q)]th fraction of the
edges in G.

Proof. The number of cells in D(Q) is at most d(Q). Hence, by the pigeonhole
principle, it suffices to show that for every edge e in the set there is at least one good
cell in D(Q). Applying the pigeonhole principle once again, it suffices to show that
for every sample point p on e, there is at least one good cell in D(Q). The ray through
p is split into at most δ + 1 intervals within B by the planes in Q. Thus the vertical
span of at least one such interval—call it ep—must be at least µ̄/(δ+ 1). The interior
of ep must contain an integer lattice point. This follows from the last property and
the following:

1. The coordinates of the sample point p can be expressed as rationals with
numerators and denominators of bitlength at most logµ, ignoring a constant
factor.

2. By our assumption, log µ̄ is greater than sufficiently large constant multiples

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1489

of logµ and log δ.
Thus the cell in D(Q) containing ep is good for p.

Given an integer point lying on the fan through an edge in G, let us define its
neighbor to be the unique integer point with the same x and z coordinates but whose
y coordinate is greater by one. Integer points on the fan through G are all feasible,
whereas their neighbors are infeasible. This mean if a cell in D(Q) contains an integer
point on fan(G) it cannot contain its neighbor.

The graph G contains ρ edges. By the preceding lemma, there is a cell C in D(Q)
that is good for at least ρ̄ = ρ/d(Q) such edges. Their number is quite large since
d(Q) = O(δ4), and ρ is larger than a sufficiently large multiple of δ4. This means there
exist a large number of edges in the graph G such that C contains a large number of
integer points on the fan through each of these many edges. But it cannot contain
the neighbors of these integer points. Since C is a convex cylinder with at most six
facets, this is impossible (as the reader can verify).

This proves Theorem 4.9.

5. PRAM without bit operations. In this section we shall prove our general
lower bound for the PRAM model without bit operations (Theorem 3.3) by extending
the proof in section 4. As there, we shall prove a stronger nonuniform lower bound
(Theorem 5.7) from which Theorem 3.3 will follow. The main difference from the
linear PRAM setting is the presence of general multiplication in the instruction set.
This causes some algebraic geometry to enter the proof in an essential way.

5.1. The number of possible branchings. First, we extend the general tech-
nique for bounding the number of possible ways in which the processors can branch
(section 4.1). We shall describe the technique in a language-independent setting,
following the same notation as in section 4.1.

Let Σ = Σ(x) = Σ(x1, . . . , xn), xi ∈ Z, be the language for which we want to
prove a lower bound. Here x1, . . . , xn denote the integer parameters in the input.
Fix a nonuniform machine in the PRAM model without bit operations with p(n,N)
processors, which works correctly on inputs with n parameters with total bitlength
at most N in t(n,N) time. We define the t-equivalence classes with respect to this
machine just as in section 4.1, the main difference being that the processors can now
multiply. The number of t-equivalence classes, in general, does not have a good upper
bound. We get around this problem, as in section 4.1, by parametrizing the inputs
to the machine and then bounding the number of t-equivalence classes among the
parametrized inputs.

Let us imagine running our machine on the set of possible inputs defined by
xi = li(z) = li(z1, . . . , zd), where for each i ≤ n the parametrizing linear form li is
exactly as in section 4.1. As there, let Σ(z1, . . . , zd) denote the set of permissible d-
tuples accepted by the machine. We say that z is accepted if x = l(z) = (. . . , li(z), . . .)
is accepted. Two permissible d-tuples z, z′ are said to be t-equivalent if l(z) and l(z′)
are t-equivalent. The notion of equivalence is defined similarly. Let σ(t) denote the
number of t-equivalence classes among the permissible values of z. Let σ = σ(t(n,N))
denote the number of equivalence classes. The following theorem generalizes Theo-
rem 4.3.

Theorem 5.1. For all t, σ(t) is bounded by [2 + 2 · 2tp(n,N)]dt.
Proof. Let C denote a fixed t-equivalence class. Let z denote a (permissible)

integral value in this equivalence class. In what follows, we pretend that z is a generic
variable. We are told that it belongs to C. But we are not told its actual value.
We imagine running our machine on the input x = l(z). We have to specify what is

1490 KETAN MULMULEY

meant by executing an arithmetic operation in this setting. Now the operand would
be polynomials in z, rather than linear forms as in the linear PRAM setting. By
an arithmetic operation ×, +, or −, we simply mean the corresponding polynomial
operation. Since nonnumeric parameters are fixed by our parameterization, indirect
memory references are no problem. We assume that when a processor is executing
a comparison it is simply told the result of that comparison, which, at any time less
than or equal t, is fixed by the class C. The following lemma generalizes Lemma 4.4.

Lemma 5.2. Let C be a fixed t-equivalence class. Then for every memory location
j, there exists a polynomial gj [C, t](z) that gives the content of that location at time t
for every z ∈ C. Moreover, the degree of gj is at most 2t.

Proof. Once C is fixed, the execution path of each processor up to time t is fixed.
Therefore, each memory location at time ≤ t is a completely determined function of
z1, . . . , zd, in fact, a polynomial function. At time t = 0, each memory location is
either a constant or is equal to some li(z); so it is a polynomial of degree at most
one. Unlike in the linear PRAM setting, now we have general multiplication. This
corresponds to multiplying two polynomials in (z1, . . . , zd); the degree of their product
is the sum of their degrees. The lemma follows by induction on t.

Let us now see what happens at time t, given that the generic variable z belongs
to a fixed t-equivalence class C as above. If a processor is to execute an arithmetic
operation at time t, then the result of that operation is a certain uniquely determined
polynomial to be stored in a certain uniquely determined location in the memory. If
the operation is a branch, the branching path is determined by comparing contents
of two uniquely determined memory locations, which are certain fixed polynomials
in z. In other words, each branch is determined by testing a certain polynomial
equality or inequality in z of the form g(z) : 0, where the comparison : is >, ≥, or =.
The number of such polynomial constraints is at most p(n,N), one per processor. Let
g1(z), g2(z), . . . be the nonzero polynomials involved in these constraints. Consider the
partition (stratification) of Rd formed by the hypersurfaces gi(z) = 0. A sign-invariant
component of this stratification is defined to be the maximal set of points such that
the sign of any gi remains the same over the whole set; it need not be connected or
even simply connected. The sign of a function at a given point is defined to +, −,
or 0 depending on whether its value at the point is positive, negative, or zero. We
say that a sign-invariant component is nonempty if it contains a permissible integer
point.

Theorem 5.3 (Milnor–Thom). The number of nonempty sign-invariant compo-
nents in the preceding stratification of Rd is bounded by [2 + 2

∑
deg(gi)]

d.

Proof. If no hypersurface under consideration contains any permissible integer
point, then this follows directly from the Milnor–Thom bound [34, 49] on the number
of connected components of the set

⋃
i{gi(z)2 > 0}. Otherwise, we can replace each

hypersurface gi(z) = 0 by two hypersurfaces gi(z) = ε and gi(z) = −ε, where ε is
an infinitesimal positive real (Figures 5.1 and 5.2). Since the number of permissible
integer points is finite, we can choose ε small enough so that no new hypersurface
contains any permissible integer point and the partition of the permissible integer
points induced by the sign-invariant components of the old stratification coincides
with the partition induced by the sign-invariant components of the new stratification.
Now we can apply the Milnor–Thom bound as before.

Because the number of polynomials gi is at most p(n,N), one per processor, and
deg(gi) is at most 2t, it follows from the preceding result that the total number of
sign-invariant components in the preceding partition of Rd is at most [2+2p(n,N)2t]d.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1491

f(x,y) = 0 g(x,y) = 0

Fig. 5.1. Before perturbation: integer points in different sign-invariant components are depicted
differently.

f(x,y) =
f(x,y) =

−ε
ε g(x,y) =

g(x,y) = ε

−ε

Fig. 5.2. After perturbation: the sign-invariant partition of the integer points is unchanged.

Now we make the crucial observation.
Observation 5.4. Any two z, z′ ∈ C belong to the same (t+1)-equivalence class

if they belong to the same sign-invariant component of this partition.
It immediately follows that

σ(t+ 1) ≤ [2 + 2p(n,N)2t]dσ(t).

Induction on t proves Theorem 5.1.
The proof of Theorem 5.1 also yields the following lemma.
Lemma 5.5. For any t-equivalence class C, there exists a set Φ(C, t) of at most

1492 KETAN MULMULEY

p(n,N)t polynomial constraints (equalities or inequalities) in d variables such that
z ∈ C iff all these constraints are satisfied. Moreover, the degree of every polynomial
occurring in Φ(C, t) is at most 2t.

Proof. The constraints correspond to the branches taken by all processors before
time t, which are all fixed by the class C.

By Lemma 5.5, each equivalence class D of permissible z-values is characterized
by a set Φ(D) = Φ(D, t(n,N)) of polynomial constraints. Let Φ = ∪DΦ(D), where D
ranges over all equivalence classes. By Theorem 5.1 and Lemma 5.5, it follows that
Φ contains at most

[2 + 2p(n,N)2t(n,N)]dt(n,N)p(n,N)t(n,N)

polynomials of degree at most 2t(n,N). Consider the partition of Rd formed by the
hypersurfaces defined by these polynomials. Each sign-invariant component of this
partition can be labeled yes or no in such a way that a permissible z is accepted by
the machine iff it lies in a sign-invariant component labeled yes. Thus we have proved
the following.

Theorem 5.6. Assume that the language Σ(z1, . . . , zd) is accepted in the PRAM
model without bit operations using p(n,N) processors in t(n,N) time. Then Rd can
be partitioned by a set of at most

[2 + 2p(n,N)2t(n,N)]dt(n,N)p(n,N)t(n,N)

polynomials of degree at most 2t(n,N) and each sign-invariant component can be labeled
yes or no so that a permissible z ∈ Zd belongs to Σ(z1, . . . , zd) iff it lies in a sign-
invariant component labeled yes.

In the proof of this theorem, performance of the machine on N -bit inputs that
do not lie in the parameterized family Σ(z1, . . . , zd) does not matter. In other words,
the theorem holds even if t(n,N) is defined to be the maximum time taken on any
N -bit input in Σ(z1, . . . , zd).

5.2. Parameterization. We shall now prove a general lower bound in the PRAM
model without bit operations that is nonuniform with respect to parameterization. It
generalizes Theorem 4.7, and we follow the same notation as in section 4.2.

Theorem 5.7. Assume that the permissibility constant a is large enough. Then
no machine in the PRAM model without bit operations can decide whether w ≤ F (I)

correctly for every I ∈ I in
√

log ρ(n)/a′ time using 2
√

log ρ(n)/a′ processors for some
large enough constant a′ that does not depend on the permissibility constant a.

In the deterministic setting, Theorem 3.3 follows from this theorem by applying
it to a parameterization P for cardinality n with bitsize β(n) whose complexity is
equal to φ(n, β(n)), the maximum possible value. Randomized setting is considered
in section 6.1. In what follows, we shall denote ρ(n) and β(n) by simply ρ and β,
respectively.

Let us apply Theorem 5.6 with d = 3 to the linear parameterization of the input
as in Theorem 5.7. It is defined (as in section 4.2) by the linear map

(z1, z2, z3)→ I(z1, z2, z3) = (z3, P̃(z1, z2)).

Thus in Theorem 5.6 Σ(z1, z2, z3) consists of those tuples (z1, z2, z3) such that z3 ≤
P̃(z1, z2). This gives the following theorem.

Theorem 5.8. Let a′ be any positive constant. If a machine in the PRAM model
without bit operations works correctly on the input I(z1, z2, z3) for every permissible

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1493

z1, z2, and z3, in t =
√

log ρ/a′ time using 2t processors, then R3 can be partitioned by

at most 220t2 algebraic surfaces of degree at most 2t and each sign-invariant component
of this partition can be labeled yes or no so that a permissible integer point (z1, z2, z3)
lies in a sign-invariant component labeled yes iff I(z1, z2, z3) is feasible.

5.3. A lattice problem. We shall prove Theorem 5.7 by showing that an alge-
braic partition as in Theorem 5.8 cannot exist for large enough constants a and a′.
We proved this in the linear setting in section 4.3. We wish to generalize that proof
to the algebraic setting.

Let G be the graph corresponding to the optimum function P as in section 4.3
(Figure 4.1). Let fan(G) be its fan. Let us also rename the coordinates z1, z2, z3 as
z, x, and y, respectively. Thus z = 1 now serves as the affine plane in R3. Then in
the partition of Theorem 5.8, a permissible integer point in Z3 is labeled yes iff it lies
below fan(G) in the y-direction.

Recall that (1) the graph G is piecewise linear and convex with ρ segments, and
(2) all vertices of G have rational coordinates that can be expressed in terms of
numerators and denominators of absolute value at most µ = 2β or, in other words, of
bitsize at most log µ. All vertices of G lie in the interior of the bounding box defined
by |x| ≤ 2µ and |y| ≤ 2µ. Consider two horizontal planes, parallel to the affine plane,
defined by z = µ̄ and z = 2µ̄, where µ̄ would be chosen to be much larger than µ. Let
B denote the region (slab) between the two planes that is enclosed by the fan through
the boundary of the bounding box in the affine plane. The coordinates of all integer
points in this slab have bitsizes at most twice β̄ = log µ̄. The following theorem would
imply that the partition as in Theorem 5.8 cannot exist.

Theorem 5.9. Let S be any set of surfaces in R3 with total degree δ. Assume
that β̄ = log µ̄ is greater than a large enough constant multiple of β = logµ and
that log ρ is greater than a large enough constant multiple of log δ. Then at least one
sign-invariant component in the partition of B formed by the surfaces in S contains
an integer point lying below fan(G) and also an integer point strictly above this fan.

Remark. Since ρ ≤ 4µ2 trivially, the assumption in the theorem also implies that
log µ̄ is much greater than log δ.

Before we prove the theorem, let us see why it implies that the partition as in
Theorem 5.8 cannot exist; this will prove Theorem 5.7. Let S be the set of surfaces
that occur in Theorem 5.8. Their total degree δ is at most 2t220t2 = 221t2 , where
t = log ρ/a′. Then choose the constant a′ and the permissibility constant a large
enough and apply Theorem 5.9 to this set S exactly as we applied Theorem 4.9 to
the set of planes occurring in Theorem 4.8.

In the rest of this section we shall prove Theorem 5.9. Assume, to the contrary,
that no sign-invariant component in the partition of B contains an integer point below
fan(G) and also an integer point strictly above fan(G). In what follows, this property
of the partition will be called the separation property. We shall first smooth and refine
the partition of B so that the regions in the resulting partition have a simple shape.
Then by the pigeonhole principle we shall show that some region in this partition
must violate the separation property.

Transversality. The surfaces S in Theorem 5.9 depend on the nonuniform ma-
chine under consideration. In general, they can be highly singular; this cannot be
helped, since we have no control over the nonuniform machine. Singularities can
cause problems in our proof, but fortunately we can get rid of them as follows.

First, we can assume that no integer point in the slab B lies on any surface in S.

1494 KETAN MULMULEY

Otherwise, one can ensure this without losing the separation property by replacing
each surface with two surfaces obtained by perturbing the constant term in its defining
equation infinitesimally; since there are only finitely many integer points in B, we can
choose the perturbation small enough so that the underlying partition of the integer
points in B according to sign-invariant components does not change (see Figures 5.1
and 5.2). We can also add infinitesimal reals freely to the coefficients of the polynomi-
als defining the surfaces in S without losing the preceding or the separation property.
In other words, we can assume that the surfaces in S are in general position—this
just means we have the freedom to perturb them by adding infinitesimal reals to
the coefficients of their defining equations. The general position assumption lets one
handle the technical problems mentioned above in a clean fashion, because then the
transversality techniques from differential geometry (see [16, Chapter 2]) become fully
applicable. For example, by perturbing the surfaces in S infinitesimally we can now
assume that they are smooth (Sard’s theorem), that they intersect transversally, that
their silhouettes (to be defined soon) are smooth, and so forth.

Collins’s decomposition. Let Q be the set that contains (1) the surfaces in
S, (2) the planes bounding the slab B, and (3) 6δ horizontal dividing planes that
subdivide the slab B into horizontal slabs of equal height. By horizontal, we mean
parallel to the affine plane.

Consider the partition of B formed by the surfaces in Q. The regions in this
partition can have very complicated shapes. Therefore, we shall refine the partition
further so that the regions in the resulting partition have simple shapes following a
variant of the method due to Collins [10]. Before we define the partition formally, let
us make a definition.

Let s be a surface in S. We say that a point p on s belongs to the silhouette of s,
as seen from the origin, if the line joining p and the origin is tangent to s at p. This
happens iff

f(x, y, z) = 0 and x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= 0,(5.1)

where f(x, y, z) = 0 is the polynomial equation defining s. The silhouette of s, if
nonempty, is a smooth space curve if s is in general position (see [16, Chapter 2]).

Let us project onto the affine plane (1) the silhouette of every surface in S
(restricted to the slab B), and (2) the intersection between every pair of surfaces
in Q; by our general position assumption, this intersection is a smooth space curve.

The preceding projection yields an arrangement of curves within the bounding box
in the affine plane (Figure 5.3). We refine this arrangement further by passing vertical
lines (parallel to the y-axis) through all intersections among the curves, singular2

points on the curves, and also critical points on the curves where the tangents become
parallel to the y-axis. Let us denote the resulting partition of the bounding box by
A(Q). It is a two-dimensional Collins’ decomposition. Every region (cell) in this
partition is monotone with respect to the y direction. In other words, its intersection
with any line parallel to the y-axis is connected, if nonempty.

The affine partition A(Q) can be lifted to the slab B in a natural fashion: We
pass fans through all projected curves in the affine plane; these are the same as the
fans through pairwise intersections and silhouettes of the surfaces in Q. We also pass
fans through all auxiliary vertical lines that we added in the affine plane. These fans

2Transversality conditions cannot remove such singular points on projections.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1495

bounding
box

affine plane: z = 1

projections of
 intersections

 (and silhouettes)

x

y

Fig. 5.3. Decomposition A(Q) in the affine plane.

along with the surfaces in Q yield a decomposition of B. We shall denote it by D(Q).
It has the following properties [10]:

1. Each region, i.e., a three-dimensional cell in D(Q), has at most six sides. It
is monotone when viewed from the origin. In other words, its intersection
with any ray is connected, if nonempty. By a ray, we mean here and in what
follows a ray coming from the origin. (In Collins’s original construction, the
regions of D(Q) are monotone with respect to the z-direction.) Monotonicity
allows us to define the top side, the roof, and the bottom side, the floor, of
each region unambiguously. Formally, the floor consists of all points on the
boundary of the region that are hit first by the rays coming from the origin;
the roof is defined similarly.

2. The floor of each region is contained in just one surface in Q; the same is true
of the roof.

3. The remaining sides of the region are contained in fan surfaces.
4. The projection of each cell in D(Q) is a cell in the affine partition A(Q).
5. The total number d(Q) of cells in D(Q) is O(δO(1)). This follows from the

Milnor–Thom result [34, 49] because the total degree of the surfaces in Q,
along with the fan surfaces, is O(δO(1)).

Sample points. Next, we choose rational sample points on the edges of the
graph G exactly as in section 4.3. The x-coordinates of any two sample points differ
by at least 1/(µδc).

Let us call a cell R in D(Q) flat if its roof and also the floor are contained in the
dividing horizontal planes. Given a sample point p on e, we say that R is good for p if
its interior contains an integer (lattice) point lying on the ray through p. We say that
R is good for a bounded edge e in the graph G if it is good for [1/d(Q)]th fraction of
the sample points on e.

Lemma 5.10. D(Q) contains a flat cell that is good for [1/d(Q)]th fraction of the
edges in G.

Proof. The number of flat cells in D(Q) is at most d(Q). Hence, by the pigeonhole

1496 KETAN MULMULEY

principle, it suffices to show that for every bounded edge e in G there is at least one
good flat cell in D(Q). Applying the pigeonhole principle once again, it suffices to
show that for every sample point p on e, there is at least one good flat cell in D(Q).
The ray through p is split into 6δ+1 intervals by the 6δ dividing planes. At most δ of
these intervals are intersected by the surfaces in S. To see this, note that the surfaces
in S are in general position and the sample points do not depend on S. Hence, the
ray through p is intersected by the surfaces in S in a finite number of points, and this
number is at most δ, the total degree of the surfaces in S, by the simplest special case
of the Milnor–Thom result (which is essentially Bezout’s result). It follows that there
is at least one such interval in the interior of B that is not intersected by any surface
in S. Denote this interval by ep. Let P1 and P2 be the consecutive dividing planes
adjacent to this interval. Note the following:

1. The interval ep is contained in some cell of D(Q).
2. The endpoints of ep lie on P1 and P2. But they do not lie on any surface in S

if the surfaces in S are in general position. The latter fact follows because the
rays through the sample points on the graph G as well as their intersections
with the dividing planes are finite in number and they do not depend on S.
Hence, we can perturb the surfaces in S infinitesimally before the construction
of the decomposition D(Q) begins and ensure that no surface in S contains
any such intersection.

3. The preceding property, in conjunction with the properties of D(Q), implies
that the roof and the floor of the cell in D(Q) containing ep must be contained
in the planes P1 and P2, respectively. Hence, this cell must be flat.

4. The vertical span of ep is µ̄/(6δ + 1).

The interior of ep must contain an integer lattice point. This follows from the last
property just as in the proof of Lemma 4.10. Thus the flat cell containing ep is good
for p.

The graph G contains ρ bounded edges of distinct slopes. By the preceding
lemma, there is a flat cell C in D(Q) that is good for at least ρ̄ = ρ/d(Q) such edges.
Let these ρ̄ edges be e1, e2, . . . ordered from left to right in the affine plane. Such
ordering is possible because the graph G, being a function graph, is monotone with
respect to the y direction. Let T be the projection of C onto the affine plane. It
belongs to the affine partition A(Q). Hence, it is monotone in the y direction. Let g
denote the curve containing the upper side of T . By the definition of A(Q), the upper
side of T is monotone with respect to the y direction and contains no singularities.
Hence, it defines a certain smooth function y = ḡ(x) within the span of T along the
x-axis.

Lemma 5.11. The second derivative of the function ḡ(x) has at least ρ̄−1 extrema
within the span of T along the x-axis.

Proof. The basic idea is to show that the curve g gets very close to several sample
points on each segment ei. Since these segments are not too far apart, and their slopes
are sufficiently different, g must change its direction several times (Figure 5.4).

Fix any ei. The cell C is good for ei. Hence, it is good for at least [1/d(Q)]th
fraction of the sample points on ei. Since the number of sample points on ei is δc

and d(Q) is O(δO(1)), there are at least eight such sample points in the interior of
each ei, assuming that the constant c is large enough. In what follows, these eight
sample points will be the only active sample points on ei; all other sample points
are discarded. Order these remaining sample points from left to right. Fix any such
sample point p. It must lie within T because C contains an integer lattice point—call

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1497

x

y

e1

e2

projection of
 an integer point

 not in C

(active)
sample point

T

Fig. 5.4. Upper side of T .

it p̄—on the ray through p.

Claim. The difference between the y-coordinate of p and the value of the function
ḡ(x) at the x coordinate of p is at most 1/µ̄.

Proof of the claim. Consider the integer point p̂ with the same x and z coordinates
as the integer point p̄ but whose y coordinate is one plus the y-coordinate of p̄. This
point certainly lies in the slab B since the bounded edge of G containing p is well
within the interior of the bounding box in the affine plane. The point p̂ does not lie
on any ray through the graph G because p lies on G and G is monotone in the y
direction. Since our partition has the separation property, the cell C cannot contain
p̂ because it already contains p̄. Let q denote the projection of p̂ onto the affine plane.
It lies above p and has the same x-coordinate as p. Moreover, its y-coordinate differs
from that of p by at most 1/µ̄. This follows because the z-coordinate of p̂—in fact, of
every point in the slab B—is at least µ̄. Since the cell C does not contain p̂ and T is
monotone in the y direction, the upper side of T must separate p and q (Figure 5.4).
This proves the claim.

Let a1, a2, . . . be the slopes of e1, e2, They are all different. The difference
between any two slopes, ignoring a constant factor, is at least 1/µ2 because the
coordinates of all vertices in G can be expressed as rationals with numerators and
denominators of absolute value at most µ. The x-coordinates of any two sample
points differ by at least 1/(µδc), as we remarked earlier. These facts, in conjunction
with the previous claim and Roelle’s mean value theorem in elementary calculus,
imply the following:

1. The derivative dḡ(x)/dx attains a value close to ai between the x-coordinates
of the jth and (j + 1)st sample points on ei for all 1 ≤ j < 8. By close we
mean that the error term is O(µδc/µ̄).

2. This implies further that the second derivative attains a value close to zero
between the x-coordinates of, say, the third and the sixth sample points on
ei. Similarly, somewhere between the x-coordinates of the seventh sample
point on ei and the second sample point on ei+1, the absolute value of the
second derivative is Ω(|ai+1 − ai|/µ), ignoring an additive O(µ2δ2c/µ̄) error
term; here one also needs to use the fact that the x-coordinates of any two
sample points differ by at most µ.

3. The preceding fact implies that every pair (ei, ei+1) contributes at least one

1498 KETAN MULMULEY

distinct extremum of the second derivative because log µ̄ is greater than suf-
ficiently large constant multiples of logµ and log δ.

The lemma follows from the last fact.
Claim. The second derivative of the function ḡ(x) has at most O(δO(1)) extrema

in the span of T along the x-axis.
Proof. Let g(x, y) = 0 be the polynomial equation satisfied by the upper side of

T . Its degree is at most O(δO(1)) because the curve g containing the upper side results
by projecting a silhouette or an intersection of two surfaces in S. Differentiating this
equation three times in a row, we get four implicit equations satisfied by x, y and the
three derivatives y(1), y(2), and y(3):

g(x, y) = 0, g1(x, y, y(1)) = 0, . . . ,

where y(k) is a formal variable that denotes the kth order derivative. In addition, the
extrema satisfy y(3) = 0. Because the surfaces in S are in a general position, these
five equations in five variables have a finite number of real solutions. This number is
O(δO(1)), by the Milnor–Thom result.3 Hence, the claim follows. (Formally, finiteness
of the number solutions used above follows from the jet-transversality results; cf. [16,
Chapter 2]. Alternatively, one can forget about transversality and just bound the
number of connected components of the solution set using the Milnor–Thom result.
The rest of the proof then needs to be modified a bit.)

The claim contradicts the preceding lemma because ρ̄ = ρ/d(Q), d(Q) = δO(1),
and log ρ is larger than a sufficiently large multiple of log δ.

This proves Theorem 5.9.

6. Extensions.

6.1. Randomized algorithms. All our lower bounds extend to randomized al-
gorithms in the PRAM model without bit operations. The following result generalizes
Theorem 3.3.

Theorem 6.1. Fix any homogeneous optimization problem. Let φ(n, β(n)) be its
parametric complexity for input cardinality n and bitsize β(n). Then there exists a
large enough constant b such that the decision version of the problem cannot be solved
in the PRAM model without bit operations using randomization in

√
log[φ(n, β(n))]/b

expected time using 2
√

log[φ(n,β(n))]/b processors; this is so even if we restrict every
numeric parameter in the input to be an integer with bitlength at most aβ(n) for a
large enough constant a.

This also applies to the additive approximation version of the problem.
To prove it, we need only to extend Theorem 5.7. Its analogue in the randomized

setting, following the same notation, is the next theorem.
Theorem 6.2. Assume that the permissibility constant a is large enough. Then

no randomized machine in the PRAM model without bit operations can decide whether
w ≤ F (I) correctly for every I ∈ I in T =

√
log ρ(n)/a′ expected time using

p = 2
√

[log ρ(n)/a′ processors with at most ε two-sided-error probability for some large
enough constant a′ that does not depend on the permissibility constant a.

One can similarly extend Theorem 4.7 for the linear PRAM model; we leave this
to the reader.

3Or one can also apply Bezout’s theorem, but one has to be a bit careful. Bezout’s theorem
is applicable only if the number of complex solutions, not just the real solutions, is finite. This
technicality can be taken care of as in Lemma 1 of Milnor [34].

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1499

Now we shall prove Theorem 6.2. In what follows, we shall denote ρ(n) and β(n)
by simply ρ and β, respectively. Let I(z1, z2, z3) denote the total parametrized input,
which includes the threshold, as in section 5.2. Let Φ be any suitably chosen subset of
the permissible integer points in Z3. Consider a probability distribution on Z3 that
is zero outside Φ and uniform on Φ. By Yao’s lemma [54], it suffices to show, ignoring
factors of two, that there is no deterministic machine M in the PRAM model without
bit operations containing p processors that runs in expected time T , possibly erring
on at most ε fraction of the points in Φ; here the expectation is meant to be with
respect to the probability distribution on the input parameters. We can assume that
ε is a small enough constant, say, 1/100, by increasing T suitably.

Fix another positive constant ε̄ = 1/100. Let us call a permissible integer point
z in Φ satisfactory with respect to Φ, ε, and ε̄ if M stops on the corresponding input
I(z) in t = T/ε̄ time without any error. The proof of Theorem 5.8 can be extended
verbatim to prove the following.

Theorem 6.3. Suppose a deterministic machine M as described above exists
in the PRAM model without bit operations. Then R3 can be partitioned by at most
220t2 algebraic surfaces of degree at most 2t and each sign-invariant component of
this partition can be labeled yes or no so that a satisfactory permissible integer point
(z1, z2, z3) lies in a sign-invariant component labeled yes iff I(z1, z2, z3) is feasible.

Now we can generalize the proof of Theorem 5.7 to the randomized setting. First,
let us specify the set Φ that fixes the input distribution. Let G be the graph as in
section 5.3. Recall that the ray through each sample point on the graph G is split into
exactly 6δ+1 intervals by the horizontal dividing planes. Moreover, each such interval
contains a permissible integer point (cf. the proof of Lemma 5.10). Fix any such
integer point on every such interval; in what follows, it will be called a distinguished
point. The neighbor of this distinguished point is defined to be the integer point in
the slab B with the same x and z coordinates as the distinguished point, but with
the y coordinate greater by plus one. The graph G contains ρ (bounded) edges with
distinct slopes. We shall let Φ be the set of distinguished points, along with their
neighbors, on all rays through the sample points on these edges. Observe that the
neighbors of all distinguished points are disjoint; this follows because G is monotone
in the y-direction. Hence, exactly half of the points in Φ are distinguished. Let us
call a distinguished point satisfactory if it is satisfactory and so is its neighbor. The
number of unsatisfactory distinguished points is at most 2(ε + ε̄)th fraction of the
number of points in Φ. Let us call a sample point on an edge of G satisfactory if at
least half of the distinguished points on the ray through it are satisfactory. Since the
rays through all sample points have exactly the same number of distinguished points,
the number of such unsatisfactory sample points is at most 4(ε+ ε̄)th fraction of the
total number of sample points on the edges of G. Let us call an edge of G satisfactory
if at least half of the sample points on that edge are satisfactory. Since all edges of
G have the same number of sample points, the number of unsatisfactory edges is at
most 8(ε+ ε̄)ρ ≤ 8ρ/50. Discard all unsatisfactory edges and all unsatisfactory sample
points on the satisfactory edges. We are still left with a large number of satisfactory
quantities.

Now we can translate the proof of Theorem 5.7 with the use of Theorem 5.8
substituted with that of Theorem 6.3, making sure that everything involved is satis-
factory. Thus, we say that a flat cell R in D(Q) is good for a (satisfactory) sample
point p; we mean that R contains a (satisfactory, distinguished) integer point on the
ray through p. The proof of Lemma 5.10 can be translated easily since the number

1500 KETAN MULMULEY

of unsatisfactory intervals, i.e., the intervals containing unsatisfactory distinguished
points, on any sample ray is at most 3δ+ 1, and they can be thrown away. Similarly,
Lemma 5.11 holds in this extended setting because the only integer points involved in
its proof can be assumed to be satisfactory distinguished points and their satisfactory
neighbors.

This proves Theorem 6.2.

6.2. PRAM with limited bit operations. We now indicate how our lower
bounds can be extended to the PRAM model with limited bit operations.

Theorem 6.4. The lower bounds in Theorems 3.3 and 6.1 also hold in the PRAM
model with limited bit operations.

For the sake of simplicity, we shall consider only the deterministic setting.
We indicate only the changes that need to be made to the proof for the PRAM

model without bit operations. Suppose there were to exist a machine M in this
model for the problem under consideration that works in t(n,N) time using p(n,N)
processors. Let z1, . . . , zd be the integer parameters that parametrize the input to
this machine as in section 5.1. Let σ(t) denote an equivalence class of parametrized
inputs at time t, where two inputs belong to the same σ(t) iff all processors in the
machine follow the same branching path up to time t when the machine is started on
either of the inputs.

Claim. Fix an equivalence class σ(t) and the value of the parametrized input
z = (z1, . . . , zd) modulo 2t(n,N); i.e., zi modulo 2t(n,N) is fixed for every i. Then for
all inputs z in this equivalence class having the same value modulo 2t(n,N), and any
time t, the value of any memory location modulo 2t(n,N)−t at that time is the same.

Proof. Proof is by induction on t. The base case is clear. Consider t > 1.
Once σ(t) is fixed, so is the corresponding σ(t− 1). By the induction hypothesis, the
values of all memory locations modulo 2t(n,N)−t+1 are fixed. Consider any memory
location u. At time t, either u remains unchanged or is changed in accordance with
an assignment of type:

1. u := v{+,−, or, ∗}w, where v and w are memory locations or constants; in
this case the value of u at time t modulo 2t(n,N)−t, in fact, modulo 2t(n,N)−t+1

as well, is fixed by the values of v and w at time t− 1 modulo 2t(n,N)−t+1; or
2. u := bu/2c; in this case the value of u at time t modulo 2t(n,N)−t is fixed by

its value at time t− 1 modulo 2t(n,N)−t+1.
It follows that once we fix the input z modulo 2t(n,N), and an equivalence class

σ(t), t ≤ t(n,N), then each assignment of type u := bu/2c that occurs on the
computation path of any processor up to time t can be replaced unambiguously by a
rational assignment u := u/2 or u := u/2−1. Now it can be checked that the proof of
Theorem 5.6 goes through verbatim provided we confine ourselves to z-inputs having
the same value modulo 2t(n,N). For the sake of simplicity, we shall confine ourselves
with z-inputs that are zero modulo 2t(n,N); we call them green inputs. We are thus
led to the following extension of Theorem 5.6 in the extended model.

Theorem 6.5. Assume that the language Σ(z1, . . . , zd) is accepted in the PRAM
model with limited bit operations using p(n,N) processors in t(n,N) time. Then Rd

can be partitioned by a set of at most

[2 + 2p(n,N)2t(n,N)]dt(n,N)p(n,N)t(n,N)

polynomials of degree at most 2t(n,N) and each sign-invariant component can be labeled
yes or no so that a green permissible z ∈ Zd belongs to Σ(z1, . . . , zd) iff it lies in a
sign-invariant component labeled yes.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1501

Now we are ready to extend the proof of Theorem 5.7 to the extended model. For
the rest of the proof, we simply confine ourselves to the green inputs. Note that the
green z points form a sublattice of the original integer lattice. If we were to change
our coordinate system so as to scale the green lattice by a factor of 1/2t(n,N), then it
would look like our original lattice. What is the effect of this scaling on the rest of the
proof of Theorem 5.7? Well, the quantities µ and µ̄ that occur in section 5.3 have to
be scaled by 1/2t(n,N), but the remaining quantities such as ρ and δ are unaffected.
If we choose the constant a′ there large enough, logµ and log µ̄ are scaled down by at
most the same constant factor, say, 2. But it can be checked that the rest of the proof
in section 5.3 is robust with respect to a constant factor scaling of logµ and log µ̄.
This proves Theorem 5.7 in the extended PRAM model with limited bit operations.

6.3. The number of iterations in sequential algorithms. Our lower bound
for the mincost-flow and max-flow problems, which are instances of (combinatorial)
linear programming, implies an interesting lower bound on the number of iterations
in the sequential iterative algorithms for linear programming such as the ellipsoidal
algorithm or the interior-point algorithm. These algorithms consist of a sequence of
iterations, and each iteration can be accomplished—at least in theory—in O(log2 n)
parallel steps using a polynomial number of processors; this can be done using fast
parallel algorithms for linear algebra [11] and approximate root extraction [3, 39].
It follows from Theorem 5.7 that given any parametrized family I = I(z) of inputs,
these algorithms must require Ω(

√
log ρ(n)/ log2 n) iterations for some instance in the

family; here ρ(n) is defined for the family I as in Theorem 5.7. In the worst case—
e.g., when I is a parametric family that attains maximum parametric complexity
for the mincost-flow problem—this lower bound is Ω(n1/4/ log2 n). A similar lower
bound applies to any iterative algebraic algorithm, deterministic or randomized. By
an iterative algorithm, we mean an algorithm whose each iteration admits efficient
parallelization in a theoretical sense. In practice, such an iteration may not be actually
carried out in parallel, because parallel algorithms that are efficient in theory are not
always practical. Rather, we think that parallelizability of a step indicates that it
may be amenable to fast special-purpose algorithms. For example, fast algorithms
for solving sparse linear systems seem to be useful in speeding up the iteration in the
interior-point method. Hence, the number of iterations is an important criterion in
practice.

Now suppose we are given an iterative algebraic algorithm, deterministic or ran-
domized, whose each step can be efficiently parallelized in τ(n) parallel steps. It
follows similarly that given any family I(z) of inputs, this algorithm must require
Ω(
√

log ρ(n)/τ(n)) iterations for some instance in the family.

6.4. Weighted MAX-SNP problems. Once one has shown that one problem
is hard to parallelize in the PRAM model without bit operations, it follows, as in the
NP-completeness theory, that any problem that can be reduced to it fast in parallel
in this model is also hard to parallelize. In this fashion one can show that several
weighted MAX-SNP problems [41] are also hard to parallelize in the PRAM model
without bit operations. For reasons stated in section 2.2 we consider only problems
that have efficient sequential algorithms which do not manipulate bits (here this means
strongly exponential time algorithms).

Theorem 6.6. The following problems cannot be solved in the PRAM model
without bit operations (or with limited bit operations) deterministically (or with ran-
domization) in O(Na) (expected) time using 2N

a

processors, where N denotes the
input bitlength and a is a small enough positive constant. In all cases, the weights are

1502 KETAN MULMULEY

meant to be nonnegative integers. (For the definitions of these problems, see [41].)
1. Weighted 3-SAT-B, weighted 3-SAT-V, and weighted 2-SAT.
2. Weighted independent set-B.
3. Weighted vertex cover-B.
4. Weighted clique.
5. Weighted three-dimensional matching.
6. Weighted Steiner trees in graphs.
7 Weighted not-all-equal 3-SAT.
8. Weighted max-cut.
9. Traveling salesman.

10. Traveling salesman (metric).
Proof. We have already shown that the weighted s-t-mincut problem is hard to

parallelize in our model. It is easy to reduce one of the problems on the list, say,
the weighted 3-SAT-B, to this problem, and then one can use standard reductions
among weighted MAX-SNP-complete problems [41]. One has only to check that
these reductions do not manipulate bits, i.e., they work fast in parallel in the PRAM
model without bit operations.

6.5. Higher order parametric complexity. The notion of parametric com-
plexity as defined in section 3 can be readily generalized to allow any fixed number
of parameters. Thus instead of a linear parameterization P in one rational parameter
λ, as defined in section 3.1, one can consider a parameterization with any constant
c number of rational parameters λ1, . . . , λc. The corresponding optimum function
graph G(P) should now be a convex c-dimensional simplicial complex. We define the
complexity ρ(n) of P to be the number of (bounded) facets of this complex. The
bitsize of P is defined to be the maximum among the bitsizes of the coordinates of
the vertices of G(P) and of the coefficients of the linear functions in P specifying
numeric parameters. We associate with P a (c+1)-dimensional homogeneous integral
parameterization P̃ very much as in section 3.1. Now given a large enough permissi-
bility constant a, we can let I be the set of inputs of the form (zc+2, I) in the decision
version of our general optimization problem, where the following hold:

1. The integer zc+2 denotes the threshold and its bitsize is at most aβ(n).
2. I is of the form P̃(z1, . . . , zc+1) for some integers z1, . . . , zc+1 of bitsize at

most aβ(n).
Then the natural generalization of Theorem 5.7 to such parametric input families I
holds. The proof generalizes because Collins’ decomposition, the Milnor–Thom result,
and the other techniques used in section 5.3 work in higher dimensions as well.

7. The P versus NC problem. Valiant [51] conjectured that over a field of
characteristics other than two, the permanent of an n×n matrix cannot be expressed
as a specialization—projection in his terminology—of the determinant of a matrix of
poly(n) size. An evidence in support of this conjecture is #P-completeness of the
permanent. Analogously we shall formulate for the mincost-flow problem a conjec-
ture, which if true would imply that P 6= NC. We shall also prove its special case
(Theorem 7.4). Evidence in support of the conjecture will be provided by this special
case, our lower bound for the mincost-flow problem (Theorem 1.1) and the general
belief that the perfect-matching problem for unweighted graphs does not belong to
NC1—it is not even known to belong to NC. The mincost-flow problem is chosen only
for concreteness (see the discussion after the conjecture). In contrast to the setting
in Valiant [51], which is purely algebraic, the issue of bitlengths is of paramount
importance here.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1503

Let C denote the set of complex numbers.

Definition 7.1. Given a hypersurface H ∈ Cl and a linear map F : Ck → Cl,
k ≤ l, let F−1(H) be the pullback (inverse image) of H under F .

Here F can be nonhomogeneous, i.e., it can have constant additive terms in its
defining forms.

We are mainly interested in the case when l = m2 for some m and H is the
determinant hypersurface SLm(C) in Cm

2

. It is defined as follows. Let yij , i, j ≤ m,

denote the coordinates of Cm
2

. Let Y denote the m ×m matrix whose coefficients
are the coordinates yij . Let det(Y) denote its determinant. Then SLm(C) is defined
by the equation det(Y) = 1; it is known to be a smooth hypersurface. In this case
F−1(H) is defined by the equation det(F (x1, . . . , xk)) = 1, where x1, . . . , xk denote
the coordinates of Ck; the image F (x1, . . . , xk) is an m×m matrix whose coefficients
are linear forms in x1, . . . , xk, possibly nonhomogeneous.

Now consider the decision version of the mincost-flow problem. Here we are given
an n-vertex network whose each arc has integer cost and nonnegative integer capacity.
Given an integer flow value v and an integer threshold w, the problem is to decide
if there exists a flow with value v and cost at most w. The input can be identified
with an integer tuple I ∈ Zk with k = 2

(
n
2

)
+ 2 consisting of the costs, capacities,

flow value, and threshold, where Z denotes the set of integers. Let L(n) ⊆ Zk denote
the mincost-flow language, i.e., the set of tuples for which the answer is yes. For any
positive constant a, let B(a, n) denote the set of points in Zk whose each coordinate
has bitsize at most an, i.e., the integer points within the box defined by |xi| ≤ 2an

for all i ≤ k.

Definition 7.2. Given a hypersurface H ⊆ Cl and a linear function F : Ck →
Cl, l ≥ k, we say that the pullback F−1(H) separates L(n) within B(a, n) if the points
in B(a, n) that lie on it are precisely the ones in L(n) ∩B(a, n).

One can then make the following conjecture.

Conjecture. Consider the hypersurface H = SLm(C), where m ≤ 2n/d and
d > 0 is a large enough constant (d = 1 may suffice). For any positive constant a and

any one-to-one linear function F : Ck → Cm
2

, k = 2
(
n
2

)
+ 2, the pullback F−1(H)

cannot separate L(n) within B(a, n), assuming that n tends to infinity.

The linear function F in the conjecture is over complex numbers. This is desirable
because the methods of algebraic geometry work best over algebraically closed fields.
We feel that if the conjecture is true when F ranges over some special integral
functions—akin to Valiant’s projections [51]—then it should also be true when F
ranges over all complex linear functions. This will be borne out by Theorem 7.4,
which holds over complex numbers.

We chose the mincost-flow problem in our formulation only for concreteness. One
can choose any other problem that is not believed to be in NC, as long as it is
suitable for an algebraic approach. If the problem is in P , it should have a strongly
polynomial time algorithm. But it need not always be in P . For example, we can
choose the permanent problem. This yields a conjecture, stronger than Valiant’s [51],
which if true would imply that the permanent does not belong to NC.

Proposition 7.3. If the conjecture is true for some positive a < 1/(2d), then
P 6= NC.

Proof. The total bitlength of any tuple I in B(a, n) is at most kan = poly(n).
Suppose, to the contrary, that P = NC. Then the mincost-flow problem belongs to
NC. Hence there is a small arithmetic formula τ in the bits of I of size 2polylog(n) such
that the formula evaluates to one on such I in B(a, n) iff it belongs to L(n)∩B(a, n).

1504 KETAN MULMULEY

(Here and in what follows we think of a bit as just an integer that is zero or one.)
Each coordinate of I has bitsize at most an. Using Lagrange interpolation, one can
construct for its every bit a formula in the coordinate of size O(22an): this formula
evaluates to one iff that particular bit of the coordinate is one. Feeding these formulae
for bits into the preceding formula τ , we get a formula of size O(22an+polylog(n)) in
the coordinates of I; this formula evaluates to one on L(n)∩B(a, n) but on no other
point in B(a, n). Using Valiant’s reduction [51], one can now construct a matrix of
almost the same size whose entries are linear forms in the coordinates of I and whose
determinant is equal to the formula. This gives a one-to-one linear map F : Ck →
Cm

2

, where m = O(22an+polylog(n)) such that F−1[SLm(C)] separates L(n) within
B(a, n); moreover if a < 1/(2d), this m < 2n/d. This contradicts the conjecture.

Here is the intuition behind the conjecture.
Our lower bound for the mincost-flow problem (Theorem 1.1) is undoubtedly far

from optimal and holds only in the restricted PRAM model without bit operations.
But for this problem our model is fairly realistic and the lower bound quite strong;
it also holds when the bitsizes of the costs and capacities are restricted to be linear
in n, the number of vertices. This suggests that in the presence of this restriction
one probably cannot do much better than the following well-known parallel method,
which we shall call the explode-and-match method.

Let n be the number of vertices in the flow network G, and let l be the maximum
bitlength of a cost or capacity. The method first reduces the problem, by the well-
known method [27] that “explodes” costs and capacities, to the maximum cardinality
matching problem for an unweighted graph Ḡ of size n̄ = O(2lpoly(n)). For the
latter problem one can use a fast parallel algorithm in [24] or [36]. When l = O(n),
this method is better than the parallel algorithm of Shiloach and Vishkin [45] or of
Goldberg and Tarjan [13] as far as the parallel time is concerned, though the processor
count is very bad in comparison.

We are interested in the case when l = an and a is the constant in the conjecture.
Suppose the perfect-matching problem (and hence the maximum cardinality matching
problem) for unweighted graphs belongs to NCi for some i; so far this is open (it is
known to be in RNC2 [36]). Apply an NCi-algorithm to the exploded graph Ḡ.
This gives a formula in the bits of the encoding of Ḡ which evaluates to one iff Ḡ
has a matching of required cardinality; the size of this formula is 2c logi n̄ for some
constant c. In our case, n̄ = O(2lpoly(n)) = O(2anpoly(n)) with l = an. Hence the
explode-and-match method gives us a formula in the bits of the edge-capacities and
costs of G of size 2c(an)i+O(logi n) which evaluates to one iff the mincost-flow problem
for the original graph G is feasible. Now one can feed into this formula the O(4an)-size
formulae based on Lagrange interpolation for the bits of the costs and capacities (as
in the proof of Proposition 7.3). This yields a formula of size

O(2c(an)i+O(logi n)4an) = O(2b(an)i),

where b = c + 3. Apply Valiant’s reduction [51] to it. This gives a linear function

F : Ck → Cm
2

, where m = O(2b(an)i). The pullback F−1[SLm(C)] under this linear
function separates L(n) within B(a, n).

If i = 1, i.e., if the perfect-matching problem belongs to NC1, then one can choose
a small enough so that the preceding m < 2n/d. Then the conjecture, in fact, would
be false for such small a. However, it is widely believed that the perfect-matching
problem does not belong to NC1; it is not even known to belong to NC.

Let us assume that i > 1. It need not be an integer. In other words, we are

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1505

even allowing a rather unlikely possibility that the perfect matching problem belongs
to NCi, where i > 1 is a real number arbitrarily close to one. In this case the
quantity 2b(an)i above grows far faster than 2n/d since i occurs in the exponent of
the exponent. If we believe that when the costs and capacities have O(n) bitlengths
there is no parallel algorithm for the mincost-flow problem that is much better than
the explode-and-match method—this is what our lower bound suggests—then, in
turn, we are led to believe that one cannot come up with a separating linear function
F : Ck → Cm

2

withm that is much smaller than the O(2b(an)i) bound in the preceding
scheme. But this bound grows much faster than 2n/d. That, roughly speaking, is the
intuition behind the conjecture.

Remark. The belief that the perfect-matching problem does not belong to NC1

is, in turn, tied to the belief that the determinant problem does not belong to NC1 (it
belongs to NC2 [11]). This is because the parallel algorithm of Mulmuley, Vazirani,
and Vazirani [36] reduces the matching problem to a calculation of determinants.

Another piece of evidence in support of the conjecture is the following.
Theorem 7.4. The conjecture is true for every large enough constant a (for the

mincost-flow problem).
Proof. This can be proved using Theorem 5.9.
Let a be a large enough positive constant to be chosen later. Assume that the

conjecture is false. Then for some linear function F : Ck → Cm
2

, where m ≤ 2n/d,
the inverse image F−1(SLm(C)) separates L(n) within B(a, n). Let SL+

m(C) and
SL−m(C) be hypersurfaces infinitesimally close to SLm(C) defined by the equations
det(Y) = 1+ε and det(Y) = 1−ε, respectively, where ε is infinitesimally small. Their
inverse images—call them H1 and H2—partition B(a, n) so that all points of L(n)
within it are contained in the same sign-invariant component which does not contain
any other point of B(a, n).

Now we shall confine our attention to only those integer points of B(a, n) that lie
within a three-dimensional affine subspace chosen as follows. We know that the para-
metric complexity φ(n, β(n)) of the mincost-flow language is 2Ω(n) for β(n) = O(n)
(Theorem 3.5). Let P be a parameterization corresponding to the maximum value
of the parametric complexity. Then the corresponding graph G = G(P) (section 3.1)
has ρ = 2Ω(n) breakpoints. Let P̃ be the corresponding homogeneous integral pa-
rameterization (section 5.2). Consider the integral parameterization of the input as
defined before Theorem 5.8 by the map

E : (z1, z2, z3)→ I(z1, z2, z3) = (z3, P̃(z1, z2)).

We shall confine our attention to only those integer points in B(a, n) that lie in the
image of E, which is a three-dimensional integer lattice.

Let B be the region defined as in Theorem 5.9 by letting β̄ = log µ̄ = an/2;
then the coordinates of all integer points in B have bitsizes at most an, which means
B ⊆ B(a, n). Let S be the set of surfaces E−1(H1) and E−1(H2). Their total degree δ
is at most 2·2n/d. SinceB ⊆ B(a, n), the partition ofB formed by S has the separation
property as defined in section 5.3. Choose a large enough so that β̄ = log µ̄ = an/2
is much larger than β(n) = O(n) and d large enough so that log ρ = Ω(n) is much
larger than log δ, which is at most n/d+ log 2. Then it follows from Theorem 5.9 that
this partition of B cannot have the separation property, a contradiction.

Our technique cannot be used to prove this theorem for the permanent problem.
It also cannot be used for proving the conjecture for all positive constants a. This
is because all algebrogeometric results we used depend only on the low degree of the

1506 KETAN MULMULEY

surfaces that arise (actually the transversality results do not even depend on that).
In particular, the same technique ends up proving Theorem 7.4 for any hypersurface
H ⊆ Cm

2

of degree at most m (in place of SLm(C)). This apparent strength of the
technique is, in fact, its weakness, because of the following proposition.

Proposition 7.5. There exist hypersurfaces H ⊆ Cm
2

, m = 2n/d, of degree at
most m for which the conjecture is false for a < 1/(2d).

Proof. Given an integer point I ∈ B(a, n), let Î denote its boolean encoding, which
has length at most kan. Certainly there exists a (complicated) boolean formula of
degree at most kan which evaluates to zero over Î iff I ∈ L(n). For any integer z
of bitlength at most an, one can write down the Lagrange interpolation formula of
degree at most 22an for each of its bits. Feeding such formulae into the preceding
boolean formula, one gets a polynomial g which evaluates to zero on I ∈ B(a, n) iff
I ∈ L(n). Its degree is at most kan22an < 2n/d if a is sufficiently smaller than 1/(2d).

Let F be the trivial embedding of Ck in Cm
2

, and let H be defined by the polynomial
equation g = 0.

This means if we wish to decrease the value of the constant a in Theorem 7.4
to something less than 1/(2d), as required in the conjecture, we must somehow use
algebraic geometry of the specific hypersurface SLm(C) in the conjecture, or a similar
one, in a deep way. What makes such hypersurfaces special is that they have a natural
SLm action. Such algebraic varieties have been investigated heavily in algebraic
geometry and, more specifically, in geometric invariant theory [37] for over a century.
One source of great difficulty in our context is that the natural SLm action on such
varieties need not carry over to their linear pullbacks. Therefore an important question
here is, What is the algebraic geometry of linear pullbacks of such varieties? A good
understanding of this, we feel, will greatly help in the P versus NC problem.

8. Conclusion. Our work shows that parametric complexity of a weighted op-
timization problem sets a good lower bound for its parallel complexity in the PRAM
model without bit operations. In this way it may be possible to investigate parallel
complexity of several other weighted optimization problems. This is especially im-
portant for problems that are neither known to be P-complete nor have fast parallel
algorithms. A prime example is the minimum-weight perfect-matching problem. If
the weights are in unary, it has fast parallel algorithms [24, 36]. In general, its parallel
complexity is open. We conjecture that the parametric complexity of this problem is
2Ω(nε) for some small enough positive ε. It would then follow from our general lower

bound that it cannot be solved in our model in o(N ε′) time using 2o(N
ε′) processors,

where N is the input bitlength and ε′ is a small enough positive constant. Several
other problems may be investigated in this way, e.g., matroid intersection problems
[28], matroid parity problems [28], construction of blocking flows [13], and problems
in computational geometry.

Can one prove a good lower bound in our model for computing the permanent of
an integer matrix? Valiant’s result [50] leads one to expect that this problem should
be even harder than the problems considered in this paper. And yet, paradoxically,
it seems much harder to prove a good lower bound for the permanent. Csanky [11]
shows that the determinant can be computed in our model in O(log2 n) time using a
polynomial number of processors. Can one show that it cannot be computed in our
model in O(log n) time using a polynomial number of processors?

Most importantly, the role of algebrogeometric methods in computational com-
plexity deserves to be studied further. Such methods have been useful in proving
several combinatorial results; e.g., see [29, 33]. Can the same happen for a separation

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1507

question such as P 6= NC? Our work supports this possibility.

Acknowledgments. I wish to thank Allan Borodin, Steve Cook, Ajit Diwan,
Charlie Rackoff, Donald Goldfarb, Laci Lovász, Katta Murty, Tushar Samant, L. V.
Satyanarayana, and Milind Sohoni for illuminating discussions. I am also grateful to
the referee for useful criticisms.

REFERENCES

[1] N. Alon and R. Boppana, The monotone circuit complexity of boolean functions, Combina-
torica, 7 (1987), pp. 1–22.

[2] M. Ben-Or, Lower bounds for algebraic computation trees, in Proc. 15th ACM Symposium on
Theory of Computing, 1983, pp. 80–86.

[3] M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, A fast parallel algorithm for determining all
roots of a polynomial with real roots, SIAM J. Comput., 17 (1988), pp. 1081–1092.

[4] D. Bini and V. Pan, Polynomial and Matrix Computations, Birkhäuser Boston, Cambridge,
MA, 1994.

[5] R. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical
Computer Science, Vol. A, J. van Leeuwen, ed., North–Holland, Amsterdam, 1990, pp.
757–804.

[6] W. Bruns and U. Vetter, Determinantal Rings, Lecture Notes in Math., Springer, New York,
1988.

[7] P. Carstensen, Complexity of some parametric integer and network programming problems,
Math. Programming, 26 (1983), pp. 64–75.

[8] P. Carstensen, The Complexity of Some Problems in Parametric Linear and Combinatorial
Programming, Ph.D. dissertation, The University of Michigan, Ann Arbor, MI, 1982.

[9] N. Christofides, Worst-Case Analysis of a New Heuristic for the Traveling Salesman Prob-
lem, Technical report, Graduate School of Industrial Administration, Carnegie Mellon
University, Pittsburgh, PA, 1976.

[10] G. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,
in Proc. 2nd GI Conf. on Automata Theory and Formal Languages, Lecture Notes in
Comput. Sci. 33, Springer, Berlin, 1975, pp. 134–183.

[11] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), pp. 618–623.
[12] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy, Math.

Systems Theory, 17 (1984), pp. 13–27.
[13] A. Goldberg and R. Tarjan, A new approach to the maximum-flow problem, J. ACM, 35

(1988), pp. 921–940.
[14] D. Goldfarb, Worst-Case Complexity of the Shadow Vertex Simplex Algorithm, Report, De-

partment of Industrial Engineering and Operations Research, Columbia University, New
York, 1983.

[15] L. Goldschlager, R. Shaw, and J. Staples, The maximum flow problem is logspace complete
for P , Theoret. Comput. Sci., 21 (1982), pp. 105–111.

[16] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Springer-Verlag,
Berlin, 1973.

[17] M. Grotschel, L. Lovász, and A. Schriver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin, 1988.

[18] D. Gusfield, Sensitivity Analysis for Combinatorial Optimization, Memorandum UCB/ERL
M80/22, Electronics Research Laboratory, Berkeley, CA, 1980.

[19] J. Hȧstad, Almost optimal lower bounds for small depth circuits, in Advances in Computing
Research 5: Randomness and Computation, S. Micali, ed., JAI Press, Greenwich, CT,
1989, pp. 143–170.

[20] O. Ibarra and C. Kim, Approximation algorithms for certain scheduling problems, Math.
Oper. Res., 3 (1978), pp. 197–204.

[21] O. Ibarra, S. Moran, and L. Rosier, A note on parallel complexity of computing the rank
of order n matrices, Inform. Process. Lett., 11 (1980), p. 162.

[22] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4
(1984), pp. 373–395.

[23] R. Karp and V. Ramachandran, A survey of parallel algorithms for shared-memory ma-
chines, in Handbook of Theoretical Computer Science, J. van Leeuwen, ed., Elsevier Science
Publishers, New York, 1990, pp. 870–941.

[24] R. Karp, E. Upfal, and A. Wigderson, Constructing a perfect matching is in random NC,
Combinatorica, 6 (1986), pp. 35–48.

1508 KETAN MULMULEY

[25] L. Khachian, Polynomial algorithms in linear programming, U.S.S.R. Computational Mathe-
matics and Mathematical Physics, 20 (1980), pp. 53–72 (English translation).

[26] V. Klee and G. Minty, How good is the simplex algorithm?, in Inequalities, III, O. Shisha,
ed., Academic Press, New York, 1972, pp. 159–175.

[27] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, 1976.

[28] L. Lovász and M. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986.
[29] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988), pp.

261–277.
[30] D. Karger, Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm,

in Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms, 1993, pp. 21–30.
[31] D. Karger and R. Motwani, Derandomization through approximation: An NC algorithm

for minimum cuts, in Proc. 26th ACM Symposium on Theory of Computing, 1994, pp.
497–506.

[32] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kauffman, 1992.

[33] G. Margulis, Arithmetic groups and graphs without short cycles, in Proc. 6th International
Symposium on Inform. Theory, Tashkent 1984, Abstracts, Vol. I, pp. 123–125.

[34] J. Milnor, On the betti numbers of real varieties, in Proc. American Mathematical Society 15,
1964, pp. 275–280.

[35] K. Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms,
Prentice–Hall, New York, 1993.

[36] K. Mulmuley, U. Vazirani, and V. Vazirani, Matching is as easy as matrix inversion,
Combinatorica, 7 (1987), pp. 105–113.

[37] D. Mumford and F. Fogarty, Geometric Invariant Theory, 2nd ed., Springer, New York,
Berlin, Heidelberg, 1982.

[38] K. Murty, Computational complexity of parametric linear programming, Math. Programming,
19 (1980), pp. 213–219.

[39] C. Neff, Specified precision polynomial root isolation is in NC, in Proc. 31st IEEE Symposium
on Foundations of Computer Science, 1990, pp. 152–162.

[40] V. Pan and J. Reif, Efficient parallel solution of linear systems, in Proc. 17th ACM Sympo-
sium on Theory of Computing, 1985, pp. 143–152.

[41] C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,
JCSS, 43 (1991), pp. 425–440.

[42] A. Razborov, Lower bounds on the monotone complexity of some boolean functions, Dokl.
Akad. Nauk, (1985), pp. 798–801.

[43] J. Reif, ed., Synthesis of Parallel Algorithms, Morgan Kaufmann, 1993.
[44] A. Razborov and S. Rudich, Natural proofs, in Proc. 26th ACM Symposium on Theory of

Computing, 1994, pp. 204–213.
[45] Y. Shiloach and U. Vishkin, An O(n2 logn) parallel max-flow algorithm, J. Algorithms, 3

(1982), pp. 128–146.
[46] J. Steele and A. Yao, Lower bounds for algebraic decision trees, J. Algorithms, 3 (1982), pp.

1–8.
[47] E. Tardos, A strongly polynomial algorithm to solve combinatorial linear programs, Oper.

Res., 34 (1986), pp. 250–256.
[48] R. Tarjan, Algorithms for maximum network flow, Mathematical Programming Study, 26

(1986), pp. 1–11.
[49] R. Thom, Sur l’homologie des varietes algebriques reelles, Differential and Combinatorial

Topology, S. Cairns, ed., Princeton University Press, Princeton, NJ, 1965.
[50] L. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci., 8 (1979), pp.

189–201.
[51] L. Valiant, Completeness classes in algebra, in Proc. ACM Symposium on Theory of Com-

puting, 1979, pp. 249–261.
[52] A. Yao, Separating the polynomial-time hierarchy by oracles, in Proc. 26th IEEE Symposium

on Foundations of Computer Science, 1985, pp. 1–10.
[53] A. Yao, Lower bounds for algebraic computation trees with integer inputs, in Proc. 30th IEEE

Symposium on Foundations of Computer Science, 1989, pp. 1–10.
[54] A. Yao, Probabilistic computation: Toward a unified measure of complexity, in Proc. 18th

IEEE Symposium on Foundations of Computer Science, 1977, pp. 222–227.

LOWER BOUNDS IN A PARALLEL MODEL WITHOUT BIT OPERATIONS 1509

[55] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, Fast parallel computation of polyno-
mials using few processors, SIAM J. Comput., 12 (1983), pp. 641-644.

[56] A. Wigderson, The fusion method for lower bounds in circuit complexity, Bolyai Soc. Math.
Stud., (1993), pp. 453–467.

[57] N. Zadeh, A bad network problem for the simplex method and other minimum cost flow
algorithms, Math. Programming, 5 (1973), pp. 255–266.

STACK AND QUEUE LAYOUTS OF DIRECTED ACYCLIC
GRAPHS: PART I∗

LENWOOD S. HEATH† , SRIRAM V. PEMMARAJU‡ , AND ANN N. TRENK§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 4, pp. 1510–1539

Abstract. Stack layouts and queue layouts of undirected graphs have been used to model prob-
lems in fault-tolerant computing and in parallel process scheduling. However, problems in parallel
process scheduling are more accurately modeled by stack and queue layouts of directed acyclic graphs
(dags). A stack layout of a dag is similar to a stack layout of an undirected graph, with the additional
requirement that the nodes of the dag be in some topological order. A queue layout is defined in
an analogous manner. The stacknumber (queuenumber) of a dag is the smallest number of stacks
(queues) required for its stack layout (queue layout). In this paper, bounds are established on the
stacknumber and queuenumber of two classes of dags: tree dags and unicyclic dags. In particular,
any tree dag can be laid out in 1 stack and in at most 2 queues; and any unicyclic dag can be laid out
in at most 2 stacks and in at most 2 queues. Forbidden subgraph characterizations of 1-queue tree
dags and 1-queue cycle dags are also presented. Part II of this paper presents algorithmic results—in
particular, linear time algorithms for recognizing 1-stack dags and 1-queue dags and proof of NP-
completeness for the problem of recognizing a 4-queue dag and the problem of recognizing a 9-stack
dag.

Key words. stack layout, queue layout, book embedding, graph embedding, directed acyclic
graphs, dags, forbidden subgraph

AMS subject classifications. 05C99, 68Q15, 68Q25, 68R10, 94C15

PII. S0097539795280287

Stack layouts and queue layouts of undirected graphs have appeared in a variety
of contexts such as VLSI design, fault-tolerant processing, parallel process scheduling,
sorting networks, and parallel matrix computations [3, 4, 7, 8]. Bernhart and Kainen
[1] introduce the concept of stack layouts under the name book embeddings. Motivated
by problems in fault-tolerant processing, Chung, Leighton, and Rosenberg [3] examine
stack layouts of undirected graphs and construct optimal stack layouts for a variety
of classes of graphs. Motivated by problems in parallel process scheduling, Heath,
Leighton, and Rosenberg [4, 8] develop the notion of queue layouts and provide optimal
queue layouts for many classes of undirected graphs. However, problems in parallel
process scheduling are more accurately modeled by stack and queue layouts of directed
acyclic graphs (dags). Bhatt et al. [2] provide an example of a control-memory trade-
off in parallel process scheduling, obtained by examining queue layouts of binary trees.
Stack and queue layouts of dags are also closely related to stack and queue layouts of
partially ordered sets (posets). Nowakowski and Parker [9] and Syslo [10] initiate the
study of stack layouts of posets; Heath and Pemmaraju [6] extend the study to queue
layouts of posets.

∗Received by the editors January 23, 1995; accepted for publication (in revised form) May 7,
1997; published electronically April 27, 1999.

http://www.siam.org/journals/sicomp/28-4/28028.html
†Department of Computer Science, Virginia Polytechnic Institute & State University, Blacks-

burg, VA 24061-0106 (heath@cs.vt.edu). This research was supported in part by National Science
Foundation grant CCR-9009953.
‡Department of Computer Science, University of Iowa, Iowa City, IA 52242-1316 (sriram@

cs.uiowa.edu). This research was supported in part by National Science Foundation grant CCR-
9009953.
§Department of Mathematics, Wellesley College, Wellesley, MA 02181 (atrenk@wellesley.edu).

This research was supported by an Eliezer Naddor Postdoctoral Fellowship in Mathematical Sciences
from The Johns Hopkins University during the year 1991–1992 while in residence at Dartmouth
College.

1510

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1511

In this paper, we define stack and queue layouts of dags and develop combinatorial
results for stack and queue layouts of some special classes of dags. Each of these classes
arises from some property of the undirected graph underlying a dag. In particular,
we consider the property of the underlying undirected graph being a path, a cycle,
a tree, or a unicyclic graph. We also give forbidden subgraph characterizations of
1-queue tree dags and 1-queue cycle dags. In the companion paper [5], we develop
algorithmic results for stack and queue layouts of dags. In particular, we show that
1-stack and 1-queue dags can be recognized in linear time, while the problems of
recognizing 9-stack dags and 4-queue dags are both NP-complete.

The organization of this paper is as follows. Section 1 contains definitions, nota-
tions, and an initial discussion of 1-queue dags. In section 2, we examine stack layouts
of tree dags and unicyclic dags. In section 3, we examine the queue layouts of tree
dags and unicyclic dags. In section 4, we present a forbidden graph characterization
of 1-queue tree dags and 1-queue cycle dags. Section 5 contains concluding remarks
and a conjecture.

1. Preliminaries. Following a common distinction, we use the terminology edge
for undirected graphs, and the terminology arc for directed graphs; we use the termi-
nology node for both undirected and directed graphs. The definitions relevant to stack
and queue layouts of undirected graphs are found in Heath and Rosenberg [8] and are
reproduced here. Throughout these definitions, the concept of a total order σ on a
set V of nodes is central; the notation u <σ v, where u, v ∈ V , is used consistently to
emphasize the particular total order currently under consideration.

Let G = (V,E) be an undirected graph without multiple edges or loops. A k-stack
layout of G consists of a total order σ on V along with an assignment of each edge
in E to one of k stacks, s1, s2, . . . , sk. Each stack sj operates as follows. The nodes
of V are scanned in left-to-right (ascending) order according to σ. When a node v
is encountered, any edges assigned to sj that have v as their right endpoint must be
at the top of the stack and are popped. Any edges that are assigned to sj and have
left endpoint v are pushed onto sj in descending order (according to σ) of their right
endpoints. The stacknumber SN(G) of G is the smallest k such that G has a k-stack
layout. G is said to be a k-stack graph if SN(G) = k.

A k-queue layout of G consists of a total order σ on V along with an assignment
of each edge in E to one of k queues, q1, q2, . . . , qk. Each queue qj operates as follows.
The nodes of V are scanned in left-to-right (ascending) order according to σ. When
a node v is encountered, any edges assigned to qj that have v as their right endpoint
must be at the front of the queue and are dequeued. Any edges that are assigned to
qj and have left endpoint v are enqueued into qj in ascending order (according to σ)
of their right endpoints. The queuenumber QN(G) of G is the smallest k such that G
has a k-queue layout. G is said to be a k-queue graph if QN(G) = k.

We now consider directed graphs. Let G = (V,E) be an undirected graph, and let
~G = (V, ~E)1 be any dag obtained from G by directing the edges in G. More precisely,

each edge {u, v} ∈ E is replaced by either arc (u, v) or by arc (v, u) in ~E, and the

resulting directed graph ~G = (V, ~E) is a dag, i.e., there is no induced directed cycle

in ~G. G is the covering graph of the dag ~G; the covering graph of an arbitrary dag
is obtained by removing the direction from all the arcs. A dag is connected if its
covering graph is connected. If (u, v) ∈ ~E, then u is an in-neighbor of v and v is an

1The~ notation always distinguishes a directed graph from an undirected graph or a set of arcs
from a set of edges.

1512 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

& %
6

�°�� �°�� �°�� �°���°��
�°��

- - - -
?�

�
�
�
�
�
�
��3 Q

Q
Q
Q
Q
Q
Q
QQs

1 2 3 4 5

6

Fig. 1.1. A 2-stack, 2-queue dag.

out-neighbor of u. The indegree of v is its number of in-neighbors, while the outdegree
of v is its number of out-neighbors. Two arcs, (u1, v1) and (u2, v2), are independent

if the four nodes u1, u2, v1, and v2 are distinct. A topological order of ~G = (V, ~E) is

a total order σ on V such that (u, v) ∈ ~E implies u <σ v.

We are particularly interested in some special classes of dags. A path dag ~G =
(V, ~E) is a dag whose covering graph G = (V,E) is a path. Similarly, a cycle dag is
a dag whose covering graph is a cycle, a tree dag is a dag whose covering graph is
a tree, and a unicyclic dag is a dag whose covering graph contains a single cycle. A
tree dag is rooted by selecting an arbitrary node to be its root. Note that a rooted
tree dag does not correspond to the normal notion of a rooted tree, in which all arcs
are uniformly directed away from (or toward) the root. Still, we wish the notions

of parent and subtree to carry over to rooted tree dags. If a tree dag ~T = (V, ~E) is
rooted at a node r, then every node v other than r has a parent that is its parent
in the covering graph T = (V,E) considered as a tree rooted at r. Note that the
parent of a node may be either an in-neighbor or an out-neighbor. In a rooted tree
dag ~T = (V, ~E), the subtree ~Tv rooted at v is the subdag of ~T corresponding to the
subtree of T rooted at v.

The definition of a stack or a queue layout is now extended to dags. The key
distinction is that such a layout is required to follow a topological order. A k-stack
(k-queue) layout of a dag ~G = (V, ~E) is a k-stack (k-queue) layout of the covering

graph G such that the total order used in the layout is a topological order of ~G. As
before, the stacknumber SN(~G) is the smallest k such that ~G has a k-stack layout,

and the queuenumber QN(~G) is the smallest k such that ~G has a k-queue layout. If

SN(~G) = k, then ~G is called a k-stack dag, and if QN(~G) = k, then ~G is called a k-
queue dag. As an example, Figure 1.1 shows a dag, Figure 1.2 shows a 2-stack layout,
and Figure 1.3 shows a 2-queue layout. In each of the layouts shown in Figures 1.2
and 1.3, the arcs above the line of nodes are assigned to one stack or queue, while the
arcs below the line of nodes are assigned to the other stack or queue. The reader may
check that the dag in Figure 1.1 has neither a 1-stack nor a 1-queue layout.

Suppose that ~G = (V, ~E) is a dag and that σ is a topological order of ~G. Let

(u1, v1), (u2, v2) ∈ ~E be distinct arcs with u1 <σ u2. If v1 <σ v2, then (u1, v1) and
(u2, v2) cross in σ. If v2 <σ v1, then (u1, v1) and (u2, v2) nest in σ. The definition
of a stack layout of a dag requires that any two arcs that cross must be in different
stacks; on the other hand, any two arcs that do not cross may be placed in the same
stack. In Figure 1.2, arcs (2, 3) and (6, 5) cross; hence they must be in different stacks.

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1513

?
��
� �6

?

$'

?

$'
?

��

& %
6

?
��

& %
6

�°�� �°���°�� �°�� �°���°�� 2 6 3 4 51

Fig. 1.2. A 2-stack layout of the dag in Figure 1.1.

?
��

& %6
?

$'

?

$'

� �6� �6
?
��

& %
6

�°�� �°�� �°���°���°�� �°��1 2 3 4 56

Fig. 1.3. A 2-queue layout of the dag in Figure 1.1.

Analogously, the definition of a queue layout of a dag requires that any two arcs that
nest must be in different queues; on the other hand, any two arcs that do not nest
may be placed in the same queue. In Figure 1.3, arcs (1, 5) and (2, 3) nest; hence they
must be in different queues.

Heath and Rosenberg [8] characterize 1-queue undirected graphs as those graphs
that have an arched leveled-planar embedding. In a similar manner, we characterize
1-queue dags as those that have a directed arched leveled-planar embedding. The
definition of such an embedding is developed in the next five paragraphs.

Let ~G = (V, ~E) be a dag. A leveling of ~G is a function lev : V → Z mapping the

nodes of ~G to integers such that lev(v) = lev(u) + 1 for all (u, v) ∈ ~E. If lev(v) = j,

then v is a level-j node. ~G is a leveled dag if it has a leveling. Note that a connected
leveled dag has a unique leveling up to an additive constant.

Let `j denote the vertical line in the Cartesian plane `j = {(j, y) | y ∈ R}, where
R is the set of reals. Suppose that there is a partition of the set of nodes V into sets
Vp, Vp+1, . . . , Vq for some integers p and q such that:

1. Each arc in ~E is from a node in Vj to a node in Vj+1 for some integer j,
p ≤ j < q.

1514 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°��
�°��

�°��

�°�� �°��

�°��

�°��
�°��

�°��
.

��
��
��1

HHHHHHj

HHHHHHHj-
Q
Q
Q
Q
Q
QQs

��
��
��*

��
��

��
�*

.

XXXXXXz

XXXXXXXz

-

`0 `1 `2

7

8 9

5

6

1

2

4

3

Fig. 1.4. A leveled-planar dag.

2. ~G has a planar embedding in which all nodes in Vj are placed on `j and each

arc in ~E is drawn as a straight line segment between lines `j and `j+1 for some integer
j, p ≤ j < q; in particular, the drawings of two independent arcs do not intersect in
the plane.

Then this planar embedding is called a directed leveled-planar embedding of ~G. Fig-
ure 1.4 shows a directed leveled-planar embedding of a dag. A dag is called a leveled-
planar dag if it has a directed leveled-planar embedding.

Now suppose that ~G is a leveled-planar dag and that E is a directed leveled-planar
embedding of ~G. The function lev : V → Z, where lev(u) = j if u ∈ Vj , is the leveling

of ~G induced by the embedding E . The leveling induced by the directed leveled-planar
embedding shown in Figure 1.4 is lev(1) = lev(7) = 0, lev(2) = lev(4) = lev(6) =
lev(8) = 1, and lev(3) = lev(5) = lev(9) = 2. Thus every leveled-planar dag is a
leveled dag. It is easy to see that the converse is not true (e.g., consider a 4-cycle
with arcs alternating in direction).

A directed leveled-planar embedding of ~G induces a natural topological order of
~G called the leveled-planar order, obtained by scanning the lines `p, `p+1, . . . , `q, in
that order, each from bottom to top. The leveled-planar order induced by the directed
leveled-planar embedding of Figure 1.4 is 1, 7, 2, 4, 6, 8, 3, 5, 9.

A directed arched leveled-planar embedding is obtained from a directed leveled-
planar embedding as follows. Let σ be the leveled-planar order. For each j, p ≤ j ≤ q,
let bj be the bottom node on line `j , and let tj be the top node. Let sj be the
bottommost node on line `j that is the in-neighbor of some node on line `j+1; if there
are no arcs from Vj to Vj+1, then let sj = tj . For an integer j, p ≤ j ≤ q, a level-j
arch is an arc from a node x ∈ Vj , where bj ≤σ x ≤σ sj and x <σ tj , to node tj . A
directed leveled-planar dag augmented by any number of arches can be drawn in the
plane by drawing the arches around `p; such an embedding is called a directed arched
leveled-planar embedding. A dag that has a directed arched leveled-planar embedding

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1515

?
�'

& �

?

$'

%

$

'

&

-�

�
�°��

�°��

�°��
�°��

�°�� �°��

�°���°��

.HHHHHHj

HHHHHHj

-

��
��
��*

��
��

���*
��
��

��1

-

XXXXXXz
7

8 9

6

1 5

2

`0 `1 `2

4

Fig. 1.5. An arched leveled-planar dag.

is called an arched leveled-planar dag. The arcs in the embedding that are not arches
are called level arcs. Figure 1.5 shows a directed arched leveled-planar embedding of
a dag.

The figure is the same as Figure 1.4 except that node 3 is deleted and arches
(1, 7), (2, 8), and (4, 8) are added.

We now state the characterization of 1-queue dags.
Proposition 1.1. Suppose ~G is a dag. Then QN(~G) = 1 if and only if ~G is an

arched leveled-planar dag.
The proof of this characterization is very similar to the proof that Heath and

Rosenberg [8] use in establishing their characterization of 1-queue undirected graphs
as exactly those graphs that have an arched leveled-planar embedding (see Theorem
3.2 in [8]).

2. Stack layouts of dags. In this section, we investigate stack layouts of tree
dags and unicyclic dags. We need one definition. A node v ∈ V is exposed in a layout
with total order σ if there is no arc (x, y) in the layout with x <σ v <σ y.

We begin with the following theorem on the stacknumber of tree dags.
Theorem 2.1. The stacknumber of any tree dag with at least 2 nodes is 1.
Proof. Let ~T = (V, ~E) be an arbitrary tree dag with N ≥ 1 nodes. Root ~T at an

arbitrary node r. We prove by induction on N that ~T can be laid out in at most 1
stack with the root r exposed.

Base case: When N = 1, the claim is trivially true.
Induction case: Suppose that N ≥ 2 and that every tree dag with fewer than N

nodes can be laid out in at most 1 stack with its root exposed. Let u1, u2, . . . , us be
the in-neighbors of r, and let v1, v2, . . . , vm be the out-neighbors of r. The induction
hypothesis implies that each of the tree dags ~Tup , where 1 ≤ p ≤ s, and ~Tvq , where
1 ≤ q ≤ m, can be laid out in one stack with their roots u1, u2, . . . , us, v1, v2, . . . , vm

1516 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°��

�°���°��
�°���°��

�°���°��

�°��
C
C
CCO

.

�
�
���

C
C
CCW�

�
��7

�
�
���

J
J
JJ]�

�
���

5 6 7 8

432

1

Fig. 2.1. A tree dag.

?

��
?
��

?

$'
?

$'

?

��
?

$'

�°�� �°���°���°��?
��

�°�� 6�°�� �°�� �°��54 7 3 8 1 2

Fig. 2.2. A 1-stack layout of the tree dag shown in the Figure 2.1.

exposed. Concatenate these layouts, together with r, in this order:

~Tu1 ,
~Tu2 , . . . ,

~Tus , r,
~Tv1 ,

~Tv2 , . . . ,
~Tvm .

Add the arcs from u1, u2, . . . , us to r and from r to v1, v2, . . . , vm. It is clear that the
nodes have been laid out in topological order, no two arcs in ~T cross, and r is exposed
in the layout so obtained. A 1-stack layout is obtained.

By induction, every tree dag can be laid out in at most 1 stack. Since a tree
dag with at least 2 nodes (at least 1 arc) requires at least 1 stack, the theorem fol-
lows.

As an example, Figure 2.1 shows a tree dag, while Figure 2.2 shows the 1-stack
layout constructed in the proof of the theorem, where node 1 is the root.

We now turn our attention to unicyclic dags. Not all unicyclic dags can be laid
out in 1 stack. Figure 2.3 shows the smallest example of a unicyclic dag whose
stacknumber is not 1.

In the remainder of this section, we show that any unicyclic dag can be laid
out in 2 stacks and provide a simple characterization of 1-stack unicyclic dags. We
first investigate stack layouts of cycle dags. A directed Hamiltonian path in a dag
~G = (V, ~E) is a directed path in ~G that contains every node in V . The following
lemma shows that any cycle dag can be laid out in 2 stacks and that for each n there
is exactly one cycle dag on n nodes with stacknumber 1.

Lemma 2.2. Let ~C = (V, ~E) be a cycle dag. If ~C contains a directed Hamiltonian

path, then SN(~C) = 1; otherwise, SN(~C) = 2.

Proof. First suppose that ~C contains a directed Hamiltonian path. This Hamil-
tonian path defines a unique topological order of ~C, and no two arcs of ~C cross when
the nodes of ~C are laid out according to this order. Hence, SN(~C) = 1, as desired.

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1517

�°�� �°��
�°��

�°��¡
¡
¡�

@
@
@R

@
@
@R

¡
¡
¡�

Fig. 2.3. A unicyclic dag that cannot be laid out in 1 stack.

Now suppose that ~C does not contain a directed Hamiltonian path. We first show
that SN(~C) ≥ 2 in this case. To obtain a contradiction, suppose that SN(~C) = 1.

Let σ be a topological order that yields a 1-stack layout of ~C. For any pair of nodes
u and v in V such that u <σ v, say that u and v are consecutive nodes in σ if there
exists no w such that u <σ w <σ v. Since ~C has no directed Hamiltonian path, there
exists a pair of nodes u and v that are consecutive nodes in σ satisfying the properties
that u <σ v and (u, v) 6∈ ~E.

Let the cycle C = (V,E) be the covering graph of ~C. Of course, the order σ yields
a 1-stack layout of C. Let X = {w ∈ V | w ≤σ u} be the set of nodes that are no
greater than u with respect to σ. Similarly, let Y = {w ∈ V | v ≤σ w} be the set of
nodes that are no less than v with respect to σ. Note that V = X ∪ Y . Let x ∈ X be
the greatest node with respect to σ that is adjacent to a node in Y . Of all the nodes
in Y that are adjacent to x, let y be the least with respect to σ. If x = u and y = v,
then (u, v) = (x, y) ∈ E, contradicting the choice of u and v. Hence, either x <σ u or
v <σ y (or both). We consider only the case x <σ u, the other case being symmetric.

Let Z = {w | x <σ w ≤σ u} consist of the nodes between x and u with respect
to σ together with u. Because of our choice of the edge (x, y) in C, no node in Z has
a neighbor in W = {w | v ≤σ w ≤σ y}. Because no two edges of C cross in σ and
because (x, y) is an edge in E, any neighbor in C of a node in Z is in Z ∪ {x}. Thus,
every path from a node in Z to a node not in Z passes through x. Since u ∈ Z and
v 6∈ Z ∪ {x}, every path between these two nodes passes through x, implying that x
is a cutpoint of C. This is a contradiction because a cycle cannot have a cutpoint.
Hence, the assumption that SN(~C) = 1 must be false. It follows that SN(~C) ≥ 2.

To show that SN(~C) = 2, we construct a 2-stack layout of any cycle dag ~C as

follows. Let u be a node in ~C with indegree 0, and let v and w be the two out-
neighbors of u. Delete the node u from ~C and let ~T be the resulting tree dag. By
Theorem 2.1, there is a topological order σ of ~T that yields a 1-stack layout of ~T . To
obtain a 2-stack layout of ~C from this, extend σ to satisfy u <σ v, for all nodes v of
~T , and assign the two arcs incident on u to a second stack.

We now establish the stacknumber of unicyclic dags by showing that a unicyclic
dag requires as many stacks as the cycle dag it contains.

Theorem 2.3. Let ~U = (V, ~E) be a unicyclic dag, and let ~C = (VC , ~EC) be the

unique cycle dag that is a subgraph of ~U . Then SN(~U) = SN(~C).

Proof. Clearly, SN(~U) ≥ SN(~C). Let SN(~C) = k. By Lemma 2.2, either k = 1
or k = 2. Without loss of generality, we may assume that v1, v2, . . . , vn is a topological
order of ~C that yields a k-stack layout. By deleting all the arcs in ~C from ~U we obtain
n connected components, each a tree dag. Let ~Ti denote the tree dag containing vi.

1518 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°��

�°��
�°��

�°��
�°��

�°��

�°��

.

�
�
�
���

A
A
A
AAU?

6

.

6 6

5 6 7

432

1

Fig. 3.1. A tree dag that cannot be laid out in 1 queue.

By the proof of Theorem 2.1, each tree dag ~Ti has a 1-stack layout in which node vi
is exposed. To obtain a 1-stack layout of ~U , concatenate the 1-stack layouts of the
k tree dags in the order ~T1, ~T2, . . . , ~Tn. Since the tree dags are laid out one after the
other, no two arcs belonging to distinct tree dags cross. Since each node vi is exposed,
the arcs in the tree dags do not cross the arcs in ~C. Hence the arcs in ~Ti, for all i,
can be assigned to one of the k stacks being used for the arcs in ~C. We conclude that
SN(~U) = SN(~C), as desired.

3. Queue layouts of dags. In this section, we determine the queuenumber of
tree dags and of unicyclic dags. We start with tree dags. It is easily verified that the
tree dag shown in Figure 3.1 does not have a directed arched leveled-planar embedding
and is therefore not a 1-queue dag. However, as shown in the following theorem, 2
queues suffice for any tree dag.

Theorem 3.1. Every tree dag has a 2-queue layout.
Proof. Let ~T = (V, ~E) be a tree dag with covering graph T = (V,E). Root ~T at

an arbitrary node r. Partition ~E into sets ~Eb and ~Ef , where

~Ef = {(u, v) ∈ ~E | u is the parent of v in ~T},
~Eb = {(v, u) ∈ ~E | u is the parent of v in ~T}.

Thus ~Ef contains the forward arcs, arcs directed away from r, while ~Eb contains the
backward arcs, arcs directed towards r. For example, if the root of the tree dag in
Figure 3.1 is 1, then ~Ef = {(1, 2), (1, 3), (1, 4)} and ~Eb = {(5, 2), (6, 3), (7, 4)}. Let
~Gf = (V, ~Ef) and ~Gb = (V, ~Eb) be the subdags of ~T induced by the arc sets ~Ef and
~Eb, respectively. We construct a 2-queue layout of ~T by placing the nodes of ~T in the
Cartesian plane such that directed leveled-planar embeddings of the subgraphs ~Gf
and ~Gb are induced. Let lev be the unique leveling of ~T such that lev(r) = 0. Place
each node v in the Cartesian plane on the vertical line `j if and only if lev(v) = j.
Let γ be some breadth-first order on V obtained by doing a breadth-first search of T
starting at r. Two level-j nodes u and v are placed on `j such that node u is placed
below node v when u <γ v, that is, when u is reached in the breadth-first search
before v.

We now verify that this placement of the nodes in the plane induces a directed
leveled-planar embedding of ~Gf . Clearly, each arc in ~Ef can be drawn as a line
segment whose endpoints lie on vertical lines `j and `j+1 for some integer j. The fact

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1519

?
��

& %
6

?

$'
?

$'

� �6 � �6
& %

6
�°�� �°���°���°���°�� �°���°�� �°��7 3 1 2 64 5 8

Fig. 3.2. A 2-queue layout of the tree dag in Figure 2.1.

that no two arcs in ~Ef intersect can be verified as follows. Consider an independent

pair of arcs, (u1, v1) and (u2, v2) in ~Ef , where lev(u1) ≤ lev(u2). If lev(u1) < lev(u2),
then lev(v1) < lev(v2), so (u1, v1) and (u2, v2) do not intersect. Now suppose that
lev(u1) = lev(u2). Without loss of generality, we may assume that u1 <γ u2. Since
(u1, v1) is a forward arc and u1 is the parent of v1, we have u1 <γ v1. Since (u2, v2)
is a forward arc and u2 is the parent of v2, we have u2 <γ v2. By the properties
of breadth-first search, we have v1 <γ v2; hence the arcs (u1, v1) and (u2, v2) do not
intersect. A similar argument shows that this placement of nodes also induces a
directed leveled-planar embedding of ~Gb. Thus the leveled-planar order of V induced
by the leveled-planar embedding of ~Gf yields a 2-queue layout of ~T in which arcs in
~Ef are assigned to one queue and arcs in ~Eb are assigned to the other queue.

Figure 3.2 gives a 2-queue layout of the tree dag shown in Figure 2.1. This 2-
queue layout is constructed as described in the proof of Theorem 3.1, with node 1
being the root.

Next we show that the construction of a 2-queue layout for a tree dag described
in Theorem 3.1 actually yields a 1-queue layout for a path dag.

Corollary 3.2. Every path dag has a 1-queue layout.

Proof. Let ~P = (V, ~E) be a path dag with covering graph P = (V,E). Let r be

one of the endpoints of P . Consider the placement of the nodes in ~P in the plane as
described in the proof of Theorem 3.1. Suppose that the arcs in ~E have been drawn
as straight line segments. We have already verified that an independent pair of arcs
(u1, v1), (u2, v2) ∈ ~E do not intersect if lev(u1) 6= lev(u2) or if both arcs are forward

arcs or both arcs are backward arcs. Assume that (u1, v1) ∈ ~Ef , (u2, v2) ∈ ~Eb, and

lev(u1) = lev(u2). Since ~P is a path dag, u1 is visited before u2 in the breadth-first
search of P starting from an endpoint r if and only if v1 is visited before v2. This
implies that the arcs (u1, v1) and (u2, v2) do not intersect, and we have a directed

leveled-planar embedding of ~P . We may conclude that ~P has a 1-queue layout, as
desired.

We postpone the problem of characterizing 1-queue tree dags (see section 4.1).

For now we turn our attention to cycle dags. Not all cycle dags can be laid out in
1 queue. As an example, Figure 3.3 shows a smallest cycle dag whose queuenumber is
2. However, the following argument shows that every cycle dag has a 2-queue layout.
Let ~C = (V, ~E) be a cycle dag, and let u be a node with indegree 0. By Corollary 3.2,

the path dag ~C − u has a 1-queue layout. Place the node u on the left of the 1-queue
layout of ~C − u and assign the two arcs incident on u to a second queue. This gives

1520 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°�� �°��
�°��

�°��

@
@
@R

¡
¡
¡ª

¡
¡
¡�

@
@
@R

Fig. 3.3. A smallest cycle dag whose queuenumber is 2.

a 2-queue layout of ~C. We obtain the following theorem.
Theorem 3.3. Every cycle dag has a 2-queue layout.
As in the case of tree dags, we postpone characterizing 1-queue cycle dags (see

section 4.2).
The observation that any cycle dag can be laid out in 2 queues motivates the

question of whether any unicyclic dag can be laid out in 2 queues. A simple argument
shows that 3 queues suffice. Let ~U = (V, ~E) be a unicyclic dag, and let ~C be the cycle

dag that is the subgraph of ~U . Let u be a node in ~C with indegree 0 (in ~C). Delete

the two outgoing arcs in ~C incident on u from ~U to obtain two tree dags ~T1 and ~T2,
where ~T1 contains u. A 3-queue layout of ~U is obtained by placing a 2-queue layout of
~T1 to the left of a 2-queue layout of ~T2 and then assigning the two arcs in ~C, incident
on u, to a third queue. The following theorem gives a more subtle construction of a
2-queue layout of ~U .

Theorem 3.4. Every unicyclic dag has a 2-queue layout.
Proof. Let ~U = (V, ~E) be a unicyclic dag, and let ~C = (VC , ~EC) be the unique

cycle dag in ~U . Without loss of generality, we may assume that ~U is connected. We
start with the selection of a particular arc, call it the closing arc, to remove from
the cycle dag ~C. Let u ∈ VC be any node of indegree 0 (in ~C), and let v, w ∈ VC
be the out-neighbors of u in ~C. Let ~C − u be the path dag obtained by removing
u from the cycle dag. Choose a leveling lev of ~C − u. Without loss of generality,
we may assume that 1 = lev(v) ≤ lev(w). Let M = lev(w). Select (u,w) to be the

closing arc. Let ~P = (VC , ~EC − {(u,w)}) = (VC , ~EP) be the path dag obtained by
removing the closing arc from the cycle dag; let P = p1, p2, . . . , pk be its covering
path, where p1 = u, p2 = v, and pk = w. The leveling lev of ~C can be extended
to ~P by setting lev(u) = 0. Since the minimum value of lev occurs at some node of

in-degree 0 on ~C, we may assume that 0 = lev(p1) = min{lev(pi) | 1 ≤ i ≤ k}. Let
~T = (V, ~E−{(p1, pk)}) be the tree dag obtained by removing the closing arc from the

unicyclic dag. The leveling lev extends to a leveling of ~T . Root ~T at p1. Take the
definitions of forward and backward arcs from the proof of Theorem 3.1; forward arcs
are directed away from p1, and backward arcs are directed toward p1. Furthermore,
partition ~E− ~EC , the set of noncycle arcs, into the set ~Ef of forward arcs and the set
~Eb of backward arcs.

Our task is to construct a topological order σ for ~U while assigning its arcs to one
of 2 queues, q1 and q2. The construction places each node x on one of the vertical lines
`j , denoted both by line(x) = j and by `(x) = `j . The order σ is derived from this
placement by exactly the same scan that finds the leveled-planar order from a directed
leveled-planar embedding, that is, by scanning the lines in the order . . . , `j , `j+1, . . .,

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1521

�°�� �°
�� �°��
�°�� �°��
�°��
�°���°���°��

��
��1

��
��1

��
��1

PPPPq

��
��1

��
��1

PPPPq

PPPPq

`0 `1 `2 `3 `4

p1

p2

p3

p4

p5

p6

p7

p8

p9

Fig. 3.4. A leveled-planar layout of the path dag ~P .

each from bottom to top.

The initial phase of the construction places the nodes in ~P as in the proof of
Corollary 3.2. See Figure 3.4 for an example. The arcs in ~EP are assigned to queue
q1. The closing arc is assigned to queue q2. A 2-queue layout of ~C results. Also,
line(pi) = lev(pi), for all pi ∈ VC . If (pi, pi+1) ∈ ~EP is a forward arc, then define
next(pi) ∈ VC to be pc, where c is smallest such that i+2 ≤ c ≤ k and lev(pc) = lev(pi);
note that (pc, pc−1) must be a backward arc. If there is no such c, let next(pi) be
undefined. In Figure 3.4, p9 = next(p5), while next(p2) is undefined. Because we

chose p1 to have minimum level among nodes in ~P , for any backward arc (pc, pc−1),
there is some forward arc (pi, pi+1) such that pc = next(pi). One may verify this
assertion for the three backward arcs in Figure 3.4. The construction of Corollary 3.2
places next(pi) immediately above pi on `(pi). By the definition of next(pi), the path
from pi to next(pi) is to the right of `(pi). Since every arc in that path is placed in

queue q1 and all arcs in ~Ef are to be assigned to queue q1, there is an impediment
to having an arbitrary tree of forward arcs grow from a node placed on line `(pi)
between pi and next(pi). We say that a node placed between pi and next(pi) is in a
forbidden position. In Figure 3.4, a node placed between p3 and p5 = next(p3) on `2
is in a forbidden position, while a node placed between p4 and p6 on `3 is not.

The second and final phase of the construction is an inductive extension of the
2-queue layout of ~C to a 2-queue layout of ~U , with the addition of one node and one
arc at each inductive step. The induction hypothesis is that at each step a 2-queue
layout results satisfying these properties:

1. Each arc in ~Ef is assigned to queue q1.

2. Each arc in ~Eb is assigned to queue q2.
3. If (x, y) ∈ ~Eb, then line(x) ≤ 0 or M ≤ line(x).
4. No node is in a forbidden position.

Note that properties 1 and 2 imply these additional properties:

1522 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°�� �°
��

�°���°��

�°�� �°��

��
��1

PPPPq

-

t

t′

s

s′

x

`j+1`j

y

Fig. 3.5. Illustration of the definitions of s, s′, t, and t′ for Case 1.

5. If x ∈ V and there are distinct arcs (y, x) and (z, x) assigned to queue q1,
then x is some pi, where 2 ≤ i ≤ k − 1 and {y, z} = {pi−1, pi+1}. In particular, there
exists no x ∈ V − VC with two in-neighbors y and z such that (y, x) and (z, x) are q1

arcs.
6. There exists no x ∈ V with two out-neighbors y and z such that (x, y) and

(x, z) are q2 arcs.

For the base case, take the construction of the 1-queue layout of ~C. This 2-queue
layout satisfies the induction properties. At each subsequent step, one remaining arc
(x, y) is added; an arc can be added as soon as one of its nodes is already placed and
the other is not yet placed. There are three cases for the addition of (x, y). In each
case, we specify the placement of the new arc and show that the induction properties
are maintained.

Case 1. Adding a forward arc (x, y) ∈ ~Ef . Since x is the parent of y, x has already
been placed on line `(x) and ordered according to σ. Set line(y) = line(x)+1. Choose
s on `(x) largest (with respect to σ) such that s ≤σ x, and s has an out-neighbor s′

that has already been placed with (s, s′), a q1 arc; choose s′ as large as possible with
respect to σ. Choose t on `(x) smallest (with respect to σ) such that x <σ t and t has
an out-neighbor t′ that has already been placed with (t, t′), a q1 arc; choose t′ as small
as possible. Either s or t may be undefined. Intuitively, (s, s′) and (t, t′) are the arcs
that we need to place (x, y) between. See Figure 3.5 for an illustration of these arcs. If
t is undefined, then place y above all other nodes in line(y); in this case, (x, y) cannot
nest with any q1 arc. Now suppose that t is defined. Place y immediately below
t′. If s is undefined, then (x, y) cannot nest with any q1 arc. Suppose s is defined.
Since (s, s′) and (t, t′) do not nest, we know that s′ ≤σ t′. If s′ 6= t′, then (x, y) does
not nest with any q1 arc. Now suppose s′ = t′. By property 5, (s, s′) and (t, t′) are

consecutive arcs in ~P . Moreover, t = next(s). Since (by induction property 4) x is not
in a forbidden position, we must have x = s. The placement of y cannot cause (x, y)
to nest with any q1 arc. In all cases, we can assign (x, y) to queue q1, as required by
induction property 1.

The continued truth of induction properties 1–3 is clear. It remains to show that
y is not in a forbidden position. If y is placed above all other nodes on `(y), then y

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1523

�°�� �°��
�°�� �°
��

�°�� �°��
PPPPq

-

��
��1

x

`j+1`j

y

t′

s′

t

s

Fig. 3.6. Illustration of the definitions of s, s′, t, and t′ for Case 2.

cannot be in a forbidden position. If t′ 6∈ VC and y is placed immediately below t′,
then y is not in a forbidden position, because t′ is not. So suppose t′ ∈ VC and y
is placed immediately below t′. Then (t, t′) ∈ ~EP , since otherwise (t, t′) would be a
q2 arc. If (t, t′) is a forward arc, then t′ is not next(pi) for any pi <σ t

′ and y is not
in a forbidden position. So suppose (t, t′) is a backward arc. Then t = next(pi) for
some pi <σ t, and x is in a forbidden position. This contradicts induction property 4.
We conclude that (t, t′) is not a backward arc. In all cases, y is not in a forbidden
position, and induction property 4 holds.

Case 2. Adding a backward arc (x, y) ∈ ~Eb when line(y) ≤ 0 or M + 1 ≤ line(y).
Since y is the parent of x, y has already been placed on line `(y) and ordered according
to σ. Set line(x) = line(y)− 1. Choose s on `(y) largest (with respect to σ) such that
s ≤σ y and s has an in-neighbor s′ that has already been placed and (s′, s) is a q2

arc; choose s′ as large as possible. Choose t on `(y) smallest (with respect to σ) such
that y <σ t and t has an in-neighbor t′ that has already been placed and (t′, t) is a
q2 arc; choose t′ as small as possible. Either s or t may be undefined. See Figure 3.6
for an illustration of these arcs. If t is undefined, then place x above all other nodes
on `(x); this cannot cause (x, y) to nest with any q2 arc. If t is defined, then place x
just below t′. The only way this can cause (x, y) to nest with a q2 arc is if s is defined
and s′ = t′; by property 6, this cannot happen. Assign (x, y) to queue q2, as required
by induction property 2.

The continued truth of induction properties 1–3 is clear. It remains to show that
x is not in a forbidden position. If x is placed above all other nodes on `(x), then
x cannot be in a forbidden position. So suppose x is placed just below t′. Since
(t′, t) ∈ ~Eb, we know that t′ 6∈ VC . Hence x is not in a forbidden position because t′ is
not. We conclude that x is not in a forbidden position and that induction property 4
holds.

Case 3. Adding a backward arc (x, y) ∈ ~Eb when 1 ≤ line(y) ≤M . Since y is the
parent of x, y has already been placed on line `(y) and ordered according to σ. Set
line(x) = 0 to satisfy induction property 3. Choose s largest (with respect to σ) such
that s ≤σ y and s has an in-neighbor s′ that has already been placed, (s′, s) is a q2

arc, and line(s′) = 0; choose s′ as large as possible. Choose t smallest (with respect
to σ) such that y <σ t and t has an in-neighbor t′ that has already been placed, (t, t′)

1524 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°��

�°��
�°��

�°��
�°��

�°��
-

XXXXXXXXXz

-

`0 `1 `2 `3

pkp1

s′

s

x y

Fig. 3.7. Illustration of the definitions of s, s′, t, and t′ for Case 3.

is a q2 arc, and line(t′) = 0; choose t′ as small as possible. Either s or t may be
undefined but not both, because the closing arc meets the requirements of one of
(s′, s) and (t′, t). See Figure 3.7 for an illustration of these arcs; here (t′, t) = (p1, pk),
the closing arc. If t is undefined, then place x above all other nodes in line(x); this
cannot cause (x, y) to nest with any q2 arc. If t is defined, then place x just below t′.
The only way this can cause (x, y) to nest with a q2 arc is if s is defined and s′ = t′;
by property 6, this cannot happen. Assign (x, y) to queue q2, as required by induction
property 2.

The continued truth of induction properties 1–3 is clear. It remains to show that
x is not in a forbidden position. If x is placed above all other nodes on `0, then x
cannot be in a forbidden position. So suppose x is placed just below t′. If (t′, t) ∈ ~Eb,
then t′ 6∈ VC and x is not in a forbidden position because t′ is not. If (t′, t) is the
closing arc, then x is not in a forbidden position because it is placed below p1 on `0.
We conclude that x is not in a forbidden position and that induction property 4 holds.

By induction, we obtain a 2-queue layout of ~U , as desired.
Figure 3.8 shows a unicyclic dag ~U with 12 nodes. ~U contains a cycle dag induced

by the nodes {1, 2, 3, 4, 5}. Figure 3.9 shows a 2-queue layout of ~U . The cycle dag
~C is laid out in 2 queues, with closing arc (1, 5) assigned to one queue and the rest

assigned to another queue. The remainder of ~U is laid out as in the construction in
the proof of Theorem 3.4.

4. Characterization of 1-queue directed trees and directed cycles. In
this section we characterize 1-queue tree dags and 1-queue cycle dags. First we prove
a theorem about leveled-planar dags used in both characterizations. We need the
following definition. Suppose ~G is a leveled dag with leveling lev. A queue layout of
~G respects lev if all nodes in lev−1(j) appear contiguously in the layout for every j.

Theorem 4.1. Suppose that ~G is a leveled dag. Then, ~G is a 1-queue dag if and
only if it has a directed leveled-planar embedding. Moreover, if lev is any leveling of

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1525

�°�� �°�� �°�� �°��

�°���°�� �°���°��

�°���°���°��

�°��

- - -

6 C
C
CCW

6 6 6

�
�
�
��

S
S
S
Sw

Z
Z
Z
Z
Z
ZZ~�

�
�
�
�
��3

1 2 3 4

5

12 7 8

9 10 11

6

Fig. 3.8. A unicyclic dag.

?
��
?

Ã#
?

$'
?

$'
?
��

& %
6

& %
6

& %
6

& %
6

?

$'

& %
6

?
��

?
��n n n n n n n n n n n n12 9 10 11 1 2 6 7 8 3 5 4

Fig. 3.9. A 2-queue layout of the unicyclic dag shown in Figure 3.8.

~G, then ~G has a 1-queue layout that respects lev.
Proof. By Proposition 1.1, if ~G has a directed leveled-planar embedding, then it

is a 1-queue dag.
To show the converse, suppose that ~G is a 1-queue dag. Let σ be a total order on

V that yields a 1-queue layout of ~G. Let lev be any leveling of ~G. Place each level-j
node u on the vertical line `j . On each vertical line, place nodes bottom to top in the

order prescribed by σ and draw each arc in ~E as a straight line segment connecting
its two endpoints. We now show that this embedding is a directed leveled-planar
embedding. It suffices to show that no two independent arcs (u1, v1) and (u2, v2) with
lev(u1) = lev(u2) intersect. Without loss of generality, we may assume that u1 <σ u2

and that lev(u1) = lev(u2) = j for some integer j. Since u1 <σ u2, u1 appears below
u2 on `j . Since σ defines a 1-queue layout, we have v1 <σ v2. Hence v1 appears below

v2 on `j+1. We conclude that the arcs (u1, v1) and (u2, v2) do not intersect. Hence ~G
has a directed leveled-planar embedding, as desired.

To show the last assertion, suppose that lev is any leveling of ~G. Then the above
construction of a leveled-planar embedding of ~G yields a 1-queue layout of ~G that
respects lev, as desired.

An example of a leveled dag is a tree dag. The above theorem implies that any
1-queue tree dag has a leveled-planar embedding that respects any leveling. This is

1526 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

sx3

sx2

sx1

sz3

s
z2

s
z1

s y3

s y2

s y1

sr ����
�

P̂3

HHHHH

P̂2J
J
J
J
J
J
JJ

P̂1

P3

P2

P1

`1 `M

Fig. 4.1. A typical dag in the forbidden set F .

a very useful result because it allows us to ignore the possibility that there might be
arches in the embedding.

4.1. Characterization of 1-queue directed trees. The next theorem gives a
forbidden graph characterization of tree dags with queuenumber equal to 1. We begin
with some notation. Let ~T = (V, ~E) be a tree dag with covering graph T = (V,E).

Root ~T at an arbitrary node r. If u and v are nodes of T , then the (unique) path in

T from u to v is denoted P (u, v). For any u ∈ V , let ~Tu = (Vu, ~Eu) be the subtree of
~T rooted of u. We extend this notation to sets of nodes: if S is a set of nodes in V ,
then ~TS is the directed forest that is the union of the tree dags ~Tu for all u ∈ S.

For any subdag ~D of tree dag ~T , with leveling function lev, we let minlev(~D) =

min{lev(v) | v ∈ V (~D)}. When ~D is the subtree ~Tu for some node u, we shorten

minlev(~Tu) to m`T (u). As an example, if the dag in Figure 4.2 is rooted at r, then
m`T (b) = 2, m`T (z2) = m`T (z∗) = 1, and m`T (z1) = 3.

Next we define a set F of tree dags and show that the set of tree dags with
queuenumber equal to 1 is characterized by forbidding the set F . Each dag ~F =
(VF , ~EF) in F consists of two sets of three nontrivial path dags, to wit, {P1, P2, P3}
and {P̂1, P̂2, P̂3} (refer to Figure 4.1). There is an integer M ≥ 2 and a leveling
function lev: VF → Z for which 1 ≤ lev(u) ≤ M for all u ∈ VF . Furthermore,
the paths Pi, with endpoints xi and yi, are node disjoint and have lev(xi) = 1 and
lev(yi) = M , for i = 1, 2, 3. The paths P̂i have endpoints r and zi and share exactly
one node r. The paths P̂i and Pj share precisely the node zi if i = j and are node
disjoint otherwise. The general case is shown in Figure 4.1, where all arcs point from
left to right (arc directions are omitted in that figure). Note that the dag in Figure 3.1,
in which each of the paths is just a single arc, is the smallest dag in the set F .

Theorem 4.2. Let ~T = (V, ~E) be a tree dag. Then ~T is a leveled-planar dag if

and only if ~T has no subdag in the set F of forbidden dags described above.

Proof. (=⇒) We show that the graphs in F are not leveled-planar dags. Let ~F
be a dag in F consisting of the paths Pi and P̂i for i = 1, 2, 3. Suppose there were
a directed leveled-planar embedding of ~F . Choose such an embedding of ~F so that

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1527

the leveling function associated with this embedding has the set {1, 2, . . . ,M} as its
range. The node disjoint paths P1, P2, and P3 divide the strip between the lines `1
and `M into four regions (see Figure 4.1). The node r must lie in one of these regions
and thus is cut off from at least one of the paths, say P1. The path P̂1 must cross one
of P2, P3, a contradiction. Hence ~F is not a leveled-planar dag, as desired.

(⇐=) We now show that if ~T does not have a subgraph that belongs to F , then
~T has a directed leveled-planar embedding. We proceed by induction on the number
of nodes. Clearly the theorem is true for the graph with one node. Assume that all
tree dags with fewer than N nodes, N ≥ 2, satisfy Theorem 4.2. Let ~T be a tree dag
with N nodes. Assume that ~T has no subgraph that belongs to F . We show that ~T
has a directed leveled-planar embedding.

Let v be a leaf of ~T . Since the set F of forbidden graphs is symmetric with respect
to reversing all arc directions, we may assume that the arc incident on v in ~T points
towards v. Let x be the parent of v.

Since ~T − v has no subgraph in F and has N − 1 nodes, it is a leveled-planar dag
by the induction hypothesis. Fix a directed leveled-planar embedding E of ~T − v. Let
lev be the leveling of ~T induced by E such that 1 ≤ lev(u) ≤ m, for all u ∈ V , for
some integer m ≥ 2. Suppose that lev(x) = j − 1 for some j, 1 < j ≤ m+ 1. If v can
be placed on the line `j so that the line segment connecting x and v does not cause

a crossing, then we have a directed leveled-planar embedding of ~T , as desired.
Otherwise, it is not hard to see that there exists a level-j node r so that in the

embedding E , node r has in-neighbors on line `j−1 both above and below x. Root
~T at the node r. Extend lev to the domain V by setting lev(v) = lev(x) + 1 = j.

The dags ~T shown in Figures 4.2 through 4.5 are meant to illustrate the notation
and arguments given in this proof. In each case the given embedding of ~T − v is
leveled-planar, but the arc (x, v) crosses another arc.

Let S be the set of all in-neighbors of r other than x. Since E is a leveled-planar
embedding of ~T − v, the nodes of S all lie on line `j−1. Let B consist of those u ∈ S
such that the tree ~Tu lies entirely to the left of `j , i.e., u ∈ B implies that, for all
w ∈ Tu, we have lev(w) ≤ j − 1. For the graph in Figure 4.2, we have j = 4,
S = {z1, z2, b, y1}, and B = {b}. For all y ∈ S −B, define

H(y) = V (~Ty) ∩ lev−1(j) ∩ {u | j = maxw∈P (u,y) lev(w)
}
,

that is, H(y) consists of the nodes at which the branches of ~Ty first touch the line
`j . If possible, modify E so that for each y, the nodes in H(y) lie on the same
side of r (i.e., all above r or all below r). Let h(y) be the node in H(y) that is
closest to the node r; if there are two possibilities w1 and w2 (one above and one
below r), choose the one for which minlev(P (r, wi)) is larger and choose arbitrarily if
minlev(P (r, w1)) = minlev(P (r, w2)). By planarity, there can be at most one node y∗

for which H(y∗) contains nodes both above and below r on line `j . If our embedding
has such a node y∗, and h(y∗) was chosen above r on line `j , then reflect the entire
embedding about the x-axis, so that h(y∗) is now below r on line `j . Denote the
element of {w1, w2} which is not h(y∗) by h′(y∗). Thus h′(y∗) is above r, h(y∗) is
below r, and minlev(P (y∗, h′(y∗))) ≤ minlev(P (y∗, h(y∗))). Again referring to the
dag of Figure 4.2, we have H(z1) = {g}, h(z1) = g, H(z2) = {i, h}, h(z2) = h,
H(y1) = {e}, h(y1) = e, and the node y∗ is not present.

Recall that m`T (y) = minlev(~Ty) is the minimum level the tree ~Ty reaches. We
also find it useful to use m`P (y) as an abbreviated notation for minlev(P (y, h(y)))

1528 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

`1 `2 `3 `4 `5

s

s

sy∗

s

sx∗

sz∗
s

sj

sy1

sb
sx
s

z2

s
z1

s

s e

s r
s v
s
g

s h
s
i

s

s

s

��
��
��
��
��
��

��
�

HHHHHHHHHHHHHHH

��
��
��
��
��

��
��
�

��
��

��
��

@
@
@
@
@
@
@@

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡¡

Fig. 4.2. An example for Case 1.

when y is a node in S − B. Thus m`P (y) is the minimum level the path from y to
h(y) reaches. Clearly, we have m`T (y) ≤ m`P (y). In the tree dag of Figure 4.2,
m`T (z1) = m`P (z1) = 3, m`T (z2) = 1, and m`P (z2) = 2.

We consider the cases (x, r) ∈ ~E and (x, r) 6∈ ~E separately.

Case 1. (x, r) ∈ ~E. For this case, refer to Figure 4.2. Make a new embedding of
T − v in which the number of nodes z in S−B with h(z) above r is maximized while
keeping nodes x and r and paths P (y∗, h(y∗)) and P (y∗, h′(y∗)) (if y∗ is present) fixed
in position. Write S − B = A ∪ C, where the nodes y ∈ A have h(y) below r and
the nodes z ∈ C have h(z) above r. Thus |C| is as large as possible and y∗ (if it is
present) is in A.

Next we show that we can place the nodes in B above the nodes in A and below
those in C. The embedding of the dag shown in Figure 4.2 has this form with A =
{y1}, B = {b}, and C = {z1, z2}. If a node a ∈ A appeared above a node c ∈ C, then
the paths P (a, h(a)) and P (c, h(c)) would cross, a contradiction. If the node y∗ is not
present, then there is a gap between the highest node of A and the lowest node of C

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1529

on line `j−1 into which the nodes of B can be placed and the trees ~Tb for b ∈ B will
face no obstruction. If y∗ is present, then by construction, minlev(P (y∗, h′(y∗))) ≤
minlev(P (y∗, h(y∗))), so any trees ~Tb with b below y∗ can be transferred so that b

lies directly above y∗ and the trees ~Tb which fit inside P (y∗, h(y∗)) also fit inside
P (y∗, h′(y∗)). Since y∗ is the highest node of A (when it is present), this shows that
the nodes of B can be placed above those of A and below those of C.

If A = ∅, then x can be placed as the lowest node on line `j−1 and there is

room for the entire tree ~Tx (including v) without causing a crossing. This would give

a leveled-planar embedding of ~T , as desired. Hence we may assume that |A| ≥ 1.
Similarly, we may assume that |C| ≥ 1, because if C = ∅ and y∗ is present, then x can
be placed directly above node y∗ on line `j−1, and there is room for the entire tree
~Tx (including v) without causing a crossing. Let A = {y1, y2, . . . , ym}, where i < j
implies that yi is below yj (and thus that h(yi) is above h(yj)). Note that if y∗ is
present then y∗ = ym. Similarly, let C = {z1, z2, . . . , zn}, where i < j implies that zi
is above zj (and thus that h(zi) is below h(zj)). The nodes of A∪C in Figure 4.2 are
labeled in this way.

If minlev(~Tx) > m`P (y1), then the entire tree ~Tx can be placed inside the path
P (y1, h(y1)) with x placed just below y1 on `j−1. This allows room for v between
h(y1) and r, and the arc (x, v) does not cause a crossing. Thus we would have a

directed leveled-planar embedding of ~T , as desired.
Otherwise, minlev(~Tx) ≤ m`P (y1), as is the case for the embedding in Figure 4.2.

Let t be the minimum positive integer such that m`T (zt) ≤ m`P (y1) (such a t exists;
otherwise, y1 could be placed just below zn on `j−1 and added to C, contradicting the

maximality of |C|). If t > 1, then transfer the nested trees ~Tz1 , . . . ,
~Tzt−1

to fit inside

P (y1, h(y1)). In the embedding in Figure 4.2, we have t = 2, so ~Tz1 is transferred so
that z1 is placed between y1 and j on line `3, and g is placed between r and e on line
`4.

Now if m`T (x) > m`P (zt), then transfer the entire tree ~Tx inside the path
P (zt, h(zt)). As before, this allows room for the arc (x, v) without causing a crossing,

and thus we get a directed leveled-planar embedding of ~T . In the embedding in Fig-
ure 4.2, minlev(~Tx) = 1 and m`P (zt) = m`P (z2) = 2 so the transfer does not take
place.

Otherwise, m`T (x) ≤ m`P (zt), as is the case for the embedding in Figure 4.2.

Note that m`T (y1) ≤ m`P (zt), for otherwise the trees ~Ty1
, ~Tzt−1

, . . . , ~Tz1 could be
nested inside P (zt, h(zt)), violating the maximality of |C|. But now we have the follow-

ing graph in F as a subgraph of ~T , a contradiction. LetM = max{m`P (y1),m`P (zt)}.
Since m`T (x) ≤M , m`T (y1) ≤M and m`T (zt) ≤M , we get the node disjoint paths:
P1 : v → x∗, P2 : h(y1) → y∗, and P3 : h(zt) → z∗, where x∗, y∗, z∗ are, respectively,

nodes in ~Tx, ~Ty1 ,
~Tzt at level M . The connecting paths are P̂1 : r → x, P̂2 : r → ŷ,

and P̂3 : r → ẑ, where ŷ (resp., ẑ) is the node farthest from r on both P (r, y∗) and
P (r, h(y1)) (resp., P (r, z∗) and P (r, h(zt))). In the embedding in Figure 4.2, we have
M = 2, ŷ = y∗, and ẑ = z∗.

Case 2. (x, r) 6∈ ~E. Let w be the out- or in-neighbor of r such that x ∈ ~Tw. There

are two cases, depending on whether (r, w) ∈ ~E or (w, r) ∈ ~E.

Case 2a. (r, w) ∈ ~E, lev(w) = j + 1. For this case, refer to Figure 4.3. Without
loss of generality, we may assume that the path P (w, x) approaches x “from above,”
that is, the path in T from x to w first intersects the line `j−1 at a node w0 which
lies above x.

1530 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

`1 `2 `3 `4 `5 `6 `7

r wxmin

r

r
r

r

r
re

ry
r

r

r
x0

ra
rb
r

x

rd

rw0

r
r

r r
r v
r g

r f

r
r

r w

r

rz

rwxmax

@
@
@
@
@

A
A
A
A
A
A
A
A
A
A HHHHH

@
@
@
@
@

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

��
��
�

HHHHH

Fig. 4.3. An example for Case 2a.

Write S −B = A ∪ C ∪D, where

A = {u ∈ S −B | h(u) is below r on line `j},
C = {u ∈ S −B− A | h(u) is above r on line `j and u is below x on line `j−1},
D = {u ∈ S −B− A | h(u) is above r on line `j and u is above x on line `j−1}.

Without loss of generality, we may assume that the nodes of A are below those
in B, which are below those in C, which are below those in D. The nodes of S in the
embedding in Figure 4.3 are positioned in this way with j = 5, A = {a}, B = {b},
C = ∅, and D = {d}. Let wxmin be a node on P (w, x) with lev(wxmin) = min{lev(u) |
u ∈ P (w, x)} and let wxmax be a node on P (w, x) with lev(wxmax) = max{lev(u) |
u ∈ P (w, x)}.

Move node x up so that it is above all nodes in ~TD on line `j−1 but below w0.
This allows room for v on `j so that the arc (x, v) does not cause a crossing. If the

remainder of the tree ~Twxmin can be embedded without causing a crossing, then we

have a directed leveled-planar embedding of ~T , as desired. This would be the case
for the embedding in Figure 4.3 if node z were deleted. In that instance, node x
would be placed on line `4 between nodes d and w0, and v would be placed on line
`5 between nodes g and f , and the rest of ~Twxmin would lie above ~TD but below
P (wxmax, wxmin).

If a crossing is forced, then it must be the case that C = ∅, the node y∗ is

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1531

not present, and there is a node y on P (x,wxmin) and a node z ∈ ~Ty with lev(z) =

lev(wxmax) so that minlev(P (y, z)) is less than minlev(~TA) and minlev(~TB) but greater

than or equal to minlev(~TD) (see Figure 4.3). In this case, let x0 be the lowest node
on `j−1 that is also on P (y, z). Place x just above x0. This allows room for the arc

(x, v) without causing a crossing. Since lev(wxmin) < lev(~TD) ≤ minlev(P (y, z)) <

min{minlev(~TA),minlev(~TB)}, each node of ~Twxmin (other than wxmin itself) can be

placed on its appropriate line `j below the nodes of ~TA and ~TB . This allows room for
the line segment from x to v without causing a crossing; hence we obtain a directed
leveled-planar embedding of ~T , as desired.

Case 2b. (w, r) ∈ ~E, lev(w) = j − 1. Write S −B − {w} = A ∪ C, where

A = {u ∈ S −B − {w} | h(u) is below r}

and

C = {u ∈ S −B − {w} | h(u) is above r}.

Without loss of generality, we may assume that the nodes of A lie below w and
x and those of C lie above w and x (refer to Figures 4.4 and 4.5). Let wx be a

node on P (w, x) with lev(wx) = minlev(P (w, x)), and let w∗ be a node in ~Tw with

lev(w∗) = minlev(~Tw). Note that if y∗ is present then the entire tree ~Tw lies inside
the path P (y∗, h′(y∗)). In the arguments that follow, the node y∗ can be treated like
any other node of A because the existence of the path P (y∗, h′(y∗)) is not relevant.

Consider the integers m`P (u) for each u ∈ A ∪ C. If m`P (u) < lev(w∗) for all

u ∈ A, then w can be placed below all nodes in A and the entire tree ~Tw can be nested
inside the trees ~Tu (for u ∈ A) without an arc crossing. This would leave room for the

arc (x, v) and would give a directed leveled-planar embedding of ~T , as desired. The
same is true if m`P (u) < lev(w∗) for all u ∈ C.

Thus we are left with the case in which there are nodes u of A and of C with
m`P (u) ≥ lev(w∗). Let the set of all such u be U . We consider the case in which there
exists a node z ∈ U ∩ C with m`P (z) ≤ m`P (u) for all u ∈ U . The remaining case
(there exists a y ∈ U ∩A with m`P (y) ≤ m`P (u) for all u ∈ U) is similar. Choose an

embedding of ~T − v that maximizes |U ∩C| and yet preserves the definitions of A and
C and retains z ∈ C. Let A = {y1, y2, . . . , ym}, where i < j implies that yi is below
yj . Similarly, let C = {z1, z2, . . . , zn}, where i < j implies that zi is above zj . Note
that i < j implies that m`P (yi) > m`P (yj) and m`P (zi) > m`P (zj).

Let i be the maximum integer such that m`P (yi) ≥ lev(w∗), and let j be the
maximum integer such that m`P (zj) ≥ lev(w∗). By our assumptions, such i, j exist
and m`P (yi) ≥ m`P (zj). In Figures 4.4 and 4.5, we have i = 1 and j = 3.

Subcase I. m`P (zj) ≤ lev(wx) and m`P (yi) ≤ lev(wx). For this subcase, refer

to Figure 4.4. If m`T (yi) ≤ m`P (zj), then we have a forbidden graph in ~T with
M = m`P (zj). Hence m`T (yi) > m`P (zj) as is the case in Figure 4.4. If j = 1, then

the tree ~Tyi can be nested inside P (z1, h(z1)), contradicting the maximality of |C|. If

j > 1 and m`T (zj−1) ≤ m`P (yi), we have a forbidden graph in ~T with M = m`P (yi).
In the embedding in Figure 4.4, m`T (z2) = 4 and m`P (y2) = 4 and the forbidden
dag consists of the paths P1 = P (a, e), P2 = P (wx, v), P3 = P (b, f), P̂1 = P (r, a),
P̂2 = P (r, wx), and P̂3 = P (r, d). Otherwise (e.g., if node “b” were deleted from

the embedding in Figure 4.4), ~Tyi could be nested between P (zj−1, h(zj−1)) and
P (zj , h(zj)), contradicting the maximality of |C|.

1532 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

`1 `2 `3 `4 `5 `6 `7

s
s
s

sw∗

s

s

s

s

s

s

s
sa
s
swx
s

sb

s

s
s
s
s
s
s
s

sd

s

s
s

sy1

sy2

sw
sx
sz3

sz2

sz1

s

s

s
se

sr
sv

s
sf

s

@
@
@
@
@
@

��
��

��

HHHHHH

���
���

���
���

���
���

���
���

���
���

���
�

��
��

��

HHHHHH

@
@
@
@
@
@

J
J
J
J
J
J
J
JJ

A
A
A
A
A
A
A
A
A
A
AA

��
��

��
��

��
��

��
��
�

Fig. 4.4. An example for Subcase I of Case 2b.

Subcase II. m`P (zj) ≤ lev(wx) and m`P (yi) > lev(wx). For this subcase, refer to
the embedding in Figure 4.5 for which i = 1 and j = 3. If m`T (yi) ≤ m`P (zj), then
we have a forbidden graph with M = m`P (zj). If m`T (yi) > lev(wx) (which would

be the case if node “a” were removed from the embedding in Figure 4.5), then nest ~Tw
around ~Tyi and inside P (yi+1, h(yi+1)). This allows room for the arc (x, v) without

causing a crossing and gives a directed leveled-planar embedding of ~T , as desired.

Otherwise, as is the case for the embedding in Figure 4.5, m`P (zj) < m`T (yi) ≤
lev(wx). If there were a c < j with m`T (yi) ≤ m`P (zc) ≤ lev(wx), then we would
have a forbidden graph with M = m`P (zc). Hence if we let p be the minimum
integer for which m`P (zp) ≤ lev(wx), then we have m`T (yi) > m`P (zp). If p = 1
(as would be the case if the node z1 were deleted from the embedding in Figure 4.5),

then nest the trees ~Ty1 ,
~Tz2 , . . . ,

~Tyi inside the path P (zp, h(zp)) and nest ~Tw inside
P (yi+1, h(yi+1)). This allows room for the arc (x, v) without causing a crossing and

gives a directed leveled-planar embedding of ~T , as desired.

If p > 1 and m`T (zp−1) ≤ lev(wx), then we have a forbidden graph with

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1533

`1 `2 `3 `4 `5 `6 `7

s
s
s

sw∗

s

s

s

s

s

s

s

s

s
sa
s
swx
s
s

s

s

s
s

s
s
s
s
s

s

s

s

s
s
sy1

sy2

sw
sx
sz3

s
z2

sz1

s

s

s
s
s

sr
sv

s
s

s

@
@
@
@
@
@

��
��
��

��
��

��

HHHHHH

HHHHHH

���
���

���
���

���
���

���
���

���
���

���
�

@
@
@
@
@
@

J
J
J
J
J
J
J
JJ

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�
�
�
�
�
��

Fig. 4.5. An example for Subcase II of Case 2b.

M = lev(wx). Otherwise, p > 1 and m`T (zp−1) > lev(wx). This is the case
for the embedding in Figure 4.5 with p = 2. In this case, swap the nested trees
~Tz1 ,

~Tz2 , . . . ,
~Tzp−1

with ~Ty1
, ~Tz2 , . . . ,

~Tyi and nest ~Tw around ~Tzp−1
(now below x) and

inside ~Tyi+1 . This allows room for the arc (x, v) without causing a crossing and gives

a directed leveled-planar embedding of ~T , as desired.

Subcase III. m`P (zj) > lev(wx) and m`P (yi) > lev(wx). If m`T (yi) > lev(wx),

nest ~Tw between P (yi, h(yi)) and P (yi+1, h(yi+1)). If m`T (zj) > lev(wx), nest ~Tw
between P (zj , h(zj)) and P (zj+1, h(zj+1)). In either case, there is room for the arc
(x, v) without causing a crossing.

Otherwise, m`T (yi) ≤ lev(wx) and m`T (zj) ≤ lev(wx), in which case we have a
forbidden graph with M = lev(wx).

In all cases, we obtain a leveled-planar embedding of ~T . By induction, every tree
dag having no subdag in F is a leveled-planar dag. The theorem follows.

The following corollary to Theorems 4.1 and 4.2 is a complete characterization of
1-queue tree dags.

1534 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

Corollary 4.3. If ~T is a tree dag, then ~T is a directed 1-queue graph if and
only if ~T has no subdag in the set F .

4.2. Characterization of 1-queue directed cycles. Throughout this section,
we assume that ~C = (V, ~E) is a cycle dag with covering graph C = (V,E). For
notational convenience, we also assume that C is the cycle u1, u2, . . . , un. Without
loss of generality, we may assume that the indegree of node u1 is 0. Choose a leveling
lev of ~C − u1. Without loss of generality, we may assume that 1 = lev(u2) ≤ lev(un).

Let ~P = (V, ~EP) be the path dag ~C − (u1, un). Extend lev to a leveling of ~P , i.e., by
making lev(u1) = 0. We start with a partial characterization of 1-queue cycle dags
based on the value of lev(un), as given in the following lemma.

Lemma 4.4. Let ~C, ~P , and lev be as described above. If lev(un) ≥ 3, then ~C is

not a 1-queue dag. If lev(un) = 2, then ~C is a 1-queue dag and has a directed arched

leveled-planar embedding with the single arch (u1, u2). If lev(un) = 1, then ~C is a

1-queue dag if and only if ~C has a directed leveled-planar embedding.
Proof. We have three cases, based on the value of lev(un).

Case 1. lev(un) ≥ 3. To obtain a contradiction, suppose that ~C has a 1-queue

layout. By Proposition 1.1, ~C has a directed arched leveled-planar embedding. Recall
the terminology and notation from section 1. Let E be such an embedding with as
few arches as possible.

We first argue that no level j has more than one arch. Suppose (x, tj) and (y, tj)
are level-j arches, where x <σ y <σ tj . By the definition of arches, x <σ y ≤σ sj , so
neither x nor any other node below y on `j has an out-neighbor on `j+1. Hence we
can move tj to the bottommost place on `j+1 and still have an arched leveled-planar
embedding with two fewer arches than E . Since E was chosen to have as few arches as
possible, we have a contradiction. This contradiction establishes that no level j has
more than one arch.

We now define forward and backward arcs with respect to a traversal of C. A
forward arc is some (ui, ui+1), where 1 ≤ i < m. A backward arc is either (u1, um)
or some (ui+1, ui), where 1 ≤ i < m. Let α be the number of forward arches, β the
number of backward arches, γ the number of forward level arcs, and δ the number
of backward level arcs. During the traversal of C, every forward level arc moves one
vertical line to the right, while every backward level arc moves one vertical line to
the left; arches cause no horizontal movement. Since ~C is a cycle dag, γ = δ. We
know that ~C contains lev(un)− 1 ≥ 2 more forward arcs than backward arcs; that is,
α+ γ − (β + δ) ≥ 2. Hence α− β ≥ 2.

Suppose (a, b) is a level-j1 arch, (c, d) is a level-j2 arch, j1 < j2, and there are
no arches at levels strictly between j1 and j2. Then the cyclic order of these nodes
in C is a, b, d, c because if the cyclic order was a, b, c, d, then the path between b and
c that avoids a, plus the arch (c, d), would make it impossible to put the path from
d to a that avoids c in the directed arched leveled-planar embedding. Hence, if (a, b)
is a forward arc, then (c, d) is a backward arc and vice versa. Considering all arches,
we obtain that |α− β| ≤ 1. This is a contradiction to α− β ≥ 2. This contradiction

establishes that ~C does not have a 1-queue layout, as desired.
Case 2. lev(un) = 2. In this case, we construct a directed arched leveled-planar

embedding of ~C in which the arc (u1, u2) is the only arch. First, construct a directed

leveled-planar embedding of ~C − u1 by placing all level-j nodes on `j in decreasing
order by index from bottom to top. This is the mirror image of the construction in
the proof of Corollary 3.2. Note that node u2 is the topmost node on line `1, and

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1535

-�
�

�°��
�°��
�°��

�°���°��
�°��

�°��
.

XXXXXXz

Q
Q
Q
Q
QQs

HHHHHHHj-

XXXXXXz

Q
Q
Q
Q
Q
QQs

.

u1

u7

u6

u5 u4

u3

u2

`1 `2 `3

Fig. 4.6. Construction of a directed arched leveled-planar embedding of ~C with exactly one
arch, when lev(un) = 2.

node un is the bottommost node on line `2. Now add node u1 to the embedding as
the bottommost node on line `1. Add arc (u1, un) as a level arc and arc (u1, u2) as
an arch. Figure 4.6 illustrates the above construction for a cycle dag of 7 nodes. The
construction yields a directed arched leveled-planar embedding of ~C with the single
arch (u1, u2), as desired.

Case 3. lev(un) = 1. If lev(un) = 1, then ~C is a leveled dag. By Theorem 4.1, ~C
is a 1-queue dag if and only if it has a directed leveled-planar embedding, as desired.

From these three cases, the lemma follows.
Recall that we assumed, without loss of generality, that lev(un) ≥ 1. Thus the

lemma completely characterizes all 1-queue cycle dags. When lev(un) = 1, ~C is a

leveled cycle dag, and we can give a simple property that is equivalent to ~C being a
1-queue dag. Define

m = min{lev(ui) | 1 ≤ i ≤ n},
M = max{lev(ui) | 1 ≤ i ≤ n}.

~C contains an N -dag if there exist four nodes, ua, ub, uc, and ud satisfying 1 ≤ a <
b < c < d ≤ n, such that either lev(a) = lev(c) = m and lev(b) = lev(d) = M or
lev(a) = lev(c) = M and lev(b) = lev(d) = m. Figure 4.7 shows a path dag in which
lev(u1) = lev(u7) = 0 and lev(u3) = lev(u8) = 2. If we add the arc (u10, u9) to
this path dag, then we obtain a cycle dag that contains an N -dag. Notice that the
cycle dag so obtained is a leveled dag that does not have a directed leveled-planar
embedding. Whether ~C contains an N -dag is independent of lev.

Theorem 4.5. Let ~C be a leveled dag. Then ~C is a 1-queue dag if and only if ~C
does not contain an N -dag.

Proof. First suppose that ~C is a leveled dag that contains an N -dag. To obtain
a contradiction, assume that ~C is a 1-queue dag. By Theorem 4.1, ~C has a directed
leveled-planar embedding—call it E . Let lev be the leveling of ~C induced by E .
Let m and M be as defined above. Since ~C contains an N -dag, without loss of
generality, we may assume that lev(ua) = lev(uc) = m, lev(ub) = lev(ud) = M , and

1536 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

�°��
�°��

�°���°��
�°��

�°��

�°��

�°��

�°��

�°��

.
Q
Q
Q
Q
QQs

HHHHHHHj-

XXXXXXz

Q
Q
Q
Q
Q
QQs

-

S
S
S
S
S
S
SSw

XXXXXXz

��
��
��1

`0 `1 `2

u10

u7

u1

u8

u6

u4

u2

u3

u5

u9

Fig. 4.7. Illustration of an N-dag.

�°�� �°��

�°���°��

`M

(((((��!!
!!

!!
!
�
� -

aaaaaaa@
@aaaaT

Taaaaaaa����Q
QQs

ÃÃÃÃ
ÃÃÃÃ�
�
�
�
�����

���
���

��:ua ub

uc ud

`m

Fig. 4.8. The path between uc and ub partitions the strip between `m and `M into disconnected
regions.

1 ≤ a < b < c < d ≤ n. As seen in Figure 4.8, the strip between the vertical lines `m
and `M is partitioned into two disconnected regions by the path between uc and ub.
The nodes ua and ud lie in distinct disconnected regions and cannot be connected by
a path lying wholly between `m and `M without crossing the path between uc and
ub. Hence, ~C does not have a directed leveled-planar embedding, a contradiction to
the existence of E . This contradiction establishes that QN(~C) 6= 1.

Now suppose that ~C is a leveled dag that does not contain anN -dag. We construct
a directed leveled-planar embedding of ~C, thus showing that QN(~C) = 1. Without

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1537

loss of generality, we may assume that lev(u1) = m. Define

a = min{i | lev(ui) = m},
b = max{i | lev(ui) = m},
c = min{i | lev(ui) = M},
d = max{i | lev(ui) = M}.

Hence a = 1, a ≤ b, and c ≤ d. We consider three cases based on the relationships
between a and b and between c and d.

First, suppose a = b. Embed ~P as in the proof of Corollary 3.2. Since there is
only one level-m node, (u1, u2) is the only arc drawn between `m and `m+1. Since un
is on line `m+1, the arc (u1, un) can be added to the embedding without intersecting

any arc, yielding a directed leveled-planar embedding of ~C.
Now suppose a 6= b and c = d. Let ~CR be the cycle dag gotten by reversing all

the arcs in ~C. The construction of the last paragraph yields a directed leveled-planar
embedding of ~CR, which is the mirror image of a directed leveled-planar embedding
of ~C.

Finally, suppose a 6= b and c 6= d. Without loss of generality, we may assume
that 1 = a < b < c < d < n, since ~C does not contain an N -dag. First, construct a
directed leveled-planar embedding E1 of the path dag u1, u2, . . . , uc, as in the proof
of Corollary 3.2. Observe that all level-m nodes in ~C are in E1, u1 is the lowest node
on `m, and uc is the only node on `M . Second, construct a directed leveled-planar
embedding E2 of the path dag uc+1, . . . , ud so that the nodes of level-j are placed on
`j in decreasing order by index. This embedding is the mirror image of the embedding
in the proof of Corollary 3.2. Third, combine E1 and E2 into a directed leveled-planar
embedding E3 of the path dag u1, u2, . . . , ud by placing E2 below E1 and adding arc
(uc+1, uc). Observe that all level-m and level-M nodes are in E3, u1 is the lowest node
on `m, and ud is the lowest node on `M . Fourth, construct a directed leveled-planar
embedding E4 of the path dag ud+1, . . . , un, as in the proof of Corollary 3.2. Fifth,

construct a directed leveled-planar embedding of ~C by placing E4 below E3 and adding
arcs (u1, un) and (ud+1, ud).

In all cases, we have a directed leveled-planar embedding of ~C. The theorem
follows.

5. Conclusion. In this paper, we have initiated the study of stack and queue
layouts of dags and have established the stacknumber and queuenumber of path dags,
cycle dags, tree dags, and unicyclic dags. We have also presented forbidden subgraph
characterizations of 1-queue tree dags and 1-queue cycle dags. By comparing Theo-
rem 2.1 to Theorem 3.1, one might think that stacks are more powerful than queues
for laying out dags. However, in the following examples, we show that the truth is
not so simple.

Example. Figure 5.1 shows a dag with 6 nodes whose covering graph is outerpla-
nar. (Bernhart and Kainen [1] show that undirected outerplanar graphs are exactly
the 1-stack graphs.) This dag has a unique topological order that yields stacknumber
1 and queuenumber 3. More generally, the path dag v1, v2, . . . , v2n augmented with
the arcs (vi, v2n−i+1) defines a sequence of dags with outerplanar covering graphs with
stacknumber 1 and queuenumber n. An analogous sequence for undirected graphs is
unknown (see Heath, Leighton, and Rosenberg [4] for discussion).

Example. Figure 5.2 shows a dag with 8 nodes whose covering graph is planar.
This dag has a unique topological order that yields stacknumber 4 and queuenumber

1538 LENWOOD S. HEATH, SRIRAM V. PEMMARAJU, AND ANN N. TRENK

?

$'
?

$'

& %6& %6& %6 & %6& %6
�°���°���°�� �°�� �°���°��

Fig. 5.1. A dag with stacknumber 1 and queuenumber 3.

�°���°���°��
�°�� �°���°���°��

!

Ã

-�°��

-

6

- -

? ? ? ?
--

Fig. 5.2. A dag with stacknumber 4 and queuenumber 2.

2. By expanding the directed grid in this example to the right, we obtain a sequence of
dags with planar covering graphs, in which each dag with 2n nodes has stacknumber n
and queuenumber 2. By way of contrast, Yannakakis [11] shows that every undirected
planar graph has stacknumber at most 4. Heath, Leighton, and Rosenberg [4] give an
example of a sequence of undirected graphs for which the stacknumber is exponentially
larger than the queuenumber.

Our investigation of dags with outerplanar covering graph has left us with the
belief that there exists a constant c such that any dag with outerplanar covering graph
can be laid out in c or fewer stacks. So we conclude with a conjecture.

Conjecture 1. The stacknumber of the class of directed outerplanar graphs is
bounded above by a constant.

REFERENCES

[1] F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B, 27
(1979), pp. 320–331.

[2] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Scheduling tree-dags
using FIFO queues: A control-memory trade-off, J. Parallel Distrib. Comput., 33 (1996),
pp. 55–68.

[3] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Embedding graphs in books: A
layout problem with applications to VLSI design, SIAM J. Alg. Discrete Methods, 8 (1987),
pp. 33–58.

[4] L. S. Heath, F. T. Leighton, and A. L. Rosenberg, Comparing queues and stacks as mech-
anisms for laying out graphs, SIAM J. Discrete Math., 5 (1992), pp. 398–412.

[5] L. S. Heath and S. V. Pemmaraju, Stack and queue layouts of directed acyclic graphs: Part
II, SIAM J. Comput., to appear.

STACK AND QUEUE LAYOUTS OF DAGS: PART I 1539

[6] L. S. Heath and S. V. Pemmaraju, Stack and queue layouts of posets, SIAM J. Discrete
Math., 10 (1997), pp. 599–625.

[7] L. S. Heath, S. V. Pemmaraju, and C. J. Ribbens, Sparse Matrix-Vector Multiplication on
a Small Linear Array, Springer-Verlag, Berlin, 1993.

[8] L. S. Heath and A. L. Rosenberg, Laying out graphs using queues, SIAM J. Comput., 21
(1992), pp. 927–958.

[9] R. Nowakowski and A. Parker, Ordered sets, pagenumbers and planarity, Order, 6 (1989),
pp. 209–218.

[10] M. M. SysÃlo, Bounds to the page number of partially ordered sets, in Proc. 15th International
Workshop on Graph-Theoretic Concepts in Computer Science, WG ’89, M. Nagl, ed., 1989,
pp. 181–195.

[11] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. System Sci., 38 (1989),
pp. 36–67.

DIAGNOSIS OF WIRING NETWORKS: AN OPTIMAL
RANDOMIZED ALGORITHM FOR FINDING CONNECTED

COMPONENTS OF UNKNOWN GRAPHS∗

WEIPING SHI† AND DOUGLAS B. WEST‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1541–1551

Abstract. We want to find the vertex sets of components of a graph G with a known vertex
set V and unknown edge set E. We learn about G by sending an oracle a query set S ⊆ V , and the
oracle tells us the vertices connected to S. The objective is to use the minimum number of queries
to partition the vertex set into components. The problem is also known as interconnect diagnosis
of wiring networks in VLSI. We present a deterministic algorithm using O(min{k, lgn}) queries and
a randomized algorithm using expected O(min{k, lg k + lg lgn}) queries, where n is the number of
vertices and k is the number of components. We also prove matching lower bounds.

Key words. randomized algorithm, lower bound, fault diagnosis, graph, component, connection
class

AMS subject classifications. 68Q25, 68R10, 05C85, 05C40, 94C12

PII. S0097539795288118

1. Introduction. We study how to find the vertex sets of components of an
unknown undirected graph G = (V,E) on a known vertex set V . Vertices u and v are
connected if there is a path between them. The components of G are its maximal con-
nected subgraphs. The connection relation is an equivalence relation on the vertex set
V , and the vertex sets of the components are the equivalence classes of the connection
relation, also called the connection classes. When we say “finding the components,”
we mean finding the connection classes. In our problem, we are given V but not E.
We do not know the number of components or their sizes. The only operation we may
use to obtain information about G is to query an oracle. For any query set S ⊆ V ,
the oracle will tell us Q(S), the set of vertices connected to vertices of S

Q(S) = {v ∈ V : there exists u ∈ S such that u and v are connected}.
Note that the response Q(S) does not identify which vertex in S is connected to each
vertex in Q(S). The objective is to find the connection classes using the minimum
number of queries.

This problem comes from the interconnect diagnosis of wiring networks of logic
circuits. It has applications to design and testing of very large scale integration
(VLSI), multichip module (MCM), and printed circuit board (PCB) systems [2, 3,
4, 5, 8]. A wiring network consists of a set of nets, each having one driver and one
receiver. The logic value of a good net is controlled by its driver and observed by
its receiver. When some nets are involved in a short fault, their receivers all receive
the logical OR of the values of their drivers. To diagnose a wiring network, a test
engineer sends a test vector of logical 0’s and 1’s from the drivers and observes the
outputs from the receivers. Diagnosing a wiring network is the same as finding the

∗Received by the editors June 26, 1995; accepted for publication (in revised form) February 13,
1998; published electronically April 27, 1999.

http://www.siam.org/journals/sicomp/28-5/28811.html
†Department of Computer Science, University of North Texas, Denton, TX 76203 (wshi@cs.

unt.edu). The research of this author was supported by NSF grant MIP-9309120.
‡Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801

(west@math.uiuc.edu). The research of this author was supported by NSA/MSP grant MDA904-93-
H-3040.

1541

1542 WEIPING SHI AND DOUGLAS WEST

Table 1.1
Number of queries required to find connection classes.

Deterministic Θ(min{k, lgn})
Randomized Θ(min{k, lg k + lg lgn})

Nondeterministic Θ(lg k)

connection classes of the graph of short faults, and applying test vectors to the nets
is the same as querying the oracle for that graph.

Kautz [5] studied the problem for the special case of testing G = Kn, which he
phrased as testing whether there is any short among n nets. Garey, Johnson, and So
[3] observed that if we are given partial information about the edge set of G, then
finding an optimal algorithm to test G = Kn becomes NP-complete (reduction from
chromatic number). For our problem of finding all connection classes, Jarwala and
Yau [4] provided a heuristic using lgn + n − k queries, where k is the number of
components. There is also a nonadaptive version of the problem where the inputs
of all queries are decided before asking the oracle any question [2, 8, 9]. The non-
adaptive version is used in applications where the query set is built into the computer
hardware and the test is performed automatically. Shi and Fuchs [8] showed that n−1
queries are necessary and sufficient to find all connection classes nonadaptively. Shi
and Fuchs also presented a recursive version of the deterministic algorithm of section
2, for the case of the interconnect diagnosis problem. Cheng, Lewandowski, and Wu
[2] studied a variation of the nonadaptive diagnosis problem where the objective is to
report all vertices in components that contain more than one vertex, without having
to identify the connection classes. Chen and Hwang [1] studied the problem under
a different model, called group testing. In group testing, the inputs of each query
are two sets S and T , and the oracle answers yes or no depending on whether some
vertex in S is connected to some vertex in T . Kavraki et al. [6] studied the problem of
finding connection classes of an unknown graph, where the oracle looks at one entry
of the adjacency matrix in each query. Recently, Shi and West [9] studied how to find
the connection classes if partial information about the edge set of G is given.

Table 1.1 summarizes our results, where n is the number of vertices and k is
the number of components, which is not given as part of the input. No assumption
is made on k other than 1 ≤ k ≤ n. All logarithms in this paper are base 2. We
measure the query complexity in terms of both the input size n and the number of
components k. We present algorithms achieving the upper bounds and prove matching
lower bounds. Note that randomization may permit an exponential reduction in the
number of queries compared to the deterministic algorithm.

2. Deterministic algorithm. There is a straightforward deterministic algo-
rithm to find the connection classes in k queries: Iteratively pick a vertex v and make
a query. Record Q({v}) as one class, and delete Q({v}) from the vertex set. Each
query finds one new class. The upper bound k can be improved when n < 2k. We
present in Algorithm 1 and Procedure D an algorithm that uses dlg ne queries to find
all connection classes. Procedure D will also be used by the randomized algorithm in
section 3.

The algorithm iteratively maintains a component structure P = {(Si, Ri) : i =
1, 2, . . . , t}, where S1, S2, . . . , St are subsets of vertices that form a partition of V , and
R1, R2, . . . , Rt are “chosen” subsets of vertices such that Ri ⊆ Si and Q(Ri) = Si.
This property of the chosen subsets implies that each Si is a union of connection
classes. Algorithm 1 initializes with the component structure P = {(V, V)}, and then

DIAGNOSIS OF WIRING NETWORKS 1543

makes dlg ne calls to Procedure D to refine the partition, cutting the sizes of the
chosen sets in half at each step. When the algorithm terminates, every Ri is reduced
to a single vertex, and therefore every Si is one connection class.

Algorithm 1.
Input: A vertex set V of size n.
Output: Vertex sets of all components of unknown G.
1: P ← {(V, V)}.
2: For i← 1 to dlg ne do
3: P ← D(P).
4: For each (Sj , Rj) ∈ P
5: Report Sj as one class.

Procedure D(P).
Input: A component structure P = {(Sj , Rj) : j = 1, 2, . . . , t}.
Output: A refined component structure P ′ = {(S′j , R′j) : j = 1, 2, . . . , t′}.
1: For j ← 1 to t do
2: Arbitrarily pick R′j ⊆ Rj such that |R′j | = d 1

2 |Rj |e.
3: Perform the single query ∪R′j , with result S′ ← Q(∪R′j).
4: P ′ ← ∅.
5: For j ← 1 to t do
6: Let Tj = Sj ∩ S′.
7: P ′ ← P ′ ∪ {(Tj , R′j)}.
8: If Tj 6= Sj then P ′ ← P ′ ∪ {(Sj − Tj , Rj − Tj)}.
9: Return P ′.

Lemma 2.1. Given a component structure in which the largest chosen subset has
m vertices, dlgme iterations of Procedure D finds all the connection classes.

Proof. With each query, we divide the maximum size of the chosen subsets by 2.
Hence there are at most dlgme queries. To prove that the algorithm works it suffices
to show that the property Q(Rj) = Sj is maintained by Procedure D. If so, then
when all |Rj | = 1, all vertices in Sj are connected to the chosen vertex, and Sj is the
connection class containing it.

For any |Rj | > 1, the procedure performs a query and splits Sj into Tj and
Sj − Tj . Because Q(Rj) = Sj , the query Q(∪R′j) tells us that Q(R′j) = Tj and there
is no connection between Tj and Sj − Tj . If Sj − Tj is nonempty, then since all of Sj
were connected to Rj , we must have Q(Rj − Tj) = Sj − Tj .

The following theorem is manifest.
Theorem 2.2. For any graph with n vertices, Algorithm 1 finds all connection

classes using dlg ne queries.
An algorithm using 2(min{k, dlg ne}) queries can be obtained by combining the

k-query algorithm and the dlg ne-query algorithm. We alternately perform one query
for each of the two algorithms, stopping whenever one of the two algorithms has found
all the connection classes.

3. Randomized algorithm. In this section, we present a randomized algorithm
that may reduce the number of queries exponentially. First the algorithm calls the
randomized Procedure R for dlg lg ne iterations, and then it calls the deterministic
Procedure D to complete the refinement of the partition.

1544 WEIPING SHI AND DOUGLAS WEST

In Algorithm 2 we also maintain a partition and chosen subsets, and the idea
is still to partition Sj into Tj connected to R′j and Sj − Tj connected to Rj − Tj .
The only difference between Procedure R and Procedure D is in step 2, where we
randomly pick d√|R|e vertices in R, instead of d 1

2 |R|e vertices in D. This difference
leads to more rapid reduction in the size of the query set.

Algorithm 2.
Input: A vertex set V of size n.
Output: Vertex sets of all components of unknown G.
1: P ← {(V, V)}.
2: For i← 1 to dlg lg ne do
3: P ← R(P).
4: While there exists (Sj , Rj) ∈ P such that |Rj | > 1
5: P ← D(P).
6: For each (Sj , Rj) ∈ P
7: Report Sj as one class.

Procedure R(P).
Input: A component structure P = {(Sj , Rj) : j = 1, 2, . . . , t}.
Output: A refined component structure P ′ = {(S′j , R′j) : j = 1, 2, . . . , t′}.
1: For j ← 1 to t do

2: Randomly pick R′j ⊆ Rj such that |R′j | = d
√|Rj |e .

3: Perform the single query ∪R′j , with result S′ ← Q(∪R′j).
4: P ′ ← ∅.
5: For j ← 1 to t do
6: Let Tj = Sj ∩ S′.
7: P ′ ← P ′ ∪ {(Tj , R′j)}.
8: If Tj 6= Sj then P ′ ← P ′ ∪ {(Sj − Tj , Rj − Tj)}.
9: Return P ′.

The correctness of Algorithm 2 follows as in Lemma 2.1. To estimate the number
of queries used by Algorithm 2, we need to estimate the size of the largest chosen
subset after dlg lg ne calls to Procedure R. Define a sequence of random variables
X0, X1, . . . , Xlg lg n, where X0 = n, and Xi is the size of the largest chosen subset
after i calls to Procedure R.

Lemma 3.1. For any positive integer m and real number α ∈ [0, 1],

α(1− α)m <
1

em
,

where e = 2.71828 . . . is the base of the natural logarithm.
Proof. The derivative of f(α) = α(1− α)m is

df(α)

dα
= (1− α)m −mα(1− α)m−1 = (1− α)m−1(1− α−mα).

If f ′(α) = 0, then one of the factors (1 − α) and (1 − α −mα) must be zero, which
happens only at α = 1 or α = 1

m+1 . Checking the values of f at these points and the

DIAGNOSIS OF WIRING NETWORKS 1545

boundary α = 0, we find that f(α) reaches its maximum when α = 1
m+1 . Therefore,

f(α) ≤ 1

m+ 1

(
1− 1

m+ 1

)m
<

1

(m+ 1)

1(
1− 1

m+1

) 1

e
=

1

em
.

Lemma 3.2. For the sequence of random variables Xi defined above, the condi-
tional expectation E[Xi | Xi−1] is bounded by

E[Xi | Xi−1] <
√
Xi−1 · k2.

Proof. Assume after i−1 calls toR we have a component structure P = {(Sj , Rj) :
j = 1, 2, . . . , t} in which the largest chosen subset is Rl of size Xi−1. At iteration i
when we apply R(P), the pair (Sl, Rl) is split into (Q(R′l), R

′
l), and possibly (Sl −

Q(R′l), Rl−Q(R′l)), where |R′l| =
√
Xi−1. Denote the chosen subset Rl−Q(R′l) by R′′l .

The size of R′′l is a random variable with its value anywhere from 0 to Xi−1−
√
Xi−1.

Consider the following conditional expectation.

E[max{|R′l|, |R′′l |} | Xi−1] = E[max{
√
Xi−1, |R′′l |} | Xi−1]

≤ E[
√
Xi−1 + |R′′l | | Xi−1]

=
√
Xi−1 + E[|R′′l | | Xi−1].

Let the k components of G be G1, G2, . . . , Gk, and their contributions to Rl have sizes
n1, n2, . . . , nk, with nj = |V (Gj) ∩Rl|. The vertices in R′′l belong to the components
not hit by the query Q(R′l). Each successive vertex selected for R′l has probability at
least nj/|Rl| of belonging to Gj . Hence the probability of missing Gj completely is

at most (1 − nj/|Rl|)
√
|Rl|. When we do miss Gj , it contributes nj vertices to R′′l .

Therefore,

E[|R′′l | | Xi−1] ≤
k∑
j=1

nj

(
1− nj

Xi−1

)√Xi−1

= Xi−1

k∑
j=1

nj
Xi−1

(
1− nj

Xi−1

)√Xi−1

.

Letting αj = nj/Xi−1, we have
∑k
j=1 αj = 1 and 0 ≤ αj ≤ 1 for j = 1, 2, . . . , k.

Using Lemma 3.1 we obtain

E[|R′′l | | Xi−1] ≤ Xi−1

k∑
j=1

αj(1− αj)
√
Xi−1

≤ Xi−1 · k · max
0≤α≤1

α(1− α)
√
Xi−1

<
Xi−1 · k
e
√
Xi−1

=
k
√
Xi−1

e
.

This computation depends only on |Rl|, which equals Xi−1. Because the expression
grows with |Rl|, it also provides an upper bound on the expected size of the larger
piece in the refinement of some other Rj . Also, although we don’t know which piece
will provide the new maximum, certainly its size will be less than the sum of maximum

1546 WEIPING SHI AND DOUGLAS WEST

sizes from all the pieces. These two comments yield an upper bound on E[Xi | Xi−1]
by taking k times the bound from Rl:

E[Xi | Xi−1] ≤ k · E[max{|R′l|, |R′′l |} | Xi−1]

< k ·
(√

Xi−1 +
k
√
Xi−1

e

)
.

For k ≥ 2, we conclude that E[Xi | Xi−1] <
√
Xi−1 · k2.

Theorem 3.3. For a graph with n vertices and k components, the expected
number of queries used by Algorithm 2 to find all connection classes is O(lg k+lg lgn).

Proof. Consider the maximum size Xi of the chosen subsets after i iterations. We
prove by induction on i that E[Xi] < n2−ik4. This is immediate for i = 0. Using
Lemma 3.2, the inequality E[f(X)] ≤ f(E[X]) for concave f (such as square root),
and the induction hypothesis, we have

E[Xi] = E(E[Xi|Xi−1]) < E[
√
Xi−1 · k2] ≤

√
E[Xi−1] · k2

≤
√
n2−(i−1)k4 · k2 = n2−ik4.

With i = dlg lg ne, we obtain E[Xlg lg n] < 2k4. From Markov’s inequality,

Pr[Xlg lg n ≥ 2k4 lg n] <
2k4

2k4 lg n
=

1

lg n
.

If Xlg lg n < 2k4 lg n, then lg(2k4 lg n) additional queries suffice. With probability at
most 1

lgn , we are left with chosen subsets greater than 2k4 lg n after dlg lg ne iterations

of Procedure R. Procedure D can resolve these instances with at most dlg ne further
queries. Therefore the expected number of queries used by Algorithm 2 is at most

lg lg n+ lg(2k4 lg n) +
1

lg n
lg n = 2 lg lgn+ 4 lg k + 2.

Again, an algorithm using O(min{k, lg lg n + lg k}) queries can be obtained by
alternating between the k-query algorithm and Algorithm 2.

4. Lower bounds. In this section we obtain optimal lower bounds (within a
constant multiplicative factor) on the number of queries for nondeterministic, deter-
ministic, and randomized algorithms.

Theorem 4.1. For a graph with k components, every algorithm finding the
connection classes uses at least lg k queries.

Proof. Since the response to a query Q(S) cuts each subset U ⊆ V that is known
to be a union of connection classes into at most two subsets, U ∩Q(S) and U −Q(S),
with no edges between them, we need at least lg k queries to separate the set of vertices
into k classes.

Theorem 4.1 provides a lower bound for every algorithm. A nondeterministic
algorithm can guess the connection classes and use dlg ke+ 1 queries to verify them.

Theorem 4.2. Let A be a deterministic algorithm finding the connection classes
of unknown graphs. Over graphs with n vertices and k components, in the worst case
A uses at least min{k, lg n} queries.

Proof. Consider the following adversary. In response to our first query S, the
adversary makes a graph in which S induces a single component if |S| ≤ n/2, or
a graph in which V − S induces a single component if |S| > n/2. This leaves a
subproblem with k − 1 components and at least n/2 vertices.

DIAGNOSIS OF WIRING NETWORKS 1547

The randomized lower bound is more involved. We first describe Yao’s corollary
[7] of von Neumann’s minimax principle. By considering a matrix game in which the
rows correspond to deterministic algorithms and the columns to input instances, Yao
observed that the expected performance of the optimal randomized algorithm on the
worst input instance for it equals the expected cost of the worst input distribution
against the best deterministic algorithm for it. More precisely, let P denote a distri-
bution over deterministic algorithms A; Q denote a distribution over input instances
G, and c(A,G) denote the cost of running algorithm A on input instance G. We then
have

min
P

max
G

EP [c(A,G)] = max
Q

min
A
EQ[c(A,G)].

Hence, to provide a lower bound for a randomized algorithm, it suffices to prove a
lower bound for the expectation of every deterministic algorithm against a particularly
bad input distribution.

We will need several lemmas.
Lemma 4.3 (randomized reduction lemma). For i ∈ {1, 2}, let Gi be a set of

input instances, Πi be a property for Gi, and Ai be a deterministic algorithm for
testing Gi ∈ Πi. Let B : G1 → G2 be a deterministic or randomized transformation
such that G1 ∈ Π1 if and only if B(G1) ∈ Π2. Let Q1 be a distribution over G1 of
a random input G1, and let Q2 be the resulting distribution of B(G1). Under these
conditions,

min
A1

EQ1
[c(A1, G1)] ≤ EQ1

[c(B,G1)] + min
A2

EQ2
[c(A2, G2)].

Proof. We may view B as an algorithm on the set G1. Our general cost function
c uses an arbitrary cost measure; by c(B,G1) we mean the cost in this measure of
performing the transformation. If B is deterministic, then combining B and A2 gives
a deterministic algorithm for recognizing Π1. Thus the claim holds for deterministic
transformations.

IfB is randomized, then combiningB andA2 gives a randomized algorithm for Π1.
The performance of a randomized algorithm is a weighted average of the performance
of deterministic algorithms, weighted by some distribution. The combination of B
and A2 costs at least as much as the best randomized algorithm; let P be the best
distribution over deterministic algorithms. Since the expectation over P is a convex
combination over deterministic algorithms, for each fixed input distribution Q1 we
have the inequality below, which completes the proof:

min
A1

EQ1
[c(A1, G1)] ≤ min

P
EP [EQ1 [c(A1, G1)]].

We will apply Yao’s corollary to a particular distribution R(n, k) over graphs with
n+ o(n) vertices and k components, where k ≤ 1

2 lg lg n. To select a graph according
to R(n, k), we form cliques C1, C2, . . . , Ck with vertex sets of sizes nε1 , nε2 , . . . , nεk ,
respectively. We let ε1 = 0, ε2 = 1 and ε3 = 1/2. For i ≥ 4, εi is chosen with the
following distribution:

Pr

[
εi = εi−1 +

(
1

2

)i−2
]

= Pr

[
εi = εi−1 −

(
1

2

)i−2
]

=
1

2
.(4.1)

This generates
∑k
i=1 n

εi = n+ o(n) vertices in total. Finally, apply a random permu-
tation to the vertex labels to complete the generation of a graph from R(n, k). Figure
4.1 illustrates a selection of the exponents.

1548 WEIPING SHI AND DOUGLAS WEST

ε1 ε3 ε5 ε6 ε7 ε4 ε2

0 1
2

5
8

11
16

23
32

3
4 1

Fig. 4.1. Example distribution of the exponents.

In the above definition and the rest of this section, we omit the ceiling function de
on the number of vertices for simplicity. To do so does not affect the claimed bound,
since each time a ceiling is omitted the number of vertices is affected by an additive
term of at most 1, while the smallest component that might be affected is of size at
least lg n.

Given ε1, . . . , εk, let π be the permutation of {1, 2, . . . , k} such that επ(1) <
επ(2) < · · · < επ(k). We call each interval (επ(i), επ(i+1)] an ε-interval. The length
of (επ(i), επ(i+1)] is επ(i+1) − επ(i). The real numbers επ(1), . . . , επ(k) partition (0, 1]
into k−1 disjoint ε-intervals. Of the k−1 ε-intervals, there is one with length 2−i for
each i = 1, 2, . . . , k − 3, and there are two with length 2−(k−2) that are consecutive.

Lemma 4.4. For any fixed integer k ≥ 3 and fixed real number x ∈ (0, 1], under
the distribution of R(n, k), the probability that x is in an ε-interval of length 2−i is
2−i when 1 ≤ i ≤ k − 3, and it is 2−(i−1) when i = k − 2.

Proof. When k = 3, every x is in an ε-interval of length 1/2. When k > 3, x
remains in the interval of length 1/2 with probability 1/2; otherwise, x falls into some
interval determined by applying the process for k − 1 steps to an interval of length
1/2. Multiplying all lengths and probabilities by 1/2 in that distribution yields the
remainder of the specified distribution for k, so the claim holds by induction.

Lemma 4.5. Given positive integers x1, x2, . . . , xk, let P (x1, . . . , xk) be the dis-
tribution over graphs consisting of disjoint cliques having x1, . . . , xk vertices that
is obtained by assigning vertices to components at random. For any positive in-
tegers n1, . . . , nk, c, the expected number of queries used by a deterministic algo-
rithm that finds the connection classes against P2 = P (n1 · c, . . . , nk · c) is at least
the expected number of queries used by an optimal deterministic algorithm against
P1 = P (n1, . . . , nk).

Proof. We exhibit a randomized algorithm B that transforms P1 to a distribution
P ′ without making any query. By Lemma 4.3, the expected number of queries against
P ′ is at least the expected number against P1. We then observe that the expected
number of queries against P ′ is the same as the expected number used by the same
algorithm against P2.

Given G1 drawn from P1, for each vertex vi ∈ V1 we add a clique Qi having c− 1
vertices and an edge between vi and Qi. We then apply a random permutation σ to
the resulting set of vertices to obtain a graph G2. We have changed each component
having ni vertices in G1 to a component having c · ni vertices in G2, and we did not
add any components or make any queries.

Permutation σ guarantees that vertices are assigned to components at random in
G2. Therefore, the probability of a particular partition of the vertices into connection
classes depends only on the sizes of the connection classes, which are fixed. Thus the
distribution over answers to the connection-class problem is the same for P ′ as for
P2. Furthermore, the two problems are solved by the same algorithms and with the
same expected number of queries, because instances with the same probabilities can
be paired up so that the responses to all queries are exactly the same.

DIAGNOSIS OF WIRING NETWORKS 1549

Lemma 4.6. Let k be a positive integer satisfying k ≤ 1
2 lg lg n. If F satisfies

F (n, k) ≥ 1 +

k−2∑
i=1

2−i
(

1− 1

lg n

)
F (n2−i , k − i− 2)

for k ≥ 2, then F (n, k) ≥ k/5 for all k ≥ 2.
Proof. If k ≤ 1

2 lg lg n, then

k − i− 2 < k − i

2
≤ lg lg n

2
− i

2
=

lg lg n2−i

2
.

Thus we can apply induction on k. When k = 2, since empty sums equal 0, the
initial condition is F (n, k) ≥ 1 > k/5. When k > 2, the induction hypothesis yields
F (n, i) ≥ i/5 for 2 ≤ i < k. Now

F (n, k) ≥ 1 +

k−2∑
i=1

1

2i

(
1− 1

lg n

)
k − i− 2

5
.

To evaluate the sum, we first prove by induction on j that
∑j−2
i=1 2−i(j − i) = j − 2.

This is trivial for j = 2 or j = 3. For j > 3, we have

j−2∑
i=1

j − i
2i

=

j−3∑
i=1

j − 1− i
2i

+

j−3∑
i=1

1

2i
+

2

2j−2
= j − 3 +

(
1− 1

2j−3

)
+

1

2j−3
= j − 2.

Also applying
∑k−2
i=1 21−i < 2, we obtain

F (n, k) > 1 +

(
1− 1

lg n

)(
k − 4

5

)
>
k

5
+

1

5
− k − 4

5 lg n

>
k

5
+

1

5
− lg lg n

10 lg n
>
k

5
.

Lemma 4.7. For k ≤ 1
2 lg lg n, the expected number of queries used by any deter-

ministic algorithm A finding connection classes against distribution R(n, k) is Ω(k).
Proof. Let V be the set of vertices and S 6= ∅ be the set of vertices algorithm A

picks to make the first query. We consider three cases concerning S, each of which
leads to the same recurrence.

Define x by |S| = n1−x. In Cases 1 and 2, we suppose that |S| < n, and thus
x > 0. Since x ∈ (0, 1], there exists an ε-interval (επ(i), επ(i+1)] containing x. By
Lemma 4.4, the probability is 2−j that the ε-interval containing x has length 2−j . Let
us consider this possibility.

Intervals of length 2−j are created when εj+2 is selected, and εj+2 lies between
two such intervals. Further choices are made in one of those intervals, so εj+2 is the
bottom or top of the ε-interval of length 2−j that remains. Thus j + 2 is π(i) or
π(i + 1). We prove that in either case, with probability at least 1/lg n we still have
Cj+3, . . . , Ck within a single set of our partition.

Case 1. If j + 2 = π(i), then

επ(i) − 2−j < εj+3, εj+4, . . . , εk ≤ επ(i−1) < επ(i) < x ≤ επ(i+1).

1550 WEIPING SHI AND DOUGLAS WEST

Consider the probability that S contains no vertex from components Cj+3, Cj+4, . . . ,
Ck. With C = Cj+3 ∪ · · · ∪ Ck, we have

Pr[S ∩ C = ∅] =

(|V |−|C|
|S|

)(|V |
|S|
) >

(|V | − |C| − |S|+ 1

|V | − |S|+ 1

)|S|
=

(
1− |C|
|V | − |S|+ 1

)|S|
.

Since x > επ(i) ≥ 2−k+2 ≥ 4/
√

lg n > 1/ lg n and n−1/ lgn = 1/2, we have |S| < n/2.
Using |V | − |S|+ 1 > n/2, |C| < 2nεπ(i−1) , and |S| = n1−x, we have

Pr[S ∩ C = ∅] >
(

1− 4nεπ(i−1)

n

)n1−x

> 1− 4

nx−επ(i−1)
> 1− 4

nεπ(i)−επ(i−1)
.

The middle inequality uses (1 − y)z > 1 − yz for z > 1 and 0 < yz < 1, which is
verified by taking natural logarithms and expansions of both sides.

Since επ(i) − επ(i−1) ≥ 2−k+2 ≥ 4√
lgn

, we have

Pr[S ∩ C = ∅] > 1− 1

n4/
√

lgn
= 1− 1

24
√

lgn
> 1− 1

2lg lg n
= 1− 1

lg n
.

Thus 1 − 1/ lg n is a lower bound on the probability that all of Cj+3, . . . , Ck lie in
V −Q(S).

Case 2. If j + 2 = π(i+ 1), then the various definitions yield

επ(i) < x ≤ επ(i+1) < επ(i+2) ≤ εj+3, εj+4, . . . , εk < επ(i+1) + 2−j .

Let p be the probability that S intersects each of Cj+3, . . . , Ck. The set S misses Cl
with probability

Pr[S ∩ Cl = ∅] =

(|V |−|Cl|
|S|

)(|V |
|S|
) <

(|V | − |Cl|
|V |

)|S|
=

(
1− nεl

n+ o(n)

)n1−x

<

(
1− nεl

2n

)n1−x

≤ exp

(
−n

εl−x

2

)
.

The last inequality uses 1− z ≤ e−z for 0 ≤ z ≤ 1. Avoiding each of the bad events
separately yields

p ≥ 1−
k∑

l=j+3

Pr[S ∩ Cl = ∅] > 1− kPr[S ∩ Cj+3 = ∅]

> 1− k exp

(
−n

εj+3−x

2

)
≥ 1− k exp

(
−n

επ(i+2)−επ(i+1)

2

)
.

Let y = nεπ(i+2)−επ(i+1) . Since επ(i+2) − επ(i+1) ≥ 2−k+2 and k ≤ 1
2 lg lg n, we have

y > k and thus ky < y2 < ey/2 when y is sufficiently large, which yields ke−y/2 < 1/y.
Therefore, p > 1− 1/nεπ(i+2)−επ(i+1) . The same computation as in Case 1 now yields
p > 1− 1/ lg n.

Case 3. The remaining case is |S| ≥ n; that is, x ≤ 0. In Case 2, we proved
that when 0 < x < 4/

√
lg n, the probability is at least 1 − 1/ lg n that S hits all

of Cj+3, . . . , Ck. When S becomes even larger, the probability of hitting all these
components cannot decrease.

In each of Cases 1–3, we obtain the same recursive lower bound. Given the occur-
rence of one of these cases, with probability 2−j the probability is at least 1− 1/ lg n

DIAGNOSIS OF WIRING NETWORKS 1551

that the first query leaves us with components Cj+3, Cj+4, . . . , Ck all in V − Q(S)
or all in Q(S). The numbers of vertices in Cj+3, Cj+4, . . . , Ck are nεj+3 , nεj+4 , . . . ,
nεk , respectively. With δ = εj+2− 2−j , the components of sizes nεj+3−δ, nεj+4−δ, . . . ,
nεk−δ have the distribution R(n2−j, k − j − 2). According to Lemma 4.5, solving the
problem for the graph induced by V −Q(S) or Q(S) expects to use at least as many

queries as solving it against R(n2−j, k − j − 2).
Let F (n, k) be the expected number of queries used by A against R(n, k). We

have the following recurrence relation:

F (n, k) ≥ 1 +

k−2∑
j=1

1

2j
·
(

1− 1

lg n

)
· F (n2−j , k − j − 2))

and F (n, 2) ≥ 1. From Lemma 4.6, F (n, k) = Ω(k).
Theorem 4.8. For every randomized algorithm finding connection classes of

graphs with n vertices and k components, there is a graph in that class for which the
expected number of queries used by the algorithm is Ω(min{k, lg k + lg lgn}).

Proof. If k ≥ lg n, then Theorem 4.1 yields lg k ≥ lg lg n as a lower bound.
If lgn > k > 1

2 lg lg n
2 , consider the input distribution P formed by starting with

a sample from R(n2 ,
1
2 lg lg n

2) and then adding k − 1
2 lg lg n

2 arbitrary components
so that the total number of vertices is n. Now we have a distribution over graphs
with k components and n vertices. By Lemma 4.3, the expected number of queries
used against distribution P is at least the expected number of queries used against
distribution R(n2 ,

1
2 lg lg n

2). By Lemma 4.7, this is Ω(lg lg n).
If k ≤ 1

2 lg lg n
2 , we start with R(n/2, k − 1) and add a single component to reach

a total of n vertices. Lemma 4.3 yields an expected cost of at least the expected cost
against R(n/2, k − 1). By Lemma 4.7, this is Ω(k).

By Theorem 4.1, lg k is always a lower bound. This completes the proof.

Acknowledgments. The authors thank Edward Reingold and Steve Tate for
helpful discussions and the referees for improving the presentation.

REFERENCES

[1] C. C. Chen and F. Hwang, Detecting and locating electrical shorts using group testing, IEEE
Trans. Circuits Systems, 36 (1989), pp. 1113–1116.

[2] W.-T. Cheng, J. L. Lewandowski and E. Wu, Optimal diagnostic methods for wiring inter-
connects, IEEE Trans.Computer-Aided Design, 11 (1992), pp. 1161–1166.

[3] M. Garey, D. Johnson, and H. So, An application of graph coloring to printed circuit testing,
IEEE Trans. Circuits Systems, 23 (1976), pp. 591–599.

[4] N. Jarwala and C. W. Yau, A new framework for analyzing test generation and diagnosis algo-
rithms for wiring interconnect, in Proceedings of the IEEE International Testing Conference,
1989, pp. 63–70.

[5] W. H. Kautz, Testing for faults in wiring networks, IEEE Trans. Comput., 23 (1973), pp.
358–363.

[6] L. Kavraki, J.-C. Latombe, R. Motwani and P. Raghavan, Randomized query processing in
robot motion planning, in Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, 1995, pp. 353–362.

[7] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-
bridge, 1995.

[8] W. Shi and W. K. Fuchs, Optimal interconnect diagnosis of wiring networks, IEEE Trans.
VLSI Systems, 3 (1995), pp. 430–436.

[9] W. Shi and D. B. West, Optimal structural diagnosis of wiring networks, in Proceedings of the
27th IEEE International Symposium on Fault Tolerant Computing, 1997, pp. 162–169.

PRODUCT RANGE SPACES, SENSITIVE SAMPLING, AND
DERANDOMIZATION∗

HERVÉ BRÖNNIMANN† , BERNARD CHAZELLE‡ , AND JIŘÍ MATOUŠEK§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1552–1575

Abstract. We introduce the concept of a sensitive ε-approximation and use it to derive a more
efficient algorithm for computing ε-nets. We define and investigate product range spaces, for which we
establish sampling theorems analogous to the standard finite VC-dimensional case. This generalizes
and simplifies results from previous works. Using these tools, we give a new deterministic algorithm
for computing the convex hull of n points in Rd. The algorithm is obtained by derandomization of
a randomized incremental algorithm, and its running time of O(n logn+ nbd/2c) is optimal for any
fixed dimension d ≥ 2.

Key words. convex hull, deterministic algorithm, optimal

AMS subject classifications. 52B55, 68Q20

PII. S0097539796260321

1. Introduction. During the last decade, randomized algorithms have been pro-
posed as an efficient and elegant solution to several geometric problems [12, 13]. De-
randomization aims at producing deterministic algorithms whose running times are
within a constant factor of the running times of their randomized counterpart [9,
19, 23]. This process has successfully produced several geometric algorithms whose
complexities are the best among those of the existing deterministic algorithms for the
problems considered [5, 6, 7, 10]. For instance, the problem of computing the con-
vex hull of n points in Rd is solved deterministically in [7] in time O(nbd/2c) for any
d ≥ 4, which is optimal. In section 3, we describe a new deterministic algorithm for
computing the convex hull of n points in Rd. Its running time of O(n log n+ nbd/2c)
is optimal in any fixed dimension d. It uses a method similar to the one given in
[7], but it is arguably simpler. Furthermore, there is no need to treat the two- and
three-dimensional cases separately, as is done in [7].

Deterministic constructions of ε-nets and ε-approximations [10, 18, 20, 21] play a
key role in the derandomization of probabilistic geometric algorithms [5, 6, 7, 9, 10, 19],
and they also do for our convex hull algorithm. A range space Σ = (X,R) is a pair of
a set X and a collection R of subsets of X [17]. An ε-approximation for Σ is a subset
A of X such that ∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε
∗Received by the editors August 14, 1996; accepted for publication (in revised form) May 16,

1997; published electronically April 27, 1999. A preliminary version of this paper appeared in Proc.
34th IEEE Symposium on Foundations of Computer Science, Palo Alto, CA, 1993, pp. 400–409.

http://www.siam.org/journals/sicomp/28-5/26032.html
†INRIA Sophia Antipolis, BP. 93, 06902 Sophia Antipolis, Cedex, France (herve.bronnimann@

sophia.inria.fr). The research of this author was supported in part by NSF grant CCR-90-02352 and
Ecole Normale Supérieure de Paris.
‡Department of Computer Science, Princeton University, Princeton, NJ 08544 (chazelle@

cs.princeton.edu). This research was supported in part by NSF grant CCR-90-02352 and the Ge-
ometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology,
Inc.
§Department of Applied Mathematics, Charles University, Malostranské nám. 25, 118 00 Praha 1,

Czech Republic. The research of this author was supported by Humboldt Research Fellowship, Czech
Republic grant GAČR 0194, and Charles University grants 193,194.

1552

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1553

for every set R in R. To be an ε-net, A only needs to intersect every set R in R
whose size is greater than ε|X|. It is a classical result [17] that the existence of small
subsets having these properties is linked to the finiteness of a parameter of the set
system, called its VC-dimension. Namely, if the range space has finite VC-dimension
d, there exists an ε-net of size O(dε−1 log(dε−1)) and an ε-approximation of size
O(dε−2 log(dε−1)) (see section 2).

In geometric applications, it is common to use the range space (X,R) consisting
of a set X of hyperplanes and the collection R of all the subsets of X consisting
of the hyperplanes stabbed by a line segment. By definition, an ε-approximation
allows us to estimate how many hyperplanes separate any two points (with a level
of accuracy depending on ε). It was shown in [6] that an ε-approximation can also
be used to estimate how many vertices of the arrangement formed by X lie within a
given simplex: this feature is essential in the recent work on point location [6], convex
hull [7], and weak ε-nets for convex sets [8].

We generalize this idea by introducing the notion of a product range space. We
discuss the problem of sampling such a space, and we explain the apparent paradox
that product range spaces can be sampled even though they may have unbounded
VC-dimension. We prove that the product of finite VC-dimensional range spaces
can be sampled almost as efficiently as the original spaces, meaning that they admit
ε-approximations and ε-nets of a size polynomial in 1/ε and, most importantly, in-
dependent of the size of the range spaces. We specialize these sampling theorems to
a geometric setting, and we build tools for numerically integrating functions defined
over the vertices of an arrangement of hyperplanes.

We also introduce the notion of sensitive sampling. Formally, we say that a subset
A ⊆ X is a sensitive ε-approximation for Σ if∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε

2

(√
|R|
|X| + ε

)
for every set R in R. The bound on the right-hand side may appear strange,
but it arises naturally from what we expect of a random sample. Observe that a
sensitive ε-approximation is at once both an ε-approximation and an ε2-net. For
a set system with finite VC-dimension d, we show the existence of a sensitive ε-
approximation of size O(dε−2 log(dε−1)). We also modify an algorithm of [10] for
computing ε-approximations so that it computes sensitive ε-approximations. If the
underlying range space Σ has VC-dimension d, then, under standard computational
assumptions given in section 2, a sensitive (1/r)-approximation of size O(dr2 log(dr))
can be computed in time O(d)3dr2d logd(dr)|X|. This gives an algorithm for comput-
ing a (1/r)-net of size O(dr log(dr)) for (X,R) in time O(rd logd r)|X| time, which
significantly improves on the bound O(r2d logd r)|X| given in [10].

In a preliminary version of this paper, we also claimed an O(n log3 n)-time al-
gorithm for deterministically computing the diameter of n points in 3-space. This
part contained an error (kindly pointed out to us by E. Ramos). In the meantime,
a simpler deterministic algorithm with the same time complexity was found by Am-
ato, Goodrich, and Ramos [3]. They use ideas akin to ours, but they use sampling
over a different geometric range space (X,R′) that contains ours: given a set X of
hyperplanes, a range in R′ consist of all the hyperplanes of X that intersect a given
simplex of any dimension. We refer to their paper for a correct description of the
algorithm. For further developments in the derandomization of geometric algorithms,
we also refer to [4, 5].

1554 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

2. Terminology and sampling theorems. In this section we consider general
range spaces. First we review standard definitions and facts [17, 20]. A range space
is a set system (or equivalently, a hypergraph), whose elements are called points and
whose sets are called ranges. Let Σ = (X∗,R∗) be a (possibly infinite) range space. If
Y ⊆ X∗, we denote by (Y,R∗|Y) the subspace induced by Y, where R∗|Y = {R ∩ Y :
R ∈ R∗ }. A subset Y ⊆ X∗ is shattered (by R∗) if R∗|Y = 2Y . The maximum size
of any shattered subset of X∗ is called the VC-dimension of Σ; note that it can be
infinite. We define the shatter function πΣ of Σ as follows: πΣ(m) is the maximum
possible number of sets in the subsystem of (X∗,R∗) induced by any m-point subset
of X∗. It is well known that the shatter function of a range space of VC-dimension d
is bounded Φ(m, d) =

(
m
0

)
+ · · ·+(md), which is less that md+1 (see, for instance, [2]).

Conversely, if the shatter function is bounded by a polynomial, then the VC-dimension
is bounded by a constant.

In practice, we usually deal with finite subsystems of a range space. Let X be a
finite subset of X∗, and let R be a shorthand for R∗|X ; by abuse of terminology we
still call the pair (X,R) a range space. As we mentioned earlier, given any 0 < ε < 1,
a subset A ⊆ X is called an ε-approximation for the range space (X,R) if∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε
for each R ∈ R. A subset N ⊆ X is an ε-net for (X,R) if |R| > ε|X| implies that
R ∩N 6= ∅. An ε-approximation is also an ε-net, but the converse is false in general.

For instance, consider the range space (X∗,R) mentioned in the introduction,
where X∗ is a set of hyperplanes in Rd and R∗ is the collection of all the subsets of
X∗ consisting of the hyperplanes stabbed by a given line segment. Pick a finite subset
X of m hyperplanes. Then it can be easily verified that the subsets of X∗ consisting
of the hyperplanes stabbed by two line segments are identical if the endpoints of the
segments can be paired up so that a pair lie in the same cell of the arrangement
of X. There are O(md) such cells, therefore the shatter function πΣ(m) of (X∗,R)
is bounded above by O(m2d). This in turn implies that the range space has finite
VC-dimension.

Efficient deterministic constructions of ε-nets and ε-approximations were given in
[20] for the particular range space described above; see also [10] for slightly simpler
proofs that are expressed in terms of general range spaces. Let d be the VC-dimension
of Σ, or for that matter, any constant such that πΣ(m) = O(md). We assume that
the range space admits a subsystem oracle of dimension d, meaning that, given any
Y ⊆ X, all the sets of R|Y can be computed explicitly in time O(|Y |d+1). This
assumption is justified in practice, as can be checked for instance on the range space
given above: one may simply construct the arrangement of Y , choose a point inside
each cell, and each pair of points yields a segment s and a range Rs of the hyperplanes
stabbed by s; moreover, each range is enumerated exactly once in this process. Given
any r > 1, one can in time O(d)3dr2d logd(dr)|X| compute a (1/r)-approximation for
(X,R) of size O(dr2 log(dr)) and a (1/r)-net of size O(dr log(dr)). These time bounds
are linear in |X| if r is a constant.

2.1. Sensitive approximations. Let Σ = (X,R) be a range space of a di-
mension bounded by a constant d. It is known that if one wants to get a (1/r)-
approximation for Σ, it suffices to pick a random sample A ⊆ X of size O(r2 log r).
Such a sample, however, has still better approximation properties if we are only in-
terested in small ranges. The fact that A is, with high probability, a (1/t)-net for Σ

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1555

with t being almost r2 can be seen as a manifestation of this phenomenon. If we look
at the dependence of the error with which a random sample approximates a range
on the size of that range, we arrive at the following definition. A subset A ⊆ X is a
sensitive ε-approximation for Σ if∣∣∣∣ |R||X| − |R ∩A||A|

∣∣∣∣ ≤ ε

2

(√
|R|
|X| + ε

)
for every setR ∈ R. In [5], it is shown that a random sample of sizeO(dr2 log(dr)) pos-
sesses the sensitive (1/r)-approximation property. It follows from the definition that a
sensitive ε-approximation is an ε-approximation as well as an ε2-net. By this observa-
tion the next result gives an immediate improvement over the O(d)3dr2d logd(dr)|X|-
time construction of a (1/r)-net given in [20], while at the same time keeping the
same size bound.

Theorem 2.1. Let (X,R) be a range space with a subsystem oracle of dimension
d. Given any r > 1, in time O(d)3dr2d logd(dr)|X| one can compute a sensitive
(1/r)-approximation for (X,R) of size O(dr2 log(dr)).

Corollary 2.2. Let (X,R) be a range space with a subsystem oracle of dimen-
sion d. Given any r > 1, in time O(d)3drd logd(dr)|X| one can compute a (1/r)-net
for (X,R) of size O(dr log(dr)).

Proof of Theorem 2.1. We begin with a restriction of Theorem 2.1 to the case
where ε is very small. We then adapt a recursive construction given in [10] to gener-
alize this result and establish the theorem.

Lemma 2.3. Let (X,R) be a range space of finite VC-dimension, where |X| = n
is even and large enough, and let m = |R|. In O(nm) time it is possible to compute
a sensitive ε-approximation for (X,R) of size n/2 for ε = 15

√
ln(6m+ 6)/n.

Proof. We select a random sample A1 ⊆ X of expected size n/2 by picking
every element independently with probability 1/2. Tail estimates show that A1 (or its
complement X \A1) has the sensitive ε-approximation property with high probability,
to be made precise below. To obtain an approximation of size exactly n/2, we then
show how to trim some elements from the bigger of A1 and X \A1 while keeping the
trimmed set a sensitive ε-approximation.

Given 0 < p < 1, let x1, . . . , xn be independent random variables, each equal to
p− 1 with probability p, respectively, equal to p with probability 1− p. The following
tail estimate can be found in [2]:

Prob

[∣∣∣ n∑
i=1

xi

∣∣∣ > ∆

]
< 2e−2∆2/n.

Select a subset A0 ⊆ X by picking each element of X with probability p. Define an
auxiliary function

∆(x) =
√
x ln(6m+ 6)/2,

and let R′ = R ∪ {X}. Given R ∈ R′, the previous tail estimate indicates that, for
our choice of ∆, the following holds with a probability greater than 1− 1/(3m+ 3):∣∣∣ |R ∩A0| − p|R|

∣∣∣ ≤ ∆(|R|).(2.1)

Assume that A0 satisfies (2.1) for each R ∈ R′. We call such a subset p-good for
(X,R′): note that a random A0 is p-good with probability of at least 2/3. Set

1556 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

p = 1/2, and let A1 be the larger of the two sets A0 and X \A0. Trivially, A1 consists
of at least n/2 elements and is p-good. As an effect of adding X as a range, A1 also
has little more than n/2 elements, namely, at most n/2 + ∆(n).

We now want to remove some elements from A1 so that it has exactly n/2 elements
(this exact halving will be convenient in the forthcoming algorithm). If our goal was
an ε-approximation only, we could remove an appropriate number of elements quite
arbitrarily (as it is done in [20]). Removing arbitrary elements could, however, destroy
the sensitive ε-approximation properties for small ranges, so we choose the elements
to remove more carefully—we use a suitable random sample from A1.

Let q = 4∆(n)/n; note that the finite VC-dimension hypothesis implies m =
nO(1), so q < 1 for n large enough. With probability of at least 2/3, a random sample
A2 ⊆ A1 (with each element chosen independently with probability q) is a q-good
subset for (A1,R′|A1

). For such an A2, since A1 = X ∩ A1 is a range in R′|A1
, we

have

|A2| ≥ q|A1| −∆(|A1|) ≥ qn

2
−∆(n) ≥ ∆(n) ≥ |A1| − n

2
,

and therefore we can pick |A1| − n/2 elements in A2 (any of them) and remove them
from A1, thus producing a subset A ⊆ X of size n/2.

Note that our probabilistic construction of A can be derandomized in a straight-
forward fashion by using the method of conditional probabilities of Alon and Spencer
[2], Raghavan [23], and Spencer [24]. With a little care, this can be accomplished in
O(nm) time; see [3, 20] for a similar construction.

It remains to show that A is a sensitive ε-approximation for (X,R) for a choice
of ε = 15

√
log(6m+ 6)/n. We have∣∣∣∣ |R ∩A| − |R|2

∣∣∣∣ ≤ ∣∣∣ |R ∩A| − |R ∩A1|
∣∣∣+

∣∣∣∣ |R ∩A1| − |R|
2

∣∣∣∣ ≤ |R ∩A2|+ ∆(|R|)

≤ q|A1 ∩R|+ 2∆(|R|) ≤ q|R|
2

+ (q + 2)∆(|R|) .

As q < 1 for n large enough and q|R|/2 = 2|R|∆(n)/n ≤ 2∆(|R|), we obtain
∣∣∣|R ∩

A| − |R|/2
∣∣∣ ≤ 5∆(|R|), and hence,∣∣∣∣ |R ∩A||A| − |R|

n

∣∣∣∣ ≤ 2

n
5∆(|R|) =

10

n

√
|R| ln(6m+ 6)/2 ≤ ε

2

√
|R|
n
,

which proves Lemma 2.3.
Sensitive approximations can be refined (Lemma 2.4) and composed (Lemma 2.5)

in a fashion similar to standard ε-approximations [10].
Lemma 2.4. If A is a sensitive ε-approximation for a range space (X,R) and B is

a sensitive δ-approximation for (A,R|A), then B is a sensitive (ε+2δ)-approximation
for (X,R).

Proof. Consider a range R ∈ R. For short, we write ρX = |R|/|X|, ρA =
|R ∩A|/|B|, ρB = |R ∩B|/|B|. We have

|ρX − ρB | ≤ |ρX − ρA|+ |ρA − ρB | ≤ ε

2
(
√
ρX + ε) +

δ

2
(
√
ρA + δ)

by the definition of a sensitive ε-approximation. We estimate

√
ρA ≤

√
ρX +

ε

2
(
√
ρX + ε) ≤ √ρX +

√
ε

2
(
√
ρX + ε) ≤ √ρX +

ε/2 +
√
ρX + ε

2
,

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1557

where we used the AG-mean inequality
√
ab ≤ (a + b)/2 in the last step. With this

estimate, we calculate

|ρX − ρB | ≤ ε

2
(
√
ρX + ε) +

δ

2

(
3

2

√
ρX +

3

4
ε+ δ

)
≤ ε+ 2δ

2
(
√
ρX + ε+ 2δ) .

Since this is true for any R ∈ R, the proof is complete.
Lemma 2.5. Let (X,R) be a range space, and let {Xi}1≤i≤m be a partition of

X into m equal-size subsets. If Ai is a sensitive ε-approximation for (Xi,R|Xi) and
all the Ai’s have the same size, then A = ∪iAi is a sensitive ε-approximation for
(X,R).

Proof. Consider any range R ∈ R. For short, we put ρXi = |R ∩ Xi|/|Xi|,
ρAi = |R∩Xi|/|Xi|, ρX = |R|/|X|, and ρA = |R∩A|/|A|. Since the Xi’s are disjoint,
we have ρX = 1

m

∑m
i=1 ρXi and ρA = 1

m

∑m
i=1 ρAi , where the factor 1

m accounts for
the difference in the denominators of ρX and the ρXi ’s. Therefore,

|ρX − ρA| ≤ 1

m

m∑
i=1

|ρXi − ρAi | ≤
ε

2

(
1

m

m∑
i=1

√
ρXi + ε

)
≤ ε

2
(
√
ρX + ε) ,

where the last inequality follows by the concavity of the square root function.
We are now ready to build a sensitive (1/r)-approximation for any value of r.

The algorithm is almost identical to the construction of nonsensitive ε-approximations
given in [10]. We begin with a simplifying observation. If n = |X| is not a power of
two, let us pad X by adding up to n − 1 artificial points so as to obtain a power of
two. This gives us a new range space Σ′ = (X∪X0,R∪{X0}); note that the set X0 of
artificial points is added as a range. Let A be a sensitive (ε/6)-approximation for this
new range space. It is not hard to show that B = X∩A is a sensitive ε-approximation
for (X,R). Here are the details: Given any R ∈ R, we have∣∣∣∣ |R||X| − |R ∩B||B|

∣∣∣∣ =
|X ∪X0|
|X|

∣∣∣∣ |R|
|X ∪X0| −

|R ∩B|
|B| · |X|

|X ∪X0|
∣∣∣∣

≤ 2

(∣∣∣∣ |R|
|X ∪X0| −

|R ∩B|
|A|

∣∣∣∣+
|R ∩B|
|B|

∣∣∣∣ |X|
|X ∪X0| −

|B|
|A|
∣∣∣∣) .(2.2)

Using the sensitive (ε/6)-approximation property of A, we get that the difference in

the first absolute value is at most ε
12

(√|R|/|X|+ ε/6
)
≤ ε/6, and so is the difference

in the second absolute value. Substituting this and the trivial estimate |R∩B|/|B| ≤ 1
into (2.2), we obtain

|R ∩B|
|B| ≤ |R||X| +

2ε

3
.

Substituting this improved upper bound into (2.2) then yields∣∣∣∣ |R||X| − |R ∩B||B|
∣∣∣∣ ≤ ε

2

(√
|R|
|X| + ε

)
,

which shows that B is a sensitive ε-approximation. This allows us to assume that n
is now a power of two.

1558 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

We begin with one piece of terminology. Applying Lemma 2.3 to an even-sized
subset Y ⊆ X is called halving Y . Note that this results in a sensitive h(|Y |)-
approximation, where

h(t) = 15
√

log(6td + 6)/t.

It is easy to see that if t = Ω(d log d), we have h(t) < 1 and h(2t) ≤ 3
4h(t). Moreover,

it is also not hard to show that h(dr2 log(dr)) = O(1/r) for any r > 1. We are now
ready to describe the algorithm for constructing a sensitive (1/r)-approximation for
(X,R).

To begin, we divide up the set X into subsets of size 2k (for some appropriate
parameter k) and we associate each subset with the leaves of a complete binary tree.
Next, we process the tree bottom-up level by level. At each internal node, we merge
together the two sets associated with its children, and if the level of the node is not
divisible by d + 2 (leaves being at level 0), we halve the union. The resulting set is
associated with the node in question. Once the tree is completely processed, i.e., the
set associated with its root has been computed, we say that the first phase is over and
we move on to the second phase. We take the set associated with the root and we
keep halving it until its size is equal to c1dr

2 log(dr) for some appropriate constant
c1 > 0.

The union of all the sets associated with the nodes at level i constitutes a sensitive
εi-approximation for some εi, which we call the error at level i. During the first d+ 1
levels, each individual set remains of size 2k (since halving and merging alternate).
Note that halving is applied to sets of size 2k+1. By Lemmas 2.4 and 2.5, the total
error after the first d + 1 levels is 2(d + 1)h(2k+1). At level d + 2, no additional
error is incurred since we skip the halving step. The next d + 1 steps are similar to
the first batch of d + 1, except that the size of the individual sets has now doubled;
thus, the total error incurred up to level 2d+ 3 is 2(d+ 1)

(
h(2k+1) + h(2k+2)

)
. From

level to level, the error follows a geometrically decreasing series, so the total error in-
curred at the end of the first phase is O(d)× h(2k). If we choose 2k = c2d

3r2 log(dr),
for some constant c2 large enough, this makes the error at most 1/2r. In the sec-
ond phase, the error is still bounded by a geometrically increasing series whose last
term is O(h(c1dr

2 log(dr))), meaning that the additional error contributed by the sec-
ond phase is O(h(c1dr

2 log(dr))). Choosing c1 large enough keeps this error under
1/2r. Combining the two phases shows that the final set, which is of the desired size
O(d)r2 log(dr), is a sensitive (1/r)-approximation for (X,R).

What is the running time of the algorithm? In the first halving step, we apply
Lemma 2.3 to |X|/2k sets of size 2k = O(d3)r2 log(dr) each; the total time needed for
these operations is O(d)3dr2d logd(dr)|X|. In the next d + 1 halving steps, the sets
remain of the same size but their numbers decrease geometrically. Thus, the cost of
processing the first level is dominant. At level d + 2, the size of each individual set
doubles, which increases the cost of applying Lemma 2.3 by a factor of 2d+1, but the
(d+ 2) previous merging steps in the previous round have reduced the total number
of sets by 2d+2, so the running time of the following round is at most half of the
time for a previous round. Similarly, in the second phase, the running time follows a
geometrically decreasing sequence at each step. Thus, the total running time of the
algorithm is O(d)3dr2d logd(dr)|X|, and the proof of Theorem 2.1 is complete.

2.2. Product range spaces. Let Σ1 = (X,R) and Σ2 = (Y,S) be (finite) range
spaces. We define the product range space Σ1⊗Σ2 to be (X×Y, T), where T consists

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1559

of all subsets T ⊆ X × Y such that all the cross-sections Sx = { y ∈ Y : (x, y) ∈ T}
are sets of S, and similarly, all Ry = {x ∈ X : (x, y) ∈ T} are sets of R.

To illustrate this definition, consider the bichromatic arrangement of n red and
n blue lines in R2. Ranges of the blue (resp., red) space consist of blue (resp., red)
lines that intersect a given line segment. The product Σ1 ⊗ Σ2 of the blue space
by the red space is a range space (Z, T), where Z consists of all the bichromatic
intersections. A range is a subset T of Z such that the intersections in T that are
incident upon any given line appear consecutively (among those of Z). For example,
the bichromatic intersections that fall inside any convex set constitute a range. This
suggests that the product of finite VC-dimensional spaces might not be itself of finite
VC-dimension. Indeed, this can best be seen by observing that in our example, any
bichromatic pairing of the lines gives a collection of n bichromatic intersections and
that any of its 2n subsets is a valid range!

Theorem 2.6. Let Σ1 = (X,R) and Σ2 = (Y,S) be two range spaces. If A (resp.,
B) is a δ-approximation (resp., ε-approximation) for Σ1 (resp., Σ2) for 0 ≤ δ, ε, ≤ 1,
then A × B is a (δ + ε)-approximation of Σ1 ⊗ Σ2. It is worth observing that
even though an ε-approximation of a product space is of size O(ε−4 log2 ε−1), its
representation as a set product has size of only O(ε−2 log ε−1).

A range space of infinite VC-dimension has, for infinitely many n, a shattered
subset A of size n, and clearly an ε-approximation for the subspace induced by such
A must be of size at least (1 − ε)n. This might seem to contradict Theorem 2.6.
To explain this apparent paradox, we must observe that, in general, a subspace of a
product range space is not itself a product range space. In particular, even though
the ground set contains very large shattered subsets, the subsystems induced by these
subsets are not product range spaces; therefore, the fact that they cannot be sampled
has no bearing on Theorem 2.6. In fact, the proper definition of a subspace in the
context of product range spaces would be the product of subspaces of standard range
spaces.

Proof of Theorem 2.6. Given two range spaces of finite VC-dimension, Σ1 =
(X,R) and Σ2 = (Y,S), recall that the product Σ1 ⊗ Σ2 is defined as (Z, T), where
Z = X × Y and T consists of all the subsets T ⊆ Z such that for any x ∈ X and
y ∈ Y the sets T x and Ty are ranges of S and R, resp., where

T x = { y : (x, y) ∈ T },

Ty = {x : (x, y) ∈ T }.

As we observed, Σ1 ⊗ Σ2 usually does not have finite VC-dimension. For example,
if Σ1 and Σ2 are the (infinite) range spaces defined by two secant lines and their
intervals, the product space ranges include all the convex regions of the plane.

It is helpful to use a slightly different formulation of an ε-approximation. Let
ProbX be a probability distribution on X, and ProbX [R |A] be the conditional prob-
ability that a random element in X belongs to R, given that it is in A. Thus, for A
to be a δ-approximation for Σ1, it is equivalent to say that, for every R ∈ R,

|ProbX [R |A]− ProbX [R] | ≤ δ .

A simple technical observation will greatly simplify our discussion below. In essence,
it is nothing more than Fubini’s theorem and asserts that we can sum the probabilities

1560 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

first on x then on y, or first on y then on x, and obtain the same result. To put it in
mathematical notation, given any A ⊆ X, B ⊆ Y , and T ∈ T , we have

ProbZ [T |A×B] =

{
EX [ProbY [T x |B] |A],
EY [ProbX [Ty |A] |B],

where EX [·|A] denotes the expectation for a random element of X given that the
element belongs to A, and EY [·|B] is the analogous conditional expectation on Y . To
prove Theorem 2.6, we apply this observation twice. Recall that A (resp., B) is a
δ-approximation (resp., ε-approximation) of Σ1 (resp., Σ2); then

ProbZ [T |A×B] = EX [ProbY [T x |B] |A]

= EX [ProbY [T x] |A] + ε′

= EY [ProbX [Ty |A]] + ε′

= EY [ProbX [Ty]] + δ′ + ε′

= ProbZ [T] + δ′ + ε′,

where |ε′| ≤ ε, |δ′| ≤ δ, which completes the proof of Theorem 2.6.
A similar result exists for sensitive approximations, but the formulas are a lit-

tle more complicated. It is easy to show, however, that the product of a sen-
sitive δ-approximation with a sensitive ε-approximation is a sensitive

√
2(δ + ε)-

approximation [5].
Finally, we should note that the product described here is associative. We can

thus take the d-fold product Σ ⊗ · · · ⊗ Σ of a range space Σ = (X,R). Theorem 2.6
may be extended straightforwardly.

Corollary 2.7. If A is an ε-approximation for a range space Σ, then the d-
fold Cartesian product Ad is a (dε)-approximation of the d-fold product Σ ⊗ · · · ⊗
Σ. For sensitive approximations, the theorem can be extended similarly. It is easy
to show that the d-fold product of a sensitive ε-approximation is a sensitive (d2ε)-
approximation [5].

Let us show, for instance, how to use this range space product to estimate the
number of vertices of an arrangement of hyperplanes inside a convex region. The
range space Σ = (X,R) under consideration here is the one described above: given
a set H of hyperplanes in Rd, R is the collection of all the subsets of H consisting
of the hyperplanes stabbed by a given line segment. We let Σd be the d-fold product
of Σ. Of particular interest is the subset H(d) of Hd consisting of the d-tuples of
hyperplanes of H in general position: such d-tuples intersect in a unique point of
Rd which is a vertex of the arrangement of H. Let us denote by V (H) the set of
these vertices. For a convex region σ (not necessarily full-dimensional), consider the
arrangement of the intersections of hyperplanes of H with the affine hull of σ, and let
V (H,σ) be the set of vertices of this arrangement lying inside σ.

Theorem 2.8. Let H be a set of hyperplanes in general position, and let A be
an ε-approximation for Σ = (H,R). Then, for any convex region σ of dimension j
in Rd, ∣∣∣∣ |V (H,σ)|

|H|j − |V (A, σ)|
|A|j

∣∣∣∣ ≤ ε.
Proof. This theorem was already shown in [6] for the particular case of simplices.

The proof in terms of range space products is particularly simple. We may assume

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1561

that σ is d-dimensional; otherwise the result may be proved by considering the j-fold
product of Σ.

Let (h1, . . . , hd) be a d-tuple in H(d), and let f(h1, . . . , hd) = h1 ∩ . . . ∩ hd be
the corresponding vertex of V (H). Note that because the hyperplanes are in general
position, f is a d! to one map.

Given any convex region σ, the inverse image T = f−1(V (H,σ)) is a range in Σd.
Indeed, it suffices to prove that its sections T i(h1,...,hd) consisting of the hyperplanes

h such that (h1, . . . , hi−1, h, hi+1, . . . , hd) is in T are exactly the hyperplanes stabbed
by some segment s in Rd. Note that ∩j 6=ihj is a line in Rd and that it intersects σ
along such a segment s. Moreover, a d-tuple (h1, . . . , hi−1, h, hi+1, . . . , hd) is in T if
and only if h is stabbed by the line segment s.

Finally, we note that the size of T = f−1(V (H,σ)) is d! times the number of
vertices of V (H,σ). Using Corollary 2.7, we conclude that∣∣∣∣ |V (H,σ)|

|H|d − |V (A, σ)|
|A|d

∣∣∣∣ ≤ dε

d!
≤ ε.

A similar result can be proved for sensitive approximations, with slightly worse
approximation bounds. For instance, it is proved in [5] that

∣∣∣∣ |V (H,σ)|
|H|j − |V (A, σ)|

|A|j
∣∣∣∣ ≤ 4ε

2

(√
|V (H,σ)|
|H|j + 4ε

)

for a set H of hyperplanes in general position, an ε-approximation A for Σ = (H,R),
and any convex region σ of dimension j in Rd.

3. Computing convex hulls. We describe a new deterministic algorithm for
computing the convex hull of n points. Its running time of O(n log n + nbd/2c) is
optimal in any fixed dimension d. Our strategy is similar to the derandomization
scheme used in [7]. In particular, it is still built around Raghavan’s [23], Spencer’s [24],
and Alon and Spencer’s [2] methods of conditional probabilities. The main difference
is in the underlying probabilistic model and the maintenance of approximation tools.
The result is an algorithm that is arguably simpler.

The convex hull problem is reducible, by duality, to computing the intersection of
n halfspaces. This problem can be solved in optimal expected time by a randomized
incremental algorithm [13]: the halfspaces are inserted in random order, and the
current intersection is maintained after each insertion.

We aim at derandomizing such an algorithm. For technical reasons, we use a
slightly different randomized algorithm as a basis, to be described below.

3.1. Notation and preliminaries. Let H be a fixed collection of n hyperplanes
in Rd, and let O (the origin) be a given point not lying on any hyperplane of H. Using
simulation of simplicity if necessary [16], we may assume that the hyperplanes of H
are in general position. We also may enclose Rd in a box that contains all the vertices
of the arrangement of H. The set H0 of hyperplanes bounding this box is added to
H. In what follows, when we let R be a subset of H, we assume that R is a subset
of H that contains H0. This ensures that we always deal with polytopes and not
polyhedra and thus clears the issue of unboundedness.

Let R be a subset of H. We let R∩ denote the closure of the cell enclosing O of
the arrangement of R. In what follows, the word “simplex” always means a relatively

1562 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

open simplex. Similarly, the word “face” always means a relatively open face of a
polytope or of an arrangement.

Given a simplex s, let R|s denote the subset of hyperplanes of R that intersect s
but do not contain it.

Given a polytope P (such as R∩), we let V (P) denote the set of vertices of P .
If R is a set of hyperplanes, we let V (R) be the set of vertices of the arrangement
of R. For a simplex s (not necessarily full-dimensional), consider the arrangement of
the intersections of hyperplanes of R with the affine hull of s, and let V (R, s) be the
set of vertices of this arrangement lying inside s.

For a vertex v ∈ V (H), we define the conflict list of v, denoted H|Ov, to be the
set of hyperplanes separating v from the origin. The level of v, denoted by nv, is the
size of H|Ov. Similarly we define the conflict list for a simplex s, denoted by H|Os,
as the set of hyperplanes of H intersecting the relative interior of the convex hull of
s ∪ {O}. We note that the conflict list of a simplex is the union of the conflict lists
of its vertices. We set ns = |H|Os| (but note that ns and |H|s| may be different for
simplices s on the boundary of R∩).

In our algorithm, we use a special kind of triangulation forR∩ called the geode of R
that is denoted by G(R). Formal definitions and important properties are given in [7].
The geode consists of a triangulation of the boundary of R∩ along with a central lifting
of that triangulation towards the origin O. The triangulation is defined recursively
and is similar to the so-called bottom vertex triangulation [11]. To triangulate a face
f of dimension k of ∂R∩, we first triangulate its faces of dimension ≤ k − 1 and then
we lift these triangulations to the apex of f , where the apex is the vertex contained
in this face with the smallest conflict list (ties being broken using some systematic
rule, such as taking the vertex with lexicographically smallest coordinate vector). The
resulting geode contains O(nbd/2c) simplices, and the choice of the apex leads to the
following property.

Lemma 3.1 (see [7]). For any integer c, and any R ⊆ H, there is a constant
b = b(c) such that for any c′ ≤ c, we have∑

s∈G(R)

nc
′
s ≤ b

∑
v∈V (R∩)

nc
′
v .(3.1)

Proof. The proof is the same as in [7], but the result there is stated for H|s instead
of ns (even though the proof itself is actually stated in terms of ns). We recall it for
completeness.

We let f̄ denote the closure of a face f of R∩. We prove by induction that, for
any k-face of R∩, the sum

∑
s∈G(R)∩f̄ n

c
s, denoted Af , is at most

k!(2c + 1)k
∑

v∈V (R∩)∩f̄
ncv .

The lemma follows from the case k = d, where f is the interior of R∩.
The case k = 0 is immediate, as the 0-faces of R∩ are precisely its vertices.

Assume the induction hypothesis is true for some k − 1 < d. We observe that, by
choosing the apex of f as the lifting vertex for the geode (or the origin, if k = d),
Af ≤ (2c + 1)

∑
g Ag, where g ranges over all the (k− 1)-faces of R∩ incident upon f .

The term 1 comes from the contribution of the faces incident upon f , while the term
2c accounts (conservatively) for the effect of lifting g toward the apex w (or w = O
if k = d; note that nw ≤ ns for any s contained in the closure of g, by definition

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1563

of w). By our general position assumption, a vertex cannot belong to more than k
(k − 1)-faces, so we cannot count it more than k times in the above sum ranging on
g. Substituting for Ag with the induction hypothesis gives the result.

In our algorithm and analysis, various constants will appear (dependent on d, as
a rule). To avoid complicated implicit dependencies between them, we express most
constants as functions of two basic parameters C and c. For all estimates to work,
one first chooses c as a sufficiently large constant and then C as a still much larger
constant. The O() notation in the proofs may hide constants dependent on c (and
d), but not on C; where the hidden constant does depend on C, we use the OC()
notation.

We need an estimate for the higher moments of the binomial distribution.
Lemma 3.2. Let X = X[1,n] = X1 +X2 + · · ·+Xn, where the Xi are independent

random variables, each attaining value 1 with probability p and value 0 with probability
1− p. Then for any natural number c, E[Xc] ≤ (c+ np)c.

This must be part of the folklore, but since we haven’t discovered an explicit
reference, we include a short proof.

Proof. We prove more generally that E[(X + a)c] ≤ (c+ np+ a)c for all natural
numbers n, c, and a. The inequality is clear if n = 0 or c = 0, 1. Assuming this is
true for some c and for all n and a, we derive by induction that

E[(X + a)c+1] =
n∑
i=1

pE[(X + a)c|Xi = 1] + aE[(X + a)c]

= npE[(X[1,n−1] + a+ 1)c] + aE[(X + a)c]

≤ np(c+ (n− 1)p+ a+ 1)c + a(c+ np+ a)c

≤ (c+ 1 + np+ a)c+1.

3.2. The underlying randomized algorithm. In our underlying randomized
algorithm, hyperplanes are inserted in rounds. In the first round, a suitable con-
stant number c of hyperplanes are chosen (arbitrarily, not necessarily at random) and
inserted. Suppose that after the (j − 1)st round, a set R ⊆ H has been inserted,
|R| = r. We assume a suitable representation of G(R), the geode of R. We also keep
the conflict list of every simplex s ∈ G(R).

In the jth round, we fix a probability

p =
2

3

r

n− r
and we choose a random sample S from H \ R by picking each hyperplane of H \ R
into S randomly and independently with probability p. For each simplex s ∈ G(R),
we compute the portion of the arrangement of S lying within s; then we isolate the
portion of (R ∪ S)∩ within s from the portion of the arrangement, and we glue these
pieces together, obtaining the facial lattice of (R∪S)∩. Using the conflict lists of the
vertices, we finally compute the geode G(R ∪ S) and the conflict lists of its simplices.

The expected number of hyperplanes in S is 2
3r, thus the size of R increases

geometrically between rounds and the expected number of rounds is O(log n). When
the number of hyperplanes in R exceeds n/c, we insert all the remaining hyperplanes
of H \R (in a manner similar to adding a new sample S) and finish.

The work in the jth round of this algorithm is at most proportional to∑
s∈G(R)

(|S|Os|d + ns
)

(3.2)

1564 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

(see also [7] for a more detailed description of the required computations and of their
time complexity). Intuitively, we should expect the sizes ns of the conflict lists to
be about n/r and each S|Os to have about constant size. This is not quite true
of all simplices in the randomized algorithm (and even less so in the derandomized
version). However, as was observed by Clarkson in a somewhat different context [12],
the averages of |S|Os|c and of

(
ns

r
n

)c
over all simplices of G(R) are expected to be

bounded by a constant in the randomized algorithm for any constant c, and this is
what we will also aim at in the derandomized version. From this point of view, we
might appropriately call the quantities |S|Os| and ns

r
n quasi constant. To simplify

the notation, we introduce the symbols

qs = ns
r

n
+ 1 ,

rs = |S|Os|+ 1 .

The basic property of a quasi-constant quantity xs is that its moment of order c is∑
s∈G(R) x

c
s = OC(1)rbd/2c for a constant C that will be determined later. Note that

this also implies the same property for the moments of order c′ ≤ c by a routine
application of Hölder’s inequality.

The rest of this section is devoted to proving that the above quantities qs and rs
are expected to be quasi constant.

Following [7], we say that the geode of R is a semicutting if∑
v∈V (R∩)

ncv ≤ N def
= Crbd/2c

(n
r

)c
.

Again, a routine application of Hölder’s inequality shows that∑
v∈V (R∩)

nc
′
v ≤ Crbd/2c

(n
r

)c′
for any 0 ≤ c′ ≤ c. Note that the definition of semicutting involves only the conflict
lists of the vertices and not of the simplices of the geode. This has no bearing on the
analysis, however; recall from Lemma 3.1 that the particular triangulation of R∩ we
use, the geode, is chosen in such a way that we also have∑

s∈G(R)

nc
′
s ≤ b

∑
v∈V (R∩)

nc
′
v

for any 0 ≤ c′ ≤ c and for some constant b = b(c′). Note that this implies that∑
s∈G(R) q

c′
s = OC(1)rbd/2c and hence that qs is quasi constant.

Inductively, we assume that the geode of R built in the previous rounds of the
algorithm is a semicutting. For the sample S, we postulate the following conditions:

C1. r/2 ≤ |S| ≤ r.
C2.

∑
s∈G(R) r

c
s ≤ C2rbd/2c.

C3. The geode of R ∪ S is a semicutting.
As we will see shortly, the randomized algorithm yields these properties with high
probability.1

1The reader might wonder why we look at high moments when the complexity of the randomized
algorithm only involves ns and the dth power of rs. The reason is that in the derandomization, we
need auxiliary computations whose complexity is a larger polynomial in qs and rs.

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1565

Corresponding to these properties, we introduce three functions measuring the
quality of the sample S. We put

F1(S) =
1

4r

(
|S| − 2

3
r

)2

,

F2(S) =
1

C2rbd/2c
∑

s∈G(R)

rcs,

F3(S) =
1

N

∑
v∈V ((R∪S)∩)

ncv .

Further we define the quantities

Ej = EFj(S)

for j = 1, 2, 3, where the expectation is taken with respect to a random choice of S
(it implicitly depends on R, which we consider fixed). We put E = E1 + E2 + E3. The
quantities E and Ej will be referred to as energy (for reasons more apparent later).
We now bound E .

Lemma 3.3. We have E1 ≤ 1/6.

Proof. It is immediate that E1 = var |S|
4r =

(
n−r
4r

)
p(1− p) ≤ 1

6 .
Lemma 3.4. If the geode of R is a semicutting, then E2 = O(1/C).
Proof. Consider a simplex s ∈ G(R). The contribution of every hyperplane

h ∈ H|Os to |S|Os| is a 0/1 random variable attaining value 1 with probability p, and so
by Lemma 3.2 we have E |S|Os|c ≤ (c+p|H|Os|)c ≤ (c+pns)

c = O(qcs) . Summing over
all the simplices s ∈ G(R) shows that the expectation of

∑
s∈G(R) r

c
s = O(

∑
s∈G(R) q

c
s).

Using (3.1), the latter expression is O(Crbd/2c), which proves the lemma.
The next lemma concerns E3. Unlike the previous lemma, it does not assume that

the geode of R is a semicutting; thus, no matter how “bad” R might be, a random
S guarantees that the geode of R ∪ S is a semicutting (with high probability). This
robustness property will be crucial: in the derandomized version, the computed R
presumably won’t be as good as a true random sample would be, but the error will
not propagate between rounds, as each new round alone would suffice to produce a
semicutting for any R provided that S is random or imitates a random sample well
enough.

Lemma 3.5. Let R ⊂ H be arbitrary, c ≤ |R| = r ≤ n/c, and let S be a random
sample from H\R obtained by choosing each hyperplane independently with probability
p. Then

E3 =
1

N

∑
v∈V (H)∩R∩

pdv (1− p)nvncv = O(1/C) ,(3.3)

where dv denotes the number of hyperplanes of H \R passing thru v.
Proof. For a vertex v ∈ V (H) ∩ R∩, the probability of appearing as a vertex

in V ((R ∪ S)∩) is equal to pdv (1 − p)nv , and thus the middle sum in (3.3) is the
expectation of ∑

v∈V ((R∪S)∩)

ncv ,

which equals NE3. Recall that N = Crbd/2c(n/r)c.

1566 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

To prove the upper bound of O(1/C), we consider another sample S̄ drawn from
H \R with probability p̄ = p/2. Let Q denote the quantity∑

v∈V (H)∩R∩
p̄dv (1− p̄)nv .

This sum is nothing more than the expected number of vertices of (R∪S̄)∩, which
is at most E |R∪ S̄|bd/2c = O(rbd/2c), using the upper bound theorem and Lemma 3.2.
We estimate

1− p̄
1− p ≥ 1 +

p

2
≥ ep/4 ≥ er/8n .

Then we rewrite

Q =
∑
v

pdv2−dv (1− p)nv
(

1− p̄
1− p

)nv
≥ 2−d

∑
v

pdv (1− p)nvenvr/8n .(3.4)

We have

ncv =

(
8cn

r

)c (nvr
8cn

)c
≤
(

8cn

r

)c
envr/8n.

Substituting this estimate into the middle sum in (3.3) and comparing with the lower
bound for Q in (3.4), we obtain∑

v

pdv (1− p)nvncv ≤ 2d
(

8cn

r

)c
Q = O((n/r)crbd/2c) = O(N/C).

Putting these three lemmas together shows that E < 1/2 for a suitable choice of
C. Using Markov’s inequality, this shows that F1(S) + F2(S) + F3(S) < 1 or that
conditions C1–C3 are satisfied, with probability of at least 1/2.

We can now finish the running time analysis of the randomized algorithm under
the condition that at each round, the sample S picked by the algorithm satisfies
conditions C1–C3. Indeed, the work in the jth round is given in (3.2). Due to
condition C2, the first term of the inner sum adds up to OC(rbd/2c) over all the
simplices of the geode, while condition C3 implies that the second term adds up to
OC(rbd/2c)nr = OC(nrbd/2c−1). Suppose that after the (j − 1)st round, r hyperplanes

have been inserted. The work in the jth round is then OC(rbd/2c+nrbd/2c−1). Finally,
condition C1 implies that the size of the sample grows geometrically between rounds.
Thus, if conditions C1–C3 are satisfied at every round, the total running time sums
up as OC(n log n+ nbd/2c).

In the derandomized algorithm, conditions C1–C3 will be fulfilled at all rounds.
The total running time of the deterministic algorithm will thus be OC(n log n+nbd/2c)
plus whatever time is needed to perform the deterministic computation of a suitable
sample at each round.

The randomized algorithm does not check if the conditions are satisfied, however.
Thus a bad sample at a given round could severely slow down the algorithm, however
unprobable this may be. Nevertheless, the expected time of the algorithm is, by linear-
ity of expectations, the sum of the expected times of all the rounds, and the expected
time of a round is bounded by OC(rbd/2c + nrbd/2c−1), as shown by Lemmas 3.3–3.5.
Therefore, the expected time of the randomized algorithm is OC(n log n+ nbd/2c).

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1567

3.3. Derandomization—a first attempt. Let us first consider a straightfor-
ward derandomization of the above described algorithm by the Raghavan–Spencer
method, recalling the basic strategy of that method and introducing some more nota-
tion. We are at the beginning of a round, with the geode of R as a semicutting, and
we want to find S ⊆ H \R such that F1(S) +F2(S) +F3(S) ≤ 1 (thus satisfying con-
ditions C1–C3). We order the hyperplanes of H \ R into a sequence h1, h2, . . . , hn−r
(arbitrarily), and we process them one by one, deciding for each hi whether to accept
it (that is, to include it in S) or to reject it (not to include it in S).

Having processed h1, . . . , hk, let S(k) denote the set of accepted hyperplanes

among them. We define the energies E(k)
j as the conditional expectations

E(k)
j = E

(
Fj(S) |S ∩ {h1, . . . , hk} = S(k)

)
,

and E(k) is again their sum. Further we let

E(k|A)
j = E

(
Fj(S) |S ∩ {h1, . . . , hk} = S(k), hk+1 ∈ S

)
measure what the energy would be after accepting hk+1, and similarly we let

E(k|R)
j = E

(
Fj(S) |S ∩ {h1, . . . , hk} = S(k), hk+1 6∈ S

)
measure what the energy would be after rejecting hk+1.

The strategy dictated by the Raghavan–Spencer method is as follows: the hy-
perplane hk+1 is accepted or rejected, whichever decision gives a lower total energy
E(k+1). The key property of the energy is

E(k) = p E(k|A) + (1− p) E(k|R) .(3.5)

This, together with the decision rule, implies that E(k+1) ≤ E(k) for k = 0, 1, . . . , n−
r − 1; therefore, the final energy is at most 1, and since it equals

∑
j Fj(S

(n−r)) for

the (already fixed) sample S(n−r), this sample will satisfy the required conditions.

The evaluation of E(k)
1 and E(k)

2 is easy (at least with a limited but sufficient
accuracy) and requires no more time than the other operations of the randomized

algorithm itself. On the other hand, E(k)
3 appears much more demanding, and we

cannot evaluate it exactly, so we use a suitable approximation instead, denoted by

AE(k)
3 . The sum AE(k) = E(k)

1 + E(k)
2 +AE(k)

3 will be called the approximate energy.

Here is a rough outline of our strategy. We shall be careful to define AE(k)
3

in such a way that it obeys an equation analogous to (3.5). Then we apply the
Raghavan–Spencer method with the approximate energy instead of the actual energy,
producing a sample S(n−r) for which the approximate energy does not exceed the
initial approximate energy AE(0). To make everything work, we show the following
lemma.

Lemma 3.6. For every k = 0, 1, . . . , n− r, |E(k)
3 −AE(k)

3 | < 1/3.
The lemma is proved in the next section, where we explain how to compute the

approximate energy. Using this for k = 0, together with E(0) < 1/3 (which follows
from the results of section 3.2), we see that the initial approximate energy is smaller
than 2/3 and hence so is the final approximate energy. This in turn implies that the
final energy E(n−r) is less than 1 and hence that the sample S(n−r) satisfies conditions
C1–C3.

1568 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

3.4. Approximating the energy. In this section we define the approximate

energy AE(k)
3 and establish Lemma 3.6, assuming the existence of a certain oracle.

The implementation of the oracle is discussed in the next section.

We begin by setting the initial value AE(0)
3 . Consider the expression for E3 = E(0)

3

in (3.3). We split the sum according to the simplices of G(R) containing the respective
vertices, and we get

E(0)
3 =

1

N

∑
s∈G(R)

∑
v∈V (H)∩s

pdv (1− p)nvncv .

By a suitable general position assumption, we may suppose that a j-dimensional
simplex s ∈ G(R) contains no vertices of V (H) unless it is a part of a j-face of
the polytope R∩; thus a vertex of V (H) in such a j-simplex is contained in d − j
hyperplanes of R and j hyperplanes ofH\R, or in other words, dv = j = dim s. In this
sense, all the vertices within s are of the same type, and we have V (H)∩s = V (H, s).
This implies that

E(0)
3 =

1

N

∑
s∈G(R)

∑
v∈V (H,s)

pdv (1− p)nvncv .(3.6)

We describe an oracle, to be constructed later, that performs an approximate
evaluation of the sums over a given simplex s. Let O be an oracle whose input is a
j-simplex s ∈ G(R) and whose output is a number O(s), satisfying∣∣∣O(s)−

∑
v∈V (H,s)

pj(1− p)nvncv
∣∣∣ ≤ Es def

=
1

C2q
√
c

s

ncs .(3.7)

(Here is an attempt to give the reader some intuition about the choice of the error
term Es: the simplex s contains at most njs vertices of V (H), and for each vertex the
summand is at most pjncs; thus the exact sum does not exceed ncsq

d
s . The approxima-

tion’s relative accuracy is thus a suitable quasi-constant factor.)
We then define the initial approximate energy by

AE(0)
3

def
=

1

N

∑
s∈G(R)

O(s) .

Assuming (3.6) and (3.7), we have∣∣∣AE(0)
3 − E(0)

3

∣∣∣ ≤ 1

N

∑
s∈G(R)

Es ≤ 1

C3rbd/2c
∑

s∈G(R)

qc−
√
c

s = O(1/C2)(3.8)

by the semicutting property of R, which establishes Lemma 3.6 for k = 0, provided
C is big enough.

We proceed to the definition of AE(k)
3 . For a vertex v ∈ V (H) ∩ (R ∪ S(k))∩,

let mv denote the number of hyperplanes among {hk+1, . . . , hn−r} in its conflict list2

(that is, not counting the rejected hyperplanes). We also let dv be the number of

2To be formally consistent, we should also superscript mv by (k), but this would overburden the
notation.

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1569

hyperplanes among {hk+1, . . . , hn−r} passing through v. In a manner analogous to
the above expression for E3, we can write

E(k)
3 =

1

N

∑
v

pdv (1− p)mvncv ,(3.9)

where the summation is taken over all vertices v of the arrangement of R ∪ S(k) ∪
{hk+1, . . . , hn−r} lying in the (closed) polytope (R ∪ S(k))∩.

We describe an oracle O(k), which can approximately evaluate a part of this sum
over a suitable cell (the oracle O above can be seen as a weaker version of O(0)). The
input of O(k) is a j-dimensional cell σ. We assume that the affine span of σ is either
Rd or contained in the intersection of hyperplanes of H (under a suitable general
position assumption, other cells do not contain any relevant vertices) and that σ is
completely contained in a single simplex s ∈ G(R) (this latter requirement is not so
important for the current section, but it is needed in the construction of the oracle).
The oracle returns a number O(k)(σ) with∣∣∣O(k)(σ)−

∑
v∈V ({hk+1,...,hn−r},σ)

pj(1− p)mvncv
∣∣∣ ≤ Es =

1

C2q
√
c

s

ncs,(3.10)

where Es is defined as in (3.7).

It might now seem natural to evaluate the approximate energy AE(k)
3 as follows:

keep the portions of the arrangement of S(k) within each simplex s ∈ G(R), and call
the oracle O(k) on each cell from the resulting arrangements. It turns out that the
error introduced in this way would be too large. Instead we compute the approximate
energy incrementally, using the oracle to approximate the difference in energy caused
by adding or rejecting a hyperplane.

Let us look at what happens with the contribution of various vertices to the
total energy E3 when a hyperplane hk+1 is accepted or rejected; we begin with the
accepting case. The contribution of vertices strictly above hk+1 remains unchanged
(we say “above” meaning “on the same side of hk+1 as the origin”). The contribution
of all vertices strictly below hk+1 becomes zero and finally, for each vertex on hk+1, dv,
decreases by one so that its contribution to the energy is multiplied by 1/p. Denoting

the contribution of the vertices on hk+1 to the sum (3.9) by E(k)
on and the contribution

of the vertices below by E(k)
below, we have

E(k|A)
3 = E(k)

3 − E(k)
below +

(
1

p
− 1

)
E(k)
on .

Thus, an appropriate action after accepting hk+1 is the following: we let Σon be
the set of all faces σ of the polytope (R∪S(k))∩ ∩ hk+1 within s for all s ∈ G(R). We
set

AE(k)
on

def
=

p

N

∑
σ∈Σon

O(k)(σ) .

(Note that the oracle includes the pdim σ multiplicative factor, while an appropriate

factor for a vertex on hk+1 in E(k)
on is pdim σ+1; this is why the factor p appears in the

definition.)

1570 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

Then we gather the portion of (R ∪ S(k))∩ (strictly) below hk+1 inside each s,
obtaining a set Σbelow of cells, and we set

AE(k)
below

def
=

1

N

∑
σ∈Σbelow

O(k)(σ) .

We define

AE(k+1)
3

def
= AE(k|A)

3 = AE(k)
3 −AE(k)

below +

(
1

p
− 1

)
AE(k)

on .

The discussion of the case when hk+1 is rejected is similar. The contribution of
all vertices lying on hk+1 to the energy vanishes, and the number mv for all vertices
below hk+1 decreases by one; thus their contribution to the energy is multiplied by
1/(1− p). Hence an appropriate incremental definition is

AE(k+1)
3

def
= AE(k|R)

3 = AE(k)
3 +

(
1

1− p − 1

)
AE(k)

below −AE(k)
on .

From these definitions, the promised analogy to (3.5), namely

AE(k)
3 = pAE(k|A)

3 + (1− p)AE(k|R)
3 ,(3.11)

follows immediately.
As usual, we accept hk+1 if AE(k|A) < AE(k|R) (otherwise, we reject it). Let us

remark that since we have already established AE(0)
3 ≤ 2/3, we know that the final

approximate energy AE(n−r) < 2/3 and, in particular, that conditions C1 and C2 hold
for the final sample S(n−r). Thus, any intermediate sample S(k) satisfies |S(k)| ≤ r as
well as condition C2. We are thus free to use these conditions further. From now on,
the quantity rs will be defined with respect to the final sample S(n−r) computed by

the algorithm; that is, rs = |S(n−r)
|Os |+ 1.

Proof of Lemma 3.6. Let us analyze the approximation error. We have∣∣∣E(k)
3 −AE(k)

3

∣∣∣ ≤ ∣∣∣E(0)
3 −AE(0)

3

∣∣∣
+

∑
i; hi∈S(k)

(∣∣∣E(i−1)
below −AE(i−1)

below

∣∣∣+
1− p
p

∣∣∣E(i−1)
on −AE(i−1)

on

∣∣∣)

+
∑

i∈{1,...,k}; hi 6∈S(k)

(
p

1− p
∣∣∣E(i−1)
below −AE(i−1)

below

∣∣∣+
∣∣∣E(i−1)
on −AE(i−1)

on

∣∣∣) .

From (3.8), we know that the first term is O(1/C). Let us consider the contri-
bution of a single simplex s ∈ G(R) to the second and third terms; we consider the
accepting and rejecting cases separately. The sets Σon and Σbelow have no more than
O(rds) cells, and there are fewer than rs accepted hyperplanes cutting s or separating
it from O. For an accepted hyperplane hi, the error of the oracle given by (3.10) is
multiplied by (1−p)/N ≤ 1/N for the cells in Σon, and by 1/N for the cells in Σbelow.
The total error for the accepted hyperplanes is thus O(rd+1

s Es/N).
For a rejected hyperplane hi, the error for cells in Σon gets multiplied by p/N

and by p/(1− p)N ≤ 2p/N for cells in Σbelow. Thus, the contribution to the error is
at most O(nsr

d
spEs/N) = O(qsr

d
sEs/N). Substituting for Es and N , we get that the

total contribution to the error for s does not exceed O(q
c−√c+1
s rd+1

s /C3rbd/2c).

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1571

We have bounds for the sums of cth moments of the rs and of the qs. In order
to deal with the product of their powers, we use the inequality xy ≤ xu + yv, where

the exponents satisfy 1/u + 1/v = 1. In our case we have x = rd+1
s , y = q

c−√c+1
s ≤

q
c−√c/2
s , u = 2

√
c, v = 1/(1−1/u) = c/(c−√c/2). Then rd+1

s q
c−√c+1
s ≤ r2(d+1)

√
c

s +qcs.
The total error over all simplices thus becomes

O(1)

C3rbd/2c

 ∑
s∈G(R)

r2(d+1)
√
c

s +
∑

s∈G(R)

qcs

 .

The first sum is less than C2rbd/2c by condition C2, and the second sum is O(Crbd/2c)
by the semicutting property of the geode of R; hence the whole expression is O(1/C).
This proves Lemma 3.6.

It now remains for us to implement the oracle.

3.5. Implementing the oracle.
Lemma 3.7. It is possible to maintain a data structure for each simplex s ∈ G(R)

such that a call to the oracle O(k) with a cell σ, as described in the previous sections,

can be answered in OC(compl(σ)q
b
√
c

s) time for an absolute constant b, where compl(σ)
denotes the combinatorial complexity of σ. The total time needed for updating the data

structure for s during the round is bounded by OC(nsr
d
sq
b
√
c

s).
Proof. The proof follows a similar construction in [7]. We define another quasi-

constant quantity

ρs
def
= C3d+6q3d

√
c

s .

Let H
(k)
s denote the set of yet unprocessed hyperplanes in the conflict list of s; that is,

H
(k)
s = {hk+1, . . . , hn−r}|Os. Whenever we want to call the oracle O(k), we make sure

we have an ε-approximation A
(k)
s for the set H

(k)
s (with ranges defined by segments)

available, where ε is such that the absolute error of the approximation does not exceed

ns/ρs, and |A(k)
s | = O(ρ2

s log ρs). A simple way to maintain such an ε-approximation

under the deletion of hyperplanes is to start with, say, a (1/2ρs)-approximation A
(0)
s ,

keep it unchanged for a while, and recompute a fresh (1/2ρs)-approximation after
every ns/2ρs deletion. By the results of [20] (or by Theorem 2.1), each (1/2ρs)-
approximation is computed in time conservatively estimated as O(ρ2d+1

s ns), so the

total time for the maintenance of the ε-approximations is OC(nsq
b
√
c

s) as claimed.
Suppose that we want to answer a call to the oracle O(k) with a j-cell σ, that is,

approximate the sum ∑
v∈V (H

(k)
s ,σ)

pj(1− p)mvncv .

Let us set

αs
def
=
|H(k)

s |
|A(k)
s |

.

We are ready to define the oracle value

O(k)(σ)
def
=

∑
v∈V (A

(k)
s ,σ)

αjsp
j(1− p)mvncv .(3.12)

1572 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

Note that the quantities mv and nv can be computed exactly for all the vertices

v ∈ V (A
(k)
s , σ), in time conservatively estimated as OC(ρ3d

s ns) (we remark that we
use them as well in (3.7), (3.10) for a vertex v ∈ V ({hk+1, . . . , hn−r}, σ), but these
quantities are never actually computed). Up to easy details, we have thus completely
described the algorithm implementing the oracle, and the times it takes to answer a
call or maintain the data structure can easily be shown to stay within the claimed
bounds. It remains to establish the bound on the accuracy.

In order to have a notationally simpler proof, we only deal with the case k = 0
(then nv = mv, and we can omit all the (k) superscripts). The case of a general k is
entirely similar and is treated in detail in [5].

Our procedure replaces a summation over a discrete but large set of vertices
by summation over a smaller suitably chosen set, and this very much resembles a
numerical integration procedure. The notation is chosen to stress this analogy, and
also the reasoning in the proof resembles simple estimates for the error of numerical
integration. From a result of [7], we know that the number of vertices of the ε-
approximation within any simplex multiplied by a suitable scaling factor approximates
the number of vertices of H within the simplex with relative accuracy ε. Theorem
2.8 shows that this is even valid for cells of arrangements (since they are convex).
Our strategy is to subdivide σ into small enough cells so that the variation of the
summand within each cell is small but at the same time the number of small cells is
not too large. Within each small cell, we treat the summand as essentially constant
and use the vertex number approximation bound.

Here is a more detailed treatment. Our specific function f to be integrated (over
the discrete set of vertices) is

f(t) = pj(1− p)ttc .
We let Mf,T stand for its modulus of continuity Mf,T over a set T (as is done in a
somewhat different context in [22]):

Mf,T (h) = sup
t1,t2∈T
|t2−t1|≤h

|f(t2)− f(t1)| .

For a j-dimensional cell ξ ⊆ σ, let us denote

Σξf =
∑

v∈V (H,ξ)

f(nv)(3.13)

and

Σ̃ξf =
∑

v∈V (As,ξ)

αjsf(nv) .(3.14)

We want to obtain a bound for the difference |Σξf − Σ̃ξf |. Let Tξ = {nv : v ∈
V (H, ξ)}, fminξ = mint∈Tξ f(t), fmaxξ = maxt∈Tξ f(t), and ∆ξ(f) = fmaxξ − fminξ . We
have

|V (H, ξ)|fminξ ≤ Σξf ≤ |V (H, ξ)|fmaxξ ,

and similarly

αjs|V (As, ξ)|fminξ ≤ Σ̃ξf ≤ αjs|V (As, ξ)|fmaxξ .

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1573

From this we get∣∣∣Σξf − Σ̃ξf
∣∣∣ ≤ ∣∣αjs|V (As, ξ)| − |V (H, ξ)|∣∣ fmaxξ + |V (H, ξ)|∆ξ(f) .(3.15)

Theorem 2.8 shows that, for any j-dimensional cell ξ within s, we have

∣∣αjs|V (As, ξ)| − |V (H, ξ)|∣∣ ≤ njs
ρs
.(3.16)

To estimate the total error within σ, we subdivide σ into smaller cells. Namely, we
fix a parameter

νs
def
= C3q2

√
c

s ,

and we choose a (1/νs)-net N ⊆ H|Os (with respect to ranges defined by segments)
of size O(νs log νs). We let Ξ be the portion of the arrangement of N within σ (by a
suitable general position assumption, we may consider only j-dimensional cells in Ξ).
Ξ is thus a subdivision of σ into |Ξ| = O((νs log νs)

j) = O(νd+1
s) cells.

Lemma 3.8. For any T ⊆ [0, τ], Mf,T (h) ≤ h pjτ c−1(c− log(1− p)τ).
Proof. We have f ′(t) = pj(1 − p)t(ctc−1 + log(1 − p)tc). By the mean value

theorem, for any t1, t2 ∈ T ,

|f(t2)− f(t1)| ≤ |t2 − t1| sup
t∈[t1,t2]

|f ′(t)|,

from which the result follows. (The reader should keep in mind that 1− p < 1, hence
the minus sign in front of the logarithm when taking the absolute values of f ′.)

It now suffices to note, by the (1/νs)-net property and since for any ξ ∈ Ξ we
have supTξ ≤ ns, that

∆ξ(f) ≤Mf,Tξ

(
ns
νs

)
= O

(
ns
νs
pj(1 +

r

n
ns)n

c−1
s

)
= O

(
qsp

j

νs
ncs

)
(3.17)

for any ξ ∈ Ξ, where we have taken into account the fact that − log(1− p) = O(r/n).
To obtain the total approximation error made by the oracle, we substitute (3.16),

(3.17) into (3.15), and this yields∣∣∣Σσf − Σ̃σf
∣∣∣ ≤∑

ξ∈Ξ

∣∣∣Σξf − Σ̃ξf
∣∣∣ ≤ O(νd+1

s)
njs
ρs
fmaxσ +O(njs)

qsp
j

νs
ncs

= O

(
νd+1
s qds
ρs

+
qd+1
s

νs

)
ncs = O(Es/C) ,

which validates (3.7), (3.10).
As mentioned in the lemma, the time needed to answer a call to the oracle within

a cell σ also depends on the complexity compl(σ) of that cell. However, the total
complexity of all the cells in the sets Σbelow and Σon introduced in processing a
hyperplane hi is easily seen to be in O(rds); hence, the total time spent by the oracle

when processing a hyperplane is OC(rdsq
b
√
c

s).
With this lemma we can finish the time analysis of the whole algorithm. We

have already seen at the end of section 3.2 that the running time of the deterministic
algorithm is no more than the expected running time of the randomized algorithm

1574 HERVÉ BRÖNNIMANN, BERNARD CHAZELLE, AND JIŘÍ MATOUŠEK

plus the cost of computing the good sample and that of the oracle calls. The total
time spent for computing local arrangements and testing each hyperplane during the
round is easily shown to be OC(nrbd/2c−1) using the fact that the geode of R defines
a semicutting. This does not account for the oracle costs. There are at most ns
hyperplanes to process within the simplex s during the computation, so the total
time needed will be at most proportional to

∑
s∈G(R)

nsr
d
sq
b
√
c

s ≤ n

r

 ∑
s∈G(R)

r2d
s +

∑
s∈G(R)

q2b
√
c+2

s

 ,

which is OC(nrbd/2c−1), by a calculation similar to that given at the end of the proof
of Lemma 3.6. This is also the total running time for one round, which is then
bounded by the expected running time of one round for the randomized algorithm.
To summarize see the following theorem.

Theorem 3.9. The algorithm presented above computes the convex hull of n
points deterministically in time O(n log n+ nbd/2c) for any fixed dimension d ≥ 2.

One final note is needed for the model of computation. The algorithm given here
works in the so-called real-RAM model [1], where elementary arithmetic operations
take unit time regardless of the size of the numbers. This is the traditional model used
in computational geometry, to be contrasted with the so-called bit-model [1], where the
size of the numbers also contributes to the time complexity. Note that exponentially
large quantities are needed in the course of the algorithm. Nevertheless, because the
algorithm runs in polynomial time, it is possible, while computing over logarithmic-
size words, to approximate any intermediate number in our algorithm with a relative
error smaller than an arbitrarily small constant. It is easily seen that such errors are
too small to be of consequence in the derandomization technique we use.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, Addison-
Wesley, Reading, MA, 1983.

[2] N. Alon and J. Spencer, The Probabilistic Method, John Wiley & Sons, New York, 1992.
[3] N. Amato, M. Goodrich, and E. Ramos, Parallel algorithms for higher-dimensional convex

hulls, in Proc. 35th Annu. IEEE Sympos. Found. Comput. Sci., Santa Fe, NM, 1994,
pp. 683–694.

[4] N. Amato, M. Goodrich, and E. Ramos, Computing faces in segment and simplex arrange-
ments, in Proc. 27th ACM Symp. Theor. Comput., Las Vegas, NV, 1995, pp. 672–682.

[5] H. Brönnimann, Derandomization of Geometric Algorithms, Ph.D. thesis, Dept. of Comput.
Sci., Princeton University, Princeton, NJ, 1995.

[6] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom., 9 (1993),
pp. 145–158.

[7] B. Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete Comput.
Geom., 10 (1993), pp. 377–409.

[8] B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, and M. Sharir, Improved bounds
on weak ε-nets for convex sets, Discrete Comput. Geom., 13, (1995), pp. 1–15.

[9] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in
geometry, Combinatorica, 10 (1990), pp. 229–249.

[10] B. Chazelle and J. Matoušek On linear-time deterministic algorithms for optimization prob-
lems in fixed dimension, J. Algorithms, 21 (1996), pp. 579–597.

[11] K. L. Clarkson, A randomized algorithm for closest-point queries, SIAM J. Comput., 17
(1988), pp. 830–847.

[12] K. L. Clarkson, Randomized Geometric Algorithms, in Computing in Euclidean Geometry,
Lecture Notes Series Comput. 1, D.-Z. Du, F. K. Kwang, eds.,World Scientific, River Edge,
NJ, 1992, pp. 117–162.

PRODUCTS, SENSITIVE SAMPLING, AND DERANDOMIZATION 1575

[13] K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geom-
etry, II, Discrete Comput. Geom., 4 (1989), pp. 387–421.

[14] R. M. Dudley and R. S. Wenocur, Some special Vapnik-Chervonenkis classes, Discrete
Math., 33 (1981), pp. 313–318.

[15] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, New York, 1987.
[16] H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms, ACM Trans. Graph., 2 (1990), pp. 66–104.
[17] D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete Comput. Geom., 2

(1987), pp. 127–151.
[18] J. Matoušek, Construction of ε-nets, Discrete Comput. Geom., 5 (1990), pp. 427–448.
[19] J. Matoušek, Cutting hyperplane arrangements, Discrete Comput. Geom., 6 (1991), pp. 385–

406.
[20] J. Matoušek, Approximations and optimal geometric divide-and-conquer, J. Comput. System

Sci., 50 (1995), pp. 203–208.
[21] J. Matoušek, Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315–334.
[22] H. Niederreiter, Random Number Generation and Quasi Monte-Carlo Methods, CBMS-NSF

63, SIAM, Philadelphia, PA, 1992.
[23] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing

integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.
[24] J. Spencer, Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, Philadelphia, PA,

1987.

AUTOMATIC NONZERO STRUCTURE ANALYSIS∗

AART J. C. BIK† AND HARRY A. G. WIJSHOFF‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1576–1587

Abstract. The efficiency of sparse codes heavily depends on the size and structure of the input
data. Peculiarities of the nonzero structure of each sparse matrix must be accounted for to avoid
unsatisfying performance. Therefore, it is important to have an efficient analyzer that automatically
determines characteristics of nonzero structures. In this paper, some efficient algorithms are presented
that automatically detect particular nonzero structures.

Key words. nonzero structures, sparse computations, sparse matrices

AMS subject classifications. 68-04, 65F50

PII. S009753979529595X

1. Introduction. Many methods have been developed that exploit the sparsity
of matrices to reduce the storage requirements and computational time of particular
applications (see, e.g., [9, 12, 15, 17, 20, 23]). The efficiency of each individual method,
however, heavily depends on the specific characteristics of the nonzero structure of
each sparse matrix. For example, although a particular band method may perform
extremely well when actually applied to matrices with a small bandwidth, the ex-
plicit storage and manipulation of all elements within the band makes this method
infeasible for sparse matrices in which the nonzero elements are scattered over the
entire matrix. Because peculiarities of nonzero structures must be accounted for to
obtain satisfactory performance, it is important to have an efficient analyzer that
automatically determines certain characteristics of nonzero structures.

Such a nonzero structure analyzer can be used in a number of different fashions.
First, if sparse applications are explicitly coded by hand, a nonzero structure analyzer
can provide a programmer with useful insights about the characteristics of the matrices
for which an application must be developed in case a representative set of sparse
matrices is available beforehand. Although in this situation the efficiency of the
analyzer is less important, excessively long running times would disable the analysis
of large sets of matrices.

Second, in the past we have proposed a completely different approach to the
development of sparse codes [1]. Rather than explicitly dealing with the sparsity of
matrices at programming level, as done traditionally, this sparsity is dealt with at
compilation level by a special kind of restructuring compiler, referred to as a “sparse
compiler.” We must refer to [1, 3, 4, 5] for a detailed presentation of this approach
and some preliminary experiments with a prototype sparse compiler. It is obvious,
however, that the automatically generated sparse code becomes more efficient if the
sparse compiler can account for characteristics of the nonzero structures. For this,

∗Received by the editors December 13, 1995; accepted for publication (in revised form) July
1, 1997; published electronically April 27, 1999. This research was supported by the Foundation
for Computer Science (SION) of the Dutch Organization for Scientific Research (NWO) and the
EC Esprit Agency DG XIII under grant APPARC 6634 BRA III. A preliminary version of this
paper appears as “Nonzero structure analysis,” in ICS ′94. Proc. 8th International Conference on
Supercomputing, July 11–15, 1994, Manchester, UK, ACM, New York, 1994, pp. 226–235.

http://www.siam.org/journals/sicomp/28-5/29595.html
†Intel Corp., 2200 Mission College Blvd., SC12-303, Santa Clara, CA 95052 (aart.bik@intel.com).
‡Computer Science Department, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The

Netherlands (harryw@cs.leidenuniv.nl).

1576

AUTOMATIC NONZERO STRUCTURE ANALYSIS 1577

the compiler requires an automatic nonzero structure analyzer. Since in this approach
analysis time contributes to compile time, it is again desirable to keep analysis time
limited.

In most practical cases, however, sparse matrices are not all available beforehand.
A possible approach to deal with this situation is to generate multiple versions of an
application (either explicitly by hand or automatically by means of a sparse compiler),
each of which has been optimized specifically for a particular class of nonzero struc-
tures. At run-time, the analyzer is invoked to determine which version is probably
the most efficient. This version is subsequently executed. Using run-time analysis has
the major advantage that nonzero structures do not have to be known in advance. In
this case, however, the analyzer must be very efficient to avoid the situation in which
savings in execution time using an optimized version are outweighed by analysis time.
In general, it is desirable to keep analysis time proportional to the number of nonzero
elements and order of a sparse matrix [11].

In this paper, some efficient algorithms are presented that can be used by an
analyzer to automatically detect particular nonzero structures of square sparse ma-
trices. The presented algorithms examine each matrix as it is; i.e., no attempts are
made to permute the matrix into a particular form (as is frequently done in the
context of LU-factorization, for example, to confine fill-in to certain regions in the
matrix [6, 7, 8, 10, 12, 14, 15, 16, 17, 22]). Even if such a permutation is applied
to the matrix, however, the analyzer can be used afterwards to determine whether
an unforeseen nonzero structure arises (information about the specific form for which
the permutation is intended is usually obtained as a side effect of computing the
permutation).

2. Nonzero structures. We can distinguish between general sparse matrices
and sparse matrices having a particular nonzero structure. In this section, some
important nonzero structures of square matrices are identified [12, 18, 19, 20, 21].

2.1. Band forms. The lower and upper semibandwidth of an N×N matrix A are
defined as the smallest integers bl ≥ 0 and bu ≥ 0, respectively, for which (aij 6= 0)⇒
(−bu ≤ i − j ≤ bl) still holds. Minimum values reveal the most information about
the nonzero structure, because this constraint is trivially satisfied for semibandwidths
N − 1. Allowing for negative semibandwidths would enable the specification of an
arbitrary band in which the main diagonal is not necessarily included. However, in
this paper we will assume that all matrices have a full transversal (i.e., all elements
on the main diagonal are nonzero).

If the semibandwidths are relatively small, we say that the matrix is in band form,
which means that all nonzero elements are confined to a small band. We define the
shape count of a band form as the total number of elements that reside within the
band:

N · (bl + bu + 1)− (b2l + bl)/2− (b2u + bu)/2.

Note that this number is likely to exceed the total number of nonzero elements,
because the band is not necessarily full.

2.2. Block forms. Consider a block partition of a square matrix A into sub-
matrices Aij :

1578 AART J. C. BIK AND HARRY A. G. WIJSHOFF

A =

 A11 . . . A1p

...
. . .

Ap1 App

 .

Each submatrix Aii, referred to as a diagonal block, is a square ni×ni submatrix.
Hence, each submatrix Aij with i 6= j, referred to as an off-diagonal block, is an
ni × nj submatrix. The off-diagonal blocks Api and Aip for 1 ≤ i < p are referred to
as the lower border and upper border, respectively. If a block Aij contains at least one
nonzero element, the block is called a nonzero block, denoted by Aij 6= 0.

If (Aij 6= 0) ⇒ (i = j), then the matrix is in block diagonal form. Likewise, if
(Aij 6= 0) ⇒ (i ≥ j), or if (Aij 6= 0) ⇒ (i ≤ j), then the matrix is in block lower
triangular form or block upper triangular form, respectively. If a matrix is in block
diagonal form except for some nonzero blocks in the borders, then the matrix is in
doubly bordered block diagonal form. Matrices in singly bordered block lower triangular
form or singly bordered block upper triangular form are defined likewise. Finally, if
p = 2, A21 6= 0, A12 6= 0, and A11 is in band form, we say that the matrix is in doubly
bordered band form.

For these forms, the shape count is defined as the total number of elements in
the diagonal blocks (but only counting elements in the band of A11 for a bordered
band form), all border blocks for the bordered forms, and, for the triangular forms,
all remaining off-diagonal blocks in the lower or upper triangular part, even if not
all these blocks are nonzero. Again, this number is likely to exceed the total number
of nonzero elements, since the blocks are not necessarily full (and some of them may
even be zero).

Although, depending on which blocks are nonzero, a particular form of a matrix is
defined once a block partition of that matrix is given, it is possible that different block
partitions into one particular form differ in the accuracy of describing the nonzero
structure. In Figure 2.1, for example, two different block partitions of a matrix into
block diagonal form are shown with shape counts 15 and 25, respectively. Therefore,
we say the most accurate description for a particular form is defined by a minimum
block partition into that form, which means that there are no other block partitions
of the matrix into the same form with a smaller shape count.

Fig. 2.1. Two different block partitions into BDF.

A square matrix has a unique minimum block partition into block diagonal form,
which satisfies the following property (similar statements hold for block lower or upper
triangular forms).

Proposition 2.1. A block partition of a square matrix into block diagonal form
is minimum if and only if there is no diagonal block with a nontrivial block partition
into block diagonal form.

AUTOMATIC NONZERO STRUCTURE ANALYSIS 1579

We will see that a matrix can have several minimum block partitions into a
bordered band or block form.

3. Automatic nonzero structure analysis. In this section, efficient algo-
rithms are presented that detect (bordered) band and (bordered) block forms. We
assume that the nonzero structure of each N ×N sparse matrix A to be analyzed is
available on file in coordinate scheme. In this scheme, the file consists of the order
N and an integer nnz that indicates the number of nonzero elements, followed by an
unordered set of nnz triples (i, j, aij), indicating the row index, column index, and
value of each individual nonzero element.

First, sky-line information is computed. Thereafter, this information is used to
detect particular nonzero structures.

3.1. Preparatory analysis. Sky-line information, i.e., the lower and upper
semibandwidth for each single row and column, respectively, can be obtained in a
single pass over a file by executing the following procedure. In this fragment, the
lower and upper sky-line are computed in the arrays lsky and usky, respectively:

procedure comp_skylines()

begin

read(N, nnz);

allocate lsky[1:N] and usky[1:N]

for i := 1, N do

lsky[i] := 0;

usky[i] := 0;

endfor

for k := 1, nnz do

read(i, j, aij);

lsky[i] := max(lsky[i], (i-j));

usky[j] := max(usky[j], (j-i));

endfor

end

Sky-lines are computed under the assumption that the matrix has a full transver-
sal, so that all elements of the arrays lsky and usky can be initialized to zero. All
information requires Θ(N) storage and can be obtained in Θ(nnz +N) time.

Example. The following lower and upper sky-lines are obtained for the 15 × 15
sparse matrix that is depicted in Figure 3.1:

1 15
lsky 0 0 1 0 4 0 1 0 1 0 0 0 0 0 3
usky 0 0 2 0 1 0 0 0 3 0 0 0 0 3 2

@
@
@
@@

@
@
@
@
@

Fig. 3.1. Band form.

1580 AART J. C. BIK AND HARRY A. G. WIJSHOFF

3.2. Band forms. Once the lower and upper sky-lines of a matrix have been
computed, the lower and upper semibandwidths of this matrix are determined in
Θ(N) time as follows:

procedure comp_bandform()

begin

b_l := 0; b_u := 0;

for i := 1, N do

b_l := max(b_l, lksy[i]);

b_u := max(b_u, uksy[i]);

endfor

end

These semibandwidths directly determine the band form of a matrix.

Example. For the sparse matrix of Figure 3.1, the semibandwidths bl = 4 and
bu = 3 result. This gives rise to the band form with shape count 104 that is shown in
the same figure.

3.3. Bordered band forms. By slightly extending the previous procedure, an
algorithm is derived that constructs a minimum block partition into bordered band
form in Θ(N) time:

procedure comp_bord_bandform()

begin

b_l := 0; b_u := 0;

tsz := N*N;

for i := 1, N do

b_l := max(b_l, lksy[i]);

b_u := max(b_u, uksy[i]);

if (bf_size(b_l, b_u, N-i) <= tsz) then

t_l := b_l; t_u := b_u; b := N-i;

tsz := bf_size(b_l, b_u, N-i);

endif

endfor

end

In this algorithm, the auxiliary function bf size computes the shape count of a
bordered band matrix with border size b and semibandwidths bl and bu:

integer function bf_size(bl, bu, b)

begin

return ((N-b) * (bl+bu+1) - (bl*bl+bl) / 2

- (bu*bu+bu) / 2 + 2*N*b - b*b);

end

After the semibandwidths are updated in each step i, we test whether the shape
count of a bordered band form with border size N-i is less than or equal to the best
shape count seen so far. If this is true, we record this shape count and corresponding
border size and semibandwidths. Consequently, after applying the algorithm, vari-
ables b, t l, and t u contain the border size and semibandwidths of a minimum block
partition into block band form. If b=0 holds, then effectively a band form results. For
example, applying comp bord bandform() to the matrix of Figure 3.1 yields exactly
the same band form as computed by comp bandform().

Example. In Figure 3.2, we present the resulting bordered band forms for some
matrices, with shape counts 125, 119, 153, and 131, respectively. The last example
shows that, although a minimum block partition into a doubly bordered band form is
constructed, it is possible that only a single border block is actually nonzero.

AUTOMATIC NONZERO STRUCTURE ANALYSIS 1581

Example. A matrix may have different minimum block partitions into bordered
band form, as illustrated in Figure 3.3, where the shape count of all forms is 93. Our
algorithm solves such ties in favor of the smallest border size.

@
@
@
@@

@
@
@
@

@
@@

@
@
@
@
@@

@
@
@@

@
@
@@

@
@
@
@
@

@
@
@

Fig. 3.2. Bordered band forms.

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

@
@
@
@
@

Fig. 3.3. Different minimum block partitions into bordered band forms.

3.4. Block forms. The following procedure constructs a block partition into
diagonal block form in Θ(N) time by determining the size k of each next diagonal
block with the lower right corner at row and column index B during a backward scan
over the sky-lines:

procedure comp_blockdiag()

begin

p := 0; k := 1; B := N;

for i := N, 1, -1 do

S1: k := max(k, max(lsky[i],usky[i])+B-i+1);

if (i = B-k+1) then

p := p + 1; part[p] := i; /* Record Block */

B := i - 1; k := 1: /* Next Block */

endif

endfor

end

After application of this algorithm, p contains the number of diagonal blocks.
The row (or column) indices of the upper left corners of all diagonal blocks of the
block partition are recorded in reverse order in the first p locations of array part.

The following proposition states that the minimum block partition into block
diagonal form is found. Likewise, if only the value lsky[i] or usky[i] is used in
statement S1, then the minimum block partition into block lower, or block upper
triangular form, respectively, is obtained in Θ(N) time.

Proposition 3.1. Application of comp blockdiag() to the lower and upper
sky-line of a matrix yields the minimum block partition into block diagonal form.

Proof. By construction, each nonzero element is incorporated in a diagonal block.
Now assume that the resulting block partition is not a minimum block partition into
diagonal form. Then Proposition 2.1 implies that there is a certain k × k diagonal
block with the lower right corner at a row and column index B that has a nontrivial

1582 AART J. C. BIK AND HARRY A. G. WIJSHOFF

block partition into block diagonal form; i.e., there is 1 ≤ k′ < k such that ∀B− k′ <
i ≤ B : max(li, ui)+(B−i) < k′. Since no diagonal block is recorded during iterations
i = B . . . B − k′ + 1, during at least one of these iterations a value is assigned to k

that is greater than k′. However, this can only occur if max(li, ui) + B − i + 1 > k′

for some B − k′ < i ≤ B. This contradicts the assumption.
Example. Application of the different versions of this algorithm to the matrix of

Figure 3.1 yields the block diagonal, block lower, and upper triangular forms shown
in Figure 3.4, with shape counts 67, 140, and 138, respectively. Note that although
in the block triangular forms many off-diagonal blocks are zero, the elements of these
blocks are also included in the shape count.

The contents of array part for the first block partition are shown below:

part 11 10 6 1

Fig. 3.4. Block forms.

3.5. Bordered block forms. Let E(b) denote the shape count of a bordered
block diagonal form with border size b ∈ [0, N] arising from the minimum block
partition of the remaining (N − b) × (N − b) matrix into block diagonal form. We
define the improvement of using border size b′ instead of b as I(b′, b) = E(b)−E(b′),
satisfying the following property.

Proposition 3.2. For b, b′, b′′ ∈ [0, N], we have I(b′, b′′) = I(b′, b) + I(b, b′′).
Proof. I(b′, b′′) = E(b)− E(b′) + E(b′′)− E(b) = I(b′, b) + I(b, b′′).
Suppose that for a given border size b ∈ [0, N], we construct the minimum block

partition of the remaining (N − b)× (N − b) submatrix into block diagonal form using
the procedure comp diagblock(). At any iteration i = i, the block partition found
so far may be discarded and the algorithm may be restarted with B = i−1 and k = 1
for a new border size b′ = N − i+ 1.

Obviously, selection of this border is only profitable if eventually we are able to
determine that I(b′, b) > 0. However, rather than constructing both block partitions
completely, we are already able to compute the improvement during an iteration
i = i′ in which the last diagonal block of the new block partition that overlaps with
the diagonal block that was assumed during iteration i = i has been found. This is
because the block partition of the remaining part of the matrix will be identical for both
block partitions. This new diagonal block may be contained in the old diagonal block
(which occurs if the value of k would not have been incremented while constructing
the old block partition), or these blocks may partially overlap.

AUTOMATIC NONZERO STRUCTURE ANALYSIS 1583

Gain

Loss

b

k’

i

B

i’

B’

b

k’

i

B

i’

B’

kk

b’b’

Fig. 3.5. Gain and loss for border.

Both cases are illustrated in Figure 3.5. In any case, the improvement is equal to
the difference of the number of elements included in the border (loss) and the number
of elements that do not have to be included in a diagonal block (gain). Let B, k and
B′, k′ denote the value of B belonging to the iterations i = i and i = i′, respectively.
Furthermore, let Z and Z ′ denote the number of elements in the off-diagonal zero
blocks of the old and new block partition below rows B and B′, respectively. Then
the improvement of using a new border size b′ with respect to the old border size b is
equal to the difference between the gain and the loss:

I(b′, b) = Z ′ − Z − 2 · (B′ − k′)(B −B′).

If the gain exceeds the loss, i.e., I(b′, b) > 0, then it is profitable to continue
with the new block partition and border size b′. Moreover, border size b may be
discarded from further consideration, since Proposition 3.2 implies that I(b′, b′′) >
I(b, b′′) for all b′′ ∈ [0, N]. If no improvement has been obtained, i.e., I(b′, b) ≤ 0,
then the block partition corresponding to border size b must be restored and the
algorithm can proceed with the search for the next diagonal block (which has at least
size max(k,B − B′ + k′)). In that case, we may discard border size b′ from further
consideration, since Proposition 3.2 implies that I(b′, b′′) ≤ I(b, b′′) for all b′′ ∈ [0, N].

These observations enable us to construct a minimum block partition into block
diagonal form in one pass over the sky-lines. At each step in which no diagonal block
is recorded, the current status is saved on a stack, and a new border size is tried. If a
diagonal block is recorded, no improvement can be obtained by trying a new border
size. Instead, previously constructed block partitions belonging to smaller border
sizes that can be verified are restored if an improvement is obtained (which is simply
done by restoring the value of p), or discarded otherwise. The following slightly more
complex version of procedure comp blockdiag() results:

1584 AART J. C. BIK AND HARRY A. G. WIJSHOFF

procedure comp_bord_blockdiag()

begin

Z := 0; b := 0; s := 0;

p := 0; k := 1; B := N;

for i := N, 1, -1 do

S2: k := max(k, max(lsky[i],usky[i])+B-i+1);

if (i = B-k+1) then

/* Last Overlapping Block? */

while ((s > 0) && (i == stackB[s]-new_k()+1)) do /* Conditional AND */

/* Improvement? */

if (I() > 0) then

s := s - 1; /* Discard */

else

pop_restore(); /* Restore */

endif

endfor

Z := Z + 2 * k * (B-k);

p := p + 1; part[p] := i; /* Record Block */

B := i - 1; k := 1: /* Next Block */

else

push(); /* Save State */

Z := 0; B := i - 1; /* New Search */

k := 1; b := N - i + 1;

endif

endfor

end

In this algorithm, the following auxiliary procedures are used to implement stack-
like operations that save and restore states:

procedure push()

begin

s := s + 1;

stackk[s] := k;

stackZ[s] := Z;

stackB[s] := B;

stackp[s] := p;

stackb[s] := b;

end

procedure pop_restore()

begin

k := new_k();

Z := stackZ[s];

B := stackB[s];

p := stackp[s];

b := stackb[s];

s := s - 1;

end

The following auxiliary functions are used to compute the improvement and the
new value of k for the block partition on top of the stack:

integer function I()

begin

I := Z - stackZ[s] - 2 *

(B-k) * (stackB[s]-B);

end

integer function new_k()

begin

new_k := max(stackk[s],

stackB[s]-B+k);

end

Although a while-loop occurs inside the i-loop, this algorithm still runs in Θ(N)
time because each border size can only be pushed and popped from the stack once.
Because the algorithm simply applies comp blockdiag() to the submatrix that re-
mains for the most profitable border size, it is clear that this extended algorithm
constructs a minimum block partition into bordered block diagonal form.

After application of this algorithm, the scalar b contains the selected border size

AUTOMATIC NONZERO STRUCTURE ANALYSIS 1585

(and hence the size of the last diagonal block). The first p locations of array part

represent the block partition into block diagonal form of the remaining submatrix. If
a zero border size is selected, the last diagonal block is empty and, effectively, a block
partition into block diagonal form results.

If only the value lsky[i] or usky[i] is used in statement S2, then a minimum
block partition into, respectively, singly bordered block lower or upper triangular form
is obtained. In these cases, the constant 2 must be removed from the assignment to
Z and the computation in function I() to compute the appropriate improvement.

I(3, 0) = 112 I(2, 0) = 68 I(3, 0) = 14

Fig. 3.6. Bordered block forms.

Example. In Figure 3.6, the bordered block forms that result for a matrix are
shown, having shape counts 225 − 112 = 113, 225 − 68 = 157, and 176 − 14 = 162,
respectively. The contents of array part for the bordered block diagonal form having
b=3 are shown below:

part 12 11 10 6 4 1

Example. Applying the version operating only on lsky[i] to the matrix with 22
nonzero elements of Figure 3.7 yields a minimum partition into bordered block upper
triangular form with border size 1 and shape count 166. However, the shape counts
of similar forms with border sizes 2 and 3 are also 166. This example illustrates
that a matrix may have different minimum block partitions into a particular bordered
block form. Because a border is denied for a zero improvement (viz., I(3, 2) = 0 and
I(2, 1) = 0 in the example), ties are solved in favor of the smallest border size.

I(1, 0) = 21 I(2, 0) = 21 I(3, 0) = 21

Fig. 3.7. Different minimum block partitions into BBUTF.

3.6. Classification. After the minimum block partitions into (doubly bordered)
band form, (doubly bordered) block diagonal form, and (singly bordered) block lower
and upper triangular forms have been constructed, shape counts can be used to de-
termine which form most accurately describes the nonzero structure of a matrix.
Moreover, the density of this form (i.e., nnz divided by the shape count) can be
compared with a user-defined threshold to decide whether this nonzero structure is

1586 AART J. C. BIK AND HARRY A. G. WIJSHOFF

used for the classification of the sparse matrix or whether the matrix is classified as
a general sparse matrix.

Example. For the 59×59 matrix “impcol b” of the Harwell–Boeing sparse matrix
collection [13] with 312 nonzero elements, for example, the shape counts of the different
forms are 2620, 3461, 3206, and 2930, respectively. In Figure 3.8, we show the band
form and bordered block upper triangular form. Here, we classify this matrix as a
band matrix if 312/2620 exceeds the threshold, or as a general sparse matrix otherwise.

@
@
@@

@
@
@
@
@
@
@
@
@

Fig. 3.8. Classification of “impcol b.”

4. Conclusions. In this paper, we have presented some efficient algorithms that
automatically detect particular nonzero structures of sparse matrices. First, we have
extended an algorithm that constructs a band form into an algorithm that constructs
a minimum block partition into bordered band form (possibly yielding a band form as
a special case). Likewise, an algorithm that constructs a minimum block partition into
block diagonal or triangular form has been extended into an algorithm that constructs
a minimum block partition into bordered block diagonal or triangular form (possibly
yielding a block form with an empty border as a special case). All algorithms require
only sky-line information, which can be obtained in Θ(N + nnz) time for an N ×N
sparse matrix with nnz nonzero elements, and have a running time of Θ(N).

REFERENCES

[1] A. J. C. Bik, Compiler Support for Sparse Matrix Computations, Ph.D. thesis, Department of
Computer Science, Leiden University, Leiden, The Netherlands, 1996.

[2] A. J. C. Bik and H. A. G. Wijshoff, Nonzero structure analysis, in ICS ’94. Proc. 8th
International Conference on Supercomputing, July 11–15, 1994, Manchester, UK, ACM,
New York, 1994, pp. 226–235.

[3] A. J. C. Bik and H. A. G. Wijshoff, Advanced compiler optimizations for sparse computa-
tions, J. Parallel Distrib. Comput., 31 (1995), pp. 14–24.

[4] A. J. C. Bik and H. A. G. Wijshoff, Automatic data structure selection and transformation
for sparse matrix computations, IEEE Trans. Parallel Distrib. Systems, 7 (1996), pp. 109–
126.

[5] A. J. C. Bik and H. A. G. Wijshoff, The use of iteration space partitioning to construct
representative simple sections, J. Parallel Distrib. Comput., 34 (1996), pp. 95–110.

[6] T. F. Coleman, Large Sparse Numerical Optimization, Lecture Notes in Comput. Sci. 165,
Springer-Verlag, Berlin, 1984.

[7] E. Cuthill, Several strategies for reducing the bandwidth of matrices, in Sparse Matrices and
Their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum Press, New York, 1972,
pp. 157–166.

AUTOMATIC NONZERO STRUCTURE ANALYSIS 1587

[8] E. Cuthill and J. Mckee, Reducing the bandwidth of sparse symmetric matrices, in Proc.
24th National Conference of the ACM, 1969, pp. 157–172.

[9] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, Philadelphia, 1991.

[10] I. S. Duff, A survey of sparse matrix research, Proc. IEEE, (1977), pp. 500–535.
[11] I. S. Duff, A sparse future, in Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press,

London, 1981, pp. 1–29.
[12] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford

Science Publications, Oxford, 1990.
[13] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM Trans. Math.

Software, 15 (1989), pp. 1–14.
[14] A. George and J. W. H. Liu, An implementation of a pseudoperipheral node finder, ACM

Trans. Math. Software, 5 (1979), pp. 284–295.
[15] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,

Prentice-Hall, Englewood Cliffs, NJ, 1981.
[16] K. J. Mann, Inversion of large sparse matrices: Direct methods, in Numerical Solutions of

Partial Differential Equations, J. Noye, ed., North-Holland, Amsterdam, 1982, pp. 313–
366.

[17] S. Pissanetsky, Sparse Matrix Technology, Academic Press, London, 1984.
[18] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes,

Cambridge University Press, Cambridge, 1986.
[19] R. P. Tewarson, Sorting and ordering sparse linear systems, in Large Sparse Sets of Linear

Equations, J. K. Reid, ed., Academic Press, London, 1971, pp. 151–167.
[20] R. P. Tewarson, Sparse Matrices, Academic Press, New York, 1973.
[21] M. Veldhorst, An Analysis of Sparse Matrix Storage Schemes, Ph.D. thesis, Mathematisch

Centrum, Amsterdam, 1982.
[22] R. Wait, The Numerical Solution of Algebraic Equations, Wiley, Chichester, 1979.
[23] Z. Zlatev, Computational Methods for General Sparse Matrices, Kluwer, Dordrecht, 1991.

STACK AND QUEUE LAYOUTS OF DIRECTED ACYCLIC
GRAPHS: PART II∗

LENWOOD S. HEATH† AND SRIRAM V. PEMMARAJU‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1588–1626

Abstract. Stack layouts and queue layouts of undirected graphs have been used to model
problems in fault tolerant computing and in parallel process scheduling. However, problems in
parallel process scheduling are more accurately modeled by stack and queue layouts of directed acyclic
graphs (dags). A stack layout of a dag is similar to a stack layout of an undirected graph, with the
additional requirement that the nodes of the dag be in some topological order. A queue layout is
defined in an analogous manner. The stacknumber (queuenumber) of a dag is the smallest number of
stacks (queues) required for its stack layout (queue layout). This paper presents algorithmic results—
in particular, linear time algorithms for recognizing 1-stack dags and 1-queue dags, and proofs of
NP-completeness for the problem of recognizing a 4-queue dag and the problem of recognizing a
6-stack dag. The companion paper (Part I [SIAM J. Comput., 28 (1999), pp. 1510–1539.]) presents
combinatorial results.

Key words. stack layout, queue layout, book embedding, graph embedding, directed acyclic
graphs, dags, graph algorithms, leveled-planar graphs, NP-complete, posets

AMS subject classifications. 05C99, 68Q15, 68Q25, 68R10, 94C15

PII. S0097539795291550

Introduction. This is a companion paper to Heath, Pemmaraju, and Trenk [9];
we assume familiarity with the definitions, notation, and results in section 1 of that
paper. There, we define stack and queue layouts of directed acyclic graphs (dags) and
establish the stacknumber and queuenumber of path dags, cycle dags, tree dags, and
unicyclic dags. We also provide a forbidden subgraph characterization of 1-queue tree
dags and 1-queue cycle dags. In the current paper, we study stack and queue layouts
of dags from an algorithmic point of view and present four algorithmic results.

First, we present a linear time algorithm that recognizes 1-stack dags. Recall that
the class of 1-stack undirected graphs is equal to the class of outerplanar graphs (see
Bernhart and Kainen [1]). Therefore, the linear time outerplanar graph recognition
algorithm of Syslo and Iri [12] can be used to determine whether or not an undirected
graph has a 1-stack layout. However, not all dags with outerplanar covering graphs
are 1-stack dags and this makes it more difficult to recognize 1-stack dags (for an
example, see Figure 1.1).

Second, we present a linear time algorithm to recognize 1-queue dags. Our algo-
rithm uses a variation of the PQ-tree data structure introduced by Booth and Lueker
[2]. This result solves an open problem of Heath, Pemmaraju, and Trenk [10] and
brings out a contrast between 1-queue undirected graphs and 1-queue dags, because
Heath and Rosenberg [11] have shown that the problem of recognizing 1-queue undi-
rected graphs is NP-complete. The main step of our 1-queue dag recognition algorithm
determines whether a given dag has a leveled-planar embedding. This result extends

∗Received by the editors September 11, 1995; accepted for publication (in revised form) May 7,
1997; published electronically May 6, 1999. This research was supported in part by National Science
Foundation grant CCR-9009953.

http://www.siam.org/journals/sicomp/28-5/29155.html
†Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg,

VA 24061-0106 (heath@cs.vt.edu).
‡Department of Computer Science, University of Iowa, Iowa City, IA 52242-1316 (sriram@

cs.uiowa.edu).

1588

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1589

����

���� ����

���� ����

���� ����

'
&

$
%

'

&

$

%

'

&

$

%

-

6

?

���� -

4 -

6

?

-

-

2

3

5

8 7

61

Fig. 1.1. A 2-stack dag, each of whose biconnected components are 1-stack dags.

the work of Di Battista and Nardelli [5] and Chandramouli and Diwan [3, 4]. These
authors assume certain restrictions on the given dag. In particular, Di Battista and
Nardelli present an algorithm to determine if a dag with a single source (node with
in-degree 0) has a leveled-planar embedding. Chandramouli and Diwan present an
algorithm to determine if a triconnected dag has a leveled-planar embedding.

Third, we prove that the problem of recognizing a 4-queue dag is NP-complete.
In fact, our result is stronger: we show that recognizing a 4-queue poset (a 4-queue
dag with certain restrictions) is NP-complete. Fourth and finally, we prove that
recognizing a 6-stack dag is also NP-complete.

The organization of the rest of the paper is as follows. In section 1, we present a
linear time algorithm for recognizing 1-stack dags. In section 2, we present a linear
time algorithm for recognizing 1-queue dags. In section 3, we show that the problem
of recognizing 4-queue dags is NP-complete, and finally, in section 4, we show that
the problem of recognizing 6-stack dags is NP-complete.

1. Recognizing 1-stack dags. In this section, we present an O(|V |) time algo-

rithm for determining whether a dag ~G = (V, ~E) is a 1-stack dag. If ~G is a 1-stack dag,

then the algorithm constructs a 1-stack layout of ~G. A dag is a 1-stack dag if and only
if each of its connected components is a 1-stack dag. Hence we assume, without loss
of generality, that ~G is connected. Also, for ~G to be a 1-stack dag its covering graph
G = (V,E) has to be a 1-stack graph. By Bernhart and Kainen’s characterization [1],
this means that G has to be outerplanar, which in turn means that |E| ≤ 2|V | − 3.

Since | ~E| = |E|, without loss of generality, we assume that | ~E| ≤ 2|V | − 3.

Bernhart and Kainen show that the stacknumber of an undirected graph is the
maximum of the stacknumbers of its biconnected components. The analogous result
does not hold for dags, as shown in Figure 1.1. The dag shown in this figure contains
three biconnected components: one induced by the nodes {1, 2, 3, 4}, one induced by
the nodes {2, 5}, and one induced by the nodes {5, 6, 7, 8}. For emphasis, each of the
biconnected components is enclosed in an oval in Figure 1.1. Each of the biconnected
components is a 1-stack dag, but we may verify that the dag itself cannot be laid out
in one stack. Therefore, to verify that a dag is a 1-stack dag, it is not sufficient to
check that each biconnected component is a 1-stack dag.

We organize our algorithm to recognize 1-stack dags in two steps. In the first step
(section 1.1), we verify that each biconnected component of ~G is a 1-stack dag. If the

1590 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

algorithm finds a biconnected component that is not a 1-stack dag, then it terminates
immediately with failure. In the second step (section 1.2), we combine the 1-stack

layouts of the biconnected components of ~G into a 1-stack layout of ~G.

1.1. Biconnected dags. This step decomposes ~G into biconnected components
and verifies that each biconnected component of ~G is a 1-stack dag. The verification
depends on the following lemma.

Lemma 1.1. A biconnected dag ~B = (V, ~E) is a 1-stack dag if and only if ~B is
an outerplanar dag and contains a directed Hamiltonian path obtained by traversing
the outer face of an outerplanar embedding of ~B.

Proof. Suppose that ~B is an outerplanar dag containing a directed Hamiltonian
path obtained by traversing the outer face of some outerplanar embedding of ~B. This
directed Hamiltonian path gives a unique topological order, say σ, of ~B. It follows im-
mediately from Bernhart and Kainen’s characterization of 1-stack undirected graphs
that σ yields a 1-stack layout of B. Since σ is a topological order of ~B, σ also yields
a 1-stack layout of ~B.

To establish the converse, suppose that ~B is a biconnected 1-stack dag. Since
its covering graph B is a 1-stack graph, B is outerplanar. Since B is biconnected
and outerplanar, it contains a unique Hamiltonian cycle; call it C. Let ~C be the dag
that is a subgraph of ~B and that has C as its covering graph. Clearly ~C is a 1-stack
dag. By Lemma 2.2 of [9], ~C contains a unique directed Hamiltonian path; say it is
given by v1, v2, . . . , vn. As a dag can have at most one Hamiltonian path, this is also
the unique Hamiltonian path in ~B. Then σ = v1, v2, . . . , vn is the unique topological
order of ~B that yields a 1-stack layout of ~B. This 1-stack layout of ~B can be viewed,
in a natural way, as an outerplanar embedding whose outer face can be traversed in
the order given by σ. The lemma follows.

Depth-first search on ~G can be used to decompose ~G into biconnected components.
This requires O(|V |) time, since depth-first search of G requires O(|V | + |E|) time

and |E| ≤ 2|V | − 3. For each biconnected component ~B of ~G, it is easy to combine a

topological sort with a verification that ~B contains a directed Hamiltonian cycle and
that the topological order yields a 1-stack layout of ~B. The time complexity of the
first step is O(|V |).

1.2. General dags. This step combines the 1-stack layouts of the biconnected
components of ~G into a 1-stack layout of ~G. By Lemma 1.1, each of the 1-stack
biconnected components of ~G has a unique source (node with in-degree 0), a unique
sink (node with out-degree 0), and a unique 1-stack layout. For this step, we need the
notion of a block-cutpoint tree, defined by Harary and Prins [6]. The block-cutpoint

tree T (~G) of a dag ~G is the undirected graph with vertex set{
~B | ~B is a biconnected component of ~G

}
∪
{
u | u is a cutpoint in ~G

}
and edge set {

{ ~B, u} | u is a cutpoint in ~B
}
.

Figure 1.2 shows the block-cutpoint tree of the dag in Figure 1.1. The larger circles,
labeled ~B1, ~B2, and ~B3, represent the three biconnected components, while the smaller
circles, labeled 2 and 5, represent cutpoints. Harary and Prins [6] show that T (~G) is

a tree if and only if ~G is connected.

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1591

~B3&%
'$

&%
'$

��
��

��
��

&%
'$

5~B1
~B22

Fig. 1.2. The block-cutpoint tree of the dag shown in Figure 1.1.

An intermediate node in a biconnected component ~B is a node in ~B that is neither
the source nor the sink in ~B. In Figure 1.1, node 2 is an intermediate node in ~B1,
and node 5 is an intermediate node in ~B5. For any biconnected component ~B in ~G,
we use T (~G, ~B) to denote T (~G) rooted at ~B. If x is a node in ~B that is a cutpoint of
~G, then we use D(~B, x) to denote the set of nodes in the subtree of T (~G, ~B) rooted
at x. For example, for the dag and its block-cutpoint tree shown in Figures 1.1 and
1.2, D(~B3, 5) = {5, ~B2, 2, ~B1} and D(~B1, 2) = {2, ~B2, 5, ~B3}.

Two cutpoints u and v of ~G constitute a conflicting pair of cutpoints if u is an
intermediate node in a biconnected component ~Bi, v is an intermediate node in a
biconnected component ~Bj , ~Bi ∈ D(~Bj , v), and ~Bj ∈ D(~Bi, u). For example, the dag
in Figure 1.1 contains the conflicting pair of cutpoints 2 and 5. This is because 2
is an intermediate node in ~B1, 5 is an intermediate node in ~B3, ~B1 ∈ D(~B3, 5), and
~B3 ∈ D(~B1, 2). Note that it is possible that u and v coincide.

The following lemma gives a partial characterization of 1-stack dags.

Lemma 1.2. Suppose the dag ~G contains a conflicting pair of cutpoints. Then ~G
is not a 1-stack dag.

Proof. Let u and v be a conflicting pair of cutpoints in ~G. Let ~Bi and ~Bj be as

in the definition of a conflicting pair. If either ~Bi or ~Bj is not a 1-stack dag, then
~G is not a 1-stack dag, and we are done. So assume that each of these biconnected
component is a 1-stack dag. By Lemma 1.1, each biconnected component has a unique
1-stack layout, where the topological order is given by the unique Hamiltonian path in
the biconnected component. Let u1, u2, . . . , ut be that order on the nodes in ~Bi that
yields a unique 1-stack layout of ~Bi. By Lemma 1.1, (u1, ut) is an arc of ~Bi. Since u

is an intermediate node in ~Bi, u = uk, for some k, 1 < k < t. Since ~Bi ∈ D(~Bj , v)

and ~Bj ∈ D(~Bi, u), there is an undirected path P in G between cutpoints u and v

such that no internal node in P belongs to either ~Bi or ~Bj . Let σ be any topological

ordering of ~G. Clearly, u1, u2, . . . , ut is a subsequence of σ. Based on where v occurs
in σ relative to this subsequence, there are five cases:

1. u = v. Then v = uk. Since v is an intermediate node in ~Bj , there is a node

v′ immediately before v in the 1-stack layout of ~Bj ; moreover, v′ is not in ~Bi.

Note that we may assume that v′ <σ uk−1; if not, just switch the roles of ~Bi
and ~Bj . We consider two possibilities for the order of v′ with respect to the

nodes of ~Bi. In the first case, suppose that the order σ satisfies

v′ <σ u1 <σ u2 <σ · · · <σ uk = v <σ uk+1 <σ · · · <σ ut.

In this case, the arc (u1, ut) crosses the arc (v′, v), and σ does not yield a

1-stack layout of ~G. In the second case, suppose that the order σ satisfies

um <σ v
′ <σ um+1 <σ · · · <σ uk = v <σ uk+1

1592 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

for some m with 1 ≤ m < k − 1. In this case, the arc (um, um+1) crosses the

arc (v′, v), and σ does not yield a 1-stack layout of ~G. Hence, in both cases,

σ does not yield a 1-stack layout of ~G.
2. v <σ u1 or ut <σ v. In either case, an edge in P crosses (u1, ut) and therefore

σ does not yield a 1-stack layout of ~G.
3. um <σ v <σ um+1, where 1 ≤ m < k− 1 or k+ 1 ≤ m < t. In either case, an

edge in P crosses (um, um+1) and therefore σ does not yield a 1-stack layout
~G.

4. uk−1 <σ v <σ uk. Then, for any node w in ~Bj , it is the case that uk−1 <σ
w <σ uk, because otherwise an arc in ~Bj would cross arc (uk−1, uk). But the

fact that uk−1 <σ w <σ uk for all nodes w in ~Bj implies that an edge in P
crosses arc (v′, v′′), where v′ and v′′ are the source and sink, respectively, of
~Bj (here we use the fact that v is an intermediate node in ~Bj). Therefore, σ

does not yield a 1-stack layout of ~G.
5. uk <σ v <σ uk+1. An argument similar to the one employed in case 3 shows

that σ does not yield a 1-stack layout of ~G.

In all cases, σ does not yield a 1-stack layout of ~G. But σ is an arbitrary topological
ordering. Hence ~G is not a 1-stack dag, as desired.

To combine the biconnected components of ~G into a 1-stack layout of ~G, we first
order the biconnected components of ~G via a breadth-first search of T (~G). Let an

arbitrary biconnected component ~B1 be the root of the breadth-first search, and let
~B1, ~B2, . . . , ~Bm be the order obtained for the biconnected components. Also, let T be
the rooted version of T (~G) so obtained.

For each i, where 1 ≤ i ≤ m, let ~Gi denote the subgraph of ~G induced by the
biconnected components ~B1, ~B2, . . . , ~Bi. In particular, ~G1 = ~B1 and ~Gm = ~G. Let u
be a cutpoint of ~G, and let ~Bk be the parent of u in T . Then u is restricted in ~Gi
if u belongs to ~Gi and some cutpoint v ∈ D(~Bk, u) is an intermediate node in some

biconnected component ~Bj , where j > i and ~Bj is a child of v. Note that it is possible

that v = u in which case ~Bj is a child of u. Consider Figure 1.3. Assume that v is an

intermediate node in ~B7. Then the cutpoint u is restricted in both ~G2 and ~G3.

The following lemma places an upper bound on the number of cutpoints in ~Bi
that can be restricted in ~Gi.

Lemma 1.3. Suppose that ~G does not contain a conflicting pair of cutpoints.
Then the number of cutpoints in ~Bi that are restricted in ~Gi is at most 1. Further
suppose that ~G contains a restricted cutpoint u whose parent in T is ~Bk. Then u is
either the source or the sink of ~Bk.

Proof. Suppose that u is a restricted cutpoint in ~Gi, and ~Bk is its parent in
T . By definition, k ≤ i and there exists some cutpoint v ∈ D(~Bk, u) that is an

intermediate node in some biconnected component ~Bj , where j > i and ~Bj is a child

of v. First suppose that u is an intermediate node of ~Bk. Then ~Bi ∈ D(~Bj , v) and
~Bj ∈ D(~Bi, u), implying that u and v constitute a conflicting pair of cutpoints in ~G,

contrary to assumption. Hence only two nodes in ~Bk, the source and the sink of ~Bk,
may be restricted in ~Gi.

Now suppose that u and u′ are distinct restricted cutpoints in ~G. Suppose that
~Bk is the parent of u in T and ~Bk′ the parent of u′. Note that it is possible that
k = k′, in which case one of u and u′ is the source and the other the sink of ~Bk. By
definition, k ≤ i and there exists some cutpoint v ∈ D(~Bk, u) that is an intermediate

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1593

��
��

��
��
�°�� �°��

�°��

��
��

�°��

��
��

��
��

��
��
�°��

��
��

¡
¡¡

@
@@

¡
¡¡

@
@@

u

v

~B1

~B2
~B3

~B4

~B5
~B6

~B7

Fig. 1.3. Node u is restricted in both ~G2 and ~G3.

node in some block ~Bj ∈ D(~Bk, u), where j > i and ~Bj is a child of v. Similarly,

k′ ≤ i and there exists some cutpoint v′ ∈ D(~B′k, u
′) that is an intermediate node in

some block ~Bj′ ∈ D(~B′k, u
′), where j′ > i and ~Bj′ is a child of v′. It is easy to see

that v 6= v′, that v ∈ D(~Bj′ , v
′), and that v′ ∈ D(~Bj , v). Hence, v and v′ constitute

a conflicting pair of cutpoints in ~G, contrary to assumption.
We conclude that at most one cutpoint in ~G is restricted in ~Gi. The lemma

follows.
The main result is now given by the following theorem.
Theorem 1.4. Let ~G = (V,E) be a dag that does not contain a pair of conflicting

cutpoints and that does not contain a biconnected component with stacknumber exceed-
ing 1. Then ~G is a 1-stack dag. Further, a 1-stack layout of ~G can be constructed in
O(|V |+ |E|) time.

Proof. The proof consists of an algorithm that actually constructs a 1-stack layout
of ~G. The algorithm first preprocesses the biconnected components of ~G in the order
~Bm, ~Bm−1, . . . , ~B1 so as to compute information about any restricted node in each

1594 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

~Gi. Clearly, ~Bm does not contain any nodes that are restricted in ~Gm. For each
i, 1 ≤ i < m, we can compute the set of nodes in ~Bi that are restricted in ~Gi as
follows. Let u be a node in ~Bi that is a cutpoint of ~G. Then, u is restricted in ~Gi
if and only if u is shared by a biconnected component ~Bj , j > i, and either u is an

intermediate node in ~Bj or ~Bj contains nodes that are restricted in ~Gj . Based on

the above observation, for each u in ~Bi that is a cutpoint in ~G, in the worst case, it
takes time proportional to the number of children u has in T to determine whether u
is restricted in ~Gi. Thus, the entire preprocessing step takes time proportional to the
number of edges in T . Since the number of nodes in T is at most 3|V | − 3, the time
complexity of the entire preprocessing step is O(|V |).

After the preprocessing step, if we find that some ~Bi has two or more cutpoints
that are restricted in ~Gi, then (by Lemma 1.3) ~G contains a conflicting pair of cut-

points and (by Lemma 1.2) ~G does not have a 1-stack layout. So we may assume,
without loss of generality, that after the preprocessing step each biconnected compo-
nent ~Bi has at most one cutpoint that is restricted in ~Gi.

A node u is said to be exposed in a topological order σ of ~G if there is no arc
(v, w) ∈ ~E such that v <σ u <σ w. The algorithm now proceeds to process the bicon-

nected components of ~G in forward order so as to maintain the following induction
hypothesis.

Induction hypothesis. For each i ≥ 1, we have that
(a) ~Gi has a 1-stack layout;

(b) if u is restricted in ~Gi, then ~Gi has a 1-stack layout in which u is exposed.
Note that Lemma 1.3 implies that there is at most one cutpoint that is restricted

in any ~Gi. We now prove the base case and the inductive step.
Base case. ~B1 has a unique 1-stack layout in which the source and the sink are

exposed and the rest of the nodes are not. Thus item (a) of the induction hypothesis

is satisfied. Lemma 1.3 implies that if a cutpoint in ~B1 is restricted in ~G1, then it is
either the source or the sink of ~B1, both of which are exposed. Thus item (b) of the
induction hypothesis is satisfied.

Inductive step. We now add the 1-stack layout of ~Bi+1, as computed in section 1.1,

to the 1-stack layout of ~Gi already constructed, and show that a 1-stack layout of ~Gi+1

results that satisfies the induction hypothesis. Let σ = u1, u2, . . . , ut be the unique
order on the nodes in ~Bi+1 that yields the 1-stack layout. Let um, 1 ≤ m ≤ t, be the

cutpoint of ~G through which ~Bi+1 is connected to ~Gi. There are two cases depending

on whether or not ~Bi+1 contains a cutpoint that is restricted in ~Gi+1:

1. ~Bi+1 contains a cutpoint v that is restricted in ~Gi+1. This implies that the

cutpoint um is restricted in ~Gi because either v = um or um has a child
~Bi+1 in T and ~Bi+1 has a child in T , namely v, that is restricted in ~Gi+1.
Therefore, by the induction hypothesis item (b), um is exposed in the 1-stack

layout of ~Gi constructed so far. Place the nodes u1, u2, . . . , um−1 in that order

to the left of the nodes in ~Gi and place the nodes um+1, um+2, . . . , ut in that

order to the right of the nodes in ~Gi. Since um is exposed in the layout of ~Gi,
we obtain a 1-stack layout of ~Gi+1, thus satisfying item (a) in the induction
hypothesis.

By Lemma 1.3, v is either a source (v = u1) or v is a sink (v = ut) in
~Bi+1. Since both the source and the sink are exposed in the 1-stack layout

of ~Gi+1 constructed, item (b) of the induction hypothesis is satisfied.

2. ~Bi+1 does not contain a cutpoint that is restricted in ~Gi+1. To obtain a 1-stack

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1595

layout of ~Gi+1, we place the nodes u1, . . . , um−1 in that order immediately to
the left of um and the nodes um+1, . . . , ut in that order immediately to the

right of ut. To show that this placement of the nodes in ~Bi+1 yields a 1-stack

layout of ~Gi+1, we need to consider two possibilities with respect to cutpoint

um. Either um is restricted in ~Gi or um is not restricted in ~Gi.
If um is restricted in ~Gi, then by induction hypothesis item (b), it is

exposed in the 1-stack layout of ~Gi constructed so far. Hence, placing the
nodes in ~Bi+1 as described above yields a 1-stack layout of ~Gi+1, thus sat-

isfying induction hypothesis item (a). If um is restricted in ~Gi+1 also, then

by Lemma 1.3, um is either a source (m = 1) or a sink (m = t) of ~Bi+1 and

remains exposed in the layout of ~Gi+1.

If um is not restricted in ~Gi, then um cannot be an intermediate node in
~Bi+1. Hence um is either the source (m = 1) or the sink (m = t) of ~Bi+1.

Again, placing the nodes in ~Bi+1 as described above yields a 1-stack layout of
~Gi+1. Item (b) of the induction hypothesis is satisfied because the cutpoints

that are restricted in ~Gi+1 are the same as the cutpoints that are restricted in
~Gi and all nodes that are exposed in the 1-stack layout of ~Gi remain exposed
in the 1-stack layout of ~Gi+1.

By induction, a 1-stack layout of ~G results.

Because the 1-stack layout of ~Bi+1 is constructed in linear time in section 1.1,

it takes O(| ~Bi+1|) time to extend the 1-stack layout of ~Gi to the 1-stack layout of
~Gi+1. Thus constructing the 1-stack layout of ~Gm takes a total of O(m) time. Since

m ≤ | ~E| ≤ 2|V | − 3, the time complexity of the algorithm is O(|V |).
In contrast to the ease of recognizing 1-stack dags, witness the NP-completeness

of recognizing 6-stack dags shown in Theorem 4.1.

2. Recognizing 1-queue dags. In this section, we present an O(|V |) time algo-

rithm to determine whether a dag ~G = (V, ~E) is a 1-queue dag and, if so, to construct

a 1-queue layout of ~G. Heath and Rosenberg [11] characterize 1-queue undirected
graphs as arched leveled-planar graphs and show that the problem of recognizing
arched leveled-planar graphs is NP-complete. Analogously, Heath, Pemmaraju, and
Trenk [9] characterize 1-queue dags as arched leveled-planar dags. In this section, we
present a linear time algorithm for recognizing arched leveled-planar dags. Thus, rec-
ognizing 1-queue dags turns out to be significantly simpler than recognizing 1-queue
undirected graphs. The development of our algorithm requires two steps, which are
outlined here and subsequently elaborated upon:

1. Recognize leveled-planar dags. The first step is an algorithm that takes a
leveled dag as input and determines whether or not the dag has a leveled-
planar embedding. This is the more complicated of the two steps. Note the
contrast with Heath and Rosenberg’s result [11] in which they show that the
problem of recognizing leveled-planar undirected graphs is NP-complete.

2. Recognize 1-queue dags. The second step is an extension of the first step and
is the algorithm we seek. Given a dag as input, it first finds a maximal leveled
subgraph of a particular kind by removing certain nonleveled arcs. It then
applies the algorithm from the first step to determine whether the subgraph
is a leveled-planar dag, while modifying the algorithm to take into account
the nonleveled arcs.

1596 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

u3

�°��
�°��
�°��
�°��

�°���°��
�°��

�°��
��
��
��1

XXXXXz

HHHHHHj

HHHHHHj

�°��
-

`3

XXXXXXz

-

��
��
��*

��
��

���*

u2

u4

u6

u8

u5u1

u7

u9

`1 `2

Fig. 2.1. A leveled-planar dag.

The first step of our algorithm, the one that recognizes leveled-planar dags, was
sketched in [7] and extends the work of Di Battista and Nardelli [5] and Chandramouli
and Diwan [3, 4]. These authors assume certain restrictions on the given dag. In
particular, Di Battista and Nardelli [5] present a linear time algorithm to determine
if a given hierarchy has a leveled-planar embedding. A hierarchy is a leveled dag with
a single source. Hierarchies are widely used in many fields of social and mathematical
sciences, and a common procedure for improving the readability of a drawing of a
hierarchy is to minimize the number of edge crossings. Chandramouli and Diwan
[3] present a linear time algorithm to determine if a given triconnected dag has a
leveled-planar embedding. They point out that their algorithm can be used to solve
a problem related to grid intersection graphs. These authors leave open the problem
of determining whether or not an arbitrary dag is leveled-planar.

We proceed as follows. Section 2.1 discusses the problem of recognizing leveled-
planar dags. Section 2.2 defines the data structures (PQ-trees and collections) that
we need to represent sets of permutations of nodes in a particular level. We outline
the algorithm to recognize a leveled-planar dag in section 2.3. Section 2.4 defines the
operations we use to restrict or combine sets of permutations. Section 2.5 presents the
details of our linear time algorithm for recognizing leveled-planar dags and proves its
correctness and time complexity. Section 2.6 extends that algorithm to a linear time
algorithm for recognizing 1-queue dags. The reader should review the definitions and
notation from section 1 of [9], especially topological order, leveling, directed leveled-
planar embedding, and directed arched leveled-planar embedding. Figure 2.1 shows
a directed leveled-planar embedding of a dag.

2.1. The problem of recognizing leveled-planar dags. We concentrate first
on the problem of recognizing whether a dag ~G = (V, ~E) is a leveled-planar dag. It
is easy to check in linear time, using a graph traversal technique such as depth-
first search, whether a dag ~G = (V, ~E) is leveled. If it is, then fix a leveling lev :

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1597

����

��������
����

��
��

��
��
��

@
@

@@

P

1 2

Q 3 4

Fig. 2.2. A PQ-tree.

V → {1, 2, . . . ,m} of ~G, for some integer m. Define Vi = lev−1(i). Without loss
of generality, we may assume that Vi 6= ∅ for every i with 1 ≤ i ≤ m. We write
~G = (V1, V2, . . . , Vm; ~E) and henceforth assume that ~G is a connected, leveled dag.

The problem remaining is to determine whether ~G has a directed leveled-planar
embedding.

Suppose ~G has a directed leveled-planar embedding E . As ~G is connected, without
loss of generality, we may assume that the leveling induced by E is lev. For each j,
where 1 ≤ j ≤ m, E determines a total order ≤j on Vj given by the bottom-to-top
order of the nodes on `j . Conversely, if a total order ≤j on Vj is given for each
j, then it is easy to check whether these total orders yield a directed leveled-planar
embedding of ~G. It suffices to check that there are no two arcs (u, v) and (x, y) such
that lev(u) = lev(x) = j, u <j x, and y <j+1 v. In Figure 2.1, the total orders are
given by u1 <1 u7, u2 <2 u4 <2 u6 <2 u8, and u3 <3 u5 <3 u9.

The problem of recognizing whether a connected leveled dag ~G is a leveled-planar
dag is then equivalent to determining whether there are total orders on allm levels that
together yield a leveled-planar embedding of ~G. Each total order is a permutation of
the nodes in that level. As our algorithm needs to represent many such permutations
for each level, we introduce suitable data structures in the next section.

2.2. PQ-trees and collections. A classical data structure used to represent
sets of permutations is the PQ-tree of Booth and Lueker [2]. A PQ-tree T for a set
S is a rooted tree that contains three types of nodes: leaves, P-nodes (each drawn
as a circle), and Q-nodes (each drawn as a box). The leaves in T are in one-to-
one correspondence with the elements of S. The set S is called the yield of T ,
denoted YIELD(T). It is clear that we can iterate over the set YIELD(T) in time
Θ(YIELD(T)) by simply traversing the tree in, say, preorder. The PQ-tree T repre-
sents permutations of YIELD(T) according to the following rules:

• The children of a P-node may be permuted arbitrarily.
• The children of a Q-node must occur in the given order or in the reverse

order.
As a special case, the empty PQ-tree ε represents the empty set of permutations. For
example, the PQ-tree shown in Figure 2.2 represents these 12 permutations

1, 2, 3, 4 1, 2, 4, 3 4, 1, 2, 3 3, 1, 2, 4 3, 4, 1, 2 4, 3, 1, 2
2, 1, 3, 4 2, 1, 4, 3 4, 2, 1, 3 3, 2, 1, 4 3, 4, 2, 1 4, 3, 2, 1

of S = {1, 2, 3, 4}. The set of permutations represented by a PQ-tree T is denoted by
PERM(T). The yield YIELD(r) of a node r in T is the yield of the subtree rooted

1598 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

�������� ���� ��������

��
��

������������
¡
¡¡

@
@@

¡
¡

¡¡

@
@
@@

Q

Q Q

1

T1 T2

P

8 7 4 5

2 6 3

Fig. 2.3. A collection.

at r. Without loss of generality, we may assume that every P-node has three or more
children and that every Q-node has two or more children.

A collection C is a finite set of PQ-trees with pairwise disjoint yields. The
yield of C, denoted YIELD(C), is the union of the yields of its constituent trees.
PERM(C), the set of permutations represented by C, consists of those permutations
π of YIELD(C) such that, for each T ∈ C, π restricted to YIELD(T) is in PERM(T).
An example of a collection containing two PQ-trees is shown in Figure 2.3. The
PQ-tree T1 represents these eight permutations

1, 8, 7, 4, 5 1, 8, 5, 4, 7 8, 1, 7, 4, 5 8, 1, 5, 4, 7
7, 4, 5, 1, 8 5, 4, 7, 1, 8 7, 4, 5, 8, 1 5, 4, 7, 8, 1

of {1, 4, 5, 7, 8}. The PQ-tree T2 represents all six permutations of {2, 3, 6}. The
collection C represents all 8 ·6 · (8!

5!·3!) = 2688 permutations of {1, 2, 3, 4, 5, 6, 7, 8} that
are consistent with both T1 and T2.

We wish to represent all possible leveled-planar embeddings of a connected, leveled
dag by permutations of nodes in its “rightmost” level. To this end, we make the
following definition: Suppose that ~F is a leveled, connected dag. Fix a leveling of ~F .
Suppose that level k is the largest nonempty level. We say that a PQ-tree T mirrors
~F if PERM(T) is the set of all permutations of the level-k nodes in ~F that witness

some leveled-planar embedding of ~F . If we take ~F to be the dag in Figure 2.1, then a
PQ-tree consisting of a Q-node as root with children 3, 5, 9 (in that order) mirrors ~F .

For some ~F , the PQ-tree T [~F] that mirrors ~F is easily described. For example,

suppose that ~F is a tree dag with a single source s and all arcs directed away from s.
Such a dag is clearly a leveled-planar dag, with a unique leveling such that lev(s) = 1.

Then the PQ-tree T [~F] is essentially isomorphic to ~F . To obtain T [~F] from ~F simply

replace each internal (nonleaf) node in ~F by a P-node. The root of T [~F] is the node

that replaced s. T [~F] might contain P-nodes that have fewer than three children. To
get rid of such nodes, iteratively replace every P-node, whose only child is a leaf, by
that leaf. Then replace every P-node with two children by a Q-node.

This definition of mirroring does not extend to a leveled dag that is not connected.
As an illustration, suppose ~F ′ is the leveled dag induced by the left two levels in
Figure 2.1. In a leveled-planar embedding of ~F ′, the nodes 2, 6, and 8 must appear in
that order or in the reverse order, but the node 4 may appear anywhere with respect
to these nodes. It is clear that a single PQ-tree cannot represent the corresponding
set of permutations, although a collection of two PQ-trees can.

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1599

2.3. Overview of the algorithm to recognize leveled-planar dags. In
this section, we give an overview of our algorithm that determines whether a given
connected, leveled dag ~G = (V1, V2, . . . , Vm, ~E) is leveled-planar. For any j, 1 ≤ j ≤
m, let ~Gj denote the subgraph of ~G induced by V1 ∪ V2 ∪ · · · ∪ Vj . Note that, unlike
~G, the subgraph ~Gj is not necessarily connected. For each level Vj , we say that a
permutation π of the nodes in Vj is a witness to a directed leveled-planar embedding

E of ~Gj if the nodes in Vj appear in a bottom-to-top order on line `j according to π in
E . For each j, there is a set of permutations Πj that contains all witnesses to directed

leveled-planar embeddings of ~Gj . So to recognize whether ~G is a leveled-planar dag, we
need only compute Πm and check that it is nonempty. Our basic approach to doing
this efficiently is to perform a left-to-right sweep processing the levels in the order
V1, V2, . . . , Vm. For any dag ~H, let COMP(~H) be the set of connected components

of ~H. For each ~F ∈ COMP(~Gj), we construct a PQ-tree T [~F] that mirrors ~F .

We use a collection Cj to contain PQ-trees T [~F] for all ~F ∈ COMP(~Gj). Clearly,
YIELD(Cj) = Vj . Furthermore, any permutation of Vj that is a witness to a directed

leveled-planar embedding of ~Gj is in PERM(Cj). However, if ~Gj is not connected,
then there may be a permutation in PERM(Cj) that is not a witness to any directed

leveled-planar embedding of ~Gj . The algorithm then processes Vj+1 and derives the
collection Cj+1 from the collection Cj+1. The collections maintained by our algorithm
satisfy the following invariant.

Collection invariant. For each j, where 1 ≤ j ≤ m, and for each ~F ∈
COMP(~Gj), there is a corresponding PQ-tree T [~F] in Cj that mirrors ~F .

Since ~G = ~Gm is connected, the collection invariant implies that Cm contains a
single PQ-tree T [~G] that represents ~G. So Cm contains a nonempty PQ-tree if and

only if ~G has a directed leveled-planar embedding. Thus the goal of our algorithm is
to compute Cm.

The evolution of Cj+1 from Cj requires that some information be maintained
in each nonleaf node of a PQ-tree and one additional piece of information be main-
tained at the root. Let ~F be any connected component of ~Gj . By the collection

invariant, T [~F] is the PQ-tree in Cj that mirrors ~F . For any subset S of the set

of nodes in Vj that belongs to ~F , define MEETLEVEL(S) to be the greatest d ≤ j
such that Vd, . . . , Vj induces a dag in which all nodes of S occur in the same con-
nected component. For example, in Figure 2.1, MEETLEVEL({u3, u5}) = 1 and
MEETLEVEL({u5, u9}) = 2. Note that if |S| > 1, then MEETLEVEL(S) < j. For

a Q-node q in T [~F] with ordered children r1, r2, . . . , rt, maintain in node q, integers
denoted ML(ri, ri+1), where 1 ≤ i < t, that satisfy

ML(ri, ri+1) = MEETLEVEL(YIELD(ri) ∪YIELD(ri+1)).

For a P-node p in T [~F], maintain in node p a single integer denoted ML(p) that
satisfies

ML(p) = MEETLEVEL(YIELD(p)).

Let S be the set of nodes in Vj that belong to ~F . Define LEFTLEVEL(S) to be

the smallest d such that ~F contains a node in Vd. We always have

LEFTLEVEL(S) ≤ MEETLEVEL(S),

1600 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

and inequality is possible. At the root of T [~F], maintain a single integer denoted

LL(T [~F]) satisfying

LL(T [~F]) = LEFTLEVEL(YIELD(T [~F])).

When our algorithm computes the collection Cj+1 from Cj , it also maintains the
values of ML and LL in the PQ-trees in Cj+1. Note that since every PQ-tree in C1 is
a leaf, ML values are not defined, while LL(T) = 1 for each tree T ∈ C1.

It is easy to see that the ML values satisfy the following two propositions.
Proposition 2.1. Suppose that u is the least common ancestor of a pair of leaves

v and w in a PQ-tree. If u is a P-node, then

MEETLEVEL({v, w}) = ML(u).

Proposition 2.2. Suppose that u is the least common ancestor of a pair of
leaves v and w in a PQ-tree. Further suppose that u is a Q-node with ordered children
u1, u2, . . . , ut such that v ∈ YIELD(up) and w ∈ YIELD(uq), where 1 ≤ p < q ≤ t.
Then

MEETLEVEL({v, w}) = min{ML(ui, ui+1) | p ≤ i < q}.
The following proposition formalizes the notion that, as we follow a path in a

PQ-tree from a leaf to the root, the ML values we encounter are nonincreasing.
Proposition 2.3. Suppose that node u is the parent of a nonleaf node v in a

PQ-tree. Define x as follows:

x =

{
ML(u) if u is a P-node;
max{ML(v, w) | w is a child of u adjacent to v} if u is a Q-node.

Define y as follows:

y =

 ML(v) if v is a P-node;
min{ML(vi, vi+1) | 1 ≤ i < t} if u is a Q-node with ordered

children v1, v2, . . . , vt.

Then x ≤ y.

2.4. Operations. We now describe two operations on a PQ-tree that serve as
building blocks of the algorithm that constructs Cj+1 from Cj . In each operation,
the PQ-tree is transformed so that the set of permutations represented is restricted
to be a potentially smaller set. In the case of the second operation, the yield of the
PQ-tree is slightly modified. The LL value of the PQ-tree remains unchanged. The
ML values are updated appropriately. We first describe what the operations are, then
we describe how they are implemented:

1. ISOLATE(T, x), where T is a PQ-tree and x ∈ YIELD(T). This operation
transforms T so that PERM(T) is restricted to permutations in which x is
either the first or the last element. If there is no permutation in PERM(T)
that has x as its first or last element, then T becomes ε.

2. IDENTIFY(T, x, y, z), where T is a PQ-tree, x, y ∈ YIELD(T), x 6= y, and
z is a new node not in YIELD(T). Let P be the subset of permutations in
PERM(T) in which x and y appear consecutively. Let P ′ be obtained from
P as follows: If P contains the permutation a, . . . , b, x, y, c, . . . , d, then put in
P ′ the permutation a, . . . , b, z, c, . . . , d, obtained by replacing x, y by z. The
operation IDENTIFY(T, x, y, z) transforms T so that PERM(T) = P ′. Note
that P ′ may be empty, in which case T = ε.

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1601

p p p
p p p

x
����

x �����
�
�
�
�� L

L
L
L
LL �

�
�
�
�� L

L
L
L
LL

¡
¡
¡
¡

Q
Q
Q
Q
QQ

%
%
%%
�
�
�
�
�� L

L
L
L
LL

e
e
ee
�
�
�
�
�� L

L
L
L
LL

-

x

1 k

1 k

x

c
c

c

r

r

Fig. 2.4. The transformation of T in the first case of ISOLATE(T, x).

x
xp p p p p p
p p p
p p p

����
����-

,
,, LL

l
ll

T
T�

� J
J �
� J
J

�
� J
J �
� J
J

�
� J
J �
� J
J

�
� J
J �

� J
J

x
1 k

k + 1 j
x 1 k

k + 1 j

c c

c

r

rr′

r′

Fig. 2.5. The transformation of T in the second case of ISOLATE(T, x) when r is a P-node.

We first describe an implementation of ISOLATE(T, x). Let r be the root of T .
If x = r, then ISOLATE(T, x) simply returns T . Otherwise, there are two cases based
on whether or not x is a child of r.

1. x is a child of r. If r is a Q-node and x is not its first or last child, then there
are no permutations in PERM(T) with x at the end or at the beginning, so
the operation returns ε. If r is a Q-node and x is either the first or the last
child of r, then T is unchanged. If r is a P-node, then T is transformed as
shown in Figure 2.4. Before the operation, the tree consists of the root r, the
child x, and subtrees labeled 1 through k. The ML(r) value is c. After the
operation, a Q-node has been added as the root of T , x has been moved to
be the first child of that Q-node, and the P-node r becomes the second and
last child of that Q-node. The ML values are set as indicated.

2. x is not a child of r. Let T ′ be the subtree rooted at a child of r whose yield
contains x. Perform ISOLATE(T ′, x). If T ′ = ε, then ISOLATE(T, x) results
in T = ε. Otherwise, the root r′ of T ′ is a Q-node with x as either its first
or its last child. Without loss of generality, we may assume that x is the
first child of r′ and that the remaining subtrees attached to r′ are labeled 1
through k. If r is a P-node, perform the transformation on T shown in Figure
2.5. The subtrees attached to r are T ′ together with subtrees labeled k + 1
through j. The ML(r) value is c. In this transformation, r′ is rotated up to

1602 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

x p p p
p p p x p p p p p p-

�
� J
J �
� J
J

�
� J
J �
� J
J

.

�
� J
J �
� J
J �
� J
J �
� J
J

x 1 k

k + 1 j

c

r

r′

x 1 k k + 1 j

c

r

Fig. 2.6. The transformation of T in the second case of ISOLATE(T, x) when r is a Q-node.

be the root of T , while r becomes the last child of r′. The ML values are set
as indicated. If r is a Q-node and r′ is not the first or the last child of r,
then set T = ε. Otherwise, we may assume, without loss of generality, that
r′ is the first child of r. Perform the transformation on T shown in Figure
2.6. The subtrees attached to r are T ′ together with subtrees labeled k + 1
through j. In this transformation, r′ is rotated up to be the root of T , while
the subtrees k + 1 through j become the remaining subtrees attached to r′.
The ML values are set as indicated.

The running time of ISOLATE(T, x) is proportional to the depth of x in T .
The operation IDENTIFY(T, x, y, z) can be implemented in the following four

steps.
Step 1. Locate r, the node in T that is the least common ancestor of x and y.
Step 2. Let T1 and T2 be the subtrees of T rooted at children of r such that

x ∈ YIELD(T1) and y ∈ YIELD(T2). Perform ISOLATE(T1, x) and ISOLATE(T2, y).
If either T1 = ε or T2 = ε, then set T = ε. Otherwise, let r1 be the root of T1 and r2

the root of T2. Then r1 is a Q-node with x being its first or last child, while r2 is a
Q-node with y being its first or last child.

Step 3. This step brings x and y together, if possible. The details depend on
whether r is a P-node or a Q-node.

• r is a P-node. T is transformed as shown in Figure 2.7. The two Q-nodes r1

and r2 are merged so as to make x and y adjacent. The ML values c1, c2,
and c3 are repositioned as shown.
• r is a Q-node. If the subtrees T1 and T2 are not adjacent children of r, then

set T = ε. Otherwise, T is transformed as shown in Figure 2.8. The three
Q-nodes r, r1, and r2 are merged so as to make x and y adjacent. The ML
values c1, c2, and c3 are repositioned as shown.

Step 4. Leaf z replaces leaves x and y.
The running time of IDENTIFY(T, x, y, z) is proportional to the sum of the depths
of x and y in T .

In the transformations described for ISOLATE and IDENTIFY, we have ignored
several special cases arising from the possibility that a transformation might lead to
the birth of a P-node with two children. Instead of dealing with these cases separately,
we simply note that whenever this happens, the P-node is replaced by a Q-node.

2.5. Recognizing leveled-planar dags. We are now ready to present our al-
gorithm for determining whether the connected, leveled dag ~G = (V1, . . . , Vm; ~E) is a
leveled-planar dag. In parallel, we develop the proof of correctness for the algorithm.
The overall structure of the algorithm is an iteration that builds the collection Cj+1

from the collection Cj for each j, 1 ≤ j < m. Hence, the proof of correctness is by

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1603

p p p p p p p p p

p p p p p p p p p

j

j
t

��
��

xx

xx

��
��

l
l
l
l
l
l
l
l
ll

?

 J
J
 J
J

 J
J
 J
J

 J
J
 J
J

 J
J
 J
J

 J
J

 J
J

#
#
#
#
#
#
#
##

\
\
\
\
\
\
\\

 J
J

l
l
l
l
l
l
l
l
l
ll

 J
J

\
\
\
\
\
\
\\

x y

yx

c1 c2

c1 c3 c2

r

r

r1 r2

c3

c3

j + 1

k + 1

k + 1k1

1 k

j + 1 t

Fig. 2.7. The transformation of T in IDENTIFY(T, x, y, z) when r is a P-node.

p pp p ppp pp p pp

p pp p pp p pp p pp

x x

xx

?

 J
J

 J
J
 J
J

 J
J
 J
J

 J
J

 J
J

 J
J

 J
J

 J
J
 J
J

 J
J

1

x y s t

x yj k s t

w

1

c1

c2

c3

c3c2c1

r

r

r1 r2

w

jk

Fig. 2.8. The transformation of T in IDENTIFY(T, x, y, z) when r is a Q-node.

1604 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

n
n
n
n

n
n n

PHASE

n
n
nn

n
n
n

n

n

GROWTH

n

.
-

.

-

.

XXXXXXz

-

��
���1

XXXXXz

��
���1

XXXXXz

��
��
�*

HHHHHj

��
��
�*

HHHHHj

���
���:

-

u2

u4

u6

u8

u1

u7

l1 l2 l3

u9[u8]

u9[u6]

u5[u6]

u5[u4]

u3[u2]
u2

u4

u6

u8

u1

u7

l1 l2

Fig. 2.9. Illustration of the growth phase.

induction on j with the collection invariant being the inductive hypothesis. The base
case is j = 1. In this case, ~G1 = (V1, ∅) and C1 contains, for each v ∈ V1, one PQ-tree
that contains only the node v.

When 1 ≤ j < m, the iterative step extends ~Gj to ~Gj+1, while at the same time

extending Cj to Cj+1. Let ~Ej be the set of level-j arcs from nodes in Vj to nodes

in Vj+1. To extend ~Gj to ~Gj+1, we must add the arcs in ~Ej and the nodes in Vj+1

to ~Gj . In describing the iterative step, it will be helpful to imagine that the arcs in
~Ej are added first and that the nodes in Vj+1 are subsequently identified in a series
of substeps. In particular, the iterative step can be thought of as working in four
distinct phases: (i) GROWTH PHASE, (ii) FIRST MERGE PHASE, (iii) SECOND
MERGE PHASE, and (iv) CLEANUP PHASE. We now describe each of the phases
separately.

GROWTH PHASE. For a node v, let IN(v) be the set of in-neighbors of v,
and let OUT(v) be the set of out-neighbors of v. For each v ∈ Vj+1 and for each

u ∈ IN(v), let v[u] be a new node called a copy of v. In the growth phase, to ~Gj ,
we add arcs (u, v[u]), for every node v ∈ Vj+1 and every u ∈ IN(v). Thus, every

connected component in ~Gj grows by a level and in this manner ~Gj is transformed

into a leveled-planar dag ~H that has j + 1 levels. Note that ~H approximates ~Gj+1 in

the sense that every arc in ~Gj+1 is represented in ~H. An illustration of the growth
phase can be found in Figure 2.9, where the first two levels of the dag of Figure 2.1
are extended to the third level. Note the two copies of the node u9, namely, u9[u8]
and u9[u6], and the two copies of the node u5, namely, u5[u6] and u5[u4], that are
created in this phase.

FIRST MERGE PHASE. In the two merge phases, all nodes of the form v[u]
that are created in the growth phase are identified to obtain the node v. In the first
merge phase nodes belonging to the same connected component are identified, while
in the second merge phase nodes belonging to distinct connected components are
identified, as a result merging two connected components into one. If v ∈ Vj+1 and
X ⊆ IN(v), then let v[X] be a new node that we think of as the result of identifying

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1605

l
l

l
l l

l
l

l
l
l
l
l

l l
l

l
ll

ll

l
.

-
.

-

��
���1

XXXXz

��
���*

HHHHHj

-

���
��:
-

��
���1

XXXXz

��
���*

HHHHHj
XXXXXz

XXXXXz

-
��

��
�*
-

-

u6

u8

u7

u1 u4

u2 u3[u2]

u5[u4]

u5[u6]

u9[u6]

u9[u8]

u3[u2]

u5[u4]

u5[u6]

u9[u8, u6]

l1 l2 l1 l2 l3l3

u7

u1 u4

u2

u6

u8

MERGE1

Fig. 2.10. Illustration of the first merge phase.

all nodes of the form v[u], u ∈ X. (We think of the X in this notation as being an
unordered list of the elements of X. Then we can write v[X,Y] for v[X ∪Y] and even
v[u,X] for v[{u} ∪X].)

Consider any connected component ~F in ~H. Recall that ~F was created in the
growth phase by extending a connected component in ~Gj to j + 1 levels. Also recall

that each level-(j + 1) node in ~F is of the form v[u], where v ∈ Vj+1 and u ∈ Vj .

For each v ∈ Vj+1, let Sv be the set of all nodes u in ~F such that v[u] is a node in
~F . In the first merge phase all copies, v[u], of v are identified into one node v[Sv].
This identification is done pairwise and in a certain order. For any permutation
π ∈ PERM(T [~F]) of the nodes in YIELD(T [~F]), let

v[u1], v[u2], . . . , v[ut]

be the subsequence of π containing all copies of v in ~F . The identification of the
copies of v is done in the order prescribed by the above sequence. More precisely, for
each i, 1 ≤ i < t, the nodes v[u1, u2, . . . , ui] and v[ui+1] are identified into a single
node v[u1, u2, . . . , ui+1]. The reason for respecting the above order is motivated by
the following example. Suppose that v[u1], v[u2], and v[u3] are the only copies of v

in ~F . Further suppose that in every directed leveled-planar embedding of ~F , v[u2]
occurs between v[u1] and v[u3] on line `j+1. This implies that even though it may be
possible to identify the nodes v[u1], v[u2], and v[u3] into a single node v[u1, u2, u3], it
is not possible to do this identification pairwise starting with the pair v[u1] and v[u3]
because v[u2] is an obstacle. The solution to this problem is to respect an order on
the nodes v[u1], v[u2], . . . , v[ut] that is a subsequence of some witness to a directed

leveled-planar embedding of ~F .
At the end of this phase, each connected component in ~H contains at most one

copy of any node v ∈ Vj+1. The first merge phase is illustrated in Figure 2.10.
SECOND MERGE PHASE. In this phase duplicate copies of any level-(j+1)

node that occur in different connected components are identified. Thus, this phase
eliminates any remaining duplicate copies of level-(j + 1) nodes by completing the
identification that was started in the first merge phase. Suppose that connected
components ~F1 and ~F2 of ~H share copies of a level-(j + 1) node. Note that, because

1606 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

nn n
nn
nn

n n
n
n

--
HHHHj

��
��*

-

-

-��
��*

HHHHj

u[Xu]

v[Xv]

w[Xw]

w[Yw]

u[Yu]

v[Yv]

~F1

~F2

`j−1 `j `j+1

Fig. 2.11. If ~F1 and ~F2 share copies of three level-(j + 1) nodes, then their merger cannot be
leveled-planar.

of the first merge phase, ~F1 and ~F2 each contain exactly one copy of any level-(j + 1)
node. However, it is possible that they share copies of more than one level-(j + 1)

node. Let U be the set of all v ∈ Vj+1 such that there is a copy v[X] of v in ~F1 and

a copy v[Y] of v in ~F2. Let U be the set of all v ∈ Vj+1 such that there is a copy

v[X] of v in ~F1 and a copy v[Y] of v in ~F2. If |U | ≥ 3, then it is easy to see that ~F3

cannot be a leveled-planar dag. Figure 2.11 shows an example illustrating this fact
for |U | = 3. Suppose U = {v1, v2}, where v1[X1] (respectively, v2[X2]) is a copy of v1

(respectively, v2) in ~F1 and v1[Y1] (respectively, v2[Y2]) is a copy of v1 (respectively,

v2) in ~F2. Then, in the second merge phase, the connected components ~F1 and ~F2 are

replaced by the connected component ~F that is obtained by identifying v1[X1] and

v1[Y1] into a single node v1[X1, Y1]. Now ~F contains two copies of v2, namely, v2[X2]
and v2[Y2]. These are identified into a single node v2[X2, Y2]. The second merge phase
is illustrated in Figure 2.12.

CLEANUP PHASE. The dag ~H passes through the three earlier phases before
it reaches the cleanup phase. The earlier phases ensure that for every node v ∈ Vj+1,

there is exactly one copy, v[IN(v)], in ~H. In this phase, each level-(j + 1) node in ~H

with label v[IN(v)] is relabeled v so as to match its name in ~Gj+1. For example, the
dag obtained after the second merge phase in Figure 2.12 contains nodes u9[u8, u6],
u5[u4, u6], and u3[u2] which are relabeled u9, u5, and u3 in the CLEANUP PHASE.

More importantly, all level-(j + 1) sources in ~G are added to ~H. This completes the

transformation of ~H into ~Gj+1.

Figure 2.13 shows the algorithm that transforms Gj into Gj+1 using the four

phases described above. In this algorithm, ~H is initialized to ~Gj and then transformed

into ~Gj+1 in four phases.

Having described the sequence of operations that transforms ~Gj into ~Gj+1, we
now describe the parallel sequence of operations that transforms Cj into Cj+1. We
emphasize again that it is the transformations on the collections that are actually
performed; the algorithm in Figure 2.13 merely gives a framework within which to

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1607

l
l
l
l

l
l

l
l
l
l
l

l
l

l

l
l

l l

l

.
-

��
��
�*

.
-

HHHHHj

��
��
�*��

��1

XXXXz

��
���*

HHHHHj

-

-

- -

-
��

��1

XXXXz

HHHHHj

��
���*

-

l1 l2 l3 l1 l2 l3

u9[u8, u6]

u5[u6]

u5[u4]

u3[u2] u3[u2]

u5[u4, u6]

u9[u8, u6]

u7

u1 u4

u2

u6

u8

u7

u1

u8

u6

u4

u2

MERGE2

Fig. 2.12. Illustration of the second merge phase.

/* Algorithm for transforming Gj into Gj+1 */

~H ← ~Gj

/* GROWTH PHASE */

for ~F ∈ COMP(~H) do

for u ∈ YIELD(T [~F]) do
for v ∈ OUT(u) do

(1) Add arc (u, v[u]) to ~F

/* FIRST MERGE PHASE */
for v ∈ Vj+1 do

for ~F ∈ COMP(~H) do

Let v[u1], v[u2], . . . , v[ut] be a subsequence of some π ∈ PERM(T [~F])
for i = 1 to t− 1 do

(2) Identify v[u1, u2, . . . , ui] and v[ui+1] into v[u1, u2, . . . , ui+1]

/* SECOND MERGE PHASE */

for ~F1, ~F2 ∈ COMP(~G) do

Let U = {v | ~F1 contains v[X] and ~F2 contains v[Y]}
for v ∈ U do

(3) Identify v[X] and v[Y] into a single node v[X,Y]

/* CLEANUP PHASE */

Relabel each node v[X] in ~H as v

Add all the level-(j + 1) sources in ~G to ~H
~Gj+1 ← ~H

Fig. 2.13. Transforming ~Gj into ~Gj+1.

1608 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

explain the rationale for the transformations. In particular, for each of the statements
marked (1), (2), and (3) in the algorithm in Figure 2.13, we perform corresponding op-
erations on collections. So we now describe the transformations applied to collections
during the four phases of the algorithm.

GROWTH PHASE. We need to describe the effect on the PQ-tree T [~F] of

adding the arcs of the form (u, v[u]) to the dag ~F . Let ~F ′ be the dag that results from

adding all these arcs to ~F . All the outgoing arcs from u in ~F ′ must appear together
in such an embedding. Conversely, as long as they appear together, the outgoing
arcs from u in ~F ′ can appear in any order. We mirror this constraint in the PQ-tree
T [~F] as follows. Start with T [~F ′] = T [~F]. Suppose u ∈ YIELD(T [~F]). If u has no

out-neighbors, then delete the leaf u from T [~F ′]. If u has only one out-neighbor v,

then replace the leaf u in T [~F ′] with the leaf v[u]. If u has two out-neighbors v1 and

v2, then replace the leaf u in T [~F ′] with a Q-node having two children v1[u] and v2[u]
that are leaves. If u has more than two out-neighbors v1, v2, . . . , vt, t > 2, then replace
the leaf u in T [~F ′] with a P-node having children that are leaves v1[u], v2[u], . . . , vt[u].

From the preceding discussion, it should be clear that the resulting T [~F ′] mirrors ~F ′.

FIRST MERGE PHASE. In this phase, each dag ~F ∈ COMP(~H) is trans-
formed by repeatedly identifying level-(j + 1) nodes v[X] and v[Y] into a single node
v[X,Y]. Identifying v[X] and v[Y] into a single node v[X,Y] first forces the nodes
v[X] and v[Y] to appear consecutively on line `j+1 and then contracts these two
nodes into a single node v[X,Y]. Thus, we are interested only in those permuta-

tions in PERM(T [~F]) in which v[X] and v[Y] appear together. In all such per-
mutations, v[X] and v[Y] need to be replaced by v[X,Y]. The PQ-tree operation

IDENTIFY(T [~F], v[X], v[Y], v[X,Y]) does precisely this. Hence repeated IDENTIFY
operations on the PQ-trees in the collection result in a collection that mirrors the dag
~H obtained after this phase. Note that the order in which these IDENTIFY opera-
tions are applied to the collection has to be identical to the order in which pairs of
nodes in ~H are identified.

SECOND MERGE PHASE. For this phase, we must describe how identifying
v[X] and v[Y] belonging to different connected components ~F1 and ~F2 in ~H is reflected
by a corresponding operation on the current collection. This operation is the most
complicated PQ-tree operation and requires some initial intuition before we dive into
the details. Let T1 = T [~F1] and T2 = T [~F2]. One result of identifying v[X] and v[Y]

is that the two connected components ~F1 and ~F2 are merged into one component, call
it ~F3, hence decreasing the number of connected components of ~H by one. Similarly,
the operation on the current collection results in a merger of T1 and T2 into a new
PQ-tree T3 = T [~F3].

The merging of T1 and T2 should mirror the merging of the directed leveled-planar
embeddings of ~F1 and ~F2. When two such embeddings are joined at v[X,Y], then one
embedding must nestle inside the other embedding (unless both v[X] and v[Y] were

at the ends of the embeddings of ~F1 and ~F2). For there to be room for this nestling,
we must consider the structure of the dags at earlier levels. The values ML and LL
stored at the nodes in T1 and T2 allow us to do so. We now describe the operation
for this case in detail.

Without loss of generality, we may assume that LL(T1) ≤ LL(T2). The trees T1

and T2 are merged in two steps. In the first step, the PQ-tree T2 is attached to T1 at
an appropriate location. We will call the resulting tree T ′3. The tree T ′3 contains the
leaves v[X] and v[Y]. In the second step, these two leaves in T ′3 are identified into

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1609

one leaf v[X,Y] using the operation IDENTIFY. The resulting tree is called T3. The
two steps are discussed in detail below.

Step 1. Attaching T2 to T1. Start with the leaf v[X] in T1 and proceed upward
in T1 until a node r′ and its parent r are encountered satisfying one of these five
conditions:

1. r is a P-node with ML(r) < LL(T2). T ′3 is obtained by attaching T2 as a child
of r in T1.

2. r is a Q-node with ordered children r1, r2, . . . , rt, r
′ = r1, and ML(r1, r2) <

LL(T2). T ′3 is obtained by replacing r1 in T1 with a Q-node q having two
children, r1 and the root of T2. The case where r′ = rt and ML(rt−1, rt) <
LL(T2) is symmetric.

3. r is a Q-node with ordered children r1, r2, . . . , rt, r
′ = ri, for some i, 1 < i < t,

and both ML(ri−1, ri) < LL(T2) and ML(ri, ri+1) < LL(T2). T ′3 is obtained
by replacing ri in T1 with a Q-node q having two children, ri and the root of
T2.

4. r is a Q-node with children r1, r2, . . . , rt, r
′ = ri, 1 < i < t, and

ML(ri−1, ri) < LL(T2) ≤ ML(ri, ri+1).

T ′3 is obtained by attaching T2 as a child of r between ri−1 and ri. The case
where

ML(ri, ri+1) < LL(T2) ≤ ML(ri−1, ri)

is symmetric.
5. r′ is the root of T1. In this case, construct T ′3 by making its root a Q-node q

with two children, r′ and the root of T2.
Step 2. Identifying v[X] and v[Y] into a single node v[X,Y]. T3 is obtained by

performing IDENTIFY(T ′3, v[X], v[Y], v[X,Y]).
Steps 1 and 2 also update ML and LL values; this update is a straightforward

extension of the updates in the ISOLATE and IDENTIFY operations. The following
lemma establishes the correctness of Steps 1 and 2.

Lemma 2.4. T3 mirrors ~F3.
To prove Lemma 2.4 we need two observations.
Observation 1. Let π1 ∈ PERM(T1) be a permutation in which the nodes in

YIELD(r′) are immediately followed by a node x such that MEETLEVEL(YIELD(r′)∪
{x}) < LL(T2). For any π2 ∈ PERM(T2), there is a permutation π ∈ PERM(T ′3) that
is consistent with π1 and π2 and in which the nodes in YIELD(T2) occur immediately
after YIELD(r′) and just before x.

Proof of Observation 1. Permute the leaves in T1 according to π1 and the leaves
in T2 according to π2. For each of the four ways of constructing T ′3 from T1 and T2,
explained in Step 2 above, we show that the leaves of T ′3 can be permuted to obtain
the desired permutation. Let s denote the root of T2.

1. T2 is attached as a child of a P-node r. In this case, permute the children
of r so that s immediately follows r′ and the remaining children stay in the
same relative order. This places the nodes in YIELD(T2) immediately after
the nodes in YIELD(r′), without changing the relative order of the nodes in
YIELD(T1) or YIELD(T2).

2. T2 is attached as a child of a Q-node q that has one other child r′ and parent
r. In this case, reverse the order of the children of q, if necessary, so as to have
s follow r′. This places the nodes in YIELD(T2) immediately after the nodes

1610 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

in YIELD(r′), without changing the relative order of the nodes in YIELD(T1)
or YIELD(T2).

3. T2 is attached between rj−1 and r′ = rj, where 1 < j < t, as a child of
a Q-node r. Since x immediately follows nodes in YIELD(r′) in π1, we
have x ∈ YIELD(rj−1) or x ∈ YIELD(rj+1). We now show that x 6∈
YIELD(rj+1). We know that ML(rj , rj+1) ≥ LL(T2) and this implies that for
all w ∈ YIELD(rj+1), we have MEETLEVEL(YIELD(rj) ∪ {w}) ≥ LL(T2).
Since we assumed that MEETLEVEL(YIELD(r′) ∪ {x}) < LL(T2), we have
x 6∈ YIELD(rj+1). This implies that x ∈ YIELD(rj−1) and since x fol-
lows nodes in YIELD(r′) in π1, the children of r in T1 are permuted so that
rj−1 occurs after rj . This means that s occurs immediately after rj in T3.
As a result the nodes in YIELD(T2) immediately follow after the nodes in
YIELD(r′), without changing the relative order of the nodes in YIELD(T1)
or YIELD(T2).

4. T2 is attached to a Q-node q that has two children, r′ and s, and has no parent.
We show that this case is not possible. We know that if T2 is being attached
to T1 as described above, then MEETLEVEL(YIELD(T2)) ≥ LL(T1). This
implies that

MEETLEVEL(YIELD(r′) ∪ {x}) ≥ LL(T1),

a contradiction.
Observation 2. Let π ∈ PERM(T1) be a permutation in which the nodes in

YIELD(r′) occur at the end. Let π2 ∈ PERM(T2) be an arbitrary permutation of
YIELD(T2). Then, there is a permutation π ∈ PERM(T ′3) that is consistent with π1

and π2 and in which the nodes in YIELD(T2) occur after YIELD(r′).
Proof of Observation 2. Permute the leaves in T1 according to π1 and the leaves

in T2 according to π2. For each of the four ways of constructing T3 from T1 and T2,
explained in Step 2 above, we show that the leaves of T3 can be permuted to obtain
the desired permutation. Let s denote the root of T2.

1. T2 is attached as a child of a P-node r or T2 is attached as a child of a Q-
node q that has one other child r′ and parent r. As explained in the proof of
Observation 1, in either of these cases the leaves of T3 can be permuted so as
to have nodes in YIELD(T2) immediately follow nodes in YIELD(r′) without
changing the relative order of the nodes in YIELD(T1) and in YIELD(T2).

2. T2 is attached between rj−1 and r′ = rj, where 1 < j < t, as a child of a
Q-node r. This case is not possible since nodes in YIELD(r′) cannot appear
at the end of π1 in this case.

3. T2 is attached to a Q-node q that has two children r′ and s and has no parent.
Reverse the children of q, if necessary, so as to have s follow r′.

Proof of Lemma 2.4. To show that T3 mirrors ~F3, we need to show that PERM(T3)

is the set of all witnesses to directed leveled-planar embeddings of ~F3. We first show
that any π ∈ PERM(T3) is a witness to some directed leveled-planar embedding E3
of ~F3. We then show that any permutation π that is a witness to some directed
leveled-planar embedding E3 of ~F3 is in PERM(T3).

If π ∈ PERM(T3), then π is a witness to some directed leveled-planar embedding

E3 of ~F3. Recall that T3 is the result of IDENTIFY(T ′3, v[X], v[Y], v[X,Y]) in Step
2. Since π ∈ PERM(T3), by the definition of the IDENTIFY operation, there is a
permutation π′ ∈ PERM(T ′3) in which v[X] and v[Y] occur together and replacing
them by v[X,Y] yields π. Clearly, in π′ the elements in YIELD(T2) occur contigu-

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1611

}
!!!!!!!!!!!aaaaaaaaaaaa

Q
Q

Q
Q

QQ
�
�
�
�
��

}v[X]

`j+1

v[Y]

E1

E2

Fig. 2.14. Construction of E3 from E1 and E2.

ously and the elements in YIELD(r′) occur contiguously. So without loss of generality,
assume that in π′ the nodes in YIELD(r′) are immediately followed by the nodes in
YIELD(T2). Thus, among the nodes in YIELD(r′), v[X] occurs last and among the
nodes in YIELD(T2), v[Y] occurs first. Therefore π′ can be written as π1π2π3, where
π2 ∈ PERM(T2) and π1π3 ∈ PERM(T1). By the induction hypothesis, π2 (respec-
tively, π1π3) is a witness to a directed leveled-planar embedding E2 (respectively, E1)

of ~F2 (respectively, ~F1). Two possible cases arise based on whether or not π3 is empty:

(a) π3 is empty. A planar embedding E3 of ~F3 can be constructed by placing E2
on “top” of E1 as shown in Figure 2.14 and then merging nodes v[X] and

v[Y] into a single node v[X,Y]. Clearly, the level-(j + 1) nodes in ~F3 appear
in bottom-to-top order on line `j+1 according to π. Hence, π is a witness to

the directed leveled-planar embedding E3 of ~F3.
(b) π3 is nonempty. Suppose that x ∈ YIELD(T1) is the first element in π3. Since

x 6∈ YIELD(r′), the least common ancestor y of v[X] and x is an ancestor
(not necessarily proper) of r in T1. Because of the way T2 is attached to T1,
and due to Propositions 2.1, 2.2, and 2.3, we have

MEETLEVEL({v[X], x}) < LL(T2).

Hence, the embedding E2 of ~F2 can be “nested inside” the embedding E1 of ~F1

as shown in Figure 2.15. By merging nodes v[X] and v[Y] in this embedding,

we get the leveled-planar embedding E3 of ~F3 in which the level-(j+ 1) nodes
appear in bottom-to-top order on `j+1 according to π. Hence, π is a witness

to the directed leveled-planar embedding E3 of ~F3.
If π is a witness to some directed leveled-planar embedding E3 of ~F3, then π ∈

PERM(T3). The level-(j + 1) nodes in ~F3 can be partitioned into three sets: S1, the

1612 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

}
bb

bb
b�
��

��

�����������������
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

bb
bb

bb
bb

bb
b�
��
��

��
��

��

}

}

`j+1

E2

v[Y]

v[X]

x

E1

Fig. 2.15. Construction of E3 from E1 and E2.

set of all level-(j + 1) nodes in ~F1 except v[X]; S2, the set of all level-(j + 1) nodes

in ~F2 except v[Y]; and {v[X,Y]}. It is easy to see that in π, the nodes in S2 appear
consecutively, either immediately followed by or immediately preceded by v[X,Y].
Without loss of generality, we assume that in π, v[X,Y] is immediately followed by

nodes in S2. Let ~F ′3 be the dag that contains the two connected components ~F1

and ~F2. Replacing the node v[X,Y] in π by node v[X] followed by node v[Y], we

have a permutation π′ that witnesses a directed leveled-planar embedding E ′3 of ~F ′3.

Denote the subembedding of ~F1 in E ′3 by E1 and the subembedding of ~F2 in E ′3 by
E2. Clearly, π′ can be written as π1π2π3, where π1 ends with v[X], π2 begins with
v[Y] and is a witness to E2, and π1π3 is a witness to E1. By the induction hypothesis,
π1π3 ∈ PERM(T1) and π2 ∈ PERM(T2). We will now show that π′ ∈ PERM(T ′3).
This immediately implies that π ∈ PERM(T3). There are two cases depending on
whether or not π3 is empty:

(a) π3 is nonempty. Suppose that the first element in π3 is x. Clearly, since the
nodes in YIELD(T2) occur consecutively between nodes v[X] and x and since
the embedding E ′3 is leveled-planar, it has to be the case that

MEETLEVEL({u, x}) < LL(T2).

Let r be the node in T1 that is a least common ancestor of v[X] and x and let r′

be a child of r such that v[X] ∈ YIELD(r′). Since MEETLEVEL(YIELD(r′)∪
{x}) ≤ MEETLEVEL({v[X], x}), from Observation 1, it follows that π′ ∈
PERM(T3).

(b) π3 is empty. By Observation 2, it follows that π′ ∈ PERM(T3).
CLEANUP PHASE. Like the other phases, the cleanup phase applied to a

collection mimics the cleanup phase applied to the corresponding dag. In this phase,

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1613

all the leaves of the PQ-trees in Cj+1 are relabeled from v[IN(v)] to v. More signifi-

cantly, any source s of ~G that is in Vj+1 results in the addition of a PQ-tree T [s] to
Cj+1 that consists of one leaf labeled s.

This completes the description of our algorithm. The following theorem summa-
rizes what has been accomplished.

Theorem 2.5. A leveled-planar dag can be recognized in linear time. Moreover,
a leveled-planar embedding for a leveled-planar dag can be constructed in linear time.

Proof. The correctness of our algorithm follows from the proceeding discussion
by induction. The linear time complexity of the algorithm follows from an amortized
analysis given here. It suffices to show that the time complexity of all the identification
operations together is linear. Each arc in the dag G is allocated three credits; since
G is planar, the total number of credits is linear. In identifying two nodes belonging
to the same connected component, there are two paths in the dag involved in forming
a new face; since each arc is in two faces, two credits from each arc in the face pay
for this identification. In identifying two nodes that belong to distinct connected
components, the work is proportional to the height of the shorter dag; there is always
a path in the dag that has a credit on each arc. We conclude that the allocated credits
are sufficient and that the time complexity is linear.

Once our algorithm has recognized that a dag ~G is a leveled-planar dag, the actual
construction of a leveled-planar embedding for ~G is straightforward. We outline how
to construct an embedding for ~G from right to left. Choose any total order ≤m on Vm
that is consistent with Cm. Choose any total order ≤m+1 on Vm−1 that is consistent
with Cm−1 and that, together with ≤m, induces a leveled-planar embedding on the

subgraph of ~G induced by Vm+1 ∪ Vm. Extend the construction one level at a time

until a leveled-planar embedding of ~G results. Details are left to the reader.

2.6. Recognizing 1-queue dags. The algorithm to recognize 1-queue dags
builds on the one to recognize leveled-planar dags by first finding a maximal leveled
subgraph, following the previous algorithm to obtain a leveled-planar embedding of
that subgraph, and modifying the computation of Ci in the right-to-left sweep to
accommodate the nonleveled arcs.

Let ~G be a connected dag. Let ~H be a spanning subgraph of ~G. An unnecessary
sink in ~H is one that is not also a sink in ~G.

Lemma 2.6. For any connected dag ~G, one may construct in linear time a span-
ning tree of G that has no unnecessary sinks.

Proof. Give the connected dag ~G as input to the following program:
T = (∅, ∅);
WHILE T is not a spanning subgraph of ~G DO

IF there exists an arc (u, v) ∈ ~G such that u is in T and v is not in T
THEN v0 = v;

ELSE v0 = any source of ~G that is not in T ;
find a path P = v0, v1, . . . , vj such that none of v0, . . . , vj−1 is in T and

such that either vj is a sink in ~G or vj is in T ;
add P to T ;

Since ~G is connected, whenever T is not a spanning subgraph of ~G, any node in ~G
that is not in T must be reachable either by a path starting at a node of T or at a
source of ~G that is not in T . Hence the program makes progress during each iteration
of the while loop and terminates with T being a spanning subgraph of ~G. By the
way T is constructed, it is always acyclic. Hence the final T is a spanning tree of ~G.

1614 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

Linear time is easily accomplished by finding the paths P using depth-first search.
Finally, every node added to T has at least one outgoing arc in T unless it is a sink
of ~G. Hence T has no unnecessary sinks.

Now suppose ~G is a connected 1-queue dag. Use Lemma 2.6 to find a spanning
tree T that has no unnecessary sinks. T also provides a leveling of ~G. Add any arcs
(u, v) such that lev(v) = lev(u) + 1 to obtain a maximal leveled subgraph ~H of ~G.
The following theorem tells us what additional arcs we must contend with.

Theorem 2.7. Let ~G be a connected 1-queue dag, and let ~H be a maximal leveled
subgraph of ~G having no unnecessary sinks. Consider any arc (x, y) of ~G that is not

in ~H. Then either lev(y) = lev(x) or lev(y) = lev(x) + 2. Furthermore, there cannot
exist an arc (p, q) such that lev(p) = lev(x); lev(q) = lev(y); and x 6= p.

Proof. To obtain a contradiction, we assume the existence of such an arc (p, q).

Since neither x nor p is a sink in ~G, neither is a sink in ~H. Let (x, z) and (p, r) be arcs

in ~H (z = r is a possibility). Without loss of generality, we may assume that there is

a 1-queue layout of ~G with x occurring before p (since x 6= p). Now we consider the
two cases individually.

Case 1. The nodes of the independent arcs (x, z) and (p, q) must occur in the
layout in the order x, p, q, z because x, p, and q are at level lev(x) and z is at level
lev(x) + 1. Hence these arcs nest and we have a contradiction.

Case 2. The nodes of the independent arcs (x, y) and (p, r) must occur in the
layout in the order x, p, r, y because x and p are at level lev(x), r is at level lev(x) + 1,
and y is at level lev(x) + 2. Hence these arcs nest and we have a contradiction.

The algorithm first computes the maximal leveled subgraph promised in Lemma
2.6. Then it runs the leveled-planar dag algorithm on the subgraph. The algorithm
is modified appropriately to take into account the nonleveled arcs described in The-
orem 2.7. For example, if (x, y) is an arc with lev(x) = lev(y) = i, then we force
the tree T in Di during the right-to-left sweep to place x and y on opposite ends
of the level. This can be done by replacing T with a PQ-tree having a Q-node at
the root with three children x, T − {x, y}, and y. The modifications do not add
to the time complexity obtained for the previous algorithm. We obtain the desired
linear time algorithm to recognize 1-queue dags, establishing the contrast with the
NP-completeness result for recognizing 1-queue undirected graphs [11].

3. Recognizing 4-queue dags is NP-complete. In this section and the next,
we show that the problem of determining whether a dag has a 4-queue layout and the
problem of determining whether a dag has a 6-stack layout are both NP-complete.
In fact we prove a stronger result for queue layouts. An arc (u, v) in a dag ~G is

called a transitive arc if ~G − (u, v) contains a directed path from u to v. We show
that even when a dag belongs to a restricted class of dags, namely, the class of dags
without transitive arcs, the problem of determining whether the dag has a 4-queue
layout is NP-complete. The motivation for restricting the class of dags to those with-
out transitive arcs comes from our study of stack and queue layouts of posets in [8].
A stack layout (respectively, queue layout) of a poset P is a stack layout (respec-

tively, queue layout) of its Hasse diagram ~H(P). Thus, our NP-completeness result
related to queue layouts of dags shows that the problem of determining whether the
queuenumber of a poset is 4 is NP-complete. Our results are in the spirit of the result
of Yannakakis [13] who showed that the problem of determining whether or not the
dimension of a poset is 3 is NP-complete. Define the decision problem, POSETQN, as
follows:

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1615

POSETQN
INSTANCE: A poset P .
QUESTION: Can P be laid out in four queues?
Define the decision problem, DAGSN as follows:
DAGSN
INSTANCE: A dag ~G = (V, ~E).

QUESTION: Can ~G be laid out in six stacks?
This section proves that POSETQN is NP-complete. Section 4 proves that DAGSN
is also NP-complete. The reduction in both proofs is from the NP-complete problem
3-SATISFIABILITY (3-SAT), defined below.
3-SATISFIABILITY
INSTANCE: Collection C = {c1, c2, . . . , cm} of clauses on a set X = {x1, x2, . . . , xn}
of variables such that |ci| = 3 for all i, 1 ≤ i ≤ m.
QUESTION: Is there a truth assignment of X that satisfies all the clauses in C?

The remainder of this section is devoted to the proof of the following theorem.
Theorem 3.1. POSETQN is NP-complete.
Proof. The queuenumber of a fixed layout of an undirected graph G = (V,E)

can be determined in O(|E| log log |V |) time [11]. POSETQN is in NP because a
nondeterministic Turing machine can guess an ordering of the nodes of the Hasse
diagram ~H(P), check if the ordering is a topological ordering, and determine the
queuenumber of the layout corresponding to that ordering in polynomial time.

POSETQN is shown to be NP-hard by reduction from 3-SAT. Let the collection
of clauses C = {c1, c2, . . . , cm} on the set of variables X = {x1, x2, . . . , xn} be an

instance of 3-SAT. The Hasse diagram ~H(P) of a poset P is constructed such that
~H(P) has a 4-queue layout if and only if there exists a truth assignment for the
variables in X such that all clauses in C are satisfied. Corresponding to each clause
ci, 1 ≤ i ≤ m, ~H(P) contains a subgraph called the truth-setting dag ~TSi. First,

we describe the construction of ~TSi and then show how the truth-setting dags are
connected together to form ~H(P). The truth-setting dag ~TSi can itself be thought of
as consisting of four distinct subgraphs connected together. These are

1. literal dag ~Xi,
2. clause dag ~Ci,
3. small enforcer dag ~Fi, and
4. big enforcer dag ~F ′i .

We now describe the construction of ~Xi, ~Ci, ~Fi, and ~F ′i and then show how they

connect together to form ~TSi. We use N(~G) to denote the set of nodes of a dag ~G

and A(~G) to denote its set of arcs.

Literal dag ~Xi:

N(~Xi) = {xi,j | 0 ≤ j ≤ n}
∪{xi,j | 0 ≤ j ≤ n}
∪{yi,j | 1 ≤ j ≤ n},

A(~Xi) = {(yi,j , xi,j), (yi,j , xi,j) | 1 ≤ j ≤ n}
∪{(xi,j , yi,j+1), (xi,j , yi,j+1) | 0 ≤ j ≤ n− 1}.

Figure 3.1 shows a literal dag ~Xi. Note that there are no transitive arcs in ~Xi. Any
topological ordering of ~Xi contains the nodes xi,j and xi,j followed by yi,j+1 followed
by xi,j+1 and xi,j+1 for each j, 0 ≤ j < n. But, for each j, there is a choice in the

1616 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

j
j
j
j
j
j
j
j
j

j j
j
j
j
j
j
j
j
j
j
j
j

j@@R

¡¡�

¡¡�

@@R

@@R

¡¡�

¡¡�

@@R

@@R

¡¡�

¡¡�

@@R

@@R

¡¡�

¡¡�

@@R

@@R

¡¡�

¡¡�

@@R

@@R

¡¡�

¡¡�

@@R

@@R

¡¡�

¡¡�

@@R

xi,7xi,6xi,5xi,4xi,3xi,2xi,1xi,0

xi,6 xi,7xi,5xi,4xi,3xi,2xi,1xi,0

yi,1 yi,2 yi,3 yi,4 yi,5 yi,6 yi,7

Fig. 3.1. The literal dag ~Xi.

l l l l l l- - - - -

ci,1 ci,2 ci,3 ci,4 ci,5 ci,6

Fig. 3.2. The clause dag ~Ci.

order in which nodes in the set {xi,j , xi,j} can appear. The choice of a particular

order on the set {xi,j , xi,j} in the topological ordering of ~H(P) will be interpreted as
a particular truth assignment to the variable xj .

Clause dag ~Ci:

N(~Ci) = {ci,j | 1 ≤ j ≤ 6},
A(~Ci) = {(ci,j , ci,j+1) | 1 ≤ j < 6}.

The clause dag ~Ci is simply a directed path of length 5 and has a unique topological
ordering. Clearly, ~Ci has no transitive arcs. Later we will show how nodes in ~Xi are
connected to nodes in ~Ci so as to ensure that a smaller nesting is caused when there
is at least one true literal in ci, then when there is no true literal in ci. Figure 3.2
shows a clause dag ~Ci.
Enforcer dags ~Fi and ~F ′i : The small enforcer dag ~Fi and the big enforcer dag ~F ′i are
members of a class of dags

{~F (q) | q is a positive integer}

defined as follows:

N(~F (q)) = U(q) ∪ V (q) ∪W (q),

U(q) = {uj | 0 ≤ j ≤ q},
V (q) = {vj | 0 ≤ j ≤ q},
W (q) = {wj | 0 ≤ j ≤ q}.

A(~F (q)) = {(uj , uj−1) | 0 < j ≤ q}
∪{(vj , vj+1) | 0 ≤ j < q}
∪{(uj , wj) | 0 ≤ j ≤ q} ∪ {(wj , vj) | 0 ≤ j ≤ q}.

Figure 3.3 shows ~F (3). The small enforcer dag ~Fi is isomorphic to ~F (s) for some
integer s ≥ 1, whose value will be determined later. For each j, 0 ≤ j ≤ s, node uj in
~F (s) is mapped into node ui,j in ~Fi; node vj in ~F (s) is mapped into a node vi,j in ~Fi;

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1617

�°�� �°�� �°�� �°�� �°�� �°�� �°�� �°�� �°��

�°��
�°��
�°��

- - - - - - - -
¡
¡
¡
¡
¡
¡
¡¡� @

@
@
@
@
@
@@R¡

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡�

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡¡� @

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@@R

@
@
@
@
@
@
@
@
@
@
@
@R

w2

w1

w3

u3 u2 u1 u0 w0 v0 v1 v2 v3

Fig. 3.3. The dag ~F (3).

and node wj is mapped into a node wi,j in ~Fi. The big enforcer dag ~F ′i is isomorphic

to ~F (s+ t+ 5) for some integer t ≥ 1, whose value will also be determined later. For

each j, 0 ≤ j ≤ s + t + 5, node uj in ~F (s + t + 5) is mapped into node u′i,j in ~F ′i ;
node vj in ~F (s + t + 5) is mapped into node v′i,j in ~F ′i ; and node wj in ~F (s + t + 5)

is mapped into node w′i,j in ~F ′i .
Based on their role, the arcs of ~F (q) can be partitioned into two classes: base arcs

and 2-path arcs. A base arc is an arc that belongs to the set

{(uj , uj−1) | 1 ≤ j ≤ q} ∪ {(vj , vj+1) | 0 ≤ j ≤ q − 1}.
Any arc that is not a base arc is a 2-path arc. Thus the set of 2-path arcs is

{(uj , wj), (wj , vj) | 0 ≤ j ≤ q}.

The base arcs in ~F (q) along with the 2-path arcs (u0, w0) and (w0, v0) enforce a unique
ordering on the nodes in U(q) ∪ V (q) ∪ {w0}. On the other hand, it is the 2-path

arcs that mainly contribute to a rainbow in a layout of ~F (q). To be more precise,
we provide the following definitions: Given a total ordering σ on the nodes of a dag
~G and a pair of 2-paths (a1, b1, c1) and (a2, b2, c2) in ~G, we say that (a1, b1, c1) and
(a2, b2, c2) nest in σ if the nodes in {a1, c1, a2, c2} occur in the order a1, a2, c2, c1 or
a2, a1, c1, c2 in σ. It is easy to see that if a pair of 2-paths nest in a layout, then
the queuenumber of that layout is at least 2. Given an ordering σ on the nodes of
~G and a set S of 2-paths in ~G, we say that S forms a 2-path rainbow in ~G if every
pair of 2-paths in S nest in σ. Notice that in any layout of ~F (q) the set of 2-paths
{(uj , wj , vj) | 0 ≤ j ≤ q} forms a 2-path rainbow of size q+1. It is this 2-path rainbow

that forces ~F (q) to have a certain queuenumber. Given that we are constructing a dag
with no transitive arcs, a simple way to force a certain queuenumber on the layout
of the dag is to force a 2-path rainbow of a certain size. This is the key idea that is
repeatedly used in our construction.

1618 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

Heath and Pemmaraju [8] have determined nearly exact bounds on the queuenum-

ber of ~F (q) :

b√q c+ 1 ≤ QN(~F (q)) ≤ b√q + 2 c .

In addition, we also know that

QN(~F (6)) = 3; QN(~F (9)) = 4; QN(~F (12)) = 4; QN(~F (16)) = 5.

These results provide the basis for our choice of s and t. For notational convenience,
denote QN(~F (q)) by f(q). The constants s and t are chosen such that

f(s+ 5) + 1 = f(s+ 5 + 1)

= f(s+ 5 + t)

= f(s+ 5 + t+ 1)

= f(s+ 5 + t+ 2)− 1.(3.1)

From the known values of f(6), f(9), f(12), and f(16) shown above it is easy to see
that there exist s and t such that (3.1) is satisfied. More specifically, we can choose
integers s, t ≥ 1, such that

f(s+ 5) = 3,

f(s+ 5) + 1 = f(s+ 5 + 1)

= f(s+ 5 + t)

= f(s+ 5 + t+ 1)

= 4,

f(s+ 5 + t+ 2) = 5.

Having described the four main components of a truth-setting dag ~TSi, we now
describe the connections between them. The first set of connections simply ensures
that the four dags appear in the order ~Xi, ~Fi, ~Ci, ~F

′
i in any topological ordering of

~TSi. These connections are
• (xi,n, ui,s), (xi,n, ui,s) from ~Xi to ~Fi.

• (vi,s, ci,1) from ~Fi to ~Ci.

• (ci,6, u
′
i,s+t+5) from ~Ci to ~F ′i .

The second set of connections depends on the literals that the clause ci contains,
and these are the connections which cause a 2-path rainbow of varying size depending
on truth values of the literals in the clause. For these connections we need a set of
additional nodes

Zi = {zi,j | 1 ≤ j ≤ 6}.

These nodes are connected to the clause dag ~Ci through the arcs

{(zi,j , ci,j) | 1 ≤ j ≤ 6}.

The connections between nodes in ~Xi and the nodes in Zi depend on the literals
in clause ci. Let xa, xb, and xc be the three variables that make up the literals in
clause ci. Without loss of generality, assume that a < b < c. If xa ∈ ci, then TSi

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1619

contains the arcs (xi,a, zi,5) and (xi,a, zi,6). Otherwise, if xa ∈ ci, then TSi contains
the arcs (xi,a, zi,6) and (xi,a, zi,5). Similarly, if xb ∈ ci, then TSi contains the arcs
(xi,b, zi,3) and (xi,b, zi,4). Otherwise, if xb ∈ ci, then TSi contains the arcs (xi,b, zi,4)
and (xi,b, zi,3). Finally, if xc ∈ ci, then TSi contains the arcs (xi,c, zi,1) and (xi,c, zi,2).
Otherwise, if xc ∈ ci, then TSi contains the arcs (xi,c, zi,2) and (xi,c, zi,1). For ex-

ample, suppose that ci = {x2, x4, x7}. Then ~TSi contains the arcs (xi,2, zi,5) and
(xi,2, zi,6), corresponding to the positive literal x2; (xi,4, zi,4) and (xi,4, zi,3) corre-
sponding to the negative literal x4; and (xi,7, zi,1) and (xi,7, zi,2) corresponding to
the positive literal x7. Note that the relative order of the pairs of nodes (xi,2, xi,2),

(xi,4, xi,4), and (xi,7, xi,7) determines the size of the 2-path rainbow between ~Xi and
~Ci. This size could be as small as 3 if the pairs of nodes occurred in the order
(xi,2, xi,2), (xi,4, xi,4), and (xi,7, xi,7) and as large as 6 if the pairs of nodes occur in

reverse order. This completes the description of a truth-setting dag ~TSi.
Now we describe how the truth-setting dags are connected together to form ~H(P).

The arcs

(vi,s+t+5, xi+1,0), (vi,s+t+5, xi+1,0)

ensure that ~TSi+1 appears after ~TSi for all i, 1 ≤ i < m, in any topological ordering

of ~H(P). In addition, each truth-setting dag ~TSi is connected to the truth-setting

dag ~TSi+1 via 2-paths from nodes in ~Xi to nodes in ~Xi+1. For these 2-paths we need
for each i, 1 ≤ i ≤ m, the additional nodes

Ri = {ri,j , ri,j | 0 ≤ j ≤ n}.
For each i, 1 ≤ i ≤ m, and for each j, 0 ≤ j ≤ n, add arcs (xi,j , ri,j) and (xi,j , ri,j) to
the dag. Complete the 2-paths by adding for each i, j, 1 ≤ i < m, 0 ≤ j ≤ n, the arcs
(ri,j , xi+1,j) and (ri,j , xi+1,j). In addition, to take care of the special case of ~Xm, we
introduce a new node x with incident arcs:

{(rm,j , x), (rm,j , x) | 0 ≤ j ≤ n} ∪ {(v′m,s+t+5, x)}.

Thus, x is an additional node that occurs at the end of any layout of ~H(P) and to

which there are 2-paths from nodes in ~Xm. The 2-paths from ~TSi to ~TSi+1 introduced
above serve the purpose of causing a 2-path rainbow whose size depends on the order
of the pair of nodes (xi,j , xi,j) in the literal dag ~Xi relative to the order on the pair

of nodes (xi+1,j , xi+1,j) in the literal dag ~Xi+1. If all the pairs of nodes occur in the
same relative order, then the size of the 2-path rainbow is 1; otherwise it is 2. As we
shall establish later, this relationship between the relative order of pairs of nodes in
the literal dags ~Xi and ~Xi+1 and the size of the 2-path nesting between ~Xi and ~Xi+1

is responsible for truth-values “flowing” consistently from clause to clause.
This completes the description of ~H(P).

Let σ be a topological ordering of ~H(P). If xi,j occurs before xi,j in σ, then we
say that the node xi,j is assigned true in σ; otherwise, we say that xi,j is assigned
false in σ. If xi,j is assigned true in σ and xj ∈ ci or if xi,j is assigned false in σ
and xj ∈ ci, then we say that the subgraph Ci is assigned true in σ. A topological

ordering σ of ~H(P) is said be satisfiable if and only if
1. every subgraph Ci is assigned true in σ, and
2. for each j, 1 ≤ j ≤ n, either xi,j occurs before xi,j for all i, 1 ≤ i ≤ m, or
xi,j occurs after xi,j for all i, 1 ≤ i ≤ m, in σ. In other words, for each j,

1620 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

1 ≤ j ≤ n, the pair of nodes xi,j and xi,j occur in the same relative order in

all literal dags ~Xi, 1 ≤ i ≤ m, in σ.
Clearly, there exists a satisfiable topological ordering σ of ~H(P) if and only if the
given instance of 3-SAT is satisfiable.

Finally, we show that there exists a satisfiable topological ordering of ~H(P) if and

only if QN(~H(P)) = f(s+ t+ 6) = 4. The two directions of the “if and only if” are
proved separately.

If QN(~H(P)) = 4, then there exists a satisfiable topological ordering of ~H(P).

Since QN(~H(P)) = 4, there exists a topological ordering σ of ~H(P) that yields a

4-queue layout of ~H(P). We will show that σ is satisfiable. To obtain a contradiction,
assume that σ is not satisfiable. This implies that σ violates conditions 1 or 2 required
of a satisfiable topological order. If σ violates condition 2, then there exist some
k, p, 1 ≤ k ≤ m, 1 ≤ p ≤ n, such that the pairs of nodes (xk,p, xk,p) and (xk+1,p, xk+1,p)
occur in reverse order relative to each other. In other words, xk,p precedes xk,p in σ
if and only if xk+1,p follows xk+1,p in σ. Thus the set

{(xk,p, rk,p, xk+1,p), (xk,p, rk,p, xk+1,p)}

forms a 2-path rainbow. This 2-path rainbow nests over the big enforcer dag F ′k and

this yields a 2-path rainbow of size s+ t+7. Therefore the subgraph of ~H(P) induced

by the nodes in ~TSk and ~TSk+1 requires at least f(s+ t+ 7) queues to be laid out.
But, by our choice of s and t, f(s + t + 7) = f(s + t + 6) + 1 = 5. Thus σ yields a

layout of ~H(P) that requires at least five queues—a contradiction.

We now show that if σ yields a queue layout of ~H(P) in f(s+ t+ 6) = 4 queues,

then σ satisfies condition 1. If σ yields an f(s + t + 6)-queue layout of ~H(P), then
all nodes in Ri for all i, 1 ≤ i ≤ m, have to appear between ui,s+t+5 (the first node

in the layout of ~F ′i) and wi,s+t+5 (the last node in the layout of ~F ′i). This is because,
for any i, 1 ≤ i < m, if a node r ∈ Ri appears to the left of u′i,s+t+5, then there is

an arc from r to a node in ~TSi+1 that nests over ~F ′i . If a node in Rm appears to
the left of u′m,s+t+5, then there is an arc from a node in Rm to x that nests over the

layout of ~F ′m. Similarly, for any i, 1 ≤ i ≤ m, if a node r ∈ Ri appears to the right

of wi,s+t+5, then there is an arc from a node in ~TSi to r that nests over ~F ′i . Since,

the queuenumber of ~F ′i is f(s + t + 5) = 4, the arc incident on r that nests over ~F ′i
increases the nesting size to f(s + t + 5) + 1 = f(s + t + 6) + 1 = 5. Therefore, we

can assume that in any 4-queue layout of ~H(q) all nodes in R occur between ui,s+t+5

and vi,s+t+5 in σ.
To obtain a contradiction, suppose that σ does not satisfy condition 1 that satisfi-

able topological orderings are required to satisfy. Then there exists a clause subgraph
Ck that is assigned false. This implies that the 2-paths between the literal dag ~Xk,
the set of nodes Zk, and the clause dag ~Ck form a 2-path rainbow of size 6. This
2-path rainbow of size 6 nests over the small enforcer dag ~Fi to yield a 2-path rainbow
of total size s + 6. Thus the subgraph induced by the nodes in ~Xk, Zk, ~Ck, and Fk
requires at least f(s+ 6) queues in σ. In addition, the arc (xk,0, rk,0) nests over any
layout of the subgraph described above to yield a total nesting of size f(s+6)+1 = 5.
Thus σ requires at least five queues—a contradiction.

If σ is a satisfiable topological ordering, then σ yields a 4-queue layout of ~H(P).

If σ is satisfiable, then the largest nesting of 2-paths between ~Xi and ~Ci for any
i, 1 ≤ i ≤ n, is of size 5 and the largest nesting of 2-paths between ~Xi and ~Xi+1 for

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1621

any i, 1 ≤ i ≤ n − 1, is of size 1. The following is an assignment of arcs of ~H(P) to

f(s + t + 6) queues such that if ~H(P) is laid out according to σ, then no two arcs
assigned to the same queue nest. For some i, 1 ≤ i ≤ n, consider the subgraph of
~H(P) induced by the nodes in ~Xi, ~Ci, Zi, and ~Fi. The largest 2-path nesting in any
layout of this subgraph is of size s + 5 and hence this subgraph can be laid out in
f(s+ 5) queues. Now consider the subgraph induced by the 2-paths from ~Xi to ~Xi+1

and the nodes in ~F ′i . The largest 2-path nesting in any layout of this subgraph is of
size s+ t+ 6. Therefore, this subgraph can be laid out in f(s+ t+ 6) queues. Queues
can be reused for the assignment of arcs in the two subgraphs to yield a layout for
the whole dag in f(s+ t+ 6) queues.

This completes the reduction. Clearly, the reduction can be achieved in polyno-
mial time, thereby showing that POSETQN is NP-complete.

4. Recognizing 6-stack dags is NP-complete. In this section, we show that
DAGSN is also NP-complete.

Theorem 4.1. DAGSN is NP-complete.
Proof. DAGSN is in NP because a nondeterministic Turing machine can guess

an ordering of the nodes in ~G and an assignment of the arcs in ~G to six stacks, check
if the ordering is a topological ordering, and determine if any two arcs assigned to a
stack cross, in polynomial time.

As with POSETQN, DAGSN is shown to be NP-hard by reduction from 3-
SAT. Let the collection of clauses C = {c1, c2, . . . , cm} on the set of variables X =

{x1, x2, . . . , xn} constitute an instance of 3-SAT. A dag ~G is constructed such that ~G
has a 6-stack layout if and only if there exists a truth assignment for the variables in
X such that all clauses in C are satisfied.

The construction of ~G from an instance of 3-SAT is much simpler than the corre-
sponding construction of ~H(P) presented in the proof of Theorem 3.1. Corresponding

to each clause ci, ~G contains a truth-setting dag ~TSi. Each truth-setting dag ~TSi con-
sists of three subgraphs connected together:

1. Literal dag ~Xi,
2. clause dag ~Ci, and
3. enforcer dag Ei.

We will describe each of these three dags, one by one.
Literal dag. The literal dag ~Xi contains two subgraphs ~Ai and ~Bi connected

together. The dag ~Ai is as follows:

N(~Ai) = {xi,j | 1 ≤ j ≤ n} ∪ {xi,j | 1 ≤ j ≤ n} ∪ {ai,1ai,2},
V (~Ai) = {(xi,j , xi,j+1), (xi,j , xi,j+1), (xi,j , xi,j+1), (xi,j , xi,j+1)}

∪{(ai,1, xi,1), (ai,1, xi,1), (xi,n, ai,2), (xi,n, ai,2)}.
Figure 4.1 shows ~Ai. For simplicity we assume that n = 4. Any topological ordering
of ~Ai contains the node ai,1 followed by the nodes in the set {xi,j , xi,j | 1 ≤ i ≤ n},
followed by the node ai,2. The nodes in the set {xi,j , xi,j | 1 ≤ j ≤ n} occur in
any order in which the nodes xi,j and xi,j are followed by xi,j+1 and xi,j+1 for all
j, 1 ≤ j < n. However, for each j, 1 ≤ j ≤ n, there is a choice in the order in
which the pair of nodes (xi,j , xi,j) occurs. It is this choice that we exploit to cause a
twist of varying size depending on whether the given instance of 3-SAT is satisfiable.
Recall that for any ordering σ of the nodes in a dag, a twist in σ is a set of arcs
{(ai, bi) | 1 ≤ i ≤ p} in the dag such that the end-points of the arcs occur in the order

a1, a2, . . . , ap, b1, b2, . . . , bp

1622 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

�°�� �°��
�°�� �°�� �°�� �°��

�°�� �°�� �°�� �°��

- - -

- - -

�
�
��3

HHHHHHj

Q
Q
QQs

Z
Z
Z
Z
Z
Z
Z~�

�
�
�
�
�
�> Z

Z
Z
Z
Z
ZZ~�

�
�
�
�
�
�> Z

Z
Z
Z
Z
Z
Z~�

�
�
�
�
�
�>

��
��

��*
ai,1

xi,1 xi,2 xi,3 xi,4

ai,2

xi,3xi,2xi,1 xi,4

Fig. 4.1. The dag ~Ai for n = 4.

in σ.
To construct ~Bi, first construct a dag ~B′i that is isomorphic to ~Ai. Each node xi,j

in ~Ai is mapped into a node yi,j in ~B′i; each node xi,j in ~Ai is mapped into a node

yi,j in ~B′i; each node ai,j in ~Ai is mapped into a node bi,j in ~B′i. To construct ~Bi from
~B′i, simply reverse the direction of all the arcs in ~B′i.

The literal dag ~Xi is constructed by connecting ~Ai and ~Bi using the following
arcs:

{(ai,1, bi,1), (ai,2, bi,2)} ∪ {(xi,j , yi,j) | 1 ≤ j ≤ n} ∪ {(xi,j , yi,j) | 1 ≤ j ≤ n}.

Thus, from each node in ~Ai there is an arc to the corresponding node in ~Bi. Note that
in any topological ordering of ~G in which the nodes in ~Bi occur in “reverse” order
relative to the nodes in ~Ai, all arcs connecting ~Ai to ~Bi nest and can be assigned to
one stack.

Clause dag. The clause dag ~Ci is simply a directed path of length 5. More
precisely,

N(~Ci) = {ci,j | 1 ≤ j ≤ 6},
A(~Ci) = {(ci,j , ci,j+1) | 1 ≤ j < 6}.

Enforcer dag. The enforcer dag ~Ei contains two connected components, ~Ei,1 and
~Ei,2. Each of these is simply a directed path of length 4. More precisely,

N(~Ei,1) = {ei,j | 1 ≤ j ≤ 5},
A(~Ei,1) = {(ei,j , ei,j+1) | 1 ≤ j < 5},

and

N(~Ei,2) = {ei,j | 6 ≤ j ≤ 10},
A(~Ei,2) = {(ei,j , ei,j+1) | 6 ≤ j < 10}.

We now describe how ~Xi, ~Ci, and ~Ei are connected together to form the truth-
setting dag ~TSi. The arcs (ai,2, ci,1), (ci,6, ei,1), (ei,5, bi,2), and (bi,1, ei,6) are added

to ~G to force the subgraphs of ~TSi to occur in the order

~Ai, ~Ci, ~Ei,1, ~Bi, ~Ei,2

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1623

��

& %& %

�� ��
$'$�

t tt t tt t tt�� t
~Ci

t t tt t t¡¡ @@
¡¡@@

¡¡ @@
¡¡@@

~Ai ~Bi
~Ei,2~Ei,1

Fig. 4.2. The overall structure of the truth-setting dag ~TSi.

in any topological ordering of ~G.
In addition we connect ~Ai to ~Ci by six arcs that depend on the literals in the

clause ci. Let xa, xb, and xc be the three variables that make up the literals in
clause ci. Without loss of generality, assume that a < b < c. If xa ∈ ci, then TSi
contains the arcs (xi,a, ci,2) and (xi,a, ci,1). Otherwise, if xa ∈ ci, then TSi contains
the arcs (xi,a, ci,1) and (xi,a, ci,2). Similarly, if xb ∈ ci, then TSi contains the arcs
(xi,b, ci,4) and (xi,b, ci,3). Otherwise, if xb ∈ ci, then TSi contains the arcs (xi,b, ci,3)
and (xi,b, ci,4). Finally, if xc ∈ ci, then TSi contains the arcs (xi,c, ci,6) and (xi,c, ci,5).
Otherwise, if xc ∈ ci, then TSi contains the arcs (xi,c, ci,5) and (xi,c, ci,6). For ex-

ample, suppose that ci = {x2, x4, x7}. Then ~TSi contains the arcs (xi,2, ci,2) and
(xi,2, ci,1) corresponding to the positive literal x2; (xi,4, ci,3) and (xi,4, ci,4) corre-
sponding to the negative literal x4; and (xi,7, ci,6) and (xi,7, ci,5) corresponding to the
positive literal x7. Depending on the order of the pairs of nodes (xi,a, xi,a), (xi,b, xi,b),
and (xi,c, xi,c) these arcs form a twist of size at least 3 and at most 6. In particular,
we will try to ensure that these arcs form a twist of size 6 if and only if all literals in
ci are false.

This completes the description of the truth-setting dag ~TSi. The overall structure
of ~TSi is shown in Figure 4.2. We now describe how ~TSi is connected to ~TSi+1 for

each i, 1 ≤ i < m. To ensure that ~TSi+1 occurs after ~TSi in any topological ordering

of ~G, we add the arc (ei,10, ai+1,1). In addition we have the following arcs from ~Bi to
~Ai+1:

{(yi,j , xi+1,j) | 1 ≤ j ≤ n} ∪ {(yi,j , xi+1,j) | 1 ≤ j ≤ n}.

To complete the description of the dag ~G we need to describe a final component,
called a gate-keeper dag, ~GK, which is simply a directed path of length 5. More
precisely, the gate-keeper dag is as follows:

N(~GK) = {gk | 1 ≤ k ≤ 5},
A(~GK) = {(gk, gk+1) | 1 ≤ k < 5}.

An additional arc (g5, a1,1) ensures that the gate-keeper dag occurs before the rest of

the dag in any topological ordering of ~G. This completes the description of ~G.
Let σ be a topological ordering of ~G. If xi,j occurs before xi,j in σ, then we say

that the node xi,j is assigned true in σ; otherwise, we say that xi,j is assigned false
in σ. If xi,j is assigned true in σ and xj ∈ ci or if xi,j is assigned false in σ and

xj ∈ ci, then we say that the clause dag ~Ci is assigned true in σ; otherwise, we say

1624 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

that the clause dag ~Ci is assigned false in σ. A topological ordering σ of ~G is said be
satisfiable if and only if

1. every clause dag ~Ci is assigned true in σ, and
2. for each j, 1 ≤ j ≤ n, either xi,j occurs before xi,j for all i, 1 ≤ i ≤ m, or
xi,j occurs after xi,j for all i, 1 ≤ i ≤ m, in σ. In other words, for each j,
1 ≤ j ≤ n, the pair of nodes xi,j and xi,j occurs in the same relative order in

all literal dags ~Xi, 1 ≤ i ≤ m, in σ.
Clearly, there exists a satisfiable topological ordering σ of ~H(P) if and only if the
given instance of 3-SAT is satisfiable.

Finally, to complete our proof, we show that there exists a satisfiable topological
ordering of ~G if and only if SN(~G) = 6. The two directions of the “if and only if”
are proved separately.

If SN(~G) = 6, then there exists a satisfiable topological ordering of ~G. Let σ be

any topological ordering of ~G that yields a 6-stack layout of ~G. We will show that σ
is satisfiable. To obtain a contradiction assume that σ is not satisfiable. Therefore,
σ violates one of the two conditions required of a satisfiable topological ordering.
Suppose that σ violates condition 1. In particular, suppose that there exists a clause
dag ~Ci that is not assigned true in σ. This implies that the set of six arcs from ~Ai to
~Ci forms a twist of size 6. The arc (ai,2, bi,2) adds to this twist to cause a twist of size

7. This implies that the layout of ~G according to σ requires at least seven stacks—
a contradiction. Now suppose that σ violates condition 2. Thus there exist k, p,
1 ≤ k ≤ m, 1 ≤ p ≤ n, such that the pairs of nodes (xk,p, xk,p) and (xk+1,p, xk+1,p)
do not occur in the same relative order. In other words, xk,p precedes xk,p if and only
if xk+1,p follows xk+1,p. Without loss of generality, suppose that xk,p precedes xk,p.
This implies that xk+1,p follows xk+1,p. The pair of nodes (yk,p, yk,p) can occur in
one of two possible orders in σ. If yk,p precedes yk,p in σ, then the arcs in the set

{(xk,p, yk,p), (xk,p, yk,p)}

form a twist of size 2. The five arcs from the gate-keeper dag ~GK to the enforcer dag
component ~Ei,1

{(gj , ei,j) | 1 ≤ j ≤ 5}
add to the above twist to yield a twist of size 7. Therefore, the layout of ~G according
to σ requires at least seven stacks—a contradiction. Similarly, if yk,p follows yk,p, it
is easy to see that the arcs in the set

{(yk,p, xk+1,p), (yk,p, xk+1,p)}
along with the five arcs from the gate-keeper dag to the second component of the
enforcer dag ~Ei,2 form a twist of size 7, yet again leading to a contradiction.

If there exists a satisfiable topological ordering of ~G, then SN(~G) = 6. Let σ be

a satisfiable topological ordering of ~G. Without loss of generality, we assume that in
σ for all i, 1 ≤ i ≤ m, the nodes in ~Bi occur in a “reverse” order relative to the order
of nodes in ~Ai. This ensures that the arcs from ~Ai to ~Bi can be assigned to one stack
and the arcs from ~Bi to ~Ai+1 can also be assigned to one stack. We demonstrate an

assignment of the arcs of ~G to six stacks so that when the nodes in ~G are laid out
according to σ, no two arcs assigned to a stack cross.

It does not matter how we deal with arcs that connect nodes that are adjacent in
σ. In particular, we will ignore the arcs in the gate-keeper dag ~GK, the arcs in the

STACK AND QUEUE LAYOUTS OF DAGS: PART II 1625

clause dag ~Ci, 1 ≤ i ≤ m, and the arcs in the enforcer dag ~Ei, 1 ≤ i ≤ m. We will
also ignore some arcs that connect different subgraphs, namely, the arc (g5, a1,1), and
for all i, 1 ≤ i ≤ m, the arcs

(ai,2, ci,1), (ci,5, ei,1), (ei,5, bi,2), (bi,1, ei,6).

We will assign the rest of the arcs to six stacks, sk, 1 ≤ k ≤ 6. Start with the arcs
incident on the gate-keeper dag. For each k, 1 ≤ k ≤ 4, assign all arcs incident on
gk to stack sk. Assign the arcs incident on g5 to two stacks as follows. First assign
the arcs from g5 to the enforcer dag component ~Ei,1 to s5 for all i, 1 ≤ i ≤ m. Then

assign the arcs from g5 to the enforcer dag component ~Ei,2 to s6 for all i, 1 ≤ i ≤ m.

This partial assignment of arcs of ~G to stacks fixes, to a large extent, the assignment
of the rest of the arcs to stacks. In particular, the arcs from ~Ai to ~Bi, for all i,
1 ≤ i ≤ m, cross the arcs from ~GK to ~Ei,1 and therefore have to be assigned to the

stack s6. Similarly, the arcs from ~Bi to ~Ai+1, for all i, 1 ≤ i < m, cross the arcs from
~GK to ~Ei,2 and therefore have to be assigned to the stack s5. Since σ is a satisfiable

topological ordering of ~G, we know that the arcs from ~Ai to ~Ci form a twist of size at
most 5. Since these arcs cross the arcs from ~Ai to ~Bi, assign these arcs to stacks s1

through s5. It is easy to reuse the stacks s1 through s5 for the arcs in ~Ai and in ~Bi.

Thus DAGSN is NP-complete.

5. Conclusions. This paper presents fundamental algorithmic results concern-
ing the computational complexity of determining the stacknumber and queuenumber
of dags. For both stacks and queues, there remains a gap between the number of
stacks or queues for which an NP-completeness result is known and the number for
which a polynomial-time algorithm is known. We conjecture that recognition of both
2-stack and 2-queue dags is NP-complete. A more fruitful line of research is to identify
classes of graphs for which the layout problem can be solved efficiently.

REFERENCES

[1] F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B, 27
(1979), pp. 320–331.

[2] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[3] M. Chandramouli and A. A. Diwan, Upward numbering testing for triconnected graphs, in
Graph Drawing, GD ’95, F. J. Brandenburg, ed., Lecture Notes in Comput. Sci. 1027,
Springer-Verlag, Berlin, 1996, pp. 140–151.

[4] M. Chandramouli, Upward Planar Graph Drawings, Ph.D. thesis, IIT Bombay, 1994.
[5] G. Di Battista and E. Nardelli, Hierarchies and planarity theory, IEEE Trans. Systems

Man Cybernet., 18 (1988), pp. 1035–1046.
[6] F. Harary and G. Prins, The block-cutpoint-tree of a graph, Publ. Math. Debrecen, 13 (1966),

pp. 103–107.
[7] L. S. Heath and S. V. Pemmaraju, Recognizing leveled-planar dags in linear time, in Graph

Drawing, GD ’95, F. J. Brandenburg, ed., Lecture Notes in Comput. Sci. 1027, Springer-
Verlag, Berlin, 1996, pp. 300–311.

[8] L. S. Heath and S. V. Pemmaraju, Stack and queue layouts of posets, SIAM J. Discrete
Math., 10 (1997), pp. 599–625.

[9] L. S. Heath, S. V. Pemmaraju, and A. Trenk, Stack and queue layouts of directed acyclic
graphs: Part I, SIAM J. Comput., (28 (1999), pp. 1510–1539.

[10] L. S. Heath, S. V. Pemmaraju, and A. Trenk, Stack and queue layouts of directed acyclic
graphs, in Planar Graphs, W. T. Trotter, ed., AMS, Providence, RI, 1993, pp. 5–11.

1626 LENWOOD S. HEATH AND SRIRAM V. PEMMARAJU

[11] L. S. Heath and A. L. Rosenberg, Laying out graphs using queues, SIAM J. Comput., 21
(1992), pp. 927–958.

[12] M. M. SysÃlo and M. Iri, Efficient outerplanarity testing, Fund. Inform., 2 (1979), pp. 261–275.
[13] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J. Alg. Discrete

Methods, 3 (1982), pp. 351–358.

MEMBERSHIP IN CONSTANT TIME
AND ALMOST-MINIMUM SPACE∗

ANDREJ BRODNIK† AND J. IAN MUNRO‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1627–1640

Abstract. This paper deals with the problem of storing a subset of elements from the bounded
universeM = {0, . . . ,M−1} so that membership queries can be performed efficiently. In particular,
we introduce a data structure to represent a subset of N elements of M in a number of bits close

to the information-theoretic minimum, B =
⌈

lg
(
M
N

)⌉
, and use the structure to answer membership

queries in constant time.

Key words. information retrieval, search strategy, data structures, minimum space, dictionary
problem, efficient algorithms hashing, lower bound

AMS subject classifications. 68P05, 68P10, 68Q20

PII. S0097539795294165

1. Introduction. A basic problem in computing is to store a finite set of ele-
ments so that one can quickly determine whether or not a query element is a member
of this set. In this paper we study a version of the problem in which elements are
drawn from the bounded universe M = {0, . . . ,M − 1} using an extended random
access machine (RAM) model that permits constant-time arithmetic and Boolean bit-
wise operations on these elements. Such a very realistic model enables us to decrease
the space needed to store a set of N elements almost to the information-theoretic
minimum of B = dlg (MN)e bits, while answering queries in constant time.

Fich and Miltersen [12] have shown that, under a RAM model whose instruction
set does not include division, Ω(logN) operations are necessary to answer a member-
ship query if the size of a data structure is at most M/N ε words of dlgMe bits each.
Thus a sorted array is optimal in that context. Our model includes integer division
along with the other standard operations in its instruction set. This permits us to
use perfect hash tables (functions) and bitmaps, both of which have constant-time
worst-case behavior. However, hash tables generally require that key values be stored
explicitly, and so are succinct only when relatively few elements are present. On the
other hand, a bitmap is succinct only if about half of the elements are present. In
this paper we focus primarily on the range in which N is at least M ε, but still o(M),
with the goal of introducing a data structure whose size is within a lower-order term
of the minimum.

In general terms, our basic approach is to use either perfect hashing or a bitmap
whenever one of them achieves the optimum space bound; otherwise we split the

∗Received by the editors November 5, 1995; accepted for publication (in revised form) April 10,
1998; published electronically May 6, 1999. This work was supported in part by the Natural Science
and Engineering Research Council of Canada under grant A-8237 and the Information Technology
Research Centre of Ontario and was done while the first author was a graduate student at the
University of Waterloo. Some of the results of this work were announced in preliminary form, in
Membership in constant time and minimum space, in Proceedings, 2nd European Symposium on
Algorithms, Lecture Notes in Comput. Sci. 855, Springer-Verlag, Berlin, New York, 1994, pp. 72–81.

http://www.siam.org/journals/sicomp/28-5/29416.html
†Department of Theoretical Computer Science, Institute of Mathematics, Physics, and Mechan-

ics, University of Ljubljana, Jadranska 11, 1111 Ljubljana, Slovenia, and Department of Computer
Science, Lule̊a Technical University, SE-971 87 Lule̊a, Sweden (andrej.Brodnik@IMFM.Uni-Lj.SI).
‡Department of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

(imunro@uwaterloo.ca).

1627

1628 ANDREJ BRODNIK AND J. IAN MUNRO

universe into subranges of equal size. We discover that, after a couple of careful
iterations of this splitting, the subranges are small enough so that succinct indices
into a single table of all possible configurations of these subranges (table of small
ranges) permit the encoding in the minimal space bound. This is an example of what
we call word-size truncated recursion (cf. [15, 16]). That is, the recursion continues
only to a level of “small enough” subproblems, at which point indexing into a table of
all solutions suffices. We can do this because at this level a single word in the machine
model is large enough to encode a complete solution to each of these small problems.

We proceed with definitions, notation, and background literature. In section 3 we
present a constant-time solution with space bound within a small constant factor of
the minimum required. The solution has the merit of providing a reasonably practical
implementation, and can be tuned to specific problem sizes as is illustrated in giving
the space requirements for two specific examples. In section 4 the solution is further
tuned to achieve the asymptotic space bound of B + o(B). The results of sections 3
and 4 are extended in section 5 to the dynamic case.

2. Notation, definitions, and background.

2.1. The problem. We use lg to denote the logarithm base 2 and ln to denote
the natural logarithm. lg(i) indicates lg applied i times and lg∗ indicates the number
of times lg can be applied before reducing the parameter to at most 1.

Definition 2.1. Given a universe M = {0, 1, . . . ,M − 1} with an arbitrary
subset N = {e0, e1, . . . , eN−1}, where N and M are known, the static membership
problem is to determine whether a query value x ∈M is in N .

This problem has an obvious dynamic extension leading to the following definition.
Definition 2.2. The dynamic membership problem is the static membership

problem extended by two operations: insertion of an element x ∈ M into N (if it is
not already in N) and deletion of x from a set N (if it is in N).

Since solving either problem for N trivially gives a solution for N , we assume
0 ≤ N ≤M/2.

Our model of computation is an extended version of the RAM machine model
(cf. [1]; see also MBRAM in [9]). Memory consists of words of m = dlgMe bits, which
means that one memory register (word) can be used to represent a single element of
M, specify an arbitrary subset of a set of m elements, refer to some portion of the data
structure, or have some other role that is an m-bit blend of these. For convenience, we
measure space in bits rather than in words. Our word size, then, matches the problem
size, and so the model is transdichotomous in the sense of Fredman and Willard [14].
The usual operations, including integer multiplication, division, and bitwise Boolean
operations, are performed in unit time.

We take as parameters of our problem M and N . Hence,

B =

⌈
lg

(
M

N

)⌉
(2.1)

is an information-theoretic lower bound on the number of bits required to describe
any possible subset of N elements chosen from M elements. Since we are interested
only in solutions that use O(B) or B + o(B) bits for a data structure, there is no
need to pay attention to rounding errors, and so we can omit the ceiling and floor
functions.

Using Stirling’s approximation for the factorial function and Robbins’ refinement
for its error term (cf. [20, p. 184]), we compute from (2.1) a lower bound on the

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1629

number of bits required,

B = lg

(
M

N

)
= lgM !− lgN !− lg(M −N)!

≈M lgM −N lgN − (M −N) lg(M −N) error ≤ lgN + O(1)

= M lgM −N lgN

−(M −N)(lgM + lg(1−N/M))

= N lg(M/N)− (M −N) lg(1−N/M).(2.2)

Defining the relative sparseness of the set N as

r = M/N(2.3)

and observing that 2 ≤ r ≤ ∞, we rewrite the second term of (2.2) as

N ≤ −N((r − 1) lg(1− r−1)) ≤ N/ ln 2 ≈ 1.4427. . . N.(2.4)

Thus, for the purposes of much of this work, we can use

B ≈ N lg(M/N) ≡ N lg r(2.5)

with an error bounded of Θ(N) bits as given in (2.4). Note that the error term is
positive and hence (2.5) is an underestimate.

An intuitive explanation of (2.5) is that N is fully described when each element
in N “knows” its successor. Since there are N elements in N , the average distance
between them is r = M/N ; to encode this distance we need lg r bits. Moreover, it
is not hard to argue that the worst case, and indeed the average one, occurs when
elements are fairly equally spaced. This is exactly what (2.5) says.

2.2. Some background literature. This paper deals with one of the most
heavily studied problems in computing, in a context in which the exact model of
computation is critical. Therefore, we suggest [9] and [18] as general background and
focus on those papers that most heavily shaped the authors’ approach. We address
three aspects of the problem: the static and dynamic cases of storing a table with
little auxiliary data and the information-theoretic trade-offs. In the first two cases,
it is usually assumed that there is enough space to list those keys that are present
(in a hash table or similar structure) or to list the answers to all queries (by using a
bitmap). Here we deal with the situation in which we cannot always afford the space
needed to use either structure directly. Nonetheless, we start with the idea of storing
keys and little else.

Yao [24] extended the notion of an implicit data structure [21] to the domain
of the bounded universe and addressed the problem of storing the value N and an
array of N words, each containing a lgM bit data item. He showed that if no more
information is stored, then there always exists some value of N and subset of size N
that requires at least logarithmic search time. Adding almost any storage, however,
changes the situation. For example, with one more register (lgM bits) Yao [24]
showed that there exists a constant-time solution for N ≈M or N ≤ 1

4

√
lgM , while

Tarjan and Yao [23] presented a more general O(lgM/ lgN) time, O(N lgM) bit
solution. Fredman, Komlós, and Szemerédi [13, sec. 4] developed a constant-time
algorithm with a data structure of N lgM bits for the portion of the data, plus an
additional O(N

√
lgN + lg(2)M) bits. Fiat et al. [11] decreased the extra bits to

1630 ANDREJ BRODNIK AND J. IAN MUNRO

6 lgN + 3dlg(2)Me + O(1). Moreover, combining their result with Fiat and Naor’s
[10] construction of an implicit search scheme for N = Ω((lgM)p), they produced a

scheme using fewer than (1 + p)dlg(2)Me+ O(1) additional bits.

Mairson [17] took a different approach. He assumed all structures are implicit
in Yao’s sense and the additional storage represents the complexity of a searching
program. Following a similar path, Schmidt and Siegel [22] proved a lower bound

of Ω(N/(k2ek) + lg(2)M) bits spatial complexity for k-probe oblivious hashing. In

particular, for constant-time hashing this gives a spatial complexity of Θ(lg(2)M+N)
bits.

For the dynamic case, Dietzfelbinger et al. [5] proved an Ω(lgN) worst-case lower
bound for a realistic class of hashing schemes. In the same paper they also presented
a scheme which, using results of [13] and a standard doubling technique, achieved
constant amortized expected time per operation. However, the worst-case time per
operation (nonamortized) was Ω(N). Later Dietzfelbinger and Meyer auf der Heide
[6] upgraded the scheme and achieved constant worst-case time per operation with a
high probability. A similar result was also obtained by Dietzfelbinger et al. [4].

In the data compression technique described by Choueka et al. [3], a bit vector is
hierarchically compressed. First, the binary representations of elements stored in the
dictionary are split into pieces of equal size. Then the elements with the same value as
the most significant piece are put in the same bucket and the technique is recursively
applied within each bucket. When the number of elements which fall in the same
bucket becomes sufficiently small, the data are stored in a compressed form. The
authors experimentally tested their ideas but did not formally analyze them. They
claim their result gives a relative improvement of about 40% over similar methods.

An information-theoretic approach was taken by Elias [7] in addressing a more
general version of the static membership problem which involved several different
types of queries. For these queries he discussed a trade-off between the size of the
data structure and the average number of bit probes required to answer the queries.
In particular, for the set membership problem he described a data structure of a
size N lg(M/N) + O(N) (using (2.5), B + o(B)) bits, which required an average of
(1 + ε) lgN + 2 bit probes to answer a query. However, in the worst case the method
required N bit probes. Elias and Flower [8] further generalized the notion of a query
into a database. They defined the set of data and a set of queries and, in a general
setting, studied the relation between the size of the data structure and the number
of bits probed, given the set of all possible queries. Later, the same arrangement was
more rigorously studied by Miltersen [19].

3. Static solution using O(B) space. Our solution breaks down to a number
of cases, based on the relative sparseness ofN . As noted earlier, we can assume that at
most half the elements are present, since the complementary problem could otherwise
be solved. We are left with four cases as r ranges between 2 and ∞ (cf. Table 3.1).
The crucial dividing point between the sparse and dense cases comes when r is in the
range Θ(lgM). For purposes of tuning the method, we find it convenient to define
this separation point in terms of a parameter λ(> 1), namely,

rsep = logλM,(3.1)

or the size of sets

Nsep = M/rsep = M/logλM.(3.2)

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1631

Table 3.1
Cases considered for the static version of the problem.

Sparseness Range of r Range of N Section

Very sparse ∞ to Mε 0 to M1−ε 3.1
Moderately sparse Mε to logλM M1−ε to M/logλM 3.2
Moderately dense logλM to 1/α M/ logλM to αM 3.3
Very dense 1/α to 2 αM to M/2 3.1

The very sparse and very dense cases are rather straightforward, though their bound-
aries with the more difficult moderately sparse and moderately dense cases are subject
to tuning as well. After handling these easy cases, we address the moderately sparse
case and subsequently extend its solution to handle the moderately dense.

3.1. Very sparse and very dense cases. When N is very dense, i.e., N ≥ αM
for 0 < α ≤ 1/2, we can afford to use a bitmap of size M = Θ(B) to represent it.
When N is very sparse, i.e., N ≤ M1−ε for 0 < ε ≤ 1, we are allowed Θ(N logM)
bits which is enough to list all the elements of N . For N ≤ c = O(1) we simply list
them. Beyond this we use a perfect hashing function of some form (cf. [10, 11, 13]).
Note that all of these structures allow us to answer a membership query in constant
time and are, indeed, reasonably practical methods.

3.2. Moderately sparse case—indexing. The range in which r ≈ rsep typi-
fies the case in which neither the straightforward listing of the elements nor a bitmap
minimizes the storage requirements. In this range, the N lgM bits needed to list all
elements is of the same order as the M for a bitmap, but B = Θ(N lg(2)M). Indeed,
thoughts of this specific case lead not only to a solution to the entire moderately
sparse range, but also to the first step in the solution for the moderately dense case.

Lemma 3.1. If N ≤ Nsep = M/ logλM for λ > 1, then there is an algorithm
which answers a membership query in constant time using an O(B) bit data structure.

Proof. The idea is to split the universe,M, into p buckets, where p is as large as we
can make it without exceeding our space constraints. The data falling into individual
buckets are then organized using perfect hashing. The buckets cover contiguous ranges
of equal sizes, M1 = bM/pc, so that a key x ∈M falls into bucket bx/M1c. To reach
individual buckets, we index through an array of pointers.

Each pointer occupies dlgMe bits. Hence, the total size of the index (the array of
pointers) is p dlgMe bits. We store all elements that fall in the same bucket in a perfect
hash table [10, 11, 13] for that bucket. Since the ranges of all buckets are of equal size,
the space required to describe each element in a hash table is dlg(M/p)e bits, and so
to describe all elements in all buckets we require only N dlg(M/p)e bits. We also need
some extra space to describe individual hash tables. If we use the method of Fiat et
al. [11], the additional space for bucket i is bounded by 6dlgNie+ 3dlg(2)M1e+ O(1),
where Ni is the number of elements in bucket i. Thus, the additional space to describe
all hash functions is bounded by p(6 lgN + 3 lg(2)M + O(1)). Putting the pieces
together, we get the expression for the size of the structure:

S = p lgM +N lg(M/p) + p(6 lgN + 3 lg(2)M + O(1)).

Choosing p to minimize this value leads to a rather complex formula. However, a
simple approximation is adequate, and so we take

p = N/lgM.(3.3)

1632 ANDREJ BRODNIK AND J. IAN MUNRO

This gives

S = N +N(lgM/N + lg(2)M) +

N(6 lgN + 3 lg(2)M + O(1))/lgM by (2.3)

≤ N lg r + (N lg r)(lg(2)M/ lg r) +N +

N(6 lgN + 3 lg(2)M + O(1))/lgM by (2.5)

= B +Blg(2)M/lg r + o(B).(3.4)

Hence, for a moderately sparse subset, i.e., r ≥ rsep, the size of the structure is O(B)
bits. It is also easy to see that the structure permits constant-time search.

Note that if rsep ≥ lgM (i.e., in (3.1) λ < 2), the lead term of (3.4) is less than
2B.

3.3. Moderately dense case—word-size truncated recursion. In this sec-
tion we consider sets of size N (or sparseness r) in the range

Nsep = M/logλM ≤ N ≤ αM ≤ M/2,
rsep = logλM ≥ r ≥ 1/α ≥ 2.

(3.5)

For such moderately dense N we apply the technique of Lemma 3.1—that is, split the
universe M into equal-range buckets. However, this time the buckets remain too full
to use hash tables and therefore we apply the splitting scheme again. In particular, we
treat each bucket as a new, separate-but-smaller, universe. If its relative sparseness
falls in the range defined by (3.5) (with respect to the size of its smaller universe) we
recursively split it.

Such a straightforward strategy leads, in the worst case, to a Θ(lg∗M) level
structure and therefore to a Θ(lg∗M) search time. However, we observe that at each
level the number of buckets with the same range increases and ultimately there must
be so many small subsets that not all can be different. Therefore we build a table
of all possible subsets of universes of size up to a certain threshold. This table of
small ranges (TSR) allows replacement of buckets in the main structure by pointers
(indices) into the table. Although the approach is not new (cf. [15, 16]), it does not
appear to have been given a name. We refer to the technique as word-size truncated
recursion. In our structure the truncation occurs after two splittings. In fact, because
all our second-level buckets have the same range, our TSR consists of all possible
subsets of only a single small universe. In the rest of this section we give a detailed
description of the structure and its analysis.

On the first split we partition the universe into

p = Nsep/lgM = M/(logλM lgM)(3.6)

buckets, each of which has a range M1 = M/p. At the second level we have, again,
relatively sparse and dense buckets which now separate at the relative sparseness

r′sep = logλM1 = logλ(M/p) = O(lg(2)M).(3.7)

For sparse buckets we apply the solution of section 3.2, and for very dense ones
with more than the fraction α of their elements present we use a bitmap. For the
moderately dense buckets, with relative sparseness within the range defined in (3.5),
we reapply the splitting. However, this time the number of buckets is (cf. (3.6))

p1 = M1/(r
′
sep lgM1),(3.8)

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1633

so that each of these smaller buckets has the same range,

M2 = M1/p1 = O((lg(2)M)2),(3.9)

because lgM1 = O(lg(2)M).
At this point we use the TSR. This table consists of bitmap representations of all

subsets of the universe of size M2. Thus we can replace buckets in the main structure
with “indices” (pointers of varying sizes) into the table. We order the table first ac-
cording to the number of elements in the subset and then lexicographically. We store
a pointer in the TSR as a record consisting of two fields: ν, the number of elements
in the bucket, which takes dlgM2e bits; and β, the rank of this bucket with respect to
the lexicographic order among all buckets containing ν elements. To store β, by (2.1),
takes Bν = dlg (M2

ν

)e bits. The actual position (index) of the corresponding bitmap
of the bucket in the TSR is thus

ν−1∑
i=1

(
M2

i

)
+ β − 1.(3.10)

The sum is found by table lookup and so a search is performed in constant time.
This concludes the description of the data structure also presented in Algo-

rithm 3.1. As demonstrated in Algorithm 3.2, the data structure allows constant-time
membership queries, but it remains to be seen how much space it occupies. The al-
gorithm uses functions LookUpBM—look up bitmap; FindOL—find in ordered list; and
FindHT—find in hash table, whose descriptions are omitted. However, their particu-
lar implementation suggests the constants c, ε, λ, and α used for the fine tuning of
Algorithm 3.2.

Algorithm 3.1. Data structure for the solution of the static prob-
lem.

TYPE

tCases=

(eEmpty, (* N = 0 *)

eVerySparse1, (* 0 < N ≤ c *)

eVerySparse2, (* c < N ≤ M1−ε *)

eModeratelySparse, (* M1−ε < N ≤ M / logλ M *)

eModeratelyDense, (* M / logλ M < N ≤ α M *)

eVeryDense); (* α M < N < M/2 *)

tSet= RECORD CASE BOOLEAN OF

TRUE: (* current universe is at most M2 *)

ν, β;
FALSE: (* general case *)

N; (* size of the set *)

CASE tCases OF

eEmpty: ; (* nothing *)

eVerySparse1: (* (un)ordered list *)

list: ARRAY [] OF tElement;

eVerySparse2: (* hash table *)

hashTable: tHashTable;

eModeratelySparse: (* indexing *)

index: ARRAY [] OF ^tHashTable;

eModeratelyDense: (* (word-size truncated) recursion *)

subset: ARRAY [] OF ^tSet;

eVeryDense: (* bit map *)

1634 ANDREJ BRODNIK AND J. IAN MUNRO

bitmap: ARRAY [] OF BOOLEAN;

END;

END;

Algorithm 3.2. Membership query if elt is in N ⊆M, where |M| = M .

PROCEDURE Member (M, N, elt): BOOLEAN;

IF M ≤ M2 THEN

pointer:= binomials[N.ν] + N.β -1; (* pointer by (3.10), *)

RETURN LookUpBM (TSR[pointer], elt); (* bit map from the TSR *)

ELSE

IF N.N ≥ M/2 THEN negate:= FALSE; N:= N.N
ELSE negate:= TRUE; N:= M-N.N END;

CASE N OF

(* How sparse the set N is: *)

N = 0: answer:= FALSE (* empty set; *)

N ≤ c: answer:= FindOL (N.list, elt); (* very sparse set; *)

N ≤ M1−ε: answer:= FindHT (N.hashTable, elt); (* still very sparse set;
*)

N ≤ M/logλ(M): (* moderately sparse set: *)

M1:= Floor ((M/N)*lg(M)); (* split into buckets of range M1 by (3.3), *)

answer:= FindHT (N.index[elt DIV M1], elt MOD M1); (* search bucket; *)

N ≤ α*M: (* moderately dense set: *)

M1:= Floor (logλ(M)*lg(M)); (* split into subuniverses of size M1 by
(3.6), *)

answer:= (* and recursively search it; *)

Member (M1, N.subset[elt DIV M1]^, elt MOD M1)

(* very dense set; *)

ENDCASE;

IF negate THEN RETURN NOT answer

ELSE RETURN answer ENDIF;

ENDIF;

END Member;

In analyzing the space requirements, we are interested only in moderately dense
subsets, as otherwise we use the structures of sections 3.1 and 3.2. First we analyze the
main structure, i.e., the data structure without a TSR, and begin with the following
lemma.

Lemma 3.2. Suppose we are given a subset of N elements from the universe
M , and B is as defined in (2.1). If this universe is split into p buckets of ranges of
sizes Mi containing Ni elements, respectively (now, using (2.1), Bi = dlg (Mi

Ni

)e for

1 < i ≤ p), then B + p >
∑p
i=1Bi.

Proof. If
∑p
i=1Mi = M and

∑p
i=1Ni = N , we know that 0 <

∏p
i=1

(
Mi

Ni

) ≤ (MN)
and therefore

∑p
i=1 lg

(
Mi

Ni

) ≤ lg
(
M
N

)
. On the other hand, from (2.1) we have Bi =

dlg (Mi

Ni

)e and therefore Bi − 1 < lg
(
Mi

Ni

) ≤ Bi. This gives us
∑p
i=1(Bi − 1) < B and

finally B + p >
∑p
i=1Bi.

In simpler terms, Lemma 3.2 proves that if subbuckets are encoded at close to the
information-theoretic bound, then the complete bucket also uses an amount of space
close to the information-theoretic minimum, provided that the number of buckets is
small enough (p = o(B)) and that the index does not take too much space.

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1635

We analyze the main structure itself from the top to the bottom. The first-level
index consists of p pointers of lgM bits each. Therefore, using (3.6) and (3.2), the
size of that complete index is

p lgM = M/logλM = Nsep = o(B).(3.11)

For the sparse buckets on the second level we use the solution presented in sec-
tion 3.2. For the very dense buckets (r ≤ 1/α) we use a bitmap. Both of these
structures guarantee space requirements within a constant factor of the information-
theoretic bound on the number of bits. If the same also holds for the moderately
dense buckets, then, using Lemma 3.2 and (3.11), the complete main structure uses

O(B) bits. Note that we can apply Lemma 3.2 freely because the number of buckets,
p, is o(B).

Next we determine the size of the encoding of the second-level moderately dense
buckets, that is, the encoding of buckets with sparseness in the range of (3.5). For this
purpose we first consider the size of bottom-level pointers (indices) into the TSR. As
mentioned, the pointers are records consisting of two fields. The first field, ν (number
of elements in the bucket), occupies dlgM2e bits, and the second field takes at most
Bν . Since Bν ≥ dlgM2e, the complete pointer1 takes at most twice the information-
theoretic bound on the number of bits, Bν . On the other hand, the size of an index
is bounded using an expression similar to (3.11). Subsequently, this, together with
Lemma 3.2, also limits the size of space needed to store representation of moderately
dense buckets on the second level to be within a constant factor of the information-
theoretic bound. This, in turn, limits the size of the complete main structure to O(B)
bits.

It remains to compute the size of the TSR. There are 2M2 entries in the table and
each of the entries is M2 bits wide. By (3.9) M2 = O((lg(2)M)2). This gives us the
total size of the table

M22M2 = O((lg(2)M)2(logM)lg(2) M)

= O((lg lgM lgM)(lg(2)M(lgM)1+lg(2) M))

= o(lg rsepM/rsep) by (3.1)

= o(Nsep lg rsep) = o(B).(3.12)

Finally, this also bounds the size of the whole structure to O(B) bits and hence in
conjunction with Lemma 3.1 proves the following theorem.

Theorem 3.3. There is an algorithm which solves the static membership problem
in O(1) time using a data structure of size O(B) bits.

Note the constants in order notation of Theorem 3.3 are relatively small. Algo-
rithm 3.2 performs at most two recursive calls of Member and eight probes of the data
structure:

• two probes in the first call of Member: one to get N and one to compute M1;
• two probes in the second call of Member: same as above; and
• four probes in the last call of Member: two probes to get the number of

elements in the bucket, ν, and the lexicographic order of the bucket, β; the
next probe to get the sum in (3.10) by lookup in table binomials; and the
final probe into the TSR.

1Note that the size of a pointer depends on the number of elements that fall into the bucket.

1636 ANDREJ BRODNIK AND J. IAN MUNRO

Table 3.2
Space usage for sets of primes and SINs for various data structures.

Example M N B ours hash bit map

Primes 1.0 ·232 1.4 ·227 1.6 ·229 1.9 ·230 1.4 ·232 1.0 ·232

SINs 1.9 ·229 1.7 ·224 1.1 ·227 1.2 ·228 1.6 ·229 1.9 ·229

If perfect hashing is used in one of the steps, the number of probes remains comparable.
It is easy to see that by setting α = 1/2 and ε = 1, thereby eliminating the two

extreme cases, at most 2B + o(B) bits are required for the structure. In the next
section we reduce this bound to B + o(B) bits while retaining the constant query
time. However, in practice the o(B) term can be as much of a concern as the factor
of 2. Indeed the reader of the next section is justified in questioning the notion of
(lg(2)M1− 5)/6 becoming large in practice. We therefore first illustrate the tuning of
the method to specific values of M and N with two examples.

The first is the set of primes that fit in a single 32-bit word, so M = 232 and N is
of size approximately M/lnM . We pretend that the set of primes is random and that
we are to store them in a structure to support the query of whether a given number
is prime. Clearly, we could use some kind of compression (e.g., implicitly omit the
even numbers or sieve more carefully), but for the purpose of this example we will
not do so. In the second example we consider Canadian Social Insurance Numbers
(SINs) allocated to each individual. Canada has approximately 28 million people and
each person has a nine-digit SIN. One may want to determine whether or not a given
number is allocated. This query is in fact a membership query in the universe of size
M = 109 with a subset of size N = 28 · 106. One of the digits is a check digit, but we
will ignore this issue.

Both examples deal with moderately sparse sets and we can use the method of
section 3.2 directly, using buckets and a perfect hashing function described in [11]. On
the other hand, no special features of the data are used, which makes our space calcula-
tions slightly pessimistic. Using an argument similar to that of Lemma 3.2, we observe
that the worst-case distribution occurs when all buckets are equally sparse, and there-
fore we can assume that in each bucket there are N/p elements. Table 3.2 contains the
sizes of data structures for both examples comparing a hash function, a bitmap, and
a tuned version of our structure (computed from (3.4)) with the information-theoretic
bound.

4. Static solution using B + o(B) space. We now return to the tuning of
our technique for asymptotically large sets, achieving a B + o(B) bit space bound.

First, we observe that for very dense sets (r ≤ 1/α) we cannot afford to use a
bitmap because it always takes B+Θ(B) bits. Similarly we cannot afford to use hash
tables for very sparse sets (i.e., r ≥ M1−ε). Therefore, we categorize sets only as
sparse or dense (and not moderately dense). The key point in decreasing the space
bound, however, is redefining the separation point between sparse and dense set to

rsep = (lgM)lg(2) M ,(4.1)

and so

Nsep = M/(lgM)lg(2) M .(4.2)

While we intend B to indicate the exact value from (2.1), for sparse sets we can

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1637

still use the approximation N lg r from (2.5) since the error in (2.4) is bounded by
Θ(N) = o(B).

4.1. Sparse subsets. Again, sparse subsets are those whose relative sparseness
is greater than rsep. For such subsets we always apply the two-level indexing of
section 3.2. All equations from section 3.2, and in particular (3.4), still hold. However,
the second term of (3.4) can be tightened to o(B), because now the relative sparseness,
r, is at least rsep defined in (4.1). This proves the following lemma.

Lemma 4.1. If ∞ > r ≥ rsep as in (4.1) (i.e., N ≤ Nsep as in (4.2)), then there
is an algorithm to answer membership queries in constant time using a B + o(B) bit
data structure.

4.2. Dense subsets. Dense subsets are treated in the same way as moderately
dense subsets were treated in section 3.3. Thus most of the analysis can be taken
from that section with the appropriate changes of rsep (cf. (3.1)) and r′sep (cf. (3.7)).
To compute the size of the main structure, we first bound the size of pointers into the
TSR. Recall that each pointer consists of two fields: the number of elements in the
bucket, ν, and the rank (in lexicographic order) of the bucket in question among all
buckets with ν elements, β. Although the number of bits needed to describe ν can
be as large as the information-theoretic minimum for some buckets, this is not true
on the average. By Lemma 3.2, all pointers together occupy no more than B + o(B)
bits, where B is the exact one from (2.1). Furthermore, the indices are small enough
so that all of them together occupy o(B) bits (cf. (3.11)). As a result we conclude
that the main structure occupies B+ o(B) bits of space. It remains to bound the size
of the TSR at the redefined separation points.

With the redefinition of rsep in (4.1), (3.6) now gives

p = M/(rsep lgM) = M/(lgM)1+lg(2) M(4.3)

buckets on the first level. Each of these has a range of

M1 = M/p = rsep lgM = (lgM)1+lg(2) M .(4.4)

To simplify further analysis we set the redefined separation point between first-level
sparse and dense buckets (cf. (3.7)) to

r′sep = (lgM1)(lg(2) M1−5)/6,(4.5)

which is adequate to keep the space requirement of the sparse buckets to o(B)
(cf. (3.4)). The position of this separation point r′sep is further bounded by

r′sep = (lg(rsep lgM))(lg(2)(rsep lgM)−5)/6 using (4.4)

< (2 lg rsep)
(lg(2 lg rsep)−5)/6 since rsep > lgM by (4.1)

< (2(lg(2)M)2)(lg((lg(2) M)2)−4)/6 again using (4.1)

< ((lg(2)M)3)(lg(3)M − 2)/3 since 2 < lg(2)M

< (lg(2)M)lg(3) M−1/3 since (lg(2)M)−1 < 1/3.(4.6)

Next, the first-level dense buckets are further split into p1 (cf. (3.8)) subbuckets,
each of range M2 = M1/p1 = r′sep lgM1. Finally, since M2 is also the range of buckets
in the TSR, the size of the table is

1638 ANDREJ BRODNIK AND J. IAN MUNRO

M22M2 = r′sep(lgM1)M
r′sep
1

= r′sep lg(rsep lgM)(rsep lgM)r
′
sep by (4.4)

< 2(lg rsep)r
′
seprsep

2r′sep since rsep = (lgM)ω(1)

< (lg rsep)rsep
3r′sep−1

< lg rsep((lgM)lg(2) M)(lg(2) M)lg(3) M−1

/rsep by (4.6) and (4.1)

< lg rsep(lgM)(lg(2) M)lg(3) M

/rsep

= o(M lg rsep/rsep) = o(Nsep lg rsep)

= o(B)

for r ≤ rsep. This brings us to the main asymptotic result.
Theorem 4.2. There is an algorithm which solves the static membership problem

in O(1) time using data structure of size B + o(B) bits.
Proof. The discussion above dealt only with the space bound. However, since the

structure is more or less the same as that of section 3, the time bound can be drawn
from Theorem 3.3.

With Theorem 4.2 we proved only that the second term in space complexity is
o(B). In fact, using a very rough estimate from the second term of sparse first-level

buckets we get the bound O(B/lg(3)M). To improve the bound one would have to
refine values rsep and r′sep.

5. Dynamic version. There are several options for converting our ideas for a
static structure into one that supports insertions and deletions. In the interest of
simplicity we sketch and demonstrate only one.

Theorem 5.1. There exists a data structure requiring O(B) bits which supports
searches in constant time and insertions and deletions in constant expected amortized
time.

The basic approach is simple, and we make no attempt here to minimize the space
bound other than to retain the O(B) requirement. We use the method of section 3
but substitute dynamic perfect hashing [5] for the static perfect hashing scheme used
there.

A key observation is that, given a set of N elements, our structure can be built
in expected time O(N) and O(B) space if we use dynamic perfect hashing for the
hashing aspect. Indeed, any of our substructures can be built in linear time and in
space within a constant factor of that suggested in the preceding section. This also
applies to the TSR in that it can be created in time linear in its size.

Like dynamic perfect hashing itself, our dynamic scheme operates in phases. At
the beginning of a phase, a structure of N0 elements is built, but each dynamic
perfect hashing structure is given 1 + κ times as much space as it requires. Here κ is
an arbitrary positive constant. In addition the entire space allocated for the structure
is increased globally by another factor of 1 + κ.

As insertions and deletions are made, two critical conditions can arise. The
number of elements in the table may drop, say to N0/(1 + κ), in which case we
obtain a new block of space appropriate for a table of the new, reduced, size. A new
table is constructed in the new space and the old table is released. The other condition
is that we run out of space either in one of the hash tables or in the structure as a
whole. It is unlikely that we will run out of space in a single dynamic perfect hashing
structure until a number of updates proportional to its original size is made. However,

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1639

with our multilevel structure we could have a large number of insertions fall into the
same bucket, which could cause a dynamic perfect hashing structure to overflow after
a rather small number of updates relative to the size of the entire structure. If this
happens, we simply rebuild this subtable using the extra space allocated globally.

6. Discussion and conclusions. In this paper we have presented a solution
to a static membership problem. Our initial solution answers queries in constant
time and uses space within a small constant factor of the minimum required by the
information-theoretic lower bound. Subsequently, we improved the solution reducing
the required amount of space to the information-theoretic lower bound plus a lower-
order term. We also addressed the dynamic problem and proposed a solution based
on a standard doubling technique.

Data structures used in solutions consist of three major substructures which are
used in different ranges depending on the relative sparseness of the set at hand (that
is, depending on the ratio between the size of the set and the universe). When the set
is relatively sparse we use a perfect hashing; when the set is relatively dense we use
a bitmap; and in the range between we use recursive splitting (indexing). The depth
of the recursion is bounded by the use of word-size truncation and in our case it is 2.

The feasibility of the data structure was addressed through a couple of examples.
However, to make the structure more practical one would need to tune the parameters
c, ε, λ, and αmentioned in Algorithm 3.2. Moreover, for practical purposes it is helpful
to increase the depth of recursive splitting to cancel out the effect of a constant hidden
in the order notation and, in particular, to decrease the size of the TSR below the
information-theoretic minimum defined by N and M at hand. For example, in the
case of currently common 64- and 32-bit architectures, the depths can be increased
to 4 and 5, respectively.

There are several open problems. One may be able to reduce the space require-
ment of the dynamic structure to B+o(B) by first reexamining the details of dynamic
perfect hashing and reducing its storage requirements to N + o(N) words, assuming
the universe is large relative to N . Another intriguing problem is to decrease the
second-order term in the space complexity as there is still a substantial gap between
our result, B+ O(B/lg(3)M), and the information-theoretic minimum, B. But do we
need a more powerful machine model to close this gap?

Acknowledgments. We thank Martin Dietzfelbinger and the referees for many
very helpful comments that improved this paper.

REFERENCES

[1] A. Brodnik, Searching in Constant Time and Minimum Space (Minimæ Res Magni Momenti
Sunt), Ph.D. thesis, available as Technical report CS-95-41, University of Waterloo, Wa-
terloo, ON, Canada, 1995.

[2] A. Brodnik and J. I. Munro, Membership in constant time and minimum space, in Proceed-
ings, Second European Symposium on Algorithms, Lecture Notes in Comput. Sci. 855,
Springer-Verlag, 1994, pp. 72–81.

[3] Y. Choueka, A. Fraenkel, S. Klein, and E. Segal, Improved hierarchical bit-vector com-
pression in document retrieval systems, in 9th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, 1986, pp. 88–96.

[4] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, Polynomial hash functions are
reliable, in Proceedings, 19th International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Comput. Sci. 623, Springer-Verlag, 1992, pp. 235–246.

1640 ANDREJ BRODNIK AND J. IAN MUNRO

[5] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. Tarjan, Dynamic perfect hashing: Upper and lower bounds, SIAM J. Comput.,
23 (1994), pp. 738–761.

[6] M. Dietzfelbinger and F. Meyer auf der Heide, A new universal class of hash functions
and dynamic hashing in real time, in Proceedings, 17th International Colloquium on Au-
tomata, Languages and Programming, Lecture Notes in Comput. Sci. 443, Springer-Verlag,
New York, 1990, pp. 6–19.

[7] P. Elias, Efficient storage retrieval by content and address of static files, J. ACM, 21 (1974),
pp. 246–260.

[8] P. Elias and R. Flower, The complexity of some simple retrieval problems, J. ACM, 22
(1975), pp. 367–379.

[9] P. van Emde Boas, Machine models and simulations, in Handbook of Theoretical Computer
Science, Vol. A: Algorithms and Complexity, J. van Leeuwen, ed., Elsevier, Amsterdam,
1990, pp. 1–66.

[10] A. Fiat and M. Naor, Implicit O(1) probe search, SIAM J. Comput., 22 (1993), pp. 1–10.
[11] A. Fiat, M. Naor, J. Schmidt, and A. Siegel, Nonoblivious hashing, J. ACM, 39 (1992),

pp. 764–782.
[12] F. Fich and P. Miltersen, Tables should be sorted (on random access machines), in Proceed-

ings, Fourth Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci.
955, Springer-Verlag, New York, 1995, pp. 482–493.

[13] M. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with O(1) worst case
access time, J. ACM, 31 (1984), pp. 538–544.

[14] M. Fredman and D. Willard., Trans-dichotomous algorithms for minimum spanning trees
and shortest paths, J. ACM, 31 (1984), pp. 538–544.

[15] H. Gabow and R. Tarjan, A linear-time algorithm for a special case of disjoint set union, J.
Comput. System Sci. 30 (1985), pp. 209–221.

[16] T. Hagerup, K. Mehlhorn, and J. I. Munro, Optimal algorithms for generating discrete
random variables with changing distributions, in Proceedings, 20th International Collo-
quium on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 700,
Springer-Verlag, New York, 1993, pp. 253–264.

[17] H. Mairson, The program complexity of searching a table, in 24th IEEE Symposium on Foun-
dations of Computer Science, 1983, pp. 40–47.

[18] K. Mehlhorn and A. Tsakalidis, Data structures, in Handbook of Theoretical Computer
Science, Vol. A: Algorithms and Complexity, J. van Leeuwen, ed., Elsevier, Amsterdam,
The Netherlands, 1990, pp. 301–334.

[19] P. Miltersen, The bit probe complexity measure revisited, in Proceedings, 10th Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 665, Springer-
Verlag, New York, 1993, pp. 662–671.

[20] D. Mitrinović, Analytic Inequalities, Grundlehren Math. Wiss. 165, Springer-Verlag, Berlin,
1970.

[21] J. I. Munro and H. Suwanda, Implicit data structures for fast retrieval and update, J. Comput.
System Sci., 21 (1980), pp. 236–250.

[22] J. Schmidt and A. Siegel, The spatial complexity of oblivious k-probe hash functions, SIAM
J. Comput., 19 (1990), pp. 775–786.

[23] R. Tarjan and A. Yao, Storing a sparse table, Comm. ACM, 22 (1979), pp. 606–611.
[24] A.-C. Yao, Should tables be sorted?, J. ACM, 28 (1981), pp. 614–628.

DERANDOMIZING APPROXIMATION ALGORITHMS BASED ON
SEMIDEFINITE PROGRAMMING∗

SANJEEV MAHAJAN† AND H. RAMESH‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1641–1663

Abstract. Remarkable breakthroughs have been made recently in obtaining approximate solu-
tions to some fundamental NP-hard problems, namely Max-Cut, Max k-Cut, Max-Sat, Max-Dicut,
Max-bisection, k-vertex coloring, maximum independent set, etc. All these breakthroughs involve
polynomial time randomized algorithms based upon semidefinite programming, a technique pioneered
by Goemans and Williamson.

In this paper, we give techniques to derandomize the above class of randomized algorithms,
thus obtaining polynomial time deterministic algorithms with the same approximation ratios for the
above problems. At the heart of our technique is the use of spherical symmetry to convert a nested
sequence of n integrations, which cannot be approximated sufficiently well in polynomial time, to a
nested sequence of just a constant number of integrations, which can be approximated sufficiently
well in polynomial time.

Key words. NP-hard, approximation algorithm, derandomization, semidefinite programming

AMS subject classification. 68Q25

PII. S0097539796309326

1. Introduction. The application of semidefinite programming to obtaining ap-
proximation algorithms for NP-hard problems was pioneered by Goemans and
Williamson [9]. This technique involves relaxing an integer program (solving which
is an NP-hard problem) to a semidefinite program (which can be solved with a suffi-
ciently small error in polynomial time).

Recall the Max-Cut problem which requires partitioning the vertex set of a given
graph into two so that the number of edges going from one side of the partition to the
other is maximized. In a remarkable breakthrough, Goemans and Williamson showed
how semidefinite programming could be used to give a randomized approximation al-
gorithm for the Max-Cut problem with an approximation ratio of .878. This must be
contrasted with the previously best known approximation ratio of .5 obtained by the
simple random cut algorithm. Subsequently, techniques based upon semidefinite pro-
gramming have led to randomized algorithms with substantially better approximation
ratios for a number of fundamental problems.

Goemans and Williamson [9] obtained a .878 approximation algorithm for Max-
2Sat and a .758 approximation algorithm for Max-Sat, improving upon the previously
best known bound of 3/4 for both [18]. Max-2Sat requires finding an assignment
to the variables of a given 2Sat formula which satisfies the maximum number of
clauses. Max-Sat is the general version of this problem, where the clauses are no
longer constrained to have two variables each. Goemans and Williamson [9] also
obtained a .796 approximation algorithm for Max-Dicut, improving the previously
best known ratio of .25 given by the random cut algorithm. This problem requires
partitioning the vertex set of a given directed graph into two so that the number of
edges going from the left side of the partition to the right is maximized. Feige and

∗Received by the editors September 11, 1996; accepted for publication (in revised form) April 15,
1998; published electronically May 6, 1999. Part of this work was done while both authors were at
Max Planck Institut für Informatik, Saarbrücken, Germany, 66123.

http://www.siam.org/journals/sicomp/28-5/30932.html
†LSI Logic, Milpitas, CA (msanjeev@lsil.com).
‡Indian Institute of Science, Bangalore, India (ramesh@csa.iisc.ernet.in).

1641

1642 SANJEEV MAHAJAN AND H. RAMESH

Goemans [6] obtained further improved approximation algorithms for Max-2Sat and
Max-Dicut.

Karger, Motwani, and Sudan obtained an algorithm for coloring any k-colorable
graph with O(n1−3/(k+1) log n) colors [12]; in particular, for 3-colorable graphs, this
algorithm requires O(n.25 log n) colors. This improves upon the deterministic algo-

rithm of Blum [3], which requires O(n1− 1
k−4/3 log

8
5 n) colors for k-colorable graphs.

Frieze and Jerrum [7] obtained a .65 approximation algorithm for Max-bisection
improving the previous best known bound of .5 given by the random bisection algo-
rithm. This problem requires partitioning the vertex set of a given graph into two
parts of roughly equal size such that the number of edges going from one side of the
partition to the other is maximized. They also obtained a 1− 1

k +2 ln k
k2 approximation

algorithm for the Max k-Cut problem, improving upon the previously best known
ratio of 1− 1

k given by a random k-Cut.

Alon and Kahale [1] obtained an approximation algorithm for the maximum inde-
pendent set problem on graphs, which requires finding the largest subset of vertices,
no two of which are connected by an edge. For any constant k ≥ 3, if the given graph
has an independent set of size n/k+m, where n is the number of vertices, they obtain

an Ω(m
3
k+1 logm)-sized independent set, improving the previously known bound of

Ω(m
1
k−1) due to Boppana and Halldorsson [4].

All the new developments mentioned above are randomized algorithms. All of
them share the following common paradigm. First, a semidefinite program is solved
to obtain a collection of n vectors in n-dimensional space satisfying some properties
dependent upon the particular problem in question. This step is deterministic. (In
the Feige and Goemans paper [6], there is another intermediate step of generating a
new set of vectors from the vectors obtained above.) Second, a set of independent
random vectors is generated, each vector being spherically symmetric, i.e., equally
likely to pass through any point on the n-dimensional unit sphere centered at the
origin. Finally, the solution is obtained using some computation on the n given
vectors and the random vectors.

It is not obvious how to derandomize the above randomized algorithms, i.e., to
obtain a “good” set of random vectors deterministically. A natural way to derandom-
ize is to use the method of conditional probabilities [14, 16]. The problem that occurs
then is to compute the conditional probabilities in polynomial time.

Our contribution. The main contribution of this paper is a technique which
enables derandomization of all approximation algorithms based upon semidefinite
programming listed above. This leads to deterministic approximation algorithms
for Max-Cut, Max k-Cut, Max-bisection, Max-2Sat, Max-Sat, Max-Dicut, k-vertex
coloring, and maximum independent set with the same approximation ratios as their
randomized counterparts mentioned above. However, we must mention that running
times of our deterministic algorithms, though polynomial, are quite slow, for example,
O(n30) or so for 3-vertex coloring. In this paper, we do not make an effort to pinpoint
the exact polynomial or to reduce the running time (within the realm of polynomials,
that is).

Our derandomization uses the conditional probability technique. We compute
conditional probabilities as follows. First, we show how to express each conditional
probability computation as a sequence of O(n) nested integrals. Performing this
sequence of integrations with a small enough error seems hard to do in polynomial
time. The key observation which facilitates conditional probability computation in

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1643

polynomial time is that, using spherical symmetry properties, the above sequence of
O(n) nested integrals can be reduced to evaluating an expression with just a constant
number of nested integrals for each of the approximation algorithms mentioned above.
This new sequence of integrations can be performed with a small enough error in
polynomial time. A host of precision issues also crops up in the derandomization.
Conditional probabilities must be computed only at a polynomial number of points.
Further, each conditional probability computation must be performed within a small
error. We show how to handle these precision issues in polynomial time.

As mentioned above, our derandomization techniques apply to all the semidefinite
programming based approximation algorithms mentioned above. Loosely speaking,
we believe our techniques are even more general, i.e., applicable to any scheme which
follows the above paradigm and in which the critical performance analysis boils down
to an “elementary event” involving just a constant number of the n vectors at a time.
For example, in the graph coloring algorithm, only two vectors, corresponding to the
endpoints of some edge, need to be considered at a time. An example of an elementary
event involving three vectors is the Max-Dicut algorithm of Goemans and Williamson.
Another example of the same is the algorithm of Alon et al. [2] for coloring 2-colorable
3-uniform hypergraphs approximately.

The paper is organized as follows. In section 2, we outline the Goemans and
Williamson Max-Cut algorithm and the Karger–Motwani–Sudan coloring algorithm.
We then describe our derandomization scheme. Since the Karger–Motwani–Sudan
coloring algorithm appears to be the hardest to derandomize amongst the algorithms
mentioned above, our exposition concentrates on this algorithm. The derandomization
of the other algorithms is similar. Section 3 describes the derandomization procedure.
The following sections describe the derandomization procedure in detail.

2. The semidefinite programming paradigm. It is known that any concave
polynomial time computable function can be maximized (within some tolerance) over
a convex set with a weak separation oracle in polynomial time [8]. A weak separation
oracle (see [8, p. 51],) is one which, given a point y, either asserts that y is in or close
to the convex set in question or produces a hyperplane which “almost” separates all
points well within the convex set from y.

One such convex set is the set of semidefinite matrices, i.e., those matrices whose
eigenvalues are all nonnegative. A set formed by the intersections of half-spaces and
the set of semidefinite matrices is also a convex set. Further, this convex set admits
a weak separation oracle. A semidefinite program involves maximizing a polynomial
time computable concave function over one such convex set. Semidefinite programs
are therefore solvable (up to an additive error exponentially small in the input length)
in polynomial time. Goemans and Williamson first used this fact to obtain an ap-
proximation algorithm for Max-Cut.

The Goemans–Williamson Max-Cut algorithm. Goemans and Williamson
took a natural integer program for Max-Cut and showed how to relax it to a semidefi-
nite program. The solution to this program is a set of n unit vectors, one corresponding
to each vertex of the graph in question. These vectors emanate from the origin. We
call these vectors vertex vectors. These are embedded in n-dimensional space. This
leads to the question as to how a large cut is obtained from these vectors.

Goemans and Williamson chose a random hyperplane through the origin whose
normal is spherically symmetrically distributed; this hyperplane divides the vertex
vectors into two groups, which define a cut in the obvious manner. The expected

1644 SANJEEV MAHAJAN AND H. RAMESH

number E(W) of edges1 across the cut is
∑

(v,w)∈E Pr(sign(v · R) 6= sign(w · R)) =∑
(v,w)∈E arccos(v · w)/π, where E is the set of edges in the graph and v, w denote

both vertices in the graph and the associated vertex vectors. Goemans and Williamson
show that E(W) is at least .878 times the maximum cut.

Note that the n random variables involved above are the n coordinates which
define the normal R to the random hyperplane. Let R1, R2, . . . , Rn be these random
variables. For R to be spherically symmetrically distributed, it suffices that the Ri’s
are independent and identically distributed with a mean 0 and variance 1 normal
distribution; i.e., the density function is 1√

2π
e−x

2/2 [5]. Derandomizing the above

algorithm thus requires obtaining values for R1, . . . , Rn deterministically so that the
value of the cut given by the corresponding hyperplane is at least E(W).

The Goemans–Williamson derandomization procedure. Goemans and
Williamson actually gave the following derandomization procedure for their algorithm,
which turned out to have a subtle bug described below.

From the initial set of vertex vectors in n dimensions, they obtain a new set of
vertex vectors in n − 1 dimensions satisfying the property that the expected size of
the cut obtained by partitioning the new vertex vectors with a random hyperplane in
n − 1 dimensions is at least E(W). This procedure is repeated until the number of
dimensions is down to 1, at which point partitioning the vectors becomes trivial. It
remains to show how the new vertex vectors in n − 1 dimensions are obtained from
the older vertex vectors.

Consider an edge v, w, with vertex vector v = (v1, . . . , vn−1, vn) and vertex vector
w = (w1, . . . , wn−1, wn). Recall that R = (R1, . . . , Rn) is the normal to the random
hyperplane. Goemans and Williamson obtain v′, w′, R′ from v, w,R as follows: R′ =

(R1, . . . , Rn−2, sign(Rn−1)
√
R2
n−1 +R2

n), v′ = (v1, . . . , vn−2, x cos(α− γ)), and w′ =

(w1, . . . , wn−2, y cos(β− γ)), where γ = arctan(Rn/Rn−1), α = arctan(vn/vn−1), β =

arctan(wn/wn−1), x = sign(vn−1)
√
v2
n−1 + v2

n, and y = sign(wn−1)
√
w2
n−1 + w2

n.

These new definitions have the property that v′ ·R′ = v ·R and w′ ·R′ = w ·R. To
obtain the new vectors, one needs to decide on the value of γ. By the above property,
there exists a value of γ such that

∑
(v,w)∈E Pr(sign(v′·R′) 6= sign(w′·R′)|γ) ≥ E(W).

This value of γ is found by computing
∑

(v,w)∈E Pr(sign(v′ ·R′) 6= sign(w′ ·R′)|γ) for

a polynomial number of points in the suitably discretized interval [−π2 , π2]. At this
point, Goemans and William claim that the vector R′ is spherically symmetric for
any fixed value of γ, and therefore Pr(sign(v′ · R′) 6= sign(w′ · R′)|γ) = (v′·w′

|v′||w′|)/π
and is thus easy to compute.

The flaw lies in the fact that r = sign(Rn−1)
√
R2
n−1 +R2

n is not distributed

normally with mean 0 and variance 1, even for a fixed value of γ. In fact, given γ, it

can be shown to be distributed according to the density function |r|2 e−r
2/2. It is not

clear how Pr(sign(v′ ·R′) 6= sign(w′ ·R′)|γ) can be computed for this distribution of
R′.

The Karger–Motwani–Sudan coloring algorithm. Our description of this
algorithm is based on the conference proceedings version of their paper [12].

The Karger–Motwani–Sudan algorithm shows how to color a 3-colorable graph
of n vertices with O(n1/4 log n) colors. The authors use a semidefinite program to
obtain a set of vertex vectors such that v · w ≤ −1

2 for all edges (v, w). Note that

1For simplicity, we consider the unweighted Max-Cut problem.

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1645

if these vectors are somehow constrained to be in two dimensions, then there are at
most three distinct vectors, which would specify a 3-coloring. However, the output
to the semidefinite program are vectors in an n-dimensional space. It remains to be
described how a coloring is obtained from these vectors. This is done as follows.

Karger, Motwani, and Sudan choose r vectors, t1, . . . , tr, independently and at
random; each is spherically symmetric. These vectors are called centers. The number
of centers r will be spelled out in a few paragraphs. Let the jth coordinate of ti
be denoted by ti[j], 1 ≤ j ≤ n. Spherical symmetry is obtained by the following
procedure: each ti[j] is chosen independently at random from a normal distribution
with mean 0 and variance 1. The color that vertex v gets is simply c, where tc · v =
max1≤i≤r ti · v. In other words, the color assigned to a vertex v corresponds to
that amongst the r centers which has the largest projection on the vector v. Ties
in choosing the vector with the largest projection occur with probability 0 and can
therefore be ignored.

To determine how good the above procedure is, it is necessary to determine the
probability that an edge is bad; i.e., both its endpoints get the same color. Consider
two vertex vectors v, w, such that (v, w) is an edge e in G = (V,E). The probability
that v and w get the same color in the algorithm is given by Pr(Ee) =

∑r
k=1 Pr(Eek),

where Eek is the event that both get color tk. Eek can be written as

Eek : tk · v = max{t1 · v, . . . , tr · v} ∧ tk · w = max{t1 · w, . . . , tr · w}.

Karger, Motwani, and Sudan [12] show the following theorem (see Theorem 7.7,
Corollary 7.8, and Lemma 7.9 of [12]).

Theorem 2.1. For r = O(d1/3 log4/3 d), if edge e = (v, w) satisfies v · w ≤
−1/2 + O(1/ log r), then Pr(Ee) = O(1

d), where d is the maximum degree of the
graph. Thus

∑
e∈E Pr(Ee), i.e., the expected number of bad edges, can be made less

than n/4 by an appropriate choice of constants.

Thus, at the end of the above procedure, the expected number of bad edges is
less than n/4. All vertices except those upon which these bad edges are incident are
discarded (the colors assigned to them are final). The expected number of remaining
vertices is at most n/2. Markov’s inequality helps to bound their number with a
reasonable probability. These vertices are recolored by repeating the above procedure
O(log n) times, using a fresh set of colors each time. This gives anO(d1/3 log4/3 d log n)
coloring of a 3-colorable graph. This, combined with a technique due to Wigderson
[17], gives an O(n1/4 log n) coloring of a 3-colorable graph.

Derandomizing the above algorithm entails deterministically obtaining values for
ti[j]’s so that the number of bad edges is at most the expected number of bad edges
above, i.e., n/4. Actually it suffices to obtain values for ti[j]’s such that the number
of bad edges is at most n/4 +O(1). This is what we will do.

Note that the Goemans–Williamson algorithm uses a random hyperplane while
the Karger–Motwani–Sudan algorithm uses a set of random centers. Although these
two methods seem different, the hyperplane method can be interpreted as just the
center method with two centers.

3. The derandomization scheme. We give an overview of our derandomiza-
tion scheme in this section. For simplicity, we restrict our exposition here to the deran-
domization of the Karger–Motwani–Sudan algorithm for coloring 3-colorable graphs.
Our procedure easily generalizes to all other known semidefinite programming based
approximation algorithms listed in section 1.

1646 SANJEEV MAHAJAN AND H. RAMESH

Notation. For a vector u, we denote by u[l . . .m] the vector formed by the lth
to mth coordinates of u.

Our derandomization procedure has two steps. The first step described in section
3.1 is a discretization step. It is necessary for reasons which will become clear later.
This step obtains a new set of vertex vectors which are “close” to the initial vertex
vectors. The new vertex vectors satisfy the property that the Karger–Motwani–Sudan
randomized algorithm continues to give the claimed theoretical performance on these
vectors as well. This justifies the use of the new vectors in the actual derandomization
process, which is the second step and is described in section 3.2.

3.1. Preprocessing vertex vectors: Discretization. Before we describe our
derandomization scheme, we discretize the vertex vectors obtained from the semidef-
inite program so as to satisfy the following properties. Let ε be a parameter which is
Θ(1

n2).
1. Each component of each vector is at least inverse polynomial (more precisely,

Ω(ε)) in absolute value.
2. The dot product of any pair of vectors changes only by an inverse polynomial

(more precisely, O(nε)) in absolute value.
3. For each pair of vectors v, w and every h, 1 ≤ h < n, when the coordi-

nate system is rotated so that v[h . . . n] = (b1, 0, . . . , 0) and w[h . . . n] =
(b′1, b

′
2, 0, . . . , 0), b1 and b′2 are at least some inverse polynomial (more pre-

cisely, Ω(ε) and Ω(ε2), respectively) in absolute value.
The method for performing the discretization is given in Appendix 1. The purpose

of the above discretization will become clear in the next subsection. Of course, we
have to show that the above discretization does not cause much error. This is true
because v ·w, which was at most − 1

2 before the discretization, is at most −1
2 +O(1

n)
now for each edge e = (v, w). Then, by Theorem 2.1, the theoretical bounds of the
Karger–Motwani–Sudan randomized algorithm continue to hold for discretized vectors
as well.

From now on, all our references to vectors will be to the discretized vectors.

3.2. Outline of the derandomization procedure. The scheme is essentially
to use the method of conditional expectations to deterministically find values for the
vectors t1, . . . , tr so that the number of bad edges is just n/4 +O(1).

We order the conditional variables as follows: t1[1] . . . t1[n], t2[1] . . . t2[n], . . . ,
tr[1] . . . tr[n]. The values of these are fixed one by one, in order. So suppose that
the values t1[1 · · ·n], t2[1 · · ·n], . . . , ti[1 · · · j − 1] have been determined. We will show
how a value for ti[j] is determined.

Notation. Let E be an event. Then Pr(E|i, j, δ) denotes the probability that the
event E occurs when the values for all conditional variables before ti[j] have been fixed
as above and ti[j] itself is assigned value δ. So, for example, Pr(Eek|i, j, δ) denotes the
probability that event Eek occurs (i.e., that both endpoints of edge e get the color
associated with center tk) when the values for all conditional variables before ti[j]
have been fixed as above and ti[j] itself is assigned value δ. For notational brevity,
sometimes we use fe,k(δ) to denote Pr(Eke |i, j, δ).

Let p(δ) be the expected number of bad edges when the values for all condi-
tional variables before ti[j] are fixed as above and ti[j] is assigned value δ; p(δ) =∑
e∈E

∑r
k=1 fe,k(δ).

Note that both fe,k(δ) and p(δ) implicitly refer to some fixed values of i and j.
This will be the case throughout this paper.

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1647

Problem to be solved now. The problem now is to find a value of δ for which
p(δ) ≤∑e∈E

∑r
k=1 Pr(Eke |t1[1 . . . n], t2[1 . . . n], . . . , ti[1 . . . j − 1]). In other words, we

want a value of δ with the following property: the expected number of bad edges with
ti[j] assigned δ and t1[1 . . . n], t2[1 . . . n], . . . , ti[1 . . . j−1] fixed as above, is at most the
expected number of bad edges with just t1[1 . . . n], t2[1 . . . n], . . . , ti[1 . . . j− 1] fixed as
above.

Fixing ti[j]. Let τ =
∑
e∈E

∑r
k=1 Pr(Eke |t1[1 . . . n], t2[1 . . . n], . . . , ti[1 . . . j − 1]).

We want to compute a value δ such that p(δ) ≤ τ . We will not be able to compute
such a δ. However, we will show the following.

In Theorem 3.1, we claim that working with the discretized vertex vectors, we
can compute a value κ, such that p(κ) is within O(1/n2) of τ . Corollary 3.2 then
shows that this suffices to obtain the required bound on the number of colors.

Theorem 3.1. A value κ for ti[j] satisfying the following property can be com-
puted in polynomial time: p(κ) ≤ τ +O(1/n2).

From the above theorem, we get the following corollary.

Corollary 3.2. After all ti[j]’s have been fixed and colors assigned to vertices
as in the randomized algorithm, the number of bad edges is at most n/4 +O(1).

Proof. Note that the number of conditional variables ti[j] is nr ≤ n2 (actually for

3-colorable graphs r is much smaller, namely d1/3 log4/3 d, where d is the maximum
degree).

Recall that the expected number of bad edges before any of the random variables
was fixed is at most n/4. By Theorem 3.1, the expected number of bad edges after
the first conditional variable is fixed is at most n/4 + O(1/n2). An easy inductive
argument shows that the expected number of bad edges after the lth conditional
variable is fixed is at most n/4 +O(1/n2). After all the nr ≤ n2 conditional variables
have been fixed, the expected number of bad edges (which is just the number of bad
edges since all conditional variables are now fixed) is at most n/4 +O(1).

Note that while the Karger–Motwani–Sudan algorithm ensures that the number
of bad edges is less than n/4, our deterministic algorithm shows a slightly weaker
bound, i.e., at most n/4 + O(1). However, it can be seen easily that this weaker
bound on the number of bad edges also suffices to obtain the bound of O(n1/4 log n)
colors for coloring a 3-colorable graph deterministically.

The rest of this paper will be aimed at proving Theorem 3.1. This is accomplished
by performing the following steps, each of which is elaborated in detail in the following
sections.

Remark. The purpose of discretizing the vertex vectors earlier can be explained
now. The intention is to ensure that derivatives of the functions fe,k(δ) and p(δ) (with
respect to δ) are bounded by a polynomial in n. This, in turn, ensures that the values
of the above functions between any two nearby points will not be too different from
their values at these two points, thus facilitating discrete evaluation, which we will
need to do.

3.3. Steps required to prove Theorem 3.1. The following steps are per-
formed in our algorithm to obtain the value κ described above. Recall again that
we are working with fixed values of i, j and assuming that t1[1 . . . n], t2[1 . . . n], . . . ,
ti[1 . . . j − 1] have already been fixed.

Step 1. In order to compute κ, we would like to evaluate p(δ) at a number of
points. However, we can afford to evaluate p(δ) only for a polynomial number of
points. In section 4, we show how to obtain a set S of polynomial size such that

1648 SANJEEV MAHAJAN AND H. RAMESH

minδ∈S p(δ) − τ = O(1
n2). Therefore, in order to compute κ, it suffices to evaluate

p(δ) at points in S, as long as the evaluation at each point in S is correct to within
an additive O(1

n2) error.
Step 2. We now need to show how p(δ) can be evaluated within an additive O(1

n2)
error for any particular point δ in polynomial time. Of course, we need to do this
computation for points in S only, but the description of this step is for any general
point δ.

To compute p(δ), we need to compute fe,k(δ) to within an O(1
n5) additive error,

for each edge e and each center k (using the rather liberal upper bounds of O(n2)
for the number of edges and O(n) for the number of centers). We will describe this
computation for a particular edge e and a particular center k. This will involve two
substeps. The first substep will develop an expression involving a nested sequence of
integrations for fe,k(δ), and the second substep will actually evaluate this expression
within the required error.

Substep 2a. We show how to write fe,k(δ) as an expression involving a nested
sequence of integrations of constant depth. This is done is two stages. In the first
stage, in section 5, fe,k(δ) is expressed as a nested sequence of integrations of constant
depth, with the integrand comprising only basic functions and a function I, defined
below. Subsequently, in section 6, we express the function I itself as an expression
involving a constant number of nested integrations. This requires the use of spherical
symmetry properties. The fact that the depth of integration is a constant will be
significant in Substep 2b. If this were not the case, then it is not clear how fe,k(δ)
could be computed within the required error bounds at any point δ in polynomial
time.

Definition 3.3. Let b, b′ be vectors of the same dimension, which is at least
2. Let a be another vector of the same dimension whose entries are independent and
normally distributed with mean 0 and variance 1. Let x ≤ y and x′ ≤ y′ be in the range
−∞ . . .∞. Then I(b, b′, x, y, x′, y′) denotes Pr((x ≤ a · b ≤ y) ∧ (x′ ≤ a · b′ ≤ y′)).

Substep 2b. The expression for fe,k(δ) obtained in Substep 2a is evaluated to
within an O(1

n5) additive error in this step in polynomial time. This is described in
section 7.

Remarks on
dfe,k(δ)

dδ . We will also be concerned with the differentiability of p(δ)
and therefore fe,k(δ) for each edge e and each center k. From the expressions derived
for fe,k(δ) in section 5, the following properties about the differentiability of fe,k(δ)
will become clear. These properties will be used in section 4, i.e., to obtain the set S
as described in Step 1. We state these properties in a lemma for future reference. The
proof of this lemma in section 5 will not rely on any usage of the lemma in section 4.

Lemma 3.4. When j < n − 1, fe,k(δ) is differentiable (with respect to δ) for all
δ. When j = n − 1 or j = n, fe,k(δ) is differentiable for all but at most 2 values of
δ.

4. Step 1: Determining set S. We show how to obtain a set S of polyno-
mial size such that minδ∈S p(δ) − τ = O(1

n2). Recall from section 3.2 that p(δ) =∑
e∈E

∑r
k=1 fe,k(δ) =

∑
e∈E

∑r
k=1 Pr(Eke |i, j, δ).

We will use the following theorem from [5, Chapter 7, Lemma 2].

Theorem 4.1. For every a > 0,
∫∞
a

e
−δ2

2 dδ ≤ 1
ae−

a2

2 .

First, we show that we can restrict δ to the range −3
√

lnn . . . 3
√

lnn.
Lemma 4.2. min−3

√
lnn<δ<3

√
lnn p(δ)− τ = O(1

n2).

Proof. Note that τ =
∑
e∈E

∑r
k=1 Pr(Eek|t1[1] . . . ti[j−1]) = 1√

2π

∫∞
−∞ p(δ)e−

δ2

2 dδ.

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1649

Let δmin be the point in the above range at which p(δ) is minimized in this range.
Then

p(δmin) ≤
∫ 3
√

lnn

−3
√

lnn
p(δ)e−

δ2

2 dδ∫ 3
√

lnn

−3
√

lnn
e−

δ2

2 dδ
≤ τ

(1− 2
∫∞

3
√

lnn
e−

δ2

2 dδ)
≤ τ

1−O(1
n4.5)

by Theorem 4.1. Therefore, p(δmin) ≤ τ(1 + O(1
n4.5)) ≤ τ + O(1

n2.5) as
required.

The set S we choose will comprise points which are multiples of Θ(1/n9) in
the range −3

√
lnn . . . 3

√
lnn. In addition, it will contain all those points in the

above range at which p(δ) is not differentiable. By Lemma 3.4, there will be at most
2r|E| = O(n3) such points, at most 2 for each edge-center pair. These points will be
obtained in the process of writing down the expressions for fe,k(δ) in section 5. The

size of S is thus O(n9
√

lnn).
We need to show that evaluating p(δ) at just points in S suffices to approximate

min−3
√

lnn<δ<3
√

lnn p(δ) to within O(1
n2). For this, we will need to bound the deriva-

tive of p(δ) with respect to δ, wherever it exists, in the above range. This is done in
Lemma 4.3.

Lemma 4.3. At any point δ, |dp(δ)dδ | = O(n7) whenever it exists. Consider any
∆ = O(1

n9). Then it follows that |p(δ+ ∆)− p(δ)| ≤ O(1
n2), for any δ, such that p(δ)

is differentiable everywhere in the range]δ . . . δ + ∆[.

Proof. The second part follows from the fact that |p(δ+∆)−p(δ)|
∆ = O(n7). This is

because the slope of p() must equal p(δ+∆)−p(δ)
∆ at some point in the range]δ . . . δ+∆[.

To show the first part, we show in Appendix 2 that the derivative of each fe,k(δ)
is bounded by O(n4) wherever it exists. Thus the derivative of p(δ) will be bounded
by O(r|E|n4) = O(n7) as claimed.

Corollary 4.4. If δmin is the point in the range −3
√

lnn < δ < 3
√

lnn at
which p(δ) is minimized in this range, then p(δmin) can be approximated to within an
O(1

n2) additive error by evaluating p(δ) at the nearest point in S which is bigger than
δmin.

From Lemma 4.2 and Corollary 4.4, we conclude that minδ∈S p(δ) − τ = O(1
n2)

as required.

5. Substep 2a: Deriving expressions for fe,k(δ). Recall that fe,k(δ) =
Pr(Eek|i, j, δ) is the probability that both endpoints v, w of e are assigned the color
corresponding to center tk when the values for all conditional variables before ti[j] have
been determined and ti[j] is assigned δ. For a fixed edge e = (v, w) and some fixed k,
we show how to express fe,k(δ) in terms of some basic functions and the function I()
defined earlier. The exact expression will depend upon which of a number of cases
occurs. However, the thing to note is that the expression in each case will have only
a constant number of nested integrals. For each case, we will also determine points
δ, if any, at which fe,k(δ) is not differentiable. Recall that these points are necessary
in defining S in section 4. Then, in section 6, we will show how I() itself can be
expressed in terms of basic functions and nested integrals of depth just 2.

Notation. For convenience, we use the notation Pr((x ≤ tk · v ≤ x+ dx) ∧ (y ≤
tk · w ≤ y + dy)) to denote the density function of the joint probability distribution
of tk · v and tk · w, multiplied by dxdy. Informally speaking, the above term denotes
the probability that tk · v is in the infinitesimal range x . . . x+ dx and tk ·w is in the
infinitesimal range y . . . y+dy. Similarly, we use the notation I(v, w, x, x+dx, y, y+dy)

1650 SANJEEV MAHAJAN AND H. RAMESH

to denote Pr((x ≤ a·b ≤ x+dx)∧(y ≤ a·b′ ≤ y+dy)), where a is as in the definition of
I (see section 3.3). So what I(v, w, x, x+dx, y, y+dy) effectively denotes is the density
function of the joint probability distribution of a · b, a · b′ multiplied by dxdy. The
expression we derive for fe,k(δ) will have terms of the form I(v, w, x, x+dx, y, y+dy).
In section 6, we will expand this term out in terms of the actual density function.

Before giving the expressions for fe,k(δ), we need to reiterate a basic fact.
Fact 1. Note that ti+1, ti+2, . . . , tr are all completely undetermined, mutually in-

dependent, independent of t1, . . . , ti, and identically distributed in a spherically sym-
metric manner in n dimensions. ti[j + 1 . . . n] is also undetermined and is spherically
symmetrically distributed in n− j dimensions and is independent of ti+1, . . . , tr and
of all the previously fixed components of ti.

The cases to be considered. There are three cases, depending upon whether
k < i, k = i, or k > i. Each case has three subcases, depending upon whether
j < n − 1, j = n − 1, or j = n. We have to consider these three subcases separately
for the following reason: When j < n − 1, we will express the above probability in
terms of the function I(). For j = n − 1 and j = n, we cannot express the above
probability in terms of I(). (Recall that I() was only defined when its argument
vectors are at least two-dimensional.) Therefore, in these two subcases, we have to
express the probability directly. These two subcases themselves need to be separated
because the derivative of fe,k(δ) behaves differently in these two subcases, and the
behavior is crucial to the analysis (setting up S in section 4). Recall Lemma 3.4 in
this context.

Note from property 1 of section 3.1 that v[n], w[n] are nonzero. We will need to
divide by these quantities at points.

Notation. For vectors a, b, let a·b[l,m] denote a[l . . .m]·b[l . . .m] =
∑m
h=l a[h]b[h].

Let α′ = ti · v[1 . . . j − 1], and let β′ = ti · w[1 . . . j − 1].
Case 1 (k < 1). In this case, the center tk already has been determined. Let

tk · v = α and tk · w = β. Centers t1, . . . , ti−1 have also been determined. If one of
t1 · v, . . . , ti−1 · v is greater than α or if one of t1 · w, . . . , ti−1 · w is greater than β,
then Pr(Eek|i, j, δ) is 0. Otherwise, it is

fe,k(δ) = Pr(∧rl=i(tl · v ≤ α ∧ tl · w ≤ β)|i, j, δ).

Note that the events tl · v ≤ α ∧ tl · w ≤ β, i ≤ l ≤ r, are all independent.
Case 1.1 (j < n− 1). By Fact 1,

fe,k(δ) = Pr(ti · v ≤ α ∧ ti · w ≤ β|i, j, δ)× Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= Pr(α′ + δv[j] + ti · v[j + 1 . . . n] ≤ α ∧ β′ + δw[j] + ti · w[j + 1 . . . n] ≤ β)

× Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= Pr(ti · v[j + 1 . . . n] ≤ α− α′ − δv[j] ∧ ti · w[j + 1 . . . n] ≤ β − β′ − δw[j])

× Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= I(v[j + 1 . . . n], w[j + 1 . . . n],−∞, α− α′ − δv[j],−∞, β − β′ − δw[j])

× Ir−i(v, w,−∞, α,−∞, β).

Based on the following lemma, we claim that the derivative of fe,k(δ) with respect
to δ is always defined for the above case. The same will be true for Cases 2.1 and 3.1.

Lemma 5.1. I(b, b′,A(δ),B(δ), C(δ),D(δ)) is differentiable with respect to δ for
all δ, where A(),B(), C(),D() are linear functions of δ.

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1651

Proof. The proof of Lemma 5.1 will be described in section 6, after the expression
for I() is derived.

Case 1.2 (j = n− 1). We derive the expression for fe,k(δ) for the case when v[n]
and w[n] are both positive. The other cases are similar. By Fact 1 and the fact that
ti[n] is normally distributed,

fe,k(δ) = Pr(ti · v ≤ α ∧ ti · w ≤ β|i, n− 1, δ)

×Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= Pr(ti[n]v[n] ≤ α− α′ − δv[n− 1] ∧ ti[n]w[n] ≤ β − β′ − δw[n− 1])

×Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= Pr

(
ti[n] ≤ min{α− α

′ − δv[n− 1]

v[n]
,
β − β′ − δw[n− 1]

w[n]
}
)

×Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

=

 1√
2π

∫ min{α−α′−v[n−1]δ
v[n]

,
β−β′−w[n−1]δ

w[n]
}

−∞
e−z

2/2dz

× Ir−i(v, w,−∞, α,−∞, β).

Note that the derivative of fe,k(δ) with respect to δ is undefined at only one point,

namely, the value of δ for which α−α′−v[n−1]δ
v[n] = β−β′−w[n−1]δ

w[n] .

Case 1.3 (j = n). If ti · v = α′ + v[n]δ > α or ti ·w = β′ +w[n]δ > β, then ti has
a bigger dot product than tk with at least one of v or w, and therefore, fe,k(δ) = 0.
Otherwise

fe,k(δ) = Pr(ti · v ≤ α ∧ ti · w ≤ β|i, j, δ)Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= Pr(tr · v ≤ α ∧ tr · w ≤ β)r−i

= Ir−i(v, w,−∞, α,−∞, β).

Note that the derivative of fe,k(δ) with respect to δ is undefined only for two
values, namely, when α = α′ + v[n]δ and β = β′ + w[n]δ.

Case 2 (k > i). Let max{t1 · v, . . . , ti−1 · v} = α and max{t1 ·w, . . . , ti−1 ·w} = β.
tk · v must be greater than α and tk ·w must be greater than β for tk to be the color
assigned to both v and w. Then let A be the event tk · v ≥ α ∧ tk · w ≥ β and Bl be
the event tl · v ≤ tk · v ∧ tl · w ≤ tk · w, l ≥ i, l 6= k.

Note that the events Bl in this case are not independent. However, they are
independent for fixed values of tk ·v and tk ·w. In what follows, we will, at appropriate
points, fix tk ·v and tk ·w to be in some infinitesimal intervals and then integrate over
these intervals. Within such an integral, the values of tk ·v and tk ·w may be treated as
fixed, and therefore, the events corresponding to the Bl’s with the above values fixed
become independent. Note that we do not do any discretization or approximation
here. Rather, what we derive here is an exact integral using the slightly nonstandard
but intuitively illustrative notation Pr((x ≤ tk · v ≤ x+ dx) ∧ (y ≤ tk · w ≤ y + dy))
defined earlier in this section.

Case 2.1 (j < n− 1).

fe,k(δ) = Pr(A ∧Bi ∧ · · ·Bk−1 ∧Bk+1 ∧ · · ·Br|i, j, δ)
=

∫ ∞
x=α

∫ ∞
y=β

(Pr((x ≤ tk · v ≤ x+ dx) ∧ (y ≤ tk · w ≤ y + dy))

× Pr(ti · v ≤ x ∧ ti · w ≤ y|i, j, δ)

1652 SANJEEV MAHAJAN AND H. RAMESH

×
∏

l=i+1,...,k−1,k+1,...,r

Pr(tl · v ≤ x ∧ tl · w ≤ y|i, j, δ)

=

∫ ∞
x=α

∫ ∞
y=β

(I(v, w, x, x+ dx, y, y + dy)

×Pr(α′ + δv[j] + ti · v[j + 1, n] ≤ x ∧ β′ + δw[j] + ti · w[j + 1, n] ≤ y)

×Ir−i−1(v, w,−∞, x,−∞, y))

=

∫ ∞
x=α

∫ ∞
y=β

(I(v, w, x, x+ dx, y, y + dy)

×I(v[j + 1 . . . n], w[j + 1 . . . n],−∞, x− α′ − v[j]δ,−∞, y − β′ − w[j]δ)

×Ir−i−1(v, w,−∞, x,−∞, y)).

By Lemma 5.1, f(δ) is always differentiable with respect to δ in this case.
Case 2.2 (j = n − 1). Assume that v[n] and w[n] are positive. The remaining

cases are similar. Then fe,k(δ) = Pr(A∧Bi ∧ · · · ∧Bk−1 ∧Bk+1 ∧ · · · ∧Br|i, n− 1, δ)

=

∫ ∞
x=α

∫ ∞
y=β

(Pr((x ≤ tk · v ≤ x+ dx) ∧ (y ≤ tk · w ≤ y + dy))

×
∏

l=i,...,k−1,k+1,...,r

Pr(tl · v ≤ x ∧ tl · w ≤ y|i, n− 1, δ))

=

∫ ∞
x=α

∫ ∞
y=β

(I(v, w, x, x+ dx, y, y + dy)

× Pr(α′ + δv[n− 1] + ti[n]v[n] ≤ x ∧ β′ + δw[n− 1] + ti[n]w[n] ≤ y)

×
∏

l=i+1,...,k−1,k+1,...,r

Pr(tl · v ≤ x ∧ tl · w ≤ y))

=

∫ ∞
x=α

∫ ∞
y=β

(I(v, w, x, x+ dx, y, y + dy)

 1√
2π

∫ min{ x−α′−v[n−1]δ
v[n]

,
y−β′−w[n−1]δ

w[n]
}

z=−∞
e−z

2/2dz

× Ir−i−1(v, w,−∞, x,−∞, y))

=
1√
2π

∫ ∞
z=−∞

∫ ∞
x=max{α,α′+v[n]z+v[n−1]δ}

∫
y=max{β,β′+w[n]z+w[n−1]δ}

(I(v, w, x, x+ dx, y, y + dy)× Ir−i−1(v, w,−∞, x,−∞, y)e−z
2/2)dz.

Note that the derivative of fe,k(δ) with respect to δ is undefined only when
α−α′−v[n−1]δ

v[n] = β−β′−w[n−1]δ
w[n] . We see this by the following argument. Consider

the values of δ for which α−α′−v[n−1]δ
v[n] < β−β′−w[n−1]δ

w[n] . The above expression for

fe,k(δ) can then be split up into a sum of three terms described below. From the
resulting expression, it is clear that it is differentiable for all values of δ such that
α−α′−v[n−1]δ

v[n] < β−β′−w[n−1]δ
w[n] . A similar argument shows that fe,k(δ) is differentiable

for all values of δ such that α−α′−v[n−1]δ
v[n] > β−β′−w[n−1]δ

w[n] .

fe,k(δ) = 1√
2π

∫ α−α′−v[n−1]δ
v[n]

z=−∞

∫ ∞
x=α

∫ ∞
y=β

(I(v, w, x, x+ dx, y, y + dy)

× Ir−i−1(v, w,−∞, x,−∞, y)e−
z2

2 dz)

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1653

+
1√
2π

∫ β−β′−w[n−1]δ
w[n]

z=
α−α′−v[n−1]δ

v[n]

∫ ∞
x=α′+v[n]z+v[n−1]δ

∫
y=β

(I(v, w, x, x+ dx, y, y + dy)

× Ir−i−1(v, w,−∞, x,−∞, y)e−
z2

2 dz)

+
1√
2π

∫ ∞
z=

β−β′−w[n−1]δ
w[n]

∫ ∞
x=α′+v[n]z+v[n−1]δ∫ ∞

y=β′+w[n]z+w[n−1]δ

(I(v, w, x, x+ dx, y, y + dy)

× Ir−i−1(v, w,−∞, x,−∞, y)e−
z2

2 dz).

Case 2.3 (j = n). Since ti[n] is assigned to δ and all other components of ti are
fixed, tk ·v > max{α, α′+v[n]δ} and tk ·w > max{β, β′+w[n]δ} for tk to be the color
assigned to both v and w. Then fe,k(δ) = Pr(A∧Bi∧· · · , Bk−1∧Bk+1∧· · · , Br|i, n, δ)

=

∫ ∞
y=max{β,β′+w[n]δ}

∫ ∞
x=max{α,α′+v[n]δ}

(Pr((x ≤ tk · v ≤ x+ dx) ∧ (y ≤ tk · w ≤ y + dy))

×
∏

l=i+1,...,k−1,k+1,...,r

Pr(tl · v ≤ x ∧ tl · w ≤ y|i, n, δ))

=

∫ ∞
y=max{β,β′+w[n]δ}

∫ ∞
x=max{α,α′+v[n]δ}

(Pr((x ≤ tk · v ≤ x+ dx) ∧ (y ≤ tk · w ≤ y + dy))

×
∏

l=i+1,...,k−1,k+1,...,r

Pr(tl · v ≤ x ∧ tl · w ≤ y))

=

∫ ∞
max{β,β′+w[n]δ}

∫ ∞
max{α,α′+v[n]δ}

(I(v, w, x, x+ dx, y, y + dy)

× Ir−i−1(v, w,−∞, x,−∞, y)).

Note that the derivative of the above expression with respect to δ is undefined only
for two values, namely, when α = α′ + v[n]δ and β = β′ + w[n]δ.

Case 3 (k = i). Let max{t1 · v, . . . , ti−1 · v} = α and max{t1 ·w, . . . , ti−1 ·w} = β.
ti · v > α and ti · w > β for ti to be the color assigned to both v and w. Then, let A
be the event ti · v ≥ α ∧ ti · w ≥ β and Bl be the event tl · v ≤ ti · v ∧ tl · w ≤ ti · w,
l > i.

Again, note that the events Bl in this case are not independent. However, they
are independent for fixed values of ti · v and ti · w.

Case 3.1 (j < n− 1).

fe,k(δ) = Pr(A ∧Bi+1 ∧ · · · ∧Br|i, j, δ)
=

∫ ∞
x=α

∫ ∞
y=β

(I(v[j + 1 . . . n], w[j + 1 . . . n], x− α′ − v[j]δ, x+ dx− α′ − v[j]δ,

y − β′ − w[j]δ, y + dy − β′ − w[j]δ)

× Ir−i(v, w,−∞, x,−∞, y)).

By Lemma 5.1, f(δ) is always differentiable with respect to δ in this case.

Case 3.2 (j = n − 1). Assume that v[n] and w[n] are positive. The other cases
are similar.

1654 SANJEEV MAHAJAN AND H. RAMESH

fe,k(δ) = Pr(A ∧Bi+1 ∧ · · · ∧Br|i, n− 1, δ)

=
1√
2π

∫ ∞
z=max{α−α′−v[n−1]δ

v[n]
,
β−β′−w[n−1]δ

w[n]
}

× (Ir−i(v, w,−∞, α′+v[n− 1]δ+v[n]z,−∞, β′ + w[n− 1]δ + w[n]z)e−z
2/2dz).

Note that the derivative of the above expression with respect to δ is undefined

only when α−α′−v[n−1]δ
v[n] = β−β′−w[n−1]δ

w[n] .

Case 3.3 (j = n). If v[n]δ + α′ < α or w[n]δ + β′ < β then this probability is 0.
Otherwise,

fe,k(δ)=Pr(A ∧Bi+1 ∧ · · · ∧Br|i, j, δ)=Ir−i(v, w,−∞, α′ + v[n]δ,−∞, β′ + w[n]δ).

Note that the derivative of the above expression with respect to δ is possibly
undefined only for at most two values, namely, when α = α′+v[n]δ and β = β′+w[n]δ.

6. Substep 2a: Expressing I(b, b′, x, y, x′, y′). Recall that I(b, b′, x, y, x′, y′)
denotes Pr((x ≤ a · b ≤ y) ∧ (x′ ≤ a · b′ ≤ y′)), where a is a vector whose entries are
independent and normally distributed with mean 0 and variance 1. We show how to
derive an expression for this probability in terms of nested integrals of depth 2, with
the integrand comprising only basic functions. Let b and b′ be h-dimensional. Note
that h ≥ 2. Consider the h-dimensional coordinate system with respect to which b, b′

are specified.

The naive way. Note that a naive way to compute I is to perform a sequence of
h nested integrals, one over each of a[1] . . . a[h], the coordinates of the vector a. The
following is the naive expression for the case when b[h] and b′[h] are both positive. A
similar expression holds for other cases.(

1√
2π

)h ∫ ∞
a[1]=−∞

∫ ∞
a[2]=−∞

· · ·
∫ ∞
a[h−1]=−∞

∫ β

a[h]=α

e−
∑h

l=1
a[l]2

2 da[h]da[h−1] · · ·da[1],

where

α = max

{(
x−

h−1∑
1

a[i]b[i]

)
/b[h],

(
x′ −

h−1∑
1

a[i]b′[i]

)
/b′[h]

}
,

β = min

{(
y −

h−1∑
1

a[i]b[i]

)
/b[h],

(
y′ −

h−1∑
1

a[i]b′[i]

)
/b′[h]

}
.

Computing this integral to within the required error bounds in polynomial time
seems hard. We use the following method instead.

Our method. Note that since each coordinate of a is normally distributed with
mean 0 and variance 1, a has a spherically symmetric distribution. We rotate the
coordinate system so that b = (b1, 0, . . . , 0) and b′ = (b′1, b

′
2, 0, . . . , 0), where b1, b

′
2 ≥ 0.

As we will show shortly, both b1, b
′
2 will be strictly positive for all our calls to I. Let

a′[1]a′[2] . . . a′[h] be the coordinates of a under the rotated coordinate system. The
following lemma is key.

Lemma 6.1. The probability distribution of a′ is identical to that of a. That is, all
the coordinates of a′ are independently distributed according to the normal distribution
with mean 0 and variance 1.

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1655

Proof. Let x1, . . . , xh denote the initial coordinate system, and let x′1, x
′
2, . . . , x

′
h

denote the coordinate system after rotation. Then (x1, x2, . . . , xh)A = (x′1, x
′
2, . . . , x

′
h),

where A is the orthonormal rotation matrix; i.e., AAT = I.

Next, recall that the probability density function of a[l] is 1√
2π

e−
x2
l
2 for l = 1 . . . h.

We show that the probability density function of a′[l] is 1√
2π

e−
(x′
l
)2

2 for l = 1 . . . h. We

also show that the joint probability density function of the a′[l]s is just the product
of their individual density functions. The lemma then follows.

The density function of the joint distribution of a[1], . . . , a[h] is 1
(
√

2π)h
e−

Σh
1
x2
l

2 .

We now derive the joint distribution of a′[1], . . . , a′[h]. Since (x1, x2, . . . , xh)A =

(x′1, x
′
2, . . . , x

′
h) and A is orthonormal,

∑h
1 x

2
l =

∑h
1 (x′l)

2. Using the standard method
for performing coordinate transformation, the density function of the joint distribution

of a′[1], . . . , a′[h] is 1
(
√

2π)h
e−

Σh
1

(x′
l
)2

2 det(B), where B is the matrix whose p, qth entry

is
∂xp
∂x′q

. Since (x1, x2, . . . , xh) = (x′1, x
′
2, . . . , x

′
h)AT , the matrix B is easily seen to

be identical to A. Since A is orthonormal, det(A) = 1, and therefore, the density

function of the joint distribution of a′[1], . . . , a′[h] is just 1
(
√

2π)h
e−

Σh
1

(x′
l
)2

2 .

Finally, the density function of a′[l] can be seen to be 1√
2π

e−
(x′
l
)2

2 by integrating

away the other terms, i.e.,

∫ ∞
x1=−∞

∫ ∞
x2=−∞

· · ·
∫ ∞
xl−1=−∞

∫ ∞
xl+1=−∞

· · ·
∫ ∞
xh=−∞

(
1

(
√

2π)h
e−
∑h

1
(x′
l
)2

2

)

× dx′hdx′h−1 · · ·dx′l+1dx′l−1 · · ·dx′1 =
1√
2π

e−
(x′
l
)2

2 .

Having rotated the coordinate axes, note that a′ · b = a′[1]b1 and a′ · b′ = a′[1]b′1 +
a′[2]b′2. Now I(b, b′, x, y, x′, y′) denotes Pr((x ≤ a′[1]b1 ≤ y)∧ (x′ ≤ a′[1]b′1 + a′[2]b′2 ≤
y′)). We give the expression for I(b, b′, x, y, x′, y′) in the following lemma for future
reference.

Lemma 6.2.

I(b, b′, x, y, x′, y′) = Pr((x ≤ a′[1]b1 ≤ y) ∧ (x′ ≤ a′[1]b′1 + a′[2]b′2 ≤ y′))

= Pr

((
x

b1
≤ a′[1] ≤ y

b1

)
∧
(
x′ − a′[1]b′1

b′2
≤ a′[2] ≤ y′ − a′[1]b′1

b′2

))

=
1

2π

∫ y
b1

x
b1

e−
z2

2

∫ (y′−zb′
1
)

b′
2

(x′−zb′
1
)

b′
2

e−
z′2
2 dz′

 dz.

Lemma 6.3. |b1| = Ω(ε) = Ω(1
n2) and |b′2| = Ω(ε2) = Ω(1

n4).

Proof. Note that b, b′ are of the form v[h . . . n], w[h . . . n] for vertex vectors v and
w and h ≤ n−1 in all the calls we make to I(). The lemma now follows from property
3 of the discretization of vertex vectors in section 3.1.

1656 SANJEEV MAHAJAN AND H. RAMESH

Two remarks. We remark that Lemma 5.1 can be easily seen to hold by inspect-
ing the expression derived in Lemma 6.2, with x, x′, y, y′ replaced by linear functions
of δ. Second, recall from section 5 that some of the expressions involve occurrences
of I() with y = x+ dx and y′ = x′ + dx′. It can be easily seen that

Pr((x ≤ a·b ≤ x+dx)∧(x′ ≤ a·b′ ≤ x′+dx′)) =
1

2π

1

b1b′2
e−

(x/b1)2

2 e
− (x′−xb′

1
/b1)2

2(b′
2
)2 dx′ dx.

7. Substep 2b: Evaluating fe,k(δ). Sections 5 and 6 derived expressions for
fe,k(δ), which were nested integrals with constant depth (at most five). We now show
how to evaluate these expressions at any given value of δ in polynomial time with just
O(1

n5) error.
First, in Lemma 7.1, we show that all the expressions we derived in sections 5

and 6 involve integrations where the integrand has a particular form. This enables
us to focus on only integrations of this form. We show how to perform each such
integration within an inverse polynomial error, with the polynomial being chosen so
that the final error in computing fe,k(δ) is O(1

n5) as required.
To perform each such integration, we have to do two things: first, restrict the

range of the limits of integration and, second, convert the integration to a summation
and compute the summation. Each of these steps will incur an error, which we will
show can be made inverse polynomial, with the actual polynomial chosen to keep
the overall error within the stated bounds. The error in restricting the range of the
limits of integration is bounded in Lemma 7.2. To bound the error in converting
the integrations to summations, we give Lemma 7.3, which states that it suffices to
bound the absolute value of the derivative of the integrands. In Lemma 7.4, we show
that the derivative of each integrand is bounded by some polynomial in n. Together
Lemmas 7.1, 7.2, 7.3, and 7.4 imply that each integration can be computed to within
an inverse polynomial error. Finally, since expressions for fe,k(δ) involve up to five
nested integrations, the inverse polynomial error terms in each integration have to
be chosen so that the final combined error of all five integrations is O(1

n5). This
is described under the heading Algorithm for Performing Integrations. Lemma 7.1
obtains the general form of each integration.

Lemma 7.1. Each integration we perform can be expressed in the following form:∫ m

l

1√
2π

e−
h2

2 H(G(h))dh

for some function G(h), where H() is such that 0 ≤ H(e) ≤ 1 for all e.
Proof. This is easily verified by an inspection of the expressions to be integrated

in section 5 and the integral for I() in section 6. The functions H() are always
probabilities. The only fact to be noted is that I(v, w, x, x + dx, y, y + dy), which
appears in the integrals in Case 2 of section 5, equals

1√
2π

1

b1
e
− x2

2b2
1

1√
2π

1

b′2
e
−

(
y−x

b′
1
b1

)2

2(b′
2
)2 dydx =

1√
2π

e−
h2

2
1√
2π

e−
(h′)2

2 dh′dh,

where v = (b1, 0, . . . , 0) and w = (b′1, b
′
2, 0, . . . , 0) in the rotated coordinate system, as

in section 6, and the last equality is obtained by a change of variables h = x
b1

and

h′ =
y−xb′1/b1

b′2
. This change of variables affects the limits of the integration, but we

are not claiming any special properties for the limits.

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1657

Similarly,

I(v[j+1 . . . n], w[j+1 . . . n], x−α′−v[j]δ, x+dx−α′−v[j]δ, y−β′−w[j]δ, y+dy−β′−w[j]δ),

which appears in the integrals in Case 3 of section 5, equals

1√
2π

e−
h2

2
1√
2π

e−
(h′)2

2 dh′dh,

where v[j + 1 . . . n] = (b1, 0, . . . , 0) and w[j + 1 . . . n] = (b′1, b
′
2, 0, . . . , 0) in the rotated

coordinate system, as in section 6, and the last equality is obtained by a change of

variables h = x−α′−v[j]δ
b1

and h′ =
y−β′−w[j]δ− (x−α′−v[j]δ)b′

1
b1

b′2
.

The next lemma shows that limits of each integration we perform can be clipped
to some small range.

Lemma 7.2.∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

e−
h2

2 H(G(h))dh ≤
∫ m

l

1√
2π

e−
h2

2 H(G(h))dh

≤
∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

e−
h2

2 H(G(h))dh+O

(
1

na2/2

)
for all a > 0.

Proof. The first inequality is obvious. The second is derived using Theorem 4.1
as follows:

∫ m

l

1√
2π

(
e−

h2

2 H(G(h))
)

dh

≤
∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

(
e−

h2

2 H(G(h))
)

dh+

∫ −a√lnn

−∞

1√
2π

(
e−

h2

2 H(G(h))
)

dh

+

∫ ∞
a
√

lnn

1√
2π

(
e−

h2

2 H(G(h))
)

dh

≤
∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

(
e−

h2

2 H(G(h))
)

dh+

∫ −a√lnn

−∞

1√
2π

(
e−

h2

2

)
dh

+

∫ ∞
a
√

lnn

1√
2π

(
e−

h2

2

)
dh

≤
∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

(
e−

h2

2 H(G(h))
)

dh+ 2

∫ ∞
a
√

lnn

1√
2π

(
e−

h2

2

)
dh

≤
∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

(
e−

h2

2 H(G(h))
)

dh+O

(
1

na2/2

)
.

Theorem 4.1 is used in the last step above. The fact that 0 ≤ H() ≤ 1 is used in
the second step.

The next lemma is classical and will be used to show that each integration can be
converted to a summation by discretizing the range between the limits of integration.

1658 SANJEEV MAHAJAN AND H. RAMESH

Lemma 7.3. | ∫ l+ρ
l

1√
2π

(e−
h2

2 H(G(h)))dh− 1√
2π

e−
l2

2 H(G(l))ρ| ≤ Mρ2

2 , where M

upper bounds the derivative of 1√
2π

(e−
h2

2 H(G(h))) with respect to h.

Lemma 7.4. The derivative of 1√
2π

(e−
h2

2 H(G(h))) with respect to h is at most a

polynomial in n in absolute value in all our integrations.
Proof. The proof of Lemma 3 is found in Appendix 3.

Algorithm for performing integrations. The four lemmas above lead to
the following algorithm for performing integrations. Consider a particular integral∫m
l

1√
2π

(e−
h2

2 H(G(h)))dh. We first replace the above integral with

∫ min{m,a√lnn}

max{l,−a√lnn}

1√
2π

(
e−

h2

2 H(G(h))
)

dh.

Here a will be a constant to be fixed later. Next, we convert this integral to a sum by
dividing the range between the limits of integration into steps of size Θ(1

nb
) for some

b to be fixed later.
Suppose the derivative of 1√

2π
(e−

h2

2 H(G(h))) is bounded by O(nc). We compute

the total error incurred above.
By Lemma 7.2, clipping the limits of integration incurs an error of O(1

na2/2
). By

Lemma 7.3, the error incurred in each step of the summation is O(n
c

n2b), assuming

there is no error in computing 1√
2π

e−
l2

2 H(G(h)). However, H() itself may have been

obtained as a result of performing a nested integration or as a product of O(n) distinct
integrations nested one level deeper (as in Case 2.2 of section 5, for example). This
implies that the value of H() computed itself will have some error. So suppose we
have computed each of these nested integrations within an error of O(1

nf
). Then the

error in H() is O(1
nf−1). Therefore, the error incurred in each step of the summation

is O(n
c

n2b + 1
nf−1nb

); this sums to O(
√

lnnn
c

nb
+
√

lnn
nf−1) over all O(

√
lnnnb) steps. The

total error is thus O(1
na2/2

+
√

lnnn
c

nb
+
√

lnn
nf−1) and the time taken for this integration

(ignoring the time taken for the nested integrals in H()) is O(
√

lnnnb).
Finally, note that the depth of nesting in our integrals is at most five (in Case 2.2

of section 5, it is five). It can be easily seen that starting with the innermost integral
and working outward, values a, b can be chosen for these successive integrals based
upon the respective c, f values so that the final error is O(1

n5).

8. Comments on derandomizing the Max-Cut algorithm. We need to
show that discretizing the vectors in this case so as to satisfy properties 1–3 (with ε
chosen appropriately) of section 3.1 is justified. In the case of the Karger–Motwani–
Sudan algorithm, it was justified using Theorem 2.1.

To compensate for this theorem we need only to observe that the value of the
Goemans and Williamson objective function (that is,

∑
i,j wij

1−vi.vj
2) for the dis-

cretized vector configuration is at least (1 − 1
poly(n)) times that for the initial vector

set (this is because the sum of the edge weights is at most twice the value of the
objective function for the initial vector set). The rest is just a matter of choosing the
appropriate inverse polynomial terms.

9. Conclusions. We believe that the techniques used here can be used to deran-
domize a general class of randomized algorithms based on semidefinite programming.
Loosely speaking, this class would comprise those whose expected value calculations

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1659

involve just a constant number of vectors in each “elementary” event. This class
contains all randomized semidefinite programming based algorithms known so far. It
would be nice to obtain a general theorem to this effect.

Also, it would be nice to obtain a more efficient derandomization scheme, since the
running time of our algorithm is a large polynomial, around O(n30) for the 3-coloring
problem.

Appendix 1. Discretizing vertex vectors. Let ε be a parameter which is
Θ(1

n2). In this section, we show how to discretize the vertex vectors so as to satisfy
the three properties specified in section 3.1.

The vertex vectors are considered one by one in the order v1, v2, . . . , vn. We
describe the processing of vector vi.

First, each entry in vi is rounded upward (in absolute value) to the nearest nonzero
multiple of ε. Next, up to 2nε is added to vi[n−1] so that |vi[n−1]vj [n]− vi[n]vj [n−
1]| > ε2 for every j < i. This is done to satisfy property 3. Property 1 is clearly
satisfied for vi now. Property 2 is also satisfied because each component of vi other
than vi[n − 1] changes by O(ε) and vi[n − 1] changes by O(nε). However, note that
in this process the vertex vectors no longer remain unit vectors. In fact, 1 ≤ |vi|2 ≤ 2
now, for small enough ε, i.e., for large enough n. So we divide each vector vi by its
new norm and make it a unit vector. Since we divide by a number between one and
two, property 1 and property 2 continue to hold.

It remains to show that property 3 holds. We need the following lemma.
Lemma 9.1. For each pair of vertex vectors v, w and every h, 1 ≤ h < n, when

the coordinate system is rotated so that v[h . . . n] = (b1, 0, . . . , 0) and w[h . . . n] =
(b′1, b

′
2, 0, . . . , 0), b1 and b′2 are at least some inverse polynomial (more precisely, Ω(ε)

and Ω(ε2), respectively) in absolute value.
Proof. Let v′ = v[h . . . n] and w′ = w[h . . . n]. Note that b1 is just the norm of v′

which is Ω(ε) by property 1. Also note that |b′2| =
√
||w′|2 − (v′·w′)2

|v′|2 |, since b′2 is just

the projection of w′ on the line orthogonal to v′ in the plane containing v′ and w′. So

we need to show that ||w′|2 − (v′·w′)2

|v′|2 | = Ω(ε4) for every h 1 ≤ h < n.

First consider h = n − 1. (v′ · w′)2 = (v[n − 1]w[n − 1] + v[n]w[n])2 = (v[n −
1]2 + v[n]2)(w[n − 1]2 + w[n]2) − (v[n − 1]w[n] − w[n − 1]v[n])2 ≤ |v′|2|w′|2 − Ω(ε4).

Therefore, |w′|2 − (v′·w′)2

|v′|2 = Ω(ε4).

Next consider h < n − 1. Let l = v[h . . . n − 2] and m = w[h . . . n − 2]. Let
l′ = v[n − 1, n] and m′ = w[n − 1, n]; (v′ · w′)2 = (l ·m + l′ ·m′)2 = (l ·m)2 + (l′ ·
m′)2 +2(l′ ·m′)(l ·m) ≤ |l|2|m|2 +(l′ ·m′)2 +2|l′||m′||l||m|. By the previous paragraph,
(l′ ·m′)2 ≤ |l′|2|m′|2 − Ω(ε4). Therefore, (v′ · w′)2 ≤ |l|2|m|2 + |l′|2|m′|2 + |l′|2|m|2 +
|l|2|m′|2 − Ω(ε4) ≤ (|l|2 + |l′|2)(|m|2 + |m′|2)− Ω(ε4) = |v′|2|w′|2 − Ω(ε4). Therefore,

||w′|2 − (v′·w′)2

|v′|2 | = Ω(ε4).

Appendix 2. Proof of Lemma 4.3. We show that for each edge e and each
center k, the derivative of fe,k(δ) (with respect to δ) is O(n4).

Recall from section 5 that the expression for fe,k(δ) depends upon which one of
Cases 1, 2, and 3 and which one of the conditions j < n− 1, j = n− 1, j = n hold.

We show the above claim only for one representative case, i.e., Case 2.1, where
j < n− 1. The other cases can be shown similarly. For Case 2.1

fe,k(δ) =

∫ ∞
α

∫ ∞
β

g(x, y)h(x, y, δ)dydx,

1660 SANJEEV MAHAJAN AND H. RAMESH

where

g(x, y)dydx = I(v, w, x, x+ dx, y, y + dy)Ir−i−1(v, w,−∞, x,−∞, y)

and

h(x, y, δ) =I(v[j + 1 . . . n], w[j + 1 . . . n],−∞, x− ti · v[1 . . . j − 1]− v[j]δ,−∞,
y−ti · w[1 . . . j − 1]− w[j]δ).

Now

|f ′e,k(δ)| ≤
∫ ∞
α

∫ ∞
β

|g(x, y)|
∣∣∣∣∣∂h(x, y, δ)

∂δ

∣∣∣∣∣dydx ≤ max
x,y

∣∣∣∣∣∂h(x, y, δ)

∂δ

∣∣∣∣∣
since

∫∞
α

∫∞
β
g(x, y)dydx is a probability and therefore ≤ 1. We show that |f ′e,k(δ)| =

O(n4) by estimating maxx,y |∂h(x,y,δ)
∂δ |. Let c(x, δ) = x − ti · v[1 . . . j − 1] − v[j]δ =

c′ − v[j]δ and d(y, δ) = y − ti · w[1 . . . j − 1]− w[j]δ = d′ − w[j]δ.

By Lemma 6.2, h(x, y, δ) = 1
2π

∫ c(x,δ)/b1
−∞ e−

z2

2 (
∫ (d(y,δ)−zb′1)/b′2
−∞ e−

z′2
2 dz′)dz, where

b1, b
′
1, b
′
2 are obtained by rotating the coordinates, as in section 6. Let G(y, δ, l) =

1√
2π

∫
e−

l2

2 H(y, δ, l)dl, where H(y, δ, l) = 1√
2π

∫ (d(y,δ)−lb′1)/b′2
−∞ e−

z′2
2 dz′. Then ∂h

∂δ can

be expressed as A+B, where

A =
1√
2π

∫ c(x,δ)/b1

−∞
e−

l2

2
∂H(y, δ, l)

∂δ
dl

and

B =
∂G

∂l l=c(x,δ)/b1

∂l

∂δ l=c(x,δ)/b1
.

Therefore, |∂h∂δ | = |A+B| ≤ |A|+ |B|. Next, we bound |A| and |B| separately.

|B| is bounded as follows: Note that |∂G∂l | = | 1√
2π

e−
l2

2 H(y, δ, l)| ≤ 1 for all l,

since 0 ≤ H(y, δ, l) ≤ 1. Further, | ∂l∂δ l=c(x,δ)/b1 | = |v[j]/b1| = O(n2), by Lemma 6.3.

Therefore, |B| = O(n2).

|A| is bounded as follows: |A| = | 1√
2π

∫ c(x,δ)/b1
−∞ e−

l2

2
∂H(y,δ,l)

∂δ dl| ≤ maxy,δ,l |∂H(y,δ,l)
∂δ |.

It remains to bound maxy,δ,l |∂H(y,δ,l)
∂δ |. This is done below using the same technique

as above. Recall that

H(y, δ, l) =
1√
2π

∫ (d(y,δ)−lb′1)/b′2

−∞
e−

z′2
2 dz′.

Let J(m) = 1√
2π

∫
e−

m2

2 dm. Then |∂H∂δ | = | dJdmm=(d(y,δ)−lb′1)/b′2
||∂m∂δ m=(d(y,δ)−lb′1)/b′2

| ≤
|w[j]/b′2| = O(n4), by Lemma 6.3. Therefore, |f ′e,k(δ)| ≤ |A|+ |B| = O(n4).

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1661

Appendix 3. Proof of Lemma 7.4.

Bounding derivatives of integrands in I(). Recall that

I(b, b′, x, y, x′, y′) =
1√
2π

∫ y
b1

x
b1

e
−z2

2

∫ (y′−zb′
1
)

b′
2

(x′−zb′
1
)

b′
2

1√
2π

e
−z′2

2 dz′

dz.

Here b, b′ have been rotated so that b = (b1, 0, . . . , 0) and b′ = (b′1, b
′
2, 0, . . . , 0).

The derivative of 1√
2π

e
−z′2

2 with respect to z′ is − 1√
2π
z′e
−z′2

2 , which is bounded

in absolute value by 1√
2π

e
−1
2 , a constant.

Next, we compute the derivative of the outer integrand. We first denote the inner
integral by h(z). Then we compute the derivative of the function to be integrated;

that is, 1√
2π
h(z)e

−z2
2 is

1√
2π

−ze−z22 h(z) +
1

2π
e
−z2

2 (−b′1/b′2)

e
−1
2

(
y′−zb′

1
b′
2

)2

− e
− 1

2

(
x′−zb′

1
b′
2

)2
 .

The first term in this sum is bounded in absolute value by a constant as h(z) ≤ 1,
and the second term is bounded by O(n4) by Lemma 6.3. Hence the derivative is
bounded by O(n4).

Bounding derivatives of other integrands. We bound the derivatives for
the integrands in Case 2.2 of section 5. This is the most complicated case. For other
cases, a similar procedure works.

Recall that in this case, the conditional probability fe,k(δ) can be split into three
terms. We show how the derivatives of the integrands involved in the first term can
be bounded by polynomial functions of n. The remaining two terms are similar.

The first term is

g(δ) = 1√
2π

∫ α−α′−v[n−1]δ
v[n]

−∞
∫∞
x=α

∫∞
y=β

I(v, w, x, x+ dx, y, y + dy)

×Ir−i−1(v, w,−∞, x,−∞, y)e
−z2

2 dz.

To simplify notation, we denote by c the value α−α′−v[n−1]δ
v[n] . As in section 6, let

the coordinate system be so rotated that the new coordinates of v are (b1, 0, . . . , 0) and
the new coordinates of w are (b′1, b

′
2, 0, . . . , 0), where b1, b

′
2 ≥ 0. Recall from section 6

that

I(v, w, x, x+ dx, y, y + dy) =
1√
2π

1

b1
e
−x2

2b1
2

1√
2π

1

b′2
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

dydx.

Therefore,

g(δ) =
∫ c
z=−∞

∫∞
x=α

∫∞
y=β

Ir−i−1(v, w,−∞, x,−∞, y) 1
(2π)b1b′2

e
−x2

2b1
2 e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

× 1√
2π

e−z
2/2dydxdz.

We first consider innermost integral, that is, with respect to y. The term to be
integrated is

Ir−i−1(v, w,−∞, x,−∞, y)
1√

2πb′2
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

.

1662 SANJEEV MAHAJAN AND H. RAMESH

The other terms are independent of y. Its derivative with respect to y is

1√
2πb′2

(r − i− 1)Ir−i−2(v, w,−∞, x,−∞, y)
∂I(v, w,−∞, x,−∞, y)

∂y
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

− 1√
2πb′2

Ir−i−1(v, w,−∞, x,−∞, y)

(
y − x

b1
b′1

b′2
2

)
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

.

Now

∂I(v, w,−∞, x,−∞, y)

∂y
=

1

2πb′2

∫ x
b1

−∞
e−

1
2 z

2

e
− 1

2

(
y−b′

1
z

b′
2

)2

dz = O

(
1

b′2

)
.

Observe that as the functions I, xe−x
2/2 are all bounded by constants, the value

of the above derivative is bounded in absolute value by O
(

(r−i−1)
(b′2)2 + 1

(b′2)2

)
. Since

r− i− 1 ≤ n, b1 = Ω(1
n2), b′2 is Ω(1

n4) by Lemma 6.3, the above derivative is bounded
by O(n9).

The second innermost integral, i.e., the one with respect to x, is considered next.

The function inside the integral is h(x) 1√
(2π)b1

e
−x2

2b2
1 , where

h(x) =

∫ ∞
y=β

Ir−i−1(v, w,−∞, x,−∞, y)
1√

2πb′2
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

dy.

Since 0 ≤ I() ≤ 1, h(x) = O(1). The derivative with respect to x is

− x√
2πb31

e
− x2

2b2
1 h(x)

+
1√

2πb1
e
− x2

2b2
1

∫ ∞
β

(r − i− 1)Ir−i−2(v, w,−∞, x,−∞, y)
∂I(v, w,−∞, x,−∞, y)

∂x

× 1√
2πb′2

e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

dy

+
1√

2πb1
e
− x2

2b2
1

∫ ∞
β

Ir−i−1(v, w,−∞, x,−∞, y)
1√

2πb′2

b′1(y − xb′1
b1

)

(b′2)2b1
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

dy.

Here,

∂I(v, w,−∞, x,−∞, y)

∂x
=

1

2πb1
e
− x2

2b2
1

∫ y−xb′
1
/b1

b′
2

−∞
e−

1
2 (z′)2

dz′ = O

(
1

b1

)
.

Since xe−
x2

2 , h(x), I() are all O(1), r − i− 1 ≤ n, and∫ ∞
β

1

b′2
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

dy = O(1),

∫ ∞
β

b′1(y − x
b1
b′1)

b1(b′2)3
e
− 1

2

(
y− x

b1
b′
1

b′
2

)2

dy = O

(
b′1
b1b′2

)
= O

(
1

b1b′2
2

)
,

DERANDOMIZING SEMIDEFINITE APPROXIMATION ALGORITHMS 1663

the above derivative is bounded by O(n
b12 + 1

b′2
2b21

) = O(n12), by Lemma 6.3.

This leaves only the outermost integration, where the integrand is

1√
2π

e−
1
2 z

2

∫ ∞
x=α

h(x)
1√

2πb1
e
− x2

2b2
1 dx,

whose derivative with respect to z is O(1).

Acknowledgments. We thank Naveen Garg, Kurt Mehlhorn, David Williamson,
Michel Goemans, and Madhu Sudan for comments. We thank Aravind Srinivasan for
reading a draft of the manuscript and for his detailed comments. We thank the anony-
mous referees for many comments which have improved the readability of this paper
and also for pointing us to the tighter tail bounds for the normal distribution, which
improves the running time of some parts of the algorithm.

REFERENCES

[1] N. Alon and N. Kahale, Approximating the independence number via the θ-function, Math.
Programming, 80 (1998), pp. 253–264.

[2] N. Alon, P. Kelsen, S. Mahajan, and H. Ramesh, Approximately coloring hypergraphs,
Nordic J. Comput. 3 (1996), pp. 425–439.

[3] A. Blum, New approximation algorithms for graph coloring, J. Assoc. Comput. Mach., 41
(1994), pp. 470–516.

[4] R. Boppana and M. Halldorsson, Approximating maximum independent sets by excluding
subgraphs, BIT, 32 (1992), pp. 180–196.

[5] W. Feller, Introduction to Probability Theory and its Applications, Vol. 1, John Wiley, New
York, 1966.

[6] U. Feige and M. Goemans, Approximating the value of two prover proof systems, with applica-
tions to Max-2Sat and Max- Dicut, Proc. 3rd Israeli Symposium on Theory of Computing
and Systems, Tel Aviv, 1995, pp. 182–189.

[7] A. Frieze and M. Jerrum, Improved approximation algorithms for Max k-Cut and Max Bi-
section, Integer Programming and Combinatorial Optimization, Lecture Notes in Comput.
Sci., Springer-Verlag, Berlin, 1995, pp. 1115–1165.

[8] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, New York, 1987.

[9] M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach., 42
(1996), pp. 1115–1145.

[10] M. Halldorsson, A still better performance guarantee for approximate graph colouring, In-
form. Process. Lett. 45 (1993), pp. 19–23.

[11] D.S. Johnson, Worst case behaviour of graph coloring algorithms, in Proc. 5th South-Eastern
Conference on Combinatorics, Graph Theory and Computing, Congressus Numeratium X,
(1974), pp. 513–527.

[12] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring by semidefinite pro-
gramming, Proc. 35th IEEE Symposium on Foundations of Computer Science, Santa Fe,
NM, 1994, pp. 1–10.

[13] S. Khanna, N. Linial, and S. Safra, On the hardness of approximating the chromatic number,
Proc. 2nd Israeli Symposium on Theory and Computing Systems, 1993, pp. 250–260.

[14] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing
integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

[15] P. Raghavan, Randomized Approximation algorithms in combinatorial optimization, Founda-
tions of Software Technology and Theoretical Computer Science, Lecture Notes in Comput.
Sci., Springer-Verlag, New York, 1994, pp. 300–317.

[16] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, PA, 1987.
[17] A. Wigderson, Improving the performance guarantee of approximate graph coloring, J. Assoc.

Comput. Mach., 30 (1983), pp. 729–735.
[18] M. Yannakakis, On the Approximation of Maximum Satisfiability, in Proc. 3rd Annual ACM-

SIAM Symposium on Discrete Algorithms, 1992, SIAM, Philadelphia, PA, pp. 1–9.

THE DYNAMIC PARALLEL COMPLEXITY OF COMPUTATIONAL
CIRCUITS∗

GARY L. MILLER† AND SHANG-HUA TENG‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1664–1688

Abstract. We establish connections between parallel circuit evaluation and uniform algebraic
closure properties of unary function classes. We use this connection in the development of time-
efficient and processor-efficient parallel algorithms for the evaluation of algebraic circuits. Our al-
gorithm provides a nontrivial upper bound on the parallel complexity of the circuit value problem
over {R,min,max,+} and {R+,min,max,×}. We partially answer an open question of Miller, Ra-
machandran, and Kaltofen by showing that circuits over a polynomial-bounded noncommutative
semiring and circuits over infinite noncommutative semirings with a polynomial-bounded dimension
over a commutative semiring can be evaluated in polylogarithmic time in their size and degree using
a polynomial number of processors. We also present an improved parallel algorithm for Boolean
circuits.

Key words. algebraic computations, Boolean circuits, complexity, NC problems, parallel algo-
rithms, the circuit value problem

AMS subject classifications. 05C50, 68R10

PII. S0097539795281724

1. Introduction. The circuit value problem has been recognized as an important
problem in parallel computation [3, 5, 7, 18]. In 1975, Ladner [5] showed that the
problem of the evaluation of Boolean circuits is P-complete. Goldschlager [3] extended
Ladner’s result to monotone Boolean circuits and planar Boolean circuits.

In spite of the P-completeness result, NC algorithms have been developed for
several restricted classes of circuits that arise in parsing, Huffman code generation,
compiler optimization, and numeric and algebraic computation [7, 8, 9, 10, 16, 18].
In 1983, Valiant et al. [18] showed that if a circuit over {+,−,×} can be evalu-
ated in C time sequentially, then with preprocessing it can be evaluated in parallel
O(log d logCdn) time using CO(1) processors. Miller, Ramachandran, and Kaltofen [7]
improved and simplified this result by showing that any circuit with size n and degree
d (see section 2.2 for the definition) over a commutative semiring can be evaluated
without preprocessing in O(log n log nd) time using M(n) processors, where M(n) is
the number of processors needed for multiplying n× n matrices over the semiring in
O(log n) time. Ramachandran and Yang [12] showed that the general planar mono-
tonic circuit value problem can be evaluated in parallel polylogarithmic time with a
linear number of processors. Miller, Reif, and Teng [6, 9, 10] showed that trees over

∗Received by the editors February 17, 1995; accepted for publication (in revised form) June 5,
1997; published electronically May 7, 1999.

http://www.siam.org/journals/sicomp/28-5/28172.html
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (glmiller@

theory.cs.cmu.edu). This research was supported in part by National Science Foundation grant
CCR-9016641. Part of the work was performed while the author was at the Department of Com-
puter Science, University of Southern California, Los Angeles, CA 90089-0782.
‡Deparment of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Spring-

field, Urbana, IL 61801-2987, and Department of Computer Science, University of Minnesota, Min-
neapolis, MN 55455 (steng@cs.uiuc.edu). This research was supported by an NSF Career award
(CCR-9502540) and an Alfred P. Sloan Research Fellowship. Part of the work was done while the
author was at the Department of Computer Science, University of Southern California, Los Angeles,
CA 90089-0782, and Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
MA 02139.

1664

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1665

{+,−,×,÷} and {min,max,+,−,×,÷} can be evaluated in parallel O(log n) time
using n processors.

However, there is no similar result for noncommutative semirings [7], and we
know of no previous result on the parallel evaluation of circuits with three or more
operators—for example, circuits over {R,min,max,+} and {R+,min,max,×}. In
fact, Kosaraju [4] and Nisan [11] showed that in general it is impossible to perform
circuit evaluation in polylogarithmic time for noncommutative circuits.

In this paper, we propose a systematic method that facilitates the design of
processor-efficient parallel algorithms for the circuit value problem. Our method uti-
lizes the uniform closure properties of certain unary function classes.

Using this method, we give the first nontrivial upper bound on the parallel com-
plexity for evaluating circuits over {R,min,max,+} and {R+,min,max,×}. In par-
ticular, we show that a circuit over {R,min,max,+} or {R+,min,max,×} of n nodes
and degree d can be evaluated in O(log n log dn) time, using nM(n) processors, where
the degree of a min–max-plus circuit C is defined as the formal arithmetic degree (see
section 2.2) of the arithmetic circuit obtained from C by mapping min to + and max
and + to ×. We also extend the previously known results of circuits over commutative
semirings to several noncommutative semirings. For instance, if a noncommutative
semiring is polynomially bounded (see section 7) or has a polynomially bounded di-
mension over a commutative semiring (also see section 7), then circuits over it can be
evaluated in polylogarithmic time in its size and degree by using a polynomial number
of processors. Our results partially answer an open question of Miller, Ramachandran,
and Kaltofen [7].

We also consider structured parallel computation. We use the circuit value problem
over matrix rings as an example. Let CR = {D1,+,×} be a commutative semiring,
and let MR = {D,+,×} be a matrix ring of dimension m over CR, where

D = {Am×m | Am×m ∈ D1, 1 ≤ i, j ≤ m}.
MR is an infinite noncommutative semiring whenever CR is infinite. The best

known result to this problem, achieved by Miller, Ramachandran, and Kaltofen [7],
is that circuit C of size n and degree d can be evaluated in O(log max(n,m) log dn)
time using M(m3n) processors. They obtained this result by expanding the matrix
operation to the underlying commutative ring operations and then applying the par-
allel circuit evaluation algorithm in [7]. We call a method of this kind nonstructured
because it replaces the structured matrix operations with the lower-level operations.
We present a structured algorithm based on our parallel method; our method does
not replace matrix operations by lower-level underlying commutative ring operations.
It reduces the processor count to M(m2n) without increasing the time complexity,
O(log max(n,m) log dn). Our structured algorithm can also be used to reduce the
processor count for context-free language circuits when the size of the grammar is not
a constant.

Using the duality property of Boolean algebra, we give an improved parallel algo-
rithm for Boolean circuits. It evaluates a Boolean circuit inO(log n log(min(d∧∨, d∨∧)))
time, using M(n) processors. We also show that there are Boolean circuits with expo-
nential d∧∨ and d∨∧ that can be evaluated by our algorithm in polylogarithmic time,
using M(n) processors, where d∧∨ (d∨∧) is the degree of the Boolean circuit when ∨
(∧) is viewed as addition in the semiring formed by the Boolean algebra.

The parallel algorithms are designed on parallel random access machines (PRAMs),
which are shared memory computers where many processors work together syn-
chronously. The communication among processors is done through the information

1666 GARY L. MILLER AND SHANG-HUA TENG

exchange in a common random-access memory. Models in this family can be further
partitioned according to the conventions for solving read and write conflict. The algo-
rithms are developed on the CRCW model in which concurrent reads and concurrent
writes to a cell in the common memory are allowed.

An extended abstract of this work appeared in [8]. In our preparation of this
journal version, we have obtained several new results and also improved some of the
original results.

2. Preliminaries. A computation circuit is a triple (A,F , C} where the following
hold:

1. A = {D,�1, . . . ,�k} is an algebraic system whose domain is D and whose
operator set is OP = {�1, . . . ,�k}.

2. F is a set of unary functions over D. We assume that F includes the identity
function.

3. C is a labeled directed acyclic simple graph whose leaf nodes, the nodes with
zero indegree, are labeled with values fromD, whose internal nodes are labeled
with operators from OP, and whose edges are labeled with unary functions
from F .

If there is an edge from u to v in C, we call u a child of v and v a parent of u.
The value of a node v in C, denoted by value(v), is defined inductively.
• If v is a leaf, then value(v) is equal to its label.
• If v is an internal node, labeled by � and with children w1, . . . , wl, then

value(v) = �(f1(value(w1)), . . . , fl(value(wl))),

where f1, . . . , fk are the unary functions of edges (w1, v), . . . , (wk, v), respec-
tively.

Definition 2.1 (circuit value problem). Given a computation circuit {A,F , C},
compute the values of all its internal nodes.

We consider A and F fixed and analyze the parallel complexity of the circuit value
problem for a given circuit C. To apply our parallel circuit evaluation algorithm, we
require that the set of unary functions F satisfies certain closure properties. We will
discuss these requirement in section 3.

2.1. Semirings. An algebraic system {D,⊕,⊗} is a semiring if ⊕ is associa-
tive and commutative, and ⊗ is associative and distributive over ⊕. If ⊗ is also
commutative, then semiring {D,⊕,⊗} is a commutative semiring; otherwise, it is a
noncommutative semiring. A semiring {D,⊕,⊗} is finite if D is finite.

For example, {R,+,×} is an infinite and commutative semiring.
Let CR = {D,⊕,⊗} be a commutative semiring. A matrix semiring over CR of

dimension k is the semiring MR = {MD,⊕,⊗}, where

MD = {Ak×k | Aij ∈ D, 1 ≤ i, j ≤ k}.

Clearly, MR is a noncommutative semiring with infinite domain whenever CR is
infinite.

For example, the set of all k by k real matrices together with + and × form an
infinite matrix semiring of dimension k.

2.2. CE-algebras and CE-circuits. The algebraic systems considered in this
paper is restricted to a family of algebraic systems called CE-algebras. An algebraic
system A = {D,OP} is a CE-algebra if there is one operator ⊕ ∈ OP that is associa-

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1667

tive and commutative, and all other operators in OP−{⊕} are distributed over ⊕. The
operator ⊕ is called the cheap operator and rest of the operators are called expensive
operators. In the remainder of this paper, the operator set OP of a CE-algebra with
k + 1 operators is written as OP = {⊕,⊗1, . . . ,⊗k}.

For example, {R,+,×} is a CE-algebra, where + is cheap and × is expensive.
In general, every semiring {D,⊕,⊗} is a CE-algebra in which ⊕ is cheap and ⊗ is
expensive. {R,min,max,+}, {R+,min,max,+,×}, and {R+,min,max,×} are other
examples of CE-algebras, where we regard either min or max but not both as the
cheap operator. A circuit over a CE-algebra is called a CE-circuit. We call a node of
a CE-circuit an expensive node if it is labeled with an expensive operator. Similarly,
we call a node with a cheap operator a cheap node. In most of our discussions, we will
make the following two technical restrictions in order to simplify our presentation.

Assumption 2.2.
1. The indegree of each expensive node is two.
2. There is no edge from an expensive node to another expensive node.

In section 5, we will not impose those restrictions when we consider Boolean
circuits.

The degree of a CE-circuit C is defined as the formal arithmetic degree of the
arithmetic circuit obtained from C by relabeling each cheap node by + and each
expensive node by ×. In other words, we can define the degrees of nodes in a CE-
circuit inductively.

• If v is a leaf, then degree(v) = 1.
• If v is an expensive internal node with children w1, . . . , wl, then

degree(v) =

l∑
j=1

degree(wj).

• If v is a cheap internal node with children w1, . . . , wl, then

degree(v) =
l

max
j=1

degree(wj).

3. The general paradigm. In this section, we first review the parallel arith-
metic circuit-evaluation algorithm of Miller, Ramachandran, and Kaltofen [7]. We
then show how to extend their algorithm to CE-circuits. Our extension is based on
certain closure properties of the unary functions.

3.1. Arithmetic circuits. We will refer to circuits over {R,+,×} as arithmetic
circuits. Following [7], we will consider only the following set of unary functions
F = {f(x) = ax|a ∈ R}. We can express an arithmetic circuit C of n nodes with
unary function set F by a matrix U when entries are given as

Zij =

{
zij if (i, j) is an edge in C with unary function fij(x) = zijx,
0 if there no edge from i to j.

The Miller–Ramachandran–Kaltofen algorithm consists of repeated applications
of three elementary procedures on the circuit and its matrix. At a high level, these
procedures transform an arithmetic circuit to a circuit of smaller degree or depth on
the same node set so that the value of each node is preserved in the new circuit.

The first procedure is rake. It simply evaluates each node in the circuit whose
children are leaves and removes all incoming edges to make it a leaf.

1668 GARY L. MILLER AND SHANG-HUA TENG

v v

Fig. 1. Rake.

v. v

+

.

u uw w

s s
+ + +

Fig. 2. Shunt.

Procedure rake(C, Z) (Figure 1). For each node v whose children
w1, . . . , wk are leaves,

1. if v is an addition node, then

value(v) =

k∑
j=1

Zwj ,vvalue(wj);

if v is a multiplication node (and hence k = 2), then

value(v) = (Zw1,vvalue(w1))(Zw2,vvalue(w2));

2. for each j in the range 1 ≤ j ≤ k, remove the edge between v
and wi and let Zwj ,v = 0.

The next procedure is shunt, which handles the case when a multiplication node v
has one leaf child w and one nonleaf child u. It merges the contribution of w (namely,
Zvwvalue(w)) to a parent s of v into the edge from u to s. Thus u will bypass v in its
connection to s. Note that v may have many parents.

Procedure shunt(C, Z) (Figure 2). For each multiplication node v
with children u and w in which one of u or w is a leaf (say, w),

1. let huv = Zuv(Zwvvalue(w));
2. for each s such that v is a child of s (s has to be a cheap node

by Assumption 2.2),
• let Zus = Zus + Zvshuv,
• remove the edge (v, s) and let Zvs = 0.

Finally, compress is used to transform long paths of addition nodes into paths of
about half their lengths.

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1669

v

u w

+ +
s

s

v

u w

+ +

Fig. 3. Compress.

Procedure compress(C, Z) (Figure 3). For each edge (v, s) in C
such that both v and s are addition nodes,

1. for each child u of v, Zus = Zus + ZvsZuv;
2. remove (v, s) and let Zvs = 0.

Miller, Ramachandran, and Kaltofen [7] observed that one can use the following
matrix expression for the compress:

Z = ZX,CZC,C + UX,X ,

where

Z(C,C)uv =

{
Zuv if both u and v are addition nodes,
0 otherwise;

Z(X,C)uv =

{
Zuv if v is an addition node,
0 otherwise;

Z(X,X)uv =

{
Zuv if either u or u is a multiplication node,
0 otherwise.

We now summarize their main result [7].
Theorem 3.1 (Miller–Ramachandran–Kaltofen [7]). An arithmetic circuit of n

nodes and degree d can be evaluated in O(log n log dn) time, using M(n) processors.

3.2. CE-circuits. In this subsection, we will extend the Miller–Ramachandran–
Kaltofen algorithm from arithmetic circuits to CE-circuits. The high-level idea is the
same as for arithmetic circuits. We will simplify a CE-circuit by repeated applica-
tions of three elementary procedures: rake, shunt, and compress. These procedures
transform an arithmetic circuit to a circuit of smaller degree or depth on the same
node set so that the value of each node is preserved in the new circuit.

We now define these three elementary procedures for CE-circuits. We consider
a CE-algebra {D,⊕,⊗1, . . . ,⊗k}. Like an arithmetic circuit, a CE-circuit can be
represented by a matrix Z whose entries are the unary functions used in the circuit.
The entry Zuv is defined as

Zuv =

{
fuv if (u, v) is an edge with label fuv,
0 otherwise,

where 0 is the zero function.
The rake is the same as in arithmetic circuit. It evaluates each node in the circuit

whose children are leaves and removes all incoming edges to make it a leaf.

1670 GARY L. MILLER AND SHANG-HUA TENG

Procedure rake(C, Z). For each node v whose children w1, . . . , wk
are leaves, let � be the operator of v. Then

1.

value(v) = �(Zw1,v(value(w1)), . . . , Zwk,v(value(wk)));

2. for each j in the range 1 ≤ j ≤ k, remove the edge between v
and wi and let Zwj ,v = 0.

The procedure shunt handles the case when an expensive node v has one leaf
child w and one nonleaf child u.

Procedure shunt(C, Z). For each expensive node v with children
u and w in which one of u or w is a leaf, let t ∈ {u,w} denote the
nonleaf child and ⊗ be the label of v. Then

1. if u is a leaf, let htv(x) = Zuv(value(u))⊗Zwv(x), and if w is a
leaf, let htv(x) = Zuv(x)⊗ Zuv(value(w));

2. for each s such that v is a child of s (s must be an addition node
by Assumption 2.2),
• let Zts(x) = Zts(x)⊕ Zvs(htv(x)),
• remove the edge (v, s) and let Zvs = 0.

Finally, compress is used to transform long paths of cheap nodes into paths of
about half their lengths.

Procedure compress(C, Z). For each edge (v, s) in C such that
both v and s are cheap nodes,

1. for each child u of v, Zus(x) = Zus(x)⊕ Zvs(Zuv(x));
2. remove (v, s) and let Zvs = 0.

We can also describe compress with the following matrix expression:

Z = ZX,C ◦ ZC,C ⊕ UX,X ,
where

Z(C,C)uv =

{
Zuv if both u and v are cheap nodes,
0 otherwise;

Z(X,C)uv =

{
Zuv if v is a cheap node,
0 otherwise;

Z(X,X)uv =

{
Zuv if either u or u is an expensive node,
0 otherwise;

and ◦ is the composition operator, i.e., for each pair of f and g in F , f◦g(x) = f(g(x)).
Lemma 3.2 follows directly from the definition of these three procedures.
Lemma 3.2. The application of rake, shunt, and compress preserves the values

of all nodes in the circuit.
Note that if the input circuit is an arithmetic circuit, then the above parallel

circuit evaluation algorithm is equivalent to the parallel arithmetic circuit evaluation
algorithm of Miller, Ramachandran, and Kaltofen [7]. Therefore, O(log n log dn) ap-
plications rake, shunt, and compress will evaluate an arithmetic circuit of n nodes
and degree d [7].

Our circuit evaluation algorithm can now be specified as follows.
Algorithm Circuit-Reduction(C, Z)
1. rake(C, Z).
2. shunt(C, Z).
3. compress(C, Z).

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1671

3.3. Unary functions and their closure properties. The basic idea of the
Miller–Ramachandran–Kaltofen algorithm is to use rake, shunt, and compress to
partially evaluate some subcircuits and reduce them to equivalent unary functions. It
then represents these functions as weights on the edges of the circuit. The correctness
of the algorithm relies on the fact that the unary function class {f(x) = ax|a ∈ R}
is closed under composition; i.e., if f(x) = ax and g(x) = bx, then f ◦ g(x) = (ab)x,
which is still a function in F . Moreover, it takes a constant time to compute the
composition.

The basic idea of our algorithm is the same: shunt computes a unary function
Zts(x) = Zts(x) ⊕ Zvs(htv(x)) and writes it on edge (t, s); compress computes and
writes a unary function Zus(x) = Zus(x)⊕ Zvs(Zuv(x)) on edge (u, s).

The idea behind our algorithm is to reduce the circuit value on CE-circuits to a
circuit value problem over the semiring {F ,⊕, ◦}. Hence we can apply the analysis
from [7].

The correctness of our algorithm is based on the following closure properties:

• Composition: A unary function class F is closed under composition if for all
f1, f2 ∈ F , f2 ◦ f1 ∈ F .
• Combination: A unary function class F is closed under combination over a

binary, associative, and commutative operator ⊕ if for all f, g ∈ F , f(x) ⊕
g(x) ∈ F , where⊕ of two unary functions f(x) and g(x) is F (x) = f(x)⊕g(x).
• Projection: A unary function class F is closed under projection over a set of

binary operators OP if for all f ∈ F , � ∈ OP, and a ∈ D, x � a ∈ F and
a� x ∈ F , where x is a variable with domain D.

• Linear: A unary function class F is linear over an operator ⊕ if for all f ∈ F ,
x, y ∈ D, f(x⊕ y) = f(x)⊕ f(y).

Clearly, if⊕ is the cheap operator in a CE-algebra and F is a set of unary functions
which is linear over ⊕, then the closure of F under composition, combination over ⊕,
and projection over the expensive operations is still linear over ⊕.

Definition 3.3. A class of unary functions F is closed over OP = {⊕,⊗1, . . . ,⊗k}
if F is closed under composition, combination over ⊕, linear over ⊕, and projection
over {⊗1, . . . ,⊗k}.

Lemma 3.4. If F is linear over ⊕ and closed under combination over ⊕, then
{F ,⊕, ◦} forms a semiring.

Proof. Let f, g, h be functions in F . Because ⊕ is communicative, f(x)⊕ g(x) =
g(x)⊕ f(x). By the linearity of F , we have f(g(x)⊕ h(x)) = f(g(x)) + f(h(x)) and
hence ◦ is distributive over ⊕.

To efficiently support our algorithm, we need to show that composition and pro-
jection over {F ,⊕, ◦} can be computed efficiently. Moreover, we need to represent
these functions economically. In arithmetic circuit evaluation, each unary function in
{f(x) = ax|a ∈ R} can be expressed by a single real number and can be evaluated in
a constant time. However, for the CE-circuits that we will consider, the complexity of
the unary functions may grow after each application of rake, shunt, and compress.
Therefore, we need to show that they do not grow too fast.

The class of unary functions that we use can be defined by a restricted class of
CE-circuits.

Definition 3.5. A restricted CE-circuit in one free variable x is a CE-circuit C
in which

1. there exists a unique leaf node whose value is the variable x, and
2. every expensive node has at most two children, one of which is a leaf.

1672 GARY L. MILLER AND SHANG-HUA TENG

. +

min

x5 10

max

Fig. 4. A restricted circuit that defines f(x) = min(max(5, x), (10 + x)).

A restricted CE-circuit C defines a unary function f at each of its nodes v in
variable x. If C has a distinguished output node whose function is f(x), then f is
called the function of C, and we denote it by fC .

A unary function f is a restricted CE-function over an operator OP and a unary
function class F , if there is a restricted CE-circuit over OP and F that defines f (see
Figure 4).

Let RCE(OP,F) denote all restricted CE-functions over OP and F . For simplicity,
let RCEOP denote all restricted CE-functions over OP and {identity function}. By
definition, we have the following proposition.

Proposition 3.6. RCEOP is closed over OP.

The size of a restricted CE-circuit is the number of nodes and edges in the circuit.
The circuit size of a restricted CE-function f is defined to be the minimum size of
the restricted CE-circuit that defines f .

Definition 3.7 (uniform closure properties). F is (T, P)-uniform closed over
OP if F is closed over OP, and for all f ∈ F of circuit size n, f can be evaluated
in O(T (n)) time, using P (n) processors. The composition and combination of two
functions f and g ∈ F of circuit size no more than n can be computed in O(T (n))
time, using P (n) processors, where T (n) and P (n) are two integer functions.

Lemma 3.8. Let C be a CE-circuit of n nodes and degree d. Then O(log n log dn)
applications of circuit-reduction will evaluate C.

Proof. If we replace each cheap operator with + and all expensive operators with
×, we obtain an arithmetic circuit A(C) which also has n nodes and degree d. If
C1 is the circuit obtained by applying circuit-reduction to C and A1 is the circuit
obtained by applying the circuit-reduction to A(C), then A1 = A(C1). Hence, this
lemma follows directly from Theorem 3.1.

Therefore, we have the following theorem.

Theorem 3.9 (circuit theorem). Let C be a CE-circuit of size n and degree
d over operator set OP. If there exists a unary function class F which is (T, P)-
uniformly closed over OP, then C can be evaluated in O(T (n) log n log nd) time, using
P (n)M(n) processors.

Proof. Because F is (T, P)-uniformly closed over OP, rake can be performed
in O(T (n)) time, using P (n)n processors, and shunt can be performed in O(T (n))
time, using P (n)n2 processors. In addition, because {F ,⊕, ◦} is a semiring, compress
can be performed in O(T (n) log n) time, using P (n)M(n) processors. Therefore, the
theorem follows from Lemma 3.8.

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1673

4. A lemma on closure properties. As we have shown in the previous section,
the correctness of our algorithm relies on the closure properties of the unary function
classes, while the efficiency of our algorithm depends on the uniformity of the unary
function classes. Thus, it is important to develop a general theory and a systemic
method to study the closure properties and to prove the uniformity of the classes.
The following is a simple yet important lemma for proving the closure properties of
certain unary function classes.

Lemma 4.1 (closure property lemma). If F = {L(x)} is a class of monotonically
increasing unary functions over a domain D ⊆ R and is closed under composition and
projection over OP1, then

Fmin = {min(L1(x), . . . , Li(x)) | i ∈ N , Lj(x) ∈ F1}
is closed over {min,OP1}, and

Fmax = {max(L1(x), . . . , Li(x)) | i ∈ N , Lj(x) ∈ F1}
is closed over {max,OP1}.

Proof. Fmin is closed under composition because for all f(x) = min(L1(x), . . . , Li(x))
∈ Fmin and g(x) = min(L′1(x), . . . , L′j(x)) ∈ F , since all functions in F1 are mono-
tonically increasing, and Fi is closed under composition,

g ◦ f(x) = min(L′1(f(x)), . . . , L′j(f(x)))

= min(L′1(L1(x)), . . . , L′1(Li(x)), . . . , L′j(Li(x))) ∈ Fmin.

Fmin is closed under combination over {min} because

min(f, g) = min(L1(x), . . . , Li(x), L′1(x), . . . , L′j(x)) ∈ Fmin.

Fmin is linear over {min} because all functions in F1 are monotonically increasing.
Fmin is closed under projection over OP1 because F1 is closed under projection

under OP1.
The second part of the lemma is proved by duality.
The following are some consequences of Lemma 4.1. Those facts will be used later

in this paper.
• F(min,max,+) = {min(L1(x), . . . , Li(x)) | i ∈ N , L1, . . . , Li ∈ F(max,+)} is

closed over {min,max,+}, where F(max,+) = {max(x+ a, b) | a, b ∈ R}.
• F(min,max,×) = {min(L1(x), . . . , Li(x)) | i ∈ N , L1, . . . , Li ∈ F(max,×)} is

closed over {min,max,×}, where F(max,×) = {max(ax, b) | a, b ∈ R+}.
• F(min,max,+,×) = {min(L1(x), . . . , Li) | i ∈ N , L1, . . . , Li ∈ F(max,+,×)} is

closed over {min,max,+,×}, where F(max,+,×) = {max(a, b · x+ c) | a, b, c ∈
R+}.

5. Min–max-plus circuits. We know of no previous results on the parallel
evaluation of circuits with three or more operators. In this section, we consider cir-
cuits over {R,min,max,+}. Our result can be extended directly to circuits over
{R+,min,max,×}. Min–max-plus circuits (and even min–max-plus trees) are used in
computational artificial intelligence (AI) and game theory. Moreover, several dynamic
programming problems can be reduced to the min–max-plus circuit value problem.
Note that a circuit over any pair of operators is easy to evaluate in parallel, since
{R,min,max} forms a Boolean algebra; and {R,min,+} and {R,max,+} form com-
mutative semirings.

1674 GARY L. MILLER AND SHANG-HUA TENG

5.1. Unary functions. It is natural to view {min,max} as the cheap operators
and {+} as the expensive operators. However, if NC 6= P, then there is no class of
unary functions which is uniformly closed over {min,max,+}. By this observation,
min (or max) is taken as the cheap operator.

The class of unary functions F for min–max-plus is defined as follows.
Definition 5.1 (unary function). Let La,b denote the linear form max(a+x, b) =

(a+x)∧b, where we use ∧ to denote max; for all i ∈ N , let La1,b1 ∨· · ·∨Lai,bi denote
min(La1,b1(x), . . . , Lai,bi(x)). The class of unary functions of min–max-plus is defined
as

F =

+∞⋃
i=1

{La1,b1 ∨ · · · ∨ Lai,bi | a1, . . . , ai, b1, . . . , bi ∈ R}.

This is called the linear form representation of f . The size of the representation is the
number of linear forms presented in the representation. The minimum representation
of f is a linear form representation containing the minimum number of forms.

Note that the unary function class F defined above is equal to the F(min,max,+)

defined in section 4. Therefore, we have the following lemma.
Lemma 5.2. F is closed over {min,max,+}.
These unary functions allow the partial evaluation of parts of the circuit so that

certain subcircuits can be replaced by a single edge that has a unary function on it.
These subcircuits are restricted CE-circuits defined in section 3; the unary functions
used to replace subcircuits are restricted CE-functions defined in section 3.

The main question considered in this and the next section is the size (to be defined
in the next subsection) of a restricted CE-function f as a function of the size of the
original circuit. This size will affect the time and number of processors needed to
evaluate the circuit.

Lemma 5.3. Any unary function f produced during the evaluation of a CE-
circuit C by repeated applications of the circuit-reduction algorithm is computable by
a restricted CE-circuit obtained from C by rake, compress, and shunt. Thus, f is
computable by a restricted circuit of size at most |C|.

Proof. We will prove the lemma by induction on the number of applications
of the circuit-reduction algorithm performed on the circuit. If no application of the
procedure is performed, the lemma is trivially true. Circuit-reduction is performed by
sequentially applying rake, shunt, and compress, where rake simply deletes parts of
the circuit, shunt partially evaluates some part of the circuit, and compress combines
two subcircuits under composition to get each unary function. The lemma then follows
from the induction hypothesis.

5.2. Uniformity of F .
Definition 5.4 (size of functions in F). The size of a function f ∈ F is the

number of forms in its minimum linear form representation, denoted size(f).
During the evaluation of the circuit, we need to reduce unary functions to its

minimum linear form representation.
Lemma 5.5. A linear form representation of size n can be reduced to a minimum

in O(log n) time, using n processors.
Proof. Let La1,b1 ∨ · · · ∨ Lan,bn be an arbitrary linear form representation. We

first sort the forms in increasing order by their bi − ai values. It takes O(log n) time,
using n processors [1, 13]. Without loss of generality, we assume that no two forms
have the same bi − ai value. Now we assume that La1,b1 ∨ · · · ∨ Lan,bn are sorted as
above.

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1675

iabi

jabj

Fig. 5. The case when bi − ai < bj − aj .

iabi

jabj

Fig. 6. The case when bi − ai > bj − aj .

There are two cases by which Lai,bi can be eliminated by Laj ,bj in the minimum
representation:

1. When bi − ai < bj − aj (Figure 5), then Lai,bi is eliminated by Laj ,bj if and
only if bj < bi.

2. When bi − ai > bj − aj (Figure 6), then Lai,bi is eliminated by Laj ,bj if and
only if ai < aj .

It follows that a linear form Lai,bi is in the minimum representation if ai is strictly
smaller than aj for 1 ≤ j < i and bi is strictly larger than aj

Thus, by a prefix max of (a1, . . . , an) we can determine the first case in O(log n)
time using n/ log n processors. Thus, by a prefix min of (bn, . . . , b1) we can determine
the second case in O(log n) time by using n/ log n processors. Hence, the minimum
representation can be determined in O(log n) time by using n processors.

Given a sorted minimum representation for a function f , it follows that the value
of f at x can be computed in constant time, using n processors, or in O(log n) time,
using one processor. We now show that the minimum representation of unary func-
tions used during the evaluation of the circuit is not too large. Let the breakpoints of
a linear form function f be the set of (b− a)’s in the minimum representation of f .

Definition 5.6. The breakpoints of a restricted CE-circuit C for the operations
{min,max,+} are the union over the breakpoints of all functions computed by C.

1676 GARY L. MILLER AND SHANG-HUA TENG

Lemma 5.7. The number of breakpoints of a restricted CE-circuit that occur over
{min,max,+} is bounded by the sum of the number of max nodes and the total number
of breakpoints of the edge functions of C.

Proof. We will prove only the case when the functions on the edge are all identity
functions. If a function on the edge has p breakpoints, then we can replace the edge by
a restricted CE-circuit of size O(p) where all edges have identify functions. Thus, our
proof can be directly extended to the general case. Note that if f has p breakpoints
and g has q breakpoints, then g ◦ f has at most p + q breakpoints. This statement
was proved in Lemma 7.3 in [9]. See also Lemma 5.9.

We will prove the lemma by an induction on the size of the restricted CE-circuit.
A single node is a restricted CE-circuit, and the only function it computes is a constant
function. Thus, it has no breakpoints, as stated in the lemma.

Suppose that the lemma is true for all circuits of size n or less. We now prove
the lemma for circuits of size n + 1. Let C be such a circuit of size n + 1 and v be
one of its output nodes. If v is removed from C and all the edges associated with v
are removed, then a circuit C ′ of size n is obtained, which is possibly a disconnected
circuit. By induction, the lemma holds for C ′. To prove the lemma for C, we consider
the following three cases, depending on whether v is a min, max, or plus node. Let
v1, . . . , vk be the children of v.

First, suppose that v is a min node. In this case the value computed at v is
just the min of the values computed at v1, . . . , vk. Thus, the breakpoints of v are at
most the union of the breakpoints of v1, . . . , vk. Thus, no new breakpoint has been
introduced by v.

Second, suppose that v is a max node. In this case v has at most two children,
v1 and v2, where v1 is a leaf with value a and v2 computes the value of f(x). It
follows that the max of the constant function a with f will introduce at most one new
breakpoint, the point where curve a intersects the monotone increasing curve f . If
they intersect in a line, then no breakpoint is introduced. Since C has one more max
node than C ′ this case also follows.

Third, suppose that v is a plus node. Here, the value of v is the sum of a constant
a and a function f . But, the breakpoints of f are unchanged by translation of f by
an additive constant. Thus, the breakpoints of the function computed by v are just
the breakpoints of f . Therefore, the breakpoints of C are the same as the breakpoints
of C ′.

Lemma 5.8. If C is a min–max-plus circuit with m max nodes and e edges and
all unary functions on the edges of C have sizes bounded by a constant c, then the size
of a unary function used by circuit-reduction during the evaluation of C will have size
of at most ce + m. In the case where the edge functions are trivial, the size of the
functions are all bounded by m.

Proof. By Lemma 5.3 every unary function is computed by a subcircuit of C.
Furthermore, by Lemma 5.7 the number of breakpoints in any restricted CE-subcircuit
is bounded by the number of breakpoints contributed by the edge function, which is
at most c · e, plus the number of max nodes, m.

It follows from Lemma 5.8 that F , the unary function class used for evaluating
min–max-plus circuits, is (logn, n)-uniformly closed over {min,max,+}. Therefore,
by Theorem 3.9, circuits over {min,max,+} of n nodes, m max nodes, and degree d
can be evaluated in O(log2 n log dn) time, using mM(n) processors.

In the following, it will be shown that the time count for evaluating a min–max-
plus circuit can be reduced from O(log2 n log dn) to O(log n log dn) without increasing

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1677

the processor count.

Note that the most time consuming step in circuit-reduction is the MMC opera-
tion, where matrix–matrix multiplication of matrices whose entries are unary functions
given in minimum linear form representation is performed. The product is over the
semiring {min, composition}. The matrices are assumed to be of size n, and the total
number of breakpoints of all the functions, including those in the product, is bounded
by n. Thus, the performance of composition in O(log n) time and n processors will
be shown as well as the computation of the min of n functions in the same amount
of time, using the same number of processors.

Lemma 5.9. If f and g are two functions of size at most n, then their composition
and minimum representation can be computed in O(log n) time, using n processors.
In general, the composition of any two monotone, piecewise linear functions each with
n breakpoints can be computed in O(log n) time, using n/ log n processors.

Proof. See Lemma 7.3 in [9].

Lemma 5.10. The min of a set of n functions, each of size at most n, can be
computed in O(log n) time, using n2 processors.

Proof. The min of n functions can be computed by first concatenating the repre-
sentations of the n functions together and then applying the method in Lemma 5.5
to get a minimum representation for the answer.

Theorem 5.11. Min–max-plus circuits with m max nodes, n nodes, and degree
d can be evaluated in O(log n log dn) time, using mM(n) processors.

Section 4 showed that F(min,max,×) is closed over {min,max,×}. Using the similar
uniformity proof in this section, we can prove F(min,max,×) to be (logn, n)-uniformly
closed over {R+,min,max,×}.

Theorem 5.12. Min–max-times circuits over R+ with m max nodes, n nodes,
and degree d, can be evaluated in O(log n log dn) time, using mM(n) processors.

Remark 5.13. It can be shown that there is a class of unary functions which
is (log n, n)-uniformly closed over {min,max,+} as well as {max,min,+}. There-
fore, a parallel evaluation algorithm similar to the parallel Boolean circuit-evaluation
algorithm (see next section) and which has dynamic adaptivity for evaluating min–
max-plus circuits can be developed.

6. Boolean circuits. We will present an algorithm for the parallel evalua-
tion of Boolean circuits. The time complexity TC of this algorithm always satisfies
TC ≤ O(log n log n(min(d∧∨, d∨∧))). Moreover, there are Boolean circuits with ex-
ponential d∧∨ and d∨∧ which can be evaluated in polylogarithmic time using M(n)
processors according to our algorithm without the structure of the circuit being known
in advance.

Boolean algebra B = {D,∨,∧} itself forms a commutative semiring; and therefore,
as a consequence of results in [7], the simple Boolean circuit can be evaluated in
O(log n log nd) time with M(n) processors. But this does not tighten the upper bound
because the definition of the degree of a Boolean circuit is not clear, since either ∨
or ∧ can be viewed as the addition operator in the semiring defined by the Boolean
algebra. The corresponding degrees are denoted by d∧∨ and d∨∧, respectively.

One naive method to evaluate a Boolean circuit is to apply the algorithm in [7] to
compute d∧∨ and d∨∧ first and then choose the semiring with smaller degree. Another
method is first to make two copies of a Boolean circuit and then to apply the parallel
algorithm from [7] to evaluate one circuit by viewing ∨ as the addition operator and
to evaluate the other circuit by viewing ∧ as the addition operator.

1678 GARY L. MILLER AND SHANG-HUA TENG

However, both methods are not uniform. In the first one, the evaluation of an
arithmetic circuit has to be introduced, and it is not easier to compute the degree of a
Boolean than to evaluate the circuit. In the second method, two evaluation processes
have to be coordinated. If d∧∨ and d∨∧ are both exponential, noNC parallel algorithm
can be deduced. Moreover, in order to use the parallel algorithm in [7], the indegrees
of ∨-nodes or ∧-nodes must be 2.

6.1. Closure properties.

Lemma 6.1 (duality lemma). For all a, b ∈ D in a Boolean algebra {D,∨,∧},
there is c ∈ D, such that

(a ∧ x) ∨ b = (b ∨ x) ∧ c.

Lemma 6.2 (symmetric lemma). F = {(a ∧ x) ∨ b | a, b ∈ D} is closed over
{∨,∧} as well as {∧,∨}.

Proof. Due to the duality lemma, it suffices to prove that F is closed over {∨,∧}.
Let f(a,b)(x) = (a ∧ x) ∨ b.
F is closed under composition, since f(a2,b2)(f(a1,b1)(x)) = f(a1∧a2,a2∧b1∨b2) ∈ F .

F is closed under combination over ∨, since f(a1,b1)∨f(a2,b2) = f(a1∨a2,b1∨b2) ∈ F .

F is linear over ∨, since f(a,b)(x ∨ y) = f(a,b)(x) ∨ f(a,b)(y).

F is closed under projection over ∧, since for all c ∈ D, c ∧ x = (c ∧ x) ∨ 0 ∈
F .

6.2. The algorithm. Because of the duality lemma, there is no reason to view
one of ∨ or ∧ as the cheap operator and another as the expensive one. However,
since the Boolean circuit value problem is P-complete [5], one of them should be
expensive. However, Lemma 6.2 implies that operations shunt and compress can be
applied to both ∨-nodes and ∧-nodes. Those operations are denoted shunt∨, shunt∧,
compress∨, and compress∧, respectively.

We will use this symmetry in our algorithm, which applies two parallel evaluation
phases. The first phase views ∨ as the expensive operation, while the second phase
views ∧ as the expensive operation. These two phases are denoted by Phase(∧,∨) and
Phase(∨,∧), respectively. A Boolean circuit is evaluated by alternating applications
of Phase(∧,∨) and Phase(∨,∧).

In order to make this work, we need to address the following three problems:

1. the problem caused by the unbounded fan-in of expensive nodes,
2. the problem caused by edges from expensive node to expensive node, and
3. the problem caused by alternation.

We will use the following operation to resolve the problem caused by the un-
bounded fan-in of expensive nodes.

Procedure Trimming(U).
for all v whose children w1, . . . , wk are all leaves do

v := �(Uw1v(w1), . . . , Uwkv(wk));;
Uwiv := 0;; /* where � is the operator of v */

for all v with children w1, . . . , wk, w.l.o.g, w1, . . . , wt are leaves (t < k)
do

a := �(Uw1v(w1), . . . , Uwtv(wt));;
Uwt+1u(x) := a� Uwt+1u(x);;
Uw1v, . . . , Uwtv := 0;; /* where � is the operator of v */

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1679

Fig. 7. Forest formed by nodes of indegree 1.

Fig. 8. Forest removal for the example pictured in Figure 1.

Graphically, the Trimming operation simply disconnects all leaves from their par-
ents. This operation can be performed in O(log n) time, using n2 processors. It can
be easily proven that the Trimming operation preserves the value of each node in the
circuit.

In general, Trimming will introduce many nodes with fan-in 1, and these nodes
form a forest (subcircuit) in the circuit (see Figure 7).

The forest will be removed and replaced by equivalent unary functions. The
equivalent unary functions of all nodes in the forest are the composition of the unary
functions from the child of its root to itself (see Figure 8).

Using the parallel tree contraction technique [2, 6], the equivalent unary functions
for all nodes in the forest can be found in O(log n) time, using only n/ log n processors,

Procedure Forest-Removal(U).
for all v in the forest do

find the equivalent unary function fv;;
/* let r denote the root of v and c(r) and c(v) be the */
/* children of r and v in the circuit respectively */
Uc(v)v := 0;;

1680 GARY L. MILLER AND SHANG-HUA TENG

Uc(r)v := fv;;
for all w and u where w is a child of some roots in the forest

and u is an �-node with some of its children v1, . . . , vk
being nodes in the forest rooted by some parents of w do

gu := �ki=1(Uviu ◦ fvi);;
Uc(r)u := Uc(r)u � gu;;
Uviu := 0;;

Lemma 6.3. The procedure Forest-Removal eliminates any node which is not
an output node but has indegree 1 and preserves the value of each node. Moreover,
Forest-Removal can be performed in O(log n) time, using n2 processors.

The following specifies the two phases of the parallel Boolean circuit evaluation
algorithm.

Phase(∨,∧)
Trimming;; Trimming;; Trimming;;
Forest-Removal;; compress∨;;

Phase(∧,∨)
Trimming;; Trimming;; Trimming;;
Forest-Removal;; compress∧;;

Algorithm Parallel Boolean Circuit Eval
Forest-Removal;;
repeat

Phase(∨,∧);; Phase(∧,∨);;
until all nodes are output nodes.

Lemma 6.4. After the application of Phase(∨,∧) or Phase(∧,∨), the indegrees
of all the nonoutput nodes are at least two.

Proof. Clearly, after the application of Forest-Removal, all nonoutput nodes have
indegree at least 2. For all nonoutput nodes v, compress∨ and compress∧ either
make no change on v or connect all the children of some of its children to it. Hence,
after the application of Phase(∨,∧) or Phase(∧,∨), v has at least two children.

Definition 6.5. The ∧∨-height of a node v, denoted by h∧∨(v), in a Boolean
circuit is defined inductively.

• If v is a leaf, then h∧∨(v) = 1.
• If v is a ∨-node, then h∧∨(v) =

∑
u∈C(v) h∧∨(u).

• If v is a ∧-node, then

h∧∨(v) = max

(
max

u∈CC(v)
h∧∨(u) + 1/2, max

u∈EC(v)
(h∧∨(u))

)
,

where C(v), CC(v), and EC(v) are the set of children, ∧-children, and
∨-children or leaf children of v, respectively.

The ∧∨-height of a circuit is the maximum height over its nodes. A child w of a
∧-node v is dominant if either w is a ∨-node and h∧∨(w)=h∧∨(v) or w is a ∧-node
and h∧∨(w)+1/2=h∧∨(v). The ∨∧-height, denoted by h∨∧(v), is defined similarly.

The following lemma is proven as Theorem 4.2 in [7].

Lemma 6.6. The ∧∨-height (or ∨∧-height) of a Boolean circuit of e edges is
bounded by ed∧∨ + d∧∨ (ed∨∧ + d∨∧).

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1681

From now on, let C denote a Boolean circuit in which all nonoutput nodes have
indegree at least 2.

Lemma 6.7. Let C′ be the circuit after the application of Phase(∨,∧) on C, and
v′ be the image of v. If v′ is a leaf and there exists at least one ∧-node u′ such that
(v′, u′) is an edge in C′, then ∨∧-height of v is at least 2.

Proof. Suppose that the ∨∧-height of v is less than 2: If its height is 1, then either
v is a leaf or all its children are leaves. Hence, after the first Trimming operation, v
becomes a leaf. If the height of v is 3/2, then v must be a ∨ node whose children are
either leaves or ∨-nodes with all leaf children. Hence, the second Trimming makes v
a leaf. Therefore, in each case, the application of the third Trimming disconnects v′

and u′—a contradiction.

Lemma 6.8. Let C′ be the circuit after the application of Phase(∨,∧) on C, and
let v′ be the image of v. Then h∨∧(v′) ≤ h∨∧(v)/2.

Proof. The proof is done by induction on the level of v, the length of the longest
path from a leaf to v. Suppose that all the children of v′ are leaves.

• If v′ is a ∧-node, then by definition, the height h∨∧(v′)=k, where k is the
indegree of node v′. By Lemma 6.7, h∨∧(v)≥ 2k.
• If v is a ∨-node, then by definition, h∨∧(v′)=1. Suppose that h∨∧(v)≤3/2;

then after the second Trimming operation, v become a leaf—a contradiction.

Suppose that all the children of v′ are either leaf nodes or internal nodes in C ′.
• If v is a ∧-node, then the lemma follows from Lemma 6.7 and the assumption.
• If v is a ∨-node and u′ is a dominant child of v′, then if u is a ∧-node, clearly
h∨∧(v′) ≤ h∨∧(v)/2. Now, suppose that u is a ∨-node. Since u and v are all
∨-nodes, there must be some other nodes on one of the paths from u to v;
otherwise u′ will not be a child of v′ after the application of the compress∨
operation. Because all nodes have indegree at least 2, following from the
definition of height, h∨∧(u)+1≤h∨∧(v). Hence, h∨∧(v)≥ 2·h∨∧(v′).

The following lemma can be proven by a simple induction on the level of nodes.

Lemma 6.9. For all nodes v in a Boolean circuit C, the application of Phase(∨,∧)
(Phase(∧,∨)) will not increase h∧∨(v)(h∨∧(v)).

Theorem 6.10. Boolean circuits can be evaluated in time no more than
O(log n log n(min(d∧∨, d∨∧))), using M(n) processors. Moreover, there are Boolean
circuits with exponential d∧∨ and d∨∧ which can be evaluated in polylogarithmic time,
using M(n) processors, without the structure of the circuit being known in advance.

Proof. The first part of the theorem is a consequence of Lemmas 6.8 and 6.9.
The second part follows from the fact that for all nodes v in Boolean circuits C, if
at least one of d∧∨(v) and d∨∧(v) is no more than O(2(log n)∗), then v will get its
value in polylogarithmic time. It is easy to construct Boolean circuits of exponential
d∧∨ and d∨∧, but all nodes v in it have one of d∧∨(v) and d∨∧(v) is no more than
O(2(log n)∗).

Figure 9 shows Boolean circuit with exponential d∧∨ and d∨∧ that can be eval-
uated in polylogarithmic time with M(n) processors by our algorithm but not the
Miller–Ramachandran–Kaltofen algorithm.

The beauty of the above parallel algorithm lies in its dynamic adaptability to
the structure of the circuit. This power comes from the symmetric structure of the
unary function class. However, the tight bound on the running time of this parallel
algorithm is still unknown, as are some stronger characterizations of the circuits which
have NC solution. Nevertheless, this algorithm can be used to define the dynamic
degree of a Boolean circuit.

1682 GARY L. MILLER AND SHANG-HUA TENG

Fig. 9. A Boolean circuit with exponential d∧∨ and d∨∧ that can be evaluated in polylogarithmic
time with M(n) processors by our algorithm but not the Miller–Ramachandran–Kaltofen algorithm.

Definition 6.11 (dynamic degree). If Boolean circuit C can be evaluated by
using the parallel Boolean circuit evaluation algorithm in TC time, then the dynamic
degree of C (denoted by dC) is defined as dC = 2TC/(log n)−logn.

7. Circuits over noncommutative semirings. In this section, we will ex-
tend the previously known results from circuits over commutative semirings to many
noncommutative semirings. We will show that all circuits over polynomial bounded
noncommutative semirings and circuits over infinite noncommutative semirings which
have polynomial bounded dimensions over commutative semirings can be evaluated in
polylogarithmic time in their size and degree using a polynomial number of processors.
This provides a partial answer to the open problem raised in [7].

7.1. General case. Let NR = {D,⊕,�} be a noncommutative semiring. Let

F = {Σki=1ai � x� bi | k ∈ N , ai, bi ∈ D},
where ai � x � bi is called an item. The size of a function in F is defined as the
minimum number of items that define it.

Lemma 7.1. F is closed over {⊕,�}.
Let INR = {D,⊕,�}, a noncommutative semiring with infinite domain D. INR

is noncombinable if for all a, b, c, d ∈ D, there exists s and t ∈ D such that (a � x �
b) ⊕ (c � x � d) = s � x � t if and only if a = b or c = d. It is not difficult to give a
constructive proof that for all noncombinable infinite noncommutative semirings, F
is not uniformly closed over {⊕,�}. That is, there exists a restricted CE-circuit C
over INR, which generates a function in F whose size is exponential in the size of the
circuit. However, it will be shown that there are infinite noncommutative semirings
such that all circuits over them can be evaluated in time logarithmic in their degree
and size.

7.2. Finite case.
Theorem 7.2. For all finite, noncommutative semirings FNR = {D,⊕,�} and

for all computational circuits C over FNR with size n and degree d, C can be evaluated
in O((log n)(log dn)) time, using M(n) processors on CRCW PRAMs.

Proof. Let the unary function class for C be

F = {Σki=1ai � x� bi | k ≤| D |2, ai, bi ∈ D}.

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1683

It suffices to prove that F is closed over ({⊕,�}). Clearly, F is linear over ⊕, and F is
closed under projection over �. Let f(x) = Σk1

i=1ai�x�bi and g(x) = Σk2
i=1ci�x�di.

f⊕g = (Σk1
i=1ai�x�bi)⊕ (Σk2

i=1ci�x�di). If k1 +k2 ≤| D |2, then clearly f⊕g ∈ F .
Otherwise, since D is finite and there are at most | D |2 different items, there must
exist a t ≤| D |2, u1, . . . , ut, v1, . . . , vt ∈ D, such that f ⊕ g = Σk1

i=1ui � x � vi.
Hence, F is closed under combination. Similarly, we can prove that F is closed under
composition.

7.3. Examples of finite noncommutative rings. Let G = {V,Σ, P, S} be a
context-free grammar in Chomsky normal form. Let the domain be DG = 2(V−Σ)

and operator set be OPG = {∪,�}, where ∪ is the conventional union operator in set
theory and � is a binary operator such that for all S, T ∈ D, �(S, T) = {C | ∃A ∈
S,B ∈ T,C → AB}. The circuits are defined over domain DG and operator set OPG
and are called CFL-circuits.

It is clear that {DG,∪} forms a group and {DG,�} forms a semigroup. Since �

is distributive over ∪, {DG,∪,�} forms a finite, noncommutative semiring.

Corollary 7.3. A CFL-circuit of size n and degree d can be evaluated in
O((log n)(log(nd))) time, using M(n) processors.

A context-free language recognition problem can be reduced to a CFL-circuit
evaluation problem in polylogarithmic time since the corresponding CFL-circuit has
a polynomial size and linear degree in the length of input string. This leads to the
following corollary.

Corollary 7.4. The context-free language recognition problem lies in NC.

Ruzzo [14, 15] was the first to show that there are Boolean circuits that simulta-
neously have polynomial size and polylogarithmic depth, which recognize context free
languages. Valiant et al. [18] showed that the Boolean circuits defined by the Cocke–
Kasami–Younger algorithm have a linear degree; therefore the context-free language
recognition problem lies in NC. The difference between our solution and their solu-
tions is that they break the operation of context-free language recognition down to
Boolean operations, while we implement context-free language recognition by using
higher-level, structured operations.

We can also reduce the logical query programs [17] to a circuit whose size is a
polynomial in the size of the program. Also, it is easy to prove that if the basic logic
program has a polynomial fringe [17], then the degree of the circuit is a polynomial
in the size of the program. This is expressed in the next corollary,

Corollary 7.5. A basic logic program with the polynomial fringe property is in
NC.

7.4. Noncommutative semirings with variable size. The coalescing prob-
lem arises when the composition and combination of functions is computed in F .
For all f ∈ F , the size of f , defined to be the minimum possible number of items
representing f , is less than m, the size of the semiring. Can we find the minimum
representation of each function in F efficiently in parallel?

Definition 7.6 (optimal coalescing problem). Given a formula f(x) = Σni=1aixbi,
find a minimum representation for f(x).

Theorem 7.7. If PNR is noncombinable, then the optimal coalescing problem
is NP-hard.

Proof. The partition problem can be reduced in polynomial time to the optimal
coalescing problem. For a1, . . . , an ∈ D, let s = Σni=1ai. Suppose there exists d
such that s = d + d. If no such d exists, trivially, there is no partition. Let f(x) =

1684 GARY L. MILLER AND SHANG-HUA TENG

Σni=1aixb+ dxc, for some b 6= c. Clearly, a1, . . . , an is partitionable if and only if the
optimal representation contains only one item, dx(b+ b+ c).

Definition 7.8 (minimal coalescing problem). A representation f(x) = Σki=1aixbi
is minimal if for all i and j ≤ k(i 6= j), ai 6= aj , bi 6= bj. The minimal coalescing
problem is defined as follows: given a formula f(x) = Σni=1cixdi, find a minimal
representation for f(x).

Since D contains only m elements, there is a one-to-one onto function from D
to {1, . . . ,m}. Let π be such a function. For all input Σni=1aixbi, ai’s are sorted
according to π(ai); then all items with the same a part are combined; next b part is
sorted and combined. This procedure is one phase. The phase is repeated until all
a parts and b parts are distinct from each other. Note that the number of items is
reduced at least by 1 with each phase; therefore, n iterations are sufficient to find a
minimal representation.

Lemma 7.9. The minimal coalescing problem can be solved in O(n2 log n) time
sequentially.

Conjecture 7.10 (minimal coalescing problem). The minimal coalescing prob-
lem is complete in P.

Because of the NP-hardness of the optimal coalescing problem and the sequen-
tiality of the minimal coalescing problem, the unary functions are not expected to be
minimally represented. A weaker version called one-sided minimal representation is
used.

Definition 7.11. A representation Σki=1aixbi is left-hand side minimal if for
all i and j ≤ k(i 6= j), ai 6= aj. The left-hand side minimal coalescing problem is
defined as follows: given a formula, f(x) = Σni=1cixdi, find a left-hand side minimal
representation for f(x).

Clearly, if a representation, Σki=1aixbi, is left-hand side minimal, then k ≤ m.
Lemma 7.12. For all f(x) = Σni=1cixdi, the left-hand side minimal representation

can be found in O(log n) time, using n processors.
Proof. A left-hand side minimal representation can be found after the first step

(half phase) of the algorithm for finding minimal representation. Hence, the complex-
ity is equal to sorting n elements.

Following from Lemma 7.12, for all left-hand side minimally represented functions
f(x) = Σki=1aixbi and g(x) = Σlj=1cixdi, a left-hand side minimal representation of
h1(x) and h2(x) can be computed in O(log(k+ l)) and O(log kl) time, using O(k+ l)
and O(kl) processors, respectively, where h1(x) = f(x) + g(x) and h1(x) = (f ◦ g)(x).
This leads to the following theorem.

Theorem 7.13. Let PNR = {D,⊕,�} be a noncommutative semiring of size
m. Using m2M(n) processors, all circuits over PNR of size n and degree d can be
evaluated in O((log max(m,n))(lognd)) time. Therefore, if m is a polynomial of n,
then all circuits over PNR can be evaluated in polylogarithmic time in their size and
degree, using only a polynomial number of processors.

7.5. Semiring over matrices. Let CR be any commutative semiring andMR =
{D,⊕,�} be a matrix ring over CR, i.e.,

D = {Ak×k | Aij ∈ CR, 1 ≤ i, j ≤ k}.
Clearly, MR is a noncommutative semiring with infinite domain, whenever CR is
infinite.

Theorem 7.14. All circuits C over MR with n nodes and degree d can be
evaluated in O((log n)(log nd)) time, using M(n) processors.

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1685

Proof. Let F = {Cm2×m2 �X | Cm2×m2 ∈ D1}. The theorem follows from the
next lemma.

Lemma 7.15. F is closed over {⊕,�}.
Proof. For all Ak×k ∈ D, Ak×kXk×k and Xk×kAk×k are linear transformations

of (x1,1, . . . , xk,k) in space ICRk
2

. Let D1 = {Ck2×k2 | Ci,j ∈ CR, 1 ≤ i, j ≤ k2}.
Therefore, there exists Bk

2×k2

and Ck
2×k2 ∈ D1 such that

Bk
2×k2 �

x1,1 x1,2 . x1,k

x2,1 . . x2,k

. . . .

. . . .

. . . .
xk,1 xk,2 . xk,k

 = Bk
2×k2

x1,1

x1,2

.

.

.
xk,k

= Ak×k

x1,1 x1,2 . x1,k

x2,1 . . x2,k

. . . .

. . . .

. . . .
xk,1 xk,2 . xk,k

 ,

Ck
2×k2 �

x1,1 x1,2 . x1,k

x2,1 . . x2,k

. . . .

. . . .

. . . .
xk,1 xk,2 . xk,k

 = Ck
2×k2

x1,1

x1,2

.

.

.
xk,k

=

x1,1 x1,2 . x1,k

x2,1 . . x2,k

. . . .

. . . .

. . . .
xk,1 xk,2 . xk,k

Ak×k.

Therefore, F is closed under projection over ×. Note that the composition of two
functions in F is the matrix multiplication; hence, F is closed under composition.
Clearly, F is linear and closed under combination over +.

7.6. The power of structured computation. The power of structured com-
putation in parallel computation is considered in the example of the circuit value
problem over a matrix ring. Let CR = {D1,+,×} be an infinite commutative semir-
ing; let D = {Am×m | Am×mij ∈ D1, 1 ≤ i, j ≤ m} and MR = {D,+,×}. Let C be a
circuit of size n and degree d over anMR. In order to evaluate C in parallel, the best
known solution is to expand the matrix operations down to the operations defined
on CR, a commutative semiring, i.e., replacing each node in C by a subcircuit which
simulates the operation. The corresponding circuit is denoted by C′. Note that the
degree of C′ is also d. Therefore, the algorithm presented in [7] can be applied.

The complexity of this solution is now analyzed. If m is a constant, then the
algorithm takes O(log n log nd) time, using n3 processors.1 However, when m is a

1The number of processors to compute the multiplication of two matrices of dimension n in
O(logn) time is charged to be n3. The effect of the advanced matrix multiplication algorithm will
be discussed in a later subsection.

1686 GARY L. MILLER AND SHANG-HUA TENG

polynomial of n, for instance, m = n. Since each multiplication node in C is replaced
by a subcircuit of size m3 and each addition node in C is replaced by a subcircuit of size
m2, in the worst case C′ has a size of O(n4). Thus, this method takes O(log n log nd)
time, using n12 processors!

We will show that the same circuit can be evaluated in O(log n log nd) time, using
n9 processors. The n3 saving of processors is achieved by using structured computation.

Note that the proof of Lemma 7.15 is independent of m, the dimension of the
matrix-ring. Now, we show that projection, combination, and composition can be
computed in parallel efficiently.

Lemma 7.16.

1. The projection over × can be computed in O(logm) time, using m4 processors.
2. The combination of the two functions in F can be computed in constant time,

using m4 processors.
3. The composition of the two functions in F can be computed in O(logm) time,

using m6 processors.

Proof. 1. The projection operation over a × node is a linear transformation of
a vector in m2 dimension. As shown in the proof of Lemma 7.15, it is not difficult
to see that this linear transformation (Bm

2×m2

, Cm
2×m2

in the proof of Lemma 7.15)
can be computed by using the time and processors specified in the Lemma.

2. The combination of the two functions in F is simply a result of performing a
matrix addition.

3. The composition of the two functions is derived by performing a matrix mul-
tiplication.

Let D2 = {Un×n | Ui,j ∈ F}. Since F is closed under composition and linear over
+, {F , ◦,+} forms a semiring. Therefore, {D2, ◦,+} forms a semiring.

Lemma 7.17. For all U1, U2 ∈ D2, U1 ◦U2 can be computed in O(log max(m,n))
time, using O(n3m6) processors. U1 + U2 can be computed in constant time, using
n2m4 processors.

Proof. Each entry of Ui is an m2×m2 matrix; and Σnk=1(U1)i,k(U2)k,j , 1 ≤ i, j ≤
n, can be computed in O(log max(m,n)) time, using O(n3m6) processors. The second
part of this lemma follows Lemma 7.16.

Therefore, the compress operation can be computed in O(log max(m,n)) time,
using n3m6 processors. The following theorem results.

Theorem 7.18. For all circuits C over MR with n nodes and degree d, C can
be evaluated in O((log max(m,n))(lognd)) time, using n3m6 processors.

7.7. The effect of advanced matrix multiplication algorithms. The above
discussion is based on the assumption that the simplest O(log n) time, the n3 proces-
sor, matrix multiplication algorithm is used. What is the effect of advanced matrix
multiplication algorithms?

Let MCR(n) be number of processors used to multiply two n × n-matrices over
commutative semiring CR in O(log n) time. Let MMR(n) be number of processors
used to multiple two n × n-matrices over matrix semiring MR = {D,+,×}, where

D = {Am2×m2 | Am2×m2

ij ∈ CR, 1 ≤ i, j ≤ m}, in O(log n) time, when the time and

processors needed to multiply and add twom2×m2 matrices are charged as a constant.
Clearly, the multiplication of any two n × n-matrices over MR can be computed in
O(log max(m,n)) time, using no more than MMR(n)MCR(m2) processors.

Using the above notations, the processor count for nonstructured and structured
method to evaluate a matrix circuit is Pns(n,m) = MCR(nMCR(m)) and Ps(n,m) =

DYNAMIC PARALLEL CIRCUIT COMPLEXITY 1687

MCR(n)MMR(m2), respectively. Since MCR(n1n2) = MCR(n1)MCR(n2),

Pns(n,m)

Ps(n,m)
= MCR(MCR(m)/m2)

MCR(n)

MMR(n)
.

It is reasonable to assume that n3 ≥ MMR(n) ≥ MCR(n) ≥ n2. If MCR > n2,
then the larger the m, the more saving the structured method has. However, if
MCR(n) = n2 (possible?), then there is no reason to use the structured method.

8. Open problems.
• It is interesting and important to have a general theory for unary function

class construction when an operator set is given and to have a theory for
proving closure properties of certain classes of unary functions.
• The dynamic complexity of min–max-plus-times circuit over R+ is unknown

even though we construct a class of unary functions which is closed over
({min}, {max,+,×}) by means of reduction lemma in section 3; i.e., the
uniformity of F(min,max,+,×) is still open.
• Is there an operator set whose cheap operation has more than one operator?
• What is the tight bound on the running time of the parallel Boolean circuit

evaluation algorithm?
• What is the dynamic complexity of circuit over a ring with division?

Acknowledgments. We would like to thank both referees for carefully reading
an earlier version of this paper and for their technical and editorial comments and
suggestions that greatly improved this paper.

REFERENCES

[1] M. Ajtai, J. Komlos, and E. Szemeredi, Sorting in c log n parallel steps, Combinatorica, 3
(1983), pp. 1–19.

[2] H. Gazit, G. L. Miller, and S.-H. Teng, Optimal tree contraction in an EREW model, in
Proceedings of the 1987 Princeton Workshop on Algorithm, Architecture and Technology:
Issues for Models of Concurrent Computation, Princeton, NJ, 1987, pp. 139–156.

[3] L. Goldschlager, The monotone and planar circuit value problems are log-space complete for
P, SIGACT News, (1977), pp. 25–29.

[4] S. R. Kosaraju, On the parallel evaluation of classes of circuits, in Proceedings of the 10th
Conference on Foundations of Software Technology and Theoretical Computer Science,
Lecture Notes in Comput. Sci. 472, Springer-Verlag, New York, 1990, pp. 232–237.

[5] R. E. Ladner, The circuit value problem is log-space complete for P, SIGACT News, 7 (1975),
pp. 18–20.

[6] G. L. Miller and J. H. Reif, Parallel tree contraction and its applications, in 26th Symposium
on Foundations of Computer Science, IEEE, Portland, OR, 1985, pp. 478–489.

[7] G. L. Miller, V. Ramachandran, and E. Kaltofen, Efficient parallel evaluation of straight-
line code and arithmetic circuits, SIAM J. Comput., 17 (1988), pp. 687–695.

[8] G. L. Miller and S.-H. Teng, Dynamic parallel complexity of computational circuits, in
Proceedings, Symposium on the Theory of Computing, ACM, 1987, pp. 254–263.

[9] G. L. Miller and S.-H. Teng, Systematic methods for tree based parallel algorithm develop-
ment, in Proceedings, Second International Conference on Supercomputing, Santa Clara,
CA, May 1987, pp. 392–403.

[10] G. L. Miller and S.-H. Teng, Tree-based parallel algorithm design, in Algorithmica, 19 (1997),
pp. 369–389.

[11] N. Nisan, Lower bounds for non-commutative computation, in Proceedings, Symposium on the
Theory of Computing, ACM, 1991, pp. 410–418.

[12] V. Ramachandran and H.-H. Yang, An efficient parallel algorithm for the general planar
monotone circuit value problem, SIAM J. Comput., 25 (1996), pp. 312–339.

[13] J. H. Reif and L. G. Valiant, A logarithmic time sort for linear size networks, J. ACM, 34
(1987), pp. 60–76.

1688 GARY L. MILLER AND SHANG-HUA TENG

[14] W. L. Ruzzo, Tree-size bounded alternation, J. Comput. System Sci., 21 (1980), pp. 218–235.
[15] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365–383.
[16] S.-H. Teng, The construction of Huffman-equivalent prefix code is in NC, SIGACT News, 18

(1987), pp. 54–61.
[17] J. D. Ullman and A. V. Gelder, Parallel Complexity of Logical Query Programs, Technical

report, Department of Computer Science, Stanford University, Palo Alto, CA, 1985.
[18] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, Fast parallel computation of

polynomials using few processors, SIAM J. Comput., 12 (1983), pp. 641–644.

THE RELATIONSHIP BETWEEN BREAKING THE
DIFFIE–HELLMAN PROTOCOL AND COMPUTING

DISCRETE LOGARITHMS∗

UELI M. MAURER† AND STEFAN WOLF†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1689–1721

Abstract. Both uniform and nonuniform results concerning the security of the Diffie–Hellman
key-exchange protocol are proved. First, it is shown that in a cyclic group G of order |G| =

∏
p
ei
i ,

where all the multiple prime factors of |G| are polynomial in log |G|, there exists an algorithm that
reduces the computation of discrete logarithms in G to breaking the Diffie–Hellman protocol in G and

has complexity
√

max{ν(pi)} · (log |G|)O(1), where ν(p) stands for the minimum of the set of largest

prime factors of all the numbers d in the interval [p− 2
√
p+ 1, p+ 2

√
p+ 1]. Under the unproven but

plausible assumption that ν(p) is polynomial in log p, this reduction implies that the Diffie–Hellman
problem and the discrete logarithm problem are polynomial-time equivalent in G. Second, it is proved
that the Diffie–Hellman problem and the discrete logarithm problem are equivalent in a uniform sense
for groups whose orders belong to certain classes: there exists a polynomial-time reduction algorithm
that works for all those groups. Moreover, it is shown that breaking the Diffie–Hellman protocol for
a small but nonnegligible fraction of the instances is equally difficult as breaking it for all instances.
Finally, efficient constructions of groups are described for which the algorithm reducing the discrete
logarithm problem to the Diffie–Hellman problem is efficiently constructible.

Key words. public-key cryptography, Diffie–Hellman protocol, discrete logarithms, finite fields,
elliptic curves

AMS subject classifications. 11T71, 68Q15

PII. S0097539796302749

1. Introduction. Two challenging open problems in cryptography are to prove
or disprove that breaking the Diffie–Hellman (DH) protocol [13] is computationally
equivalent to computing discrete logarithms in the underlying group and that breaking
the Rivest–Shamir–Adleman system [40] is computationally equivalent to factoring the
modulus. This paper is concerned with the first of these problems.

1.1. The discrete logarithm problem. Let G be a finite cyclic group (written
multiplicatively) generated by g. The discrete logarithm (DL) problem for the group
G can be stated as follows: Given g and a ∈ G, find the unique integer s in the
interval [0, |G| − 1] such that gs = a. The number s is called the discrete logarithm
of a to the base g.

1.2. The DH key-exchange protocol and the DH problem. The DH pro-
tocol [13] allows two parties, Alice and Bob, connected by an authenticated but oth-
erwise insecure channel (for instance an insecure telephone line over which Alice and
Bob authenticate each other by speaker recognition), to generate a mutual secret

∗Received by the editors April 29, 1996; accepted for publication (in revised form) January 20,
1998; published electronically May 7, 1999. Preliminary versions of this paper appeared as [U. M.
Maurer, Towards the equivalence of breaking the Diffie–Hellman protocol and computing discrete
logarithms, in Advances in Cryptology—CRYPTO’94, Lecture Notes in Comput. Sci. 839, Springer-
Verlag, New York, 1994, pp. 271–281; U. M. Maurer and S. Wolf, Diffie–Hellman oracles, in Advances
in Cryptology—CRYPTO’96, Lecture Notes in Comput. Sci. 1109, Springer-Verlag, New York, 1996,
pp. 268–282]. This work was supported by Swiss National Science Foundation (SNF) grant 20–
42105.94.

http://www.siam.org/journals/sicomp/28-5/30274.html
†Department of Computer Science, Swiss Federal Institute of Technology, ETH Zürich, CH-8092

Zürich, Switzerland (maurer@inf.ethz.ch, wolf@inf.ethz.ch).

1689

1690 UELI M. MAURER AND STEFAN WOLF

key which appears to be computationally infeasible to determine for an eavesdropper
overhearing the entire conversation between Alice and Bob.

The protocol works as follows. Let G = 〈g〉 be a cyclic group generated by g
for which the DL problem is believed to be hard. In order to generate a mutual
secret key, Alice and Bob secretly choose integers sA and sB , respectively, at random
from the interval [0, |G| − 1]. Then they compute secretly aA = gsA and aB = gsB ,
respectively. Note that there exist efficient algorithms for exponentiation in groups.
Finally, they exchange these group elements over the insecure public channel and
compute aAB = asAB = gsAsB and aBA = asBA = gsBsA , respectively. Since aAB = aBA,
this quantity can be used as a secret key shared by Alice and Bob. More precisely, they
need to apply a function mapping elements of G to the key space of a cryptosystem.

It is unknown whether a group exists for which the DL problem is hard, but
several candidate groups have been proposed. Examples are the multiplicative groups
of large finite fields (prime fields [13] or extension fields), the multiplicative group of
residues modulo a composite number [31], [32], elliptic curves over finite fields [36],
[21], the Jacobian of a hyperelliptic curve over a finite field [20], and the class group
of imaginary quadratic fields [7].

The security of the DH protocol is based on the assumptions that the DL problem
is hard to solve in G and that this implies that it is hard to compute gsAsB from gsA

and gsB . We will refer to the problem of computing gsAsB from gsA and gsB as the
DH problem. This paper is mainly concerned with the relationship between the DH
and DL problems. It is clear that the DH problem cannot be more difficult than the
DL problem because exponentiation in a group is efficient. Conversely, even when we
are using a group for which the DL problem is hard, this does not immediately imply
that the DH protocol is secure. However, we will show that, for every group whose
order is not divisible by the square of a large prime number, the DH problem cannot
be substantially easier than the DL problem. Moreover, for certain classes of groups
an efficient algorithm reducing the DL problem to the DH problem not only exists
but is efficiently constructible.

1.3. Outline of the paper. The paper is organized as follows. In section 2
a general index-search problem is defined and investigated, and some algorithms for
computing discrete logarithms are described. In sections 3 and 4 a technique for
proving the equivalence of the DH and DL problems, using so-called auxiliary groups,
is presented, and examples of suitable auxiliary groups—for instance, elliptic curves
or subgroups of the multiplicative group of a finite field—are described. These two
sections contain the main results of this paper. More precisely, a generalization of the
result of [26] is proved in section 3, which states that the DH and DL problems are
equivalent for groups G for which appropriate auxiliary groups are given. The first
result of section 4 is a nonuniform reduction of the DL problem to the DH problem:
it is shown (under an unproven but plausible number-theoretic conjecture) that there
exists, for every group whose order does not contain a multiple large prime factor,
a polynomial-time algorithm computing discrete logarithms and making calls to an
oracle solving the DH problem. The second result of section 4 is a list of smoothness
conditions (depending on |G|) which make the DH and DL problems equivalent in a
uniform sense; i.e., an efficient reduction algorithm not only exists but also can be
found efficiently. In section 5, several variants of the DH problem are defined, and it
is shown that they are (almost) as hard as the original DH problem. For instance,
breaking the DH problem with small probability is equally hard as breaking it with
arbitrarily high probability.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1691

In Appendix A we describe an algorithm for finding generating sets of Abelian
groups. Appendix B contains some basic facts about Gröbner basis computations
which are required in section 4. In Appendix C we obtain results which are stronger
than those of sections 3 and 4 under the assumption that efficient algorithms exist for
solving the DH problem in certain groups. In Appendix D, we show how to construct
DH groups for which the DH and DL problems are provably equivalent.

1.4. Related work. Considerations on related topics can be found in [3], [4],
[10], [11], [12], [28], [29], [42], and [45]. In [4], the notion of a black-box field is
introduced, which makes more explicit the concept of computation with implicitly
represented elements presented in [26]. Furthermore, the existence of a uniform re-
duction of the DL problem to the DH problem of subexponential complexity was
proved in [4], using methods related to those of [26] and of section 3 and Appendix C
of this paper.

In [45], the hardness of the DH problem (and hence of the DL problem) is proved
in the generic model, i.e., for general-purpose algorithms that do not exploit any
special property of the representation of the group elements. However, it was shown
in [28] that the DH and DL problems are not computationally equivalent in a generic
sense if the group order contains multiple large prime factors. In [11], the hardness of
the DL and DH problems modulo p is proved in special computational models. For
example it was shown that the DH function cannot be interpolated by a low-degree
polynomial.

An alternative construction to that of section 5 for correcting a faulty oracle
solving the DH problem is described in [45]. Finally, a comparison of the security of
different DL based systems is given in [42].

2. The index-search problem and algorithms for computing discrete
logarithms.

2.1. The index-search and DL problems. Let A = (ai)i=0,...,n−1 be a list of
elements of some set S such that for a given i it is easy to compute ai. We call the
problem of computing for a given b ∈ S an index i such that b = ai the index-search
problem. It can trivially be solved by exhaustive search which requires at most n
comparisons. If the list has the property that the permutation σ : ai 7→ ai+1 (where
the index is reduced modulo n) can efficiently be computed, then the search can be
sped up by a time-memory trade-off known as the baby-step giant-step algorithm.
Using a table of size M to store the sorted list of values b, σ(b), . . . , σM−1(b), one can
compute the elements a0, aM , a2M , . . . until one of them, say, aiM , equals an element
σj(b) contained in the table. Then the index of b is iM−j. For the choice M := d√ne,
the running time of the algorithm is O(

√
n log n).

The DL problem in a cyclic group H of order |H| with generator h is the index-
search problem for the list (1, h, . . . , h|H|−1). Multiplication with h corresponds to
the above-mentioned permutation σ. Hence the baby-step giant-step algorithm is
applicable for solving the DL problem. It is a general-purpose algorithm that uses
no particular properties of the representation of the group elements other than the
uniqueness of the representation.

2.2. The Pohlig–Hellman algorithm. We describe a generic algorithm due
to Pohlig and Hellman [37] which reduces the computation of discrete logarithms to
the same problem in the minimal nontrivial subgroups. It plays a central role in this
paper.

1692 UELI M. MAURER AND STEFAN WOLF

Theorem 1 (see [37]). Let H = 〈h〉 be a cyclic group with order |H| = ∏r
i=1 q

fi
i ,

and let a = hx ∈ H be given. The discrete logarithm x of a can be computed by
O(
∑
fi(log |H|+ qi)) group operations and equality tests of group elements. If mem-

ory space for storing d√qe group elements (where q is the greatest prime factor of
|H|) is available, the running time can be reduced to O(

∑
fi(log |H|+√qi log qi)).

Proof. To solve a = hx for x, we first compute x modulo qfii for all i. This is
done by determining, modulo qi, the coefficients xij of the qi-adic representation of x

modulo qfii ,

x ≡
fi−1∑
j=0

xijq
j
i (mod qfii).

The number xi0 is the discrete logarithm of a|H|/qi = hx·|H|/qi = hxi0·|H|/qi in the
group H(i) := 〈h|H|/qi〉 of order qi. Assume now that xi0, . . . , xi,k−1 have already
been computed. The number xik is the discrete logarithm of(

a · h−(xi0+···+xi,k−1q
k−1
i

)
)|H|/qk+1

i

= hxik·|H|/qi

in the same group H(i). The computation of a discrete logarithm in H(i) has com-
plexity O(qi) with exhaustive search and can be sped up by a factor M when a table
of size M is used (that can be sorted in time O(M logM)).

Given x modulo qfii for all i, Chinese remaindering yields the discrete logarithm
x of a modulo |H|. The complexity of the entire algorithm is

O
(∑

fi(log |H|+ qi)
)

or

O
(∑

fi(log |H|+√qi log qi)
)

when the baby-step giant-step algorithm with M = d√qie is used.
The algorithm is efficient only if |H| is smooth, i.e., if qi ≤ B for a small smooth-

ness bound B. If this condition is satisfied, we have in the worst case that qi ≈ B for
all i; i.e., the number of factors is log |H|/ logB, and the complexity is

O

(
(log |H|)2 +

B

logB
log |H|

)
or

O
(

(log |H|)2 +
√
B log |H|

)
when the baby-step giant-step trade-off is used.

It is crucial in the following that the algorithm be generic, i.e., that it use oper-
ations in H and equality tests of group elements only. Shoup showed in [45] that no
general-purpose algorithm can solve the DL problem faster than the Pohlig–Hellman
algorithm together with the baby-step giant-step trade-off. For special groups such
as the multiplicative group of a finite field, more efficient algorithms are known. We
refer the reader to [33] for a detailed discussion of the DL problem and algorithms for
solving it.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1693

3. A general technique for reducing the DL problem to the DH prob-
lem. In this section we describe a technique that allows us to reduce the DL problem
to the DH problem efficiently in groups G (more precisely, in all groups of certain
orders) which satisfy certain conditions.

In section 3.1 we define the notion of a DH oracle, and the subsequent sections
deal with the problem of computing discrete logarithms in a group G when given such
an oracle for G. As a preparation for this, it is investigated in section 3.2 what kind of
computations are possible in the exponents (i.e., in the unknown discrete logarithms)
of group elements when given a DH oracle. In section 3.3, the concept of auxiliary
groups is defined, and in sections 3.4 and 3.5 it is shown that these auxiliary groups
are a tool for reducing the DL problem to the DH problem.

3.1. Computing discrete logarithms with an oracle solving the DH
problem. In order to prove results concerning the equivalence of breaking the DH
protocol and computing discrete logarithms we assume the availability of an oracle
that solves the DH problem.

Definition 1. A DH oracle for a group G with respect to a given generator g
takes as inputs two elements a, b ∈ G (where a = gu and b = gv) and returns the
element guv.

In the following we describe a polynomial-time reduction of the DL problem to
the DH problem for certain classes of groups. Let G be a cyclic group generated by
g for which the prime factorization of the order |G| is known, and let a = gs be a
given group element for which we want to compute the discrete logarithm s using
a DH oracle for G. It is sufficient to compute s modulo each prime factor of |G|
(or modulo the prime powers if |G| contains multiple prime factors) and to combine
these values by Chinese remaindering. Only large prime factors are relevant because
the Pohlig–Hellman algorithm allows us to compute s modulo powers of small prime
factors of |G|. Hence we can restrict our attention to the problem of computing s
modulo p for a large prime factor p of |G|. We assume that p is a single prime factor
of |G|; the case of |G| having multiple large prime factors is discussed in section 3.5.
Let x be the element of GF (p) defined by s ≡ x (mod p). In the following sections,
the problem of computing x from the group element gs is investigated.

3.2. Computing with implicit representations using a DH oracle. Every
element y of the field GF (p) can be interpreted as corresponding to a set of elements
of G, namely, those whose discrete logarithm is congruent to y modulo p. Every
element of this set is then a representation of the field element y.

Definition 2. Let G be a cyclic group with a fixed generator g, and let p be a
prime divisor of the group order. Then, a group element a = gy

′
is called an implicit

representation (with respect to G and g) of the element y ∈ GF (p) if y ≡ y′ (mod p).
We write y ; a.

Note that the implicit representation of a field element is not unique if |G| 6= p.
The following operations on elements of GF (p) can be performed efficiently on

implicit representations of these elements (i.e., by operating in the group G), where
the result is also in implicit form. Let y and z be elements of GF (p), with

y ; a, z ; b.

Because

y = z if and only if a|G|/p = b|G|/p,

1694 UELI M. MAURER AND STEFAN WOLF

equality of two implicitly represented elements of GF (p) can be tested by O(log |G|)
group operations. Furthermore we have

y + z ; a · b,
yz ; DHg(a, b),

−y ; a−1 = a|G|−1

(where DHg stands for the DH function with respect to the generator g), and these
implicitly executed operations on GF (p) elements require a group operation in G, a
call to the DH oracle, and O(log |G|) group operations, respectively.

In order to simplify the notation, we also introduce the notion of an eth-power
DH oracle (PDHg,e oracle) that computes an implicit representation of the eth power
of an implicitly represented element. A possible implementation of a PDHg,e oracle
is to use a “square and multiply” algorithm for obtaining an implicit representation
of ye, denoted by PDHg,e(a), by O(log e) calls to a normal DH oracle (remember that
y ; a). In particular we can compute inverses of implicitly represented elements
because

y−1 ; PDHg,p−2(a) .

We call addition, subtraction, multiplication, division, and equality testing in
GF (p) algebraic operations. Any efficient computation in GF (p) can be performed
equally efficiently on implicit representations whenever it makes use only of algebraic
operations. Examples are the evaluation of a rational function, testing quadratic
residuosity of y by comparing

(PDHg,(p−1)/2(a))|G|/p and g|G|/p ,

or the computation of square roots using an algorithm of Massey [25]. We will crucially
rely on the fact that algorithms based on exhaustive search (for example generic
algorithms for solving the index-search problem, in particular the DL problem) can
be executed on implicitly represented arguments and lead to explicit results.

3.3. Auxiliary groups. When given a DH oracle for G, the computation of x is
shown to work efficiently if an auxiliary group H over GF (p) with certain properties
exists. (Remember that s ≡ x (mod p), where p is a large prime factor of |G|, and
that s is the discrete logarithm we want to compute.) The basic idea is to embed the
unknown x into an implicitly represented element c of H and to compute the discrete
logarithm of this element explicitly. We now define a first required property of the
auxiliary group H.

Definition 3. A finite group H is said to be defined (m,α)-algebraically over
GF (p) if the elements of H can be represented as m′-tuples (for some m′ ≤ m) of
elements of GF (p) such that the group operation in this representation can be carried
out by at most α algebraic operations in GF (p).

We will need the following stronger property for auxiliary groups.
Definition 4. A group H is defined strongly (m,α)-algebraically over GF (p) if

H is defined (m,α)-algebraically over GF (p) and if there exist two algorithms, Embed
and Extract, with the following properties.

1. For all (x, e) ∈ GF (p)2 the Embed algorithm with input (x, e) either outputs
a group element c of H or reports failure.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1695

2. If the Embed algorithm is run with the input (x, e) for fixed x and randomly
chosen e until the algorithm does not fail, then the expected running time until
an element c ∈ H is computed is at most α algebraic operations in GF (p).

3. If the Embed algorithm does not fail for the input (x, e), then

Extract(Embed(x, e), e) = x.

4. The Extract algorithm runs in time at most α.
In the examples of section 4, the Embed algorithm computes a group element

c that contains x + e as a coordinate, and the Extract procedure outputs this
particular coordinate minus e.

In the next section we show how an Abelian group H with bounded rank, defined
strongly algebraically over GF (p), and with smooth order can be used as an auxiliary
group in the reduction of the computation of discrete logarithms modulo p in G to
break the DH protocol for G.

3.4. The reduction algorithm. First we extend the definition of implicit rep-
resentations from elements of GF (p) to m-tuples over GF (p).

Definition 5. Let p and G be as above and let ai ∈ G and yi ∈ GF (p) (for
i = 1, . . . ,m). We say that (a1, . . . , am) is an implicit representation of (y1, . . . , ym)
if yi ; ai for 1 ≤ i ≤ m.

Theorem 2. Let P be a fixed polynomial. Let G be a cyclic group with generator
g such that |G| and its factorization |G| =

∏s
i=1 p

ei
i are known. If there exist m, α,

and B, all upper bounded by P (log |G|), such that every prime factor p of |G| greater
than B is single, and for every such p, a finite Abelian group Hp with rank r = O(1),
defined strongly (m,α)-algebraically over GF (p), exists whose order |Hp| is B-smooth,
then breaking the DH protocol for G with respect to g is probabilistic polynomial-time
equivalent to computing discrete logarithms in G to the base g.

The expected complexity of the computation of a discrete logarithm in G when
given a DH oracle for G is O(m2Br(log |G|)2/ logB + m2α(log |G|)3) group opera-
tions in G, O(m2α(log |G|)3) calls to the DH oracle for G, and O(m2α(log |G|)3 +
mαBr(log |G|)2/ logB) field operations in GF (p) for p ≤ |G|. The complexities can
be reduced by a time-memory trade-off.

Proof.1 Let p be a single prime factor of |G| larger than B. Assume that an
auxiliary group H is given that is defined strongly (m,α)-algebraically over GF (p)

with B-smooth order |H| =
∏
qfii . It is clear that H has the property that when

given an implicitly represented field element x ∈ GF (p), an implicitly represented
group element c of H (and an explicit element e of GF (p)) can be found efficiently
with the property that from the explicit representation of c (and from e), the Extract
algorithm leads to the element x. The reason is that because the Embed procedure
uses only algebraic operations, it works also on implicitly represented inputs (where
the group element of the output is also implicitly represented). This fact allows us to
reduce the computation of discrete logarithms in G (modulo p) to the same problem
in the group H. The field element x is computed from an implicit representation of
x in four steps.

Step 1. Use the Embed algorithm to obtain, when given an implicit representation
of x and a random e ∈ GF (p), an implicit representation of a group element c of H.

1The reader may wish to consult the survey paper [27], where a special case of this theorem is
proved. More precisely, the proof is given under the assumption that all the auxiliary groups are
cyclic elliptic curves over GF (p).

1696 UELI M. MAURER AND STEFAN WOLF

Step 2. Compute the discrete logarithm of c in H (with respect to some generator
set).

Step 3. Compute c explicitly.
Step 4. Use the Extract algorithm to obtain x explicitly:

x = Extract(c, e) .

We have to prove the stated complexity bounds for Step 2. The group H is
Abelian of rank r; i.e., H is isomorphic to Zn1×· · ·×Znr for some n1, . . . , nr satisfying∏r
j=1 nj = |H| and such that nj+1 divides nj for j = 1, . . . , r − 1. Let h1, . . . , hr be

a set of generators of H such that |〈hj〉| = nj and H is the internal product of the
cyclic subgroups 〈h1〉, . . . , 〈hr〉:

H = 〈h1〉 × · · · × 〈hr〉 .

(If no generator set for H is known, it can be computed by the method described in
Appendix A.)

The element c ∈ H has a unique representation:

c =

r∑
j=1

kjhj , 0 ≤ kj < nj .

(The group H is written additively.) We address the problem of computing the
coefficients kj . This can be done by a generalization of the Pohlig–Hellman algorithm
(see section 2), applied to implicitly represented group elements. The following is
repeated for every prime q dividing |H|. We describe the first and second iteration
step of an algorithm that computes kj modulo the highest power of q dividing nj for
all j = 1, . . . , r. The algorithm uses vj (j = 1, . . . , r) as local variables (initialized by
vj ← 0).

For the first step, let α1 be the number of generators hj whose order contains the
same number of factors q as n1. In other words, (n1/q)hj is different from the unity
e of H exactly for j = 1, . . . , α1. Because H is defined algebraically over GF (p), an
implicit representation of

n1

q
c

can be efficiently computed from an implicit representation of c. For all (t1, . . . , tα1
) ∈

{0, . . . , q − 1}α1 , we compute (explicitly)

n1

q
t1h1 + · · ·+ n1

q
tα1hα1 ,

transform the coordinates to an implicit representation, and test equality with (n1/q)c.
Equality indicates that the tj are congruent to the coefficients kj modulo q. We set
vj ←− tj for these tj , and for 1 ≤ j ≤ α1.

For the second step, let α2 be the number of elements hj whose order contains at
most one factor q less than n1, i.e., (n1/q

2)hj 6= e exactly for j = 1, . . . , α2. Implicit
representations of the group elements

n1

q2
(t1q + v1)h1 + · · ·+ n1

q2
(tα1

q + vα1
)hα1

+
n1

q2
tα1+1hα1+1 + · · ·+ n1

q2
tα2

hα2

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1697

are computed for all (t1, . . . , tα2
) ∈ {0, . . . , q − 1}α2 until equality with the implicitly

represented element

n1

q2
c

holds. Then assign

vj ←− tjq + vj (j = 1, . . . , α1) ,

vj ←− tj (j = α1 + 1, . . . , α2) .

After repetition of this process up to the maximal q power, qg dividing n1, the resulting
vj satisfy

n1

qg
c =

r∑
j=1

n1

qg
vjhj ;

i.e., kj is congruent to vj modulo the highest power of q dividing nj = ord hj for
j = 1, . . . , r.

After running the algorithm for all primes q dividing |H|, one can compute the co-
efficients kj modulo ord hj by Chinese remaindering. The complexity of the algorithm
is

O((log |H|)2) operations in H with implicitly represented elements,
O(m Br

r logB log |H| log |G|+ α log |G|) operations in G,

O(α log |G|) calls to the DH oracle for G, and
O(r(log |H|)2 + log |H| BrlogB explicit operations in H.
The first part of the number of group operations comes from the comparisons

of implicitly represented elements of H. Note that |H| ≤ pm because H is defined
(m,α)-algebraically over GF (p). The implicit and explicit operations in H can be
further reduced to operations and DH oracle calls in G and operations in GF (p).
Then, one obtains the following complexities.

O(m2 Br

r logB log p log |G|+m2(log p)2α log |G|) group operations in G,

O(m2(log p)2α log |G|) calls to the DH oracle for G, and
O((m2(log p)2 +m log p Br

r logB) · α log p) field operations in GF (p).
The complexities can be reduced by a time-memory trade-off if memory space is avail-
able. The running time is polynomial in log |G| because m, α, and B are polynomial
in log |G|, and because r = O(1).

3.5. The case of multiple large prime factors in |G|. In the previous sec-
tions we assumed that all the large prime factors of |G| are single. Under certain
additional conditions one can also treat the case of multiple large prime factors of
|G|. If pe divides |G| (with e > 1), the discrete logarithm s must be computed ex-
plicitly modulo pe instead of modulo p. This can be done if either an additional DH
oracle for a certain subgroup of G is given (Case 1) or pth roots can efficiently be
computed in G (Case 2).

Case 1. Assume that a DH oracle for the group 〈g|G|/p〉 is given. We write

x ≡
e−1∑
i=0

xip
i (mod pe)

1698 UELI M. MAURER AND STEFAN WOLF

with xi ∈ GF (p) for i = 0, . . . , e − 1. Let k ≤ e − 1, assume that x0, . . . , xk−1

are already computed (note that x0 can be computed as described in the previous

section), and consider the problem of computing xk. Let a′ := a · g−x0−···−xk−1p
k−1

.
Then

a′ = gx0+x1p+···+xe−1p
e−1 · g−x0−···−xk−1p

k−1

= gxkp
k+xk+1p

k+1+···+xe−1p
e−1

=
(
gp
k
)xk+p·l

for some l. From a′, compute

a′′ := (a′)|G|/p
k+1

=
(
g|G|/p

)xk
,

and from a′′, xk can be computed as described in the previous section by using the
DH oracle for 〈g|G|/p〉. More generally, this also works when a DH oracle for any

group 〈gd·pe−1〉, where d · pe−1 divides |G|/p, is given.
Case 2. Assume that a′ (see Case 1) is computed. If an element a′′′ of the form

a′′′ = gxk+p·l′

for some l′ is computed, xk can again be obtained as in section 3.4, with the DH
oracle for 〈g〉. Such an element a′′′ can be obtained by computing a pkth root, i.e., k
times the pth root, of a′. Any pkth root of a′ is of the required form because p divides
|G|/pk.

However, it has been shown that in the model of generic algorithms, it is not
possible to compute discrete logarithms in a group G more efficiently than in time
Ω(
√
p) with a DH oracle for G, if p is a multiple prime factor of |G| [28], [49]. The

model of generic algorithms was introduced by Shoup [45]. Intuitively, a generic
algorithm is a general-purpose algorithm that works for all groups of a certain order
and does not make use of any particular property of the representation of the group
elements. Of course this result implies that in the generic model a DH oracle cannot
be efficiently used to construct the required subgroup oracles of Case 1 (a result which
had already been proved in [45]) and that for large p, pth roots cannot be computed
efficiently by a generic algorithm in a group of which the order is divisible by p2, even
when a DH oracle is given for this group (Case 2) [28], [49].

4. Applicable auxiliary groups over GF (p). In this section, two classes of
possible auxiliary groups satisfying the requirements specified in the previous section
are described: elliptic curves over finite fields and subgroups of the multiplicative
groups of finite fields. The applicability of Jacobians of hyperelliptic curves (see [20]
and [9]) as auxiliary groups was demonstrated in [48].

Two types of results are derived as a consequence of the applicability of these
classes of groups as auxiliary groups. First, a nonuniform reduction of the DL to the
DH problem is shown. Under an unproven assumption on the existence of smooth
numbers in small intervals, the complexity of this reduction is polynomial in log |G|;
i.e., for every group (if no squares of large primes divide the order) there exists an
algorithm for computing discrete logarithms in polynomial time if it is allowed to make
calls to a DH oracle for this group. As mentioned already, such a reduction does not
exist (in the model of generic algorithms) if the group order contains multiple large
prime factors.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1699

Moreover, we give a list of expressions A(p) in p with the property that an auxil-
iary group Hp with order A(p) over GF (p) can efficiently be constructed. Theorem 2
then implies that if for each prime factor p of |G| one of the expressions in this list is
smooth, then breaking the DH protocol and computing discrete logarithms are equiv-
alent for G (if |G| has no multiple large prime factors). The equivalence of the DH and
DL problems holds in a uniform sense for these groups because an efficient reduction
algorithm, whose existence is guaranteed by the nonuniform result, can even be found
efficiently.

4.1. Elliptic curves.

4.1.1. Applicability as auxiliary groups. Let F be a field (whose character-
istic is not 2 or 3) and let A,B ∈ F with 4A3 + 27B2 6= 0 (in F). The elliptic curve
EA,B(F) (with parameters A and B in F) is the set

{(x, y) ∈ F2 : y2 = x3 +Ax+B} ∪ {O}.

(The additional point O is called “point at infinity.”) Together with a certain oper-
ation on the set of points, EA,B(F) forms an Abelian group of rank at most 2. We
refer to [35] for an introduction to elliptic curves.

Here we show that an elliptic curve E over the field GF (p) is defined strongly
(2, O((log p)2))-algebraically over GF (p). Therefore it can be used as an auxiliary
group if it has smooth order. Note that the order of an elliptic curve can be computed
in polynomial time [44],[6]. The points of E can be represented as pairs of GF (p)-
elements, and the group operation can be executed in this representation by a constant
number of additions, multiplications, divisions, and equality tests in GF (p). We
describe the Embed algorithm. Let x, e ∈ GF (p) be given. First the expression
D = (x + e)3 + A(x + e) + B is computed and its quadratic residuosity is tested. If
D is not a quadratic residue, the algorithm reports failure (and a new value for e is
chosen). If D is a quadratic residue, then a square root y of D is computed by an
algorithm due to Massey [25] (see also Lemma 3 in section 5.4). Then the Embed
algorithm outputs c = (x + e, y). The necessary executions of the Embed algorithm
require O((log p)2) algebraic operations in GF (p).

One can show in a completely analogous manner that an elliptic curve over an
extension field GF (pn) of GF (p), where n is polynomial in log p, can also be used as
an auxiliary group.

4.1.2. Existence. It is well-known that for any A,B ∈ GF (p)

p− 2
√
p+ 1 ≤ |EA,B(GF (p))| ≤ p+ 2

√
p+ 1 ,

and that for every d ∈ [p − 2
√
p + 1, p + 2

√
p + 1], there exists a cyclic elliptic curve

over GF (p) with order d [41]. This implies the following non-uniform reduction of the
DL problem to the DH problem.

Definition 6. For a number n, let ν(n) be the minimum, taken over all d in the
interval [n− 2

√
n+ 1, n+ 2

√
n+ 1], of the largest prime factor of d.

Theorem 3. Let P be a fixed polynomial. For every finite cyclic group G with
order |G| = ∏

peii and such that all multiple prime factors pi of |G| are smaller than
B := P (log |G|), there exists an algorithm that makes calls to a DH oracle for G and
computes discrete logarithms of elements of G in time

max{ν(pi)} · (log |G|)O(1) .

1700 UELI M. MAURER AND STEFAN WOLF

The quantity ν(p) is directly linked with the existence of a smooth number in the
interval [p− 2

√
p+ 1, p+ 2

√
p+ 1]. Unfortunately, very little is known about smooth

numbers in such intervals. However, it is known [8] that for every fixed u,

ψ(n, n1/u) = n/u(1+o(u))u,(1)

where ψ(n, y) denotes the number of y-smooth integers ≤ n. This fact suggests that
ν(n) is polynomial in logn.

Smoothness Assumption. ν(n) = (logn)O(1).
This assumption implies that the algorithms of Theorem 3 run in time polynomial

in log |G|, and this yields a polynomial-time nonuniform reduction of the DL problem
to the DH problem for all groups whose orders are free of multiple large prime factors.
Moreover, the reduction algorithms are generic, i.e., they depend only on the group
order |G| of G, and they have a description of length linear in log |G|, namely the
large prime factors of |G| and parameters of suitable elliptic curves.

Corollary 4. Let P be a fixed polynomial. If the smoothness assumption is true,
then for every group G = 〈g〉 whose order is free of multiple prime factors greater than
B := P (log |G|), there exists a side-information string S of length at most 3 log |G|
such that when given S, breaking the DH protocol for G is polynomial-time equivalent
to computing discrete logarithms in G.

Remark. The group order of Jacobians of hyperelliptic curves of genus 2 varies in a
larger interval of size [n−Θ(n3/4), n+Θ(n3/4)], but the results about the distribution
of the orders which are proved in [1] are not sufficient to prove the existence of the
side-information string without unproven assumption. The reason is that in [1] the
existence of Jacobians with prime order is proved, whereas Jacobians with smooth
order are required for our purpose.

In the model of generic algorithms the results described in section 3.5 (see [28], [45])
and in this section imply the following complete characterization of group orders n
for which there exists an efficient generic algorithm computing discrete logarithms,
making calls to a DH oracle for the same group.

Corollary 5. If the smoothness assumption is true, then there exists a polynomial-
time generic algorithm computing discrete logarithms in cyclic groups of order n, mak-
ing calls to a DH oracle for the same group, if and only if all the multiple prime factors
of n are of order (log n)O(1).

4.1.3. Construction of elliptic curves. For certain expressions A(p), elliptic
curves over GF (p) with order A(p) can explicitly be constructed. The curve over
GF (p) defined by the equation

y2 = x3 −Dx(2)

has order p+ 1 if p ≡ 3 (mod 4), and the curve

y2 = x3 +D(3)

has also order p+ 1 if p ≡ 2 (mod 3). Thus if p 6≡ 1 (mod 12), elliptic curves of order
p+ 1 are explicitly constructible over GF (p). (We will show in the next section that
the subgroup of order p + 1 of GF (p2)∗ is a useful auxiliary group for all p.) The
following statements about the orders of curves of the form (2) or (3) in the case they
are not p+ 1 are proved in [19] (see also [18]).

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1701

If p ≡ 1 (mod 4), then p can uniquely be represented as the sum of two squares,
i.e., p = a2 + b2. Then the curves y2 = x3 −Dx have the orders

p+ 1± 2a , p+ 1± 2b ,(4)

and the four orders occur equally often over the choices of D.
If p ≡ 1 (mod 3), then p can uniquely be represented as p = a2 − ab + b2 with

a ≡ 2 (mod 3) and b ≡ 0 (mod 3). Then the curves y2 = x3 +D have the orders

p+ 1± 2a , p+ 1± a∓ 2b , p+ 1± (a+ b) ,(5)

and the six orders occur equally often over the choices of D.
If p ≡ 1 (mod 4) or p ≡ 1 (mod 3), curves with the orders listed in (4) and (5)

are explicitly constructible by varying D.

4.2. Subgroups of the multiplicative group of an extension field of
GF (p). In this section we investigate under what conditions a subgroup H of GF (pn)∗

satisfies the properties of an auxiliary group in the technique for reducing the DL
problem to the DH problem.

4.2.1. Representation with normal bases. We refer to [24] or [34] for an
introduction to finite fields. For a prime power q, the field GF (qn) is an n-dimensional
vector space over GF (q) and hence its elements can be represented as n-tuples of
GF (q)-elements with respect to some basis. Let α be an element of GF (qn), and

let αi := αq
i

for i = 0, . . . , n − 1. Then {α0, . . . , αn−1} is called a normal basis
if it is linearly independent in which case α is called a normal element . Let ~α :=
(α0, . . . , αn−1). The matrix T in (GF (q))n×n satisfying α0~α = ~αT is called the
multiplication table of the basis.

Normal elements can be found efficiently by trial and error, and when given q,
n, and a normal element α ∈ GF (qn), the multiplication table can be determined by
solving a system of linear equations over GF (q).

4.2.2. The use of subgroups H of GF (pn)∗ as auxiliary groups. Let H be
a subgroup of GF (pn)∗. We derive conditions under which such subgroups are defined
strongly algebraically over GF (p). The group operation of H is a multiplication in
GF (pn)∗ and requires, in a normal basis representation, O(n3) multiplications in
GF (p). We conclude that every subgroup of GF (pn)∗ (for n polynomial in log p) is
defined (n, (log p)O(1))-algebraically over GF (p). For all n, GF (pn)∗ is a cyclic group.
This implies that a subgroup of GF (pn)∗ is uniquely determined by its order |H|, or
more precisely, for every divisor d of |H| there exists exactly one subgroup of GF (pn)∗

with |H| = d. Furthermore, all these subgroups are cyclic.
The next theorem states conditions on n and |H| under whichH is defined strongly

algebraically over GF (p).
Theorem 6. Let P be a fixed polynomial and c be a fixed constant. Let H be the

subgroup of GF (pn)∗ of order |H|. Then H is defined strongly (m,α)-algebraically
over GF (p) for m,α = (log p)O(1) if one of the following two conditions is satisfied.

Condition 1. n ≤ P (log p), and there exists a divisor k < n of n such that

|H| = pn − 1

pk − 1
= pn−k + pn−2k + · · ·+ pk + 1 .

Condition 2. n ≤ c, and there exists a non-constant polynomial f(x) (with integer
coefficients) dividing xn − 1 such that |H| = f(p).

1702 UELI M. MAURER AND STEFAN WOLF

Remark. An alternative formulation of Condition 2 is that |H| is a multiple of
Φn(p) for some n = O(1), where Φn stands for the n-th cyclotomic polynomial (see [24]
and Appendix B). Examples are

Φ6(p) = p2 − p+ 1 ,

Φ8(p) = p4 + 1 ,

Φ9(p) = p6 + p3 + 1 .

The alternating sums

p2l − p2l−1 +− · · · − p+ 1

also satisfy Condition 2 for l = O(1).
Proof. We show that if one of the conditions is satisfied there exists an Embed

algorithm that takes as input two elements x and e of GF (p) and computes coordi-
nates β1, . . . , βn−1 (still in the normal basis representation) in GF (p) by a polynomial
number of algebraic operations such that β = (x+ e, β1, . . . , βn−1) ∈ H.

One possibility of designing the Embed algorithm is to express membership of
an element β = (β0, . . . , βn−1) to the subgroup H by an equation (or a system of
equations) in the coordinates. Then, the element x + e can be assigned to one of
the coordinates, say β0, and the equation is solved for the remaining coordinates (by
using only algebraic operations in the field GF (p)).

For an element β of GF (pn)∗, we have that β ∈ H if and only if β|H| = 1. Clearly,
this equation corresponds to a set of polynomial equations (with coefficients in GF (p))
in the coordinates βi.

We will show that if the first condition is satisfied, then it is sufficient to solve one
univariate polynomial equation over a subfield GF (pk) of GF (pn) for finding such a
β, and that this can be reduced to a polynomial number of algebraic operations in
the field GF (p). The situation when the second condition is satisfied is more difficult.
Here, a system of multivariate polynomial equations over GF (p) has to be solved by
algebraic operations. This can be achieved by Gröbner basis computations. The proof
that Condition 2 is sufficient is given in Appendix B.

Proof that Condition 1 is sufficient. The Embed algorithm works as follows in
this situation. Let x, e ∈ GF (p) be given. For l := n/k let {α0, . . . , αk−1} and
{α′0, . . . , α′l−1} be normal bases of GF (pk) over GF (p) and of GF (pn) over GF (pk),

respectively. For an element β = (β0, . . . , βl−1) ∈ GF (pn) (with βi ∈ GF (pk)), we
have that β ∈ H is equivalent to

β(pn−1)/(pk−1) = 1 .(6)

Equation (6) is equivalent to(
l−1∑
i=0

βiα
′
i

)p(l−1)k+p(l−2)k+···+pk+1

= 1 .(7)

Now, we have (βi)
pjk = 1 (because βi ∈ GF (pk)) and (α′i)

pjk = α′i+j (where the index
is reduced modulo l) by the definition of the normal basis. Hence (7) is equivalent to(

l−1∑
i=0

βiα
′
i+l−1

)
·
(
l−1∑
i=0

βiα
′
i+l−2

)
· · ·
(
l−1∑
i=0

βiα
′
i

)
= 1(8)

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1703

(where the indices are reduced modulo l).

Because (β(pn−1)/(pk−1))p
k−1 = βp

n−1 = 1, β(pn−1)/(pk−1) is an element of the
subfield GF (pk) of GF (pn). Such elements are easy to characterize in terms of their
coordinates. An element (γ0, . . . , γl−1) is an element of GF (pk) ⊂ GF (pn) if and only
if γ0 = γ1 = · · · = γl−1. The reason for this fact is that α′0 + α′1 + . . . + α′l−1 (the

trace Tr(α′0) of α′0) is also an element of GF (pk). Because both β(pn−1)/(pk−1) and 1
are elements of GF (pk), they are equal if and only if their first coordinates are equal.
The equation coming from (8), restricted to the first coordinate, is equivalent to

g(β0, . . . , βl−1) = 1/Tr(α′0)(9)

for some l-degree polynomial g with GF (pk)-coefficients.
The construction of a group element β of H with the desired property now works

as follows. Let the first coordinate β0,0 of β0 (note that βi corresponds to a k-tuple
(βi,0, . . . , βi,k−1) of GF (p)-elements with respect to the normal basis α0, . . . , αk−1) be
equal to x+e. Choose the coefficients β0,1, . . . , β0,k−1 and the coefficients β1, . . . , βl−2

randomly in GF (p) and in GF (pk), respectively. Then (9) is equivalent to a polyno-
mial equation for βl−1 with coefficients in GF (pk).

The roots of a polynomial f(γ) over a finite field GF (pk) can be computed in
probabilistic polynomial time by the Cantor-Zassenhaus algorithm (see [34], [24]).
The key idea of this algorithm is to factor the polynomial f(γ) into

gcd(f(γ), (γ + δ)
pk−1

2 − 1) and gcd(f(γ), (γ + δ)
pk−1

2 + 1)

for random δ ∈ GF (pk). This is repeated with different δ and leads to the linear
factors of f(γ).

The computation of polynomial gcd’s, and thus the entire root-finding algorithm,
require only algebraic operations in GF (pk), and the latter can be reduced to algebraic
operations (and equality tests) in GF (p) (with respect to the normal basis representa-
tion). The expected number of solutions for βl−1 is roughly 1 because |H|/pn ≈ 1/pk.
If no solution is found, then failure is reported.

Because the Cantor-Zassenhaus algorithm has probabilistic running time polyno-
mial in n and log p and uses only algebraic operations in GF (p), the required execu-
tions of the Embed procedure run in a probabilistic polynomial (in log |G|) number
of algebraic operations if n is polynomial in log p.

4.3. Summary. The following corollary is an immediate consequence of Theo-
rem 2, combined with the results of this section.

Corollary 7. Let P be a fixed polynomial, let G be a cyclic group with generator
g, and let B := P (log |G|). Then there exists a list of expressions A(p) in p with the
following property: if every prime factor p of |G| greater than B is single and if for
every such prime factor at least one of the expressions A(p) is B-smooth, then breaking
the DH protocol in G with respect to g is polynomial-time equivalent to computing
discrete logarithms in G to the base g. The list contains the following expressions:

p− 1 , p+ 1 , p+ 1± 2a ,

if p ≡ 1 (mod 4), where p = a2 + b2,

p+ 1± 2a , p+ 1∓ a± 2b , p+ 1± (a+ b) ,

1704 UELI M. MAURER AND STEFAN WOLF

if p ≡ 1 (mod 3), where p = a2 − ab+ b2, a ≡ 2 (mod 3), and b ≡ 0 (mod 3),

(pk)l − 1

pk − 1
= (pk)l−1 + · · ·+ pk + 1 ,

where k, l = (log p)O(1), and f(p), where f(x) ∈ Z[x] is a nonconstant polynomial
dividing xn − 1 for some n = O(1).

5. Equivalence between variants of the DH problem.

5.1. Introduction. In the previous sections we have proved results concerning
the relationship between the security of the DH protocol and the hardness of the
DL problem. However, in order to prove that the DH protocol is secure for a group
in which the DL problem is hard, one has to show that the DH problem cannot
be solved efficiently even with small probability of, say, 1%. Motivated by this, we
show in this section that the assumption of a perfect DH oracle for the reduction
process is unnecessarily strong and can be relaxed in many ways. In 5.2 we prove that
a (probabilistic) DH oracle answering correctly with small probability is virtually
as strong as a perfect DH oracle. For example, an oracle answering correctly with
probability 1% can efficiently be transformed into an oracle that answers correctly
with arbitrarily high probability.

In section 5.3, it is shown that the same holds for a DH oracle that answers
correctly for the input (gu, gv) only if u = v. Finally, the relationship between the
DH problem in G and in subgroups of G is investigated in section 5.4.

5.2. ε-DH-oracles. This section deals with DH oracles that answer correctly
only with small (but nonnegligible) probability. It is shown that such oracles are
virtually as strong as perfect DH oracles. The problem of correcting faulty DH oracles
was considered independently by Shoup [45], who described a quite different approach.
We introduce the notion of an ε-DH-oracle for a cyclic group G with respect to
a generator g. Note that such an “oracle” is probabilistic in general rather than
deterministic.

Definition 7. For ε > 0, an ε-DH-oracle is a probabilistic oracle which returns
for an input (gu, gv) the correct answer guv with probability at least ε if the input is
uniformly distributed over G×G.

The offset of the oracle’s answer gt to the input (gu, gv) is defined as t−uv (mod |G|).
A translation-invariant ε-DH-oracle is an ε-DH-oracle whose offset distribution is the
same for every input (gu, gv).

A special case of (nontranslation-invariant) ε-DH-oracles are deterministic oracles
answering correctly for a fraction ε of all inputs. We proceed in two steps to prove
that an ε-DH-oracle can be transformed into a virtually perfect DH oracle. First,
the oracle is made translation-invariant by randomization of the input, and then, the
translation-invariant oracle is “amplified” to an (almost) perfect oracle.

Lemma 1. An ε-DH-oracle for a cyclic group G with order |G| can efficiently be
transformed into a translation-invariant ε-DH-oracle. More precisely, implementing
one call to the latter requires one call to the former and O(log |G|) group operations.

Proof. Given the group elements a = gu and b = gv we can randomize the input
by choosing r and s at random from [0, |G| − 1], providing the oracle with a′ = agr

and b′ = bgs and multiplying the oracle’s answer g(u+r)(v+s)+t = guv+rv+su+rs+t

with (a−1)s · (b−1)r · g−rs = g−(rv+su+rs) to obtain guv+t. Note that a′ and b′ are
random group elements and statistically independent of a and b. The ε-DH-oracle
with randomized input is thus a translation-invariant ε-DH-oracle.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1705

Remark. If |G| is unknown the input can also be randomized, where the random
numbers are chosen from a larger interval. The resulting ε-DH-oracle is then “almost
translation-invariant” and applicable in the proof of Theorem 8 if the interval is of
size at least 2 · |G|/(ε2 ·min{s, 0.1}) (where s is as in Theorem 8). This is the reason
for the greater number of group operations for this case in Theorem 8.

In the proof of Theorem 8 it is shown that a translation-invariant ε-DH-oracle
can be transformed into an almost-perfect DH oracle. The straightforward approach
to using a translation-invariant ε-DH-oracle may at first sight appear to be to run
it O(1/ε) times until it produces the correct answer. However, because the Diffie–
Hellman decision problem is difficult, a more complicated approach must be used.
(The Diffie–Hellman decision problem, which was first mentioned in [5], is, for given
gu, gv, and gw, to decide whether gw = guv, and is of course at most as difficult as
the DH problem.)

Theorem 8. For every cyclic group G with generator g and known order |G|
and for every β > 0 there exists an algorithm for solving the DH problem in G which
makes calls to an ε-DH-oracle and whose answer is correct with probability at least
1 − β. The number of required oracle calls is O(log(1/βε)/ε4). If the order of G is
unknown, then the reduction is also possible if all the prime factors of |G| are greater
than (1 + s)/ε for some s > 0. The number of required calls to the ε-DH-oracle is
then

O

(
1

(ε2 ·min{s, 1})2
· log

1

βε

)
.

The number of required group operations is O(log |G|) times the number of oracle calls
if |G| is known and O(log(|G|/(ε2 ·min{s, 1}))) times this number if |G| is not known,
respectively.

For the proof of Theorem 8 we need the following lemma.
Lemma 2. Let X1, X2, X3, . . . be independent binary random variables with iden-

tical distribution PXi with PXi(1) = p. Let further α, δ′ > 0. If t is the smallest
number such that the event

X1 + · · ·+Xt

t
∈ [p− δ′, p+ δ′]

has probability at least 1− α, then t = O(log(1/α)/δ′2).
Proof. Since the random variables Xi are independent, we have

Var(X1 + · · ·+Xt)

t
=
t ·Var(Xi)

t2
= Θ(1/t) .

Hence the number of standard deviations corresponding to δ′ is of order Θ(δ′
√
t).

The normal approximation of the binary distribution (see for example [15]) leads to
δ′
√
t = Θ((log(1/α))1/2) or t = Θ(log(1/α)/δ′2).
Proof of Theorem 8. The basic idea of the amplification of the DH oracle is as

follows. In a precomputation phase, which is independent of the actual input, the
oracle’s offset distribution is determined. Then, the oracle is called with the given
input to compute the correct solution with overwhelming probability.

More precisely, the reduction from an ε-DH-oracle to an oracle answering correctly
with high probability consists of the following steps which we first describe intuitively.

Step 1. The ε-DH-oracle is transformed into a translation-invariant ε-DH-oracle.
Step 2. We compute an estimate ε′ for the probability that the (translation-

invariant) oracle answers correctly.

1706 UELI M. MAURER AND STEFAN WOLF

Step 3. A list L1 of group elements ge is computed with the property that ge is
contained in L1 if and only if the probability of the offset e is close to ε′.

Step 4. A second list L2 of group elements is generated which contains exactly
those group elements that occur with frequency close to ε′ when the oracle is called
with the input (gu, gv).

Step 5. The lists L1 and L2 have (with high probability) the property that the
elements of L2 are exactly the elements of L1 multiplied by the group element guv

(which is itself contained in L2). In order to determine this switch element, the lists
aL1 are generated for all elements a in L2 (the list aL1 contains exactly the elements
al1, where l1 is contained in L1). The list L2 is compared to all the lists aL1, and
equality yields a candidate a for guv.

Step 6. In case of one single candidate a for guv, this is the output of the algorithm.
In the case of several candidates and if the group order |G| is known, the discrete
logarithms of all the candidates and of gu and gv are determined modulo the smooth
part of |G|. This yields the correct candidate for guv, which is then the output of the
algorithm.

Note that the first three steps are a precomputation which is independent of the
particular input (gu, gv). The list L1 which is generated in these steps is a reference
list describing the offset behavior of the faulty oracle. We describe the steps in detail
and analyze their correctness and efficiency.

Step 1. According to Lemma 1, one can construct a translation-invariant ε-DH-
oracle which uses O(log |G|) group operations and one call to an ε-DH-oracle per call
if |G| is known. If |G| is unknown, the number of group operations is O(log(|G|/(ε2 ·
min{s, 1}))).

Step 2. Let α := βε/8. An event with probability at least 1 − α will be called
almost certain. Let δ := ε/10 and δ′ := δε/100 = ε2/1000.2 If ε is not known, we
take a lower bound. In order to determine the probability of a correct answer, the
translation-invariant oracle is called repeatedly with the input (g0, g0), and ε′ is the
fraction of correct answers g0. The number t of oracle calls is such that the true
probability of a correct answer lies almost certainly in the interval [ε′ − δ′, ε′ + δ′]. It
follows from Lemma 2 that t = O(log(1/α)/δ′2).

Step 3. In this step the reference list L1 is generated as follows. The faulty
oracle is called t times (for the same value of t as in the previous step), and all the
occurring group elements are stored. Let the list L1 consist of those group elements
whose fraction in the set of all answers lies in the interval [ε′ − (δ + δ′), ε′ + (δ + δ′)].
According to Lemma 2, and because 2/ε is an upper bound on the number of offsets
occurring with probability at least ε/2, with probability (1− α)4/ε the following two
statements are both true.

1. If e is an offset with probability in [ε′ − δ, ε′ + δ], then ge is contained in L1.
2. If ge is in L1, then the offset e has probability in [ε′− (δ+ 2δ′), ε′+ (δ+ 2δ′)].

Step 4. The translation-invariant faulty oracle is called repeatedly wth the input
(gu, gv), where (gu, gv) is the input to the DH algorithm for G. Let the list L2 then
consist of those group elements which occur as answers of the oracle with a frequency
in [ε′−(δ+3δ′), ε′+(δ+3δ′)]. Then, for the same number of trials t as in the previous
step, with probability at least (1− α)4/ε the following statements are true.

1. If e is an offset with probability in [ε′ − (δ + 2δ′), ε′ + (δ + 2δ′)], then guv+e

is contained in L2.

2The proof does not depend on the choice of the constants (e.g., 1/10), which is somewhat
arbitrary. Intuitively, we need that δ � ε and δ′ � εδ.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1707

2. If guv+e is in L2, then the offset e has probability in [ε′−(δ+4δ′), ε′+(δ+4δ′)].
Step 5. With high probability, the list L2 is equal to L1, switched by guv (which is

itself in L2). This allows to determine guv. More precisely, it follows from the analysis
of steps 1 to 4 that the probability that L1 contains all the offsets which have their
probability in the interval [ε′ − δ, ε′ + δ], that all the offsets of L1 also occur in L2,
and that all the offsets of L2 have probability in [ε′ − (δ + 4δ′), ε′ + (δ + 4δ′)] is at
least

(1− α)8/ε ≥ 1− 8α

ε
= 1− β .(10)

If this is fulfilled, then L2 contains more elements than L1 only if there exists an offset
whose probability is in the set

[ε′ − (δ + 4δ′), ε′ − δ] ∪ [ε′ + δ, ε′ + (δ + 4δ′)] .(11)

In this case we replace δ by δ+ i ·5δ′ (for an integer i randomly chosen in [−2/ε, 2/ε]),
leave δ′ unchanged, and run the entire algorithm (except Steps 1 and 2) again. Because
the sets (11) are disjoint for different i, and because there can be at most 2/ε offsets
with probability at least ε/2, L1 and L2 contain the same number of elements for at
least half of the possible choices for i.

If the lists L1 and L2 have equal length, then with probability at least 1 − β
we have that guv is contained in L2 and L2 = guvL1, i.e., L2 contains exactly the
elements guvl1 for l1 in L1. The lists aL1 are computed for all elements a of L2 and
compared to L2. If equality holds, then a is a candidate for guv.

Step 6. Let c be the number of elements of L1 and L2. If there exists only one
candidate for guv, then this group element is the output of the algorithm. If there
exist several such elements, this means that the lists have a nontrivial translation
symmetry, or more precisely, that they are invariant under a multiplication with
g|G|/c

′
for a divisor c′ of c and |G|. Let c′ be the maximal number with this property.

Note that |G| has a factor c′ ≤ c ≤ 1/(ε′ − (δ + 2δ′)) in this case. There are c′

candidates for guv, namely

guv, guv+
|G|
c′ , . . . , guv+(c′−1)

|G|
c′ .

We show that if |G| is known, the correct candidate can be determined. Let
p1, . . . , pl be the distinct prime factors of c′ (they can be found in timeO((log(1/ε))2/ε)

because c′ = O(1/ε)), i.e., c′ =
∏l
i=1 p

fi
i . Let further d =

∏l
i=1 p

ei
i be the product

of the maximal powers of the pi dividing |G|. The number d can be computed in
time O((log |G|)3) and is (2/ε)-smooth because c′ ≤ c ≤ 2/ε. Hence u and v (and
consequently uv) are computable modulo d from gu and gv by the Pohlig–Hellman
algorithm by O((log |G|)2 + log |G|/ε) group operations. Analogously, we can also
compute the discrete logarithms of all the candidates modulo d.

The discrete logarithm of exactly one of the candidates has the correct remainder
with respect to d. This is true because for every i, exactly every pfii -th candidate has

the correct remainder with respect to peii . The primes are distinct; thus the pfii are

relatively prime, and hence every
∏l
i=1 p

fi
i -th candidate, that is exactly one of them,

has the correct remainder. This group element is the output of the algorithm.
In the case where |G| is not known, this last step of finding the correct candidate

does not work. The only possibility is to choose a smaller value for δ. This is always
successful if all the prime factors of |G| are greater than (1 + s)/ε for some positive

1708 UELI M. MAURER AND STEFAN WOLF

s. Then δ must be chosen smaller than sε/2, such that 1/(ε′ − (δ + 2δ′)) < (1 + s)/ε
holds. The last inequality implies that such a symmetry of the lists L1 and L2 (this
symmetry is a necessary condition for the case of more than one candidate for guv) is
not possible.

Remark. Examples of ε-DH-oracles which can not be transformed into perfect
oracles with our method when |G| is unknown are those which answer the input
(gu, gv) by one of the values guv+i|G|/z, where z ≤ 1/ε is a factor of |G|, and where
all the values of i between 0 and z − 1 are equally likely.

Note that a DH oracle as obtained in Theorem 8 is virtually equivalent to a
perfect DH oracle in a polynomial-time (or subexponential-time) reduction of the
DL to the DH problem because the correctness of the output of a probabilistic algo-
rithm computing discrete logarithms can be tested, and because only a polynomial (or
subexponential) number of oracle calls is required for the computation of a discrete
logarithm.

5.3. The squaring oracle. We describe an example of an oracle that is weaker
than an ε-DH-oracle with respect to the fraction of correctly answered inputs. Nev-
ertheless, the oracle turns out to be as strong as the perfect oracle. We call an oracle
that answers the input gu by g(u2) (where u and u2 are in Z|G|) a squaring-DH-oracle.

From gu and gv one can compute gu+v = gu ·gv, and with the squaring-DH-oracle

g(u+v)2 ·
(
g(u2)

)−1

·
(
g(v2)

)−1

= g(u+v)2−u2−v2

= g2uv = (guv)
2
.(12)

When given |G|, the square root guv of (guv)2 can efficiently be computed. If |G| is
odd, the square root is unique, but if |G| is even, there exist two square roots,

guv and guv+
|G|
2

which can be computed efficiently (see Lemma 3). Let |G| be even, and let 2e be
the maximal power of 2 dividing |G|. From gu and gv, one can compute u and v,
and hence uv, modulo 2e with O((log |G|)2) group operations by the Pohlig–Hellman
algorithm. Because |G|/2 is not a multiple of 2e, we have

uv 6≡ uv +
|G|
2

(mod 2e) ,

and one can determine the correct root guv by computing the discrete logarithms of
one of the roots modulo 2e. Hence a squaring-DH-oracle is equally powerful as a
perfect DH oracle in a group G whose order is known.

A probabilistic squaring-DH-oracle for a group with known order that answers
correctly only with probability ε (an ε-squaring-DH-oracle) can be transformed into a
translation-invariant ε3-DH-oracle by randomizing the inputs in (12). The complexity
is O((log |G|)2) group operations per call. This proves the following theorem.

Theorem 9. For every cyclic group G with generator g and known order |G| and
for every β > 0 there exists an algorithm solving the DH problem in G which makes
calls to an ε-squaring-DH-oracle and whose answer is correct with probability at least
1−β. The number of oracle calls is O(log(1/βε3)/ε12). The number of required group
operations is O((log |G|)2) times the number of oracle calls.

5.4. The security of subgroups. Throughout this section we assume that
the order of G and its factorization are known. We address the question whether a

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1709

subgroup is more or less secure than the entire group with respect to the DH protocol.
Although the statement of Corollary 12 below is very intuitive (and an analogous result
holds for the computation of discrete logarithms), the proofs of Theorems 10 and 11
are not trivial. First we give a criterion when a DH oracle for 〈g〉 can be efficiently
transformed into a DH oracle for 〈gr〉. More precisely, we will show that a subgroup
of G is at most as secure as G with respect to the DH protocol if every large prime
factor of the index of the subgroup occurs with the same multiplicity in the index and
in the group order. We need the following lemma on the computation of p-th roots
in a cyclic group G if p is a multiple prime factor of |G|. Note that for single prime
factors p of |G|, a p-th root can be obtained by computing the z-th power for z :≡ p−1

(mod |G|/p).
Lemma 3. Let G be a cyclic group with generator g, and let p be a multiple prime

divisor of |G|. One of the p-th roots of a p-th power in G can be computed in time
O((log |G|)2 + p log |G|).

Proof. The square root algorithm of Massey [25] can be generalized as follows.
Let |G| = pjs (where j ≥ 2 and (p, s) = 1), and let h be a p-th power in G. By the
Pohlig–Hellman algorithm we can compute the remainder k of the discrete logarithm
of h to the base g with respect to pj . Note that k is a multiple of p because h is a
p-th power. Let d :≡ −s−1 (mod p). The element(

gs·
k
p ·d
)−1

· h sd+1
p

is a p-th root of h. This algorithm requires O((log |G|)2 + p log |G|) operations
in G.

Remark. When memory space is available, this algorithm can be sped up to O(
√
p·

(log |G|)O(1)) by the baby-step giant-step trade-off in the Pohlig–Hellman algorithm.
This running time is optimal: it was shown in [28] that no generic algorithm can
compute p-th roots substantially faster in a group whose order is divisible by p2 (even
when given a DH oracle for this group).

Theorem 10. Let P be a fixed polynomial. Let G be a cyclic group with generator
g. If the number r is such that every prime factor of r is either smaller than B :=
P (log |G|) or has at least the same multiplicity in r as in G, then there exists an
algorithm solving the DH problem in the group 〈gr〉, making one call to the DH oracle
for 〈g〉 and using a polynomial number of group operations per call.

Remark. Again, the conditions of the theorem are optimal. Shoup [45] has shown
that if the conditions are not satisfied, then the construction of a subgroup oracle
from an oracle for G is hard in the generic model.

Proof. Let |G| =
∏
peii and r =

∏
pfii (where fi > ei, ei = 0, or fi = 0 is

possible). The DH algorithm for the group 〈gr〉 takes as inputs two elements (gr)a

and (gr)b and must output (gr)ab. Using the DH oracle for the group G = 〈g〉 with

the same input, one obtains gr
2ab, i.e., the r-th power of grab. Now, grab is computed

from gr
2ab by computing the r-th root. More precisely, the pfii -th root of gr

2ab has to
be computed for all i with fi > 0, and the correct root, i.e., the particular root that
is a power of grab, must be determined. Assume that we have already computed

gp
f1
1 ···p

fi−1
i−1

p
2fi
i
···p2fs

s ab = gcp
2fi
i
ab =: di ,

where c is explicitly known. We describe the computation of the correct pfii -th root
of this group element separately for the cases fi ≥ ei and pi ≤ B.

1710 UELI M. MAURER AND STEFAN WOLF

Case 1: fi ≥ ei. We compute z with

z :≡ (pfii)−1 (mod |G|/peii)

and dzi , which is the desired group element. First, it is a pfii -th root of di. Additionally,

it is the only pfii -th root of this element which is a power of gp
fi
i (the peii − 1 different

roots are

gcp
2fi
i
abz+i|G|/pei

i

for i = 1, . . . , peii − 1, and they are not even powers of gp
ei
i).

Case 2: pi ≤ B and fi < ei. Here we repeat the following two steps fi times.
Step 1. Compute the pi-th roots of the group element.
Step 2. Decide which of the roots is a power of grab and continue with this

element.
Assume for some k = 2fi − 1, 2fi − 2, . . . , fi that we have already computed

gp
f1
1 ···p

fi−1
i−1
·pk+1
i
·p2fi+1
i+1

···p2fs
s ab = gc

′pk+1
i

ab ,

where c′ is explicitly known. Then the two steps work as follows.
Step 1. According to Lemma 3 we can compute a pi-th root of the group element

in time O((log |G|)2 + pi log |G|).
Step 2. Because a and b can be obtained modulo pei−fii directly from gra and grb

by the Pohlig–Hellman algorithm and c′ is explicitly known, and because k ≥ fi, we
can compute c′pki ab modulo peii . From the root obtained in Step 1, all the roots

gc
′pki ab+j·|G|/pi (j = 0, . . . , pi − 1)

can be computed. We have j · |G|/pi ≡ 0 (mod peii) only for j = 0, and the correct

group element gc
′pki ab can be determined by computing the discrete logarithms of the

candidates modulo peii , using the Pohlig–Hellman algorithm.
The entire procedure, executed for all prime factors pi of r, ends up with grab,

and the running time of the algorithm is polynomial in log |G|.
Remark. It has been pointed out in a preliminary version of [4] that in case of a

generator change, i.e., if (r, |G|) = 1, it is not even necessary to know r. Let h = gr,
and let DHg and DHh be the DH functions in G with respect to the generator g and
h, respectively. Then

DHh(ha, hb) = hab = grab = DHg(g
r2ab, gr

−1

)

= DHg(DHg(h
a, hb),PDHg,ϕ(|G|)−1(h)) ,

and the last expression can be computed by O(log |G|) applications of the oracle with
respect to the basis g.

In many cases a DH oracle for a subgroup of G or a set of such oracles can be
transformed into a DH oracle for the entire group, and the following theorem gives a
criterion for when this is the case.

Theorem 11. Let P be a fixed polynomial. Let G be a cyclic group with generator
g and order |G| = ∏r

i=1 p
ei
i , and let B := P (log |G|) be a smoothness bound. If for all

pi > B a number si, where pi does not divide si, and a DH oracle for the group 〈gsi〉
is given, then there exists a polynomial-time algorithm solving the DH problem in G
with respect to g which calls each oracle for such a subgroup once.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1711

Proof. Let gu and gv be given. We compute guv using the available oracles for
subgroups. Let mi := peii , Mi := |G|/mi, and Ni :≡ M−1

i (mod mi). For prime
factors pi ≤ B, u and v, and hence also uv, can be computed in polynomial time
modulo mi by the Pohlig–Hellman algorithm. For a prime factor pi > B, assume that
a DH oracle for the subgroup 〈gsi〉 is given, where pi does not divide si. We apply
the oracle for 〈gsi〉 to (gsi)u = (gu)si and (gsi)v to obtain (gsi)u·v, where u, v and
u · v are modulo |G|/si. Let zi :≡ s−1

i (mod mi) and

Ui :=
(
gsi(u·v)

)Mi·zi
= gMi·(u·v) ,

where u · v is modulo mi. Finally, guv is computable by Chinese remaindering with
implicitly represented arguments by applying only group operations in G:

guv = g
∑

i
MiNi(u·v) =

∏
i

UNii .

The following result is an immediate consequence of the above theorems.
Corollary 12. Consider a group G = 〈g〉 and a subgroup H = 〈gk〉 of G with

(log |G|)O(1)-smooth index. The DH problem for H is polynomial-time equivalent to
the DH problem for G.

6. Concluding remarks. We have presented a technique for reducing the DL
problem in a group G to the DH problem in the same group efficiently when suitable
auxiliary groups are given. One conclusion of this fact is that, under a plausible but
unproven assumption on the existence of smooth numbers, for every group whose
order does not contain a multiple large prime factor there exists a polynomial-time
algorithm computing discrete logarithms and making calls to a DH oracle for the
same group. In the generic model, it was proven that such a reduction cannot exist
for groups whose order is divisible by the square of a large prime. A second conclusion
is that solving the DH and DL problems is computationally equivalent for many classes
of groups in a uniform sense. These are the groups for which suitable auxiliary groups
can be efficiently constructed.

Throughout this paper, we have assumed to know the group order and its factor-
ization. Let p be a large prime factor of |G|. If an appropriate auxiliary group over
GF (p) such as a subgroup of the multiplicative group of a finite field or an elliptic
curve is given that has smooth order, then p can be found efficiently as a factor of
|G| (see [23] and [2]). This fact indicates a close relationship between the problems of
integer factoring and proving the equivalence between the DH and DL problems.

In Appendix C we describe a technique, presented in [48] and independently
considered in [4], for obtaining stronger results under the assumption that efficient
algorithms exist for solving the DH problem in certain groups, and which use only
algebraic operations. The idea is to execute these algorithms on implicitly represented
arguments. This allows to iterate the technique by computing with multiply implicitly
represented elements. It is then no longer necessary that for every large prime factor
p of |G| a smooth auxiliary group Hp is known. For example, a cyclic auxiliary group
Hp whose order contains a large prime factor q and a smooth auxiliary group Hq

over GF (q) are sufficient under the assumption that a polynomial-time DH algorithm
exists for Hp which uses only algebraic operations in GF (p).

Appendix A: Finding generator sets of the auxiliary groups. We show
how a generator set can be found efficiently in a (additively written) finite Abelian

1712 UELI M. MAURER AND STEFAN WOLF

group H of rank r and with B-smooth order |H| =
∏l
i=1 q

fi
i . Suppose H ∼= Zn1

×
· · · × Znr (such that nj+1 divides nj for j = 1, . . . , r − 1), where the numbers r and
n1, . . . , nr are not known a priori, and suppose that we have already found ni and
points hi with order ni in H/〈h1, . . . , hi−1〉 for i = 1, . . . , j − 1. Let n1 =

∏
qgii , and

let πj−1 denote the canonical projection to the quotient group H/〈h1, . . . , hi−1〉, i.e.,
πj−1(u) is the element of H/〈h1, . . . , hj−1〉 containing u. For the construction of hj
such that πj−1(hj) has maximal order in H/〈h1, . . . , hj−1〉, we choose O(log log |H|)
points h in H at random and compute ordH/〈h1,...,hj−1〉πj−1(h) by comparing

n1

qki
πj−1(h) = πj−1

(
n1

qki
h

)
(for i = 1, . . . , l and k = gi, gi − 1, . . . , 0)

with the unity eH/〈h1,...,hj−1〉 of the quotient group. Comparing πj−1(h′) and
eH/〈h1,...,hj−1〉 is equivalent to deciding if h′ ∈ 〈h1, . . . , hj−1〉, which is done by the
generalized Pohlig–Hellman DL algorithm described in section 3. This leads to an
element hj with maximal order in H/〈h1, . . . , hj−1〉.

It is possible that the algorithm makes a mistake here, i.e., that the generated
element does not have maximal order. Such an error occurs only with probability
exponentially small in the number of trials and can be detected as follows. In the
case where ordH/〈h1,...,hj−1〉πj−1(hj) does not divide ordH/〈h1,...,hj−2〉πj−2(hj−1), the
process must be restarted because one of the preceding points has not had maximal
order. The same holds if j > max{fi}. The latter is a bound for the rank r of H.

The algorithm stops if 〈h1, . . . , hr〉 = H, that is

H/〈h1, . . . , hr〉 = {e} ,

and {h1, . . . , hr} is then a generator set of H. Every element c of H has a unique
representation c =

∑r
j=1 kjhj with kj ∈ {0, . . . , nj − 1} with respect to this set. The

expected number of operations in H to determine the generator set is

O

(
r2 log log |H| ·

√
Br

logB
(log |H|)3

)

(using the time-memory trade-off in the Pohlig–Hellman algorithm).

Appendix B: Gröbner basis computations and the completion of the
proof of Theorem 6. The goal of this appendix is to complete the proof of Theo-
rem 6, i.e., to show that the second condition also implies that H is defined strongly
algebraically over GF (p). In the first part of the proof of Theorem 6 (given in sec-
tion 4.2), the key argument was that the Cantor-Zassenhaus algorithm allows to solve
a univariate polynomial equation over a finite field efficiently and with algebraic op-
erations only. This led to an Embed algorithm with the required properties.

For the second part of this proof the result is required that a system of such
equations can be solved. In section B.1 we shortly describe the concept of Gröbner
bases, which are a tool for solving such systems. Section B.2 completes the proof of
Theorem 6.

B.1 Gröbner bases. Let F be a field and R be the ring F[x1, . . . , xn] of the
polynomials in x1, . . . , xn over F. Let further pi = 0 (where i = 1, . . . , l and pi ∈ R
for all i) be a system of polynomial equations. We also write P = 0, where P := {pi}.
Every basis of the generated ideal 〈P 〉 in the ring R leads to an equivalent system of

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1713

equations. Gröbner bases with respect to the lexicographic term ordering have the
property that the system can be solved if univariate equations can be solved. The
lexicographic term ordering is defined as follows:∏

x
ij
j <L

∏
x
i′j
j

if and only if ij = i′j for j = 1, . . . , l − 1 and il < i′l for some l.

We motivate the definition of Gröbner bases3. Let f and g be polynomials, and
let t be the leading term of g. One can reduce f modulo g if a monomial of f is a
multiple of t, f = αt+ r. The reduction of f modulo g is then

f − αt

M(g)
· g ,(13)

where M(g) denotes the leading monomial of g. Let Q be a set of polynomials. The
reducer set of the polynomial f with respect to Q are the polynomials g in Q with
the property that the leading monomial of f can be reduced modulo g. There exists
a simple algorithm for a maximal reduction of a polynomial f modulo a set Q of
polynomials based on (13). Since R is not a principal ideal domain (if n > 1), the
maximal reduction is not unique, and an element q of 〈Q〉 can be irreducible modulo
Q. A Gröbner basis G (with respect to a term ordering) is defined and characterized
by the following equivalent conditions:

1. Maximal reductions modulo G are unique.
2. If f ∈ 〈G〉, then f reduces to 0 modulo G.
3. For all f and g in G,

lcm (M(f),M(g)) ·
(

f

M(f)
− g

M(g)

)
=: s-poly(f, g)

reduces to 0 modulo G.
For given P , the third criterion leads to a simple algorithm for the computation of a
Gröbner basis G of 〈P 〉 by extending P .

Algorithm (Buchberger) Choose any pair (f1, f2) in P × P and compute a
maximal P -reduction of s-poly(f1, f2). If it is different from zero, extend P by this
polynomial. Repeat the process for all pairs, including the pairs with components added
to P during the execution of the algorithm.

This algorithm can be improved by criteria stating whether s-poly(f, g) reduces
to 0, such that the number of s-polynomial reductions is decreased. The complexity
of Gröbner basis computations is a subject of ongoing research. If the system P = 0
has only finitely many solutions over C, the computation of a lexicographic Gröbner
basis for 〈P 〉 has complexity O(Dn2

), where n is a bound for the number of variables
and polynomials and D is the maximal degree. The degrees of the polynomials in the
Gröbner basis are of order O(D′), where

D′ := (nD)(n+1)2s+1

,(14)

and s is the dimension of the ideal, s ≤ n.
The following are key properties of Gröbner bases. Let P be a set of polynomials

and G a monic Gröbner basis for 〈P 〉 (where monic means that the coefficients of the
leading monomials of all the polynomials are 1).

3For an introduction to Gröbner bases, see for example [16].

1714 UELI M. MAURER AND STEFAN WOLF

Property 1. P = 0 has a solution if and only if 1 6∈ G.
Property 2. Let H be the set of all leading terms occurring in G. Then the

following statements are equivalent:
1. P has finitely many solutions over C,
2. For all i, there exists mi such that (xi)

mi ∈ H.
The first property is a criterion for solvability, and the second property implies,

when using the lexicographic ordering, that a subset of the equations coming from
the polynomials of the Gröbner basis is a system of triangular form and can be solved
if univariate polynomial equations can be solved. The fact that (xi)

mi is the leading
term of a polynomial implies that the variables x1, . . . , xi−1 do not occur in the
polynomial. For example the polynomial with (xn)mn as leading term is univariate
(with the only variable xn). Analogously, there is a polynomial containing xn−1 and
xn only, etc.

B.2 Completing the proof of Theorem 6.
Proof that Condition 2 is sufficient. Let |H| = f(p) for some nonconstant poly-

nomial (with integer coefficients) f(x) dividing xN − 1, where N = O(1).
We show first that we can assume without loss of generality that f(x) equals a

cyclotomic polynomial Φn(x) for some n = O(1). The cyclotomic polynomials are
the irreducible factors of the polynomials xN − 1 over the ring Z of integers (see for
example [24]). More precisely, we have

xN − 1 =
∏
d|N

Φd(x) ,

and the polynomials Φd are irreducible over Z. The degree of Φn(x) is ϕ(N), where
ϕ is Euler’s totient function. Because the cyclotomic polynomials are irreducible over
Z, the (nonconstant) polynomial f(x) (that divides xN − 1) must be a multiple of at
least one cyclotomic polynomial Φn(x).

We show that a subgroup H of GF (pn)∗ with |H| = Φn(p) (for n = O(1))
is defined strongly (n, α)-algebraically over GF (p) for some α = (log p)O(1). This
proves the second part of Theorem 6, because a group which has a subgroup with this
property has the property itself (the same Embed algorithm can be used). Let

Φn(x) =

ϕ(n)∑
j=0

cjx
j

(with cj ∈ Z). Let further α0, . . . , αn−1 be a normal basis of GF (pn) over GF (p).
We describe the Embed algorithm for H. Let x, e ∈ GF (p) be given. We

compute, by a polynomial number of algebraic operations in GF (p), an element
β = (β0, . . . , βn−1) such that x+e is one of the coordinates of β, for instance x+e = β0.
Again, we need an alternative characterization of the fact that β ∈ H in terms of the
GF (p)-coordinates of β. The following conditions are equivalent for β =

∑
βiαi.

β ∈ H ⇔ β|H| = 1

⇔
(
n−1∑
i=0

βiαi

)∑ϕ(n)

j=0
cjp

j

= 1

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1715

⇔
ϕ(n)∏
j=0

(n−1∑
i=0

βiαi

)pjcj

= 1

⇔
ϕ(n)∏
j=0

(
n−1∑
i=0

βiαi+j

)cj
= 1

⇔
∏
cj≥0

(
n−1∑
i=0

βiαi+j

)cj
−
∏
cj<0

(
n−1∑
i=0

βiαi+j

)−cj
= 0 .

In the fourth step, we have made use of βp
j

i = βi (because βi ∈ GF (p)) and αp
j

i = αi+j
(by the definition of the normal basis). The last condition corresponds to a system of
n polynomial equations (with GF (p)-coefficients) in the βi, where the maximal degree
D of the polynomials is bounded by

D ≤ max

∑
cj>0

cj ,
∑
cj<0

|cj |
 ≤ ϕ(n) ·max

j
|cj | .

As in the first part of the proof, the Embed algorithm assigns x + e to one of the
βi’s, random values to some of the other βi’s, and solves the arising equations over
GF (p) for the remaining βi’s. Because |H|/pn ≈ 1/pn−ϕ(n), i.e., approximately every
pn−ϕ(n)-th element β of GF (pn) is also an element of H, we have to solve the equations
for n − ϕ(n) different coordinates βi simultaneously in order to have an expectation
of one solution. (If no solution is found, the algorithm reports failure.)

Using Gröbner bases, this system of polynomial equations can now be transformed
into an equivalent system of triangular form (see section B.1). The computation of
the Gröbner basis uses only algebraic operations in GF (p), and its complexity is of

order O(Dn2

) (see [16]). The triangular system of equations can be solved by the
Cantor-Zassenhaus algorithm for solving univariate polynomial equations (see in the
first part of the proof of Theorem 6).

According to the result of Gianni and Kalkbrener (see [16]), it suffices to solve a
subset of n− ϕ(n) equations. The first polynomial has to be solved once, the second
one D′ times (where D′ is defined as in (14); the reason is that in the worst case, the
first polynomial has D′ different solutions), the third one (D′)2 times, etc. This yields
O((D′)n) executions of the Cantor-Zassenhaus algorithm. (The effective number of
executions will be much smaller in a typical case, since only about one solution is
expected.)

The expected complexity of the required executions of the Embed algorithm is
polynomial in log p (and the algorithm uses only algebraic operations in GF (p)) if
n = O(1).

Appendix C: Algebraic algorithms solving the DH problem. The results
described in this appendix are based on the following observation. Assume that not
only a DH oracle for a group G, but also an efficient algorithm which solves the
DH problem in an entire class of groups, such as elliptic curves over a finite field
or the groups GF (p)∗, is given. If this algorithm additionally has the property that
it uses only algebraic operations in the underlying field, then it can be executed on
inputs that are not explicitly known, but only implicitly represented (in the sense
of section 3). This allows to iterate the reduction algorithm described in section 3,

1716 UELI M. MAURER AND STEFAN WOLF

i.e., computing discrete logarithms in G is reduced to the same problem in a group
GF (p)∗, which is further reduced to the DL problem of another group GF (q)∗, and
so on.

We give an example. Assume that a uniform polynomial-time algorithm exists
for solving the DH problem in all the groups GF (p)∗, and that these algorithms use
algebraic operations in GF (p) only. Let again B = (log |G|)O(1) be a smoothness-
bound, p0 a prime factor of |G| greater than B, and let p1 be the only prime factor
of p0 − 1 greater than B. Assume further that pi is the only prime factor of pi−1 − 1
greater than B for all i = 2, . . . , k, and that pk − 1 =: T =

∏
i r
ni
i is B-smooth, and

k = O(1). Given a = gs, it is possible to compute x0 ≡ s (mod p0), x0 ∈ GF (p0), in
polynomial time as follows when given a DH oracle for G. Let

h0 :=
|G|
p0
, hi :=

pi−1 − 1

pi
(for i = 1, . . . , k) ,

and let

GF (pi)
∗ = 〈ci〉 (for i = 0, . . . , k − 1) .

If x0 6= 0, then x0 = cw0
0 (in GF (p0)), and gs is an implicit representation of x0. Since

p0 − 1 has a large prime factor p1, w0 modulo p1 cannot be obtained directly. But
x1 ≡ w0 (mod p1) (with x1 ∈ GF (p1)) can be written as x1 = cw1

1 (in GF (p1), if
x1 6= 0), and gs is a “double-implicit” representation of x1. Our assumptions allow
efficient computation with these elements of GF (p1) which are “double-implicitly”
represented. For example, an addition of two GF (p1)-elements requires multiplication
of the corresponding implicitly represented GF (p0)∗-elements and can be obtained by
a call to the DH oracle for G. A multiplication in GF (p1)∗ is done by an oracle call for
GF (p0)∗ with implicitly represented arguments and an implicitly represented answer.
This works (in polynomial time) because of the stated properties of the DH algorithm
for GF (p0)∗.

Analogously, computation with (k+ 1)-times implicitly represented arguments is
possible in the smooth group GF (pk)∗. The index-search problem for the listgh0c

h1c
···hkc

T
ri
t

k
1

0

t=0,...,ri−1

and the element

gh0c
h1c

···hkc
T
ri
wk

k
1

0

which can be obtained in polynomial time by computation with multiply implicitly
represented arguments, is solved and leads to wk modulo ri. When this is done for all
prime powers rnii , wk is computable modulo T . Then xk = cwkk (in GF (pk)), and one
can get wk−1 modulo pk−1 − 1 in polynomial time because the other prime factors of
pk−1 − 1 are smaller than B. Finally, we obtain w0 modulo p0 − 1 and x0.

Remark. The reason for assuming that pi−1−1 has only one large prime factor pi
is that otherwise it would not be possible to find the factors of pi−1− 1 in polynomial
time. When these factors are given, then the condition is unnecessary.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1717

Theorem 13. Let P be a fixed polynomial. Let G be a cyclic group with the
property that all prime factors p0 of |G| greater than B := P (log |G|) are single, and
that for all such prime factors there exist k = O(1) and primes pi (i = 1, . . . , k)
such that pi is the only prime factor of pi−1 − 1 greater than B for i = 1, . . . , k,
and pk − 1 is B-smooth. Assume further that a polynomial-time algorithm is given
which solves the DH problem in the groups GF (p)∗ and uses algebraic operations in
GF (p) only. Then, breaking the DH protocol and computing discrete logarithms are
polynomial-time equivalent in G.

The process works in an analogous way if some of the used groups are cyclic elliptic
curves or Jacobians, provided an efficient algebraic (with respect to the underlying
field GF (p)) DH algorithm is given for these groups.

Appendix D: Construction of groups for which a reduction of the DL
problem to the DH problem is efficiently constructible. It appears desirable
to use a group G in the DH protocol for which the algorithm reducing the DL problem
to the DH problem can easily be found. However, such reasoning should be used with
care because it is conceivable that knowledge of the auxiliary groups makes computing
discrete logarithms easier. There are three possible scenarios:

1. When given G it is easy (also for the opponent) to find suitable auxiliary
groups.

2. The designer of the group G knows suitable auxiliary groups but they are
difficult to find for an opponent.

3. The designer of the group G knows that suitable auxiliary groups exist, with-
out knowing them.

Note that the second case can always be transformed into the first by publishing
the suitable auxiliary groups. Of course, because this information can only help an
opponent in breaking the DH protocol, there is no reason for the designer of the group
to make it public.

Constructing a group G of the third type is not difficult: choose a (secret) arbi-
trary large smooth number m and search for a prime p in the interval [m − 2

√
m +

1,m+ 2
√
m+ 1]. A group G whose order contains only such large prime factors satis-

fies the third property. Note that it is easy to construct, for a given n, a group G for
the DH protocol whose order is a multiple of n. One possibility is to find a multiple
l of n (where l/n is small) such that l + 1 is prime and to use G = GF (l + 1)∗. An
alternative is to use the construction of Lay and Zimmer [22] for finding an elliptic
curve of order n.

The second case is somewhat more involved. Primes p for which the designer
knows an auxiliary group over GF (p) can be obtained by choosing a large smooth
number m and using the method of Lay and Zimmer [22] for constructing a prime
p together with an elliptic curve of order m. When given such prime factors of the
group order, a group G can be found as described.

We now consider efficient constructions for the first case. We generalize an algo-
rithm, presented in [47] by Vanstone and Zuccherato, for constructing a large prime
p such that either a quarter of the curves y2 = x3 − Dx or every sixth curve of the
form y2 = x3 + D have smooth order. First, we construct primes p = a2 + (k ± 1)2

(for a fixed k with l digits) such that a2 + k2, which is then one of the possible orders
of the curves y2 = x3 −Dx over GF (p) (see (4)), is smooth.

Let l′-digit numbers x1, x2, y1, and y2 be chosen at random. Define

u+ vi := (x1 + y1i)(x2 + y2i);

1718 UELI M. MAURER AND STEFAN WOLF

that is,

u = x1x2 − y1y2, v = x1y2 + x2y1 .

Then u and v have at most 2l′ digits. If gcd(u, v) divides k (otherwise choose again),
one can compute numbers c and d (of at most 2l′ + l digits) such that

cv + du = k .

Define

a := cu− dv ,

and restart the process if a is even. Then

a+ ki = (c+ di)(u+ vi) = (c+ di)(x1 + y1i)(x2 + y2i)

and

a2 + k2 = (c2 + d2)(x2
1 + y2

1)(x2
2 + y2

2) .

The process is repeated until a2+k2 is s-digit-smooth, which happens with probability
approximately

(
4l′ + 2l

s

)− 4l′+2l
s

·
(

2l′

s

)− 2l′
s

·
(

2l′

s

)− 2l′
s

(according to (1)), and smoothness can be tested with the elliptic curve factoring
algorithm [23]. Because a and k are odd, exactly one of the expressions a+ (k ± 1)i
is congruent to 1 modulo 2 + 2i. Let α := a + (k ± 1)i, respectively. Repeat the
computations until

p := αα = a2 + (k ± 1)2

is prime. According to (4), a quarter of the curves y2 = x3 − Dx over GF (p) have
smooth order a2 + k2. Hence p is an (8l′ + 2l)-digit prime such that an elliptic curve
with s-digit-smooth order is constructible over GF (p). The expected number of trials
is

O

(4l′ + 2l

s

) 4l′+2l
s

·
(

2l′

s

) 4l′
s

· (8l′ + 2l)

 .(15)

In a similar way, primes can be constructed such that curves of type y2 = x3 +D
have smooth order. More precisely, one can generate primes p = a2−a(k±1)+(k±1)2

such that a2 − ak + k2 is one of the possible orders of the curves y2 = x3 + D over
GF (p) (see (5)) and s-digit-smooth.

In case of a small k, an L-digit prime p such that an s-digit-smooth curve is
constructible over GF (p) can be found by

O

((
L√
8 · s

)L
s

· L
)

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1719

trials instead of

O

((
L

s

)L
s

· L
)

trials when varying p among L-digit numbers until p is prime and one of the considered
curves is s-digit-smooth. For example, a 100-digit prime p such that a 10-digit-smooth
curve over GF (p) is constructible can be found by approximately 3 ·106 trials (instead
of about 1011 trials when using the straightforward strategy).

Acknowledgment. The authors thank Dan Boneh, Dima Grigoriev, Hendrik
Lenstra, Markus Metzger, Victor Shoup, and Igor Shparlinsky for interesting discus-
sions on the subject of this paper, and two anonymous referees for their very helpful
comments for improving the presentation.

REFERENCES

[1] L. M. Adleman and M. A. Huang, Primality Testing and Abelian Varieties over Finite Fields,
Lecture Notes in Math. 1512, Springer-Verlag, New York, 1992.

[2] E. Bach and J. Shallit, Factoring with cyclotomic polynomials, Math. Comp., 52 (1989),
pp. 201–219.

[3] D. Boneh, Studies in computational number theory with applications to cryptography,
Ph. D. Thesis, Princeton Univ., Princeton, NJ, 1996.

[4] D. Boneh and R. J. Lipton, Algorithms for black-box fields and their application to cryptog-
raphy, Advances in Cryptology—CRYPTO ’96, Lecture Notes in Computer Science 1109,
Springer-Verlag, 1996, pp. 283–297.

[5] S. Brands, An Efficient Off-line Electronic Cash System Based on the Representation Problem,
Tech. Rep. CS-R9323, CWI, Amsterdam, 1993.

[6] J. Buchmann and V. Müller, Computing the number of points of elliptic curves over finite
fields, Proceedings ISSAC ’91, ACM Press, New York, 1991, pp. 179–182.

[7] J. Buchmann and H. C. Williams, A key-exchange system based on imaginary quadratic
fields, J. Cryptology, 1 (1988), pp. 107–118.

[8] E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning
“Factorisatio Numerorum,” J. Number Theory, 17 (1983), pp. 1–28.

[9] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp., 48 (1987),
pp. 95–101.

[10] M. A. Cherepnev, On the connection between discrete logarithms and the Diffie–Hellman
problem, Discrete Math. Appl., 1996.

[11] D. Coppersmith and I. E. Shparlinsky, On polynomial approximation and the parallel com-
plexity of the discrete logarithm problem and breaking the Diffie–Hellman cryptosystem,
preprint, Nov. 1996.

[12] B. den Boer, Diffie–Hellman is as strong as discrete log for certain primes, Advances in
Cryptology—CRYPTO ’88, Lecture Notes in Comput. Sci. 403, Springer-Verlag, New York,
1989, pp. 530–539.

[13] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory,
22 (1976), pp. 644–654.

[14] T. El-Gamal, A public key cryptosystem and a signature scheme based on the discrete loga-
rithm, IEEE Trans. Inform. Theory, 31 (1985), pp. 469–472.

[15] W. Feller, An Introduction to Probability Theory and its Applications, John Wiley & Sons,
1968.

[16] K. O. Geddes, S. R. Czapor, and G. Labhan, Algorithms for Computer Algebra, Kluwer
Academic Publisher, 1992.

[17] S. Goldwasser and J. Kilian, Almost all primes can be quickly certified, Proceedings of the
18th Annual ACM Symposium on the Theory of Computing, 1986, pp. 316–329.

[18] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univer-
sity Press, Oxford, 1979.

[19] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-
Verlag, New York, 1982.

[20] N. Koblitz, Hyperelliptic cryptosystems, J. Cryptology, 1 (1989), pp. 139–150.

1720 UELI M. MAURER AND STEFAN WOLF

[21] N. Koblitz, Elliptic curve cryptosystems, Math. Comp., 48 (1987), pp. 203–209.
[22] G.-J. Lay and H. G. Zimmer, Constructing elliptic curves with given group order over large

finite fields, in Proceedings of ANTS-I, Lecture Notes in Comput. Sci. 877, Springer-Verlag,
New York, 1994, pp. 250–263.

[23] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics, 126
(1987), pp. 649–673.

[24] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Application, Cambridge
University Press, Cambridge, UK, 1986.

[25] J. L. Massey, Advanced Technology Seminars Short Course Notes, Zürich, 1993, pp. 6.66–6.68.
[26] U. M. Maurer, Towards the equivalence of breaking the Diffie–Hellman protocol and computing

discrete logarithms, in Advances in Cryptology—CRYPTO ’94, Lecture Notes in Comput.
Sci. 839, Springer-Verlag, New York, 1994, pp. 271–281.

[27] U. M. Maurer and S. Wolf, The Diffie–Hellman protocol, in Des. Codes Cryptog., Special
Issue “20 Years of Public-Key Cryptography,” to appear.

[28] U. M. Maurer and S. Wolf, Lower Bounds on Generic Algorithms in Groups, in Advances
in Cryptology—ENDOCRYPT ’96, Lecture Notes in Comput. Sci. 1403, Springer-Verlag,
New York, 1998, pp. 72–84.

[29] U. M. Maurer and S. Wolf, On the complexity of breaking the Diffie–Hellman protocol,
Tech. Rep. 244, Computer Science Department, ETH Zürich, Switzerland, 1996, pp. 27–
29.

[30] U. M. Maurer and S. Wolf, Diffie–Hellman oracles, in Advances in Cryptology—CRYPTO
’96, Lecture Notes in Comput. Sci. 1109, Springer-Verlag, New York, 1996, pp. 268–282.

[31] U. M. Maurer and Y. Yacobi, Non-interactive public-key cryptography, Des. Codes Cryptog.,
9 (1996), pp. 305–316.

[32] K. S. McCurley, A key distribution system equivalent to factoring, J. Cryptology, 1 (1988),
pp. 95–105.

[33] K. S. McCurley, The discrete logarithm problem, in Cryptology and Computational Num-
ber Theory, Proc. Sympos. Appl. Math. 42, C. Pomerance, ed., American Mathematical
Society, Providence, RI, 1990, pp. 49–74.

[34] A. J. Menezes, ed., Applications of Finite Fields, Kluwer Academic Publishers, Norwell, MA,
1992.

[35] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, Nor-
well, MA, 1993.

[36] V. Miller, Uses of elliptic curves in cryptography, in Advances in Cryptology—CRYPTO ’85,
Lecture Notes in Comput. Sci. 218, Springer-Verlag, New York, 1986, pp. 417–426.

[37] S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance, IEEE Trans. Inform. Theory, 24 (1978), pp. 106–
110.

[38] J. M. Pollard, Monte-Carlo methods for index computation mod p, Math. Comp., 32 (1978),
pp. 918–924.

[39] J. M. Pollard, Theorems on factorization and primality testing, Proceedings of the Cambridge
Philosophical Society, 76 (1974), pp. 521–528.

[40] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and
public-key cryptosystems, Communications of the ACM, 21 (1978), pp. 120–126.

[41] H. Rück, A note on elliptic curves over finite fields, Math. Comp., 49 (1987), pp. 301–304.
[42] K. Sakurai and H. Shizuya, Relationships among the computational powers of breaking dis-

crete log cryptosystems, Advances in Cryptology—EUROCRYPT ’95, Lecture Notes in
Comput. Sci. 921, Springer-Verlag, New York, 1995, pp. 341–355.

[43] C. P. Schnorr, Efficient identification and signatures for smart cards, in Advances in
Cryptology—CRYPTO ’89, Lecture Notes in Comput. Sci. 435, Springer-Verlag, New York,
1990, pp. 239–252.

[44] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. Comp., 44 (1985), pp. 483–494.

[45] V. Shoup, Lower bounds for discrete logarithms and related problems, in Advances in
Cryptology—EUROCRYPT ’97, Lecture Notes in Comput. Sci. 1233, Springer-Verlag,
New York, 1997, pp. 256–266.

[46] I. E. Shparlinsky, Computational Problems in Finite Fields, Kluwer Academic Publishers,
Norwell, MA, 1992.

[47] S. A. Vanstone and R. J. Zuccherato, Elliptic curve cryptosystems using curves of smooth
order over the ring Zn, IEEE Trans. Inform. Theory, 43 (1997), pp. 1231–1237.

[48] S. Wolf, Diffie–Hellman and discrete logarithms, Diploma Thesis, Department of Computer
Science, ETH Zürich, Zürich, Switzerland, 1995.

DIFFIE–HELLMAN AND DISCRETE LOGARITHMS 1721

[49] S. Wolf, Unconditionally and Computationally Secure Key Agreement in Cryptography, Ph.D.
thesis, ETH Zürich, Zürich, Switzerland, 1999.

SELECTING THE MEDIAN∗

DORIT DOR† AND URI ZWICK†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1722–1758

Abstract. Improving a long-standing result of Schönhage, Paterson, and Pippenger [J. Comput.
System Sci., 13 (1976), pp. 184–199] we show that the median of a set containing n elements can
always be found using at most c · n comparisons, where c < 2.95.

Key words. median selection, comparison algorithms, concrete complexity

AMS subject classifications. 68Q25, 68R05, 06A07

PII. S0097539795288611

1. Introduction. The selection problem is defined as follows: Given a set X
containing n distinct elements drawn from a totally ordered domain, and given a
number 1 ≤ i ≤ n, find the ith order statistic of X, i.e., the element of X larger
than exactly i− 1 elements of X and smaller than the other n− i elements of X. The
median of X is the dn/2eth order statistic of X.

The selection problem is one of the most fundamental problems of computer
science and it has been extensively studied. Selection is used as a building block in
the solution of other fundamental problems such as sorting and finding convex hulls.
It is somewhat surprising therefore that only in the early 1970s was it shown, by Blum
et al. [BFP+73], that the selection problem can be solved in O(n) time. As Ω(n) time
is clearly needed to solve the selection problem, the work of Blum et al. completely
solves the problem. Or does it?

A very natural setting for the selection problem is the comparison model. An
algorithm in this model can access the input elements only by performing pairwise
comparisons between them. The algorithm is charged only for these comparisons;
all other operations are free. The comparison model is one of the few models in
which exact complexity results may be obtained. What then is the exact comparison
complexity of finding the median?

The comparison complexity of many comparison problems is exactly known. It
is clear, for example, that exactly n− 1 comparisons are needed, in the worst case, to
find the maximum or minimum of n elements. Exactly n + dlog ne − 2 comparisons
are needed to find the second largest (or second smallest) element (Schreier [Sch32],
Kislitsyn [Kis64]). Exactly d3n/2e − 2 comparisons are needed to find both the max-
imum and the minimum of n elements (Pohl [Poh72]). Exactly 2n − 1 comparisons
are needed to merge two sorted lists each of length n (Stockmeyer and Yao [SY80]).
Finally, n log n + O(n) comparisons are needed to sort n elements (e.g., Ford and
Johnson [FJ59]).

A relatively large gap, considering the fundamental nature of the problem, still
remains, however, between the known lower and upper bounds on the exact complexity
of finding the median. After presenting a basic scheme by which an O(n) selection
algorithm can be obtained, Blum et al. [BFP+73] try to optimize their algorithm and

∗Received by the editors July 5, 1995; accepted for publication (in revised form) May 20, 1997;
published electronically May 13, 1999.

http://www.siam.org/journals/sicomp/28-5/28861.html
†Department of Computer Science, School of Mathematical Sciences, Raymond and Beverly Sack-

ler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel (ddorit@math.tau.ac.il,
zwick@math.tau.ac.il).

1722

SELECTING THE MEDIAN 1723

present a selection algorithm that performs at most 5.43n comparisons. They also
obtain the first nontrivial lower bound and show that 1.5n comparisons are required,
in the worst case, to find the median. The result of Blum et al. is subsequently
improved by Schönhage, Paterson, and Pippenger [SPP76], who present a beautiful
algorithm for the selection of the median, or any other element, using at most 3n +
o(n) comparisons. In this work we improve the long-standing result of Schönhage,
Paterson, and Pippenger and present a selection algorithm that uses at most 2.95n
comparisons.

Bent and John [BJ85] (see also John [Joh88]), improving previous results of Kirk-
patrick [Kir81], Munro and Poblete [MP82], and Fussenegger and Gabow [FG78],
obtained a (1 +H(α))·n− o(n) lower bound on the number of comparisons needed to
select the αnth element of a set of n elements, where H(α) = α log 1

α+(1−α) log 1
1−α is

the binary entropy function (all logarithms in this paper are taken to base 2). We have
shown recently [DZ96a] (using somewhat different methods from the ones used here)
that the αnth element can be selected using at most (1 + α log 1

α +O(α log log 1
α))·n

comparisons. This for small values of α is almost optimal. The bound of Bent and
John gives in particular a 2n−o(n) lower bound on the number of comparisons needed
to find the median. We have recently improved this lower bound slightly to (2+ε)n
([DZ96b]; see also [Dor95] and [DHUZ96]).

Our work slightly narrows the gap between the best known lower and upper
bounds on the comparison complexity of the median problem. Although our improve-
ment is quite modest, many new ideas were required to obtain it. These new ideas
shed some more light on the intricacy of the median finding problem.

Algorithms for selecting the ith element for small values of i were obtained by
Hadian and Sobel [HS69], Hyafil [Hya76], Yap [Yap76], and Ramanan and Hyafil
[RH84]. See also Aigner [Aig82] and Eusterbrock [Eus93].

All the results mentioned so far deal with the number of comparisons needed in
the worst case. Floyd and Rivest [FR75] showed that the ith element can be found
using an expected number of n+ i+o(n) comparisons. Cunto and Munro [CM89] had
shown that the bound of Floyd and Rivest is tight.

The central idea used by Schönhage, Paterson, and Pippenger in their 3n+ o(n)
median algorithm is the idea of factories. They use factories for the mass production
of certain partial orders at a much reduced cost. To obtain our results we extend the
notion of factories. We introduce green factories and perform an amortized analysis
of their production costs. We obtain improved green factories, with which we can
improve the 3n+ o(n) result of Schönhage, Paterson, and Pippenger.

The performance of a green factory is mainly characterized by two parameters u0

and u1 (the upper and lower element costs). Using a green factory with parameters u0

and u1 we obtain an algorithm for the selection of the αnth element using at most
(u0α+ u1(1− α))·n+ o(n) comparisons. To select the median, we use a factory with
u0, u1 ≈ 2.95. Actually, there is a trade-off between the lower and upper costs of a
factory. For every 0 < α ≤ 1/2 we may choose a factory that minimizes u0α+u1(1−α).
We can select the n/4th element, for example, using at most 2.69n comparisons,
by using a factory with u0 ≈ 4 and u1 ≈ 2.25. In this paper, we concentrate on
factories for median selection. It is easy to verify that the algorithm described here,
as the median finding algorithms of both Blum et al. and Schönhage, Paterson, and
Pippenger, can be implemented in linear time in the RAM model.

The best green factories that we have explicitly constructed have lower and up-
per element costs u0, u1 ' 2.942, yielding a median selection algorithm that uses at

1724 DORIT DOR AND URI ZWICK

m︷ ︸︸ ︷

b b b

b b b
y
s s s

s s s

�
�
�
��

�
�
�
��

e
e
e
ee

J
J
J
JJ

C
C
C
CC

�
�
�
��

︸ ︷︷ ︸
k

Fig. 2.1. The partial order Smk .

most 2.942n comparisons. These factories are extremely complicated. They employ
in particular 16 different subfactories (subfactories are introduced in section 5). A
full description of these factories is too long for a journal paper but may be found
in [Dor95]. We describe instead a simpler, although still quite complicated, construc-
tion that uses only four different subfactories and has u0, u1 ' 2.956. This simpler
construction depicts all the ideas used in the construction of the more complicated
factories. After describing these simpler factories in full, we give a partial description
of the more complicated factories.

A preliminary version of this paper appeared in [DZ95]. There we sketched the
construction of a factory that uses only two subfactories and achieves u0, u1 ' 2.968.
These are about the simplest factories with which the 3n median algorithm of Schön-
hage, Paterson, and Pippenger can be improved. They do not demonstrate, however,
all the ideas required to obtain the u0, u1 ' 2.956 and u0, u1 ' 2.942 factories.

We believe that further small improvements can be obtained by building more
complicated factories that use even more subfactories. It seems, however, that new
ideas will be needed to obtain a more substantial improvement (see in particular the
comments at the end of section 9).

In the next section we describe in more detail the concept of factory produc-
tion and introduce our notion of a green factory. We also state the properties of the
improved factories that we obtain. In section 3 we explain the way in which green
factories are used to obtain efficient selection algorithms. The selection algorithm
that we describe is a generalization of the median algorithm of [SPP76] and is similar
to the selection algorithm that we describe in [DZ96a]. The subsequent sections are
then devoted to the construction of our improved green factories. We end with some
concluding remarks and open problems.

2. Factory production. Denote by Smk a partial order composed of a center
element, m elements larger than the center and k elements smaller than the center
(see Figure 2.1). An Smk is sometimes referred to as a spider . Schönhage, Paterson,
and Pippenger [SPP76] show that producing l disjoint copies of Smk usually requires
fewer comparisons than l times the number of comparisons required to produce a single
Smk . The best way, prior to this work, for producing a single Skk , for example, required
about 6k comparisons (find the median of 2k+1 elements using the 3n+o(n) median
algorithm). The cost per copy can be cut by almost half if the Skk ’s are mass-produced
using factories.

SELECTING THE MEDIAN 1725

A factory for a partial order P is a comparison algorithm with continual input
and output streams. The input stream of a simple factory consists of single elements.
When enough elements are fed into the factory, a new disjoint copy of P is produced.
A factory is characterized by the following quantities: the initial cost I, which is the
number of comparisons needed to initialize the factory; the unit cost U , which is the
number of comparisons needed to generate each copy of P ; and finally the production
residue R, which is the maximum number of elements that can remain in the factory
when lack of inputs stops production. For every l ≥ 0, the cost of generating l disjoint
copies of P is at most I+ l·U . Schönhage, Paterson, and Pippenger [SPP76] construct
factories with the following characteristics.

Theorem 2.1. There is a factory Fk for Skk with initial cost Ik, unit cost Uk,
and production residue Rk satisfying Uk ∼ 3.5k, Ik = O(k2), Rk = O(k2).

The notation Uk ∼ 3.5k here means that Uk = 3.5k+ o(k). Schönhage, Paterson,
and Pippenger also show that if there exist factories Fk, for Skk ’s, satisfying Uk ∼ Ak,
for some A > 0, and Ik, Rk = O(k2), then the median of n elements can be found using
at most An+o(n) comparisons. The above theorem therefore immediately implies the
existence of a 3.5n+ o(n) median algorithm.

The way factories are used by selection algorithms is described in the next section.
For now, we just mention that most Smk ’s generated by a factory employed by a
selection algorithm are eventually broken, with either their upper elements eliminated
and their lower elements returned to the factory or vice versa. While constructing an
Smk , a factory may have compared elements that turned out to be on the same side
of the center. If such elements are ever returned to the factory, the known relations
among them may save the factory some of the comparisons it has to perform. To
capture this, we extend the definition of factories and define green factories (factories
that support the recycling of known relations). This extension is implicit in the work
of [SPP76]. Making this notion explicit simplifies the analysis of our factories. The
3n+o(n) median algorithm of Schönhage, Paterson, and Pippenger is in fact obtained
by replacing the factory Fk of Theorem 2.1 by a simple green factory.

A green factory for Smk ’s is mainly characterized by the following two quantities:
the lower element cost u0 and the upper element cost u1. Using these quantities, the
amortized production costs of the factory can be calculated as follows: the amortized
production cost of an Smk whose upper m elements are eventually returned (together)
to the factory is k·u0. The amortized production cost of an Smk whose lower k elements
are eventually returned (together) to the factory is m·u1. The amortized production
cost of an Smk such that none of its elements is returned to the factory is k·u0 +m·u1.
Note that in this accounting scheme we attribute all the production cost to elements
that are not returned to the factory. The initial cost I and the production residue
R of a green factory are defined as before. A somewhat different definition of green
factory was given by us in [DZ96a]. The definition given here uses amortized costs
per element, whereas our previous definition used amortized costs per partial order. A
green factory does not know in advance whether the lower or upper part of a generated
Smk will be recycled. This is set by an adversary. Although not stated explicitly, the
following result is implicit in [SPP76].

Theorem 2.2. There is a green factory Gk for Skk with lower and upper element
costs u0, u1 ∼ 3, initial cost Ik = O(k2), and production residue Rk = O(k2).

The notation u0, u1 ∼ 3 here means that u0, u1 = 3 + o(1), where the o(1) is with
respect to k.

We shall see in the next section that a green factory for Skk with lower and upper

1726 DORIT DOR AND URI ZWICK

Fig. 3.1. The ordered list of S̃kk ’s.

element costs u0 and u1 yields a (u0+u1)/2·n+o(1) median algorithm. To improve the
algorithm of Schönhage, Paterson, and Pippenger it is enough therefore to construct
an Skk factory with (u0 + u1)/2 < 3. Unfortunately, we are not able to construct such
a factory.

However, we are able to reduce the upper and lower element costs if we allow
variation among the partial orders generated by the factory. Let S̃kk = {Sk′′k′ : k ≤ k′ ≤
2k , k ≤ k′′ ≤ 2k}. We construct improved green factories that generate partial orders
that are members of S̃kk . These factories can be easily incorporated into the selection
algorithm described in the next section. To obtain our 2.95n median algorithm we use
green S̃kk factories Gk with the following characteristics.

Theorem 2.3. There is a green S̃kk factory Gk with u0, u1 ' 2.942, Ik = O(k2),
Rk = O(k2).

An outline of the ideas used to construct the factories Gk is given in section 5.
The full details are then given in sections 6 through 9.

3. Selection algorithms. In this section we describe our selection algorithm.
This algorithm uses an S̃kk factory. The complexity of the algorithm is completely
determined by the characteristics of the factory used. This algorithm is a generaliza-
tion of the median algorithm of Schönhage, Paterson, and Pippenger and is a slight
variation of the selection algorithm that we describe in [DZ96a].

Theorem 3.1. Let 0 < α ≤ 1/2. Let Fk be an S̃kk factory with lower element
cost u0, upper element cost u1, initial cost Ik = O(k2), and production residue Rk =
O(k2). Then, the αnth smallest element, among n elements, can be selected using at
most (α·u0 + (1− α)·u1)·n+ o(n) comparisons.

Proof. We refer to the αnth smallest element among the n input elements as
the percentile element. The algorithm uses the factory Fk where k = bn1/4c. The n
input elements are fed into this factory, as singletons, and the production of partial
orders S ∈ S̃kk commences. The centers of the generated S’s are inserted, using binary
insertion, into an ordered list L, as shown in Figure 3.1. When the list L is long enough
we know either, as we shall soon show, that the center of the upper (i.e., last) S in
L and the elements above it are too large to be the percentile element, or that the

SELECTING THE MEDIAN 1727

center of the lower (i.e., first) S and the elements below it are too small to be the
percentile element. Elements too large or too small to be the percentile element are
eliminated. The lower elements of the upper S and the upper elements of the lower S
are returned to the factory for recycling.

Let t be the current length of the list L and let r be the number of elements
currently in the factory. The number of elements that have not yet been eliminated
is therefore N = Θ(k)·t + r. Let i be the rank of the percentile element among the
noneliminated elements. Initially N = n and i = dαne.

The number of elements in the list known to be smaller than or equal to the
center of the upper S of the list is N0 = Θ(k) · t. The number of elements known
to be greater than or equal to the center of the lowest S of the list is N1 = Θ(k)·t.
Note that N0 + N1 = N + t − r as the centers of all the S’s in the list satisfy both
these criteria, the r elements currently in the factory satisfy neither, and all the other
noneliminated elements satisfy exactly one of these criteria.

The algorithm consists of the following interconnected processes:

(i) Whenever sufficiently many elements are supplied to the factory Fk, a new
partial order S ∈ S̃kk is produced and its center is inserted into the list L
using binary insertion.

(ii) Whenever N0 > i, the center of the upper partial order S ∈ S̃kk in the list
and the elements above it are eliminated, because they are too big to be the
percentile element. The lower elements of S are recycled.

(iii) Whenever N1 > N− i+1, the center of the lowest partial order S ∈ S̃kk in the
list and the elements below it are eliminated, because they are too small to
be the percentile element. The upper elements of S are recycled. The value
of i is updated accordingly, i.e., i is decremented by the number of elements
in the lower part of S (including the center).

If (ii) and (iii) are not applicable, then N0 ≤ i and N1 ≤ N − i + 1. Thus
N + t − r = N0 + N1 ≤ N + 1 and t − 1 ≤ r. If (i) is not applicable, then by the
factory definition we have r ≤ Rk. When none of (i), (ii), and (iii) can be applied
we get that t − 1 ≤ r ≤ Rk = O(k2). At this stage N = O(k3), which is O(n3/4),
and the ith element among the surviving elements is found using any linear selection
algorithm.

We now analyze the comparison complexity of the algorithm. Whenever (ii) is
performed, the upper partial order S ∈ S̃kk of the list is broken. Its center and up-
per elements are eliminated and its lower elements are returned to the factory. The
amortized production cost of the partial order S is at most u1 comparisons per each
element above the center.

Whenever (iii) is performed, the lowest partial order S ∈ S̃kk of the list is broken.
Its center and lower elements are eliminated and its upper elements are returned
to the factory. The amortized production cost of the partial order S is at most u0

comparisons per each element below the center.

The algorithm can eliminate at most (1−α)n elements larger than the percentile
element and at most αn elements smaller than the percentile element. The total
production cost of all partial orders S ∈ S̃kk that are eventually broken is therefore

at most (αu0 + (1− α)u1)·n+ o(n). At most O(k2) generated partial orders S ∈ S̃kk
are not broken. Their total production cost is O(k3). The initial production cost
is O(k2). The total number of comparisons performed by the factory is therefore
(αu0 + (1− α)u1)·n+ o(n).

1728 DORIT DOR AND URI ZWICK

Let t∗ be the final length of the list L (when none of (i), (ii), and (iii) is applicable).
The total number of partial orders generated by Fk is at most n/k+ t∗, as at least k
elements are eliminated whenever a partial order is removed from L. The total cost
of the binary insertions into the list L is at most O((n/k + t∗) · log n) = O((n/k +
k2) log n) which is o(n). The total number of comparisons performed by the algorithm
is therefore at most (αu0 + (1− α)u1)·n+ o(n), as required.

Using the factories of Theorem 2.3, we obtain our main result, as follows.
Theorem 3.2. Any element, among n elements, can be selected using at most

2.942n+ o(n) comparisons.

4. Basic principles of factory design. In this section we give some of the
basic principles used to construct efficient factories. The section is divided into three
subsections. In the first subsection we remind the reader what hyperpairs are and
what their pruning cost is. In the second subsection we describe the notion of grafting.
In the third subsection we sketch the construction of the Skk factories of Schönhage,
Paterson, and Pippenger [SPP76]. These factories are briefly described to illustrate
the basic design principles. All the results of this section, except for Theorems 4.5
and 4.6, which are new, are essentially taken from [SPP76]. Some of the proofs are
therefore omitted.

Before going into details, we describe a clever accounting principle introduced by
Schönhage, Paterson, and Pippenger to simplify the complexity analysis of factories.
The information we care to remember on the elements that pass through the factory
can always be described using a Hasse diagram. Each comparison made by the al-
gorithm adds an edge to the diagram and possibly deletes some edges that become
redundant. At some stages we may decide to “forget” the result of some comparisons,
and the edges that correspond to them are removed from the diagram. Schönhage,
Paterson, and Pippenger noticed that instead of counting the number of comparisons
made, we can count the number of edges cut! To this we should add the number of
edges in the eliminated parts of the partial orders as well as the edges that remain
in the factory when the production stops. The second number, in our factories, is at
most a constant times the production residue of the factory and it can be attributed
to the initial cost.

4.1. Hyperpairs. A factory usually starts the production of a partial order
from S̃kk by producing a large partial order, a hyperpair, that contains a partial order

from S̃kk .
Definition 4.1. A hyperpair Pw, where w is a binary string, is a finite par-

tial order with a distinguished element, the center, defined recursively by (i) Pλ is a
single element (λ here stands for the empty string); (ii) Pw1 is obtained from two dis-
joint Pw’s by comparing their centers and taking the larger as the new center. Pw0 is
obtained in the same way but taking the smaller of the two centers as the new center.

The Hasse diagrams of some small hyperpairs are shown in Figure 4.1 (the mean-
ing of the notation Hr will become clear later). Some basic properties of hyperpairs
are given in the following lemma.

Lemma 4.2. Let c be the center of a hyperpair Pw. Let wi be the prefix of w of
length i. Let h0 be the number of 0’s in w and h1 be the number of 1’s in w. Then

(1) the center c together with the elements greater than it form a P0h0 with cen-
ter c. The elements greater than c form a disjoint set of hyperpairs Pλ, P0,
. . . , P0h0−1 . The center c together with the elements smaller than it form a
P1h1 with center c. The elements smaller than c form a disjoint set of hyper-
pairs Pλ, P1, . . . , P1h1−1 .

SELECTING THE MEDIAN 1729

Fig. 4.1. Some small hyperpairs (H2 = P01, H4 = P0110, and H6 = P011010).

(2) the hyperpair Pw can be parsed into its center c and into a disjoint set {Pwi |
0 ≤ i < |w|} of smaller hyperpairs. Moreover, the center of Pwi is above c
if wi+1 ends with 0 and below c if wi+1 ends with 1.

The lemma can be easily proved by induction. Note, in particular, that if m < 2h0

and k < 2h1 , then Pw contains an Smk . No edges are cut during the construction of
hyperpairs. But, before outputting an Smk contained in a hyperpair, all the edges
connecting the elements of this Smk with elements not contained in this Smk have to
be cut. This rather costly operation is referred to as pruning.

The downward pruning of a hyperpair Pw is the operation of removing from the
hyperpair all the elements that are not known to be smaller or equal to its center c.
The downward pruning cost PR0(w) of a hyperpair Pw is the cost of this operation.
This cost is equal to the number of edges of the hyperpair that connect the center of
Pw and the elements below it to the other elements of Pw. The upward pruning and
the upward pruning cost PR1(w) of a hyperpair Pw are defined analogously. Let w
be a binary string and let h0 and h1 be the number of 0’s and 1’s in it. The pruning
costs can be computed using the following recursive relations.

Lemma 4.3.
(i) PR0(λ) = 0, PR0(w0) = PR0(w) + 1, PR0(w1) = 2PR0(w).
(ii) PR1(λ) = 0, PR1(w0) = 2PR1(w), PR1(w1) = PR1(w) + 1.

Proof. A Pw0 is composed of two Pw’s and an edge connecting their two centers.
If c1 and c2 are the centers of these Pw’s and c1 < c2, then c1 is the center of the
hyperpair Pw0. To downward prune the hyperpair Pw0, all we have to do is downward
prune the hyperpair Pw whose center is c1 and then cut the edge between c1 and c2.
The cost of this operation is therefore PR0 (w) + 1. The other cases are proved
similarly.

We also define the amortized, per element, pruning costs of a hyperpair Pw.
Let h0 and h1 be the number of 0’s and 1’s in w and let h = h0 + h1. We define
pr0(w) = PR0(w)/2h1 and pr1(w) = PR1(w)/2h0 to be the lower element pruning cost
and the upper element pruning cost of w. An immediate consequence of Lemma 4.3
is the following lemma, which is easily proved by induction.

Lemma 4.4. Let w = γ1γ2 . . . γh be a binary string, let wi be the prefix of w of
length i, and let h0(wi) and h1(wi) be the number of 0’s and 1’s, respectively, in wi.

1730 DORIT DOR AND URI ZWICK

Then,

pr0(w) =
∑
i|γi=0

2−h1(wi), pr1(w) =
∑
i|γi=1

2−h0(wi).

Note, in particular, that if wi is a prefix of w, then pr0(wi) ≤ pr0(w) and pr1(wi) ≤
pr1(w).

Usually, especially if grafting processes are also used, we do not want to prune
all the elements above or below the center c of a hyperpair Pw. We next estimate the
cost of pruning k elements below or above the center of a hyperpair Pw, i.e., the cost
of pruning the hyperpair Pw so that all that remains of it is its center and k elements
either above or below the center. We show that the cost of pruning k elements below
the center of Pw is at most k ·pr0(w) + h while the cost of pruning k elements above
the center of Pw is at most k ·pr1(w) + h, where h is the length of w. Note that h is
also the number of edges connected to the center c of the hyperpair Pw. The h terms
in the above estimates will usually be negligible compared to the other terms.

By Lemma 4.2, a hyperpair Pw with center c can be parsed into h0 hyperpairs
{P 1

i | 0 ≤ i ≤ h0 − 1} whose centers are above c and h1 hyperpairs {P 0
i | 0 ≤ i ≤

h1 − 1} whose centers are below c. It is easy to check that the number of elements
in P 1

i which are above the center of this P 1
i , and the number of elements in P 0

i

which are below the center of this P 0
i , are both 2i (this follows from the fact that

the string corresponding to the hyperpair P 1
i contains exactly i 0’s and the string

corresponding to the hyperpair P 0
i contains exactly i 1’s). To upward prune k =

k020 + k121 + · · ·+ kh−12h−1 elements from Pw, we upward prune all P 1
i ’s for which

ki = 1 and cut the edges connecting c with the centers of all the other hyperpairs. As
the string corresponding to P 1

i is a prefix of w, the cost of upward pruning P 1
i is at

most 2i ·pr1(w). The cost of cutting the other edges is at most h. Thus, the cost of
pruning k elements above the center c is at most

∑
i|ki=1 2i·pr1(w)+h = k·pr1(w)+h.

All the “wastes” of this process are hyperpairs whose strings are prefixes of w and
they can be used therefore for the construction of the next Pw. The cost of pruning k
elements below the center is estimated in the same way.

To produce partial orders from S̃kk for larger and larger values of k, we have to
construct larger and larger hyperpairs. When we design a family {Fk}∞k=1 of factories,
we usually choose a (semi-) infinite binary string W and in each member Fk of this
family we construct a hyperpair whose string is a long enough prefix of W. Let wi be
the finite prefix of W of length i. The lower and upper element pruning costs of an
infinite string W are defined as the limits pr0(W) = lim i→∞ pr0(wi) and pr1(W) =
lim i→∞ pr1(wi). We will see in a minute that these limits do exist (they may be +∞).

Let W = γ1γ2 . . . be an infinite binary string. As before, let wi = γ1 . . . γi be the
prefix of W of length i, and let h0(wi) and h1(wi) be the number of 0’s and 1’s in wi,
respectively. It is easy to check that Lemma 4.4 holds also for infinite strings.

Schönhage, Paterson, and Pippenger base their factories on the infinite string
W = 01(10)ω for which, as can be easily verified, pr0(W) = pr1(W) = 1.5. (Here
and in what follows, we let xω denote the infinite string obtained by concatenating
an infinite number of copies of the string x, and we let Xω denote the set of infinite
strings obtained by concatenating an infinite number of strings from the set X.)
In our factories, we also need hyperpairs with cheaper lower element pruning cost
and, alas, more expensive upper element pruning cost, or vice versa. For an infinite
binary string W, we let pr(W) = pr0(W) + pr1(W). The next theorem shows that for
every stringW we have pr(W) ≥ 3. Theorem 4.6 then shows that for any real number
1 ≤ a ≤ 2, there exists an infinite stringW for which pr0(W) = a and pr1(W) = 3−a.

SELECTING THE MEDIAN 1731

Theorem 4.5. For any W ∈ {0, 1}ω we have pr(W) ≥ 3 with equality holding if
and only if W ∈ {01, 10}ω.

Proof. Let W be an infinite string. As before, we let wi stand for the prefix of W
of length i. If W contains only a finite number of 0’s or a finite number of 1’s, then
pr(W) = +∞. Assume therefore that W contains an infinite number of 0’s and an
infinite number of 1’s. Using Lemma 4.4 we get that

pr(W) =
∑
i|γi=0

2−h1(wi) +
∑
i|γi=1

2−h0(wi) =
∞∑
i=1

2−h1(wi) +
∞∑
i=1

2−h0(wi) − 2,

since
∑
i|γi=1 2−h1(wi) =

∑
i|γi=0 2−h0(wi) = 1. Let xi be the index of the ith 0 in W

and let yi be the index of the ith 1 in W. Also let x0 = y0 = 1. It is easy to check
that

∞∑
i=1

2−h0(wi) =
∞∑
i=0

2−i(xi+1 − xi) =
∞∑
i=1

2−ixi − 1.

A similar relation holds, of course, for
∑∞
i=1 2−h1(wi). As a consequence we get that

pr(W) =

∞∑
i=1

2−ixi +

∞∑
i=1

2−iyi − 4.

This expression is clearly minimized when for every 1 ≤ i < j we have xi, yi ≤ xj , yj .
Because all the elements in the sequences {xi} and {yi} are integral and distinct, we
get that the minimum is attained when for every i ≥ 1, either xi = 2i− 1 and yi = 2i
or vice versa. This corresponds to strings from {01, 10}ω. It is easy to check that for
a string W ∈ {01, 10}ω we have pr(W) = 3.

Theorem 4.6. For any real number 1 ≤ a ≤ 2 there exists a binary sequence
W ∈ {01, 10}ω for which pr0(W) = a and pr1(W) = 3− a.

Proof. Let 0.α1α2 . . . be the binary representation of a−1. LetW = α1α1α2α2 . . . ,
where α is the complement of the bit α. Using Lemma 4.4, we get that

pr0(W) =

∞∑
i=1

2−(i−αi) =

∞∑
i=1

2−i +
∑
i|αi=1

2−i = 1 + (a− 1) = a.

Since W ∈ {01, 10}ω, using the previous theorem we get that pr1(W) = 3− a.
Note, as an example, that if a = 1.5, then a − 1 is either 0.1000 . . . or 0.0111 . . .

and both W = 01(10)ω and W = 10(01)ω satisfy pr0(W) = pr1(W) = 1.5.
We are already in a position to describe a simple but complete Skk factory. Select

a string W. Construct a hyperpair Pw that contains the partial order Skk , where w is
a long enough prefix of W. Prune k elements above and k elements below the center
of this Pw. These 2k+1 elements form a copy of Skk . By Lemma 4.2(ii), the remaining
elements of Pw form a disjoint collection of partial orders each of the form Pwi , where
wi is some prefix of w. These partial orders are used to construct a new copy of Pw
that will be used to construct the next Skk . Before we output an Skk , we cut the 2k
edges it contains. When some part of an Skk generated by the factory is recycled, the
elements returned to the factory (as singletons) are used again for the construction of
hyperpairs. It is easy to check that the lower and upper element costs of this simple
factory are both u0, u1 ∼ pr0(W) + pr1(W) + 2 = pr(W) + 2. For any W ∈ {01, 10}ω
we get that the lower and upper element costs are u0, u1 ∼ 5.

1732 DORIT DOR AND URI ZWICK

The above factory can be turned into a green factory by noticing that the elements
can be returned to the factory as pairs and not as singletons. The edges of a generated
Skk are not cut when this Skk leaves the factory. Instead, we wait until the elements
on one of the sides of this Skk are eliminated by the selection algorithm. We then cut
the k edges connecting the eliminated elements to the center. By cutting about k/2
edges we can break the k noneliminated elements into about k/2 pairs, which we
then return to the Skk factory. These pairs can be used for the construction of the
next large hyperpair. The lower and upper element costs of this simple green factory
are u0, u1 ∼ pr(W) + 1.5. For any W ∈ {01, 10}ω we get u0, u1 ∼ 4.5. A slightly
more careful consideration shows that the elements of one of the sides can actually
be recycled as quartets (P00’s or P11’s), thus cutting only k/4 edges. This gives us
u0 ∼ 4.25 and u1 ∼ 4.5 or vice versa.

4.2. Grafting. The costs of the simple factories described above can be signif-
icantly improved using grafting. We can cheaply find elements that are smaller than
the center, or elements that are larger than the center, but usually not both. The
process of finding such elements is called grafting. Pruning is then used to obtain
elements on the opposite side.

We demonstrate this notion using a simple example, the grafting of singletons.
Take an element x, not contained in the hyperpair, and compare it to the center c
of the hyperpair. Continue is this way, comparing new elements to the center, until
either k elements above the center or k elements below the center are found. Note
that no edges are cut in this process. All the grafted elements are put in the output
partial order. The pruning process is then used to complete the partial order into an
Skk . Adding this process to our simple factory for Skk , the upper and lower element
costs are reduced to u1, u0 ∼ max{pr0(W), pr1(W)} + 2 (note that now we have to
prune elements from at most one side). Thus u0, u1 ∼ 3.5 if we take W = 01(10)ω or
W = 10(01)ω. This supplies a proof to Theorem 2.1. Note that the obtained factory
is a degenerate green factory since no relations are recycled. At least one side of each
generated Skk is composed of singletons, and if this side is recycled, no comparisons
can be reused.

4.3. The factories of Schönhage, Paterson, and Pippenger. We now
sketch the operation of the green factories Gk obtained by Schönhage, Paterson, and
Pippenger [SPP76]. These factories improve upon the simple factories described above
by grafting and recycling pairs. They are described here using a new terminology that
we also use in the next sections to describe our improved factories.

The factories of Schönhage, Paterson, and Pippenger use two simple pair grafting
processes which we refer to as the P0 and P1 grafting processes. The two processes
are mirror images of each other.

We start with the description of the P0 grafting process. Let x < y be a pair.
Compare x with c, the center of the hyperpair. If c < x, then stop. Otherwise,
compare y with c. The three possible outcomes of this process are (i) c < x < y,
(ii) x < y < c, and (iii) x < c < y. These three outcomes are shown on the left
of Figure 4.2 and are denoted, respectively, by X2

0 , X0
2 , and X1

1 . Note that in the
second case, the result x < c of the first comparison becomes redundant and the edge
corresponding to it, shown dashed in the figure, is cut. Similarly, in the third case,
the relation x < y becomes redundant and the corresponding edge is cut.

The P1 grafting process is, as mentioned, the mirror image of the P0 grafting
process. Let x < y be a pair. Compare y with c and if c < y, also compare x with c.
The three possible outcomes of this process, denoted by Y 0

2 , Y
2
0 , and Y 1

1 , are shown

SELECTING THE MEDIAN 1733

Fig. 4.2. Possible outcomes of the simple pair grafting processes.

Table 4.1
The costs of the possible outcomes of the simple pair grafting processes.

Outcome Above Below gen rec0 rec1

X2
0 P0 — 0 2 1

X0
2 — P0 1 1 2

X1
1 Pλ Pλ 1 2 2

Outcome Above Below gen rec0 rec1

Y 0
2 — P0 0 1 2

Y 2
0 P0 — 1 2 1

Y 1
1 Pλ Pλ 1 2 2

on the right of Figure 4.2. Note that the outcome of Y 1
1 of the P1 grafting process is

identical to the outcome X1
1 of the P0 grafting process. The outcomes Y 0

2 and X0
2 ,

and Y 2
0 and X2

0 have the same forms but different costs are associated with them. No
edges are cut while producing X2

0 and Y 0
2 , while a single edge is cut while producing

X0
2 and Y 2

0 .
The costs associated with each one of the outcomes obtained by these processes

are summarized in Table 4.1. If X is an outcome of a grafting process, then gen(X) is
the number of edges cut during the generation of X, rec0(X) is the number of edges
cut when the lower part of the spider to which the outcome X belongs is recycled
while the upper part is eliminated, and rec1(X) is defined analogously as the number
of edges cut when the upper part of X is recycled and the lower part eliminated.

The factory Gk starts by producing hyperpairs corresponding to prefixes of the
string W = 01(10)ω (the string W = 10(01)ω could also be used). Let wi be the
prefix of W of length i and let Hi = Pwi . Some small Hi’s are shown in Figure 4.1.
By Lemma 4.2, an H2r, where r = dlog(k + 1)e, contains an Skk . After constructing
an H2r, the factory initiates the pair grafting processes. The algorithm keeps two
counters n0 and n1 of the number of grafted elements already obtained above and
below the center c of the hyperpair H2r. If n0 > n1, then the P1 grafting process is
applied. If n0 ≤ n1, then the P0 grafting process is applied. The grafting continues
until either n0 ≥ k or n1 ≥ k. All the elements on at least one side of the spider are
thus obtained using grafting. Missing elements on the opposite side are then obtained
using pruning. The operation of the algorithm is summarized in Figure 4.3.

The intuition behind this algorithm is simple. If we already have many grafted

1734 DORIT DOR AND URI ZWICK

Construct a hyperpair H2r, where r = dlog(k + 1)e.
Initialize n0, n1 ← 0.
while n0 < k and n1 < k do

{
if n0 > n1 then

{
Apply the P1 grafting process on a pair x < y;
if x < y < c then n0 ← n0 + 2 ; /* Y 0

2 */
if c < x < y then n1 ← n1 + 2 ; /* Y 2

0 */
if x < c < y then n0 ← n0 + 1 ; n1 ← n1 + 1 ; /* Y 1

1 */
}
else
{

Apply the P0 grafting process on a pair x < y;
if c < x < y then n1 ← n1 + 2 ; /* X2

0 */
if x < y < c then n0 ← n0 + 2 ; /* X0

2 */
if x < c < y then n0 ← n0 + 1 ; n1 ← n1 + 1 ; /* X1

1 */
}

}

if n0 < k then prune k − n0 elements below the center c of H2r.
if n1 < k then prune k − n1 elements above the center c of H2r.

Fig. 4.3. The factory of Schönhage, Paterson, and Pippenger.

elements below the center, then by comparing c with the larger element y of a pair
x < y, we force the adversary to select one of the following two options: (1) give us
another pair below the center; (2) give us at least one additional element above the
center. In both cases we stand to gain. In the first case, the elements below the center
are organized in pairs, not in singletons, and their recycling cost is therefore reduced.
In the second case, we get relatively cheap elements above the center, in addition to
cheap elements that were already obtained below the center.

The elements above the center of the generated Skk form a collection of disjoint
P0i ’s and the elements below the center form a collection of disjoint P1i ’s. When the
lower or upper part of an Skk is returned to the factory, some of the existing relations
among the elements returned are utilized. The amortized analysis of the green factory
Gk encompasses a trade-off between the cost of generating an Skk and the utility
obtained from its lower or upper parts when these parts are recycled. Although the
Skk ’s generated by the factory of Schönhage, Paterson, and Pippenger may contain
P0i ’s and P1i ’s, where i > 1, their factory is capable only of utilizing pairwise disjoint
relations among the elements returned to it (as their grafting processes can use only
pairs). If a P0i or a P1i , with i > 1, is returned to the factory, it is immediately
broken into 2i−1 P0’s or P1’s. Note that both P0 and P1 simply stand for a pair of
elements. It can be checked (see [SPP76]) that the upper and lower element costs of
this factory are u1, u0 ∼ 3. This is the best factory obtained by Schönhage, Paterson,
and Pippenger.

SELECTING THE MEDIAN 1735

5. Advanced principles of factory design. In this section, we outline the
principles used to construct our improved factories. The first of these principles was
already mentioned.

• Allowing variations in the produced partial orders.

Our factories construct partial orders from S̃kk . The exact proportion between
the number of elements below and above the center of a generated partial
order is not fixed in advance.

• Recycling larger relations.

The factories of Schönhage, Paterson, and Pippenger are capable only of re-
cycling singletons and pairs (i.e., P0’s, P1’s, and Pλ’s). Our factories recycle
larger constructs such as quartets (P00’s and P11’s), octets (P000’s and P111’s),
16-tuples (P0000’s and P1111’s), as well as pairs, singletons, and other struc-
tures (e.g., I3’s, sorted lists of three elements) which are not hyperpairs (see
Figure 9.1). The nonhyperpair constructs are obtained by the more sophisti-
cated grafting processes used.

As pairs can be used both as P0’s and P1’s, they can be used to construct
a hyperpair Pw, no matter what the string w is. This is one of the reasons
why recycling pairs is easier than recycling larger hyperpairs. Quartets such
as P00’s (or their equivalent P01’s), for example, can be used to construct
a hyperpair Pw only if w starts with 0. More limitations are imposed when
larger hyperpairs are considered. Nonhyperpairs cannot be used directly for
the construction of hyperpairs.

To enable the recycling of larger relations, we must be able to use them
for the construction of hyperpair-like relations. We should also be able to use
them for grafting.

• Constructing hyper-products.

As mentioned, our factories may receive partial orders that could not be used
for the construction of hyperpairs. These partial orders are used instead for
the construction of hyper-products. A hyper-product Pw ◦ I, where I is some
partial order with a distinguished element, which is again called a center, is
a hyperpair Pw in which each of its elements is also the center of a disjoint
copy of the partial order I. Hyperpairs are, of course, special cases of hyper-
products as Pw ◦ P0 = P0w and Pw ◦ P1 = P1w.

Some of the partial orders I used for hyper-products construction are
unbalanced. To counter this, they are composed with oppositely unbalanced
hyperpairs.

• Grafting larger relations and mass-grafting.

The factories of Schönhage, Paterson, and Pippenger use a simple pair of
pair grafting processes. We use more complicated grafting processes, even for
grafting pairs. For each input construct we have several different grafting pro-
cesses. Some of our grafting processes use the technique of mass production.

Our factories apply each grafting process a certain number of times and
record the number of times each outcome is obtained. From time to time,
they decide to place a combination of outcomes, that tend to balance each
other nicely, in the output partial order. The factory algorithms ensure that
for any adversary strategy, if each grafting process is applied a certain number
of times, then at least one such balanced combination can be put in output
partial order. The output combinations are chosen to have low “local” lower
and upper unit costs. The maxima of all these local upper and lower element

1736 DORIT DOR AND URI ZWICK

costs are the overall upper and lower element costs of the factory.
• Using subfactories.

The factories of Schönhage, Paterson, and Pippenger generate only a single
family of hyperpairs (corresponding to W = 01(10)ω). Our factories generate
several types of hyperpairs and hyper-products, as mentioned above. The
construction of each one of these hyper-products is carried out in a separate
subproduction unit that we refer to as a subfactory. Different subfactories
also differ in the “raw materials” that they can process.
• Using credits in an amortized complexity analysis.

The last principle is an accounting principle. The different constructs recy-
cled by our factories are of different quality. Some of them, like pairs and
I3’s (sorted lists of three elements), can be used very efficiently for the con-
struction of partial orders from S̃kk . Others, like P000’s and P0000’s, are not
so appropriate for this process as they are extremely unbalanced, and using
them as raw materials for the construction of partial orders from S̃kk results in
a much higher production cost. To equalize these costs, each construct used
by our factories is assigned a credit, which may be either positive or nega-
tive. The credit assigned to a construct Q is denoted by credit(Q). When
a construct Q is recycled, extra credit(Q) comparisons are charged to the
partial order from S̃kk that is being broken. These credit(Q) comparisons can

then be deducted from the cost of the partial order from S̃kk that will be con-
structed using this construct Q. High-quality materials, such as I3’s, carry
negative credits. The credits attached to singletons (Pλ’s) must be zero since
the singletons initially fed into the factory carry no credit.

In the next section we describe the general framework of our improved factories.
This framework combines the principles put forth in this and in the previous sections.
We also give a general description of the complexity analysis.

6. The framework of the improved factories. A factory G of the type we are
using is composed of several subfactories g1, . . . , gr. These subfactories are activated
in “parallel.” Each subfactory is either working on the construction of a partial order
from S̃kk or waiting for additional raw materials. Whenever the construction of a

partial order from S̃kk in one of subfactories is finished, this partial order is output

and the subfactory begins to work on the construction of a new partial order from S̃kk .
While designing such a factory we have to make sure that if enough materials are
fed into the whole factory, then at least one of its subfactories can make progress in
constructing the next partial order from S̃kk . The production residue of the factory G
is the sum of the production residues of the subfactories g1, . . . , gr.

The operation of each subfactory is essentially independent of the operation of
the other subfactories. Each subfactory processes a specific type (or in some cases,
specific types) of input constructs. There may be, for example, a P00-processing sub-
factory, an I3-processing subfactory, and so on. A construct recycled to the factory G
is immediately fed to an appropriate subfactory. A Q-processing subfactory (a Q sub-
factory for short) may sometimes produce, as by-products, partial orders which are
not Q’s. These partial orders are immediately fed into subfactories that can consume
them.

The upper and lower element costs of G are the maxima of the (amortized) upper
and lower element costs of g1, . . . , gr. The credits attached to the different constructs
are used to equalize the costs of the different subfactories, thereby reducing their max-
imum. The credits selected optimize a natural trade-off between the generation cost

SELECTING THE MEDIAN 1737

of an output partial order that contains a partial order Q and the cost of utilizing Q
when it is recycled.

The factory G can be viewed as the “union” of the subfactories g1, . . . , gr. In the
next subsection we describe the structure of a generic subfactory. In subsection 6.2
we then describe the cost analysis of a generic subfactory.

6.1. The structure of a generic subfactory. Each subfactory g is composed
of a hyper-product generation process, a hyper-product pruning process, a collection
A1, A2, . . . , A` of grafting processes, and a list C1, C2, . . . , Cm of output combinations.

The operation of each subfactory, like the simple factories described in section 4,
is composed of three main phases. In the first phase a large hyper-product is con-
structed using the hyper-product generation process. In the second stage the grafting
processes A1, A2, . . . , A` are activated. Whenever a combination of outcomes from the
list C1, C2, . . . , Cm is encountered, this combination is placed in the output partial
order. The process continues until at least k grafted elements are obtained either
above or below the center c of the hyper-product. An appropriate number of ele-
ments, determined by the output combinations that were used, is then pruned using
the hyper-product pruning process. The factory then outputs the partial order gen-
erated.

The hyper-product construction process of a subfactory must be able to use all
the constructs that may be fed into the subfactory as inputs. For each possible input
construct there should also be at least one grafting process that can utilize it. Typi-
cally, a subfactory would have more than one such grafting process for each possible
input construct. This gives the subfactory the freedom to choose different grafting
processes in different circumstances and helps balance the upper and lower costs of
the subfactory.

Each grafting process Ai has a list ai,1, ai,2, . . . , ai,li of possible outcomes. Let
c1(ai,j) and c0(ai,j) denote the upper and lower costs of ai,j (these costs are defined
in the next subsection) and let n1(ai,j) and n0(ai,j) denote the number of elements
above and below c, respectively, in the outcome ai,j . When applying the grafting
process Ai we do not know in advance which outcome will result. This is decided by
the adversary.

For accounting purposes, it is convenient to view pruning as a special grafting
process. We therefore refer to pruning as the 0th grafting process A0 and let a0,0 and
a0,1 stand for lower and upper pruned elements. The costs c0(a0,0) and c1(a0,1) are
just and lower and upper element pruning costs. This special “grafting” process is
different from the other grafting processes in two major respects. The first is that the
algorithm, and not the adversary, chooses the outcome. The second is that elements
are not pruned one at a time. Instead, two counters are used to maintain the number
of elements that should be pruned above and below the center. The required numbers
of elements are then pruned after all the grafting processes have finished.

An output combination Ci = (ri,1×bi,1, ri,2×bi,2, . . . , ri,si×bi,si) is a weighted list
of outcomes, where ri,1, ri,2, . . . , ri,si > 0 are real numbers and each bi,j is an outcome
ai′,j′ of one of the grafting processes A0 and A1, . . . , A` employed by the subfactory
(the use of real numbers will be justified later). Note that A0 is the pruning process
of the subfactory, disguised as a grafting process, and an output combination may
therefore involve elements that should be obtained by pruning. In our factories most
combinations involve only two outcomes.

For each possible outcome ai,j of the grafting processes, the subfactory maintains
a counter #(ai,j) of the number of outcomes of type ai,j which were obtained but not

1738 DORIT DOR AND URI ZWICK

yet consumed. Initially #(ai,j) = 0 for every i ≥ 1 and j ≥ 1, and #(a0,j) = 2k, for
j = 0, 1. Recall that a0,0 and a0,1 represent pruned elements. The initial values given
to #(a0,0) and #(a0,1) reflect the fact that up to 2k elements can be pruned on either
side of the hyper-product constructed by the subfactory. Two more counters k0 and
k1 maintain the number of elements below and above the center c that were already
placed in the output partial order. The counters k0 and k1 are initially set to 0.

An output combination Ci = (ri,1× bi,1, ri,2× bi,2, . . . , ri,si × bi,si) can be applied
if #(bi,j) ≥ ri,j for every 1 ≤ j ≤ si. If these conditions are satisfied, then ri,j
copies of outcome bi,j , for 1 ≤ j ≤ si, are “placed” in the output partial order
and all the counters are updated accordingly. The output combination Ci contains
n0(Ci) =

∑si
j=1 ri,j·n0(bi,j) elements below the center c and n1(Ci) =

∑si
j=1 ri,j·n1(bi,j)

elements above the center c of the hyper-product. All the combinations used in our
factories satisfy the condition 1

2 < n0(Ci)/n1(Ci) < 2. The partial orders produced

by our factories are therefore of the form Sk
′′
k′ , where k ≤ k′ ≤ 2k and k ≤ k′′ ≤ 2k,

and hence members of S̃kk . The factor 2 used in the definition of S̃kk is arbitrary and
can be increased if necessary.

The subfactory applies each grafting process Ai, where 1 ≤ i ≤ `, sufficiently
many times so that there is at least one outcome ai,j for which #(ai,j) ≥ quota,
where quota is some sufficiently large constant. A suitable choice for quota is the
maximum maxi,j ri,j of the coefficients that appear in the output combinations of the
subfactory. The combination list of the subfactory should have the property that if for
each 1 ≤ i ≤ l there exists at least one 1 ≤ j ≤ li such that #(ai,j) ≥ quota, then at
least one of the output combinations can be applied. This ensures that the subfactory
will never get “stuck,” no matter what the outcomes of the grafting processes will be.

In the above description, we speak freely about placing ri,j copies of an outcome
bi,j in the output partial order, although ri,j was not necessarily an integer. This was
done, however, only for accounting purposes. The outcomes (or fractions of outcomes)
placed in the output partial order are the outcomes whose cost was already accounted
for. At most a fixed number of outcomes of each type are unaccounted for by this
analysis. Their contribution to the cost, therefore, is negligible. These unaccounted-
for outcomes can either be placed in the output partial order or be used to construct
the next output partial order.

A pseudocode describing the operation of a generic subfactory is given in Fig-
ure 6.1.

6.2. The analysis of a generic subfactory. We now turn to the complexity
analysis of a generic subfactory. We start by defining the lower and upper costs of
each outcome ai,j of the grafting processes. Let I1, . . . , Ir be the input constructs
consumed by the flow of the grafting process Ai that produces ai,j . Let V1, . . . , Vs be
the constructs above the center c of the hyper-product from which the outcome ai,j is
composed, and let Λ1, . . . ,Λt be the constructs below the center c from which ai,j is
composed. Let R1, . . . , Rp be the leftovers of this process, i.e., the parts of I1, . . . , Ir
that do not become parts of either V1, . . . , Vs or Λ1, . . . ,Λt. The leftovers R1, . . . , Rp
are recycled to the appropriate subfactory.

The generation cost, gen(ai,j), of an outcome ai,j is the number of edges cut
during the generation of an ai,j . The lower separation cost, sep0(ai,j), of an ai,j is
the number of edges that have to be cut to separate the constructs Λ1, . . . ,Λt from
the center c of the hyper-product. The lower elimination cost, elm0(ai,j), of an ai,j
is the number of edges that have to be cut to turn all the elements of Λ1, . . . ,Λt
into singletons (and disconnect them from the center). The Hasse diagram of most

SELECTING THE MEDIAN 1739

1. Generate a hyper-product with at least 2k elements on either side of its
center c.

2. Initialize the counters:
#(a0,j)← 2k for j = 0, 1 ;
k0, k1 ← 0 ;

3. Perform the following steps until k0 ≥ k and k1 ≥ k:
(a) for i← 1 to l do /∗ Activate grafting processes ∗/

while max{#(ai,1), . . . ,#(ai,li)} < quota activate grafting pro-
cess Ai.

(b) for i← 1 to m do /∗ Find appropriate output combinations ∗/
if #(bi,j) ≥ ri,j for 1 ≤ j ≤ si then
{

#(bi,j)← #(bi,j)− ri,j for 1 ≤ j ≤ si ;
k0 ← k0 +

∑si
j=1 ri,j ·n0(bi,j) ;

k1 ← k1 +
∑si
j=1 ri,j ·n1(bi,j)

}
4. Let p0 ← 2k −#(a0,0) and p1 ← 2k −#(a0,1);

Prune p0 and p1 elements below and above c, respectively.
5. Output the partial order and return to 1.

Fig. 6.1. The generic subfactory algorithm.

outcomes is acyclic and the lower elimination cost in such a case is just the number of
elements contained in the constructs Λ1, . . . ,Λt. The upper separation cost, sep1(ai,j),
and the upper elimination cost , elm1(ai,j), are defined analogously.

When the lower side of an outcome ai,j is recycled, the upper side is eliminated
and vice versa. Hence, we define the lower recycling cost , rec0(ai,j), of the outcome
ai,j as sep0(ai,j) + elm1(ai,j). The upper recycling cost , rec1(ai,j), of ai,j is defined
analogously as sep1(ai,j) + elm0(ai,j).

Each input construct Il, where 1 ≤ l ≤ r, used in the flow of the grafting process
that generates the outcome ai,j carries a credit of credit(Il) units. These credit
units help “finance” the generation of ai,j . If the lower part of the partial order
generated using the outcome ai,j is eventually eliminated and its upper part recycled,
we have to attach credit(Vl) credit units to each of the constructs V1, . . . , Vs. If, on
the other hand, the upper part is eliminated and the lower part recycled, we have to
attach credit(Λl) credit units to each of the constructs Λ1, . . . ,Λt. Similarly, we have
to attach credit(Rl) credit units to each of the leftover R1, . . . , Rp. The lower cost
c0(ai,j) and the upper cost c1(ai,j) of the outcome ai,j are thus defined as

c0(ai,j) = gen(ai,j) + rec1(ai,j)−
r∑
l=1

credit(Il) +
s∑
l=1

credit(Vl) +

p∑
l=1

credit(Rl),

c1(ai,j) = gen(ai,j) + rec0(ai,j)−
r∑
l=1

credit(Il) +
t∑
l=1

credit(Λl) +

p∑
l=1

credit(Rl).

As mentioned before, our grafting procedures may use mass production. Hence, the
costs gen(ai,j), rec0(ai,j), and rec1(ai,j) are amortized costs and I1, . . . , Ir are the
constructs used for the construction of a single copy of the outcome ai,j .

1740 DORIT DOR AND URI ZWICK

Let Ci = (ri,1×bi,1, . . . , ri,si×bi,si) be an output combination. The local upper
element cost , u1(Ci), and the local lower element cost , u0(Ci), of the combination Ci
are defined, temporarily, as

u0(Ci) =

si∑
j=1

ri,j ·c0(bi,j)
/ si∑
j=1

ri,j ·n0(bi,1) , u1(Ci) =

si∑
j=1

ri,j ·c1(bi,j)
/ si∑
j=1

ri,j ·n1(bi,1).

This definition, however, is not completely adequate. So far, we have attached
credits to individual constructs. We would sometimes like to attach credits to combi-
nations of constructs. It turns out that there are some constructs that can be more
efficiently utilized when constructs of a different kind are also available. As a con-
crete example, we will see in the next sections that quartets (P00’s and P11’s) can be
utilized much more efficiently if some pairs (P0’s and P1’s) are also available. More
specifically, we will be in a situation in which credit(P0) = 0 and credit(P00) > 0, i.e.,
pairs carry no credit while each quartet on its own should carry some positive credit.
In contrast, a combination composed of a quartet and pair, and in fact a combination
composed of up to a fixed constant γ > 1 of quartets and of a single pair, could be
recycled without any credit, i.e., credit(P0, γ×P00) = 0. The credit that needs to be
attached to a collection of constructs may therefore be smaller than the sum of the
individual credits that should be attached to each member of this collection.

The above temporary definition of u0(Ci) and u1(Ci) does not take such consider-
ations into account. It is not enough to replace the sums

∑s
l=1 credit(Vl),

∑t
l=1 credit

(Λl), and
∑p
l=1 credit(Rl) in the definitions of c0(ai,j) and c1(ai,j) with credit(V1, . . . ,

Vs), credit(Λ1, . . . ,Λt), and credit(R1, . . . , Rp), respectively, as good combinations
may be formed using constructs obtained while constructing or recycling different
outcomes that participate in the output combination. As an example, pairs are per-
haps obtained when the bi,1’s outcomes that participate in the output combination are
recycled while quartets are perhaps obtained when the bi,2’s outcomes are recycled.
We therefore amend the definitions of u0(Ci) and u1(Ci) in the following way:

u0(Ci) =

 si∑
j=1

ri,j ·(gen(bi,j)+rec1(bi,j))

−∑
I∈Ii

credit(I) + credit(Vi) + credit(Ri)

si∑
j=1

ri,j ·n0(bi,j)

,

(6.1)

u1(Ci) =

 si∑
j=1

ri,j ·(gen(bi,j)+rec0(bi,j))

−∑
I∈Ii

credit(I)+ credit(Λi)+ credit(Ri)

si∑
j=1

ri,j ·n1(bi,j))

,

(6.2)

where Ii, Λi, Vi, and Ri are the (weighted) collections of all input constructs, re-
cycled constructs, and leftovers involved in the generation and the recycling of all
the outcomes composing the combination Ci. The terms credit(Vi), credit(Λi), and
credit(Ri) represent the credits that should be attached to the collections Vi, Λi,
and Ri.

SELECTING THE MEDIAN 1741

In practice, credits are attached separately to most constructs involved in the
collections Λi, Vi, and Ri. In the factory described in section 8, for example, the only
exception to this is the grouping of pairs and quartets together and the formation of
compound constructs of the form (P0, γ × P00).

In general, each factory G has a set P of both simple and compound constructs
to which credits are assigned. The set P includes all the basic constructs that can
be consumed and that are recycled by the factory. Every collection Λi, Vi, or Ri of
constructs is then treated as a combination of constructs taken from P in a way that
minimizes the total credit that should be attached to the collection.

The lower and upper element costs u0(g) and u1(g) of the subfactory g with a list
C1, . . . , Cm of output combinations are defined to be

u0(g) =
m

max
i=1

u0(Ci), u1(g) =
m

max
i=1

u1(Ci).

We are now in a position to state the following theorem.

Theorem 6.1. If G is a factory that employs the subfactories g1, g2, . . . , gr, then
the lower and upper element costs of the factory G are

u0(G) ∼ r
max
j=1

u0(gj), u1(G) ∼ r
max
j=1

u1(gj).

Proof. Let P be the set of basic and compound constructs recycled by the fac-
tory G. We assume that for each construct from P there is at least one subfactory
among g1, g2, . . . , gr that can consume it. We also assume that each subfactory gj ,
where 1 ≤ j ≤ r, has an adequate list of output combinations, in the sense that if
each grafting process employed by gj is applied sufficiently many times, then at least
one output combination can be used. We also assume that if enough input constructs
are fed into the factory, then at least one subfactory can generate a partial order
from S̃kk .

Each construct from P has a specific amount of credit attached to it. The credit
attached to singletons (Pλ’s) is zero. The singletons that are initially fed into the
factory thus carry the required amount of credit. Whenever constructs from P are
recycled, we make sure that they too carry the correct credit. Each amount of credit
used in the construction of a partial order from S̃kk is therefore paid for in full during

the generation of other partial orders from S̃kk .

The local upper and lower element costs of a combination Ci used in one of
the factories were defined as u0(Ci) = c0(Ci)/n0(Ci) and u1(Ci) = c1(Ci)/n1(Ci),
where c0(Ci) and c1(Ci) are the amortized lower and upper costs of the combination
Ci (the numerators of (6.1) and (6.2)), and n0(Ci) and n1(Ci) are the number of
elements in Ci above and below the center (the denominators of (6.1) and (6.2)). Let
u0 = maxrj=1 u0(gj) and u1 = maxrj=1 u1(gj). It follows that for every combination
Ci used in one of the subfactories g1, . . . , gr we have u0(Ci) ≤ u0 and u1(Ci) ≤ u1.

Suppose that an output partial order is generated in subfactory gj . Suppose that
Ci1 , Ci2 , . . . , Cia are the output combinations that contribute to this output partial
order. The total amortized cost of producing the partial order, eliminating its lower
side and recycling its upper side, is

∑a
l=1 c0(Cil). The total number of elements below

the center of the produced partial order is
∑a
l=1 n0(Cil). The amortized, per-element

cost of the produced partial order is therefore
∑a
l=1 c0(Cil)

/∑a
l=1 n0(Cil). As for each

1 ≤ l ≤ a we have c0(Cil)/n0(Cil) ≤ u0, we get that
∑a
l=1 c0(Cil)

/∑a
l=1 n0(Cil) ≤ u0.

1742 DORIT DOR AND URI ZWICK

Similarly, we also get that the amortized, per-element, upper cost of the produced
partial order is at most u1.

The above accounting did not take into account the cost of breaking the unused
parts of the hyper-product. The cost of this operation is negligible, however, compared
with the generation cost of the output partial order. It also did not take into account
the generation and recycling costs of the outcomes of the grafting processes that
were not used to construct the output partial order. However, there may be only a
constant number of such outcomes and the costs associated with them are therefore
also negligible.

As a result, we get that u0(G) = u0 +o(1) and u1(G) = u1 +o(1) and the theorem
is proved.

Our concrete factories are described in sections 8 and 9. For each one of our
factories we specify the set P of basic and compound constructs used and the credit
attached to each one of its elements. We then describe the subfactories employed by
the factory. For each subfactory we specify the hyper-product generation process and
grafting processes used and, finally, its list of output combinations. We verify that each
construct from P can indeed be consumed by at least one subfactory and that the list
of output combinations of each subfactory is adequate. For each output combination
we then compute its local lower and upper element costs, using the definitions given
in (6.1) and (6.2). As implied by Theorem 6.1, the maxima of these values are then
the lower and upper element costs of the whole factory. We begin the description of
our factories by describing, in the next section, the grafting processes used by them.

7. Advanced grafting processes. In this section we describe the grafting pro-
cesses used by our improved factories.

7.1. Recursive pair grafting. The recursive pair grafting is, as its name sug-
gests, a recursive version of the basic pair grafting procedure described in subsec-
tion 4.2. There are two variants of this process depending on whether the upper
elements or lower elements of pairs are compared to the center of the hyper-product.
We describe the variant in which lower elements are compared. The other variant is
symmetric.

The recursive pair grafting recursively builds hyperpairs which are dominated by
the center c of the hyper-product. A hyperpair P = P1i with center c′ is dominated
by c if every element of P , except possibly c′, is known to be smaller than c. A
dominated hyperpair P1i is said to be of level i.

The process is composed of rounds. The ith round receives two dominated hy-
perpairs P 1 and P 2 (with centers c1 and c2, respectively) of level i and attempts
to construct a dominated hyperpair of level i + 1. This is done by first comparing
the centers c1 and c2 of these two dominated hyperpairs, thus obtaining a hyperpair
P = P1i+1 . We may assume, without loss of generality, that c2 > c1 and c2 is therefore
the center of the new hyperpair formed. We then compare c1 (i.e., not c2, the center
of the hyperpair P) with c. The two possible outcomes are as follows:

(1) c1 < c and P is a dominated hyperpair of level i+ 1;
(2) c1 > c and P is not dominated by c (as c2 > c1 > c).

If (2) occurs, the process is stopped. For the purposes of Gk and G′k (the factories
described in sections 8 and 9) we also stop the process when a dominated hyper-
pair P111 of level 3 is generated. We then separate the generated hyperpair into two
hyperpairs: a dominated hyperpair P 1 of level 2 and a hyperpair P 2 of level 2 all
whose elements are known to be below the center. The hyperpair P 2 is an output

SELECTING THE MEDIAN 1743

Fig. 7.1. The recursive pair grafting process.

of this grafting process. The dominated hyperpair P 1 is used to construct the next
dominated hyperpair of level 3.

As described, the two hyperpairs P 1 and P 2 fed into the 0th round of the process
are two singletons c1 and c2. The 0th round then starts by comparing these two
singletons, thus forming a pair. Instead of feeding the 0th round of the process with
singletons, we can therefore feed it with pairs and simply skip the first comparison of
this round.

The recursive pair grafting process is described schematically in Figure 7.1. The
dashed edges in the figure represent edges that became redundant. The four possible
outcomes of this process are denoted by U2

0 , U2
1,1, U2

6 , and U0
4 . These four outcomes,

as well as the four outcomes L0
2, L1,1

2 , L6
2, and L4

0 of the symmetric grafting process
in which upper elements are compared to the center, are shown in Figure 7.2.

We now turn to the cost analysis of this grafting process. As explained, we do not
count the number of comparisons made but rather the number of edges cut. Let us
analyze the number of edges cut during the ith round of the process. Let P 1 and P 2

be the two dominated hyperpairs of level i fed to the ith round, let c1 and c2 be their
centers, and assume, without loss of generality, that the first comparison of the round
established that c1 < c2. It is easy to verify, using induction, that i edges connect c
with elements of P 1 and that i edges connect c with elements of P 2. Similarly, i edges
connect c1 with other elements of P 1 and i edges connect c2 with other elements of P 2.
If the ith round results in a dominated hyperpair of level i + 1, i.e., if c1 < c (case
(1)), then the i edges connecting c with the elements of P 1 become redundant and
therefore are cut. If on the other hand c1 > c (case (2)), then the 2i edges connecting
c1 and c2 with elements of their hyperpairs become redundant and therefore are cut.

Finally, note that an additional edge is cut when a dominated hyperpair P111 of
level 3 is separated into a dominated hyperpair of a level 2 and to a U0

4 . Using these
observations, it is easy to verify that the generation costs of the different outcomes
shown in Figure 7.2 are as shown in Table 7.1.

7.2. Balanced quartet grafting. The balanced quartet grafting process is a
very straightforward process. We describe the process that grafts P00’s. A symmetric

1744 DORIT DOR AND URI ZWICK

Fig. 7.2. Possible outcomes of recursive pair grafting.

Table 7.1
The costs of the different outcomes of the recursive pair grafting processes.

Outcome Above Below gen rec0 rec1

U2
0 P0 — 0 2 1

U2
1,1 P0 2×Pλ 2 4 3

U2
6 P0 2×Pλ, 2×P0 6 6 7

U0
4 — P11 4 1 4

Outcome Above Below gen rec0 rec1

L0
2 — P0 0 1 2

L1,1
2 2×Pλ P0 2 3 4

L6
2 2×Pλ, 2×P0 P0 6 7 6

L4
0 P00 — 4 4 1

process can be used for grafting P11’s. The grating process always consumes a single
quartet and returns one of five possible outcomes.

Let u, v, w, z be the elements of a P00, where u < v and u < w < z. Start by
comparing w with c. If w > c, cut the edge connecting w and u. The obtained outcome
is denoted by Q2

0. The remaining pair is recycled. If w < c, then compare v and z
with c. The four different outcomes of these comparisons give rise to the outcomesQ1,1

2 ,
Q1

3, and Q0
4 depicted in Figure 7.3. Dashed edges in this figure again represent edges

that became redundant during the grafting process.

The elements in a Q̄1
3 outcome satisfy all the relations satisfied by the elements

of a Q1
3 outcome. A Q̄1

3 outcome is therefore a special case of a Q1
3 outcome and we

shall not consider it separately. The generation and recycling costs of the remaining
four possibilities are given in Table 7.2.

SELECTING THE MEDIAN 1745

Fig. 7.3. Possible outcomes of balanced quartet (P00) grafting.

Table 7.2
The costs of the different outcomes of the balanced P00 grafting process.

Outcome Above Below Leftovers gen rec0 rec1

Q2
0 P0 — P0 1 2 1

Q1,1
2 2×Pλ P0 — 2 3 4

Q1
3 Pλ W3 — 1 3 5

Q0
4 — P00 — 1 2 5

7.3. Extended balanced quartet grafting. The grafting process described in
this subsection is an extension of the simple grafting process described in the previous
subsection. We again describe the process that grafts P00’s. A symmetric process can
be used for grafting P11’s.

Let u, v, w, z be the elements of a P00, where u < v and u < w < z. The process
starts again by comparing w and c. If w < c, continue as before, obtaining one of the
outcomes Q1,1

2 , Q1
3, or Q0

4 shown in Figure 7.3. If, however, w > c, then instead of
removing the redundant pair, activate the recursive pair grafting process, as described
in subsection 7.1, on the redundant pair u < v. The four possible outcomes of this
process are shown in Figure 7.4. The outcomes Q4

0, Q6
2, Q10

6 , and Q4
4 are obtained,

respectively, from the U2
0 , U2

1,1, U2
6 , and U0

4 outcomes of the recursive pair grafting
process. The generation and recycling costs of all the outcomes of this grafting process
are given in Table 7.3.

7.4. Unbalanced quartet grafting. The unbalanced quartet grafting process
is another quartet grafting process used by our factories. Most of its outcomes are less
balanced than the results obtained using the two previous quartet grafting processes.
Again we describe the version of the process that grafts P00’s. A symmetric version
can be used to graft P11’s.

Let u, v, w, z be the elements of a P00, where u < v and u < w < z. The two
balanced quartet grafting processes started by comparing w with c, the center of the
hyper-product. The unbalanced process, on the other hand, starts by comparing v
and z to c. The possible outcomes are shown at the top of Figure 7.5.

In the first two cases, i.e., if v, z < c, or if z < c < v, the grafting process stops.
The obtained outcomes are denoted, respectively, by R0

4 and R1
3. The other two cases,

i.e., v < c < z and c < v, z, are more complicated.

If v < c < z, use the pair w < z, and other pairs like it, as inputs to the

1746 DORIT DOR AND URI ZWICK

Fig. 7.4. Possible outcomes of extended balanced grafting of P00’s.

Table 7.3
The costs of the different outcomes of the extended balanced P00 grafting process.

Outcome Above Below gen rec0 rec1

Q1,1
2 — P0 2 3 4

Q1
3 Pλ W3 1 3 5

Q0
4 — P00 1 2 5

Q4
0 P00 — 1 4 1

Q6
2 3×P0 2×Pλ 4 8 5

Q10
6 5×P0 2×Pλ, 2×P0 10 14 11

Q4
4 2×P0 P11 6 5 6

recursive P0 grafting process, i.e., the mirror image of the grafting process described
in subsection 7.1. The recursive pair grafting process results in the creation of L1,1

2 ’s,
L6

2’s, and L4
0’s. These L1,1

2 ’s, L6
2’s, and L4

0’s are composed of w and z elements of P00’s.
By adding to the obtained constructs the u and the v elements of the quartets from
which these w and z elements were taken, we obtain outcomes of the forms R2

6, R6
10,

and R4
4 shown in Figure 7.5.

Finally, if c < v, z, then the situation is identical to the situation after the first
comparison of the second round of the recursive P0 grafting. By continuing the re-
cursive P0 process from this point, possibly using another P00 for which c < v, z, we
obtain an L1,1

2 , L6
2, or L4

0.
The unbalanced P00 grafting has eight outcomes in total: R0

4, R1
3, R2

6, R6
10, R4

4,
L1,1

2 , L6
2, and L4

0. The last three outcomes are excellent outcomes because we have
been able to use quartets as if they were pairs. The costs associated with the outcomes
R0

4, R1
3, R2

6, R6
10, and R4

4 are given in Table 7.4. The costs of the outcomes L1,1
2 , L6

2,
and L4

0 are as shown in Table 7.1.

8. A factory with u0, u1 ∼ 2.955. The construction of the factory Gk satis-
fying the conditions of Theorem 2.3 is extremely involved. In this section we give a

SELECTING THE MEDIAN 1747

Fig. 7.5. Possible outcomes of unbalanced P00 grafting.

Table 7.4
The costs of the different outcomes of the unbalanced P00 grafting process.

Outcome Above Below gen rec0 rec1

R0
4 — P00 0 2 5

R1
3 Pλ I3 1 2 4

R2
6 2×Pλ P00, P0 3 5 9

R6
10 2×Pλ, 2×P0 3×P0, P00 9 11 15

R4
4 P00 2×P0 6 6 5

Additional outcomes: L1,1
2 , L6

2, L4
0.

complete description of a simplified version G′k of the factory Gk, thereby proving the
following theorem, which is only slightly weaker than Theorem 2.3.

Theorem 8.1. There is a green factory G′k for S̃kk with u0, u1 ∼ 2.955.

As was the case with all the other factories we considered, the initial cost and
production residues of G′k are O(k2).

The constructs processed by the factory G′k are shown in Figure 8.1. They are
singletons Pλ’s, pairs P0/P1’s, quartets P00/P11’s, chains of length three I3’s, and
triples W3/M3’s. The factory G′k also processes compound constructs of the forms

1748 DORIT DOR AND URI ZWICK

Fig. 8.1. The basic input constructs of the factory G′k.

Table 8.1
The credits attached to the constructs used by the factory G′k.

Construct Credit

Pλ 0
P0, P1 0
P00, P11 0.1093
I3,M3,W3 0.5000

(P0, γ×P00), (P1, γ×P11) 0

(P0, γ×P00) and (P1, γ×P11), where γ ' 2.6603. The credits attached to these basic
and compound constructs are given in Table 8.1. Note that singletons have zero credit
attached to them. Note also that quartets have a positive credit attached to them
while the constructs (P0, γ×P00) and (P1, γ×P11) have zero credit attached to them.
This reflects the fact that quartets can be more efficiently utilized if pairs are also
supplied with them.

The factories G′k are composed of the following four subfactories:

1. (P0, γ×P00) subfactory,
2. (P1, γ×P11) subfactory,
3. P00 subfactory,
4. P11 subfactory.

The (P1, γ×P11) subfactory is the mirror image of the (P0, γ×P00) subfactory and
the P11 subfactory is the mirror image of the P00 subfactory. The description of the
(P0, γ×P00) and the P00 subfactories are given in the next two subsections.

Because singletons (Pλ’s) and pairs (P0’s) can be converted to quartets (P00’s) at
no cost, the (P0, γ×P11) subfactory may also receive singletons and pairs.

The constructs W3, M3, and I3 cannot be utilized directly by the four subfactories
mentioned above. We therefore use the following simple process (carried out in a
workshop?) to transform two W3’s into a P0 and a P00: Let x1, y1 > z1 and x2, y2 > z2

be two W3’s. Compare x1 with x2. Assume, without loss of generality, that x1 < x2.
By removing the edge x2 > z2 we obtain the P00 x1, y1, z1, x2, where z2 < y1 and
z2 < x1 < x2, and the pair z2 < y2.

A single edge is cut in this process. As γ > 1, a combination of a P0 and a P00

can be recycled without attaching any credit to it. Formally, this combination may
be treated as 1

γ × (P0, γ × P00) plus (1 − 1
γ) × P0 and both these construct carry

zero credit. The credits attached to two W3’s should therefore pay for cutting a single
edge. This is exactly the case as credit(W3) = 0.5.

Similarly, we can transform two M3’s into a P1 and a P11. An I3 may be treated
as either a W3 or an M3.

The factory G′k described in this section can be improved if instead of using the
above process for converting W3’s, M3’s, and I3’s into P0’s and P00’s or P11’s, we

SELECTING THE MEDIAN 1749

used subfactories that could directly consume these constructs. The improved factory
Gk (whose construction is sketched in the next section) includes, along with other
additions and changes, a separate I3 subfactory. The constructs I3’s turn out to be
excellent raw materials for the construction of S̃kk ’s. Each I3 carries, in Gk, a credit of
−0.4213 units and the presence of I3’s among the recycled elements becomes a boon,
not a burden as in G′k.

We now describe the (P0, γ×P00) subfactory and the P00 subfactory used by the
G′k factory.

8.1. The (P0, γ×P00) subfactory. The input to this subfactory consists of
constructs of the form (P0, γ×P00), where γ ' 2.6603, with zero credit attached to
each one of them. As singletons (Pλ’s) and pairs (P0’s) can be converted to quartets
(P00’s) at no cost, the subfactory may also receive singletons and pairs with no credit
attached to them. Equivalently, we can say that the input to this subfactory consists
of singletons (Pλ’s), pairs (P0’s), and quartets (P00’s) with no credit attached to them,
subject to the condition that each quartet is accompanied by at least 2/γ elements
in singletons or pairs. The parameter γ is chosen to optimize the performance of the
factory.

The (P0, γ×P00) subfactory can also receive quartets with no accompanying sin-
gletons or pairs, provided that each such quartet carries a credit of 1/(1 + 2γ). Such
a credit can pay for breaking a quartet P00 into 2

2γ+1×(P0, γ×P00) which can be ac-

cepted with no credit. In the G′k factory, 0.1093 ' credit(P00) < 1/(1 + 2γ) ' 0.1582.
It is therefore cheaper to feed quartets without accompanying singletons or pairs into
the P00 subfactory described in the next subsection.

Quartets fed into the subfactory are used for the construction of a hyper-product
which, in this case, is simply a hyperpair. Quartets are also grafted using the bal-
anced quartet grafting process described in subsection 7.2. Pairs are grafted using the
recursive pair grafting process described in subsection 7.1.

8.1.1. The hyper-product generation process of the (P0, γ×P00) subfac-
tory. The hyper-products used in the (P0, γ×P00) subfactory are simply the balanced
hyperpairs constructed according to the string W = 01(10)ω. Since P01’s and P00’s
are in fact the same partial order (just the center is different), P00’s can be used for
the construction of such hyperpairs. The upper and lower element pruning costs of
these hyperpairs are pr1(W) = 1.5 and pr0(W) = 1.5.

When r elements below the center of a hyperpair Hi are pruned, the hyperpair Hi

is broken into a collection of smaller hyperpairs. This collection includes r singletons
(Pλ’s). All the other remaining hyperpairs are of size at least eight. A similar thing
happens when r elements above the center of a hyperpair Hi are pruned. This time
the collection of smaller hyperpairs obtained includes br/2c pairs (P0’s). All the other
hyperpairs are of size at least four. In both cases, when r elements are pruned, about r
elements are obtained in singletons or pairs while all the other elements are contained
in hyperpairs of size at least four. The hyperpairs of size at least four are immediately
used for the construction of the next Hi hyperpairs. The singletons and pairs are too
valuable to be used for this purpose. They are recycled. Their recycling enables the
recycling of quartets, fed to the subfactory as parts of (P0, γ × P00)’s constructs,
without the necessity of attaching credits to them.

If r =
∑`
i=0 ri, where the ri’s are distinct powers of 2, then pruning r

elements above the center c of a hyperpair Hi results in a collection of hyperpairs
P0r1 , P0r2 , . . . , P0r` all whose centers are above c. Similarly, pruning r elements below

1750 DORIT DOR AND URI ZWICK

Table 8.2
The costs of the pruning process of the (P0, γ×P00) subfactory, viewed as a grafting process.

Outcome Above Below Leftovers gen rec0 rec1

PR0 — 1
4
×P11 Pλ 1.5 0.25 1

PR1
1
4
×P00 — 1

2
×P0 1.5 1 0.25

the center c of Hi results in a collection of hyperpairs P1r1 , P1r2 , . . . , P1r` , all whose
centers are below c. All but at most three of such r pruned elements are contained
in quartets (we can also assume, if convenient, that r is divisible by 4, in which case
all the pruned elements are contained in quartets). All but at most seven of the
pruned elements are contained in octets. The subfactories of the factory G′k are not
capable of utilizing octets. When pruned elements are recycled in the subfactories of
the factory G′k, we have to break them, therefore, into a collection of quartets at a
cost of 1/4 of a comparison per element. Some of the subfactories of the factory Gk,
described in the next section, are capable of utilizing 16-tuples (P0000’s and P1111’s).
In the subfactories of Gk, it is therefore enough to break recycled pruned elements
into P0000’s or P1111’s at a cost of 1/16th of a comparison per element. In both cases,
when these quartets or 16-tuples are recycled, an appropriate amount of credit should
be attached to them.

As was already explained, it is convenient, for accounting purposes,to consider
pruning as a special grafting process. It follows from the discussion above that we
can consider the pruning process of the (P0, γ×P00) subfactory as a grafting process
with the characteristics described in Table 8.2. The pruning processes used in other
subfactories will have other characteristics. We denote a downward pruned element by
PR0 and an upward pruned element by PR1. This notation is used in all subfactories.

8.1.2. The output combinations of the (P0, γ × P00) subfactory. The
output combinations used by the (P0, γ × P00) subfactory are given in Table 8.3.
Each combination involves just two outcomes. The exact proportion of the two out-
comes in each combination is chosen so that the lower and upper element costs of the
combination become equal, thereby minimizing their maximum.

Before analyzing the costs of these combinations, we verify that if enough out-
comes of each of the three grafting processes used by the subfactory are available,
then at least one output combination can indeed be used. Suppose that at least one
outcome of each of the two recursive pair grafting processes (i.e., at least one outcome
of U2

0 , U
2
1,1, U

2
6 , and U0

4 and at least one outcome of L0
2, L

1,1
2 , L6

2, and L4
0) is available

and that at least nine outcomes of the P00 grafting process (i.e., at least nine out-
comes out of Q1,1

2 , Q1
3, Q

0
4, and Q2

0) are available. Each of the outcomes U2
0 , L

0
2, and

Q1,1
2 can immediately be used in conjunction with pruned elements (combinations 1,

2, or 3), since pruned elements are always available. If none of these outcomes are
available, then we have at least three outcomes of either Q1

3, Q
0
4, or Q2

0, at least one
of U2

1,1, U
2
6 , and U0

4 , and at least one of L1,1
2 , L6

2, and L4
0. If three Q1

3’s are available,
we can therefore activate one of combinations 4, 5, or 6. If three Q0

4’s are available
(actually two are enough here), we can activate one of combinations 7, 8, or 9. Finally,
if three Q0

4’s are available, we can activate one of combinations 10, 11, or 12.

We now turn to the cost analysis of these combinations. We perform explicitly
the computations for combinations 2 and 7. The other computations are similar.

• (1.×U2
0 , 2.1995×PR0).

The number r ' 2.1995 of pruned elements used in conjunction with U2
0

SELECTING THE MEDIAN 1751

Table 8.3
The output combinations of the (P0, γ×P00) subfactory.

Lower and upper
Combination element cost

1 (1.×Q1,1
2 , 0.4639×PR0) 2.9059

2 (1.×U2
0 , 2.1995×PR0) 2.9546

3 (1.×L0
2 , 2.1995×PR1) 2.9546

4 (1.×L1,1
2 , 0.2269×Q1

3) 2.9538

5 (1.×L6
2 , 2.4546×Q1

3) 2.9499

6 (1.×L4
0 , 2.0254×Q1

3) 2.9001

7 (1.×L1,1
2 , 0.1134×Q0

4) 2.9546

8 (1.×L6
2 , 1.2271×Q0

4) 2.9517

9 (1.×L4
0 , 1.0000×Q0

4) 2.8954

10 (1.×U2
1,1 , 0.2038×Q2

0) 2.9538

11 (1.×U2
6 , 2.2042×Q2

0) 2.9483

12 (1.×U0
4 , 1.8150×Q2

0) 2.9075

is chosen so that the lower and upper element costs of the combination would
become equal. We demonstrate the computation that leads to this optimal
choice of r.

Remembering that the input to the (P0, γ×P00) subfactory consists of
(P0, γ ×P00)’s, we get that the generation of a U2

0 consumes one pair P0 and
leaves γ×P00 as leftovers. Similarly, the generation of r×PR0 consumes r

2×P00

and leaves r×Pλ (consult Table 8.2) and r
2γ ×P0 as leftovers. The leftover

singletons are immediately joined into pairs. The leftovers from the two
processes are therefore r

2 (1+ 1
γ) ×P0 and γ×P00. Provided that r

2 (1+ 1
γ) ≥ 1,

these leftovers can be recycled without having to attach any credit to them.
The combination (1.×U2

0 , r×PR0) is composed of a P0 above the center
and r

4×P11 below the center. As no credit is attached to the inputs, nor paid
for the leftovers, the local lower and upper element costs of this combination
are

u0(C2) =

1.×(gen(U2
0)+rec1(U2

0)) + r×(gen(PR0)+rec1(PR0)) + credit(P0)

1.×n0(U2
0)+r×n0(PR0)

,

u1(C2) =

1.×(gen(U2
0)+rec0(U2

0)) + r×(gen(PR0)+rec0(PR0)) + r
4×credit(P11)

1.×n1(U2
0)+r×n1(PR0)

.

Consulting Table 7.1 we get that gen(U2
0) = 0, rec0(U2

0) = 2, rec1(U2
0) = 1,

and of course that n0(U2
0) = 0 and n1(U2

0) = 2. Consulting Table 8.2 we
get that gen(PR0) = 1.5, rec0(PR0) = 0.25, rec1(PR0) = 1, and of course
that n0(PR0) = 1 and n1(PR0) = 0. We also have credit(P11) = 0.1093
and credit(P0) = 0. Substituting these values into the above expressions and

1752 DORIT DOR AND URI ZWICK

equating the two costs we obtain the equation

1.×(0 + 1) + r×(1.5 + 1)

1.×0 + r×1
=

1.×(0 + 2) + r×(1.5 + 0.25) + r
4×0.1093

1.×2 + r×0
.

It is easy to check that the solution of this equation is r ' 2.1995 and the
values of both the lower and upper element costs in this case are u0(C2) =
u1(C2) ' 2.9546.
• (1.×L1,1

2 , 0.1134×Q0
4).

We again compute the lower and upper element costs of a combination
(1.×L1,1

2 , r×Q0
4) and choose r so that both these costs would become equal.

The generation of an L1,1
2 consumes 2×P0 and leaves 2γ×P00 as leftovers.

The generation of r×Q0
4 consumes r×P00 and leaves r

γ ×P0 as leftovers.
The proportion of quartets among the leftovers is much higher than in the
previous case and they cannot all be recycled by pairing them with pairs.
The r

γ×P0 can be paired with r×P00 of the leftovers to form r
γ×(P0, γ×P00)

which can be recycled without credit. Credit, however, should be attached to
the remaining (2γ − r)×P00 (assuming, as will be the case, that 2γ − r > 0).

The combination (1. × L1,1
2 , r × Q0

4) is composed of 2 × Pλ above the
center and a P0 and a r×P00 below the center. The lower part is recycled
to the (P0, γ×P00) subfactory with no attached credit, as r < γ. The local
lower and upper element costs of this combination are therefore

u0(C7) =
1.×(gen(L1,1

2)+rec1(L1,1
2))+r×(gen(Q0

4)+rec1(Q0
4))+(2γ−r)×credit(P00)

1.×n0(L1,1
2)+r×n0(Q0

4)
,

u1(C7) =
1.×(gen(L1,1

2)+rec0(L1,1
2))+r×(gen(Q0

4)+rec0(Q0
4))+(2γ−r)×credit(P00)

1.×n1(L1,1
2)+r×n1(Q0

4)
.

Substituting the values gen(L1,1
2) = 2, rec0(L1,1

2) = 3, rec1(L1,1
2) = 4, and

n0(L1,1
2) = n1(L1,1

2) = 2, found in Table 7.1, and the values gen(Q0
4) =

1, rec0(Q0
4) = 2, rec1(Q0

4) = 5, and n0(Q0
4) = 4, n1(Q0

4) = 0, found in Ta-
ble 7.2, together with the value credit(P00) = 0.1093 and equating these
costs, we obtain the following equation:

1.×(2 + 4) + r×(1 + 5) + (2·2.6603− r)·0.1093

1.×2 + r×4

=
1.×(2 + 3) + r×(1 + 2) + (2·2.6603− r)·0.1093

r×0 + 1.×2
.

It is easy to check that the solution of this equation is r ' 0.1134 and the
values of both the lower and upper element costs in this case are u0(C7) =
u1(C7) ' 2.9546.

The analysis of the other 10 cases is similar. Combinations 2, 3, and 7 turn out
to be the worst combinations of this subfactory.

8.2. The P00 subfactory. The input to the P00 subfactory consists of P00’s.
Each P00 fed to the subfactory carries a credit of credit(P00) ' 0.1093. The sub-
factory constructs hyper-products using the process described below. The subfactory
uses the extended balanced and the unbalanced P00 grafting processes described in
subsections 7.3 and 7.4.

SELECTING THE MEDIAN 1753

Table 8.4
The costs of the pruning process of the P00 subfactory, viewed as a grafting process.

Outcome Above Below gen rec0 rec1

PR0 — 1
4
×P11 1.4366 0.25 1

PR1
1
4
×P00 — 1.6268 1 0.25

Table 8.5
The output combinations of the P00 subfactory.

Lower and upper
Combination element cost

1 (1.×R0
4 , 4.0000×PR1) 2.9267

2 (1.×R1
3 , 2.0000×PR1) 2.7481

3 (1.×R2
6 , 3.5464×PR1) 2.9546

4 (1.×R6
10 , 3.5456×PR1) 2.9508

5 (1.×R4
4 , 0.4096×PR1) 2.8972

6 (1.×Q4
0 , 4.0000×PR0) 2.7366

7 (1.×Q6
2 , 4.0000×PR0) 2.9546

8 (1.×Q10
6 , 4.0000×PR0) 2.9509

9 (1.×Q4
4 , 0.4131×PR0) 2.8790

Additional combinations involve Q1,1
2 , Q1

3, Q0
4, L1,1

2 , L6
2, L4

0 and pruning.

8.2.1. The hyper-product generation process of the P00 subfactory. The
hyper-products used by the P00 subfactory are generated according to an infinite string
W ′ = 011W ′′, where W ′′ is an infinite string with pr0(W ′′) ' 1.7465 and pr1(W ′′) '
1.2535. Such a string exists according to Theorem 4.6. According to Lemma 4.4 we get
that pr0(W ′) = 1

4pr0(W ′′) + 1 ' 1.4366 and that pr1(W ′) = 1
2pr1(W ′′) + 1 ' 1.6268.

As the stringW ′ begins with 01, the hyperpairs constructed according to it are indeed
hyper-products of P00’s. We let H ′i denote the hyper-product generated according to
the prefix of length i of W ′.

The generation of the hyper-products H ′i consumes P00’s. Each such P00 carries
a credit of credit(P00) = 0.1093. As we have seen in the (P0, γ×P00) subfactory, the
pruning process may be viewed as a pruning process that receives 1

2×P00 and returns
either 1

4×P11 below the center, or 1
4×P00 above the center, as well as a leftover of

1
2×P0 (or a Pλ which can be converted into 1

2×P0 at no cost). The leftover 1
2×P0 can

be joined with γ
2×P00 from the input stream to form 1

2×(P0, γ×P00). Such constructs
can be recycled without any credit attached to them. The cost of pruning an element
can therefore be “subsidized” by the credit attached to 1

2 (1 + γ)×P00. The costs of
the pruning process of the P00 subfactory are given in Table 8.4.

8.2.2. The output combinations of the P00 subfactory. The output com-
binations used by the P00 subfactory are given in Table 8.5. This list includes all the
combinations that involve the outcomes Q4

0, Q6
2, and Q10

6 of the extended balanced P00

grafting and the outcomes R0
4, R1

3, R2
6, R6

10, and R4
4 of the unbalanced P00 grafting. As

can be seen, each of these outcomes can be used in conjunction with pruned elements
to obtain low local lower and upper element costs. The balanced grafting process
may also produce outcomes Q1,1

2 , Q1
3, and Q0

4, and the unbalanced grafting process
may also produce outcomes L1,1

2 , L6
2, and L4

0. These outcomes are combined using the

1754 DORIT DOR AND URI ZWICK

combinations of the (P0, γ×P00) subfactory given in Table 8.3. It is easy to verify
that when each of the two grafting processes is applied a sufficient number of times,
at least one output combination is applicable.

The costs of all the combinations involving Q1,1
2 , Q1

3, and Q0
4 and L1,1

2 , L6
2, and

L4
0 are strictly smaller than their costs in the (P0, γ×P00) subfactory. This is due

to the fact that the input constructs to the P00 subfactory carry (positive) credits
while the inputs to the (P0, γ×P00) subfactory do not, and it is because the effective
pruning costs pr′0(W ′) ' 1.4366− 1+γ

2 credit(P00) ' 1.2366 and pr′1(W ′) ' 1.6268−
1+γ

2 credit(P00) ' 1.4267 in the P00 subfactory are lower than the pruning costs
pr0(W) = pr1(W) = 1.5 of the (P0, γ×P00) subfactory.

It is therefore enough to analyze the costs of the combinations listed in Table 8.5.
We present, as examples, the analyses of combinations 3 and 7 which, together with
combinations 2, 3, and 7 of the (P0, γ×P00) subfactory, determine the worst-case
behavior of the whole factory. The analysis of all the other cases is similar.

• (1.×R2
6, 3.5464×PR1).

The local lower and upper element costs of the combination (1.×R2
6, r×

PR1) are

u0(C3) =
1.×(gen(R2

6)+rec1(R2
6))+r×(gen(PR1)+rec1(PR1))−(2+ r

2 (1+γ)) credit(P00)

1.×n0(R2
6)+r×n0(PR1)

,

u1(C3) =
1.×(gen(R2

6)+rec0(R2
6))+r×(gen(PR1)+rec0(PR1))−(2+ r

2 (1+γ)) credit(P00)

1.×n1(R2
6)+r×n0(PR1)

,

No credits should be attached to recycled elements, assuming that r
4 ≤ γ,

since the proportion of quartets among the recycled elements is low enough.
Solving the equation

1.×(3 + 9) + r×(1.6268 + 0.25)− (2 + r
2 (1 + 2.6603))·0.1093

1.×6 + r×0

=
1.×(3 + 5) + r×(1.6268 + 1)− (2 + r

2 (1 + 2.6603))·0.1093

1.×2 + r×1

we get that r ' 3.5464 and u0(C3) = u1(C3) ' 2.9546.
• (1.×Q6

2, 4.0000×PR0).
The local lower and upper element costs of the combination (1.×Q6

2, r×
PR0) are

u0(C7) =
1.×(gen(Q6

2)+rec1(Q6
2))+r×(gen(PR0)+rec1(PR0))−(2+ r

2 (1+γ)) credit(P00)

1.×n0(Q6
2)+r×n0(PR0)

,

u1(C7) =
1.×(gen(Q6

2)+rec0(Q6
2))+r×(gen(PR0)+rec0(PR0))−(2+ r

2 (1+γ)) credit(P00)

1.×n1(Q6
2)+r×n0(PR0)

.

Again, no credits should be attached to recycled elements, assuming that
r
4 ≤ γ. Solving the equation

1.×(4 + 5) + r×(1.4366 + 1)− (2 + r
2 (1 + 2.6603))·0.1093

1.×2 + r×1

=
1.×(4 + 8) + r×(1.4366 + 0.25)− (2 + r

2 (1 + 2.6603))·0.1093

1.×6 + r×0

we get that r ' 4.0000 and u0(C7) = u1(C7) ' 2.9546.
This completes the description and the analysis of the factory G′k.

SELECTING THE MEDIAN 1755

Fig. 9.1. The basic input constructs of the factory Gk.

9. A factory with u0, u1 ∼ 2.942. In this section we sketch the construction
of factories Gk with lower and upper element costs u0, u1 ∼ 2.942 whose existence was
claimed in Theorem 2.3. A complete description of the factories Gk can be found in
[Dor95].

The general structure of the factories Gk is similar to the structure of the factories
G′k described in the previous section. The Gk factories, however, recycle many more
constructs. The structures recycled by the factories Gk are the structures shown
in Figure 9.1 and their mirror images (compare this with the much smaller set of
constructs recycled by the factories G′k, shown in Figure 8.1).

The factory Gk is composed of 13 subfactories: a (P0, γ×P00) subfactory, a
(P1, γ×P11) subfactory, a P00 subfactory, a P11 subfactory, a P000 subfactory, a P111

subfactory, a P0000 subfactory, a P1111 subfactory, a (Pλ, P0, β × P000) subfactory, a
(Pλ, P1, β×P111) subfactory, an I3 subfactory, an I4 subfactory, and an I5 subfactory,
where β ' 1.6500 and γ ' 2.0500.

The credits attached to the basic and compound constructs are credit(Pλ) = 0,
credit(P0) = 0, credit(P0, γ×P00) = 0, credit(P00) = 0.1330, credit(P000) = 0.8630,
credit(P0000) = 2.4847, credit(I3) = −0.4213, credit(I4) = −0.9230, credit(I5) =
−1.2000, credit(W3) = 0.5000, and credit(Pλ, P0, β×P000) = 1.2259. The credit
attached to a construct is equal to the credit attached to its mirror image.

The first four subfactories employed by Gk are essentially identical to the corre-
sponding subfactories used by G′k. The main difference is that different parameters are
used and that pruned elements are recycled as 16-tuples (i.e., P0000’s or P1111’s) and
not as quartets. The value of the parameter γ is decreased to γ ' 2.0500. The credit
attached to a quartet is increased to credit(P00) ' 0.1330. These changes change the
costs of these subfactories but the analysis is very similar to the one carried out in

1756 DORIT DOR AND URI ZWICK

the previous section. The other nine subfactories are new.
As can be seen, there is no W3 subfactory. As before, a workshop is used to convert

two W3’s into a P0 and a P00 at the price of cutting a single edge.
The second output combination of the (P0, γ×P00) subfactory is again one of the

worst cases of the factories Gk. We describe the analysis of this case and compare it
with the analysis of the same case in the G′k factories.

• (1.×U2
0 , 2.2613×PR0).

The local lower and upper element costs of the combination (1.×U2
0 , r×

PR0) are

u0(C2) =

1.×(gen(U2
0) + rec1(U2

0)) + r×(gen(PR0) + rec1(PR0)) + credit(P0)

1.×n0(U2
0) + r×n0(PR0)

,

u1(C2) =

1.×(gen(U2
0)+rec0(U2

0))+r×(gen(PR0)+rec0(PR0))+ r
16×credit(P0000)

1.×n1(U2
0)+r×n1(PR0)

.

The expression for u0(C2) is identical to the expression for u0(C2) in G′k.
The expression for u1(C2) differs from the corresponding expression in G′k as
pruned elements are now recycled as P1111’s. The recycling costs of pruned
elements are now rec0(PR0) = 0.0625 and rec1(PR0) = 1. Each recycled
P1111 should carry a credit of credit(P0000) ' 2.4847. Substituting these
updated values into the above expressions and equating the two costs we
obtain the equation

1.×(0 + 1) + r×(1.5 + 1)

1.×0 + r×1
=

1.×(0 + 2) + r×(1.5 + 0.0625) + r
16×2.4847

1.×2 + r×0
.

It is easy to check that the solution of this equation is r ' 2.2613 and the
values of both the lower and upper element costs in this case are u0(C2) =
u1(C2) ' 2.9422.

We believe that it is possible to obtain further small improvements by recycling
more and yet larger constructs and by designing a new subfactory for each such
construct or combination of constructs. The (P0, γ×P00) subfactory serves as a
keystone in all our factories and in all such possible extensions. Recall that one of the
worst cases of the (P0, γ×P00) subfactory is the combination of U2

0 and pruning. The
lower part of an output partial order generated using this combination is essentially a
hyperpair of the form P1k′ , where k ≤ k′ ≤ 2k. It is not hard to verify that even if we
could recycle such a large hyperpair without attaching any credit to it, the lower and
upper element costs of this combination would still be about u0(C2) = u1(C2) ' 2.895.
It seems, therefore, that some new ideas are required to obtain a major improvement
to our median selection algorithm.

10. Concluding remarks and open problems. We have improved the result
of Schönhage, Paterson, and Pippenger [SPP76] and obtained an algorithm for the
selection of the median that uses slightly less than 3n comparisons. Our algorithm is
much more complicated than the algorithm of Schönhage, Paterson, and Pippenger,
and it is perhaps a bit disappointing that the improvement obtained is so small. As
mentioned at the end of the previous section, further small improvements are possible
but it seems that new ideas are required to obtain a more substantial improvement.

SELECTING THE MEDIAN 1757

Further narrowing the gap between the known upper and lower bounds on the
number of comparisons needed to select the median remains a challenging open prob-
lem. Paterson has conjectured, for a long time, that the number of comparisons
required for selecting the median, in the worst case, is about log4/3 2·n ≈ 2.41n. This
conjecture has now finally appeared in print; see Paterson [Pat96].

Schönhage, Paterson, and Pippenger [SPP76] show that a conjecture of Yao
[Yao74] implies the existence of a median-finding algorithm that uses at most 2.5n+
o(n) comparisons. Proving or disproving Yao’s conjecture is also a challenging open
problem.

The factories constructed in this paper are S̃kk factories and not Skk factories, as
were the factories of Schönhage, Paterson, and Pippenger. Is it possible to improve
the Skk factories of Schönhage, Paterson, and Pippenger and obtain Skk factories whose
lower and upper element costs are below 3?

Schönhage, Paterson, and Pippenger [SPP76] describe nongreen Skk factories with
unit cost Uk ∼ 3.5k. Is it possible to improve this result?

Acknowledgment. The authors would like to thank Mike Paterson for some
helpful discussions and for his comments on an earlier version of this paper.

REFERENCES

[Aig82] M. Aigner, Selecting the top three elements, Discrete Appl. Math., 4 (1982), pp. 247–
267.

[BFP+73] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds
for selection, J. Comput. System Sci., 7 (1973), pp. 448–461.

[BJ85] S. W. Bent and J. W. John, Finding the median requires 2n comparisons, in Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, Providence,
RI, 1985, pp. 213–216.

[CM89] W. Cunto and J. I. Munro, Average case selection, J. ACM, 36 (1989), pp. 270–279.
[DHUZ96] D. Dor, J. Håstad, S. Ulfberg, and U. Zwick, On lower bounds for selecting the

median, submitted.
[Dor95] D. Dor, Selection Algorithms, Ph.D. thesis, Department of Computer Science, Tel Aviv

University, Tel Aviv, Israel, 1995.
[DZ95] D. Dor and U. Zwick, Selecting the median, in Proceedings of the 6th Annual ACM-

SIAM Symposium on Discrete Algorithms, San Francisco, CA, January 22–24,
1995, SIAM, Philadelphia, 1995, pp. 28–37.

[DZ96a] D. Dor and U. Zwick, Finding the αn-th largest element, Combinatorica, 16 (1996),
pp. 41–58.

[DZ96b] D. Dor and U. Zwick, Median selection requires (2+ε)n comparisons, in Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, Burlington,
VT, 1996, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 125–134.

[Eus93] J. Eusterbrock, Errata to selecting the top three elements by M. Aigner: A result of
a computer-assisted proof search, Discrete Appl. Math., 41 (1993), pp. 131–137.

[FG78] F. Fussenegger and H. N. Gabow, A counting approach to lower bounds for selection
problems, J. ACM, 26 (1978), pp. 227–238.

[FJ59] L. R. Ford and S. M. Johnson, A tournament problem, Amer. Math. Monthly, 66
(1959), pp. 387–389.

[FR75] R. W. Floyd and R. L. Rivest, Expected time bounds for selection, Comm. ACM, 18
(1975), pp. 165–173.

[HS69] A. Hadian and M. Sobel, Selecting the t-th largest using binary errorless comparisons,
in Combinatorial Theory and Its Applications, II, Proc. Colloq., Balatonfüred,
1969, North-Holland, Amsterdam, 1970, pp. 585–599.

[Hya76] L. Hyafil, Bounds for selection, SIAM J. Comput., 5 (1976), pp. 109–114.
[Joh88] J. W. John, A new lower bound for the set-partitioning problem, SIAM J. Comput.,

17 (1988), pp. 640–647.
[Kir81] D. G. Kirkpatrick, A unified lower bound for selection and set partitioning problems,

J. ACM, 28 (1981), pp. 150–165.

1758 DORIT DOR AND URI ZWICK

[Kis64] S. S. Kislitsyn, On the selection of the k-th element of an ordered set by pairwise
comparisons, Sibirsk. Mat. Zh., 5 (1964), pp. 557–564.

[MP82] I. Munro and P. V. Poblete, A Lower Bound for Determining the Median, Technical
report CS-82-21, University of Waterloo, Waterloo, Ontario, 1982.

[Pat96] M. S. Paterson, Progress in selection, in Proceedings of the 5th Scandinavian Work-
shop on Algorithm Theory, Reykjav́ik, Iceland, 1996, Lecture Notes in Comput.
Sci. 1097, Springer, Berlin, 1996, pp. 368–379.

[Poh72] I. Pohl, A sorting problem and its complexity, Comm. ACM, 15 (1972), pp. 462–464.
[RH84] P. V. Ramanan and L. Hyafil, New algorithms for selection, J. Algorithms, 5 (1984),

pp. 557–578.
[Sch32] J. Schreier, On tournament elimination systems, Math. Polska, 7 (1932), pp. 154–160

(in Polish).
[SPP76] A. Schönhage, M. Paterson, and N. Pippenger, Finding the median, J. Comput.

System Sci., 13 (1976), pp. 184–199.
[SY80] P. K. R. Stockmeyer and F. F. Yao, On the optimality of linear merge, SIAM J.

Comput., 9 (1980), pp. 85–90.
[Yao74] F. Yao, On Lower Bounds for Selection Problems, Technical report MAC TR-121,

Massachusetts Institute of Technology, Cambridge, MA, 1974.
[Yap76] C. K. Yap, New upper bounds for selection, Comm. ACM, 19 (1976), pp. 501–508.

STRUCTURE IN APPROXIMATION CLASSES∗

PIERLUIGI CRESCENZI† , VIGGO KANN‡ , RICCARDO SILVESTRI§ , AND

LUCA TREVISAN¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1759–1782

Abstract. The study of the approximability properties of NP-hard optimization problems has
recently made great advances mainly due to the results obtained in the field of proof checking. The
last important breakthrough proves the APX-completeness of several important optimization prob-
lems and thus reconciles “two distinct views of approximation classes: syntactic and computational”
[S. Khanna et al., in Proc. 35th IEEE Symp. on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1994, pp. 819–830]. In this paper we obtain new results on the
structure of several computationally-defined approximation classes. In particular, after defining a
new approximation preserving reducibility to be used for as many approximation classes as possible,
we give the first examples of natural NPO-complete problems and the first examples of natural APX-
intermediate problems. Moreover, we state new connections between the approximability properties
and the query complexity of NPO problems.

Key words. complexity classes, reducibilities, approximation algorithms

AMS subject classifications. 03D30, 68Q15, 68Q20

PII. S0097539796304220

1. Introduction. In his pioneering paper on the approximation of combinato-
rial optimization problems [22], David Johnson formally introduced the notion of an
approximable problem, proposed approximation algorithms for several problems, and
suggested a possible classification of optimization problems on the grounds of their
approximability properties. Since then it has been clear that, even though the deci-
sion versions of most NP-hard optimization problems are many-one polynomial-time
reducible to each other, they do not share the same approximability properties. The
main reason is that many-one reductions usually do not preserve the objective func-
tion and, even when they do, they rarely preserve the quality of the solutions. It is
then clear that a stronger kind of reducibility has to be used. Indeed, an approxima-
tion preserving reduction not only has to map instances of a problem A to instances
of a problem B, but it also has to be able to come back from “good” solutions for B to
“good” solutions for A. Surprisingly, the first definition of this kind of reducibility [35]
was given a full 13 years after Johnson’s paper; after that, at least seven different ap-
proximation preserving reducibilities appeared in the literature (see Fig. 1.1). These
reducibilities are identical with respect to the overall scheme but differ essentially
in the way they preserve approximability: they range from the Strict reducibility in
which the error cannot increase to the PTAS-reducibility in which there are basically
no restrictions (see also Chapter 3 of [25] and [11]).

∗Received by the editors May 24, 1996; accepted for publication (in revised form) January 7,
1998; published electronically May 13, 1999. An extended abstract of this paper was presented at
the 1st Annual International Computing and Combinatorics Conference.

http://www.siam.org/journals/sicomp/28-5/30422.html
†Dipartimento di Sistemi ed Informatica, Università degli Studi di Firenze, 50134 Firenze, Italy

(piluc@dsi.unifi.it).
‡Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100

44 Stockholm, Sweden (viggo@nada.kth.se).
§Dipartimento di Scienze dell’Informazione, Università degli Studi di Roma “La Sapienza,” 00198

Rome, Italy (silver@dsi.uniroma1.it).
¶Laboratory for Computer Science, MIT, Cambridge, MA 02139 (luca@theory.lcs.mit.edu).

1759

1760 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

PTAS-reducibility [16]

P-reducibility [35]

6

L-reducibility [38] E-reducibility [28]

Strict reducibility [35]

��
��*

��
��*

HH
HHY

6

HH
HHY

Continuous reducibility [41]

A-reducibility [35]

Fig. 1.1. The taxonomy of approximation preserving reducibilities.

By means of these reducibilities, several notions of completeness in approxima-
tion classes have been introduced and, basically, two different approaches have been
followed. On one hand, the attention has been focused on computationally defined
classes of problems, such as NPO (the class of optimization problems whose underly-
ing decision problem is in NP) and APX (the class of constant-factor approximable
NPO problems): along this line of research, however, almost all completeness results
dealt either with artificial optimization problems or with problems for which lower
bounds on the quality of the approximation were easily obtainable [14, 35]. On the
other hand, researchers focused on the logical definability of optimization problems
and introduced several syntactically defined classes for which natural completeness
results were obtained [29, 36, 38]: unfortunately, the approximability properties of
the problems in these latter classes were not related to standard complexity-theoretic
conjectures. A first step towards the reconciling of these two approaches consisted of
proving lower bounds (modulo P 6= NP or some other likely condition) on the approx-
imability of complete problems for syntactically defined classes [1, 33]. More recently,
another step has been performed since the closure of syntactically defined classes with
respect to an approximation preserving reducibility which has been proved to be equal
to the more familiar computationally-defined classes [28].

In spite of this important achievement, beyond APX we are still forced to distin-
guish between maximization and minimization problems as long as we are interested
in completeness proofs. Indeed, a result of [29] states that it is not possible to rewrite
every NP maximization problem as an NP minimization problem unless NP = co-NP.
A natural question is thus whether this duality extends to approximation preserving
reductions.

Finally, even though the existence of “intermediate” artificial problems—that
is, problems for which lower bounds on their approximation are not obtainable by
completeness results—was proved in [14], a natural question arises: do natural inter-
mediate problems exist? Observe that this question is also open in the field of decision
problems: for example, it is known that the graph isomorphism problem cannot be
NP-complete unless the polynomial-time hierarchy collapses [40], but no result has
ever been obtained giving evidence that the problem does not belong to P.

The first goal of this paper is to define an approximation preserving reducibility
that can be used for as many approximation classes as possible and such that all

STRUCTURE IN APPROXIMATION CLASSES 1761

reductions that have appeared in the literature still hold. In spite of the fact that
the L-reducibility has been the most widely used so far, we will give strong evidence
that it cannot be used to obtain completeness results in “computationally defined”
classes such as APX, log-APX (that is, the class of problems approximable within a
logarithmic factor), and poly-APX (that is, the class of problems approximable within
a polynomial factor). Indeed, in [16] it has been shown that the L-reducibility is too
strict and does not allow reduction of some problems that are known to be easy to
approximate to problems that are known to be hard to approximate. In this paper we
show, somewhat surprisingly, that the L-reducibility is too weak and is not approxi-
mation preserving (unless P = NP ∩ co-NP). The weakness of the L-reducibility is,
essentially, shared by all reducibilities of Fig. 1.1 except the Strict reducibility and
the E-reducibility; the strictness of the L-reducibility is shared by all of them (unless
PNP ⊆ PNP[O(log n)]) except the PTAS-reducibility. The reducibility we propose is a
combination of the E-reducibility and of the PTAS-reducibility. As far as we know, it
is the strictest reducibility that allows us to obtain all approximation completeness
results that have appeared in the literature, such as the APX-completeness of Maxi-
mum Satisfiability [16, 28] and the poly-APX-completeness of Maximum Clique
[28].

The second group of results refers to the existence of natural complete problems
for NPO. Indeed, both [35] and [14] provide examples of natural complete problems
for the class of minimization and maximization NP problems, respectively. In section
3 we will show the existence of both maximization and minimization NPO-complete
natural problems. In particular, we prove that Maximum 0− 1 Programming and
Minimum 0−1 Programming are NPO-complete. This result shows that making use
of a natural approximation preserving reducibility is powerful enough to encompass
the “duality” problem raised in [29]. (Indeed, in [28] it was shown that this duality
does not arise in APX, log-APX, poly-APX, and other subclasses of NPO.) Moreover,
the same result can also be obtained when we restrict ourselves to the class NPO PB
(i.e., the class of polynomially bounded NPO problems). In particular, we prove that
Maximum PB 0 − 1 Programming and Minimum PB 0 − 1 Programming are
NPO PB-complete.

The third group of results refers to the existence of natural APX-intermediate
problems. In section 4, we will prove that Minimum Bin Packing (and other nat-
ural NPO problems) cannot be APX-complete unless the polynomial-time hierarchy
collapses. Since it is well known [34] that this problem belongs to APX and that
it does not belong to PTAS (that is, the class of NPO problems with polynomial-
time approximation schemes) unless P = NP, our result yields the first example of a
natural APX-intermediate problem (under a natural complexity-theoretic conjecture).
Roughly speaking, the proof of our result is structured into two main steps. In the
first step, we show that if Minimum Bin Packing were APX-complete then the prob-
lem of answering any set of k nonadaptive queries to an NP-complete problem could
be reduced to the problem of approximating an instance of Minimum Bin Packing
within a ratio depending on k. In the second step, we show that the problem of
approximating an instance of Minimum Bin Packing within a given performance
ratio can be solved in polynomial time by means of a constant number of nonadaptive
queries to an NP-complete problem. These two steps will imply the collapse of the
query hierarchy which in turn implies the collapse of the polynomial-time hierarchy.
As a side effect of our proof, we will show that if a problem is APX-complete, then it
does not admit an asymptotic approximation scheme.

1762 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

The previous results are consequences of new connections between the approx-
imability properties and the query complexity of NP-hard optimization problems. In
several recent papers the notion of query complexity (that is, the number of queries to
an NP oracle needed to solve a given problem) has been shown to be a very useful tool
for understanding the complexity of approximation problems. In [7, 9] upper and lower
bounds have been proved on the number of queries needed to approximate certain op-
timization problems (such as Maximum Satisfiability and Maximum Clique):
these results deal with the complexity of approximating the value of the optimum
solution and not with the complexity of computing approximate solutions. In this
paper, instead, the complexity of “constructive” approximation will be addressed by
considering the languages that can be recognized by polynomial-time machines which
have a function oracle that solves the approximation problem. In particular, after
proving the existence of natural APX-intermediate problems, in section 4.1 we will be
able to solve an open question of [7], proving that finding the vertices of the largest
clique is more difficult than merely finding the vertices of a 2-approximate clique unless
the polynomial-time hierarchy collapses.

The results of [7, 9] show that the query complexity is a good measure to study
approximability properties of optimization problems. The last group of our results
show that completeness in approximation classes implies lower bounds on the query
complexity. Indeed, in section 5 we show that the two approaches are basically equiv-
alent by giving sufficient and necessary conditions for approximation completeness in
terms of query-complexity hardness and combinatorial properties. These results have
a twofold importance: they give new insights into the structure of complete problems
for approximation classes and they reconcile the approach based on standard compu-
tation models with the approach based on the computation model for approximation
proposed in [8]. As a final observation, our results can be seen as extensions of a result
of [28] in which general sufficient (but not necessary) conditions for APX-completeness
are proved.

1.1. Preliminaries. We assume the reader is familiar with the basic concepts
of computational complexity theory. For the definitions of most of the complexity
classes used in the paper we refer the reader to one of the books on the subject (see,
for example, [2, 5, 18, 37]). We now give some standard definitions in the field of
optimization and approximation theory.

Definition 1.1. An NP optimization problem A is a 4-tuple (I, sol,m, type)
such that the following hold:

1. I is the set of the instances of A and it is recognizable in polynomial time.
2. Given an instance x of I, sol(x) denotes the set of feasible solutions of x.

These solutions are short, that is, there exists a polynomial p such that, for any
y ∈ sol(x), |y| ≤ p(|x|). Moreover, for any x and for any y with |y| ≤ p(|x|), it is
decidable in polynomial time whether y ∈ sol(x).

3. Given an instance x and a feasible solution y of x, m(x, y) denotes the positive
integer measure of y (often also called the value of y). The function m is computable
in polynomial time and is also called the objective function.

4. type ∈ {max,min}.
The goal of an NP optimization problem with respect to an instance x is to find

an optimum solution, that is, a feasible solution y such that m(x, y) = type{m(x, y′) :
y′ ∈ sol(x)}. In the following opt will denote the function mapping an instance x to
the measure of an optimum solution.

The class NPO is the set of all NP optimization problems. Max NPO is the set of

STRUCTURE IN APPROXIMATION CLASSES 1763

maximization NPO problems and Min NPO is the set of minimization NPO problems.
An NPO problem is said to be polynomially bounded if there exists a polynomial

q such that, for any instance x and for any solution y of x, m(x, y) ≤ q(|x|). The class
NPO PB is the set of all polynomially bounded NPO problems. Max PB is the set
of all maximization problems in NPO PB and Min PB is the set of all minimization
problems in NPO PB.

Definition 1.2. Let A be an NPO problem. Given an instance x and a feasible
solution y of x, we define the performance ratio of y with respect to x as

R(x, y) = max

{
m(x, y)

opt(x)
,

opt(x)

m(x, y)

}
and the relative error of y with respect to x as

E(x, y) =
|opt(x)−m(x, y)|

opt(x)
.

It is easy to see that, for any instance x and for any feasible solution y of x,

R(x, y)− 1 ≥ E(x, y) ≥ 0.

Also, the performance ratio R(x, y) (respectively, relative error E(x, y)) is as close to
1 (respectively, 0) as the value of the feasible solution y is close to the value of an
optimum solution for x.

Definition 1.3. Given an NPO problem A and an arbitrary function r : N →
[1,∞), we say that an algorithm T is an r(n)-approximate algorithm for A if T runs
in polynomial time and, for any instance x of A with sol(x) 6= ∅, T returns a feasible
solution T (x) such that

R(x, T (x)) ≤ r(|x|).
Definition 1.4. Given a class of functions F , an NPO problem A belongs to the

class F -APX if there exists an r(n)-approximate algorithm T for A, for some function
r ∈ F . In particular, APX, log-APX, poly-APX, and exp-APX will denote the classes
F -APX with F equal to the set O(1), to the set O(log n), to the set O(nO(1)), and to

the set O(2n
O(1)

), respectively.
One could object that there is no difference between NPO and exp-APX since

the polynomial bound on the computation time of the objective function implies that

any NPO problem is h2n
k

-approximable for some h and k. This is not true, since
NPO problems exist for which it is even hard to find a feasible solution. We will see
examples of such problems in section 3.

Definition 1.5. An NPO problem A belongs to the class PTAS if there exists
an algorithm T such that, for any fixed rational r > 1, T (·, r) is an r-approximate
algorithm for A.

Clearly, the following inclusions hold:

PTAS ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ exp-APX ⊆ NPO.

It is also easy to see that these inclusions are strict if and only if P 6= NP.

1.2. A list of NPO problems. We here define the NP optimization problems
that will be used in the paper (for a much larger list of NPO problems we refer to
[12, 13]). Observe that in the following definitions we will not mention the type of
the problem since it will be specified by the name of the problem itself.

1764 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

Maximum Clique
Instance: Graph G = (V,E).
Solution: A clique in G, i.e., a subset V ′ ⊆ V such that every two vertices in V ′

are joined by an edge in E.
Measure: Cardinality of the clique, i.e., |V ′|.

Maximum Weighted Ones and Minimum Weighted Ones
Instance: Set of variables X, Boolean quantifier-free first-order formula φ over the

variables in X, and a weight function w : X → N .
Solution: Truth assignment that satisfies φ.
Measure: The sum of the weights of the true variables.

Maximum PB 0− 1 Programming and Minimum PB 0− 1 Programming
Instance: Integer m× n-matrix A, integer m-vector b, binary n-vector c.
Solution: A binary n-vector x such that Ax ≥ b.
Measure: 1 +

n∑
i=1

cixi.

Maximum Satisfiability
Instance: Set of variables X and Boolean CNF formula φ over the variables in X.
Solution: Truth assignment to the variables in X.
Measure: The number of satisfied clauses.

Minimum Bin Packing
Instance: Finite set U of items, and a size s(u) ∈ Q ∩ (0, 1] for each u ∈ U .
Solution: A partition of U into disjoint sets U1, U2, . . . , Um such that the sum of

the sizes of the items in each Ui is at most 1.
Measure: The number of used bins, i.e., the number m of disjoint sets.

Minimum Ordered Bin Packing
Instance: Finite set U of items, a size s(u) ∈ Q∩ (0, 1] for each u ∈ U , and a partial

order � on U .
Solution: A partition of U into disjoint sets U1, U2, . . . , Um such that the sum of

the sizes of the items in each Ui is at most 1 and if u ∈ Ui and u′ ∈ Uj with
u � u′, then i ≤ j.

Measure: The number of used bins, i.e., the number m of disjoint sets.

Minimum Degree Spanning Tree
Instance: Graph G = (V,E).
Solution: A spanning tree for G.
Measure: The maximum degree of the spanning tree.

Minimum Edge Coloring
Instance: Graph G = (V,E).
Solution: A coloring of E, i.e., a partition of E into disjoint sets E1, E2, . . . , Ek

such that, for 1 ≤ i ≤ k, no two edges in Ei share a common endpoint in G.
Measure: Cardinality of the coloring, i.e., the number k of disjoint sets.

STRUCTURE IN APPROXIMATION CLASSES 1765

2. A new approximation preserving reducibility. The goal of this section
is to define a new approximation preserving reducibility that can be used for as many
approximation classes as possible and such that all reductions that have appeared
in the literature still hold. We will justify the definition of this new reducibility by
emphasizing the disadvantages of previously known ones. In the following, we will
assume that, for any reducibility, an instance x such that sol(x) 6= ∅ is mapped into
an instance x′ such that sol(x′) 6= ∅.

2.1. The L-reducibility. The first reducibility we shall consider is the L-reduci-
bility (for linear reducibility) [38] which is often most practical to use in order to show
that a problem is at least as hard to approximate as another.

Definition 2.1. Let A and B be two NPO problems. A is said to be L-reducible
to B, in symbols A ≤L B, if there exist two functions f and g and two positive
constants α and β such that:

1. For any x ∈ IA, f(x) ∈ IB is computable in polynomial time.
2. For any x ∈ IA and for any y ∈ solB(f(x)), g(x, y) ∈ solA(x) is computable

in polynomial time.
3. For any x ∈ IA, optB(f(x)) ≤ αoptA(x).
4. For any x ∈ IA and for any y ∈ solB(f(x)),

|optA(x)−mA(x, g(x, y))| ≤ β|optB(f(x))−mB(f(x), y)|.
The 4-tuple (f, g, α, β) is said to be an L-reduction from A to B.

Clearly, the L-reducibility preserves membership in PTAS. Indeed, if (f, g, α, β)
is an L-reduction from A to B then, for any x ∈ IA and for any y ∈ solB(f(x)), we
have that

EA(x, g(x, y)) ≤ αβEB(f(x), y),

so that ifB ∈ PTAS then A ∈ PTAS [38]. The above inequality also implies that ifA is
a minimization problem and there exists an r-approximate algorithm for B, then there
exists a (1 + αβ(r − 1))-approximate algorithm for A. In other words, L-reductions
from minimization problems to optimization problems preserve membership in APX.
The next result gives strong evidence that, in general, this is not true whenever the
starting problem is a maximization one.

Theorem 2.2. The following statements are equivalent:
1. There exist two problems A ∈ Max NPO and B ∈ Min NPO such that A 6∈

APX, B ∈ APX, and A ≤L B.
2. There exist two Max NPO problems A and B such that A 6∈ APX, B ∈ APX,

and A ≤L B.
3. There exists a polynomial-time recognizable set of satisfiable Boolean formulas

for which no polynomial-time algorithm can compute a satisfying assignment for each
of them.

Proof. (1) ⇒ (2). Assume that there exist two problems A ∈ Max NPO and
B ∈ Min NPO such that A 6∈ APX, B ∈ APX, and A ≤L B. In section 3.1 of [28], it
is shown that, for any minimization problem C in APX, there exists a maximization
problem Cmax in APX such that C ≤L Cmax. Since the L-reducibility clearly satisfies
the transitive property, we thus have that there exists a maximization problem Bmax ∈
APX such that A ≤L Bmax.

(2) ⇒ (3). Assume that for any polynomial-time recognizable set of satisfiable
Boolean formulas there is a polynomial-time algorithm computing a satisfying as-
signment for each formula in the set. Suppose that (f, g, α, β) is an L-reduction

1766 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

from a maximization problem A to a maximization problem B and that B is r-
approximable for some r > 1. Let x be an instance of A and let y be a solution
of f(x) such that optB(f(x))/mB(f(x), y) ≤ r. For the sake of convenience, let
optA = optA(x), mA = mA(x, g(x, y)), optB = optB(f(x)), and mB = mB(f(x), y).
Let also mx = max{mA,mB/α}. Since mA ≤ optA and mB/α ≤ optB/α ≤ optA, we
have that mx ≤ optA. We now show that optA/mx ≤ 1 + αβ(r − 1), that is, mx is a
nonconstructive approximation of optA. Let γ = αr

1+αβ(r−1) . There are two cases.

1. optB ≤ γoptA. By the definition of the L-reducibility, optA−mA ≤ β(optB−
mB). Since optB ≤ γoptA and optB/mB ≤ r, we have that

optA −mA

optA
≤ γβ optB −mB

optB
≤ γβ(1− 1/r).

Hence,

optA
mx

≤ optA
mA

≤ 1

1− γβ r−1
r

= 1 + αβ(r − 1),

where the last equality is due to the definition of γ.
2. optB > γoptA. It holds that

optA
mx

≤ optA
mB/α

<
α(optB/γ)

mB
(since optA < optB/γ)

≤ α(optB/γ)

(optB/r)
(since mB ≥ optB/r)

=
αr

γ

= 1 + αβ(r − 1).

Let us now consider the following nondeterministic polynomial-time algorithm.
begin {input: x ∈ IA}
xB := f(x);
yB := r-approximate solution of xB ;
yA := g(x, yB);
mx := max{mA(x, yA),mB(xB , yB)/α};
guess y ∈ solA(x);
if mA(x, y) ≥ mx then accept else reject;

end;

By applying Cook’s reduction [10] to the above algorithm, it easily follows that,
for any x ∈ IA, a satisfiable Boolean formula φx can be constructed in polynomial
time in the length of x so that any satisfying assignment for φx encodes a solution of
x whose measure is at least mx. Moreover, the set {φx : x ∈ IA} is recognizable in
polynomial time. By assumption, it is then possible to compute in polynomial time a
satisfying assignment for φx and thus an approximate solution for x. This contradicts
the assumption that A 6∈ APX.

(3) ⇒ (1). Assume that there exists a polynomial-time recognizable set S of
satisfiable Boolean formulas for which no polynomial-time algorithm can compute a
satisfying assignment for each of them. Consider the following two NPO problems

STRUCTURE IN APPROXIMATION CLASSES 1767

A = (IA, solA,mA,max) and B = (IB , solB ,mB ,min), where IA = IB = S, solA(x) =
solB(x) = {y : y is a truth assignment to the variables of x}:

mA(x, y) =

{ |x| if y is a satisfying assignment for x,
1 otherwise

and

mB(x, y) =

{ |x| if y is a satisfying assignment for x,
2|x| otherwise.

Clearly, problem B is in APX; if A is in APX, then there is a polynomial-time al-
gorithm that computes a satisfying assignment for each formula in S, contradicting
the assumption. Moreover, it is easy to see that A L-reduces to B via f ≡ λx.x,
g ≡ λxλy.y, α = 1, and β = 1.

Observe that in [32] it is shown that the third statement of the above theorem
holds if and only if the γ-reducibility is different from the many-one reducibility.
Moreover, in [21] it is shown that the latter hypothesis is somewhat intermediate
between P 6= NP∩ co-NP and P 6= NP. In other words, there is strong evidence that,
even though the L-reducibility is suitable for proving completeness results within
classes contained in APX (such as Max SNP [38]), this reducibility cannot be used
to define the notion of completeness for classes beyond APX. Moreover, it cannot be
blindly used to obtain positive results, that is, to prove the existence of approximation
algorithms via reductions. Finally, it is possible to L-reduce the maximization problem
B defined in the last part of the proof of the previous theorem to Maximum 3-
Satisfiability: this implies that the closure of Max SNP with respect to the L-
reducibility is not included in APX, contrary to what is commonly believed (see, for
example, [37, p. 314]).

2.2. The E-reducibility. The drawbacks of the L-reducibility are mainly due to
the fact that the relation between the performance ratios is set by two separate linear
constraints on both the optimum values and the absolute errors. The E-reducibility
(for error reducibility) [28] instead imposes a linear relation directly between the
performance ratios.

Definition 2.3. Let A and B be two NPO problems. A is said to be E-reducible
to B, in symbols A ≤E B, if there exist two functions f and g and a positive constant
α such that the following hold:

1. For any x ∈ IA, f(x) ∈ IB is computable in polynomial time.
2. For any x ∈ IA and for any y ∈ solB(f(x)), g(x, y) ∈ solA(x) is computable

in polynomial time.
3. For any x ∈ IA and for any y ∈ solB(f(x)),

RA(x, g(x, y)) ≤ 1 + α(RB(f(x), y)− 1).

The 3-tuple (f, g, α) is said to be an E-reduction from A to B.
Observe that, for any function r, an E-reduction maps r(n)-approximate solutions

into (1+α(r(nh)−1))-approximate solutions, where h is a constant depending only on
the reduction. Hence, the E-reducibility not only preserves membership in PTAS but
also membership in exp-APX, poly-APX, log-APX, and APX. As a consequence of
this observation and of the results of the previous section, we have that NPO problems
exist which are L-reducible to each other but not E-reducible. However, the following

1768 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

result shows that within the class APX the E-reducibility is just a generalization of
the L-reducibility.

Proposition 2.4. For any two NPO problems A and B, if A ≤L B and A ∈
APX, then A ≤E B.

Proof. Let T be an r-approximate algorithm for A with r constant and let
(fL, gL, αL, βL) be an L-reduction from A to B. Then, for any x ∈ IA and for
any y ∈ solB(fL(x)), EA(x, gL(x, y)) ≤ αLβLEB(fL(x), y). If A is a minimization
problem then, for any x ∈ IA and for any y ∈ solB(fL(x)),

RA(x, gL(x, y)) = 1 + EA(x, gL(x, y))

≤ 1 + αLβLEB(fL(x), y)

≤ 1 + αLβL(RB(fL(x), y)− 1),

and thus (fL, gL, αLβL) is an E-reduction from A to B. Otherwise (that is, A is a
maximization problem) we distinguish the following two cases:

1. EB(fL(x), y) ≤ 1
2αLβL

: in this case we have that

RA(x, gL(x, y))− 1 =
EA(x, gL(x, y))

1− EA(x, gL(x, y))

≤ αLβLEB(fL(x), y)

1− αLβLEB(fL(x), y)

≤ 2αLβL(RB(fL(x), y)− 1).

2. EB(fL(x), y) > 1
2αLβL

: in this case we have that RB(fL(x), y) − 1 ≥ 1
2αLβL

so that

RA(x, T (x))− 1 ≤ r − 1 ≤ 2αLβL(r − 1)(RB(fL(x), y)− 1),

where the first inequality is due to the fact that T is an r-approximation algorithm
for A.
We can thus define a 3-tuple (fE , gE , αE) as follows:

1. For any x ∈ IA, fE(x) = fL(x).
2. For any x ∈ IA and for any y ∈ solB(fE(x)),

gE(x, y) =

{
gL(x, y) if mA(x, gL(x, y)) ≥ mA(x, T (x)),
T (x) otherwise.

3. αE = max{2αLβL, 2αLβL(r − 1)}.
From the above discussion, it follows that the 3-tuple (fE , gE , αE) is an E-reduction
from A to B.

Clearly, the converse of the above result does not hold since no problem in NPO−
NPO PB can be L-reduced to a problem in NPO PB while any problem in PO can
be E-reduced to any NPO problem. Moreover, in [28] it is shown that Maximum 3-
Satisfiability is (NPO PB∩APX)-complete with respect to the E-reducibility. This
result is not obtainable by means of the L-reducibility: indeed, it is easy to prove that
Minimum Bin Packing is not L-reducible to Maximum 3-Satisfiability unless
P = NP (see, for example, [6]).

The E-reducibility is still somewhat too strict. Indeed, in [16] it has been shown
that there exist natural PTAS problems, such as Maximum Knapsack, which are not
E-reducible to polynomially bounded APX problems, such as Maximum 3-Satisfiability
(unless a logarithmic number of queries to an NP oracle is as powerful as a polynomial
number of queries).

STRUCTURE IN APPROXIMATION CLASSES 1769

2.3. The AP-reducibility. The above mentioned drawback of the E-reducibility
is mainly due to the fact that an E-reduction preserves optimum values (see [16]). In-
deed, the linear relation between the performance ratios seems to be too restrictive.
According to the definition of approximation preserving reducibilities given in [14],
we could overcome this problem by expressing this relation by means of an implica-
tion. However, this is not sufficient: intuitively, since the function g does not know
which approximation is required, it must still map optimum solutions into optimum
solutions. The final step thus consists of letting the functions f and g depend on the
performance ratio.1 This implies that different constraints have to be put on the com-
putation time of f and g: on one hand, we still want to preserve membership in PTAS;
on the other, we want the reduction to be efficient even when poor performance ratios
are required. These constraints are formally imposed in the following definition of
approximation preserving reducibility (which is a restriction of the PTAS-reducibility
introduced in [16]).

Definition 2.5. Let A and B be two NPO problems. A is said to be AP-reducible
to B, in symbols A ≤AP B, if there exist two functions f and g and a positive constant
α such that the following hold:

1. For any x ∈ IA and for any r > 1, f(x, r) ∈ IB is computable in time
tf (|x|, r).

2. For any x ∈ IA, for any r > 1, and for any y ∈ solB(f(x, r)), g(x, y, r) ∈
solA(x) is computable in time tg(|x|, |y|, r).

3. For any fixed r, both tf (·, r) and tg(·, ·, r) are bounded by a polynomial.
4. For any fixed n, both tf (n, ·) and tg(n, n, ·) are nonincreasing functions.
5. For any x ∈ IA, for any r > 1, and for any y ∈ solB(f(x, r)),

RB(f(x, r), y) ≤ r ⇒ RA(x, g(x, y, r)) ≤ 1 + α(r − 1).

The 3-tuple (f, g, α) is said to be an AP-reduction from A to B.
According to the above definition, functions like 21/(r−1)nh or n1/(r−1) are admis-

sible bounds on the computation time of f and g, while this is not true for functions
like nr or 2n.

Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility.
Moreover, it is easy to see that, contrary to the E-reducibility, any PTAS problem is
AP-reducible to any NPO problem.

As far as we know, this reducibility is the strictest one appearing in the literature
that allows us to obtain natural APX-completeness results (for instance, the APX-
completeness of Maximum Satisfiability [16, 28]).

3. NPO-complete problems. In this section we will prove that there are nat-
ural problems that are complete for the classes NPO and NPO PB (from now on,
unless otherwise specified, we will always refer to the AP-reducibility). Previously,
completeness results have been obtained just for Max NPO, Min NPO, Max PB, and
Min PB [14, 35, 4, 26]. One example of such a result is the following theorem.

Theorem 3.1. Minimum Weighted Ones is Min NPO-complete and Max-
imum Weighted Ones is Max NPO-complete (with respect to the E-reducibility),
even if only a subset {v1, . . . , vs} of the variables has nonzero weight w(vi) = 2s−i

and any truth assignment satisfying the instance gives the value true to at least one
vi.

1We also let the function f depend on the performance ratio because this feature will turn out
to be useful in order to prove interesting characterizations of complete problems for approximation
classes.

1770 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

We will construct AP-reductions from maximization problems to minimization
problems and vice versa. Using these reductions we will show that a problem that is
Max NPO-complete or Min NPO-complete in fact is complete for the whole of NPO,
and that a problem that is Max PB-complete or Min PB-complete is complete for the
whole of NPO PB.

Theorem 3.2. Minimum Weighted Ones and Maximum Weighted Ones
are NPO-complete.

Proof. In order to establish the NPO-completeness of Minimum Weighted Ones
we just have to show that there is an AP-reduction from a Max NPO-complete problem
to Minimum Weighted Ones. As the Max NPO-complete problem we will use the
restricted version of Maximum Weighted Ones from Theorem 3.1.

Let x be an instance of Maximum Weighted Ones, i.e., a formula φ over
variables v1, . . . , vs with weights w(vi) = 2s−i and some variables with weight zero.
We will first give a simple reduction that preserves the approximability within the
factor 2, and then adjust it to obtain an AP-reduction.

Let f(x) be the formula φ ∧ α1 ∧ · · · ∧ αs, where αi is defined as

(zi ≡ (v1 ∧ · · · ∧ vi−1 ∧ vi)),
where z1, . . . , zs are new variables with weights w(zi) = 2i and where all other vari-
ables (even the v-variables) have zero weight. If y is a satisfying assignment of f(x),
let g(x, y) be the restriction of the assignment to the variables that occur in φ. This
assignment clearly satisfies φ.

Note that exactly one of the z-variables is true in any satisfying assignment of
f(x). Indeed, if all z-variables were false, then all v-variables would be false and φ
would not be satisfied. On the other hand, if both zi and zj were true with j > i,
then vi would be both true and false, which is a contradiction. Hence,

m(f(x), y) = 2i ⇔ zi = 1

⇔ v1 = v2 = · · · = vi−1 = 0, vi = 1

⇔ 2s−i ≤ m(x, g(x, y)) < 2 · 2s−i

⇔ 2s

m(f(x), y)
≤ m(x, g(x, y)) < 2

2s

m(f(x), y)
.

In particular this holds for the optimum solution. Thus the performance ratio for
Maximum Weighted Ones is

R(x, g(x, y)) =
opt(x)

m(x, g(x, y))
<

2
2s

opt(f(x))
2s

m(f(x), y)

= 2
m(f(x), y)

opt(f(x))
= 2R(f(x), y),

which means that the reduction preserves the approximability within 2.
Let us now extend the construction in order to obtain R(x, g(x, y)) ≤ (1 +

2−k)R(fk(x), y) for every nonnegative integer k. The reduction described above cor-
responds to k = 0.

For any i ∈ {1, . . . , s} and for any (b1, . . . , bk(i)) ∈ {0, 1}k(i), where k(i) = min{s−
i, k}, we have a variable zi,b1,...,bk(i)

. Let

fk(x) = φ ∧
∧

i∈{1,...,s}
(b1,...,bk(i))∈{0,1}k(i)

αi,b1,...,bk(i)
,

STRUCTURE IN APPROXIMATION CLASSES 1771

where αi,b1,...,bk(i)
is defined as(

zi,b1,...,bk(i)
≡ (v1 ∧ · · · ∧ vi−1 ∧ vi ∧ (vi+1 = b1) ∧ · · · ∧ (vi+k(i) = bk(i))

))
.

Define g(x, y) as above. Finally, define

w(zi,b1,...,bk(i)
) =

⌈
K · 2s

w(vi) +
∑k(i)
j=1 bjw(vi+j)

⌉
=

⌈
K · 2i

1 +
∑k(i)
j=1 bj2

−j

⌉

(by choosing K greater than 2k we can disregard the effect of the ceiling operation in
the following computations).

As in the previous reduction exactly one of the z-variables is true in any satisfying
assignment of fk(x). If, in a solution y of fk(x), zi,b1,...,bk(i)

= 1, then we have
m(fk(x), y) = w(zi,b1,...,bk(i)

) and we know that

m(x, g(x, y)) ≥ w(vi) +

k(i)∑
j=1

bjw(vi+j) = 2s−i

1 +

k(i)∑
j=1

bj2
−j

 .

On the other hand, if k(i) = s−i, thenm(x, g(x, y)) = 2s−i(1+
∑k(i)
j=1 bj2

−j); otherwise

m(x, g(x, y)) ≤ w(vi)+
k∑
j=1

bjw(vi+j)+
s∑

j=k+i+1

w(vj) < 2s−i

1 +
k∑
j=1

bj2
−j

 (1+2−k).

In both cases, we thus get

K · 2s
m(fk(x), y)

≤ m(x, g(x, y)) <
K · 2s

m(fk(x), y)
(1 + 2−k)

and therefore R(x, g(x, y)) < (1 + 2−k)R(fk(x), y). Given any r > 1, if we choose k
such that 2−k ≤ (r− 1)/r, e.g., k = dlog r − log(r − 1)e, then R(fk(x), y) ≤ r implies
R(x, g(x, y)) < (1 + 2−k)R(fk(x), y) ≤ r + r2−k ≤ r + r − 1 = 1 + 2(r − 1). This is
obviously an AP-reduction with α = 2.

A very similar proof can be used to show that Maximum Weighted Ones is
NPO-complete.

Corollary 3.3. Any Min NPO-complete problem is NPO-complete and any
Max NPO-complete problem is NPO-complete.

As an application of the above corollary, we have that the Minimum 0− 1 Pro-
gramming problem is NPO-complete.

We can also show that there are natural complete problems for the class of poly-
nomially bounded NPO problems.

Theorem 3.4. Maximum PB 0 − 1 Programming and Minimum PB 0 − 1
Programming are NPO PB-complete.

Proof. Maximum PB 0 − 1 Programming is known to be Max PB-complete
[4] and Minimum PB 0 − 1 Programming is known to be Min PB-complete [26].
Thus we just have to show that there are AP-reductions from Minimum PB 0 − 1
Programming to Maximum PB 0 − 1 Programming and from Maximum PB
0− 1 Programming to Minimum PB 0− 1 Programming.

Both reductions use exactly the same construction. Given a satisfying variable
assignment, we define the one-variables to be the variables occurring in the objective

1772 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

-

6

i

j

0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

6

?

size of
solution

solution: • • • ◦ • ◦

6

?

one 1 in each row

6
?
only zeros in upper part

Fig. 3.1. The idea of the reduction from Minimum/Maximum PB 0 − 1 Programming to

Maximum/Minimum PB 0 − 1 Programming. The variable xji = 1 if and only if vi is the jth
one-variable in the solution. There is at most one 1 in each column and in each row.

function that have the value one. The objective value is the number of one-variables
plus 1.

The objective value of a solution is encoded by introducing an order of the one-
variables. The order is encoded by a squared number of 0− 1 variables (see Fig. 3.1).
The idea is to invert the objective values, so that a solution without one-variables
corresponds to an objective value of n of the constructed problem, and, in general, a

solution with p one-variables corresponds to an objective value of
⌊

n
p+1

⌋
.

The reductions are constructed as follows. Given an instance of Minimum PB
0 − 1 Programming or Maximum PB 0 − 1 Programming, i.e., an objective
function 1 +

∑m
k=1 vk and some inequalities over variables V = {v1, . . . , vm} ∪ U ,

construct m2 variables xji , 1 ≤ i, j ≤ m, and the following inequalities:

∀i ∈ [1 . . .m]

m∑
j=1

xji ≤ 1 (at most one 1 in each column),(3.1)

∀j ∈ [1 . . .m]

m∑
i=1

xji ≤ 1 (at most one 1 in each row),(3.2)

∀j ∈ [1 . . .m− 1]
m∑
i=1

xji −
m∑
i=1

xj+1
i ≥ 0 (only zeros in upper part).(3.3)

Besides these inequalities we include all inequalities from the original problem, but
we substitute each variable vi with the sum

∑m
k=1 x

k
i . The variables in U (that do

not occur in the objective function) are left intact.
The objective function is defined as

n−
m∑
p=1

(⌊
n

p

⌋
−
⌊

n

p+ 1

⌋) m∑
i=1

xpi .(3.4)

In order to express the objective function with only binary coefficients we have to
introduce n new variables y1, . . . , yn, where yj = 1 −∑m

i=1 x
p
i for bn/(p + 1)c < j ≤

bn/pc and yj = 1 for j ≤ bn/(m+ 1)c. The objective function then is
∑n
j=1 yj . One

can now verify that a solution of the original problem instance with s one-variables
(i.e., with an objective value of s + 1) will exactly correspond to a solution of the
constructed problem instance with objective value bn/(s+ 1)c and vice versa.

STRUCTURE IN APPROXIMATION CLASSES 1773

Suppose that the optimum solution to the original problem instance has M one-
variables; then the performance ratio (s + 1)/(M + 1) will correspond to the perfor-
mance ratio ⌊

n

M + 1

⌋
⌊

n

s+ 1

⌋ =
s+ 1

M + 1

(
1± m

n

)

for the constructed problem, where m
n is the relative error due to the floor operation.

By choosing n large enough, the relative error can be made arbitrarily small. Thus it
is easy to see that the reduction is an AP-reduction.

Corollary 3.5. Any Min PB-complete problem is NPO PB-complete and any
Max PB-complete problem is NPO PB-complete.

4. Query complexity and APX-intermediate problems. The existence of
APX-intermediate problems (that is, problems in APX which are not APX-complete)
has already been shown in [14] (assuming P 6= NP) where an artificial such problem is
obtained by diagonalization techniques similar to those developed to prove the exis-
tence of NP-intermediate problems [31]. In this section, we prove that “natural” APX-
intermediate problems exist: for instance, we will show that Minimum Bin Packing
is APX-intermediate. In order to prove this result, we will establish new connec-
tions between the approximability properties and the query complexity of NP-hard
optimization problems. To this aim, let us first recall the following definition.

Definition 4.1. A language L belongs to the class PNP[f(n)] if it is decidable
by a polynomial-time oracle Turing machine which asks at most f(n) queries to an
NP-complete oracle, where n is the input size. The class QH is defined to be the union⋃
k>1 PNP[k].

Similarly, we can define the class of functions FPNP[f(n)] [30]. The following result
has been proved in [23, 24].

Theorem 4.2. If there exists a constant k such that

QH = PNP[k],

then the polynomial-time hierarchy collapses.

The query-complexity of the “nonconstructive” approximation of several NP-hard
optimization problems has been studied by using hardness results with respect to
classes of functions FPNP[·] [7, 9]. However, this approach cannot be applied to
analyze the complexity of “constructing” approximate solutions. To overcome this
limitation, we use a novel approach that basically consists of considering how help-
ful is an approximation algorithm for a given optimization problem to solve decision
problems.

Definition 4.3. Given an NPO problem A and a rational r ≥ 1, Ar is a
multivalued partial function that, given an instance x of A, returns the set of feasible
solutions y of x such that R(x, y) ≤ r.

Definition 4.4. Given an NPO problem A and a rational r ≥ 1, a language
L belongs to PAr if there exist two polynomial-time computable functions f and g
such that, for any x, f(x) is an instance of A with sol(f(x)) 6= ∅, and, for any
y ∈ Ar(f(x)), g(x, y) = 1 if and only if x ∈ L. The class AQH(A) is equal to the
union

⋃
r>1 PAr .

1774 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

The following result states that an approximation problem does not help more
than a constant number of queries to an NP-complete problem. It is worth observing
that, in general, an approximate solution, even though not very helpful, requires more
than a logarithmic number of queries to be computed [8].

Proposition 4.5. For any problem A in APX, AQH(A) ⊆ QH.
Proof. Assume that A is a maximization problem (the proof for minimization

problems is similar). Let T be an r-approximate algorithm for A, for some r > 1,
and let L ∈ PAρ for some ρ > 1. Two polynomial-time computable functions f and
g then exist witnessing this latter fact. For any x, let m = m(f(x), T (f(x))), so that
m ≤ opt(f(x)) ≤ rm. We can then partition the interval [m, rm] into blogρ rc + 1
subintervals

[m, ρm), [ρm, ρ2m), . . . , [ρblogρ rc−1m, ρblogρ rcm], [ρblogρ rcm, rm],

and start looking for the subinterval containing the optimum value. (A similar tech-
nique has been used in [7, 9].) This can clearly be done using blogρ rc+ 1 queries to
an NP-complete oracle. One more query is sufficient to know whether there exists a
feasible solution y whose value lies in that interval and such that g(x, y) = 1. Since y
is ρ-approximate, it follows that L can be decided using blogρ rc+ 2 queries, that is,
L ∈ QH.

Recall that an NPO problem admits an asymptotic polynomial-time approxima-
tion scheme if there exists an algorithm T such that, for any x and for any r > 1,
R(x, T (x, r)) ≤ r + k/opt(x) with k constant and the time complexity of T (x, r) is
polynomial with respect to |x|. The class of problems that admit an asymptotic
polynomial-time approximation scheme is usually denoted by PTAS∞. The following
result shows that, for this class, the previous fact can be strengthened.

Proposition 4.6. Let A ∈ PTAS∞. Then there exists a constant h such that
AQH(A) ⊆ PNP[h].

Proof. Let A be a minimization problem in PTAS∞. (The proof for maximization
problem is very similar.) By definition, there exist a constant k and an algorithm T
such that, for any instance x and for any rational r > 1,

m(x, T (x, r)) ≤ r · opt(x) + k.

We will now prove that there exists a constant h such that, for any r > 1, a function
lr ∈ FPNP[h−1] exists such that, for any instance x of the problem A,

opt(x) ≤ lr(x) ≤ r · opt(x).

Intuitively, functions lr form a nonconstructive approximation scheme that is com-
putable by a constant number of queries to an NP-complete oracle. Given an instance
x, we can check whether sol(x) = ∅ by means of a single query to an NP oracle, so
that we can restrict ourselves to instances such that sol(x) 6= ∅ (and thus opt(x) ≥ 1).
Note that for these instances, T (·, 2) is a (k + 2)-approximate algorithm for A. Let
us fix an r > 1, let ε = r − 1, y = T (x, 1 + ε/2), and a = m(x, T (x, 2)). We have to
distinguish two cases.

1. a ≥ 2k(k + 2)/ε: in this case, opt(x) ≥ 2k/ε, that is, opt(x)ε/2 ≥ k. Then

m(x, y) ≤ opt(x)(1 + ε/2) + k

≤ opt(x)(1 + ε/2) + opt(x)ε/2

= opt(x)(1 + ε) = ropt(x);

STRUCTURE IN APPROXIMATION CLASSES 1775

that is, y is an r-approximate solution for x, and we can set lr(x) = m(x, y). (In this
case lr has been computed by only one query.)

2. a < 2k(k + 2)/ε: in this case, opt(x) < 2k(k + 2)/ε. Then,

opt(x) ≤ m(x, y) ≤ opt(x) + opt(x)ε/2 + k < opt(x) + k(k + 2) + k.

Clearly, dlog k(k + 3)e queries to NP are sufficient to find the optimum value opt(x)
by means of a binary search technique: in this case lr(x) = opt(x) has been computed
by dlog k(k + 3)e+ 1 queries.
Let L now be a language in AQH(A); then L ∈ PAr for some r > 1. Let f and g be
the functions witnessing that L ∈ PAr . Observe that, for any x, x ∈ L if and only if
there exists a solution y for f(x) such that m(f(x), y) ≥ lr(f(x)) and g(f(x), y) = 1;
that is, given lr(f(x)), deciding whether x ∈ L is an NP problem. Since lr(f(x))
is computable by means of at most dlog k(k + 3)e + 1 queries to NP, we have that
L ∈ PNP[h], where h = dlog k(k + 3)e+ 2.

The next proposition, instead, states that any language L in the query hierarchy
can be decided using just one query to Ar, where A is APX-complete and r depends
on the level of the query hierarchy L belongs to. In order to prove this proposition,
we need the following technical result to be realized.2

Lemma 4.7. For any APX-complete problem A and for any k, there exist two
polynomial-time computable functions f and g and a constant r such that the following
hold:

1. For any k-tuple (x1, . . . , xk) of instances of Partition, x = f(x1, . . . , xk) is
an instance of A.

2. If y is a solution of x whose performance ratio is smaller than r, then
g(x, y) = (b1, . . . , bk), where bi ∈ {0, 1} and bi = 1 if and only if xi is a yes-instance.

Proof. Let xi = (Ui, si) be an instance of Partition for i = 1, . . . , k. Without
loss of generality, we can assume that the Uis are pairwise disjoint and that, for any
i,
∑
u∈Ui si(u) = 2. Let w = (U, s,�) be an instance of Minimum Ordered Bin

Packing defined as follows. (A similar construction has been used in [39].)

1. U =
⋃k
i=1 Ui ∪ {v1, . . . , vk−1}, where the vis are new items.

2. For any u ∈ Ui, s(u) = si(u) and s(vi) = 1 for i = 1, . . . , k − 1.
3. For any i < j ≤ k, for any u ∈ Ui, and for any u′ ∈ Uj , u � vi � u′.

Any solution of w must be formed by a sequence of packings of U1, . . . , Uk such
that, for any i, the bins used for Ui are separated by the bins used for Ui+1 by means
of one bin which is completely filled by vi. In particular, the packings of the Uis in
any optimum solution must use either two or three bins: two bins are used if and
only if xi is a yes-instance. The optimum measure thus is at most 4k− 1 so that any
(1 + 1/(4k))-approximate solution is an optimum solution.

Since Minimum Ordered Bin Packing belongs to APX [43] and A is APX-
complete, there then exists an AP-reduction (f1, g1, α) from Minimum Ordered
Bin Packing to A. We can then define x = f(x1, . . . , xk) = f1(w, 1 + 1/(4αk)) and
r = 1 + 1/(4αk). For any r-approximate solution y of x, the fourth property of the
AP-reducibility implies that z = g1(x, y, 1 + 1/(4αk)) is a (1 + 1/(4k))-approximate

2Recall that the NP-complete problem Partition is defined as follows: given a set U of items
and a size function s : U → Q ∩ (0, 1], does there exist a subset U ′ ⊆ U such that∑

u∈U′
s(u) =

∑
u 6∈U′

s(u) ?

1776 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

solution of w and thus an optimum solution of w. From z, we can easily derive the
right answers to the k queries x1, . . . , xk.

We are now able to prove the following result.

Proposition 4.8. For any APX-complete problem A, QH ⊆ AQH(A).

Proof. Let L ∈ QH, then L ∈ PNP[h] for some h. It is well known (see, for instance,
[3]) that L can be reduced to the problem of answering k = 2h−1 nonadaptive queries
to NP. More formally, there exist two polynomial-time computable functions t1 and
t2 such that:

1. For any x, t1(x) = (x1, . . . , xk), where x1, . . . , xk are k instances of the
Partition problem.

2. For any (b1, . . . , bk) ∈ {0, 1}k, t2(x, b1, . . . , bk) ∈ {0, 1}.
3. If, for any j, bj = 1 if and only if xj is a yes-instance, then t2(x, b1, . . . , bk) = 1

if and only if x ∈ L.

Let now f , g, and r be the two functions and the constant of Lemma 4.7 applied
to problem A and constant k. For any x, x′ = f(t1(x)) is an instance of A such that
if y is an r-approximate solution for x′, then t2(g(x′, y)) = 1 if and only if x ∈ L.
Thus, L ∈ PAr .

By combining Propositions 4.5 and 4.8, we thus have the following theorem that
characterizes the approximation query hierarchy of the hardest problems in APX.

Theorem 4.9. For any APX-complete problem A, AQH(A) = QH.

Finally, we have the following result that states the existence of natural interme-
diate problems in APX.

Theorem 4.10. If the polynomial-time hierarchy does not collapse, then Min-
imum Bin Packing, Minimum Degree Spanning Tree, and Minimum Edge
Coloring are APX-intermediate.

Proof. From Proposition 4.6 and from the fact that Minimum Bin Packing is in
PTAS∞ [27], it follows that AQH(Minimum Bin Packing) ⊆ PNP[h] for a given h. If
Minimum Bin Packing is APX-complete, then from Proposition 4.8 it follows that
QH ⊆ PNP[h]. From Theorem 4.2 we thus have the collapse of the polynomial-time
hierarchy. The proofs for Minimum Degree Spanning Tree and Minimum Edge
Coloring are identical and use the results of [20, 17].

Observe that the previous result does not seem to be obtainable by using the
hypothesis P 6= NP, as shown by the following theorem.

Theorem 4.11. If NP = co-NP, then Minimum Bin Packing is APX-com-
plete.

Proof. Assume NP = co-NP; we will present an AP reduction from Maximum
Satisfiability to Minimum Bin Packing. Since NP = co-NP, there exists a non-
deterministic polynomial-time Turing machine M that, given in input an instance
φ of Maximum Satisfiability, has an accepting computation and all accepting
computations halt with an optimum solution for φ written on the tape. Indeed, M
guesses an integer k, an assignment τ such that m(φ, τ) = k, and a proof of the
fact that opt(φ) ≤ k. From the proof of Cook’s theorem it follows that, given φ, we
can find in polynomial time a formula φ′ such that φ′ is satisfiable and that given
any satisfying assignment for φ′, we can find in polynomial time an optimum solu-
tion for φ. By combining this construction with the NP-completeness proof of the
Minimum Bin Packing problem, we obtain two polynomial-time computable func-
tions t1 and t2 such that, for any instance φ of Maximum Satisfiability, t1(φ) = xφ
is an instance of Minimum Bin Packing such that opt(xφ) = 2 and, for any optimum
solution y of xφ, t2(xφ, y) is an optimum solution of φ. Observe that, by construction,

STRUCTURE IN APPROXIMATION CLASSES 1777

an r-approximate solution for xφ is indeed an optimum solution provided that r < 3/2.
Let T be a 4/3-approximate algorithm for Maximum Satisfiability [44, 19]. The
reduction from Maximum Satisfiability to Minimum Bin Packing is defined as
follows: f(φ, r) = t1(φ);

g(φ, y, r) =

{
T (φ) if r ≥ 4/3,
t2(t1(φ), y) otherwise.

It is easy to verify that the above is an AP-reduction with α = 1.
Finally, note that the above result can be extended to any APX problem which

is NP-hard to approximate within a given performance ratio.

4.1. A remark on MAXIMUM CLIQUE. The following lemma is the analogue
of Proposition 4.5 within NPO PB and can be proved similarly by binary search
techniques.

Lemma 4.12. For any NPO PB problem A and for any r > 1,

PAr ⊆ PNP[log log n+O(1)].

From this lemma, from the fact that PNP[log n] is contained in PMC1 , where MC
stands for Maximum Clique [30], and from the fact that if there exists a constant k
such that

PNP[log log n+k] = PNP[log n],

then the polynomial-time hierarchy collapses [42], it follows that the next result solves
an open question posed in [7]. Informally, this result states that it is not possible
to reduce the problem of finding a maximum clique to the problem of finding a 2-
approximate clique (unless the polynomial-time hierarchy collapses).

Theorem 4.13. If PMC1 ⊆ PMC2 then the polynomial-time hierarchy collapses.

5. Query complexity and completeness in approximation classes. In this
final section, we shall give a full characterization of problems complete for poly-APX
and APX, respectively—in terms of hardness of the corresponding approximation
problems with respect to classes of partial multivalued functions and in terms of
suitably defined combinatorial properties.

The classes of functions we will refer to have been introduced in [8] as follows.

Definition 5.1. FNPNP[q(n)] is the class of partial multivalued functions com-
putable by nondeterministic polynomial-time Turing machines which ask at most q(n)
queries to an NP oracle in the entire computation tree.3

In order to talk about hardness with respect to these classes we will use the
following reducibility, which is an extension of both metric reducibility [30] and one-
query reducibility [15] and has been introduced in [8].

Definition 5.2. Let F and G be two partial multivalued functions. We say that
F many-one reduces to G (in symbols, F≤mvG) if there exist two polynomial-time
algorithms t1 and t2 such that, for any x in the domain of F , t1(x) is in the domain
of G and, for any y ∈ G(t1(x)), t2(x, y) ∈ F (x).

The combinatorial property used to characterize poly-APX-complete problems is
the well-known self-improvability (see, for instance, [36]).

3We say that a multivalued partial function F is computable by a nondeterministic Turing
machine N if, for every x in the domain of F , there exists a halting computation path of N(x) and
any halting computation path of N(x) outputs a value in F (x).

1778 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

Definition 5.3. A problem A is self-improvable if there exist two algorithms t1
and t2 such that, for any instance x of A and for any two rationals r1, r2 > 1, x′ =
t1(x, r1, r2) is an instance of A and, for any y′ ∈ Ar2(x′), y = t2(x, y′, r1, r2) ∈ Ar1(x).
Moreover, for any fixed r1 and r2, the running time of t1 and t2 is polynomial.

We are now ready to state the first result of this section.

Theorem 5.4. A poly-APX problem A is poly-APX-complete if and only if it is
self-improvable and Ar0 is FNPNP[log log n+O(1)]-hard for some r0 > 1.

Proof. Let A be a poly-APX-complete problem. Since Maximum Clique is
self-improvable [18] and poly-APX-complete [28] and since the equivalence with re-
spect to the AP-reducibility preserves the self-improvability property (see [36]), we
have that A is self-improvable. It is then sufficient to prove that A2 is hard for
FNPNP[log log n+O(1)].

From the poly-APX-completeness of A we have that Maximum Clique ≤AP A:
let α be the constant of this reduction. From Theorem 12 of [8] we have that any

function F in FNPNP[log log n+O(1)] many-one reduces to Maximum Clique1+α. From
the definition of AP-reducibility, we also have that Maximum Clique1+α≤mvA2 so
that F many-one reduces to A2.

Conversely, let A be a poly-APX self-improvable problem such that, for some
r0, Ar0 is FNPNP[log log n+O(1)]-hard. We will show that, for any problem B in poly-
APX, B is AP-reducible to A. To this aim, we introduce the following partial multi-
valued function multisat: given an input sequence (φ1, . . . , φm) of instances of the
satisfiability problem with m ≤ log |(φ1, . . . , φm)| and such that, for any i, if φi+1

is satisfiable then φi is satisfiable, a possible output is a satisfying truth assignment
for φi∗ , where i∗ = max{i : φi is satisfiable}. From the proof of Theorem 12 of [8] it

follows that this function is FNPNP[log log n+O(1)]-complete.

By making use of techniques similar to those of the proof of Proposition 4.5, it is
easy to see that, since B is in poly-APX, there exist two algorithms tB1 and tB2 such
that, for any fixed r > 1, tB1 (·, r) and tB2 (·, ·, r) form a many-one reduction from Br
to multisat. Moreover, since Ar0 is FNPNP[log log n+O(1)]-hard, there then exists a
many-one reduction (tM1 , tM2) from multisat to Ar0 . Finally, let tA1 and tA2 be the
functions witnessing the self-improvability of A.

The AP-reduction from B to A can then be derived as follows:

x, r
tB1 (x,r)

−−−−−−−−−−−→ x′
tM1 (x′)

−−−−−−−−−−−→ x′′
tA1 (x′′,r0,r)−−−−−−−−−−−→ x′′′

↓
y

tB2 (x,y′,r)
←−−−−−−−−−−− y′

tM2 (x′,y′′)
←−−−−−−−−−−− y′′

tA2 (x′′,y′′′,r0,r)←−−−−−−−−−−− y′′′

It is easy to see that if y′′′ is an r-approximate solution for the instance x′′′ of A, then
y is an r-approximate solution of the instance x of B. That is, B is AP-reducible to
A with α = 1.

The above theorem cannot be proved without the dependency of both f and g
on r in the definition of AP-reducibility. Indeed, it is possible to prove that if only
g has this property then, unless the polynomial-time hierarchy collapses, there exists
a self-improvable problem A such that A2 is FNPNP[log log n+O(1)]-hard and A is not
poly-APX-complete.

In order to characterize APX-complete problems, we have to define a different
combinatorial property. Intuitively, this property states that it is possible to merge
several instances into one instance in an approximation preserving fashion.

STRUCTURE IN APPROXIMATION CLASSES 1779

Definition 5.5. An NPO problem A is linearly additive if there exist a constant
β and two algorithms t1 and t2 such that, for any rational r > 1 and for any sequence
x1, . . . , xk of instances of A, x′ = t1(x1, . . . , xk, r) is an instance of A and, for any y′ ∈
A1+(r−1)β/k(x′), t2(x1, . . . , xk, y

′, r) = y1, . . . , yk, where each yi is an r-approximate
solution of xi. Moreover, the running time of t1 and t2 is polynomial for every fixed
r.

Theorem 5.6. An APX problem A is APX-complete if and only if it is linearly
additive and there exists a constant r0 such that Ar0 is FNPNP[1]-hard.

Proof. Let A be an rA-approximable APX-complete problem. From the proof
of Proposition 4.8 there exists a constant r0 such that Ar0 is hard for FNPNP[1]. In
order to prove the linear additivity, fix any r > 1 and let x1, . . . , xk be instances of
A. Without loss of generality, we can assume r < rA (otherwise the k instances can
be r-approximated by using the rA-approximate algorithm). For any i = 1, . . . , k the
problem of finding an r-approximate solution yi for xi is reducible to the problem
of constructively solving a set of dlogr rAe instances of Partition. Observe that
dlogr rAe ≤ c/(r − 1) for a certain constant c depending on rA. Moreover, we claim
that there exists a constant γ such that constructively solving kc/(r − 1) instances
of Partition is reducible to (1 + γ(r − 1)/kc)-approximating a single instance of A
(indeed, this can be shown along the lines of the proof of Proposition 4.8). That is,
A is linearly additive with β = γ/c.

Conversely, let A be a linearly additive APX problem such that Ar0 is FNPNP[1]-
hard for some r0 and let B be an rB-approximable problem. Given an instance x of B,
for any r > 1 we can reduce the problem of finding an r-approximate solution for x to
the problem of constructively solving c/(r − 1) instances of Partition, for a proper
constant c not depending on r. Each of these questions is reducible to Ar0 , since

any NP problem can be constructively solved by an FNPNP[1] function. From linear
additivity, it follows that r0-approximating c/(r − 1) instances of A is reducible to
(1+β(r0−1)(r−1)/c)-approximating a single instance of A. This is an AP-reduction
from B to A with α = c/(β(r0 − 1)).

Note that linear additivity plays for APX more or less the same role of self-
improvability for poly-APX. These two properties are, in a certain sense, opposites:
while the ability of APX-complete approximation problems to solve decision problems
depends on the performance ratio and does not depend on the size of the instance,
the usefulness of poly-APX-complete approximation problems depends on the size of
the instance and does not depend on the performance ratio. Indeed, it is possible to
prove that no APX-complete problem can be self-improvable (unless P = NP) and
that no poly-APX-complete problem can be linearly additive (unless the polynomial-
time hierarchy collapses).

It is now an interesting question to find a characterizing combinatorial prop-
erty of log-APX-complete problems. Indeed, we have not been able to establish this
characterization; at present, we can state only that it cannot be based on the self-
improvability property as shown by the following result.

Theorem 5.7. No log-APX-complete problem can be self-improvable unless the
polynomial-time hierarchy collapses.

Proof. Let us consider the following optimization problem.

Max Number of Satisfiable Formulas (MNSF).

Instance: Set of m Boolean formulas φ1, . . . , φm in 3CNF, such that φ1 is a tautology
and m ≤ log n, where n is the size of the input instance.

Solution: Truth assignment τ to the variables of φ1, . . . , φm.
Measure: The number of satisfied formulas, i.e., |{i : φi is satisfied by τ}|.

1780 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

Clearly, MNSF is in log-APX, since the measure of any assignment τ is at least 1,
and the optimum value is always smaller than logn, where n is the size of the input.
We will show that, for any r < 2, MNSFr is hard for FNPNP[log log log n−1].

Given log logn queries to an NP-complete language (of size polynomial in n)
x1, . . . , xlog log n, we can construct an instance Φ = φ1, . . . , φm of MNSF, where φ1 is
a tautology and, for i ≥ 1, the formulas φ2i = · · · = φ2i+1−1 are satisfiable if and
only if at least i instances among x1, . . . , xlog log n are yes-instances (these formulas
can be easily constructed using the standard proof of Cook’s theorem). Note that
m = 2log log n+1 − 1 and, by adding dummy clauses to some formulas, we can achieve
the bound m ≤ log |φ1, . . . , φm|. Moreover, from an r-approximate solution for Φ we
can decide how many instances in x1, . . . , xlog log n are yes-instances, and we can also

recover solutions for such instances. That is, any function in FNPNP[log log log n−1] is
many-one reducible to MNSFr.

Let A be a self-improvable log-APX-complete problem. Then, for any function
F ∈ FNPNP[log log log n−1], F≤mvMNSF1.5≤mvA1+α/2≤mvA216 , where α is the con-
stant in the AP-reduction from MNSF to A and where the last reduction is due
to the self-improvability of A. Thus, for any x, computing F (x) is reducible to
finding a 216-approximate solution for an instance x′ with |x′| ≤ |x|c for a cer-
tain constant c. Since A ∈ log-APX, it is possible to find in polynomial time a
(k log |x′|)-approximate solution y for x′ where k is a constant. From y, by means
of binary search techniques, we can find a 216-approximate solution for x′ using
dlogdlog216(k log |x′|)ee ≤ logdlog log |x|kce − 3 ≤ log log log |x| − 2 adaptive queries
to NP where the last inequality surely holds for sufficiently large |x|. Thus,

FNPNP[log log log n−1] ⊆ FNPNP[log log log n−2]

which implies the collapse of the polynomial-time hierarchy [42].
As a consequence of the above theorem and of the results of [28], we conjecture

that the minimum set cover problem is not self-improvable.

REFERENCES

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, in Proc. 33rd IEEE Symp. on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, CA, 1992, pp. 14–23.

[2] J. L. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I, Springer-Verlag, Berlin,
New York, 1988.

[3] R. Beigel, Bounded queries to SAT and the Boolean hierarchy, Theoret. Comp. Sci., 84 (1991),
pp. 199–223.

[4] P. Berman, and G. Schnitger, On the complexity of approximating the independent set
problem, Inform. and Comput., 96 (1992), pp. 77–94.

[5] D. P. Bovet and P. Crescenzi, Introduction to the Theory of Complexity, Prentice Hall,
London, 1994.

[6] L. Cai, Nondeterminism and Optimization, Ph.D. thesis, Department of Computer Science,
Texas A&M University, College Station, TX, 1994.

[7] R. Chang, On the query complexity of clique size and maximum satisfiability, in Proc. 9th IEEE
Structure in Complexity Theory Conf., IEEE Computer Society Press, Los Alamitos, CA,
1994, pp. 31–42.

[8] R. Chang, A machine model for NP-approximation problems and the revenge of the Boolean
hierarchy, EATCS Bulletin, 54 (1994), pp. 166–182.

[9] R. Chang, W. I. Gasarch, and C. Lund, On Bounded Queries and Approximation, Technical
Report TR CS-94-05, Department of Computer Science, University of Maryland Baltimore
County, Baltimore, MD, 1994.

[10] S. A. Cook, The complexity of theorem proving procedures, in Proc. 3rd ACM Symp. on Theory
of Computing, ACM, New York, 1971, pp. 151–158.

STRUCTURE IN APPROXIMATION CLASSES 1781

[11] P. Crescenzi, A short guide to approximation preserving reductions, in Proc. 12th IEEE
Conference on Computational Complexity, IEEE Computer Society Press, Los Alamitos,
CA, 1997, pp. 262–273.

[12] P. Crescenzi and V. Kann, A Compendium of NP Optimization Problems, Technical Re-
port SI/RR-95/02, Dipartimento di Scienze dell’Informazione, Università di Roma “La
Sapienza,” http://www.nada.kth.se/theory/compendium/ (1995).

[13] P. Crescenzi and V. Kann, Approximation on the web: a compendium of NP optimization
problems, in Proc. Int. Workshop on Randomization and Approximation Techniques in
Computer Science, Lecture Notes in Comput. Sci. 1269, Springer-Verlag, New York, 1997,
pp. 111–118.

[14] P. Crescenzi and A. Panconesi, Completeness in approximation classes, Inform. and Com-
put., 93 (1991), pp. 241–262.

[15] P. Crescenzi and R. Silvestri, Relative complexity of evaluating the optimum cost and con-
structing the optimum for maximization problems, Inform. Process. Lett., 33 (1990), pp.
221–226

[16] P. Crescenzi and L. Trevisan, On approximation scheme preserving reducibility and its
applications, in Proc. 14th Conf. on Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Comput. Sci. 880, Springer-Verlag, New York, 1994,
pp. 330–341.

[17] M. Fürer and B. Raghavachari, Approximating the minimum degree spanning tree to within
one from the optimal degree, in Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms,
SIAM, Philadelphia, 1992, pp. 317–324.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, New York, 1979.

[19] M. X. Goemans and D. P. Williamson, New 3/4-approximation algorithms for the maximum
satisfiability problem, SIAM J. Discrete Math., 7 (1994), pp. 656–666.

[20] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput., 10 (1981), pp. 718–720.
[21] R. Impagliazzo and M. Naor, Decision trees and downward closures, in Proc. 3rd IEEE

Structure in Complexity Theory Conf., IEEE Computer Society Press, Los Alamitos, CA,
1988, pp. 29–38.

[22] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci.,
9 (1974), pp. 256–278.

[23] J. Kadin, The polynomial time hierarchy collapses if the Boolean hierarchy collapses, SIAM
J. Comput., 17 (1988), pp. 1263–1282.

[24] J. Kadin, Erratum: The polynomial time hierarchy collapses if the Boolean hierarchy collapses,
SIAM J. Comput., 20 (1991), p. 404.

[25] V. Kann, On the Approximability of NP-Complete Optimization Problems, Ph.D. thesis, De-
partment of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm, 1992.

[26] V. Kann, Polynomially bounded minimization problems that are hard to approximate, Nordic
J. Comput., 1 (1994), pp. 317–331.

[27] N. Karmarkar and R. M. Karp, An efficient approximation scheme for the one-dimensional
bin packing problem, in Proc. 23rd IEEE Symp. on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, CA, 1982, pp. 312–320.

[28] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani, On syntactic versus computational
views of approximability, in Proc. 35th IEEE Symp. on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 819–830.

[29] P. G. Kolaitis and M. N. Thakur, Approximation properties of NP minimization classes,
in Proc. 6th IEEE Structure in Complexity Theory Conf., IEEE Computer Society Press,
Los Alamitos, CA, 1991, pp. 353–366.

[30] M. W. Krentel, The complexity of optimization problems, J. Comput. System Sci., 36 (1988),
pp. 490–509.

[31] R. E. Ladner, On the structure of polynomial-time reducibility, J. ACM, 22 (1975), pp. 155–
171.

[32] T. J. Long, On γ-reducibility versus polynomial time many-one reducibility, Theoret. Comput.
Sci., 14 (1981), pp. 91–101.

[33] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems, J.
ACM, 41 (1993), pp. 960–981.

[34] R. Motwani, Lecture Notes on Approximation Algorithms, Technical Report STAN-CS-92-
1435, Department of Computer Science, Stanford University, Stanford, CA, 1992.

[35] P. Orponen and H. Mannila, On Approximation Preserving Reductions: Complete Problems
and Robust Measures, Technical Report C-1987-28, Department of Computer Science, Uni-
versity of Helsinki, Helsinki, Finland, 1987.

1782 P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN

[36] A. Panconesi and D. Ranjan, Quantifiers and approximation, Theoret. Comput. Sci., 107
(1993), pp. 145–163.

[37] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[38] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity

classes, J. Comput. System Sci., 43 (1991), pp. 425–440.
[39] M. Queyranne, Bounds for assembly line balancing heuristics, Oper. Res., 33 (1985), pp.

1353–1359.
[40] U. Schöning, Graph isomorphism is in the low hierarchy, in Proc. 4th Symp. on Theoretical

Aspects of Computer Science, Lecture Notes in Comput. Sci. 247, Springer-Verlag, New
York, 1986, pp. 114–124.

[41] H. U. Simon, Continuous reductions among combinatorial optimization problems, Acta In-
form., 26 (1989), pp. 771–785.

[42] K. Wagner, Bounded query computations, in Proc. 3rd IEEE Structure in Complexity Theory
Conf., IEEE Computer Society Press, Los Alamitos, CA, 1988, pp. 260–277.

[43] T. S. Wee and M. J. Magazine, Assembly line balancing as generalized bin packing, Oper.
Res. Lett., 1 (1982), pp. 56–58.

[44] M. Yannakakis, On the approximation of maximum satisfiability, J. Algorithms, 17 (1994),
pp. 475–502.

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS∗

MAURIZIO TALAMO† AND PAOLA VOCCA‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1783–1805

Abstract. In this paper, we consider the representation and management of an element set on
which a lattice partial order relation is defined.

In particular, let n be the element set size. We present an O(n
√
n)-space implicit data structure

for performing the following set of basic operations:
1. Test the presence of an order relation between two given elements, in constant time.
2. Find a path between two elements whenever one exists, in O(l) steps, where l is the path

length.
3. Compute the successors and/or predecessors set of a given element, in O(h) steps, where

h is the size of the returned set.
4. Given two elements, find all elements between them, in time O(k log d), where k is the size

of the returned set and d is the maximum in-degree or out-degree in the transitive reduction of the
order relation.

5. Given two elements, find the least common ancestor and/or the greatest common successor
in O(

√
n)-time.
6. Given k elements, find the least common ancestor and/or the greatest common successor

in O(
√
n+ k logn)time. (Unless stated otherwise, all logarithms are to the base 2.)

The preprocessing time is O(n2). Focusing on the first operation, representing the building-
box for all the others, we derive an overall O(n

√
n)-space× time bound which beats the order n2

bottleneck representing the present complexity for this problem. Moreover, we will show that the
complexity bounds for the first three operations are optimal with respect to the worst case. Addi-
tionally, a stronger result can be derived. In particular, it is possible to represent a lattice in space
O(n
√
t), where t is the minimum number of disjoint chains which partition the element set.

Key words. data structure, lattices, reachability, least common ancestors, graph decomposition

AMS subject classifications. 06B99, 68P05, 68P25, 68R10

PII. S0097539794274404

1. Introduction. The study of partial orders (posets) efficient representation,
from either space or query time point of view, has been extensively tackled in the
last few years, as it is a basic problem in many fields of applications. For instance,
posets representation is needed when the elements are points in the d-dimensional
space over which we wish to perform a dominance test or range query (computational
geometry [16]); when the elements are sets and we want to perform a containment or
intersection query (knowledge bases [1, 2]; object-oriented and semantic data models
[19]); when the elements are vertices of a directed acyclic graph over which binary
relations are defined (taxonomy, graph traversal, distributed computing [25, 26], etc.),
and when we wish to perform the reachability test.

In general, posets are involved in all applications dealing with traversing sets of
items over which an order relation is defined [28, 18, 33, 9].

When the order relation is complex, for example when the order dimension is
proportional to the size of the element set, then these problems cannot be efficiently

∗Received by the editors September 19, 1994; accepted for publication (in revised form) May 22,
1998; published electronically May 13, 1999. This work was supported by the Italian Authority for
Public Administration and the ESPRIT Basic “Research Action on Algorithms and Data Structure”
20244 (ALCOM-IT).

http://www.siam.org/journals/sicomp/28-5/27440.html
†Italien Authority for Public Administration and Dipartimento di Informatica e Sistemistica,

Università di Roma “La Sapienza,” Via Salaria 113, I-00198 Rome, Italy (talamo@dis.uniroma1.it).
‡Dipartimento di Matematica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica,

I-00133 Rome, Italy (vocca@axp.mat.uniroma2.it).

1783

1784 MAURIZIO TALAMO AND PAOLA VOCCA

solved using the well-known techniques.

In this paper we show that for partial lattices it is possible to efficiently compute
a set of basic operations. In particular, adopting a graph theoretic notation, given
a directed acyclic graph (dag) G = (V,E), we present an implicit data structure for
efficiently performing the following operations:

1. reachability(x, y). Given x, y ∈ V , tests the presence of a directed path
from x to y; returns true if such a path exists, false otherwise.

2. path(x, y). Given x, y ∈ V , returns a path from x to y, if at least one such
path exists.

3. succ(x). Given x ∈ V , returns the set of all successors of x.
4. pred(x). Given x ∈ V , returns the set of all predecessors x.
5. range(x, y). Given x, y ∈ V , returns all vertices in all the directed paths

connecting x to y.
6. lub(x, y). Given x, y ∈ V , returns the least upper bound between x and y.
7. glb(x, y). Given x, y ∈ V , returns the greatest lower bound between x and

y.
8. lub(x1, . . . , xk). Given x1, . . . , xk ∈ V , returns the least upper bound of

x1, . . . , xk.
9. glb(x1, . . . , xk). Given x1, . . . , xk ∈ V , returns the greatest lower bound of

x1, . . . , xk.

The idea is to minimize the storage complexity while efficiently performing the
above operations. In particular, the aim is to be able to test reachability in O(1).
reachability captures connectivity information and hence is a basic operation for
digraphs management.

Without loss of generality, we prove all theorems under the assumption that
G = (V,E) is connected; hence if |V | = n and |ET | = m, where ET is the edge set
of the transitive reduction graph, then m ≥ n− 1. In the case of nonconnected dags,
all our results can be applied to each connected component without any change in
complexity bounds.

Although a lot of work has been done in this field, it is still an open problem
of how to represent partial order relations with a worst case time× space complexity
less than o(n2). This problem is difficult because of “naive” representations, such
as explicitly representing the whole transitive closure G∗, at one extreme, or testing
reachability on G by means of DFS traversal, for example, at the other. Both require
Ω(n2) time× space in the worst case.

There is an additional reason for the importance of this open problem: under-
standing the complexity of directed graph versus undirected graph traversal. In fact,
there was considerable empirical evidence (in terms of the efficiency of algorithms that
have been discovered) that reachability in directed graphs is “harder” than reacha-
bility in undirected graphs. This has been proven to be substantially true in [4]. For
instance, although directed graphs can be traversed nondeterministically in polyno-
mial time and logarithmic space simultaneously, there is evidence that they cannot be
traversed deterministically in polynomial time and small space simultaneously [31]. In
contrast, the undirected s-t connectivity can be performed deterministically in poly-
nomial time and sublinear space [6], and undirected graphs can be generally traversed
in polynomial time and logarithmic space probabilistically by using a random walk
[5, 10]; this implies similar resource bounds on (nonuniform) deterministic algorithms
[5]. Moreover, using simple techniques, efficient data structures for undirected graphs
have been developed for the dynamic maintenance of several graph properties [14].

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1785

The gap in efficiency between directed graphs and nondirected graphs for reach-
ability problem management is mainly due to the nonsymmetry of the reachability
relation. Moreover, the harder case is when the graph is acyclic, in the sense that the
problem for general graphs can be reduced in linear time to the acyclic case. In fact,
we can partition the vertex set of the graph into strongly connected components (e.g.,
using depth-first search) and then shrink the components to form an acyclic graph
(see [3]).

Therefore, efficient solutions to the reachability problem have been found for
special classes of dags [17, 26, 30] exploiting the order dimension property of the
associated posets [13]. In this context, the partial orders considered are those having
a constant order dimension [21]. Informally speaking, a partial order having order
dimension k, with k ≥ 1 a constant value, can be represented using Θ(kn) space,
where n is the element set size, while testing partial order relationship in O(k) time.

Unfortunately, since posets can have nonconstant order dimension, this technique
cannot be extended to general digraphs [24]. In particular, this is true for partial
lattices. Another approach that was studied, allowing derivation of an efficient repre-
sentation for interval orders and a distributive lattice, is based on the representation
of a poset by subsets of an n set [23, 8].

Hence, although there are strategies for dealing with restricted classes of dags
optimal for time× space complexity, there is no uniform approach for general directed
graphs. This is due mainly to intrinsic deficiencies of the general schema adopted by
most of the widely accepted strategies for reachability problem resolution. In fact, the
key idea is to decompose a dag G into a collection F of sparse dags Gi representing a
covering of the graph G∗, the transitive closure of G.

In particular, for any dag G = (V,E), a collection F = {G1, . . . , Gk} must satisfy
the following property:

(i) 〈x, y〉 ∈ G∗ ⇔ ∃Gi ∈ F such that 〈x, y〉 ∈ G∗i .
This property is nice for the design of efficient algorithms as it allows us to search

locally only and not in the whole graph. On the other hand, using this approach
presents two main problems.

The first problem is how to bound the overall space complexity. In fact, a trivial
solution to the above approach is to represent a dag G by means of an n-element
collection F , with each element representing the subgraph induced by all vertices
connected to a given vertex. However, it can be easily seen that this approach requires
O(n2) space.

The second problem is how to derive connectivity information in an efficient way
with respect to the time complexity. In fact, a “naive” application of the decom-
position technique, optimal from the space complexity point of view, is based on a
one-element set F , containing the transitive reduction of G. Unfortunately, in this
case, the time complexity is O(m).

In this paper, we present a two-level decomposition strategy, previously intro-
duced in [28, 29] but now extended to deal with a more general set of operations,
which balances time and space complexities.

In particular, we will prove the following.

Theorem 1.1. Let G = (V,E) be a dag satisfying lattice property, with n = |V |.
An O(n

√
n)-space implicit data structure exists allowing us to perform the following:

1. reachability(x, y) in time O(1);
2. path(x, y) in time O(l), where l is the path length;
3. succ(x) in time O(h), where h is the size of the returned set;

1786 MAURIZIO TALAMO AND PAOLA VOCCA

4. pred(x) in time O(h), where h is the size of the returned set;
5. range(x, y) in time O(k log d), where k is the size of the returned set and d

is the maximum in-degree or out-degree in the transitive reduction graph;
6. lub(x, y) in time O(

√
n);

7. glb(x, y) in time O(
√
n);

8. lub(x1, . . . , xk) in time O(
√
n+ k log n);

9. glb(x1, . . . , xk) in time O(
√
n+ k log n);

Moreover, the preprocessing time is O(n2) and all bounds are worst case.

Results of Theorem 1.1 are a bit surprising. In fact, in some cases, e.g., when
|E| = Ω(n

√
n), our decomposition technique makes a compression of G = (V,E). It

is worth noting that the complexity bounds obtained do not break any information
theoretic lower bound and are optimal with respect to the worst case, as shown in the
following proposition.

Proposition 1.1 (see [22]). Let L(n) be the number of labeled lattices with n
elements. Then

L(n) < α(n
√
n+o(n

√
n)),

where α is a constant (about 6.11343).

Furthermore, starting from Theorem 1.1, a stronger result can be derived. In
particular, it is possible to represent a partial lattice in space O(n

√
t) with the same

time bound for all the operations of Theorem 1.1, where t is the minimum number of
disjoint chains which partition the element set. This is an important result, since it
provides a tight characterization of the complexity of partial lattices. In fact, based
on Dilworth’s theorem [12], t is equal to the width of the lattice.

As will be evident in the following, the proposed data structure cannot be straight-
forwardly applied to general digraphs. Therefore, in this case, it could represent a
good heuristic method for testing reachability which takes into account the sparseness
of the graph.

The paper is organized as follows. In section 2, some basic definitions are given;
in section 3, both the basic decomposition strategy and the data structure are pre-
sented; in section 4, using a classification of the vertex set, the final version of the
decomposition strategy is given; in section 5, an extended version of the data struc-
ture is given and the overall space complexity is analyzed; in section 6, time bounds
for all operations of the main theorem are stated; finally, in section 7, future research
is described.

2. Preliminaries. In this section, we briefly describe the notation used and give
some basic definitions useful for the following. More definitions on graphs and posets
can be found in textbooks such as [7, 11, 15].

Directed graphs are denoted G = (V,E), where V is the set of vertices or elements
and E is the set of edges or arcs. Whenever the vertex set is not explicitly defined, it
is denoted V ert(G).

In a directed graph, the in-degree of a vertex x is the number of edges directed
towards x, denoted Indeg(x). Analogously, the out-degree of x (Outdeg(x)) is the
number of edges directed away from v.

A partially ordered set (poset) P = (≺,N) is an irreflexive, asymmetric, and
transitive relation on the element set N . We denote � the reflexive relation associated
with P. Two elements x, y are incomparable (denoted x ∼ y), if neither x � y nor
y � x.

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1787

z

u v

w

x

Fig. 1. Lattice property.

An element z ∈ N is an upper bound of x, y ∈ N if x � z and y � z. The element
z is called the least upper bound of x and y, denoted lub(x, y), if z � w for all upper
bounds w of x and y. The greatest lower bound, denoted glb(x, y), is defined dually.

A lattice is a partial order L = (≺,N) such that every two x, y ∈ N have both a
least upper bound and a greatest lower bound.

For a given partial order P = (≺,N), it is always possible to find a linear extension
of P, i.e., a total order which is consistent with P. There always exists such a linear
extension, and the intersection of all linear extensions of P = (≺,N) is P = (≺,N).
A minimal set R of linear extensions of P = (≺,N) whose intersection is P = (≺,N)
is called a realizer of P = (≺,N), and the order dimension of P = (≺,N) is the
minimum cardinality of any realizer of P = (≺,N).

Given a poset P = (≺,N), its st-completion is the poset obtained by adding to
N two elements labeled s and t and extending ≺ with the following order relations:
s ≺ x and x ≺ t ∀x ∈ N .

Posets whose st-completion is a lattice are partial lattices. Other authors refer to
this class of poset as truncated lattices [27].

Given a directed acyclic graph (dag) G = (V,E), the associated partial order is
the poset PG = (≺, V) such that, for all u, v ∈ V , u ≺ v if and only if 〈u, v〉 ∈ E∗,
where E∗ is the edge set of the transitive closure graph G∗ = (V,E∗).

Definition 2.1. A dag G = (V,E) satisfies the lattice property if and only if
the associated partial order is a partial lattice.

From the definition, the following property trivially follows and will be useful for
the following (see Figure 1).

Proposition 2.1. A dag G = (V,E) satisfies the lattice property if and only if,
for every four vertices (u, v, z, w) ∈ V , if four directed paths exist, pairwise disjoint
except for at most the extremal vertices, having as endpoints pairs of vertices 〈u,w〉,
〈u, z〉, 〈v, w〉, and 〈v, z〉, then there exist a vertex x and four paths having as endpoints
pairs of nodes 〈u, x〉, 〈v, x〉, 〈x, z〉, and 〈x, z〉.

Obviously, partial lattices always satisfy the above property.

3. Decomposition strategy: Basic version. Regarding what was said in the
introduction, a general problem of a decomposition technique is the choice of the
decomposition criteria. Our key idea is to use a two-stage decomposition, with each
stage having its own decomposition criteria.

In particular, given a dag G = (V,E) satisfying the lattice property, at the first
stage we partition V in a sequence of sets, or clusters, denoted Clus(c), where c ∈ V
is a representative vertex.

At the second stage, for each cluster Clus(c), we choose a suitable collection
of digraphs (double tree or DT (u, c)), representing all the connectivity information
between vertices in Clus(c) and vertices in V − Clus(c).

1788 MAURIZIO TALAMO AND PAOLA VOCCA

Each double tree collection associated with a cluster represents the basic element
of the proposed decomposition strategy.

For every two vertices x, y, with x ∈ Clus(c), the corresponding collection
{DT (u, c)|u ∈ Clus(c)} satisfies the following property: x is connected to y in G
if and only if at least one DT (ui, c) ∈ {DT (u, c)} exists such that x is connected to y
in DT (ui, c).

As we will show in section 4, operating on the cluster size it is possible to bound
the overall space complexity, while realizing, with the second level decomposition, a
constant reachability test.

For the sake of simplicity, we first illustrate the decomposition strategy and the
corresponding data structure with no constraint on cluster size.

3.1. Clusters. We now give a formal definition of a cluster and state its main
properties.

Definition 3.1. Given a vertex c ∈ V , let Clus+(c) = {Pred(c) ∪ c} and
Clus−(c) = {Succ(c) ∪ c}, where Pred(c) and Succ(c) are the sets of predecessors
and successors of c. A cluster is either Clus+(c) or Clus−(c) for some c ∈ V .

In the following, when no confusion is possible, we will use Clus(c) to denote
either Clus+(c) or Clus−(c).

Let v ∈ V − Clus(c). The following lemma shows an important relationship
between two different clusters, Clus(c) and Clus(v).

Lemma 3.1. If Clus+(c)∩Clus+(v) = I, then lub(I) ∈ I. Dually, if Clus−(c)∩
Clus−(v) = I, then glb(I) ∈ I.

Proof. By the cluster definition, for any two elements x, y ∈ Clus+(c), lub(x, y) ∈
Clus+(c). In fact, assume for contradiction that lub(x, y) 6∈ Clus+(c). Then the
following three conditions simultaneously hold:

(i) x ≺ c,
(ii) y ≺ c,
(iii) lub(x, y) ∼ c.

This contradicts Proposition 2.1.
In order to prove the lemma we have to show that Clus+(c)∩Clus+(v) does not

have two distinct maximal elements. Let us now assume that two maximal elements
x, y ∈ Clus+(c) ∩ Clus+(v) exist, with x 6= y. Then we have

(i) lub(x, y) ∈ Clus+(c),
(ii) lub(x, y) 6∈ Clus+(v) ⇒ lub(x, y) ∼ v.

However, this once again contradicts Proposition 2.1. A similar reasoning holds
for Clus−(c) ∩ Clus−(v). The lemma is so proved by contradiction.

Lemma 3.2. Let G = (V,E) be a dag satisfying the lattice property and Clus(c)
a cluster. Then G′ = (V −Clus(c), E′) is a dag satisfying the lattice property, where
E′ is the set of edges of the subgraph induced by V − Clus(c).

Proof. The proof is an obvious consequence of the cluster definition.

3.2. Double trees. Given a cluster Clus(c), let us refer to vertices in Clus(c)
and in V − Clus(c) as internal and external vertices, respectively. In particular,
we denote by Ext(Clus(c)) the set of all external vertices connected to at least one
internal vertex.

The problem of maintaining all the connectivity information related to a given
cluster can be split into the following two subproblems: (i) the representation of the
connectivity relationships between internal vertices and (ii) the representation of the
connectivity relationships between internal and external vertices.

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1789

c

v +

w

AA
AA
AA
AA
AA

AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AA
AA
AA
AA
A
A

A
A
A
A

AA
AA
AA
AA
AAAAA

AAA
AAA

AAAAAAA
AAAAAAA

AAA
AAA
AAAAAAAAA

A
A
A
AA
AA
AA

AA
AA

AAA
AAA
AA
AA
AAAAAAAAA
AAAAA
AAAAAAA
AAAAAAA
AAAAAAA
AAAAAAA

AAAA
AAAAAAAA

AAAA
A
A

AA
AA
AA

AA
AA

AAAAAA
AAA

AAA
AAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAAA
AAAAAA
AAAAAA

AAA
AAAAAA
AAAAA

AA
AA
A

AA
AA

AAAAAAAAA

v

DT(w,c)

DT(v,c)

z Clus(c)

Fig. 2. Double tree decomposition.

We solve the first problem by computing for each internal vertex u a spanning
tree of the graph induced by the set Pred(u)∩Clus(c) or by the set Succ(u)∩Clus(c),
depending on whether Clus(c) is a Clus+(c) or a Clus−(c). Hence, to each internal
vertex u ∈ Clus(c) there is associated a tree rooted at u, the internal tree induced by
u, denoted IntTree(u, c).

For the second problem, from Lemma 3.1, given an external vertex v, the pair
(v, Clus(c)) univocally identifies a vertex u ∈ Clus(c) representing either the
lub(Clus+(c)∩Clus+(v)) or the glb(Clus−(c)∩Clus−(v)). This implies that, given
a cluster Clus(c) for each external vertex v connected to at least one vertex in Clus(c),
an internal vertex u, the internal representative of the external vertex v exists, uni-
vocally identifying the internal tree IntTree(u, c) made up of all internal vertices
connected to v.

Let Ext(u) be the set of external vertices having u as an internal representative
vertex. Obviously, we have

Ext(Clus(c)) =
⋃

u∈Clus(c)
Ext(u).

For each set Ext(u), we compute a spanning tree, rooted at u, of the subgraph
induced by Ext(u). We refer to this tree as the external tree induced by u, denoted
ExtTree(u, c) (see Figure 2). The external trees in {ExtTree(u, c)|u ∈ Clus(c)} have
the nice property of being pairwise disjoint, as shown in the following lemma.

Lemma 3.3. Let v, w ∈ Clus(c), with v 6= w. Then ExtTree(v, c)∩ExtTree(w, c)
= ∅.

Proof. Let us assume for contradiction that y ∈ ExtTree(v, c) ∩ ExtTree(w, c).
By the external tree definition, y is associated with both v and w. This contradicts
the uniqueness of the representative vertex stated in Lemma 3.1. The proof follows
by contradiction.

Definition 3.2. Given a cluster Clus(c) and the two collections {IntTree(u, c)}
and {ExtTree(u, c)} of internal and external trees, for each u ∈ Clus(c) a double tree

1790 MAURIZIO TALAMO AND PAOLA VOCCA

is defined as

DT (u, c) = IntTree(u, c) ∪ ExtTree(u, c).

A double tree represents the basic decomposition subgraph and, informally speak-
ing, is the union of an internal tree and the external tree rooted at the same internal
vertex, whenever the internal and external trees exist.

Each double tree DT (u, c) is associated with a partial order having order dimen-
sion 2, because its st-completion is a planar poset with one greatest element and
one least element [32]. The first consequence of the above property is that DT (u, c)
is representable with two linear extensions L1 and L2; that is, given two vertices
x, y ∈ DT (u, c), y is reachable from x if and only if x < y in both linear exten-
sions. In particular, two labels (coordinates) (x1, x2) are associated with any vertex
x ∈ DT (u, c), each one representing an x position within the first and second linear
extensions, respectively.

The proof of the following proposition can be found in [20].
Proposition 3.1. Given x, y ∈ DT (u, c), reachability(x, y) = true in DT (u, c)

if and only if (x1, x2) < (y1, y2).
From the above proposition Corollary 3.4 easily follows.
Corollary 3.4. Given a double tree DT (u, c), such that |V ert(DT (u, c))| = K,

an O(K)-space implicit data structure exists for performing a reachability test in
O(1)-time.

3.3. Basic decomposition strategy. The decomposition strategy we propose
first generates a collection of clusters and then, for each cluster, builds the corre-
sponding decomposition elements (double tree collection).

procedure BasicBuildClusters;

1. begin;
2. C := ∅; {Cluster Collection}
3. while V 6= ∅ do
4. begin;
5. Choose a cluster Clus(c); {either Clus+(c) or Clus−(c)}
6. C := C ∪ Clus(c);
7. V := V − Clus(c);
8. end;
9. return C;
10. end.

The cluster collection returned is the input to the following procedure which
builds, for each cluster, the associated double trees collection representing the decom-
position elements on which we base our data structure.

procedure BasicDecomposition (C : Cluster Collection);
1. for each Clus(c) ∈ C;
2. begin
3. for each u ∈ Clus(c) Build {DT (u, c)};
4. return Clus(c) and {DT (u, c)};

{Returns the current cluster and double tree collection}
5. end;

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1791

Hence, a dag G = (V,E) induces two collections of subgraphs,
C = 〈Clus(c1), . . . , Clus(ck)〉,
T = 〈{DT (u1,j , c1)} , . . . , {DT (uk,j , ck)}〉 for all ui,j ∈ Clus(ci),

satisfying the following invariants. Let x ∈ V .
(i) x belongs to one and only one cluster Clus(ci) (for construction, see line 7 of

the BasicBuildClusters procedure);
(ii) given a cluster Clus(cj) different from the one to which x belongs according

to (i), x belongs to at most one DT (uj,i, cj) as an external vertex (Lemma 3.3);
(iii) given a cluster Clus(ci), each element of the collection {DT (ui,j , ci)} is, by

definition, univocally identified by the element ui,j ∈ Clus(ci).
To prove the correctness of the proposed strategy we show that the double tree

collection is a covering of the given graph.
Theorem 3.5. Given a dag G = (V,E) satisfying the lattice property and x, y ∈

V , reachability(x, y) = true in G = (V,E)if and only reachability(x, y) = true
in DT (u, c), for at least one DT (u, c) ∈ T .

Proof. (⇒) First, note that by Lemma 3.2 the graph G′ = (V − Clus(c), E′)
still satisfies the lattice property. Let reachability(x, y) = true inG = (V,E). We
show that the decomposition strategy returns a double tree DT (u, c) ∈ T such that
reachability(x, y) = true in DT (u, c). Note that, by construction, x and y must
belong to one and only one cluster. Two different cases are possible according to
which cluster they belong.

1. x, y ∈ Clus(c).
If Clus(c) is a Clus+(c), then line 3 of the BasicDecomposition procedure assures
that x belongs to IntTree(y, c), and hence x ∈ DT (y, c). On the other hand, if
Clus(c) is a Clus−(c), then y ∈ DT (x, c).

2. x ∈ Clus(c1) and y ∈ Clus(c2).
Without loss of generality, let us suppose that the decomposition algorithm first gen-
erates Clus(c1) and then Clus(c2). Since y is connected to a vertex in Clus(c1); it
then has an internal representative vertex, say, w. Hence y ∈ ExtTree(w, c1). By
Proposition 2.1, either x ∈ IntTree(w, c1) or x = w. Thus, reachability(x, y) =
true in DT (w, c1).

(⇐) This part of the proof obviously follows from observing that the decomposi-
tion algorithm does not add any new edge.

3.4. Basic data structure. In this section we briefly describe the basic data
structure for representing a dag satisfying the lattice property and describe how to
perform the reachability operation, since this is the basic operation for performing
all the others.

From the previously described invariants and from applying Proposition 3.1, we
derive the following simple implicit data structure based on look-up tables (see Fig-
ure 3).

The data structure is composed of one look-up table indexed on elements in V
(data structure A) and two sets of look-up tables (data structures B and C).

Data structure A stores for each vertex the unique identifier of Clus(ci) to which
it belongs (see invariant (i) above) and its sign (“+” or “−” for Clus+(c) or Clus−(c),
respectively).

Data structure B is a set of look-up tables, each table associated with a vertex
x ∈ V . For each double tree DT (u, ci) of the decomposition induced by the cluster
Clus(ci) to which x belongs, data structure B stores x’s coordinates with respect

1792 MAURIZIO TALAMO AND PAOLA VOCCA

1

n

2

............

............

Data Structure A
Data Structure C

............y w
(y ,y)1 2

Data Structure B

............

w

x (x ,x)1 2

AAAAA
AAAAA
AAAAA
AAAAA
AAAAAAAAAAA

AAAAAA
AAAAAA
AAAAAAc

x

w

y

AAAA
AAAA
AAAA
AAAA

x Clus(c)i

y Clus(c)j

............

Clus(c)i

Fig. 3. Data structure.

to the representation of DT (u, ci), whenever x belongs to DT (u, ci); otherwise, it
contains a null value.

Data structure C is a set of look-up tables, each table associated with an element
x ∈ V . For each cluster Clus(ci) of the cluster collection C, if x ∈ Ext(Clus(ci)),
then data structure C stores the identifier of the double tree associated with Clus(ci),
to which x belongs as an external element, and stores x’s coordinates with respect to
this double tree representation.

Let us now describe how to perform reachability(x, y). From data structure A
we derive the clusters to which x and y belong. Let x ∈ Clus(ci) and y ∈ Clus(cj).
Two cases are possible.

(i) Clus(ci) = Clus(cj).
In this case we look in the B table associated with x and y for their coordinates
with respect to both: (1) the double tree rooted at x; (2) the double tree rooted
at y. If, in one of the two double tree, x’s coordinates are smaller than y’s, then
reachability(x, y) = true; otherwise reachability(x, y) = false.

(ii) Clus(ci) 6= Clus(cj).
In this case, we first look in the table C associated with y, for the double tree iden-
tifier corresponding to cluster Clus(ci). Then we search in the B table associated
with x, the coordinates of x with respect to this double tree. If x’s coordinates are
smaller than y’s, then reachability(x, y) = true; otherwise, we repeat the search,
looking in the C table associated with x for the double tree identifier corresponding
to cluster Clus(cj). Then we search in the table B associated with y, y’s coordi-
nates with respect to this double tree. If x’s coordinates are smaller than y’s, then
reachability(x, y) = true. If both searches fail, then reachability(x, y) = false
(see Figure 3).

From the above discussion it is possible to state the following lemma.

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1793

Lemma 3.6. The reachability operation can be performed in constant time.
Obviously, for general clusters the space complexity is O(n2). Therefore, let us

suppose, for instance, that the cluster collection C satisfies the following condition:

∀ Clus(ci) ∈ C ⇒
√
n

4
≤ |Clus(ci)| ≤

√
n

2
.

In this case, it is trivial to show that the overall space occupancy is O(n
√
n). Unfortu-

nately, this is a special case and, generally, this condition does not hold. Nevertheless,
as shown in the following, it is possible to find a suitable cluster decomposition allow-
ing us to keep the space occupancy within the required bound.

4. Decomposition strategy. As shown in section 3, a proper choice of cluster
size permits us to bound the space complexity. We claim that a cluster size within√
n

4 and
√
n

2 is, in fact, the answer to our problem because this size allows us to
balance what is eliminated in one main iteration and what remains to be considered
(see line 7 of the BasicBuildClusters procedure). When it is not possible to find
clusters with the right size, we group them to form a cluster forest.

4.1. Elements classification. We need some more definitions.
Definition 4.1. A vertex c ∈ V is

1 good if

√
n

4
≤ |Clus+(c)| ≤

√
n

2
or

√
n

4
≤ |Clus−(c)| ≤

√
n

2
;

2 fat if it is not good and if one of the following two conditions holds:

(i) |Clus+(c)| >
√
n

2 and ∀x ∈ Clus+(c) then |Clus+(x)| <
√
n

4 ; or

(ii) |Clus−(c)| >
√
n

2 and ∀x ∈ Clus−(c) then |Clus−(x)| <
√
n

4 ;
3 thin if it is neither good nor fat and if

|Clus+(c)| <
√
n

4
or |Clus−(c)| <

√
n

4
.

We establish the correctness of our approach by first showing that it is always
possible to find one of the above defined elements.

Lemma 4.1. Given a dag G = (V,E) satisfying the lattice property, at least one
good, fat, or thin vertex does exist which can be retrieved in time O(n2).

Proof. Let us consider the following strategy. We first visit the graph, searching
for good elements and meanwhile assigning a weight to each node to represent the
size of the clusters (both Clus+ and Clus−) it induces. Whenever this search fails,
we look for fat vertices.

If there is one node having weight greater than
√
n

2 , then at least one fat vertex

exists. In fact, without loss of generality, let c be a vertex such that |Clus+(c)| >
√
n

2 .
We search the predecessors set of c for an element x inducing the smallest cluster

satisfying condition |Clus+(x)| >
√
n

2 . If such a vertex x exists, then x is fat because
there are no good vertices and, by a transitive property, none of its predecessors can

induce a cluster of cardinality greater than
√
n

2 . Otherwise, c is a fat vertex. If there
are no fat vertices, then the vertex with the maximum weight is a thin vertex. Hence,
this strategy always returns at least one element.

For the time complexity, let us consider a data structure for representing the graph
which maintains for each vertex the number of its predecessors and an ordered list of

1794 MAURIZIO TALAMO AND PAOLA VOCCA

the number of predecessors of its immediate predecessors. With this data structure,
which can be derived in time O(n2) by recursively visiting G = (V,E), the above
strategy can be implemented in time that is linear in the number of vertices.

4.2. Cluster collection. Our aim is to show that, given a dag G = (V,E), it
is possible to build a cluster collection of clusters induced by either good vertices or
thin vertices.

First we need to describe how to manage fat vertices.
Lemma 4.2. Given a fat vertex c, it is always possible to generate a sequence of

clusters induced by good vertices which covers Clus(c).

Proof. Without loss of generality, let |Clus+(c)| >
√
n

2 . By definition, each one
of c’s immediate predecessors, 〈c1, . . . , ct〉, satisfies the following condition:

|Clus+(ci)| <
√
n

4
for all 1 ≤ i ≤ t.

We can then group clusters induced by these vertices until the cardinality of each

group is within
√
n

4 and
√
n

2 .
Let Clus(ci1 , . . . , cik), where 〈ci1 , . . . , cik〉 ⊂ 〈c1, . . . , ct〉 is one group of clusters

so obtained.
To prevent Clus(ci1 , . . . , cik) from violating Lemma 3.1 (an external vertex y

could be related to all 〈ci1 , . . . , cik〉 through the fat vertex c), we add a dummy good
vertex and the following directed edges (see Figure 4):

(i) 〈di, c〉;
(ii) 〈cij , di〉 for 1 ≤ j ≤ k.

By construction, the dag obtained by adding dummy vertices still satisfies the
lattice property. Hence, to each fat vertex c there corresponds a collection {Clus(di)}
of clusters induced by dummy good vertices (see Figure 4) which covers
Clus+(c).

c

..........

y

d

n /2<=|Vert(Clus(d))|<=in /4

1

d l

Good Cluster

Fig. 4. Fat node.

The following procedure shows how our strategy chooses the required cluster
collection. First, clusters induced by good vertices and by dummy good vertices

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1795

associated with fat vertices are chosen, then clusters induced by thin vertices are
considered. More precisely, we have the following:

procedure BuildClusters;

1. begin;
2. C := ∅; {Cluster Collection}
3. while V 6= ∅ do
4. begin;
5. if ∃c ∈ V s.t. c is good then C := C ∪ Clus(c);
6. else if ∃c ∈ V s.t. c is fat then
7. begin
8. Build the associated good cluster collection {Clus(di)};
9. goto 5;

10. end
11. else
12. begin
13. Choose a thin vertex c s.t. Clus(c) has maximum cardinality;

14. C := C ∪ Clus(c);
15. end;
16. V := V − Clus(c);
17. end;
18. return C;
19. end.

Let C = 〈Clus(c1), . . . , Clus(cg), . . . , Clus(cg+t)〉 be the cluster collection so ob-
tained, where for 1 ≤ i ≤ g, Clus(ci) is a cluster induced by either actual or dummy
vertices and for g + 1 ≤ i ≤ t, Clus(ci) is induced by thin vertices.

To obtain the required space complexity, we group clusters induced by thin ver-
tices. We define a cluster forest as any collection of clusters induced by thin vertices.
Let F = 〈Clus(c1), . . . , Clus(ck)〉 be a cluster forest. We define the external vertex
set of a forest F , denoted Ext(F), as the union of all the external vertex sets of each
cluster composing the cluster forest; i.e.,

Ext(F) =

k⋃
i=1

Ext(Clus(ci)).

Note that according to our definitions, F ∩Ext(F) 6= ∅ in general. Therefore, for each
cluster Lemma 3.3 still holds.

The following version of the decomposition procedure generates for each cluster
in C the corresponding double tree collection. Moreover, it groups clusters induced
by thin vertices into cluster forests.

Each forest F = 〈Clus(c1), . . . , Clus(ck)〉 is generated by choosing clusters from
the cluster collection in not increasing order of size until one of the following conditions
holds:

1. |F | ≥
√
n

4 , or
2. mk ≥ n, where m = |Ext(F)|.

As we will see in section 5, condition 2 allows us to obtain the required space
complexity.

1796 MAURIZIO TALAMO AND PAOLA VOCCA

procedure Decomposition (C : Cluster Collection);
1. for each Clus(c) ∈ C;
2. begin
3. for each u ∈ Clus(c) Build {DT (u, c)};
4. return Clus(c) and {DT (u, c)};
5. end;
6. for each Clus(c) ∈ 〈Clus(cg+1), . . . , Clus(cg+t)〉;

{the sequence is in not increasing order of size}
7. begin
8. F = ∅;
9. k = 0;

10. while |F | <
√
n

4 and mk < n.
11. begin
12. F = F ∪ Clus(c);
13. k = k + 1; {Number of clusters in a forest}
14. m = |Ext(F)|; {Number of external vertices}
15. next Clus(c);
16. end;
17. return F; {Returns the current forest}
18. end;

The above decomposition strategy returns a sequence 〈F1, . . . , Fg, . . . , Fg+f 〉 of
clusters and cluster forests, where Fi = Clus(ci), for 1 ≤ i ≤ g, is a cluster induced
by either actual or dummy good vertices, while for g+1 ≤ i ≤ f , Fi is a cluster forest.
Further, for each cluster the associated double tree collection is produced. Both
collections are then inserted into the data structure. It is trivial to show that, even if
clusters forests are considered, the double tree decomposition satisfies Theorem 3.5.

5. Data structure and space complexity. The clusters and cluster forests
collection and the corresponding double tree decomposition returned by the Decompos-
ition procedure satisfy the following invariants. Let x ∈ V :

(i) x belongs to one and only one Fi, where 1 ≤ i ≤ g + f ;
(ii) x belongs to one and only one cluster Clus(ci,j);
(iii) given a cluster Clus(cj,l) different from the one to which x belongs according

to (ii), at most one u ∈ Clus(cj,l) exists such that x ∈ DT (u, cj,l);
(iv) given a cluster Clus(ci,j), each element of the collection {DT (u, ci,j)} is, by

definition, univocally identified by the element u ∈ Clus(ci,j).
To represent cluster forests, we modify the basic data structure described in sec-

tion 3.3 to take into account the double indirection between a forest and its clusters
(see Figure 5).

The new data structure C is again a set of look-up tables, each table associated
with a vertex x ∈ V . For each forest Fi, if x ∈ Ext(Fi), then data structure C main-
tains the identifier of a fourth kind of table, D, which stores connectivity information
between x and Fi. If x is not connected to Fi, then it stores a null value.

Data structure D is a set of look-up tables, each table associated with a vertex x
and a cluster forest Fi. Table D(Fi) exists if and only if x ∈ Ext(Fi). For each cluster
Clus(cij) in the cluster forest Fi, the corresponding field in the look-up table D(Fi)
stores the identifier of the unique double tree associated with Clus(cij) to which x
belongs as an external vertex and stores x’s coordinates with respect to this double

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1797

Data Structure C

........y D-id(F)i Nil

F i

1

n

2

............

............

x F i

Clus(c)i,m

Data Structure B

............

w

x (x ,x)1 2

m

Data Structure A

Clus(c)

Data Structure D(F)

............w
(y ,y)1 2

i

i,m

m
y

Fig. 5. Extended Data Structure.

tree representation.

Data structure A stores, for each vertex x ∈ V , the identifiers of both the cluster
and forest to which it belongs, whenever they are different, and the cluster sign. Data
structure B is the same as in section 3.3.

For the reachability test, it is easy to extend the basic strategy described in
section 3.3 for the new data structure.

We now analyze the space complexity. With reference to the clusters and cluster
forests sequence 〈F1, . . . , Fg, . . . , Fg+f 〉, by construction, the subsequence 〈F1, . . . , Fg〉,
together with the corresponding double tree decomposition, requires O(n

√
n)-space.

Let us now analyze the subsequence 〈Fg+1, . . . , Fg+f 〉 of cluster forests induced
by thin vertices.

Recall that forests of clusters are generated choosing clusters in decreasing order
until one of the following conditions holds:

1. |F | ≥
√
n

4 , or
2. mk ≥ n, where m = |Ext(F)|.

If we denote mi = |Ext(Fi)|, then the overall space complexity of the D data

structure is O(
∑g+f
i=g+1miki) since only vertices related to a cluster forest have the

corresponding D look-up table, each table of size O(ki). Hence, the second condition
is used to bound each term of the summation.

We now show that the decomposition strategy returns a number of cluster forests
less than

√
n.

Obviously, if it is always possible to generate a forest satisfying both conditions,
then the space complexity of the overall data structure is O(n

√
n). Unfortunately,

the second condition could prevent us from generating an O(
√
n) collection of cluster

forests; that is, each cluster forest could be of size less than
√
n

4 . The following
technical lemmas show how to manage this case.

First, it is important to underscore one property, shown in Lemma 5.1, of cluster
forests useful for the following proofs.

1798 MAURIZIO TALAMO AND PAOLA VOCCA

Lemma 5.1. Let F = 〈Clus(c1), . . . , Clus(ck)〉 be a cluster forest, where c1, . . . , ck
are thin vertices, then

|Clus(ci)| = t ⇒ |Ext(Clus(ci))| ≤ t2 ∀i ∈ {1, . . . , k} .

Proof. The proof easily follows observing that, by construction, forests are gen-
erated only when there are neither good nor fat vertices. Moreover, each cluster is
added to a forest in not increasing order of size.

Without loss of generality, we denote the size of a cluster Clus(cij) ∈ Fi as follows:

|Clus(cij)| = n
1
2−
∑j

p=1
δip ,(1)

where δip ≥ 0 ∀ p ∈ {1, . . . , j}.
In fact, if the ordered sequence of clusters 〈Clus(ci1), . . . , Clus(ciki)〉 composing

a forest is generated by the Decomposition procedure above, then the corresponding
sequence of cluster sizes is monotone and not increasing, and by hypothesis each size

is less than
√
n

4 . Moreover,

|Fi| =
ki∑
j=1

n
1
2−
∑j

p=1
δip ,(2)

where 〈δi1, . . . , δiki〉 is a sequence of nonnegative real values.
Let us suppose that the ith generated cluster forest satisfies the conditions

1. |Fi| <
√
n

4 ,
2. miki ≥ n,

and let Clus(ci,ki) be the last cluster chosen. Then we have the following.

Lemma 5.2. |Clus(ci,ki)| < n
1
2
−δi1
4 , where n

1
2−δi1 = |Clus(ci,1)|.

Proof. From Lemma 5.1, if |Clus(cij)| = tij , then the number of external vertices
related to Clus(cij) is at most t2ij . As a consequence, we have

miki ≤ ki
ki∑
j=1

(tij)
2 = ki

ki∑
j=1

(
n

1
2−
∑j

p=1
δip

)2

(3)

= ki

ki∑
j=1

n
1−2
∑j

p=1
δip ≤ ki

ki∑
j=1

n1−2δi1 = k2
i n

1−2δi1 .(4)

Hence, by condition miki ≥ n, we get

k2
i n
−2δi1 ≥ 1 =⇒ ki ≥ nδi1 > 4.(5)(

The last inequality follows from a forest termination condition; i.e.,

|Fi| =
ki∑
j=1

n
1
2−
∑j

p=1
δip <

√
n

4
;

hence, n−δi1 < 1
4 .
)

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1799

Moreover,

√
n

4
>

ki∑
j=1

n

(
1
2−
∑j

p=1
δip
)
≥

ki∑
j=1

n

(
1
2−
∑ki

p=1
δip
)

= ki

(
n

(
1
2−
∑ki

p=1
δip
))

(6)

and, from relation (5),

ki

(
n

(
1
2−
∑ki

p=1
δip
))
≥ nδi1n

(
1
2−
∑ki

p=1
δip
)

= n

(
1
2−
∑ki

p=2
δip
)
.(7)

Hence,

n

(
1
2−
∑ki

p=2
δip
)
<

√
n

4
.

Dividing both terms by nδi1 , we have

n

(
1
2−
∑ki

p=1
δip
)
<
n(1

2−δi1)

4
.(8)

The left-hand side of inequality (8) is, by definition, the size of Clus(ciki).
With reference to the cluster forests sequence 〈Fg+1, . . . , Fg+f 〉, let g + 1 ≤ i <

g + f . We have the following.

Lemma 5.3. |Clus(ci+1,1)| < n
1
2
−δi1
4 .

Proof. The proof follows trivially from Lemma 5.2, observing that clusters are
taken in not increasing order of size.

From the above technical lemmas, Lemma 5.4 easily follows.
Lemma 5.4. The decomposition strategy returns an O(log n) collection 〈Fg+1, . . . ,

Fg+f 〉 of clusters forests.
From Lemma 5.4, we have the following.
Theorem 5.5. The data structure for the representation of dags satisfying the

lattice property has an O(n
√
n)-space complexity and allows us to perform the reach-

ability operation in constant time.

6. Queries implementation. In this section, we describe algorithms for the
operations introduced in Theorem 1.1. A sketch of the algorithm for the reachabil-
ity operation already has been given in section 3.4 and the time complexity has been
proven in Theorem 5.5.

Let us now describe the path operation. For this operation we need to augment
our data structure. First note that each double tree is, by construction, the union
of two rooted trees. Hence, for each vertex x and for each double tree to which it
belongs, it is possible to associate one and only one vertex u (the parent in the tree)
which is on the path from x to the vertex inducing the double tree. We then store
in the data structures B and D u’s coordinates with respect to this double tree. The
path operation is now straightforward. While testing the presence of a directed path
between x and y using the reachability(x, y) test, we find the double tree to which
they both belong, and then we look at the coordinates of the parents of x and y.
These vertices are the immediate successors of x and y on the path from x to y. Then
we recursively repeat the search starting from these vertices until we reach the root
of the double tree.

In this paper, we will not furnish the full algorithm which, although simple, is
quite lengthy. The net result is the following.

1800 MAURIZIO TALAMO AND PAOLA VOCCA

Proposition 6.1. The path(x,y) operation can be implemented in O(l) time,
where l is the path length.

For implementing the pred(x) and succ(x) operations, we add new data struc-
tures to those described in section 3.4. In particular, for each double tree DT (u, c)
of the double tree decomposition T , we maintain the corresponding internal tree
IntTree(u, c). Moreover, for each vertex x ∈ V , let Clus(c) be the cluster to which
x belongs; if Clus(c) is a Clus+(c), then we maintain the set of x’s successors in
Clus+(c); otherwise, we maintain the set of x’s predecessors. Let us denote the first
set Succ(x, c) and the second Pred(x, c). Finally, for each vertex x ∈ V we store the
set of double tree identifiers to which each vertex is connected as an external vertex.
This information eliminates the need to visit all the D tables. By construction, the
space complexity of the new data structure is still O(n

√
n).

Let us now introduce the pred(x) operation. For succ(x) operation, the algo-
rithm is similar.

procedure pred (x)
begin;

1. if A[x].sign = "+"

2. then return (IntTree(x))

3. else return (Pred(x,c)) ;

4. for each double tree to which x is connected as external vertex

5. begin;
6. Let u be the internal representative vertex of x;
7. return (IntTree(u));

8. end; end;

Proposition 6.2. The pred(x) and succ(x) operations require O(k) time,
where k is the size of the returned set.

Proof. This follows observing that only actual predecessors (successors) are vis-
ited.

For the range(x, y) operation, we have the following result.
Lemma 6.1. Let x, y ∈ V . If reachability(x, y) = true, then one and only

one double tree DT (u, ci) exists such that range(x, y) ⊆ V ert(DT (u, ci)).
Proof. Let x ∈ Clus(c) and y ∈ Clus(c′). Let us first suppose that Clus(c) has

been generated before Clus(c′).
Two cases are possible.

1. Clus(c) is a Clus+(c).
Let u be the internal representative vertex of y with respect to Clus(c). We claim
that DT (u, c) is the required double tree.
Let z ∈ range(x, y) and z ∈ Clus(c′′). Clus(c′′) cannot be generated before Clus(c);
otherwise, by cluster definition and according to Clus(c′′) sign, either x ∈ Clus(c′′)
or y ∈ Clus(c′′).
Hence, Clus(c′′) has been generated after Clus(c) and z ∈ Ext(Clus(c)). Since
x ≺ z ≺ y, by double tree definition, x, y, z ∈ V ert(DT (u, c)).

2. Clus(c) is a Clus−(c).
By cluster definition, we have Clus(c) = Clus(c′). In this case, we want to prove that
DT (x, c) is the required double tree. Since x ≺ y, then y ∈ V ert(DT (x, c)).
Let z ∈ range(x, y) and z ∈ Clus(c′′). As before, Clus(c′′) cannot be generated be-
fore Clus(c). Moreover, in this case, Clus(c′′) cannot also be generated after Clus(c);
then Clus(c) = Clus(c′′) and z ∈ V ert(DT (x, c)).

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1801

In a similar way, it is possible to prove that, if Clus(c′) has been generated before
Clus(c), then either range(x, y) ⊆ V ert(DT (u, c′)), where u is the internal repre-
sentative vertex of x with respect to Clus(c′), or range(x, y) ⊆ V ert(DT (y, c′)),
depending on the Clus(c′) sign.

Proposition 6.3. The range(x, y) operation can be implemented in O(k log d)
time, where k is the size of the returned set and d is the maximum vertex degree (either
in-degree or out-degree) of the transitive reduction graph GT = (V,ET).

Proof. Representing all double trees using the implicit data structure of Corol-
lary 3.4, we can first identify in constant time the unique double tree that contains
range(x, y), and we can then report range(x, y) by visiting this double tree within
the required time bound.

It is important to emphasize that, by means of the range(x, y) and path oper-
ations, it is possible to report the transitive reduction subgraph having x as a source
and y as a sink.

Let us now describe the glb(x, y) and lub(x, y) operations. We consider only
the glb(x, y), as results obtained can be stated, mutatis mutandis, for lub(x, y).

Let x ∈ Clus(ch) and y ∈ Clus(ck) and let {Clus(c1), . . . , Clus(cp)} be the
subset of clusters of the cluster collection generated by the BuildCluster procedure,
having as internal vertices at least one predecessor of both x and y. Moreover, let
{x1, . . . , xp} and {y1, . . . , yp} be the corresponding internal representative vertices of
x and y, respectively.

Using an argument similar to the one used to prove Lemma 3.1, the following two
lemmas can be established.

Lemma 6.2. If any Clus(ci), for 1 ≤ i ≤ p, is a Clus+(ci), then

if IntTree(xi, ci) ∩ IntTree(yi, ci) = I, then LUB(I) ∈ I.
Lemma 6.3. If any Clus(ci), for 1 ≤ i ≤ p, is a Clus−(ci), then

if Pred(xi, ci) ∩ Pred(yi, ci) = I, then LUB(I) ∈ I.
Let {u1, . . . , up} be the corresponding set of least upper bounds. We have the

following.
Lemma 6.4. The partial order associated with {u1, . . . , up} is a total order.
Proof. To prove the lemma we show that there exists a permutation 〈ui1 , . . . , uip〉

such that uij ≺ uim , for all i1 ≤ ij < im ≤ ip.
Two cases are possible.

1. Either Clus(ch) is a Clus+(ch) or Clus(ck) is a Clus+(ck).
Let the clusters in 〈Clus(c1), . . . , Clus(cp)〉 be ordered according to the generation
order.
If Clus(ch) is a Clus+(ch), then p ≤ h. In fact, by cluster definition, once Clus+(ch)
has been taken, then all x’s predecessors have been considered. Analogously, if
Clus(ck) is a Clus+(ck), then p ≤ k.
Moreover, all Clus(ci) in the sequence are Clus+(ci). In fact, suppose for contra-
diction that Clus(cj), for 1 ≤ j ≤ p, is a Clus−(cj). If Clus(ch) is a Clus+(ch),
then x ∈ Clus−(cj), or, if Clus(ck) is a Clus+(ck), then y ∈ Clus−(cj), but this is a
contradiction.
We claim that the sequence of least upper bounds 〈u1, . . . , up〉, ordered according to
the order in which the corresponding clusters are generated, is the required permuta-
tion. Let us assume that two values 1 ≤ i < j ≤ p exist such that either ui ∼ uj or
uj ≺ ui. In the first case the following relations hold simultaneously:

1802 MAURIZIO TALAMO AND PAOLA VOCCA

(i) ui ≺ x and ui ≺ y;
(ii) uj ≺ x and uj ≺ y;
(iii) ui ∼ uj .

However, this contradicts the lattice property.
In the second case, since by hypothesis Clus(ci) has been generated before cluster
Clus(cj), we have uj ∈ Clus(ci). The proof follows by contradiction.

2. Clus(ch) is a Clus−(ch) and Clus(ck) is a Clus−(ck).
Let us consider the ordered sequence of clusters

〈Clus+(ci1), . . . , Clus+(cim), Clus−(cim+1
), . . . , Clus−(cip)〉

defined as follows.
The subsequence 〈Clus+(ci1), . . . , Clus+(cim)〉 is composed of all clusters in {Clus(c1),
. . . , Clus(cp)} having sign “+” and ordered according to the generation order. The
subsequence 〈Clus−(cim+1

), . . . , Clus−(cip)〉 is made up of all clusters in {Clus(c1),
. . . , Clus(cp)} having sign “−”, ordered according to the inverse generation order.
We claim that the corresponding sequence 〈ui1 , . . . , uim , uim+1 , . . . , uip〉 is the desired
permutation.
By an argument similar to the one used in the previous case, it is possible to prove that
the two subsequences 〈ui1 , . . . , uim〉 and 〈uim+1

, . . . , uip〉 are totally ordered. We have
to prove that for all uij ∈ 〈ui1 , . . . , uim〉 and for all uil ∈ 〈uim+1

, . . . , uip〉, uij ≺ uil .
By the lattice property either uij ≺ uil or uil ≺ uij . In the first case the claim is
proved. Suppose for contradiction that uil ≺ uij ; then, by cluster definition, uil ∈
Clus+(cij). This once again contradicts the hypothesis.

This completes the proof.

Using the above lemma, it is possible to state the following proposition.

Proposition 6.4. The glb(x, y) and lub(x, y) operations can be implemented
in O(

√
n)-time.

Proof. To implement these operations we augment the data structure as follows.
For each internal tree of a cluster, we maintain the set of least upper bounds (greatest
lower bounds) of the sets derived from the intersection with all the other internal
trees in the same cluster. Analogously, we maintain for each vertex x the set of
least upper bounds (greatest lower bounds) of the sets derived from the intersection
between Pred(x, c) (Succ(x, c)) and Pred(y, c) (Succ(y, c)) for all y in Clus(c).

By construction, the overall space occupancy is still O(n
√
n).

Given x and y, using data structures D and B, in O(
√
n)-time, it is possible to

find the set 〈u1, . . . , up〉. The maximal element of this sequence is the greatest lower
bound of x and y.

It is worth noting that, by means of lub(x, y), glb(x, y) and succ(x), pred(x)
operations it is possible to easily implement the following.

1. CommAnc(x, y). Given x, y ∈ V , returns the set of all common ancestors of
x and y.

2. CommSucc(x, y). Given x, y ∈ V , returns the set of all common successors
of x and y.

In particular, from Propositions 6.2 and 6.4, Proposition 6.5 is derived.

Proposition 6.5. The CommAnc(x, y) and CommSucc(x, y) operations can
be implemented in O(

√
n+ k) time, where k is the size of the returned set.

To prove Theorem 1.1, it remains to describe lub(x1, . . . , xk) and glb(x1, . . . ,
xk). Note that a straightforward application of Proposition 6.4 leads to an O(k

√
n)

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1803

worst-case time bound. In order to obtain the desired complexity, we have to under-
score some additional properties of the proposed decomposition.

Let us analyze only the glb(x1, . . . , xk) operation, as lub(x1, . . . , xk) can be
dually derived.

Lemma 6.5. If all vertices (x1, . . . , xk) belong to the same cluster, then operation
glb(x1, . . . , xk) can be performed in O(k) steps.

Proof. The lemma easily follows by exploiting the information added for the
glb(x, y) operation. Starting from the internal trees of the k vertices, we can first
compute the k

2 least upper bounds associated with pairs of internal trees. Iterating

the process on the k
2 least upper bounds we find the glb(x1, . . . , xk), whenever it

exists.
On the other hand, let the vertices (x1, . . . , xk) belong to different clusters. Con-

sider any two vertices, say, x1 and x2.
Let 〈u1, . . . , up〉 be the sequence of least upper bounds of the set of common

predecessors with respect to clusters 〈Clus(c1), . . . , Clus(cp)〉 (see Lemma 6.4). By
construction, any other vertex in the sequence (x1, . . . , xk) satisfies the following prop-
erty.

Lemma 6.6. Let xi ∈ (x1, . . . , xk). If uj is the greatest vertex in the sequence
〈u1, . . . , up〉 such that uj ≺ xi, then either glb(x1, x2, xi) = uj or glb(x1, x2, xi) ∈
IntTree(uj+1, cj+1).

Proposition 6.6. The lub(x1, . . . , xk) and glb(x1, . . . , xk) operations can be
implemented in O(

√
n+ k log n)-time.

Proof. First observe that, by Proposition 6.4, we can derive the sequence 〈x1, . . . , xp〉
in O(

√
n)-time. Hence, by means of a binary search, in O(k log n)-time, it is possi-

ble to derive the maximum element uj such that uj ≺ xi for 1 < i < k. Then, by
Lemma 6.6 either glb(x1, . . . , xk) = uj or glb(x1, . . . , xk) ∈ IntTree(uj+1, cj+1).
In the former case, the proposition is proved. In the latter case, let (v1, . . . , vk) be
the internal representative vertices of (x1, . . . , xk) with respect to cluster Clus(cj+1).
Now the problem reduces to finding the glb(v1, . . . , vk), where (v1, . . . , vk) belong to
the same cluster. The proof follows by Lemma 6.5.

By a straightforward application of Lemma 5.5 and Propositions 6.1–6.4 and 6.6,
the proof of the main theorem (Theorem 1.1) is completed.

7. Conclusions and open problems. In this paper, a general technique for
the representation of a dag satisfying the lattice property has been presented. This
technique, based on a two-level graph decomposition strategy, is very efficient for the
reachability problem resolution, from either a space or a time complexity point of
view. In fact, when m = Ω(n

√
n), it performs a compression of the given dag. Note

that the complexity bound we derive is optimal, as it matches the theoretical lower
bound for this problem (see Proposition 1.1).

The data structure proposed can be efficiently used not only for testing the pres-
ence of a path between two given vertices but also for performing a set of basic
operations for this class of graphs: namely, find a path between two vertices whenever
one exists; given two vertices, find all vertices on the directed paths connecting them
in the transitive reduction graph; compute all the successors and/or predecessors of
a given vertex; given two vertices, find the least common ancestor and/or the great-
est common successor; given a set of vertices, find all common ancestors and/or all
common successors.

Furthermore, a stronger result can be derived. In particular, it is possible to
represent a partial lattice in space O(n

√
t) with the same time bound for all the

1804 MAURIZIO TALAMO AND PAOLA VOCCA

operations, where t is the minimum number of disjoint chains which partition the
element set. It is worth noting that this represents an interesting result, since it
provides a tight characterization of the complexity of partial lattices. In fact, based
on Dilworth’s theorem [12], t is equal to the width of the lattice.

Moreover, the graph decomposition strategy, introduced in this paper, has been
implemented. Performance evaluations indicate that this strategy can provide a stor-
age occupation substantially less than O(n

√
n)-space while maintaining efficiency in

reachability query resolution.
Note that the class of graphs under investigation has applications in many fields

such as computational geometry, object oriented programming, and distributed sys-
tems.

An interesting research direction is to apply our approach for coping with sec-
ondary memory management problems. The digraphs representation introduced could
represent a powerful clustering technique for minimizing the total number of accessed
pages. Our conjecture is supported by results in [16], where two-dimensional lattices
are used to produce efficient data structures on paged memory for the half-plane
search in two dimensions.

A natural direction for further work is to adopt the same strategy for general
directed graphs. In fact, the main problem in this case is that they usually violate
Lemma 3.1. In fact, given a general dag G = (V,E) and a cluster Clus(c), let u be
a vertex in G−Clus(c); if Clus+(c) ∩ Clus+(u) 6= ∅, then it can have more than one
maximal element. Dually, if Clus−(c) ∩ Clus−(u) 6= ∅, then it can have more than
one minimal element. In such a case, a constant time reachability test cannot be
guaranteed. This prevents us from obtaining a constant time reachability test. In
fact, as there is not a one-to-one relation between a given cluster and an external
vertex, it is not possible, given a pair of vertices 〈x, y〉, to univocally identify a double
tree containing both x and y.

Nevertheless, the proposed decomposition strategy represents, in this case, a
heuristic method for testing reachability which takes into account the sparseness of
the graph.

Acknowledgments. The authors wish to thank Prof. Jaroslav Nešetřil for many
interesting discussions on the topics presented here and Prof. Rao Kosaraju and the
anonymous referee for their detailed comments and suggestions.

REFERENCES

[1] R. Agrawal, Alpha: An extension of relational algebra to express a class of recursive queries,
IEEE Trans. Software Engrg., 14 (1988), pp. 879–885.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish, Efficient management of transitive relation-
ship in large data and knowledge bases, in Proc. ACM Internat. Conf. on Management of
Data, ACM, New York, 1989, pp. 253–262.

[3] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[4] M. Ajtai and R. Fagin, Reachability is harder for directed than for undirected finite graphs,
J. Symbolic Logic, 55 (1990), pp. 113–150.

[5] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in Proceedings 20th
Annual IEEE Symposium on Foundations of Computer Science, San Juan, Puerto Rico,
IEEE Computer Society Press, Los Alamitos, CA, 1979, pp. 218–223.

[6] G. Barnes and W. L. Ruzzo, Undirected s–t connectivity in polynomial and sublinear space,
Comput. Complex., 6 (1996), pp. 1–28.

[7] G. Birkhoff, Lattice Theory, American Mathemathical Society Colloquium Publications 25,
AMS, Providence, RI, 1979.

AN EFFICIENT DATA STRUCTURE FOR LATTICE OPERATIONS 1805

[8] G. Birkhoff and O. Frink, Representation of lattices by sets, Trans. AMS, 64 (1948), pp. 299–
316.

[9] J. Biskup and H. Stiefeling, Evaluation of upper bounds and least nodes as database opera-
tions, in Lecture Notes in Comput. Sci. 730, Springer-Verlag, New York, pp. 197–214.

[10] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa, Two applications of
inductive counting for complementation problems, SIAM J. Comput., 18 (1989), pp. 559–
578.

[11] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge University
Press, Cambridge, 1990.

[12] R. Dilworth, A Decomposition Theorem for Partially Ordered Sets, Ann. Math., 51 (1950),
pp. 161–165.

[13] B. Dushnik and E. Miller, Partially ordered sets, Amer. J. Math., 63 (1941), pp. 600–610.
[14] D. Eppstein, Z. Galil, G. Italiano, and A. Nissenzweig, Sparsification—a technique for

speeding up dynamic graph algorithms, J. ACM, 44 (1997), pp. 669–696.
[15] S. Even, Graph Algorithm, Computer Science Press, Rockville, MD, 1979.
[16] P. G. Franciosa and M. Talamo, Orders, k-sets and fast halfplane search on paged memory,

in Orders, Algorithms, and Applications, International Workshop ORDAL ’94, Lecture
Notes in Comput. Sci. 831, V. Bouchitté and M. Morvan, eds., Springer-Verlag, Berlin,
1994, pp. 117–127.

[17] G. Gambosi, M. Protasi, and M. Talamo, An efficient implicit data structure for relation
testing and searching in partially ordered sets, BIT, 33 (1993), pp. 29–45.

[18] M. Habib and L. Nourine, Bit-vector encoding for partially ordered sets, in Orders, Algo-
rithms, and Applications, International Workshop ORDAL ’94, V. Bouchitté and M. Mor-
van, eds., Lecture Notes in Comput. Sci. 831, Springer-Verlag, New York, 1994, pp. 1–12.

[19] H. V. Jagadish, Incorporating hierarchy in a relational model of data, SIGMOD Record (ACM
Special Interest Group on Management of Data), 18 (1989), pp. 78–87.

[20] T. Kameda, On the vector representation of the reachability in planar directed graphs, Inform.
Process. Lett., 3 (1974/75), pp. 75–77.

[21] D. Kelly, On the dimension of partially ordered sets, Discrete Math., 35 (1981), pp. 135–156.
[22] D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, Ann. Discrete Math.,

6 (1980), pp. 243–249.
[23] G. Markowsky, The Representation of posets and lattices by sets, Algebra Universalis, 11

(1980), pp. 173–192.
[24] R. H. Möhring, Computationally tractable classes of ordered sets, Tech. Report 87468-OR,

Bonn University, Germany, 1987.
[25] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, Berlin, New

York, 1985.
[26] F. P. Preparata and R. Tamassia, Fully dynamic point location in a monotone subdivision,

SIAM J. Comput., 18 (1989), pp. 811–830.
[27] I. Rival, Graphical data structures for ordered sets, in Algorithms and Order, Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1989, pp. 3–31.
[28] M. Talamo and P. Vocca, Fast lattice browsing on sparse representation, in Orders, Algo-

rithms, and Applications, International Workshop ORDAL ’94, Lecture Notes in Comput.
Sci. 831, V. Bouchitté and M. Morvan, eds., Springer-Verlag, Berlin, 1994, pp. 186–204.

[29] M. Talamo and P. Vocca, A data structure for lattices representation, Theoret. Comput.
Sci., 175 (1997), pp. 373–392.

[30] R. Tamassia and J. G. Tollis, Reachability in planar digraphs with one source and one sink,
Theoret. Comput. Sci., 119 (1993), pp. 331–343.

[31] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial time, sub-
linear space implementations, SIAM J. Comput., 11 (1982), pp. 130–137.

[32] J. W. T. Trotter and J. J. I. Moore, The dimension of planar posets, J. Combin. Theory,
22 (1977), pp. 54–57.

[33] M. Yannakakis, Graph-theoretic methods in database theory, PODS ’90, Proceedings Ninth
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, ACM, New
York, 1990, pp. 230–242.

BANDWIDTH ALLOCATION WITH PREEMPTION∗

AMOTZ BAR-NOY† , RAN CANETTI‡ , SHAY KUTTEN§ , YISHAY MANSOUR¶, AND

BARUCH SCHIEBER‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1806–1828

Abstract. Bandwidth allocation is a fundamental problem in the design of networks where
bandwidth has to be reserved for connections in advance. The problem is intensified when the
overall requested bandwidth exceeds the capacity and not all requests can be served. Furthermore,
acceptance/rejection decisions regarding connections have to be made online, without knowledge
of future requests. We show that the ability to preempt (i.e., abort) connections while in service
in order to schedule “more valuable” connections substantially improves the throughput of some
networks. We present bandwidth allocation strategies that use preemption and show that they
achieve constant competitiveness with respect to the throughput, given that any single call requests
at most a constant fraction of the bandwidth. Our results should be contrasted with recent works
showing that nonpreemptive strategies have at most inverse logarithmic competitiveness.

Key words. bandwidth allocation, online algorithms, preemption, call control, call admission

AMS subject classifications. 68M20, 68Q20, 68Q25, 90B12, 90B35

PII. S0097539797321237

1. Introduction. Bandwidth allocation is one of the most important problems
in the management of networks that have guaranteed bandwidth policy (e.g., asyn-
chronous transfer mode (ATM) [5], PARIS [9], IBM BBNS [10]). In such networks
the application has to reserve in advance sufficient bandwidth for its communication.
The guaranteed bandwidth policy is contrasted with the more traditional policy (e.g.,
TCP/IP), where information packets are routed as they come to the network without
prior knowledge about the connections. The advantages of the guaranteed bandwidth
policy are many and include bounded latency for real-time tasks; fairness (e.g., one
user cannot overtake the entire network’s resources); and simple pricing (the appli-
cation can be charged for the bandwidth it allocated). The major drawback of the
guaranteed bandwidth policy is inefficiency: the communication links may be under-
utilized. Thus, a “good” bandwidth allocation strategy is crucial for such networks.

The bandwidth allocation problem becomes more difficult in view of the large
variety of applications that use the network simultaneously. These applications have
very different requirements in terms of bandwidth, duration, delay, information loss,

∗Received by the editors May 9, 1997; accepted for publication (in revised form) May 29, 1998;
published electronically May 13, 1999.

http://www.siam.org/journals/sicomp/28-5/32123.html
†Electrical Engineering Department, Tel Aviv University, Tel Aviv 69978, Israel (amotz@

eng.tau.ac.il). The research of this author was supported in part by a grant from the Israeli Ministry
of Science and Technology. Part of the research of this author was done while at the IBM Research
Division, T.J. Watson Research Center.
‡IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598 (canetti@

watson.ibm.com, sbar@watson.ibm.com). Part of the research of R. Canetti was done at the Labo-
ratory of Computer Science, MIT, and was supported by American-Israeli Binational Science Foun-
dation grant 92-00226.
§Department of Industrial Engineering, The Technion, Haifa 32000, Israel (kut-

ten@ie.technion.ac.il). Part of the research of this author was done at the IBM Research
Division, T.J. Watson Research Center.
¶Computer Science Department, Tel Aviv University, Tel Aviv 69978, Israel (mansour@

cs.tau.ac.il). The research of this author was supported in part by the Israel Science Foundation,
administered by the Israel Academy of Science and Humanities, and by a grant from the Israeli
Ministry of Science and Technology.

1806

BANDWIDTH ALLOCATION WITH PREEMPTION 1807

etc. Furthermore, since the communication volume may be much larger than buffer
space, decisions regarding current requests cannot be delayed and have to be made
without knowledge of future requests. The problem is further intensified when the
available bandwidth cannot accommodate all requests for bandwidth and some have
to be rejected.

In this context it is natural to consider the possibility of “softening” the rigid-
ity of the guaranteed bandwidth policy by allowing preemption (i.e., abortion) of
connections in service, in order to schedule “more valuable” connections that would
otherwise be rejected. Preempting a connection has obvious disadvantages: all the
work that was done so far may be lost, and the transmission, in some applications,
has to start again later. However, the ability to preempt certain types of connections
as a policy may greatly improve the performance of the network. Understanding the
power of preemption in this context may shed new light on the value of the guaranteed
bandwidth policy.

Indeed, some types of connections should never be preempted (e.g., phone calls).
However, there exist other scenarios where preemption is acceptable and even es-
sential. For instance, a high-priority (say, real-time) connection should be allowed to
preempt a low-priority connection. (See [18] for an implementation of a channel where
this type of preemption is used.) Another case is preempting other connections of the
same user [19] or of different users based on a pricing model [21]. The willingness
of users to communicate over preemptable, low-priority connections would probably
depend on the price discount they would receive, compared to a nonpreemptable con-
nection. Our work shows that preemptable connections allow far better utilization of
the network, and thus users may be charged at a considerably lower rate.

In this work, we concentrate on preemption as a tool for enhancing the through-
put, or utilization, of the network. We develop various preemption strategies (speci-
fying when and which connections to preempt) for maximizing the throughput of con-
nections that eventually complete. Our strategies perform provably and significantly
better (in terms of throughput) than any nonpreemptive strategy for bandwidth al-
location.

We study two models for bandwidth allocation. The first is a single link, where
requests for connections (or calls) arrive one by one as time proceeds; each call has
duration and bandwidth requirements (specified in advance). Requests have to be
either served immediately or rejected (for example, due to limited buffer space). This
model is an abstraction of a single virtual path in an ATM network that has a single
entry and exit. A virtual path in an ATM network serves as a “highway” that is used
by many virtual circuits (i.e., connections) simultaneously. The bandwidth of the
virtual path has to be divided among the various virtual circuits. The second model
is a line of processors where each connection has source, destination, and required
bandwidth. Here we assume that all requests are for permanent connections (or,
alternatively, that all calls arrive at the same time, in some arbitrary order, and have
the same duration). This model can be viewed as an abstraction of a virtual path
with multiple entries and exits.

As suggested by the online nature of the problem (decisions on current requests are
made without knowledge of future requests), we use competitive analysis to measure
the performance of bandwidth allocation algorithms. We define the performance of
a bandwidth allocation algorithm on a sequence of requests as the throughput of
completed calls (i.e., calls that are neither rejected nor preempted). This throughput
can be measured as the sum, over completed calls, of the duration times the bandwidth

1808 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

requirement, or equivalently as the integral over time of the bandwidth used by calls
that eventually complete. The competitiveness of an algorithm is the infimum over all
request sequences of the ratio of the performance of the algorithm to the performance
of the best (offline) schedule for this sequence.

The competitiveness of our algorithms depends only on δ, the ratio between the
largest bandwidth requested by any single call and the capacity of the line. We note
that whereas the capacity of the network can be arbitrarily large, the ratio δ is typi-
cally a constant smaller than one. In both models we achieve constant competitiveness
if δ is a constant smaller than one. We contrast our results with the fact that non-
preemptive bandwidth allocation strategies have inverse logarithmic competitiveness.
(We elaborate on this point later.)

Our algorithms are simple and efficient, however surprising and nonintuitive at
first. They suggest the following approach to bandwidth allocation: in deciding which
calls to reject or preempt, the algorithms consider only the duration of a call and
the time for which a call in service already has been running, completely ignoring the
throughput of calls. In particular, a call with very large throughput may be preempted
in order to make room for a call with longer duration and much smaller throughput.
Still, our algorithms achieve constant competitiveness (if δ is bounded away from one)
where more straightforward strategies fail.

We show that our algorithms have optimal competitiveness, up to a small con-
stant, for all values of δ. Furthermore, we show that (i) deterministic algorithms have
a very poor competitive ratio if a single call may request the entire bandwidth (that
is, if δ = 1); (ii) in the line model, if we let calls have arbitrary duration and δ be
more than half, then constant competitiveness cannot be achieved by any determinis-
tic algorithm. (Bounds on the competitiveness of randomized preemptive bandwidth
allocation algorithms in this and related models are shown in [8].)

We also consider a special case of the single link model where all calls have
identical bandwidth, which is 1/k of the capacity of the link for some integer k.
This model can be visualized as k parallel links, each of unit capacity. Even for
this restricted model, called the parallel links model, we show that any deterministic
online algorithm has a competitive ratio of at most 0.66 (the bound holds for all k).
The parallel links model is closely related to online preemptive task scheduling under
overload [7, 6, 14, 15, 22, 20]. Our impossibility result applies to this problem as well.

Our work extends previous work of Garay and Gopal [12] and Garay et al. [13].
These papers also consider online bandwidth allocation with preemption on networks
with line topology. However, they simplify the model by assuming that the bandwidth
requirement of each call is equal to the bandwidth of the links (and thus, in particular,
only one call at a time can be served on a link).

Considerable work has been recently done on nonpreemptive online bandwidth
allocation (also referred to as call control); we mention here only some of this work.
In [2] (and also in [1]) the problem of nonpreemptive online bandwidth allocation and
virtual circuit routing on an arbitrary network was considered. Under the assump-
tion that no call may request more than a logarithmic fraction of the bandwidth,
Awerbuch, Azar, and Plotkin [2] and Aspnes et al. [1] presented a strategy with com-
petitiveness inversely proportional to the logarithm of the size of the network times
the ratio between the largest and smallest value of a call, and they proved that no
online strategy has better performance. Randomized algorithms for nonpreemptive
call control on tree-like networks are given in [3], where competitiveness inversely log-
arithmic in similar parameters is shown with matching impossibility results. Other

BANDWIDTH ALLOCATION WITH PREEMPTION 1809

topologies are considered in [4] with similar results. Lipton and Tomkins [16] consid-
ered nonpreemptive online “interval scheduling” in a model similar to our line model.
They achieved a slightly worse than inverse logarithmic competitive ratio and showed
that no online algorithm can achieve an inverse logarithmic competitive ratio. In
summary, whenever preemption is not allowed the “logarithmic barrier” seems to be
unbreakable, even by randomized algorithms.

Finally, we remark that Faigle and Nawijn [11] also showed that preemption
is a useful tool. They considered the special case in which all calls have identical
bandwidth. However, their goal was to minimize the number of rejected calls, while
our goal is to maximize the throughput. They described an optimal deterministic
online algorithm (competitiveness 1) when preemption is allowed, whereas it was
known before that without preemption no algorithm with constant competitiveness
exists.

In section 2 we introduce the single link model and define bandwidth allocation
algorithms in this model. In section 3 we describe our algorithms for the single link
model. In section 4 we introduce the line model and show how our algorithms can be
adapted to this model. In section 5 we demonstrate the optimality of our algorithms.

2. The single link model. Consider a communication link with bandwidth
capacity B (where B may be very large). A call is a connection established between
the two endpoints of the link. Each call c is characterized by the required bandwidth

bc, the request issue time tc, and the duration dc (known in advance). Let ec
def
= tc+dc

be the ending time of a call c. For simplicity we assume that the time is discrete. Our
convention is that the minimum bandwidth requested by a call is 1. Let δ denote the
maximum fraction of the capacity used by a single call. We have 1

B ≤ δ ≤ 1.
The requests arrive one by one in an online fashion. A request for a call c can

be either served immediately or rejected. The algorithm may preempt (i.e., stop or
abort) calls during service. The operation of the algorithm run by the control center
can thus be described as follows. Upon a request for a call c, if serving c does not
violate the bandwidth capacity of the link, then serve c. Otherwise, either reject the
request or preempt some calls that are currently being served so that call c can be
served within the capacity of the link.

Let the throughput of a call c, denoted by vc, be its bandwidth times its duration,
i.e., vc = bc · dc. Once a call is completed, a value equal to the throughput of the
call is gained. No gain is accrued for preempted calls. Note that the throughput of a
completed call is a measure for the amount of information contained in it.

We use competitive analysis to measure the performance of our bandwidth al-
location algorithms. The competitive ratio of an algorithm is the infimum over all
possible request sequences of the total throughput of the algorithm on a sequence
divided by the total throughput of the best (offline) algorithm on this sequence. More
formally, for a sequence S = c1, . . . , cn of call requests, let the bandwidth requested
by S at time t be

B̃S(t)
def
=

∑
{c∈S|t∈[tc...tc+dc]}

bc.

We say that S is feasible if B̃S(t) ≤ B for all times t. Let the cover of a sequence S be

V (S)
def
=
∑
tBS(t), where BS(t)

def
= min{B, B̃S(t)}. If S is feasible, then we say that

V (S) is the throughput of S (that is, the cover equals the throughput). Note that if
S is feasible, then V (S) =

∑
c∈S vc.

1810 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

Bandwidth

Time
c

tc t + dc c

bc

B

Fig. 3.1. A geometric representation of calls on a single link.

For an algorithm A and sequence S, let A(S) ⊆ S be the sequence of calls
completed by A on input S. (We use S′ ⊆ S to denote that S′ is a subsequence of S.)
Algorithm A is a valid bandwidth allocation algorithm if for any sequence of requests
S, A(S) is feasible. Algorithm A is ρ-competitive if

ρ ≤ inf
S

min
{S′⊆S|S′ feasible}

V (A(S))

V (S′)
.

Note that 0 ≤ ρ ≤ 1, and the closer ρ is to 1 the better the algorithm performs.
Remark. Say that algorithm A is strictly ρ-competitive if

ρ ≤ inf
S

V (A(S))

V (S)
.

Since the link cannot serve more than B bandwidth at any given time, the cover
is an upper bound on the throughput of any feasible subsequence of S. Thus, any
strictly ρ-competitive algorithm is also ρ-competitive. We show that our algorithms
are strictly competitive. While for the positive results we consider this stronger notion
of competitiveness, all our impossibility results (upper bounds) are for the regular
notion of competitiveness.

3. Bandwidth allocation on a single link. We present two algorithms for
bandwidth allocation on a single link. The first algorithm, called the left-right (LR)
algorithm, is (1

2 −δ)-competitive for δ < 1
2 . The second algorithm, called the effective

time (EFT) algorithm, is 1−δ
4 -competitive for all δ < 1. For δ > 1

3 algorithm EFT has
better competitiveness, whereas for δ < 1

3 algorithm LR has better competitiveness.
In particular, for very small values of δ, the LR algorithm is about 1

2 -competitive.
(In section 5 it is shown that for small δ no algorithm can have a better competitive
ratio than 0.66.) We stress that, although B can be arbitrarily large, our algorithms
have constant competitiveness whenever the fraction δ is a constant smaller than one.
Furthermore, our algorithms do not depend on δ. Therefore, their performance on
any request sequence depends on the δ fraction of this particular sequence.

The following geometric representation of the scenario may be helpful (see Figure
3.1). Let the x axis represent time and the y axis represent bandwidth. Each call c is
a rectangle of length dc and height bc. We have to fit the rectangles above the x axis
and below the line y = B, under the constraint that the rectangle of call c has to start
at x = tc. Note, however, that a call need not use the same “bandwidth pieces” for
its total duration. Thus we are allowed to “break” the rectangles vertically, as long

BANDWIDTH ALLOCATION WITH PREEMPTION 1811

as enough bandwidth is allocated at all times. (This distinguishes our problem from
many other problems, e.g., memory allocation.)

In subsection 3.1 we briefly and informally explain why some straightforward
strategies for bandwidth allocation fail. We present our algorithms in the two sub-
sections that follow.

3.1. First tries. We first show that basing a bandwidth allocation strategy
on the throughput of the calls is a bad idea, although we want to maximize the
total throughput of completed calls. This applies both to a greedy strategy (e.g.,
always prefer calls with larger throughput) and to a “double-the-gain” strategy (e.g.,
serve an incoming call if enough bandwidth can be freed by only preempting calls
whose combined throughput is at most half of the throughput of the incoming call).
Consider the following request sequence. First,

√B calls are requested at time 0, each
of bandwidth

√B and duration
√B. Next, still at time 0, B calls, each of bandwidth 1

and duration B2 , are requested. Serving any of the last B calls requires preempting one

of the first
√B calls. However, each of the last calls has smaller throughput than each

of the first calls. Thus, both the greedy and the double-the-gain algorithms serve only
the first

√B calls, gaining B3/2. The best schedule is the last B calls with throughput
B2

2 ; thus the competitiveness is at most 2√B . The moral is that calls with longer

duration are preferable even if the longer calls have smaller throughput, as there may
be many similar calls coming in the future.

An alternative strategy may thus be to consider the duration of calls (say, use a
“double-the-duration” algorithm). It turns out that considering only the duration is
also not good enough (we omit further counterexamples). An additional parameter
should be considered, namely the amount of time a call in service has been running
(or, alternatively, the amount of time it will run in the future). Each of our algorithms
considers a different combination of these parameters.

3.2. The LR algorithm. The LR algorithm implements a compromise between
the need to hold on to jobs that have been running for the longest time (thus capital-
izing on work done) and the need to hold on to jobs that will run for the longest time
in the future (thus guaranteeing future work). The compromise is simple: half of the
capacity is dedicated to each of these two classes of jobs. Surprisingly, this simple
compromise yields a good competitive ratio. The LR algorithm is described in Figure
3.2.

Theorem 3.1. For δ < 1
2 , algorithm LR is (1

2 − δ)-competitive.
Proof. First, note that the total bandwidth required by the calls in L ∪R at any

time t is at most BL(t) +BR(t) ≤ B2 + B
2 = B. Thus the algorithm is valid. Next we

show its competitiveness.

Consider an input sequence S = c1, . . . , cn of call requests and assume that δ
def
=

maxi{ bciB } is at most 1
2 (otherwise the competitive claim in the theorem is vacuous).

Let E
def
= LR(S) be the set of calls completed by LR on input S. Let Si be the prefix

of S composed of the first i calls in S, and let Ei be the set of calls completed by the
algorithm, assuming that the input sequence is only Si. Note that Ei is the union
of two sets: (i) the set of calls completed up to time tci (that is, up to the time call
ci is requested), and (ii) the set of calls being served at time tci . Below we show,
by induction on i, that for all i and for all times t, BEi(t) ≥ min{BSi(t), (1

2 − δ)B}.
Since S = Sn and E = En, we have BE(t) ≥ (1

2 − δ)BS(t) for all t. (The worst case is
when BS(t) = B.) Thus the total throughput of the LR algorithm, V (E), is at least
(1

2 − δ)V (S), and the theorem follows.

1812 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

Let F be the set of calls currently in service. Upon the request of a call c do:

1. Add c to F .

2. Find the following two sets of calls, L and R:

(a) Sort the calls by increasing order of starting time, and let L be the
maximal set of calls at the top of the list (i.e., earliest starting times)
such that the total bandwidth required by the calls in L is at most
B
2

.
(b) Sort the calls by decreasing order of ending time, and let R be the

maximal set of calls at the top of the list (i.e., latest ending times)
such that the total bandwidth required by the calls in L is at most
B
2

.

3. Preempt/reject calls that are neither in L nor in R to fit in the link
capacity.

Fig. 3.2. Algorithm LR.

The inductive claim trivially holds for i = 0. Let i > 0, and fix some t′ ≥ 0. We
distinguish two cases.

Case 1. No call p that requested bandwidth for time t′ was rejected or preempted
in the ith step (that is, when processing the ith request). In this case, if the ith request,
ci, requests bandwidth for time t′, then BEi(t

′)−BEi−1
(t′) = bc ≥ BSi(t′)−BSi−1

(t′).
If ci does not request bandwidth for time t′, then BSi(t

′)−BSi−1
(t′) = 0 = BEi(t

′)−
BEi−1

(t′). Thus the inductive claim holds.
Case 2. There exist calls that requested bandwidth for time t′ and were rejected

or preempted in the ith step. We show that in this case BEi(t
′) ≥ (1

2 − δ)B. Let
p be a call that was rejected or preempted in the ith step, for which t′ ∈ [tp . . . ep].
(Otherwise, BEi(t

′) is not affected by call p.) Since the bandwidth requested by p is
at most δB, both BL(tci) and BR(tci) must be at least (1

2 − δ)B, otherwise p would
be in either L or R. (See also Figure 3.3.) Furthermore, p /∈ L; thus we must have
BL(t) ≥ (1

2 − δ)B for all times t ∈ [tp . . . tci]. (In other words all the calls in L started
before tp and are still running at tci .) Similarly, since p /∈ R, we have BR(t) ≥ (1

2−δ)B
for all times t ∈ [tci . . . ep]. (In other words all the calls in R end after ep and started
running before tci .) Thus, BEi(t

′) = BL∪R(t′) ≥ (1
2 − δ)B.

3.3. The EFT algorithm. The EFT algorithm implements a different compro-
mise between banking on past profit and ensuring future profit. Rather than dividing
the bandwidth between the two classes, this algorithm attaches a time-value, called
the effective time, to each single call. Calls with later effective times are preempted
first. The effective time τc of a call c is its arrival time minus its duration, i.e.,

τc
def
= tc − dc. This strategy reflects (in a way described below) the idea that work

that is done is worth twice as much as work to be done. Algorithm EFT is described
in Figure 3.4.

The effective time strategy may be viewed as a variant of a “doubling strategy”
as follows. Let r be a requested call and c be a call in service. By preempting c and
serving r, we “gain” the time interval [ec . . . er] and “lose” the time interval [tc . . . tr].
We will preempt c to make room for r if the time-gain is more than twice the loss,
that is, if er − ec > 2(tr − tc). This condition is equivalent to tr − dr < tc − dc, or
τr < τc.

Theorem 3.2. For δ < 1, algorithm EFT is (1−δ
4)-competitive.

BANDWIDTH ALLOCATION WITH PREEMPTION 1813

Fig. 3.3. Call p was either rejected or preempted in the ith step. The total bandwidth of each
of the sets L and R is at least (1

2
− δ)B. Since t′ intersects either all calls in L or all calls in R, we

have BEi (t
′) ≥ (1

2
− δ)B.

Let the effective time of a call c be τc
def
= tc − dc.

Maintain a list L of the calls in service, sorted by increasing order of effective time.
(Calls that have the same effective time are ordered arbitrarily.)
Upon the request of a call c, do:

1. Add c to L in place.

2. Reject/preempt calls from the end of the list (i.e., “latest” effective times),
to fit in the link capacity.

Fig. 3.4. Algorithm EFT.

Proof. The validity of algorithm EFT is immediate from the description. We
show its competitiveness. Unlike algorithm LR, here there may be times when the
optimal schedule has the link used to capacity while algorithm EFT has almost no
bandwidth allocated to calls that eventually complete. Therefore, we use a different
“bookkeeping” method for proving the competitiveness of EFT.

Consider some input sequence S = c1, . . . , cn of call requests, and let δ
def
=

max{ bciB }. Let E
def
= EFT(S) be the set of calls completed by algorithm EFT on input

S. We introduce a sequence, E′, of “virtual calls” and show that V (E) ≥ 1−δ
4 ·V (E′)

and V (E′) ≥ V (S). Therefore, the total throughput of the algorithm (i.e., V (E)) is
at least 1−δ

4 · V (S).
We define virtual calls as follows. For each call c, let the virtual call c′ have

arrival time tc′ = τc = tc−dc, ending time ec′ = ec+2dc, and bandwidth bc′ = 1
1−δ bc.

For a set A of calls, let A′ def
= {c′ : c ∈ A}. Note that the duration of each virtual

call is ec′ − tc′ = (ec + 2dc) − (tc − dc) = 4dc and therefore the throughput of each
virtual call c′ is 4

1−δ times the throughput of the corresponding real call c. Thus,

V (E) ≥ 1−δ
4 · V (E′). In Lemma 3.4 below we show that BE′(t) ≥ BS(t) for all t.

Thus, V (E′) ≥ V (S), and the theorem follows.
Let us first prove a technical claim. (See Figure 3.5.)

1814 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

ta’ ta

tbt
b’

t
b’ tb

ea

eb

ea’

eb’

eb’

eb

Fig. 3.5. The proof of the technical claim.

Claim 3.3. Let a and b be two calls scheduled by the algorithm at time t.
(1) If ta′ ≤ tb′ and ta ≥ tb, then ea′ ≥ eb′ .
(2) If ta′ ≤ tb′ , then ea′ ≥ eb.
Proof. Part (1): If ta ≥ tb and ta′ ≤ tb′ , then it must be that da ≥ db. Thus,

ea′ = ta + 3da ≥ tb + 3db = eb′ .

Part (2): Consider the case not covered in part (1), i.e., ta < tb and ta′ ≤ tb′ . Call
a has not ended by time tb, thus da ≥ tb − ta. Also, it follows from ta′ ≤ tb′ that
da ≥ db − (tb − ta). Thus,

ea′ = ta + da + 2da

≥ ta + db − (tb − ta) + 2(tb − ta)

= tb + db = eb.

Lemma 3.4. For any request sequence S and for all times t we have BE′(t) ≥
BS(t).

Proof. Say that a time t is i-quiet if, up to and including the ith request, all
the calls that requested bandwidth for time t (that is, calls c such that t ∈ [tc . . . ec])
were completed by the algorithm. Note that if time t is i-quiet, it is also j-quiet for
all 1 ≤ j ≤ i. A time t is quiet if it is i-quiet for all i. If a time t is quiet, then
certainly BE′(t) > BE(t) = BS(t). It remains to deal with times that are not quiet
(i.e., times that are not i-quiet for some request i). Define Si and Ei as in the proof
of Theorem 3.1. (That is, Si is the prefix of S composed of the first i calls in S, and
Ei is the set of calls completed by the algorithm assuming that the input sequence is
only Si.) We show, by induction on i, that BE′

i
(t) = B for all times t that are not

i-quiet. Since E = En and S = Sn we get BE′(t) ≥ BS(t) for all times t.
The inductive claim holds vacuously for i = 0. For i > 0 we distinguish three

cases.
Case 1. The ith request, ci, was served without preempting other calls. In this

case, any time that is not i-quiet is also not (i− 1)-quiet, and BE′
i
(t) ≥ BE′

i−1
(t) for

all times t. Thus the claim follows from the induction hypothesis.
Case 2. The ith request was rejected without preempting other calls. In this case,

the inductive hypothesis holds for any time t that is not (i− 1)-quiet. Also, all times
that are (i− 1)-quiet and are not i-quiet are in the time range [tci . . . eci]. Thus it is

BANDWIDTH ALLOCATION WITH PREEMPTION 1815

enough to show that BE′
i
(t) = B for all t ∈ [tci . . . eci]. Let F be the set of calls being

served at time tci . Since ci is rejected, and bci ≤ δB, the total bandwidth of the calls
in F is at least (1− δ)B. We have tf ′ ≤ tc′

i
for all f ∈ F ; thus by Claim 3.3, part (2),

we have eci ≤ ef ′ . It follows that BE′
i
(t) ≥ BF ′(t) ≥ B for all times t ∈ [tci . . . eci].

(In fact this holds for all times t ∈ [tc′
i
. . . eci].)

Case 3. Calls were preempted while processing request i. Let Pi be the set of
calls that were preempted (or rejected) while processing request i.1 For a set A of
calls let tA (resp., eA) denote the earliest starting time (resp., latest ending time) of
a call in A. Here we have to consider the time range [tP ′

i
. . . eP ′

i
] (rather than only

[tPi . . . ePi]) since calls in Pi that contributed to BE′
i−1

(t) are now preempted.

It can be seen, similar to the proof of Case 2, that BE′
i
(t) ≥ B for all times

t ∈ [tP ′
i
. . . ePi]. It is left to show that BE′

i
(t) ≥ B for all times in [ePi . . . eP ′i] that are

not i-quiet.
Let t be a time in [ePi . . . eP ′i] that is not i-quiet. Thus there exists a request j ≤ i

that caused either rejection or preemption of a call that requested bandwidth at time
t. We complete the proof by showing, for each request k, j ≤ k ≤ i, a set Gk ⊆ Ek of
calls such that BG′

k
(t) ≥ B. These sets are defined inductively as follows. Define Fk to

be the set of calls in service immediately after request k was processed. Let Gj
def
= Fj .

For k > j, if ck is rejected or if ck is placed in the ordered list L of calls in service
after all the calls in Gk−1, then Gk = Gk−1−Pk. Otherwise, Gk = Gk−1 ∪{ck}−Pk.
Certainly Gk ⊆ Ek. We show by induction on k that the following two properties
hold for all j ≤ k ≤ i. (We are interested in Property 2.)

Property 1. For all calls g ∈ Gk, t ∈ [tg′ . . . eg′].
Property 2. BG′

k
(t) = B.

Consider the case k = j. When request j was processed, a call asking bandwidth
for time t was rejected or preempted, so therefore by Claim 3.3 all calls in Fj = Gj
have Property 1. Furthermore, the total bandwidth of all calls in Gj must be at
least (1− δ)B; otherwise one of the calls that was either rejected or preempted while
processing request j would have been kept by the algorithm. Property 2 thus follows
as well.

Now fix some k > j and assume that the two properties hold for Gk−1. We
distinguish two subcases.

Case 3.1. Call ck either is rejected or appears in the ordered list L of calls in
service after all the calls in Gk−1. In this case, Property 1 holds since Gk ⊆ Gk−1. If
call ck is rejected, then Property 2 is shown as in the base case k = j. If call ck is
served, then since it appears after all the calls in Gk−1 in the list L, all these calls are
served as well, and Gk = Gk−1. In this case Property 2 follows from the induction
hypothesis.

Case 3.2. Call ck is served and appears in the sorted list L before some call
g ∈ Gk−1. Here, Gk = Gk−1 ∪ {ck} − Pk. We first show Property 1. From the
induction hypothesis, Property 1 holds with respect to all calls in Gk other than
ck. Note that tg ≤ tck . By our assumption also τck ≤ τg, and thus it follows from
Claim 3.3, part (1) that tc′

k
≤ tg′ and eg′ ≤ ec′

k
. Since t ∈ [tg′ . . . eg′] we have

t ∈ [tc′
k
. . . ec′

k
], which proves Property 1 for call ck.

Next we show that Gk satisfies Property 2. If Pk ∩ Gk−1 = ∅, then Gk−1 ⊆ Gk
and Property 2 holds. Otherwise, a call in Gk−1 was preempted while processing

1It is possible that calls are preempted and also that the incoming call is rejected. For simplicity
we include the rejected call with the preempted calls.

1816 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

request k. From the definition of Gk−1 it follows that in this case all calls not in
Gk−1 that were in service upon the arrival of request k must have been preempted
as well. Consequently, Fk = Gk. However, the total bandwidth of calls in Fk must
be at least (1− δ)B, otherwise one of the calls that was either rejected or preempted
while request k was processed would have been kept by the algorithm. Thus, the total
bandwidth of calls in Gk must be at least (1 − δ)B. By Property 1, all calls in Gk
request bandwidth for time t. Property 2 follows.

4. Bandwidth allocation on a line within a single time slot. In this section
we consider bandwidth allocation in the line model, in which a sequence of stations
are connected on a line by communication links. For simplicity we assume that all
links have unit length and the same bandwidth capacity, B. Our results generalize to
networks with individual capacities and lengths of the links. A call is a connection
between two stations on the line. We consider the case where all calls arrive at the
same time unit (in some arbitrary order) and have the same duration. In the next
section we show that if we let calls have arbitrary duration, and if δ is more than half,
then constant competitiveness cannot be achieved by any deterministic algorithm.
(We note that this holds even if randomization is allowed [8].)

More formally, the line model is defined as follows. Assume the stations are
labeled by consecutive integers increasing from left to right. A call c is characterized
by its left endpoint lc, its right endpoint rc, and its bandwidth requirement bc. Let

the length of call c be hc
def
= rc − lc. The throughput of c is now vc = hc · bc. Again,

bearing in mind that our goal is to maximize the throughput of the network, we define
the additive throughput accrued from serving a completed call c to be its throughput
vc. Here the throughput can also be regarded as the amount of network resources
allocated for the call. The definitions of the cover, feasibility, and throughput of a
request sequence, as well as the competitiveness and validity of bandwidth allocation
algorithms, are similar to those of the single link model (see section 2), where time t
is replaced, in the natural way, by location (link) e on the line and earlier times are
translated to locations with smaller labels. This model is a generalization of the single
link model, in the sense that any algorithm for the line model is valid, and has the
same performance, in the single link model (when “location” is translated to “time”).
The converse is not true, due to reasons described later.

We adapt our algorithms to this more general scenario. The adapted LR algo-
rithm, called ALR, is still (1

2−δ)-competitive for δ < 1
2 . The adapted EFT algorithm,

called AEFT, is 1−δ
2φ+1 -competitive for all δ < 1, where φ = 1 + 1

φ = 1+
√

5
2 ≈ 1.6 is

the golden ratio. The first difficulty in adapting our algorithms to this model is
as follows. In the single link model there is a “current time” at which all calls in
service require bandwidth and where the new call must start; thus all bandwidth
conflicts are at the current time. In the line model, bandwidth conflicts upon the
arrival of a new call are not limited to a single location; at some locations, it may
seem beneficial to accept the incoming call, where at other locations it may seem
beneficial to reject. It turns out that the following technique provides a sufficient
solution for this difficulty in both adapted algorithms. Upon the arrival of a request,
we first add the requested call to the list of calls in service. Next, we go over the
links one by one, in an arbitrary order, and resolve remaining conflicts on each link
by rejecting or preempting calls according to a scheme similar to the original one
(where “time” is replaced by “location”). The ALR algorithm requires no further
modifications. The AEFT algorithm encounters an additional difficulty, described
below.

BANDWIDTH ALLOCATION WITH PREEMPTION 1817

Let LR∗ be the same algorithm as LR, where time is translated to location.
Let F be the set of calls currently in service. Upon the request of a call c do:

1. Add c to F .

2. While there are links e with a conflict (i.e., B̃F (e) > B) do:

Let e be a link with a conflict, and let Fe ⊆ F be the set of calls currently
in service that are using link e. Run algorithm LR∗ on the set of calls Fe.
Remark: Clearly, after running LR∗ on Fe link e has no conflict. However,
since the rejected/preempted calls may span other links, this may also
resolve conflicts along other links as well.

Fig. 4.1. Algorithm ALR.

4.1. The ALR algorithm. The ALR algorithm is described in Figure 4.1.
Theorem 4.1. For δ < 1

2 , algorithm ALR is (1
2 − δ)-competitive.

Proof. The proof is similar to the proof of Theorem 3.1. Consider a link e with a
conflict. Let Le ⊆ Fe and Re ⊆ Fe be the two sets of calls computed by LR∗ when
run on Fe. Note that the total bandwidth required by the calls in Le ∪Re is at most
B
2 + B

2 = B. Thus the algorithm is valid. Next we show competitiveness.
Consider an input sequence S = c1, . . . , cn of call requests and assume that δ =

maxi{ bciB } is at most 1
2 . Let E

def
= LR∗(S) be the set of calls completed by LR∗. Let

Si be the prefix of S composed of the first i calls in S, and let Ei be the set of calls
completed by the algorithm, assuming that the input sequence is only Si. Below we
show, by induction on i, that for all i and for all links e, BEi(e) ≥ min{BSi(e), (1

2 −
δ)B}. Since S = Sn and E = En, we have BE(e) ≥ (1

2 − δ)BS(e) for all e. Thus the
total throughput of the ALR algorithm, V (E), is at least (1

2 − δ)V (S). The theorem
follows.

The inductive claim trivially holds for i = 0. For i > 0 we distinguish two cases.
Fix some link e.

Case 1 (identical to the proof of Theorem 3.1). No call p that requested bandwidth
for link e (i.e., e ∈ [lp . . . rp]) was rejected or preempted in the ith step (that is, when
processing the ith request). In this case, if the ith request, ci, requests bandwidth
for link e, then BEi(e) − BEi−1

(e) = bc ≥ BSi(e) − BSi−1
(e). If ci does not request

bandwidth for link e, then BSi(e) − BSi−1
(e) = 0 = BEi(e) − BEi−1

(e). Thus the
inductive claim holds.

Case 2. There exist calls that requested bandwidth for link e and were rejected or
preempted in the ith step. We show that in this case BEi(e) ≥ (1

2−δ)B. Let p1, . . . , pa
be the calls that were rejected or preempted in the ith step, sequenced by the order of
their rejection or preemption. We prove, by induction on 1 ≤ j ≤ a, that when pj is
either rejected or preempted, the total bandwidth of the calls in service on e is at least
(1

2 − δ)B. Suppose that this was the case before the rejection or preemption of pj .
If e /∈ [lpj . . . rpj], then this is clearly the case also after the rejection or preemption
of pj . Otherwise, let e′ be the link such that pj was rejected or preempted while
LR∗ was run on Fe′ , and let Le′ (resp., Re′) be the set L (resp., R) found by LR∗

when operating on e′. Assume e is to the left of e′ (i.e., e ∈ [lpj . . . e
′]). All the calls

in Le′ include e since they start to the left of (or at) lpj . Since pj /∈ Le′ , and the
bandwidth requested by pj is at most δB, BL(e′) and thus also BL(e) must be no less
than (1

2 − δ)B. Similarly, if e is to the right of e′ (i.e., e ∈ [e′ . . . rpj]), then BR(e′)
and thus also BR(e) must be no less than (1

2 − δ)B.

1818 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

Let F be the list of calls currently in service. Upon the request of a call c do:

1. Add c to F .

2. While there are links e with a conflict (i.e., B̃F (e) > B) do:

Let e be a link with a conflict, and let Fe ⊆ F be the list of calls using e,
sorted so that if a � b then a is ahead of b in the list.
Reject/preempt calls from the end of Fe to fit in the link capacity.

Fig. 4.2. Algorithm AEFT.

4.2. The AEFT algorithm. The following difficulty is encountered in adapting
the EFT method to the line model. The original EFT algorithm weighed past work
and future work differently, relying on the fact that time is directional (i.e., the starting
time of a new call is no earlier than the starting time of the calls in service). In the
line model, past and future lose their meaning: the left endpoint of a new call is not
necessarily “more to the right” than the left endpoints of the calls in service. Instead,
the adapted algorithm will use “effective endpoints” both to the left and to the right,
as follows. For a call c with left endpoint lc, right endpoint rc, and length hc = lc−rc,
let the effective span be the range sc = [lc−g ·hc . . . rc+g ·hc], where g is some constant
to be computed later. We define a complete order, denoted �, on the calls. For calls
a and b, a � b either if the effective span of a contains the effective span of b (i.e.,
sb ⊂ sa), or if the effective spans of a and b are not contained in each other and a is
requested before b. Algorithm AEFT is described in Figure 4.2.

Theorem 4.2. For δ < 1, Algorithm AEFT is (1−δ
2m+1)-competitive, where m =

max{g, 1 + 1
g}, and g is the constant used for determining effective spans.

Corollary 4.3. Let g = φ be the golden ratio (that is, φ = 1 + 1
φ and φ =

1+
√

5
2 ≈ 1.6). For δ < 1, algorithm AEFT is 1−δ

2φ+1 -competitive.

Proof of Theorem 4.2. We follow the outline of the proof of Theorem 3.2. (We
also use the notation of Theorem 3.2.) Let m = max{g, 1 + 1

g}. Define virtual

calls as follows. The virtual call c′ that corresponds to a call c has left endpoint
lc′ = lc−m·hc and right endpoint rc′ = rc+m·hc and requires bandwidth bc′ = 1

1−δ bc.

Consider a sequence S of incoming requests and let E
def
= AEFT (S). Clearly, V (E) ≥

1−δ
2m+1V (E′). We show below that BE′(e) ≥ BS(e) for all links e. Consequently

V (E′) ≥ V (S), and the algorithm is 1−δ
2m+1 -competitive.

We show, by induction on the number of calls in the input sequence, that BE′(e) ≥
B for each link e where a call requested bandwidth and was rejected or preempted.
Similar to the proofs of Theorem 3.2 and Lemma 3.4, the inductive claim is shown by
proving the following: (1) Whenever a call c is rejected (when considering a link e),
its span is contained in the spans of all the virtual calls that correspond to the calls
that remain in service and use link e. (The span of a call c is the range [lc . . . rc].)
(2) Whenever a call c is preempted (when considering a link e), the links that are not
quiet in the span of the virtual call c′ are contained in the spans of virtual calls of
bandwidth at least B that remain in service.

Case 1. Suppose that an incoming call c is rejected while considering some link
e in step 2 of Algorithm AEFT (given in Figure 4.2). Here it suffices to show that
lf ′ ≤ lc and rc ≤ rf ′ for all remaining calls f ∈ Fe. This clearly holds for all calls
in Fe whose effective span contains the effective span of c. Consider a call f that
remained in Fe whose effective span does not contain the effective span of c. Without

BANDWIDTH ALLOCATION WITH PREEMPTION 1819

loss of generality assume that f is to the right of c (that is, lc < lf < rc < rf). Since c
was rejected, we have f � c, thus the effective span of c does not contain the effective
span of call f . Observe that lc − ghc < lf − ghf (otherwise rf + ghf ≥ rc + ghc,
implying that the effective span of f contains the effective span of c). This implies
that rc + ghc ≤ rf + ghf , or

ghc ≤ rf − rc + ghf .(4.1)

By our assumption that lf < rc, we have rf − rc < hf . Substituting this inequality
in (4.1) we get ghc < (1 + g)hf , or equivalently

hc <

(
1 +

1

g

)
hf ≤ mhf .

Therefore, lf ′ = lf −mhf ≤ lf − hc ≤ lc, and rf ′ = rf +mhf ≥ rf + hc ≥ rc.
Case 2. Suppose that a call p is preempted when a call c is requested (and call

c is accepted). We show that in this case lc′ ≤ lp′ and rp′ ≤ rc′ . The proof that the
spans of the virtual calls that correspond to the rest of the calls that remain in service
contain the links that are not quiet in the span of call c′ is the same as in Case 1. We
have c � p, since call c is accepted. Since call c was requested after call p, the only
way for the relation c � p to hold is if the effective span of c contains the effective
span of p; that is, lc − ghc ≤ lp − ghp and rc + ghc ≥ rp + ghp (and at least one of
these inequalities is strict). Since m ≥ g, then lc′ ≤ lp′ and rp′ ≤ rc′ .

5. Optimality of the algorithms. We prove impossibility results for the com-
petitive ratio of any deterministic online bandwidth allocation algorithm on a single
link, demonstrating that our algorithms achieve close to optimal competitiveness for
all values of δ. First we show that if a single call requires the entire bandwidth (i.e.,
δ = 1), then no algorithm can be more than 1

B -competitive. (Note that B may be
unboundedly large.) Next we show that if δ ≥ 1

2 , then no algorithm can be more
than min{ 1

8 , (1 − δ)}-competitive. In particular, if δ = 1
2 , then no algorithm can be

more than 1
8 -competitive. Recall that algorithm EFT is 1−δ

4 -competitive; therefore
for δ = 1

2 EFT is optimal, for 1
2 < δ ≤ 7

8 it is at most a factor of 1
2(1−δ) from optimal-

ity, and for 7
8 ≤ δ < 1 it is at most a factor of 4 from optimality. For 1

3 < δ < 1
2 the

competitiveness of any algorithm is shown to be at most 1
2 , therefore our algorithm

is at most a factor of 2
1−δ from optimality. Finally, for 0 < δ ≤ 1

3 the competitiveness

of any algorithm is shown to be at most 2
3 , therefore our algorithm is at most a fac-

tor of 4
3(1−2δ) from optimality. We summarize our results for the different ranges in

Table 5.1 and the graph in Figure 5.1.
We show the impossibility results by demonstrating, for any algorithm, an input

sequence of call requests which forces any algorithm to perform poorly compared to
the best (offline) schedule. We describe input sequences as if they may change “on
the fly,” depending on the choices of the algorithm so far. Such a description is valid
since the behavior of a deterministic algorithm on any prefix of the input sequence
can be thought of as known beforehand. We sometimes call the sequence creator the
adversary.

This section is organized as follows. First, we describe the known impossibility
results for the case in which calls always request the whole bandwidth. Next we prove
our impossibility result for the case δ = 1. Using the techniques of these two bounds
we show the 1

8 bound for the case 1
2 ≤ δ < 1. Next we prove the 1− δ bound for the

case 1
2 < δ < 1. We proceed for the case 0 ≤ δ < 1

2 and prove our bounds using the

1820 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

Table 5.1
All bounds in the different ranges of 0 < δ ≤ 1.

Range Lower bound Upper bound Optimality ratio

(algorithm) (impossibility result)

(
upper bound
lower bound

)
δ = 1 1

B
1
B 1

7
8
≤ δ < 1 1−δ

4
1− δ 4

1
2
≤ δ ≤ 7

8
1−δ

4
1
8

1
2(1−δ) ≤ 4

1
3
≤ δ ≤ 1

2
1−δ

4
1
2

2
1−δ ≤ 4

0 < δ ≤ 1
3

1
2
− δ 2

3
4

3(1−2δ)
≤ 4

δ → 0 1
2

2
3

4
3

1/8
1/6

1/2

2/3

1

0

Upper Bound (impossibility result)

Lower Bound (algorithm)

17/81/21/30

Fig. 5.1. Graph of bounds in the different ranges of 0 < δ ≤ 1.

more restricted parallel links model (to be defined there). At the end of the section,
we consider the more general case of calls with arbitrary durations on a general linear
network. We show that any deterministic online algorithm for this case is at most
1
B -competitive, if δ > 1

2 .

The whole bandwidth case. The sequence S is an adaptation of a sequence
demonstrated in [13] to show that no algorithm can be more than 1

4 -competitive for
the case where all calls require bandwidth exactly B. (The sequence in [13] is an
adaptation of a bound for scheduling algorithms in the presence of overload, shown
in [6].) Let us review their construction. For any α > 1

4 , construct a sequence
C = c1, . . . , cn of calls where each call ci arrives “just before call ci−1 ends” (i.e.,

tci = eci−1 − 1, where eci
def
= tci + dci is the ending time of ci), and dci−1 < αeci for

all i, dcn ≤ dcn−1 . The offline algorithm is able to schedule calls that cover the entire
duration 0 ≤ t ≤ ei, in a way described below. Since dci−1

< αeci for all i, the online
algorithm is always forced to preempt the single call in service (that is, ci−1) when
a new call arrives; otherwise it is not α-competitive since it covers only dci−1

time
units while the offline algorithm covers eci time units. Thus the algorithm completes

BANDWIDTH ALLOCATION WITH PREEMPTION 1821

a1 a2 a3a0
b

1,0

b
1,1

b1,2

b1,3
B

B 2B 3B B
2 time

Fig. 5.2. The impossibility result for the case δ = 1.

either only cn or only cn−1 with value at most dcn−1
, whereas the offline can cover

the entire duration 0 ≤ t ≤ ecn . Consequently, once the call cn is requested the online
algorithm can no longer be α-competitive. To complete the construction, set dc1 = B
and interleave the ci calls with many additional service calls, each of duration 1. The
service calls cannot be served by the online algorithm since once a service call is served
the sequence stops and the algorithm is no longer competitive. The offline algorithm
serves all service calls and accrues throughput ecn .

The case δ = 1. We show that if δ = 1, then for any online algorithm A there
exists an input sequence S such that the throughput V (A(S)) = B2, whereas some fea-
sible subsequence S′ ⊆ S has a gain V (S′) = B3. Consequently, the competitiveness
of A is at most 1

B . (See Figure 5.2.)
The sequence S consists of two types of calls: squares and slices. A square call

has duration B time units and bandwidth B. A slice call has duration B2 time units
and bandwidth 1. Both have throughput B2. Observe that no algorithm can serve
both a square and a slice call that intersect (that is, require bandwidth for the same
time). The sequence S starts with a square call at time 0. The algorithm A must
serve this call, otherwise it is 0-competitive. Next, the following procedure is repeated
until S contains either B square calls or B slice calls:

(a) As long asA serves a square call, then at each time unit a slice call is requested.
(b) As long as A serves a slice call, then every B time units a square call is

requested.
Analysis. At the end of the process A has completed at most one call, hence

V (A(S)) ≤ B2. Conversely, a feasible S′ ⊆ S may contain B calls of the same type
(either squares or slices) and be of value V (S′) = B · B2 = B3.

The case δ = 1
2
. Consider the sequence C = c1, . . . , cn as described above for

a given α > 1
4 . From now on we omit references to α and think of the sequence

that is associated with α = 1
4 + ε, where ε is negligible. Rigorous proof follows in a

straightforward way. Although we present the bound only for δ = 1
2 , it will be clear

from the presentation that the bound holds for any δ > 1
2 .

The basic idea behind our proof is to force the algorithm to serve ci with band-
width B

2 while the offline can serve calls that cover the whole bandwidth until ei+1.
This will add an extra factor of 2 and therefore the 1

8 bound.
In the sequence C, let the length of call ci be γi and let its beginning time

and ending time be τi and εi, respectively. Define a new call cn+1 with parameters
τn+1 = τn, γn+1 = γn, and εn+1 = εn, and choose B � n · εn. We construct a
sequence S that contains three types of calls. First, for each i there are two calls
fi with bandwidth 1

2B, arrival time ti = B3τi, ending time ei = B3εi, and duration
di = B3γi. Next, there are many service calls of type ai with duration B3(2εi+1) and
bandwidth 1 and many service calls of type b with duration B and bandwidth 1

2B.

1822 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

The starting time of the service call would depend on the behavior of the algorithm,
as explained later.

Recall that vc is the throughput of call c. We get that vb = B2

2 , vai = B3(2εi+1) =

o(B4), and vfi = 1
2Bdi = B4

2 γi = O(B4). Note also that since εn · n � B it follows
that

∑n
j=1 vaj = o(B4). These equations, and the fact that

di
ei+1

=
γi
εi+1

→ 1

4
,

imply the following proposition.
Proposition 5.1.

vb +
∑i
j=1 vaj

vfi
� 1

8
,(5.1)

vb + vfi +
∑i
j=1 vaj

Bvai
≤ 2vfi +

∑i
j=1 vaj

Bvai
=

γi
2εi+1

+

∑i
j=1 vaj

B4εi+1
→ 1

8
,(5.2)

vfi +
∑i+1
j=1 vaj

Bei+1
=

γi
2εi+1

+

∑i+1
j=1 vaj

B4εi+1
→ 1

8
.(5.3)

Say that we are in the ith phase if the following three conditions hold.
Condition 1. The algorithm has not completed any calls of type b or fj for

1 ≤ j < i before time ti.
Condition 2. The algorithm serves one call of type fi and possibly one call of

type aj for 1 ≤ j ≤ i.
Condition 3. There exists a feasible subsequence S′ ⊆ S, consisting only of calls

of type b, that covers the entire bandwidth for times in [0 . . . ti].
The sequence S starts by requesting an f1 call and an a1 call, both at time 0. The

algorithm must serve the f1 call in order to be competitive. Hence, we are now in the
first phase. We show below how to force the algorithm to reach the (i + 1)st phase
from the ith phase. The bound will follow once the nth phase is reached. At that
stage, the gain of the online algorithm is at most vfn +

∑n+1
j=1 vaj = vfn−1

+
∑n+1
j=1 vaj

while the gain of the offline is Ben. Equation (5.3) of Proposition 5.1 proves the 1
8

bound.
Once in the ith phase, the (i+ 1)st phase is reached as follows.
1. At each time t, ti ≤ t ≤ ei − B, request two calls of type b. In order to serve

any of these calls, the algorithm has to preempt either the fi call or the ai
call currently in service.
(a) Suppose that the call fi is preempted. In this case we stop. The algo-

rithm serves a call of type b and calls of type aj for 1 ≤ j ≤ i, whereas
the offline can serve an fi call. The bound is yielded by (5.1).

(b) Suppose that the call ai is preempted. Request calls of type ai at times
t + 1, t + 2, . . . until the algorithm preempts the fi call, preempts the b
type call, or rejects B calls of type ai. The first case is the same as the
previous case (a). In the second case we are back in the ith phase and
we continue offering the calls of type b. In the third case we stop. The
algorithm serves a call of type b, a call of type fi, and some calls of type
aj for 1 ≤ j < i, whereas the offline can serve B calls of type ai. The
bound is yielded by (5.2).

BANDWIDTH ALLOCATION WITH PREEMPTION 1823

a

cb1b2b3

B

B

1

(1−δ)B+1

Fig. 5.3. The impossibility result for the case 1
2
< δ < 1. Here, B = 12 and δ = 3

4
.

We thus assume that none of these b calls are served. Note that now there
exists a feasible subsequence S′ ⊆ S, consisting only of b calls, which covers
the entire bandwidth for times in [0 . . . ei].

2. At time ei − B, when the fi call is about to end, request two calls of type
fi+1. Now, the algorithm has several options.
(a) The algorithm rejects both calls. In this case we stop. The offline can

serve b type calls to cover the whole bandwidth up to ti+1 and the
two fi+1 calls to cover the whole bandwidth up to ei+1, whereas the
algorithm can serve one fi call and some aj type calls for 1 ≤ j ≤ i. The
bound follows from (5.3).

(b) The algorithm serves one of the fi+1 calls and preempts the fi call. In
this case we reached the (i+ 1)st phase.

(c) The algorithm serves one of the fi+1 calls and preempts the ai call.
This means that at this stage, the algorithm serves a call of type fi
and a call of type fi+1. In this case, request calls of type ai+1 at times
ei − B, ei − B + 1, . . . until the algorithm does one of the following:
preempts the fi call, preempts the fi+1 call, or rejects B calls of type
ai+1. In the first case we reach the (i + 1)st phase. The second case is
the same as the previous case (a) in which the algorithm rejects the two
fi+1 calls. In the third case we stop. Since vfi < vfi+1

it follows that the

throughput of the algorithm is at most 2vfi+1
+
∑i
j=1 vaj , whereas the

throughput of the offline can be Bvai+1
. The bound is yielded by (5.2).

(d) The algorithm serves both fi+1 calls. Again we request calls of type ai+1

at times ei − B, ei − B + 1, . . . until the algorithm either preempts one
of the fi+1 calls or rejects B calls of type ai+1. Both cases appeared in
the previous case (c).

The case 1
2
< δ < 1. We show that in this case any online algorithm is at

most (1− δ + o(1))-competitive. Note that for 1
2 ≤ δ ≤ 7

8 the previous bound (of 1
8)

is better. Consider the following request sequence to an online algorithm (see Figure
5.3):

1. Request a call a at time 0, with duration B time units and bandwidth (1 −
δ)B + 1. If the algorithm does not serve this call, then end the sequence.

2. At each time 0 ≤ i < B request a call bi of duration 1 and bandwidth δB. No
bi call can be served together with a. If the algorithm preempts a to serve
one of the bi calls, then end the sequence.

1824 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

3. Request a call c at time B − 1 with duration 1 + 1−δ
δ B and bandwidth δB.

Analysis. Note that the value of a is (1−δ)B2 +B, the value of c is (1−δ)B2 +δB,
and the value of any bi is δB. Assume call a is served (otherwise the algorithm is
0-competitive). If the algorithm preempts a to serve some bi, then the algorithm is
at most δB

(1−δ)B2+B = O
(

1
B
)
-competitive. Therefore, we can assume that all the bi

calls are rejected. Calls a and c both cannot be served. Thus, the value gained by
the algorithm (by serving either a or c) is at most (1 − δ)B2 + B. The subsequence
S′ = {b0, . . . , bB−2, c} is feasible with V (S′) = B2. Hence, the competitive ratio of

the algorithm is at most (1−δ)B2+B
B2 = (1− δ) + o(1).

The case δ < 1
2
. We show that for 1

3 < δ < 1
2 no algorithm can be more than

1
2 -competitive and that for 0 < δ ≤ 1

3 no algorithm can be more than 2
3 -competitive.

This impossibility result is shown for the parallel links model. In this model, the
bandwidth of all calls is exactly Bk for some integer k > 1. This can be viewed as
if the two stations are connected via k parallel links, and each call occupies exactly
one link for its duration. (For convenience we assume that calls can be transferred
between links during service at no cost.) Clearly, this model is a special case of our
single link model.

Let rk be an upper bound on the competitiveness of any online algorithm in the
parallel links model. We show that in the single link model no online algorithm can
be more than rk competitive, in case a call may request at most δB bandwidth, for
δ > 1

k+1 . Consider any online algorithm A for the single link model. Let A′ be
the algorithm for the k parallel links model that corresponds to algorithm A. Let
c1, c2, . . . be a sequence of calls that causes A′ to be at most rk competitive in the k
parallel links model. We claim that this sequence in which the bandwidth of each ci
is δB also causes A to be at most rk competitive in the single link model. To see this,
note that since δ > 1

k+1 it follows that there cannot be k + 1 calls that are served
concurrently. Therefore, at any point in time, the calls in service can be viewed as
arranged on k parallel links such that the width of each link is δB.

It remains to bound rk. We remark that there exist algorithms for the parallel
links model that have slightly better competitiveness than our algorithms for the
single link model. Algorithms for k = 1 and k = 2 were previously known [13, 6]. A
simple extension of them yields algorithms for even k with a competitive ratio of 1

2
and for odd k with competitive ratio 1

2 − 1
4k .

We first describe a simple impossibility result for k = 2 (the case k = 1 was
dealt with in [13], as outlined above). At time 0, request two calls of length x. If the
algorithm serves only one call, then we are done. At every time unit 0 ≤ i ≤ x − 1,
request two service calls of length 1. If the algorithm takes one of these service
calls it must preempt one of the original calls. In this case, the sequence ends and the
algorithm achieves competitiveness of x+1

2x = 1
2 +o(1). Otherwise, at time x−1 request

two new requests of length x. In this case the competitiveness is 2x
4x−2 = 1

2 +o(1). For

the cases k = 3 and k = 4 we have an impossibility result of 1
2 and 11

20 , respectively.
However, the proofs are tedious and are omitted.

We now describe the impossibility result for the competitiveness of any bandwidth
allocation algorithm in this model for all k > 1. We show by induction on k that the
competitive ratio for k links is at most r, where r satisfies er = r

1−r , in particular

r ≤ 2
3 .
The basic strategy is an extension of the strategy for the two lines case. At time

0, request k calls of length x and at time x− 1 request another set of k calls of length

BANDWIDTH ALLOCATION WITH PREEMPTION 1825

x. We refer to these calls as long calls. During the times [0 . . . x−1] many service calls
(short calls) will be offered in a way that the offline algorithm will be able to cover
this range and therefore will have a throughput of (2x − 1)k. We will choose x � 1
and therefore, without loss of generality, assume that the throughput of the offline
is 2xk. We do not know how to prevent the algorithm from serving all the service
calls and thus to achieve a 1

2 bound. In what follows we describe how to prevent the
algorithm from serving some of the service calls to achieve the 2

3 bound.
A general scenario of the execution of the online algorithm is as follows. The

online algorithm starts by serving w ≤ k out of the k long calls requested at time
0 (and all the short calls that can be served). In case the adversary does not stop
the request sequence, after t1 units of time the online algorithm preempts one of
the w calls to serve a service call. Again, in case the adversary does not stop the
request sequence, after an additional t2 units of time it preempts another long call
and so on, for w− z times. Note that by definition of t1, . . . , tw−z we must have that∑w−z
j=1 tj ≤ x.

At time x−1 the online algorithm remains with z long calls. In case the adversary
does not stop the request sequence, k long calls are requested at this time. In this
case the throughput of the online algorithm will be xk plus the sum of the lengths of
all the service calls it served before time x− 1.

Assume first a very simple strategy for the adversary. The sequence will have only
two types of calls: long calls of length x and short calls of unit length. Assume further
that the algorithm is r-competitive. Then the following inequalities must hold:

xw

xk
≥ r (0),

t1(k − w) + x(w − 1)

xk
≥ r (1),

t1(k − w) + t2(k − w + 1) + x(w − 2)

xk
≥ r (2),

.

.

.∑i
j=1 tj(k − w + j − 1) + x(w − i)

xk
≥ r (i),

.

.

.∑w−z
j=1 tj(k − w + j − 1) + xz

xk
≥ r (w − z),∑w−z

j=1 tj(k − w + j − 1) + xk

2xk
≥ r (k).

Inequality (0) is true since otherwise the adversary could stop immediately after pre-
senting the k long calls and thus preventing the algorithm from being r competitive.
The rest of the inequalities are true since otherwise the adversary could stop after the
jth preemption of a long call by the algorithm.

The value of r is maximized when all the inequalities become equalities. Note
that although this solution may not correspond to a valid adversary strategy (in case
it does not obey the integrality constraints) it can still be used to upper bound the

1826 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

competitiveness. By comparing the (j − 1)th equality with the jth equality we get
that for 1 ≤ j ≤ w − z

tj(k − w + j − 1) = x .

Thus equality (k) is equivalent to

w − z + k

2k
= r .

The above equality together with equality (0) implies that

w + z = k .

In addition, plugging the value of tj in the equality
∑w−z
j=1 tj = x we have

w−z∑
j=1

x

k − w + j − 1
= x .

This is equivalent to

1

k − w +
1

k − w + 1
+ · · ·+ 1

k − z − 1
= 1 .

Using the estimation
∑n
j=1

1
j = lnn + O(1), we get that

∑n
j=m

1
j >

∑n+1
j=m+1

1
j ≈

ln
(
n+1
m

)
. Substituting n = k − z − 1 and m = k − w, it follows that

ln

(
k − z
k − w

)
< 1 .

This implies that k−z
k−w < e. Since w = k − z we get that w

k−w < e, and since w = kr
we get that r

1−r < e, which is equivalent to

r <
e

1 + e
≈ 0.731059 <

3

4
.

Now, assume a more complicated strategy for the adversary. Note that in the
simple strategy the adversary does not try to minimize the number of service calls
served by the online algorithm; that is, whenever the online algorithm has a “free”
line it can use the line to serve service calls. In the more complicated strategy the
adversary tries also to minimize the number of service calls served by the online
algorithm. This is done by using the strategy “recursively.” Whenever the algorithm
is serving j long calls and has k − j free lines (for w ≤ j ≤ z), the adversary offers
service calls according to the strategy for k − j parallel links. Namely, instead of
offering service calls of a fixed size, the service calls become the long calls for k − j
parallel links, while scaling down the length of the service calls for the k − j lines
accordingly. Furthermore, we assume by induction that the bound r can be achieved
for any number of lines less than k. We have already seen that the inductive claim
holds for k = 2.

The analysis is almost the same as the one for the simpler adversary. Here, we
add a factor of r in the inequalities as follows:∑i

j=1 tj(k − w + j − 1)r + x(w − i)
xk

≥ r .

BANDWIDTH ALLOCATION WITH PREEMPTION 1827

Again, the value of r is maximized when all the inequalities become equalities. This
implies that

tj(k − w + j − 1)r = x,

which as before yields the equality

w + z = k .

In addition, we get that

1

k − w +
1

k − w + 1
+ · · ·+ 1

k − z − 1
= r

and therefore

ln

(
k − z
k − w

)
< r .

Using arguments as before, we get that

r <
er

1 + er
.

This inequality does not hold for r > 0.66. Hence, we proved that

r <
2

3
.

Line networks with arbitrary durations. Finally, we consider networks with
a line topology in which the calls have arbitrary duration (rather than unit time
duration). In this case the throughput of a call is the product of its length, bandwidth,
and duration. Suppose that the line consists of n + 1 stations, all the links have the
same bandwidth B, and the maximum allowable bandwidth of a single call is δB, for
δ > 1

2 . We show that any deterministic online algorithm for this model is at most
1/n-competitive. The sequence and the analysis are as in the case of the single link
model with δ = 1, where instead of bandwidth B we consider a line of nodes 0, . . . , n.
Specifically, we simulate the procedure of the adversary presented in the impossibility
result for the single link model with δ = 1. In the simulation, whenever a square call
ai is requested in the procedure for the single link model with δ = 1, the adversary
here requests a square call of bandwidth δB at time in that connects nodes 0 and n,
for n time units. Note that the throughput of this call is n2δB. Similarly, instead
of requesting the jth slice call b that intersects the square call ai as described in the
impossibility result for the single link model with δ = 1, the request made here is for
a call at time in + j that connects nodes j and j + 1 for n2 time units. Again, the
throughput of this call is also n2δB. Since δ > 1

2 , a square call and a slice call that
intersect cannot both be served. Thus, following the analysis for the single link case
with δ = 1 we get the 1/n upper bound.

Acknowledgment. We are indebted to Hugo Krawczyk for very helpful discus-
sions at the early stages of this work.

1828 A. BAR-NOY, R. CANETTI, S. KUTTEN, Y. MANSOUR, AND B. SCHIEBER

REFERENCES

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, Online load balancing with
applications to machine scheduling and virtual circuit routing, in Proceedings Twenty-
Fifth ACM Symposium on Theory of Computing, San Diego, CA, 1993, pp. 623–631.

[2] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive of online routing, in Pro-
ceedings Thirty-Fourth IEEE Symposium on Foundations of Computer Science, Palo Alto,
CA, 1993, pp. 32–40.

[3] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive call control,
in Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, PA, 1994, pp. 312–320.

[4] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, Online admission control and cir-
cuit routing for high Performance computing and communication, in Proceedings Thirty-
Fifth IEEE Symposium on Foundations of Computer Science, Sante Fe, NM, 1994, pp.
412–423.

[5] Special Issue on Asynchronous Transfer Mode. Internat. Digital Analog Cabled Systems, 1
(1988).

[6] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang, On the competitiveness of online real-time task scheduling, in Proceedings
Twelfth IEEE Symposium on Real Time Systems, San Antonio, TX, 1991, pp. 106–115.

[7] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha, Online
scheduling in the presence of overload, in Proceedings Thirty-Second IEEE Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 1991, pp. 101–110.

[8] R. Canetti and S. Irani, Bounding the power of preemption in randomized scheduling, SIAM
J. Comput., 27 (1998), pp. 993–1015.

[9] I. Cidon and I. Gopal, PARIS: An approach to integrated high-speed private networks, Inter-
nat. J. Digital Analog Cabled Systems, 1 (1988), pp. 77–86.

[10] P. F. Chimento, J. E. Drake, L. Gun, W. A. Hervatic, C. P. Immanuel, G. A. Marin,
R. O. Onvural, S. A. Owen, and T. E. Tedijanto, Broadband Network Services for
High Speed Multimedia Networks, Tech report 29.1761, IBM, Research Triangle Park, NC,
1993.

[11] U. Faigle and W. M. Nawijn, Note on scheduling intervals online, Discrete Appl. Math., 58
(1995), pp. 13–17.

[12] J. A. Garay and I. S. Gopal, Call preemption in communication networks, in Proceedings
INFOCOM ‘92, Florence, Italy, 1992, pp. 1043–1050.

[13] J. A. Garay, I. S. Gopal, S. Kutten, Y. Mansour, and M. Yung, Efficient online call
control algorithms, in Proceedings Second Israel Conference on Theory of Computing and
Systems, Netanya, Israel, 1993, pp. 285–293.

[14] G. Koren and D. Shasha, Dover: An optimal on-line scheduling algorithm for overloaded
uniprocessor real-time systems, SIAM J. Comput., 24 (1995), pp. 318–339.

[15] G. Koren and D. Shasha, MOCA: A multiprocessor on-line competitive algorithm for real-
time system scheduling, Theoret. Comput. Sci., 128 (1994), pp. 75–97.

[16] R. J. Lipton and A. Tomkins, Online interval scheduling, in Proceedings Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 1994, pp. 302–311.

[17] C. Lund, S. Phillips, and N. Reingold, IP over connection-oriented networks and distribu-
tional paging, in Proceedings Thirty-Fifth IEEE Symposium on Foundations of Computer
Science, Santa Fe, NM, 1994, pp. 424–434.

[18] K. K. Ramakrishnan, L. Vaitzblit, C. Gray, U. Vahalia, D. Ting, P. Tzelnic, S. Glaser,
and W. Duso, Operating system support for a video-on-demand file service, in Proceed-
ings Network and Operating System Support for Digital Audio and Video: Fourth Interna-
tional Workshop, Lecture Notes in Comput. Sci. 846, D. Shepherd, G. Blair, G. Coulson,
N. Davies, F. Garcia, eds., Springer-Verlag, Berlin, New York, 1994, pp. 216–227.

[19] N. Shacham, Preemption based admission control in multi media multi party communications,
in Proceedings INFOCOM ‘95, Boston, MA, 1995, pp. 827–834.

[20] D. B. Shmoys, J. Wein, and D. P. Williamson, Scheduling parallel machines on-line, SIAM
J. Comput., 24 (1995), pp. 1313–1331.

[21] F. Toutain and O. Huber, A general preemption-based admission control policy using smart
market approach, in Proceedings INFOCOM ‘96, San Francisco, CA, 1996, pp. 794–801.

[22] F. Wang and D. Mao, Worst Case Analysis for On-Line Scheduling in Real-Time Systems,
Tech. report 91-54, Department of Computer and Information Science, University of Mas-
sachusetts, Amherst, MA, 1991.

AN OPTICAL SIMULATION OF SHARED MEMORY∗

LESLIE ANN GOLDBERG† , YOSSI MATIAS‡ , AND SATISH RAO§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1829–1847

Abstract. We present a work-optimal randomized algorithm for simulating a shared memory
machine (pram) on an optical communication parallel computer (ocpc). The ocpc model is moti-
vated by the potential of optical communication for parallel computation. The memory of an ocpc
is divided into modules, one module per processor. Each memory module only services a request on
a timestep if it receives exactly one memory request.

Our algorithm simulates each step of an n lg lgn-processor erew pram on an n-processor ocpc
in O(lg lg n) expected delay. (The probability that the delay is longer than this is at most n−α for
any constant α.) The best previous simulation, due to Valiant, required Θ(lg n) expected delay.

Key words. PRAM, PRAM simulation, optical networks

AMS subject classifications. 68Q22, 68R05

PII. S0097539795290507

1. Introduction. The huge bandwidth of the optical medium makes it possible
to use optics to build communication networks of very high degree. Eshaghian [8, 9]
first studied the computational aspects of parallel architectures with complete optical
interconnection networks. The ocpc model is an abstract model of computation
which formalizes important properties of such architectures. It was first introduced by
Anderson and Miller [2] and Eshaghian and Kumar [10]. In an n-processor completely
connected optical communication parallel computer (n-ocpc) n processors with local
memory are connected by a complete network. A computation on this computer
consists of a sequence of communication steps. During each communication step each
processor can perform some local computation and then send one message to any
other processor. If a processor is sent a single message during a communication step,
then it receives this message successfully, but if it is sent more than one message, then
the transmissions are garbled and it receives none of them.

While the ocpc seems a reasonable model for optical computers, it has not been
used as a programming model to date. The pram model, however, has been used
extensively for parallel algorithmic design (e.g., [19, 22, 34]). The convenience of
programming on the pram is largely due to the fact that the programmer does not
have to specify interprocessor communication or to allocate storage in a distributed
memory. For the very same reason, the pram is considered highly theoretical, and
the task of emulating the pram on more realistic models has attracted considerable
attention; emulations may enable automatic mapping of pram algorithms to weaker
models, as well as a better understanding of the relative power of different models.

∗Received by the editors August 21, 1995; accepted for publication (in revised form) September
23, 1997; published electronically May 13, 1999. A preliminary version of this paper appeared in
Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, June 1994.

http://www.siam.org/journals/sicomp/28-5/29050.html
†Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK (leslie@

dcs.warwick.ac.uk). Part of the work of this author was performed at Sandia National Labora-
tories and was supported by the U.S. Department of Energy under contract DE-AC04-76AL85000.
Part of this work was supported by ESPRIT LTR Project 20244—ALCOM-IT and ESPRIT Project
21726—RAND-II.
‡AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 (matias@research.

att.com).
§NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 (satish@research.nec.com).

1829

1830 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

Indeed, many emulations of the pram on bounded degree networks were introduced
(see, e.g., [1, 21, 23, 31, 32, 36, 37] or [24] for a survey).

In this paper, we present a simulation of an erew pram on the ocpc. In par-
ticular, we present a randomized simulation of an n lg lg n-processor erew pram on
an n-processor ocpc in which, with high probability, each step of the pram requires
O(lg lgn) steps on the ocpc.1 Our simulation is work optimal, to within a constant
factor.

Our results are closely related to previous work on the well-studied distributed
memory machine (dmm), which consists of n processors and n memory modules con-
nected via a complete network of communication. Each processor can access any
module in constant time, and each module can service at most one memory request
(read or write) at any time. The dmm is thus a weaker model than the shared memory
pram in that the memory address space is partitioned into modules with a restricted
access imposed on them. We remark that there are several variants of dmm models
that differ in their contention rules.

Several papers have studied the emulation of a pram on various dmm models [31,
21, 38, 35, 6, 20, 7]. Karp, Luby, and Meyer auf der Heide [20] present O(lg lgn)
expected delay simulations of various types of pram on a crcw dmm in which each
memory module allows concurrent read or write access to at most one of its memory
locations during any step. Dietzfelbinger and Meyer auf der Heide [7] improve upon
this paper by presenting an O(lg lgn) expected delay simulation of an erew pram
on the (weaker) c-collision dmm in which any memory module that receives c or fewer
read or write requests serves all of them. Although Dietzfelbinger and Meyer auf der
Heide require c ≥ 3 for their analysis to work, they report that experiments show that
c = 2 works as well. The 1-collision dmm is equivalent to the ocpc.

Our result improves on the result of [7] in two ways. First, it is work-optimal.
Second, it works for the ocpc (or 1-collision dmm). The previous best-known work-
optimal simulation of a pram on the ocpc is an O(lgn) delay simulation of Valiant
[39]. In addition, unlike [39, 7] we explicitly consider the construction and evaluation
of the hash functions used in our simulation algorithm.

1.1. Related work.

1.1.1. The OCPC model. The ocpc model was first introduced by Anderson
and Miller [2] and Eshaghian and Kumar [10] and has been studied by Valiant [39],
Geréb-Graus and Tsantilas [12], Gerbessiotis and Valiant [11], Rao [33], Goldberg
et al. [17], and Goldberg, Jerrum, and MacKenzie [18]. The feasibility of the ocpc
from an engineering point of view is discussed in [2, 12]. See also the survey paper of
McColl [30] and the references therein.

1.1.2. Computing h-relation on the OCPC. A fundamental problem that
deals with contention resolution on the ocpc is that of realizing an h-relation. In
this problem, each processor has at most h messages to send and at most h messages
to receive. Following Anderson and Miller [2], Valiant [39], and Geréb-Graus and
Tsantilas [12], Goldberg et al. [17] solved the problem in time O(h + lg lgn) for an
n-processor ocpc. A lower bound of Ω(

√
lg lg n) expected time was recently obtained

by Goldberg, Jerrum, and MacKenzie [18].

1.1.3. Simulating PRAMs on OCPCs. Valiant described a simulation of an
erew pram on an ocpc in [39]. More specifically, Valiant gave a constant delay

1We will refer to the time required to simulate one pram step as the delay of the simulation.

AN OPTICAL SIMULATION OF SHARED MEMORY 1831

simulation of a bulk synchronous parallel (bsp) computer on the ocpc (there called the
s∗pram), and also gave an O(lgn) randomized simulation of an n lg n-processor erew
pram on an n-processor bsp computer. A simpler simulation with delay O(lgn lg lg n)
was given by Geréb-Graus and Tsantilas [12]. Valiant’s result is the best previously
known simulation of a pram on the ocpc.

Independently of our work, MacKenzie, Plaxton, and Rajaraman [28] and Meyer
auf der Heide, Scheideler, and Stemann [27] have shown how to simulate an n-
processor erew pram on an n-processor ocpc. Both simulations have Θ(lg lgn)
expected delay. However, neither simulation is work-optimal, and both simulations
require nΩ(1) storage at each processor.

1.1.4. Simulating PRAMs on DMMs. Mehlhorn and Vishkin [31] used a
(lg n/ lg lg n)-universal class of hash functions to achieve a simple simulation of a
crcw pram on a crcw dmm with expected delay O(lgn/ lg lg n). An n-processor
crcw pram can be simulated on an n-processor erew dmm in O(lgn) expected delay
using techniques from [39]. The work of this simulation is thus a Θ(lgn) factor away
from optimality. The best work-optimal simulation of a pram on an erew dmm has
delay O(nε) [23].

Recently, Karp, Luby, and Meyer auf der Heide [20] presented a simulation of an
n-processor crcw pram on an n-processor crcw dmm with O(lg lgn) delay. They
also presented a work-optimal simulation of an (n lg lg n lg∗ n)-processor erew pram
on an n-processor crcw dmm in O(lg lgn lg∗ n) expected delay and a nearly work-
optimal simulation of an n lg lg n-processor crcw pram on an n-processor crcw
dmm with the same delay. Subsequently, Dietzfelbinger and Meyer auf der Heide [7]
presented a simplified (nonoptimal) simulation of an n-processor erew pram on an
n-processor dmm with O(lg lgn) expected delay. The simulation in [20] introduces a
powerful technique that incorporates the use of two or three hash functions to map the
memory address space into the memory modules, combined with the use of a crcw
pram algorithm for perfect hashing (see [16] and references therein). It heavily uses
the concurrent read capability of the crcw dmm. The simulation in [7] circumvents
the need for using the crcw pram perfect hashing by an elegant use of an idea from
Upfal and Wigderson [38].

1.2. Overview of the algorithm. Our simulation algorithm incorporates tech-
niques and ideas from the simulation algorithms of [20, 7], as well as from the h-relation
routing algorithm of [17], as follows.

The simulation in [7] uses three hash functions to map each memory cell of the
erew pram to three processors (and memory cells) in the dmm. A write on an erew
memory cell is implemented by writing a value and a time stamp to at least two
out of the three associated dmm memory cells. A read of an erew memory cell is
implemented by reading two out of three of the memory cells and choosing the value
with the most recent time stamp. Dietzfelbinger and Meyer auf der Heide’s proof that
their simulation requires only O(lg lgn) delay on a 3-collision dmm relies on the fact
that, given a randomly generated tripartite hypergraph on 3n nodes with εn edges,
one can, with high probability, remove all the nodes in the hypergraph by using the
following process.

Repeat O(lg lg n) times:

1. Remove all of the nodes with degree at most 3.
2. Remove all resulting trivial hyperedges (hyperedges in which only one incident

node remains.)

1832 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

Each hyperedge corresponds to a read or write of a pram memory location: the
three vertices correspond to the three processors in the dmm associated with that
memory location. Thus, one step of an εn node erew pram is implemented by using
the process above to deliver at least two out of three of the messages associated with
each memory request.

Since we are simulating an n lg lg n-processor pram on an n-node ocpc, we must
simultaneously implement the process above for O(lg lgn) 3n-node hypergraphs using
only n processors. To do this, we start by sparsifying all of the hypergraphs using
ideas from the (lg lgn)-relation routing algorithm in [17]. That is, we route all but
O(n/ lgc n) messages and we ensure that at most one undelivered message remains at
any processor. Even so, implementing the process above in parallel could still require
Ω(lg lg n) timesteps per iteration since each destination may participate in as many
as (lg lg n/ε) different hypergraphs. Thus, we must also “copy” each destination in
such a manner that each message can locate the appropriate copy of its destination.
We then perform the process in each hypergraph, ensuring that the process delivers
at most a constant number of messages to each copy of a destination. After that, the
messages can be sequentially forwarded to their true destinations in O(lg lgn) time.

We remark that, in fact, we cannot directly perform the process above on any
of the O(lg lgn) hypergraphs since our processors can only receive one message in a
timestep whereas the processors in [7] can receive three messages in a timestep. The
details of our solution to this problem can be found in the technical sections.

1.3. Paper outline. We proceed in section 2 with a high-level description of
our simulation. In section 3, we present our algorithm in detail and prove correctness.
In section 4 we deal with the evaluation of the hash function that maps the virtual
shared memory to the memory modules.

2. The simulation. Our objective is to show how to simulate one step of an
n lg lg n processor erew pram in O(lg lgn) timesteps on an n-processor ocpc. Our
simulation follows [7] in using the following idea from [38]. The memory of the pram
is hashed using three hash functions, h1, h2, and h3. Thus, each memory cell of the
pram is stored in three memory cells of the ocpc. To write memory cell x, a processor
of the ocpc sends a message to at least two of the processors in {h1(x), h2(x), h3(x)}.
The message contains the new value for cell x and also a time stamp. To read memory
cell x, a processor p of the ocpc sends a message to at least two of the processors in
{h1(x), h2(x), h3(x)}. Each of these two processors sends p the value that it has for
cell x and also its time stamp for cell x. Processor p uses the value with the later
timestep. The hash functions h1, h2, and h3 are chosen from the “highly” universal

family R
d,j

m,n from [20], which guarantees randomlike behavior.

Each ocpc processor will simulate lg lg n pram processors. Thus, at the start of
a pram step, each of the ocpc processors will wish to access up to lg lg n cells of the
pram memory. Each processor uses h1, h2, and h3 to obtain the three destinations
where each memory cell is stored. Thus, each ocpc processor wants to send messages
to up to 3 lg lgn destinations. Our objective is to deliver at least two of the messages
associated with every request.

As in [17], we will divide the processors of the ocpc into target groups of size k =
lgc n. We will also divide the n lg lg n memory requests into lg lg n/ε groups of εn
requests each for a sufficiently small constant ε. We will refer to the set of messages
associated with a particular group of memory requests as a “group of messages.” The
messages will be delivered using the following procedures:

AN OPTICAL SIMULATION OF SHARED MEMORY 1833

• Thinning and deliver to target groups. Initially, the number of messages
destined for any given target group may be as high as 4k lg lg n. (We will show
that, with high probability, it is no larger than this.) We will use techniques
from [17] to route the messages to their target groups. With high probability,
when this procedure is finished every message will be in the target group of
its destination. Furthermore, each processor will have at most one message
left to send. For a sufficiently large constant c2, we will allocate a contiguous
block of c2 processors from the target group to each unfinished message for
that destination. All senders will know which processors are allocated for
their destination. For a sufficiently large constant c1, we will ensure that
for any of the lg lgn/ε groups of εn messages, with high probability, all but
O(n/(lg n)c1) of the messages in the group will be delivered to their final
destinations.
• Divide into subproblems and duplicate. We now divide the ocpc into lg lgn/ε

sub-ocpcs, each with n′ = nε/ lg lg n processors. Each sub-ocpc will work
on the subproblem of delivering the messages corresponding to a particular
group of messages. For each sub-ocpc we now make lg2 n′ copies of the rele-
vant subproblem, all of which will reside in its processors 1, . . . , n′/2. We will
also allocate its processors n′/2 + 1, . . . , n′ as follows. For each outstanding
memory request (i.e., for each memory request which has the property that
at most one of its three messages was delivered during the previous proce-
dure), we will allocate lg2 n′ processors. These lg2 n′ processors will do the
bookkeeping concerning the request in the lg2 n′ copies of the subproblem.
Each message will know the identity of the processors responsible for the
bookkeeping concerning its memory request.
• Route messages for each subproblem. In each copy of each subproblem we

route messages according to the c2-collision access schedule from section 3
of [7]. Dietzfelbinger and Meyer auf der Heide prove that with high probability
each subproblem is “good” (this term will be defined later on). We will prove
that if a subproblem is good, then for any particular memory request in any
particular copy of the subproblem, the probability that the memory request
is satisfied in the c2-collision access schedule routing is at least 1/2. Also,
no destination in any copy of any subproblem receives more than a constant
number (3c2) of messages during the c2-collision access schedule routing.

• Combining problem copies and combining subproblems. In this procedure we
identify a subset S of the set of messages that were delivered by the various
copies of the c2-collision access schedule routing procedure. The messages in S
are chosen in such a way that every processor is the destination of O(lg lgn)
messages in S. We show that with high probability every memory request
in every subproblem that was created in the “divide into subproblems and
duplicate” procedure will be satisfied if the messages in S are delivered. We
deliver the messages in S, using the routing algorithm in [17].

3. Simulation details and analysis. Before giving the details and analysis,

we define the class of hash functions R
d,j

m,n being used and describe its properties that
are used in the analysis. In the subsequent subsections we will give the details of each
of the procedures described in the previous section.

3.1. The hash functions. The class R
d,j

m,n is taken from [20] and is defined as
follows.

1834 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

Definition of R
d,j

m,n. A function from R
d,j

m,n is a combination of functions taken

from several classes. Carter and Wegman [4] introduced Hd
m,n ⊆ {g : [1, . . . ,m] →

[1, . . . , n]}, the class of universal functions P (x) mod n, where P is a polynomial
of degree d − 1 over [1, . . . ,m]. Siegel [35] introduced a class of functions Hnj ,n ⊆
{h : [1, . . . , nj] → [1, . . . , n]}. (More details on this class are given in section 4.1.)

To choose a random hash function h : [1, . . . ,m] → [1, . . . , n] from R
d,j

m,n, one first
chooses

• a function f , chosen uniformly at random from Hd
m,
√
n

;

• a function r, chosen uniformly at random from Hnj ,n;
• a function s, chosen uniformly at random from H1

m,nj ;

• √n integers a1, . . . , a√n, each chosen uniformly at random from the range
[1, . . . , n].

The function h is defined by h(x) = (r(s(x)) + af(x)) mod n.

As in [20], we say that a family Hp,n of hash functions is (µ, k)-universal if for
each x1 < · · · < xj ∈ {1, . . . , p}, `1, . . . , `j ∈ {1, . . . , n}, j ≤ k, the following holds:
If the hash function h is drawn uniformly at random from Hp,n, then Pr[h(x1) =
`1, . . . , h(xj) = `j] ≤ µ/nj .

Let ` be an arbitrary constant and let j and d be large enough relative to `. Let
ε′ be a sufficiently small positive constant. We will use the following properties of the
hash functions with respect to a set S ⊆ [1, . . . ,m], n ≤ |S| ≤ n11/10. The first two
properties are proven in [20].

Property 3.1. Let R
d,j

m,n(s) be the restriction of R
d,j

m,n induced by fixing s ∈
H1
m,nj . If s is chosen uniformly at random from H1

m,nj , then s is “ 1-perfect” on S,

with probability at least 1 − n−`. If s is “ 1-perfect” on S, then R
d,j

m,n(s) is (2, nε
′
)-

universal. (Hence, R
d,j

m,n(s) is (2, nε
′
)-universal with probability at least 1− n−`.)

Remark. Karp, Luby, and Meyer auf der Heide actually prove a stronger version

of Property 3.1, which states that R
d,j

m,n(s) is (1,
√
n)-universal with probability at

least 1 − n−`. We use the weaker version because (in section 4.1) we will use the
space-efficient implementation of the class Hnj ,n from [35], which is (2, nε

′
)-universal

(in fact, it is ((1 + o(1)), nε
′
)-universal) but is not necessarily (1,

√
n)-universal (see

Section 2 of [35]). Thus, with the space-efficient implementation, we get only the
weaker version of Property 3.1.

Property 3.2. Let f be drawn randomly from Hd
m,
√
n

. Then with probability at

least 1− n−` every set f−1(i) ∩ S has size at most 2|S|/√n.

We can now derive the third property.

Property 3.3. Let Z be a subset of [1, . . . , n] and let i be an integer in [1, . . . ,
√
n].

Suppose that β ≤ nε′ . Let h be chosen randomly from R
d,j

m,n. (That is, let f , r, s, and
a1, . . . , a√n be chosen as described above.) The probability that β or more members

of S ∩ f−1(i) are mapped to Z by h is at most 2n−` + (2|S|/√n
β)2(|Z|n)

β
.

Proof. By Property 3.2, with probability at least 1−n−` every set f−1(i)∩S has
size at most 2|S|/√n. By Property 3.1, with probability at least 1 − n−`, the hash
destinations are (2, nε

′
)-universal.

3.2. Thinning and deliver to target groups. We start by running the “thin-
ning” procedure from [17], which is based on the algorithm of Anderson and Miller [2].
The procedure runs for O(lg lgn) steps. During each step each sender chooses a

AN OPTICAL SIMULATION OF SHARED MEMORY 1835

message uniformly at random from the set of messages that it has not yet sent suc-
cessfully, and it sends the message to its destination with a certain probability. Let
h = 32e lg lg n. We prove further below the following lemma.

Lemma 3.1. With probability at least 1 − 2n−α (for any constant α), after the
thinning procedure from [17] terminates, there are at most k/hdc3 lg lg ne undelivered
messages destined for any particular target group. (c3 is a constant which must be
sufficiently large; it is the constant c2 from [17].)

The proof of Lemma 3.1 will use the following lemma.

Lemma 3.2. With probability at least 1− n−α (for any constant α), each target
group of size k is the destination of at most 9k lg lg n messages.

Proof. Consider a target group T . By Property 3.1 of the the hash functions,

R
d,j

m,n(s) is (2, nε
′
)-universal with high probability. If R

d,j

m,n(s) is (2, nε
′
)-universal,

then the probability that at least 9k lg lg n messages have destinations in T is at most(
3n lg lg n

9k lg lg n

)
2

(
k

n

)9k lg lg n

,

which is at most 2(e/3)
9k lg lg n

by Stirling’s approximation.

In order to continue with the proof of Lemma 3.1 we need some notation. For
every target group T let S(T) denote the set containing all senders that have messages
destined for target group T . We will say that a sender is bad if it has some message
that have the same destination as at least h other messages. We will use the following
lemma.

Lemma 3.3. With probability at least 1−n−α (for any constant α) every set S(T)
contains at most k/(2h2dc3 lg lg ne) bad senders.

Proof. This proof is similar to the proof of Claim 2 in [17]. We include it here for
completeness and also to demonstrate how the limited independence is handled. Let
h′ = h/2. For a given target group T let M(S(T)) denote the set of messages that are
sent by senders in S(T). We will say that a message is externally bad with respect to
a target group T if the message has the same destination as at least h′ other messages
that are not sent from senders in S(T). We will say that a message is internally bad
with respect to a target group T if it has the same destination as at least h′ other
messages that are sent from senders in S(T). We wish to prove that with probability
at least 1 − n−α at most k/(2h2dc3 lg lg ne) of the messages in M(S(T)) are either
externally or internally bad.

First we consider externally bad messages. We will say that a processor P is
externally crowded with respect to a target group T if there are at least h′ messages
which are not in M(S(T)) and have destination P . A set of b members of a target
group are all externally crowded only if at least bh′ messages have destinations in
the set. Property 3.1 of the hash functions tells us that with high probability the
destinations are chosen from a (2, nε

′
)-universal family of hash functions. In this case,

as long as b ≤ nε′/h′ the probability that there is a set of b members of a target group
that are all externally crowded is at most n−α (for any constant α),2 plus

(n
k

)(k
b

)(
9k lg lg n

bh′

)
2

(
b

k

)bh′
.

2By Lemma 3.2, n−α is an upper bound on the probability that more than 9k lg lgn messages
are destined for any target group.

1836 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

We can use Stirling’s approximation to show that for b = k/h′6 this quantity is at

most (2n/k)(3/5)
k/h′5

. Therefore, with probability at least 1−n−α−(2n/k)(3/5)
k/h′5

every target group has at most k/h′6 processors which are externally crowded with
respect the T . Suppose that this is the case. Since the family of hash functions is
(2, nε

′
)-universal, the probability that 3 |M(S(T))|/h′6 messages in M(S(T)) choose

a destination which is externally crowded with respect to T is at most

2

(|M(S(T))|
3 |M(S(T))|/h′6

)(
1

h′6

)3 |M(S(T))|/h′6
,

which is at most 2(e/3)
3 |M(S(T))|/h′6

by Stirling’s approximation. Note that, as long
as n is sufficiently large, 3 |M(S(T))|/h′6 ≤ k/(4h2dc3 lg lg ne). Also, as long as
|M(S(T))| ≥ k/(4h2dc3 lg lg ne) and the constant c (in the definition of k) is suffi-

ciently large, the sum of (2n/k)(3/5)
k/h′5

and (2n/k)(e/3)
3 |M(S(T))|/h′6

is at most
n−α.

We now consider internally bad messages. We start by calculating an upper bound
on the probability that a message is internally bad. Lemma 3.2 tells us that with high
probability at most 9k lg lg n messages are destined for any target group. Thus, with
high probability, at most 9k lg lg n messages in M(S(T)) are destined for the same
target group as the given message. Property 3.1 of the hash functions tells us that
with high probability the destinations are chosen from a (2, nε

′
)-universal family of

hash functions. Therefore, the probability that the given message is internally bad is
at most

2

(
9k lg lg n

h′

)(
1

k

)h′
≤ (2/3)

h
.

So the expected number of messages in M(S(T)) which are internally bad is at most

|M(S(T))|(2/3)
h
.

In order to prove that with high probability the number of internally bad messages
is not far from the expectation we will use the following theorem of McDiarmid [29].
(The inequality is a development of the “Azuma martingale inequality”; a similar
formulation was also derived by Bollobás in [3].)

Theorem 3.4 (McDiarmid). Let x1, . . . , xn be independent random variables,
with xi taking values in a set Ai for each i. Suppose that the (measurable) function
f :
∏
Ai → R satisfies |f(x)− f(x′)| ≤ ci whenever the vectors x and x′ differ only in

the ith coordinate. Let Y be the random variable f(x1, . . . , xn). Then for any t > 0,

Pr
(|Y − E(Y)| ≥ t) ≤ 2 exp

(− 2t2
/∑n

i=1 c
2
i

)
.

If the hash functions h1, h2, and h3 were chosen uniformly at random from the set
of functions from [1, . . . ,m] to [1, . . . , n], the application of the bounded differences
inequality would be straightforward. We would take as the random variable xi the
destination of the ith message in M(S(T)). We would let Y be the random variable
denoting the number of internally bad messages in M(S(T)). If we change the value
of one of the xi, the value of Y would change by at most h′+1. Plugging these values
into the inequality, we would get a sufficiently small failure probability.

However, since h1, h2, and h3 are in fact drawn from the family R
d,j

m,n, the xi
are not independent so we cannot apply Theorem 3.4 to them. Instead, we follow
the approach used in the proof of Lemma 6.1 in [20]. Consider the independent

AN OPTICAL SIMULATION OF SHARED MEMORY 1837

random variables a1, . . . , a√n. As before, let Y be a random variable denoting the
number of internally bad messages in M(S(T)). Let Z be the set of all destinations
of messages in M(S(T)). (The size of Z is at most |M(S(T))|, which is at most

27k(lg lg n)
2

(with high probability), by Lemma 3.2.) Suppose that we change one of
the ai. By Property 3.3 of the hash functions, the probability that β or more members

of M(S(T)) change destination is at most 2n−α + 2(6n lg lg n/
√
n

β)(27k(lg lg n)2

n)
β
. This

probability is sufficiently small as long as the constant β is sufficiently large. So
suppose that at most β members of M(S(T)) change destination. Each of those may
make at most h′ + 1 members of M(S(T)) become internally bad. Therefore, if we
change one ai we change Y by at most β(h′ + 1). Therefore, by Theorem 3.4 the
probability that Y ≥ k/(4h2dc3 lg lg ne) is at most

2 exp

−2
(

k
4h2dc3 lg lg ne − E(Y)

)2

(|M(S(T))|β2(h′ + 1)
2
)

 .

(The |M(S(T))| appears in the denominator because there are |M(S(T))| random
variables in {a1, . . . , a√n} that affect the destinations of messages inM(S(T)). Chang-
ing any of these random variables could change Y by at most β(h′ + 1). Chang-
ing any of the other random variables in {a1, . . . , a√n} does not change Y .) Since

E(Y) ≤ k
8h2dc3 lg lg ne (for big enough n) and, with high probability (by Lemma 3.2),

|M(S(T))| ≤ 27k(lg lg n)
2
, the probability is at most

2 exp(−k/(32h4dc3 lg lg ne227(lg lg n)
2
β2(h′ + 1)

2
)).

This quantity is at most 1
2n
−α (k/n) as long as c is sufficiently large. This con-

cludes the proof of Lemma 3.3.
The following lemma is proved in [17] (just after Lemma 3′). (The proof of the

lemma uses the fact that |S(T)| ≤ 9k lg lg n, which is true with high probability,
according to Lemma 3.2.)

Lemma 3.5. With probability at least 1− n−α the number of messages destined
for any target group that start at good senders but are not delivered during the thinning
procedure from [17] is at most k/(2hdc3 lg lg ne).

Proof of Lemma 3.1. We conclude that with probability at least 1 − 2n−α the
number of undelivered messages destined for any given target group after the thinning
procedure terminates is at most k/(hdc3 lg lg ne).

After the “thinning” procedure from [17] terminates we will use the “spreading”
procedure from [17] to spread the unfinished requests so that each processor has at
most one unfinished message to deliver. As part of the spreading procedure we will
allocate one processor to do the bookkeeping associated with each memory request
and we will ensure that all messages associated with the request know the identity of
this processor. During this procedure of our simulation the three messages associated
with a request may be sent to various processors, but they will keep the bookkeeping
processor informed about their whereabouts.

After using “spreading,” we will use the “deliver to target groups” procedure
from [17] to deliver the rest of the messages to their target groups in O(lg lgn) steps.
With probability at least 1 − n−α (for any constant α) every message will be in its
target group at the end of the “deliver to target group” procedure. Furthermore, each
sender will have at most two undelivered messages to send, and (by Lemma 3.1) the

1838 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

number of unfinished messages in a target group will be less than k. At this point
we can sort the messages in the target groups by destination. After the sorting, each
sender will have at most one message to send.

We now wish to allocate a contiguous block of c2 processors from the appropriate
target group to each unfinished destination (for a sufficiently large constant c2). We
wish to do the allocation in such a way that all senders know which processors are
allocated for their destination. We do this as follows. If a destination is the destination
of fewer than c2 requests, we simply deliver them. Otherwise, we allocate c2 processors
for the destination. The processors allocated will be the first c2 processors with
requests for that destination.

At this point we wish to send all but O(n2−c1 lg lg n) of the messages in any group
to their final destinations. We will say that a message is bad if its destination is also
the destination of at least c1 lg lg n other messages. We will use the following lemma.

Lemma 3.6. With probability at least 1 − n−α (for any constant α) at most
O(n2−c1 lg lg n) of the messages in any group of messages are bad.

Proof. This proof is similar to the second part of the proof of Lemma 3.3. By
Property 3.1 of the hash functions, the destinations are chosen from a (2, nε

′
)-universal

family of hash functions with high probability. In this case, the probability that a
given message is bad is at most 2(3n lg lg n

c1 lg lg n)n−c1 lg lg n. By Stirling’s approximation,

this is at most 2(3e/c1)
c1 lg lg n

, which is at most 2−c1 lg lg n for c1 ≥ 7e. Therefore, the
expected number of bad messages in a group is at most εn2−c1 lg lg n.

We now use Theorem 3.4 (the bounded differences inequality) to prove that with
high probability the number of bad messages in a group is not much more than the
expectation.

As in the case of Lemma 3.3, the bounded differences inequality would be straight-
forward if the hash functions h1, h2, and h3 were chosen uniformly at random from
the set of functions from [1, . . . ,m] to [1, . . . , n]. We would take as the random vari-
able xi the destination of the ith message and we would let Y be the random variable
denoting the number of bad messages. If we change the value of one of the xi, the
value of Y would change by at most c1 lg lg n + 1. Therefore, we would obtain the
following inequality:

Pr(Y ≥ 2E) ≤ 2 exp(−2E2/(εn(c1 lg lg n+ 1)
2
)).

However, since h1, h2, and h3 are in fact drawn from the family R
d,j

m,n, we again
follow the approach used in the proof of Lemma 6.1 in [20]. Consider the independent
random variables a1, . . . , a√n. Let Y be a random variable denoting the number of
bad messages. If we change the value of one of the ai, then with high probability at
most 6n lg lg n/

√
n messages get new destinations. (This follows from Property 3.2

of the hash functions.) Each new destination could cause at most c1 lg lg n + 1 mes-
sages to become bad. Thus, changing one of the ai could change Y by at most
6
√
n lg lg n(c1 lg lg n+ 1). Thus, by the bounded differences inequality,

Pr(Y ≥ 2E) ≤ 2 exp(−2E2/(
√
n36n(lg lgn)

2
(c1 lg lg n+ 1)

2
)),

which is sufficiently small.
Given Lemma 3.6, it suffices to route c1 lg lg n messages to each destination. This

can be done in O(lg lgn) steps since the messages are sorted by destination. At this
point we have finished the “thinning and deliver to target groups” procedure. The
bookkeeping processor associated with every memory request now cancels the request

AN OPTICAL SIMULATION OF SHARED MEMORY 1839

if at least two of its messages were delivered. If the request is canceled, then the third
message is deleted.

3.3. Divide into subproblems and duplicate. Our goal is to divide the ocpc
into lg lgn/ε sub-ocpss, each of which has n′ = nε/ lg lg n processors. Each sub-ocpc
will work on the subproblem of delivering the messages corresponding to a particular
group of messages. For each sub-ocpc we wish to make lg2(n′) copies of the relevant
subproblem, all of which will reside in its processors 1, . . . , n′/2.

We will use an approximate compaction tool to divide the problem into sub-
problems and to make copies of the problem. (For similar tools see [5, 15, 25, 26].)
Given

• an n-ocpc in which at most s senders each have one message to send,
• a set of βs receivers which is known to all of the senders,

the (s, β) approximate compaction problem is to deliver all of the messages to the set
of receivers in such a way that each receiver receives at most one message.

The following lemma is from [17].
Lemma 3.7. For any positive constant α there is a positive constant c3 such

that the (s, dc3 lg lg ne) approximate compaction problem can be solved in O(lg lgn)
communication steps with failure probability at most α−

√
s + s−α.

We proved in the previous subsection that with high probability, when the “thin-
ning and deliver to target groups” procedure terminates, the number of undelivered
messages is at most 3n lg lg n2−c1 lg lg n. Furthermore, every message is in the target
group of its destination, and each processor will have at most one message left to
send.

The number of unfinished target groups is at most the number of unfinished
messages, which is at most

3n lg lg n2−c1 lg lg n ≤ n′

2 lg2(n′)k2dc3 lg lg ne

for a sufficiently large c1. Therefore, with high probability (by Lemma 3.7), we can
compact one message from the first processor in each unfinished target group to the
first n′/(2 lg2(n′)k2) processors in the n-ocpc. Having done that, we can copy each
of the unfinished target groups to one of the first n′/(2 lg2(n′)k) target groups in the
n-ocpc. Next, we can use doubling to make lg2(n′) copies of each unfinished target
group. All of these copies will reside in the first n′/(2k) target groups in the n-ocpc.

At this point, the entire problem is copied lg2(n′) times into the first n′/(2k)
target groups in the n-ocpc. These n′/(2k) target groups will form the first half of
the processors in the first n′-processor sub-ocpc. Our objective is to use the first
sub-ocpc to solve the subproblem of delivering the messages in the first group of
messages. The sub-ocpc will do this by simply ignoring all messages that are not in
the first group of messages.

The lg2(n′) copies of the entire problem can now be copied into the remaining
lg lg n/ε − 1 sub-ocpcs. The jth sub-ocpc will ignore all messages that are not in
the jth group of messages.

Our next goal is to allocate the processors n′/2, . . . , n′ of each sub-ocpc such
that for each outstanding memory request (i.e., for each memory request which has
the property that at most one of its three messages was delivered during the previ-
ous procedure) we allocate lg2(n′) processors. (These lg2(n′) processors will do the
bookkeeping concerning the request in the lg2(n′) copies of the subproblem.)

1840 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

The allocation can be done in the same way that the problem was split and copied
because the number of remaining requests is at most 3n lg lg n2−c1 lg lg n.

3.4. Route messages for each subproblem. Consider a particular copy of
a particular subproblem. Lemma 3.6 tells us that with high probability at most
O(n2−c1 lg lg n) of the memory requests from the εn memory requests associated with
this subproblem remain. Although each processor has at most one message to send,
there is a bookkeeping processor allocated to each memory request and each message
knows the identity of its bookkeeping processor. Furthermore, there is a block of c2
contiguous processors allocated to each unfinished destination and each sender knows
which processors are allocated to its destination. For i ∈ {1, 2, 3} we will say that a
message is an “i-message” if it obtained its destination using hash function i.

We now route messages according to the c2-collision access schedule from Section 3
of Dietzfelbinger and Meyer auf der Heide’s paper [7]. Each round of the access
schedule is defined as follows.

For i = 1, 2, 3, do the following:
a. For all destinations d in parallel, repeat dc2 lg(2c2)e times: Each i-message

with destination d that is not already waiting at one of the c2 processors
allocated to d picks a random processor from those allocated to d and sends
there. Each of the allocated processors will accept only one message.

b. Each destination d now checks whether there are any other i-messages des-
tined for d (that is, whether there are any i-messages with destination d that
are not at the allocated processors). To do this, the first of the c2 processors
allocated to d sends to d. Also, any i-messages with destination d that have
not yet been successful in reaching one of the c2 processors allocated to d now
send to d. Then the first of the c2 processors allocated to d tells d whether
or not it had a collision.

c. For each destination d, if all of the i-messages destined for d are at the
processors allocated to d, then these messages are delivered. Otherwise, no
requests are delivered.

d. The bookkeeping processor associated with each memory request checks which
of the messages associated with the requests were delivered. If at least two
of the messages associated with the request have been delivered, then the
request is canceled and the third message is deleted.

Note that no destination receives more than 3c2 messages during the c2-collision
access schedule routing. We use the following lemma.

Lemma 3.8. During one round of the c2-collision access schedule routing pro-
cedure any processor that is the destination of at most c2 i-messages gets all of the
i-messages with probability at least 1

2 (and none of them with the remaining probabil-
ity). Any processor that is the destination of more than c2 i-messages receives none
of them.

Proof. If d is the destination of at most c2 i-messages, then the probability that
one of them fails to reach the allocated processors in ` = dc2 lg(2c2)e attempts is at

most c2(1− 1/c2)
` ≤ 1

2 .
In their analysis of the c2-collision access schedule routing procedure (as im-

plemented on a c2-collision dmm), Dietzfelbinger and Meyer auf der Heide define a
hypergraph H = (V,E) for a set of memory requests x1, . . . , xεn with vertex set
V = {vrt | 1 ≤ r ≤ 3, 1 ≤ t ≤ n} and hyperedge set

E = {{v1,h1(xi), v2,h2(xi), v3,h3(xi)} | 1 ≤ i ≤ εn}.

AN OPTICAL SIMULATION OF SHARED MEMORY 1841

In light of Lemma 3.8, we can view the c2-collision access schedule routing as a
process on H. In each round, the process removes each node with degree at most
c2 (i.e., the i-messages destined for the processor are delivered) with probability at
least 1

2 . Then the process removes each hyperedge that consists of only one node
(i.e., memory requests are canceled if at least two of the messages associated with the
request are delivered).

Following Dietzfelbinger and Meyer auf der Heide, we will say that H is s-good if
1. the largest connected component in H has at most α = α(s) lg n nodes,
2. every set A ⊆ V intersects fewer than |A|+ s hyperedges from E in at least

two points.
Dietzfelbinger and Meyer auf der Heide prove the following lemma. (The proof

presented in [7] is based on the assumption that h1, h2, and h3 are chosen uniformly
at random from the set of functions from [1, . . . ,m] to [1, . . . , n]. However, the lemma

is also true if h1, h2, and h3 are chosen randomly from R
d,j

m,n.)
Lemma 3.9. The probability that H is s-good is 1−O(n−s).
We will prove the following lemma.
Lemma 3.10. Suppose that H is s-good for some positive constant s. Then the

probability that any particular memory request is satisfied after O(lg lgn) rounds of
routing according to the c2-collision access schedule is at least 1

2 .
Proof. Let Ht denote the hypergraph obtained by applying t rounds of the c2-

collision access schedule routing process to H. Dietzfelbinger and Meyer auf der Heide
have made the following observation [7].

Observation 3.1. If H is s-good and A ⊆ V is a component of Ht for some
t ≥ 0, then A contains at most 3|A|/(c2 + 1) + 3s/(c2 + 1) nodes of degree larger than
ct in Ht.

We will use the following lemma.
Lemma 3.11. Suppose that H is s-good. Let r be an edge in a component of

size ` ≥ s of Ht for some t ≥ 0. If c2 ≥ 23, then with probability at least 1− exp(−`/54)
the component of r in Ht+1 has size at most 5`/6.

Proof. Let b = 3(`+s)/(c2 +1). By Observation 3.1 and Lemma 3.8, the expected
number of nodes in the component of r in Ht+1 is at most `/2+b/2. Using a Chernoff
bound, we see that the probability that there are at most 4/3(`/2+b/2) ≤ 5`/6 nodes
is at least 1− exp(−(`/2 + b/2)/27).

Using Lemma 3.11, we conclude that for some constant c4 ≥ s, with proba-
bility at least 3

4 , O(lg lgn) rounds of the c2-collision access schedule routing proce-
dure reduce the size of the component of a given memory request r to at most c4.
We conclude the proof of Lemma 3.10 by observing that, as long as c2 > 3s +
2, O(1) rounds will, with probability at least 3

4 , further reduce the component to
size 1.

3.5. Combining problem copies and combining subproblems. Let us fo-
cus our attention on the jth subproblem. Let Sj be the set of messages that were in
the subproblem when it was created. Let S′j be the subset containing all messages

in Sj that are delivered in at least lg2(n′)/9 copies of the c2-collision access schedule
routing procedure.

Note that when the c2-collision access schedule routing procedure terminates the
lg2(n′) processors per memory request that were allocated in the “divide and copy”
procedure to do bookkeeping can inform all of the messages in Sj (in the first copy of
the subproblem) whether or not they are in S′j .

We will prove the following lemma.

1842 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

Lemma 3.12. With probability at least 1 − n−α (for any positive constant α),
each set S′j has the following properties.

1. Each processor is the destination of at most 27c2 messages in S′j.
2. Each memory request in the jth subproblem will be satisfied if the messages

in S′j are delivered.

If each set S′j has the properties described in Lemma 3.12 (as it will, with high
probability), then we can satisfy all of the memory requests in O(lg lgn) steps by
routing the messages in S =

⋃
j S
′
j . These messages form a 27c2 lg lg n/ε-relation, so

we can use the routing algorithm in [17] to route the messages.

To prove Lemma 3.12 we use the following lemma and the following observation.

Lemma 3.13. With probability at least 1−n−α (for any constant α) every memory
request in every subproblem is satisfied in at least lg2(n′)/3 of the lg2(n′) copies of the
c2-collision access schedule routing procedure.

Proof. Suppose that every subproblem is such that the corresponding hypergraph
is s-good. (Lemma 3.9 shows that this is so with high probability, as long as s is
chosen to be sufficiently large.) Consider a particular memory request in a particular
subproblem. Lemma 3.10 shows that the probability that this request is satisfied in
any given copy of the subproblem is at least 1

2 . A Chernoff bound shows that with

probability at least 1−ne− lg2(n′)/54 the request is satisfied in at least lg2(n′)/3 copies.
The lemma follows by summing the failure probabilities over particular memory re-
quests.

Observation 3.2. If x1, x2, and x3 are the three messages in a memory request
that is satisfied in at least ` copies of the c2-collision access schedule routing procedure,
then there is a pair of messages from {x1, x2, x3} such that both of the messages in
the pair are satisfied in at least `

3 copies of the procedure. Similarly, if x1 and x2 are
the two messages in a memory request that is satisfied in at least ` copies of the c2-
collision access schedule routing procedure, then at least one of x1 and x2 is satisfied
in at least `

2 copies of the procedure.

Proof of Lemma 3.12. The fact that (with high probability) each memory request
in the jth subproblem will be satisfied if the messages in S′j are delivered follows from
Lemma 3.13 and from Observation 3.2. To see that each processor is the destination
of at most 27c2 messages in S′j note that a message is a member of S′j only if it

is delivered in at least lg2(n′)/9 copies of the c2-collision access schedule routing
procedure. However, we proved in the previous section that each destination will
receive at most 3c2 messages in each copy of the procedure. Therefore, at most 27c2
messages that have the same destination will be included in S′j . This completes the
proof of Lemma 3.12.

4. Construction and evaluation of the hash function. In the simulation
algorithm we have assumed that a hash function h was chosen uniformly at random

from the family R
d,j

m,n and is available to every processor for constant time evalua-
tion. When concurrent-read is available in the simulating model, a hash function in
use can be kept in the shared memory and be read as necessary in constant time.
The exclusive-read nature of the ocpc model, together with the fact that the func-

tion h ∈ Rd,jm,n is represented by a polynomial number of memory words, imply a more
subtle situation. A straightforward implementation is to keep a copy of the function h
at each processor. However, this implies polynomial overheads both in the time of
preprocessing for distributing all copies and in the space dedicated for this function
at each processor. In the remainder of this section we describe an efficient implemen-

AN OPTICAL SIMULATION OF SHARED MEMORY 1843

tation in which the function requires only a total of linear space and its evaluation
increases the simulation delay by at most a constant factor.

4.1. The family of hash functions. Our basic approach is to (i) replace the

class R
d,j

m,n with a class whose functions h have similar properties but can be repre-

sented in O(nε) space, where 1
2 ≤ ε < 1 (the modified class will still satisfy Properties

3.1–3.3); (ii) make O(n1−ε) copies of the selected function h; and (iii) make sure that
at each simulation step the number of processors that need to read a component of h is
bounded by O(n1−ε lg lg n), an average of O(lg lgn) per copy, thereby enabling the use
of an efficient lg lg n-relation algorithm for the read operation. (A similar approach
of making duplicates to reduce contention was used in [14], in implementing a perfect
hash function on the qrqw pram.) To implement the approach sketched above we

first modify the definition of R
d,j

m,n from section 3.1 as follows. To choose a random
hash function h : [1, . . . ,m] → [1, . . . , n] from the modified class, one first chooses
a function f uniformly at random from Hd

m,
√
n

and integers a1, . . . , a√n uniformly

at random from [1, . . . , n] as before. Similarly, one chooses the function r uniformly
at random from Hnj ,n as before. However, we will use Siegel’s space-efficient im-

plementation of the class Hnj ,n from [35], which we will explain below, and we will
make sure that the implementation satisfies an additional property (see Lemma 4.2).
The function s will no longer be chosen uniformly at random from H1

m,nj . Instead,

it will be chosen as follows. Let t = j/ε and let d be a sufficiently large constant.
We will choose functions s1, s2, . . . , st uniformly at random from the class Hd

m,nε ,
and we will define s(x) to be the tuple 〈s1(x), . . . , st(x)〉. Finally, we will define
h(x) = (r(s(x)) + af(x)) mod n as before. The following lemma shows that Prop-
erty 3.1 still holds for the new family of hash functions.

Lemma 4.1. Let ` ≥ 1 be arbitrary and let d and j be large enough relative to
`. Let S ⊆ [1, . . . ,m], n ≤ |S| ≤ n11/10. If s is chosen randomly as described above,
then Pr[s is 1-perfect on S] is at least 1− n−`.

Proof. The probability that two given distinct points x, y ∈ S will collide un-
der s, i.e., that s(x) = s(y), is at most (2/nε)t, since the si are (2, d)-universal. The
probability that any pair of points from S will collide is therefore at most(|S|

2

)
(2/nε)t ≤ n22/10−j2j−1.

The lemma follows by taking j > `+ 22/10.

4.2. The implementation of Hnj ,n. We now describe Siegel’s space-efficient

implementation of the class Hnj ,n from [35].
Siegel defines a (p, ε, d, h)-weak concentrator H as a bipartite graph on the sets of

vertices I (inputs) and O (outputs), where |I| = p, and |O| = pε, that has outdegree d
for each node in |I| and that has, for any h inputs, edges matching them one-by-one
with some h outputs.

A (p, ε, d, h)-weak concentrator H is used to construct a function F by storing d
random numbers from [0, . . . , p−1] at each node of O. On input i, F (i) is computed by
evaluating a polynomial hash function of degree d−1 whose coefficients are determined
by the numbers stored at the neighbors of i in O. Siegel showed that the family of
hash functions F so defined is a (1, h)-universal family of hash functions mapping
[0, p− 1] 7→ [0, p− 1].

Let H be a (nε, ε, d, nε
′
)-weak concentrator. Siegel showed that the Cartesian

product G = Ht is a (nj , ε, dt, nε
′
)-weak concentrator. The graph G can therefore be

1844 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

used to construct a (1, nε
′
)-universal family of hash functions mapping [1, . . . , nj]

to [1, . . . , nj]. One obtains a (2, nε
′
)-universal family of hash functions mapping

[1, . . . , nj] to [1, . . . , n] by taking the results modulo n.

In the following lemma, we observe that Siegel’s implementation of Hnj ,n requires
only a graph H with small out-degree. This property will be useful in our ocpc
implementation.

Lemma 4.2. There exists a graph H that is (nε, ε, d, nε
′
)-weak concentrator, and

which also has the property that every output of H has degree at most 2dnε−ε
2

.

Proof. We use a probabilistic construction, as in [35] for finding an (nε, ε, d, nε
′
)-

weak concentrator. Suppose that each input of H chooses its d (distinct) neighbors
uniformly at random. Siegel proves that the probability that H is not a (nε, ε, d, nε

′
)-

weak concentrator is at most n−(ε2−ε′). (As long as ε′ is sufficiently small.) We can
now use a Chernoff bound to show that the degree of each output of H is sufficiently
small as required.

4.3. Constructing the hash functions. The graph H from Lemma 4.2 can
be constructed and built into the machine when the machine is built. Each of the nε

inputs has d neighbors. A set of n1−ε processors is selected and each processor in the
set is given the name of these dnε neighbors.

A new hash function h from the modified family is constructed in O(lgn) steps
as follows.

1. Select (appropriately at random) s1, . . . , st and f and distribute to all pro-
cessors.

2. Each of the njε output nodes of G = Ht chooses dt values in [0, . . . , nj − 1].
A set of n1−jε processors is selected for each given output node and each
processor in the set is given the dt values associated with the output node.

3. The values a1, . . . , a√n are generated.
√
n sets of

√
n processors are selected

and each processor in a set i is given the value of ai.

Recall that a new function may need to be constructed (a “rehash” operation)
when the selected one does not satisfy the required properties. (This occurs with
polynomially small probability for each parallel step and with high probability after
a polynomial number of steps.)

4.4. Evaluating the hash function. At each simulation step, the hash func-
tion is computed for all memory addresses in O(lg lgn) time, as described next.
Let S be the set of 3n lg lg n requests from [1, . . . ,m]. Recall from section 4.1 that
h(x) = (r(s(x)) + af(x)) mod n.

Each processor executes the following steps for each request x.

1. Compute s1(x), . . . , st(x).
2. Compute the names of the neighbors of 〈s1(x), . . . , st(x)〉 in G.
3. Read the values corresponding to the neighbors of 〈s1(x), . . . , st(x)〉 in G.
4. Apply r to 〈s1(x), . . . , st(x)〉.
5. Compute f(x).
6. Read af(x).
7. Compute r(s(x)) + af(x).

The executions of steps 1, 4, 5, and 7 are in constant time. The following lemma
of Dietzfelbinger [23] is central to the analysis of the other steps.

Lemma 4.3. Let X1, . . . , Xn be 0–1-valued, d-independent, equidistributed random

AN OPTICAL SIMULATION OF SHARED MEMORY 1845

variables. Let µ = E(Xi). Then, for n ≥ d/(2µ),

Pr

(
n∑
i=1

(Xi − µ) ≥ λ
)
≤ α(nµ)d/2

λd
,

where α is a constant that depends on d but not on n.

Claim 4.4. In step 2, with high probability, for every y in [1, . . . , nε] (i.e., for
every input of H) there are at most O(n1−ε lg lg n) pairs (i, x) such that x ∈ S and
si(x) = y.

Proof. Note that the set of values si(x) : 1 ≤ x ≤ m is d-independent. Following
Kruskal, Rudolph, and Snir [23] we use Lemma 4.3. Fix a y and an i, and let Xb be
a 0–1 random variable, which is 1 if and only if si maps the bth member of S to y.
Here µ is 1/nε. Let λ be |S|/nε. Then the probability that si maps more than 2λ to
y is O(n−d/2(1−ε)). Choose d large enough to sum over all i and y.

We conclude that at most O(n1−ε lg lg n) processors want to read the information
about input y, and so we have a “target group O(lg lgn) relation.” The requests can
be routed by using [17].

Claim 4.5. In step 3, with high probability, for every output y of G there are
at most O(n1−jε lg lg n) values x in S such that 〈s1(x), . . . , st(x)〉 is a neighbor of y
in G.

Proof. Fix y = 〈y1, . . . , yt〉. Let Li denote the neighbors of yi in H. Note that

|Li| ≤ 2dnε−ε
2

. If s(x) has a neighbor y in G, then si(x) is in Li for 1 ≤ i ≤ t.
The probability of this event is at most (2d/nε

2

)t. Let Xb be a 0–1 random
variable, which is 1 if and only if the bth member x of S has s(x) mapped to y in G.

Apply Lemma 4.3: µ is at most (2d/nε
2

)t by Lemma 4.2; let λ be |S|(2d/nε2)t. The
probability that there are more than λ such values x is at most αn−(d/2)(1−jε).

Given the claim, we have a “target group O(lg lgn) relation.” The requests can
be routed using [17].

Step 6 remains to be analyzed. By Property 3.2, with probability at least 1−n−α
each group needs to be read by at most 6

√
n lg lg n of the requests, so we have a

“target group 6 lg lgn relation.” The requests can be routed by using [17].

5. Conclusions. In this paper we have described a work-optimal algorithm
which simulates an n lg lg n-processor erew pram on an n-processor ocpc with
O(lg lgn) expected delay. The probability that the delay is longer than this is at
most n−α for any constant α.

It would be interesting to determine whether this is the fastest possible work-
optimal simulation. It would also be interesting to discover how much delay is required
in order to simulate a crcw pram. We have recently derived an algorithm that
simulates an n-processor crcw pram step on an n-processor ocpc in time O(lg k +
lg lg n) with high probability, where k is the maximum memory contention of the
crcw step.

The simulation algorithm assumes that k is known. This assumption can be
removed by augmenting the ocpc model to include a single bus which can be used
to synchronize all of the processors: each processor can broadcast a 1 bit, and every
processor can determine whether or not any processor is broadcasting a 1 at any given
time.

We note that the lg k term in the simulation algorithm is provably necessary, as
implied by an Ω(lg k) expected time lower bound for broadcasting the value of a bit

1846 LESLIE ANN GOLDBERG, YOSSI MATIAS, AND SATISH RAO

to k processors on a qrcw pram (and hence on an ercw) by Gibbons, Matias, and
Ramachandran (see [14]).

Evidently, the performance of the crcw simulation depends on the maximum
contention. A model that accounts for memory contention was recently proposed in
[13]. In this model the run time of each step is a function of the memory contention
encountered at this step. Thus, in the submodel of simd-qrqw log pram, a step in
which the maximum memory contention is k is assumed to take lg k time units.

The crcw simulation implies that an n-processor simd-qrqw log pram algorithm
can be simulated on an n-processor ocpc, augmented with a bus, with delay O(lg lgn)
with high probability. We note that the simd-qrqw log pram is strictly stronger than
the erew pram.

REFERENCES

[1] H. Alt, T. Hagerup, K. Mehlhorn, and F.P. Preparata, Deterministic simulation of ideal-
ized parallel computers on more realistic ones, SIAM J. Comput., 16 (1987), pp. 808–835.

[2] R.J. Anderson and G.L. Miller, Optical Communication for Pointer Based Algorithms,
Technical report CRI 88-14, Computer Science Department, University of Southern Cali-
fornia, Los Angeles, CA, 1988.

[3] B. Bollobás, Martingales, isoperimetric inequalities and random graphs, in Combinatorics,
Colloq. Math. Soc. János Bolyai 52, A. Hajnal, L. Lovász, and V. T. Sós, eds., North
Holland, Amsterdam, 1988, pp. 113–139.

[4] J.L. Carter and M.N. Wegman, Universal classes of hash functions, J. Comput. Systems
Sci., 18 (1979), pp. 143–154.

[5] B.S. Chlebus, K. Diks, T. Hagerup, and T. Radzik, New simulations between CRCW
PRAMs, in Proc. 7th Foundations of Computation Theory, Lecture Notes in Comput.
Sci. 380, Springer-Verlag, New York, 1989, pp. 95–104.

[6] M. Dietzfelbinger and F. Meyer auf der Heide, How to distribute a dictionary in a
complete network , in Proc. 22nd ACM Symposium on Theory of Computing, 1990, pp.
117–127.

[7] M. Dietzfelbinger and F. Meyer auf der Heide, Simple, efficient shared memory simula-
tions, in Proc. 5th ACM Symposium on Parallel Algorithms and Architectures, 1993, pp.
110–119.

[8] M.M. Eshaghian, Parallel Computing with Optical Interconnects, Ph.D. thesis, University of
Southern California, Los Angeles, CA, 1988.

[9] M.M. Eshaghian, Parallel algorithms for image processing on OMC , IEEE Trans. Comput.,
40 (1991), pp. 827–833.

[10] M.M. Eshaghian and V.K.P. Kumar, Optical arrays for parallel processing, in Proc. 2nd
Annual Parallel Processing Symposium, 1988, pp. 58–71.

[11] A.V. Gerbessiotis and L.G. Valiant, Direct bulk-synchronous parallel algorithms, in Proc.
3rd Scandinavian Workshop on Algorithm Theory, 1992.

[12] M. Geréb-Graus and T. Tsantilas, Efficient optical communication in parallel computers,
in Proc. 4th ACM Symposium on Parallel Algorithms and Architectures, 1992, pp. 41–48.

[13] P.B. Gibbons, Y. Matias, and V.L. Ramachandran, The QRQW PRAM: Accounting for
contention in parallel algorithms, in Proc. 5th ACM–SIAM Symposium on Discrete Algo-
rithms, 1994, pp. 638–648.

[14] P.B. Gibbons, Y. Matias, and V.L. Ramachandran, Efficient low-contention parallel algo-
rithms, in Proc. 6th ACM Symposium on Parallel Algorithms and Architectures, 1994, pp.
236–247.

[15] J. Gil and Y. Matias, Fast hashing on a PRAM—Designing by expectation, in Proc. 2nd
ACM–SIAM Symposium on Discrete Algorithms, 1991, pp. 271–280.

[16] J. Gil, Y. Matias, and U. Vishkin, Towards a theory of nearly constant time parallel algo-
rithms, in Proc. 32nd IEEE Symposium on Foundations of Computer Science, 1991, pp.
698–710.

[17] L.A. Goldberg, M. Jerrum, T. Leighton, and S. Rao, Doubly logarithmic communication
algorithms for optical communication parallel computers, SIAM J. Comput., 26 (1997),
pp. 1100–1119.

[18] L.A. Goldberg, M. Jerrum, and P.D. MacKenzie, An Ω(
√

log logn) lower bound for routing

AN OPTICAL SIMULATION OF SHARED MEMORY 1847

in optical networks, SIAM J. Comput., 27 (1998), pp. 1083–1098.
[19] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA, 1992.
[20] R.M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a

distributed memory machine, preprint, 1994. (A preliminary version of this paper appeared
in Proc. 24th ACM Symposium on Theory of Computing, 1992, pp. 318–326.)

[21] A.R. Karlin and E. Upfal, Parallel hashing—An efficient implementation of shared memory,
in Proc. 18th ACM Symposium on Theory of Computing, 1986, pp. 160–168.

[22] R.M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in
Handbook of Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., Elsevier, Ams-
terdam, 1990, pp. 869–941.

[23] C.P. Kruskal, L. Rudolph, and M. Snir, A complexity theory of efficient parallel algorithms,
Theoret. Comput. Sci., 71 (1990), pp. 95–132.

[24] F.T. Leighton, Methods for message routing in parallel machines, in Proc. 24th ACM Sym-
posium on Theory of Computing, 1992, pp. 77–96.

[25] Y. Matias, Highly Parallel Randomized Algorithmics, Ph.D. thesis, Tel Aviv University, Tel
Aviv, Israel, 1992.

[26] Y. Matias and U. Vishkin, Converting high probability into nearly-constant time—With ap-
plications to parallel hashing, in Proc. 23rd ACM Symposium on Theory of Computing,
1991, pp. 307–316.

[27] F. Meyer auf der Heide, C. Scheideler, and V. Stemann, Exploiting storage redundancy to
speed up randomized shared memory simulations, in Proc. 12th Symposium on Theoretical
Aspects of Computer Science (STACS), 1995, pp. 267–278.

[28] P.D. MacKenzie, C.G. Plaxton, and R. Rajaraman, On contention resolution protocols
and associated probabilistic phenomena, in Proc. 26th ACM Symposium on Theory of
Computing, 1994, pp. 153–162.

[29] C. McDiarmid, On the method of bounded differences, in Surveys in Combinatorics, London
Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, UK, 1989, pp.
148–188.

[30] W.F. McColl, General purpose parallel computing, in Lectures on Parallel Computation, Proc.
1991 ALCOM Spring School on Parallel Computation, A.M. Gibbons and P. Spirakis, eds.,
Cambridge University Press, Cambridge, UK, 1993, pp. 337–391.

[31] K. Mehlhorn and U. Vishkin, Randomized and deterministic simulations of PRAMs by
parallel machines with restricted granularity of parallel memories, Acta Inform., 21 (1984),
pp. 339–374.

[32] A.G. Ranade, How to emulate shared memory, J. Comput. Systems Sci., 42 (1991), pp. 307–
326.

[33] S.B. Rao, Properties of an Interconnection Architecture Based on Wavelength Division Mul-
tiplexing, Technical report TR-92-009-3-0054-2, NEC Research Institute, Princeton, NJ,
1992.

[34] J.H. Reif, ed., A Synthesis of Parallel Algorithms, Morgan-Kaufmann, San Francisco, CA,
1993.

[35] A. Siegel, On universal classes of fast high performance hash functions, their time-space trade-
off, and their applications, in Proc. 30th IEEE Symposium on Foundations of Computer
Science, 1989, pp. 20–25.

[36] E. Upfal, Efficient schemes for parallel communications, J. Assoc. Comput. Mach., 31 (1984),
pp. 507–517.

[37] E. Upfal, A probabilistic relation between desirable and feasible models of parallel computation,
in Proc. 16th ACM Symposium on Theory of Computing, 1984, pp. 258–265.

[38] E. Upfal and A. Wigderson, How to share memory in a distributed system, J. Assoc. Comput.
Mach., 34 (1987), pp. 116–127.

[39] L.G. Valiant, General purpose parallel architectures, Handbook of Theoretical Computer
Science, J. van Leeuwen, ed., Elsevier, Amsterdam, 1990, Chapter 18.

TIME-LAPSE SNAPSHOTS∗

CYNTHIA DWORK† , MAURICE HERLIHY‡ , SERGE PLOTKIN§ , AND ORLI WAARTS¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1848–1874

Abstract. A snapshot scan algorithm produces an “instantaneous” picture of a region of shared
memory that may be updated by concurrent processes. Many complex shared memory algorithms
can be greatly simplified by structuring them around the snapshot scan abstraction. Unfortunately,
the substantial decrease in conceptual complexity quite often is counterbalanced by an increase in
computational complexity.

In this paper, we introduce the notion of a weak snapshot scan, a slightly weaker primitive
that has a more efficient implementation. We propose the following methodology for using this
abstraction: first, design and verify an algorithm using the more powerful snapshot scan; second,
replace the more powerful but less efficient snapshot with the weaker but more efficient snapshot,
and show that the weaker abstraction nevertheless suffices to ensure the correctness of the enclosing
algorithm.

We give two examples of algorithms whose performance is enhanced while retaining a simple
modular structure: bounded concurrent timestamping and bounded randomized consensus. The
resulting timestamping protocol dominates all other currently known timestamping protocols: it
matches the speed of the fastest known bounded concurrent timestamping protocol while actually
reducing the register size by a logarithmic factor. The resulting randomized consensus protocol
matches the computational complexity of the best known protocol that uses only bounded values.

Key words. distributed computing, distributed algorithms, shared-memory algorithms, asyn-
chronous PRAMS, atomic snapshots, timestamping, time-lapse snapshots

AMS subject classifications. 68Q22, 68Q25

PII. S0097539793243685

1. Introduction. Synchronization algorithms for shared-memory multiproces-
sors are notoriously difficult to understand and to prove correct. Recently, however,
researchers have identified several powerful abstractions that greatly simplify the con-
ceptual complexity of many shared-memory algorithms. One of the most powerful of
these is atomic snapshot scan (in this paper we sometimes omit the word “scan”).
Informally, this is a procedure that makes an “instantaneous” copy of memory that
is being updated by concurrent processes. More precisely, the problem is defined as
follows. A set of n asynchronous processes share an n-element array A, where only
process P writes A[P].1 An atomic snapshot is a read of all the elements in the array
that appears to occur instantaneously. Formally, scans and updates are required to
be linearizable [25], i.e., each operation appears to take effect instantaneously at some

∗Received by the editors January 3, 1993; accepted for publication (in revised form) February 2,
1998; published electronically May 21, 1999.

http://www.siam.org/journals/sicomp/28-5/24368.html
†IBM Almaden Research Center, San Jose, CA 95120 (dwork@almaden.ibm.com).
‡Computer Science Department, Brown University, Providence, RI 02912 (herlihy@cs.brown.

edu). Part of the research of this author was done while at the DEC Cambridge Research Lab.
§Department of Computer Science, Stanford University, Stanford, CA 94305 (plotkin@theory.

stanford.edu). The research of this author was supported by NSF Research Initiation Award CCR-
900-8226, U.S. Army Research Office grant DAAL-03-91-G-0102, ONR contract N00014–88–K–0166,
and a grant from Mitsubishi Electric Laboratories.
¶Computer Science Division, University of California, Berkeley, CA 94720 (waarts@cs.

berkeley.edu). Part of the research of this author was done at Stanford University and was sup-
ported in part by NSF grant CCR-8814921, U.S. Army Research Office grant DAAL-03-91-G-0102,
ONR contract N00014-88-K-0166, and an IBM fellowship.

1One can also define multiwriter algorithms in which any process can write to any location.

1848

TIME-LAPSE SNAPSHOTS 1849

point between the operation’s invocation and response. Thus, there exists a total
“linearization” order on the scans and updates, such that a scan operation returns
for each process P the value of the last update operation to A[P], where last is with
respect to the linearization order. Note that this implies that if processes p and q
update their values from up, uq to vp, vq, respectively, then if some atomic snapshot
scan returns values vp, uq, no other atomic snapshot scan can return values up, vq.

Prior to our work, atomic snapshot scan algorithms had been constructed by An-
derson [3] (bounded registers and exponential running time), Aspnes and Herlihy [6]
(unbounded registers and O(n2) running time), and Afek et al. [2] (bounded registers
and O(n2) running time). More recent results, derived after the time this work was
first published and requiring only bounded registers, include randomized algorithms
of Attiya, Herlihy, and Rachman [10] (O(n log2 n) time) and Chandra and Dwork [14]
(O(n) + Cn, where Cn is the running time of the best randomized consensus algo-
rithm for n processes) and the fastest deterministic algorithm to date, by Attiya and
Rachman [11] (O(n log n) steps per operation). Here running time is measured by the
number of accesses to shared memory. Chandy and Lamport [15] considered a closely
related problem in the message-passing model.

Unfortunately, the substantial decrease in conceptual complexity provided by
atomic snapshot scan is often counterbalanced by an increase in computational com-
plexity. In this paper, we introduce the notion of a weak snapshot scan, called a
time-lapse snapshot. The time-lapse snapshot is a slightly weaker abstraction than
the atomic snapshot scan in which the linearization order is allowed to be partial,
rather than total. This weaker notion of correctness allows two scans to disagree
on the order of two updates, but only if all four operations are concurrent with one
another. That is, if processes p and q update their values from up, uq to vp, vq, re-
spectively, and if scans S, S′ are done concurrently with each other and with these
updates, it is possible that scan S returns values vp, uq and scan S′ returns up, vq.
The advantage of using weak snapshot is that it can be implemented in O(n) time.
Thus, the cost of our time-lapse snapshot is asymptotically the same as the cost of a
simple “collect” of the n values, but the primitive is much more powerful. Letting v
be the maximum number of bits in any element in the array A, our implementation
of the time-lapse snapshot requires registers of size only O(n + v). In contrast, all
atomic snapshot algorithms known to us require registers of size O(nv). Since in some
applications v can be as large as n, this reduction in register size can be significant.

Our results indicate that weak snapshot scan can sometimes alleviate the trade-
off between conceptual and computational complexity. We focus on two well-studied
problems: bounded concurrent timestamping and randomized consensus. In partic-
ular, we consider algorithms for these problems based on an atomic snapshot. In
both cases, we show that one can simply replace the atomic snapshot scan with a
weak snapshot scan, thus retaining the algorithms’ structure while improving their
performance.

The weak snapshot algorithm presented here was influenced by work of Kirousis,
Spirakis, and Tsigas [30], who designed a linear-time atomic snapshot algorithm for a
single scanner. In this special case our algorithm solves the original atomic snapshot
problem as well.

In the bounded concurrent timestamping problem processes repeatedly choose
labels, or timestamps, reflecting the real-time order of events. More specifically, pro-
cesses can repeatedly perform two types of operations, called labeling and scan. In
a labeling operation a process assigns itself a new label. A scan operation returns

1850 DWORK, HERLIHY, PLOTKIN, AND WAARTS

a set of current labels, one per process, and a total order on these labels, consistent
with the real-time order of their corresponding labeling operations.2

Israeli and Li [26] were the first to investigate bounded sequential timestamp
systems; Dolev and Shavit [19] were the first to explore the concurrent version of
the problem. The Dolev–Shavit construction requires O(n)-sized registers and labels,
O(n) time for a labeling operation, and O(n2 log n) time for a scan. In their algo-
rithm each process is assigned a single multireader–single-writer register of O(n) bits.
Extending the Dolev–Shavit solution in a nontrivial way, Israeli and Pinhasov [28]
obtained a bounded concurrent timestamp system that is linear in time and label size
but uses registers of size O(n2). An alternative implementation of their algorithm
uses single-reader–single-writer registers3 of size O(n) but requires O(n2) time to per-
form a scan. Independently, and slightly later, Dwork and Waarts [20] obtained the
first linear time solution, using a different approach not based on any of the previous
solutions, with a simpler proof of correctness. The drawback of their construction
is that it requires registers and labels of size O(n log n). After this work was first
published, the Dwork–Waarts approach was pursued by Haldar [23], who presented
a timestamping system that is slightly more memory efficient than the construction
of [20] (although not asymptotically) but that also requires registers and labels of size
O(n log n).

Dolev and Shavit observed that the conceptual complexity of their concurrent
timestamping algorithm can be reduced by using atomic snapshot scan. We show
that, in addition, the algorithm’s computational complexity can be reduced by simply
replacing the atomic snapshot with the weak snapshot, making no other changes to
the original algorithm. The resulting bounded concurrent timestamping algorithm is
linear in both time and the size of registers and labels and is conceptually simpler than
the Dolev–Shavit and Israeli–Pinhasov solutions. We do not need to prove directly
that our timestamping is correct; rather, we reduce the correctness of our solution to
the correctness of the Dolev–Shavit algorithm.

Independent of our work, Gawlick, Lynch, and Shavit [22] actually structured the
Dolev–Shavit algorithm around the atomic snapshot abstraction. The resulting algo-
rithm is indeed significantly more simple and modular than that of Dolev and Shavit.
Introducing new proof techniques, Gawlick, Lynch, and Shavit prove from scratch
that their algorithm is a bounded concurrent timestamping system. At the time of
the Gawlick, Lynch, and Shavit work, the (then) best atomic snapshot algorithm was
the one in [2]. Using this in the construction in [22] effectively slowed down the orig-
inal Dolev–Shavit timestamping algorithm, yielding a timestamping algorithm that
requires O(n2) accesses to registers of size O(n2) for both labeling and scan opera-
tions. More than a year after initial publication of our results, Attiya and Rachman
developed the O(n log n) atomic snapshot [11] mentioned above. Plugging this atomic
snapshot algorithm into the timestamping construction of Gawlick, Lynch, and Shavit
yields a timestamping algorithm that requires O(n log n) accesses to registers of size
O(n2). In comparison, our construction requires only O(n) accesses to registers of
size only O(n). Thus, our timestamping construction dominates all others of which
we are aware.

In the randomized consensus problem, each of n asynchronous processes starts
with an input value taken from a two-element set and runs until it chooses a de-

2Observe that the scan required by the timestamping is not necessarily identical to the atomic
snapshot scan. Unfortunately, the two operations have the same name in the literature.

3All other results mentioned are in terms of multireader–single-writer registers.

TIME-LAPSE SNAPSHOTS 1851

cision value and halts. The protocol must be consistent—no two processes choose
different decision values; valid—the decision value is the input value of some pro-
cess; and randomized wait-free—each process decides after an expected finite number
of steps. The consensus problem lies at the heart of the more general problem of
constructing highly concurrent data structures [24]. Consensus has no deterministic
solution in the asynchronous shared-memory model with only atomic reads and writes
[18, 36]. Nevertheless, it can be solved by randomized protocols in which each process
is guaranteed to decide after a finite expected number of steps. Randomized consensus
protocols that use unbounded registers have been obtained by Chor, Israeli, and Li
[17] (against a “weak” adversary), by Abrahamson [1] (exponential running time), by
Aspnes and Herlihy [7] (the first polynomial algorithm), by Saks, Shavit, and Woll
[40] (optimized for the case where processes run in lock step), and by Bracha and
Rachman [12] (running time O(n2 log n)). After the time of our work, Aspnes and
Waarts [8] presented a randomized consensus protocol that uses unbounded registers
and in which the expected number of operations per process is O(n log2 n).

Protocols that use bounded registers have been proposed by Attiya, Dolev, and
Shavit [9] (running time O(n3)), by Aspnes [5] (running time O(n2(p2 + n)), where
p is the number of active processors), and by Bracha and Rachman [13] (running
time O(n(p2 + n)), the best known). The bottleneck in Aspnes’s algorithm is atomic
snapshot. Replacing this atomic snapshot with our more efficient weak snapshot
improves the running time by Ω(n) (from O(n2(p2 +n)) to O(n(p2 +n))) and yields a
protocol that matches the protocol of Bracha and Rachman [13]. Both our consensus
algorithm and the one in [13] are based on Aspnes’s algorithm. The crucial difference
is that the solution of Bracha and Rachman is specific to consensus, whereas our
algorithm is an immediate application of the primitive developed in this paper.

The remainder of this paper is organized as follows. Section 2 gives our model
of computation and defines the weak snapshot primitive. Some properties of weak
snapshots appear in section 3. The remaining sections describe the weak snapshot
algorithm and its applications.

2. Model and definitions. A concurrent system consists of a collection of n
asynchronous processes that communicate through an initialized shared memory. Each
memory location, called a register, can be written by one “owner” process and read
by any process. Reads and writes to shared registers are assumed to be atomic,
that is, they can be viewed as occurring at a single instant of time. In order to be
consistent with the literature on the discussed problems, our time complexity mea-
sure is expressed in terms of read and write operations on single-writer–multireader
registers, in our case of size O(n). Polynomial-time algorithms for implementing
large single-writer–multireader atomic registers from small, weaker registers are well
known [31, 32, 38, 27, 29, 33, 34, 35, 37, 42, 44].

We view an execution of a protocol as an interleaving of atomic reads and writes.
Sometimes it is convenient to assign times to these atomic operations. These times are
not accessible to the processes. A register can undergo at most one atomic operation
at a time, and a process can perform at most one atomic operation at a time.

An algorithm is wait-free if there is an a priori upper bound on the number of
steps a process might take when running the algorithm, regardless of how its steps
are interleaved with those of other processes. All algorithms discussed in this paper
are wait-free.

An atomic snapshot memory supports two kinds of abstract operations: update
modifies a location in the shared array, and scan instantaneously reads (makes a copy

1852 DWORK, HERLIHY, PLOTKIN, AND WAARTS

of) the entire array. Let Uki (Ski) denote the kth update (scan) of process i, and
vki the value written by i during Uki . The superscripts are omitted where this cannot
cause confusion. An operation A precedes operation B, written as A −→ B, if B
starts after A finishes. Operations unrelated by precedence are concurrent. Processes
are sequential: each process starts a new operation only when its previous operation
has finished, hence its operations are totally ordered by precedence.

Correctness of an atomic snapshot memory is defined as follows. There exists a
total order “=⇒” on operations such that

• if A −→ B, then A =⇒ B;
• if scan Sp returns v̄ = 〈v1, . . . , vn〉, then vq is the value written by the latest

update Uq ordered before Sp by =⇒.
The order =⇒ is called the linearization order [25]. Intuitively, the first condition

says that the linearization order respects the “real-time” precedence order, and the
second says that each correct concurrent computation is equivalent to some sequential
computation where the scan returns the last value written by each process.

We define a time-lapse (or weak) snapshot memory as follows: we impose the same
two conditions, but we allow =⇒ to be a partial order4 rather than a total order. We
call this order a partial linearization order. Since for each q all the updates Uq
are linearized by the −→ relation, the “latest update Uq ordered before Sp” is well
defined, even though =⇒ is only a partial order. If A =⇒ B we say that B observes
A.

Each scan and update operation takes place during the interval of time beginning
with the first atomic action of the operation and ending with the last atomic action.
Intuitively, we require that scanning processes agree about updates that happened (in
real time) before the scans began, but they may disagree about concurrent updates.
That is, if processes p and q update their values from up, uq to vp, vq, respectively,
and if scans S, S′ start after the two updates terminate, then the values each with
returns for p, q are at least as recent as vp, vq, respectively; however, if scans S, S′

are done concurrently with each other and with these updates, then it is possible that
scan S returns values vp, uq and scan S′ returns up, vq. Thus, in a system with only
one scanner, atomic snapshots and weak snapshots are equivalent. Similarly, the two
types of snapshots are equivalent if no two updates occur concurrently (overlap in
real time). However, in general, our weaker notion of correctness allows two scans
S and S′ to disagree on the order of two updates U and U ′, but only if all four
operations are concurrent with one another.

The weak snapshot is still more powerful than a simple collect of values written
by atomic writes. To see this, consider three processes a, b, c. Let a perform an
update Ua, writing the value va. Let b then perform a scan Sb, followed by an
update Ub resulting in vb. Assume that process c performs a scan Sc concurrent
with all three of these operations and that returns vb for process b. If the updates
were simple writes and the scan a simple collect, then the fact that Sc returns vb
places no constraint upon whether Sc returns va or an earlier value for a. However,
if the operations are instead operations of the weak snapshot primitive, then we have
Ua =⇒ Sb (because Sb returns va), Sb =⇒ Ub (because Sb −→ Ub), and Ub =⇒ Sc
(because Sc returns vb). By transitivity we get Ua =⇒ Sc, whence it follows that Sc
returns va or a later value for a.

The following assumption is convenient and easily implemented.
Assumption 2.1. If an update is observed by a scan, then this update termi-

4In this paper, all partial orders are irreflexive.

TIME-LAPSE SNAPSHOTS 1853

nates before the scan does.
Assumption 2.1 is useful in modifying the bounded concurrent timestamping al-

gorithm of [19], since it allows us to reduce the correctness of the resulting system
to the correctness of the original algorithm of [19], thereby avoiding a full proof of
correctness from scratch. Intuitively, it allows us to argue that anything written by
an update and seen by a scan in the modified algorithm could have been written
by a simple atomic write in a corresponding execution of the original Dolev–Shavit
algorithm and seen by a simple collect in that execution. We explain this further in
section 5.

We close this section with a brief review of some properties of atomic registers. We
use the notation W i

x (respectively, Rix) to denote the ith atomic write (respectively,
read) of the register by process x.

Regularity of an atomic register says that for any value v written by a write W i
a

and returned by a read Rkb , W i
a begins before Rkb terminates, and there is no write

W j
a for j > i such that W i

a −→W j
a −→ Rb.

Monotonicity of an atomic register says that if Rb −→ Rc and if Rb returns v
written by a write W i

a, then Rc returns v′ written by a write W i′
a for some i′ ≥ i.

3. Properties of weak snapshots. The reader can easily verify that weak
snapshots satisfy the following properties:

• Regularity. For any value via returned by Sjb , U
i
a begins before Sjb terminates,

and there is no Uka such that U ia −→ Uka −→ Sjb .

• Monotonicity of scans. If Sia and Sjb are two scans satisfying Sia −→ Sjb (a
and b could be the same process), and if Sia observes update Ukc (formally,
Ukc =⇒ Sia), then Sjb observes Ukc .

• Monotonicity of updates. If U ia and U jb are two update operations (possibly

by the same process) such that U ia −→ U jb , and if Skc is a scan operation,

possibly concurrent with both U ia and U jb , such that Skc observes U jb (U jb =⇒
Skc), then Skc observes U ia.

Variants of the regularity and monotonicity properties are part of the definitions of
several basic shared-memory abstractions, including timestamping systems [26, 19, 22]
and the traceable-use abstraction [20], and follow from the definitions of several other
abstractions, including atomic registers [32] and atomic snapshots [2, 6].

Roughly speaking, time-lapse snapshots satisfy all the properties of atomic snap-
shots except for the consistency property which states that if scans Sia, S

j
b return

v̄ = 〈v1, . . . , vn〉 and v̄′ = 〈v′1, . . . , v′n〉, respectively, then either Uk 6−→ U ′k for every
k = 1, . . . , n, or vice versa.

Define the span of a value vip to be the interval from the start of U ip to the end

of U i+1
p , if U i+1

p exists and terminates, or the infinite interval with the same start

time if no U i+1
p ever terminates. Clearly, values written by successive updates have

overlapping spans. The following lemma formalizes the intuition that a weak snapshot
scan returns a possibly existing state of the system.

Lemma 3.1. If a weak snapshot scan S returns a set of values v̄, then their spans
have a nonempty intersection.

Proof. By definition of time-lapse snapshot, for all vip ∈ v̄, U ip is the latest update

ordered before S by =⇒. Let vip in v̄ be such that the span of vip is the latest to start.
If all the spans of the values in v̄ are infinite, then clearly they intersect at all times
after U ip begins.

1854 DWORK, HERLIHY, PLOTKIN, AND WAARTS

Assuming at least one span is finite, let vip be as above and let vjq be in v̄ such

that the span of vjq is the first to end. Then, it is enough to show that the spans of vip
and vjq intersect. Suppose not. By choice of q, U j+1

q completes. Since by assumption,

the spans of vip and vjq do not intersect, it follows from the definition of a span that

U j+1
q −→ U ip. Thus U j+1

q =⇒ U ip, and hence it follows from the transitivity of the

partial linearization order that U j+1
q =⇒ S, violating the requirement that each scan

return the latest value written by the latest update ordered before it by =⇒.
Let a scan S of a weak snapshot start at time ts, end at time te, and return a set

of values v̄. By Lemma 3.1, there is a point t in which the spans of all these values
intersect. We now argue that at least one such point is in the interval [ts, te]. There
may be more than one such point; however, the regularity property of weak snapshots
implies that there is at least one such point t such that ts ≤ t ≤ te. This is because
the first clause in the definition of regularity implies that the span of via begins before
te, while the second clause implies that the span of via ends at or after ts. We will
refer to the latest such point t by tscan of S.

4. Weak snapshot. Intuitively, in order to be able to impose a partial order on
the scans and updates, we need to ensure that if a scan Sc does not return value
vja of process a because vja is too new (i.e., Sc returns vka for k < j), then Sc will not
return a value vib that was written by process b after b returns vja in some scan Sb.

This intuition follows from the definition of the time-lapse snapshot: if Sb returns
vja and Sb −→ U ib we have U ja =⇒ Sb =⇒ U ib , by definition of time-lapse snapshot.
Moreover, if Sc returns vib, then Sc must be ordered after b’s update in the partial
order; that is, U ib =⇒ Sc. We therefore have by transitivity that U ja =⇒ Sc, or in other
words, that a’s update U ia is ordered before the scan Sc, and hence by definition of
time-lapse snapshots Sc must return vka for k ≥ j.

If each value returned by the scan is the value written by the latest update
that terminated before a specific point in the scan, the above situation does not
occur. This observation by Kirousis, Spirakis, and Tsigas [30] motivates our solution.
Roughly speaking, in our solution, at the start of a scan, the scanner produces a new
number, called color, for each other process. When a process wants to perform an
update, it reads the colors produced for it (one color by each scanner) and tags its
new value with these colors. This enables the scanner to distinguish older values from
newer ones.

The next section describes a solution that uses an unbounded number of colors.
Later we will show how to simulate this solution using only a bounded number of
colors. The simulation uses a simplification of the Traceable Use abstraction defined
by Dwork and Waarts in [20].

4.1. Unbounded weak snapshot. We follow the convention that shared reg-
isters appear in upper case and private variables in lower case. In order to simplify
the presentation, we assume that all the private variables are persistent. If a variable
is subscripted, the first subscript indicates the unique process that writes it, and the
second, if present, indicates the process that uses it. When the code says “atomically
write . . . for all . . . ,” we mean a single atomic write operation in which all indicated
variables are written at once. In contrast, a statement of the form “for each x ∈ X
write . . .” means that the executing process must perform |X| atomic writes. Each
process b has variables valueb, which stores b’s current value; pcolorb,qcolorb,
each of which stores an n-element array of colors; and vasidebc, for each c 6= b. In
keeping with convention [2, 20, 32], we frequently refer to pcolorb[c] as pcolorbc

TIME-LAPSE SNAPSHOTS 1855

1. For all c 6= b, read qcolorb[c] := pcolorcb.
2. For all c 6= b, if qcolorb[c] 6= qcolorbc

then vasideb[c] := valueb.
3. Atomically write:

valueb := new value.
For all c 6= b, vasidebc := vasideb[c].
For all c 6= b, qcolorbc := qcolorb[c].

Fig. 4.1. update operation for process b.

1. Call Produce.
2. For all c 6= b atomically read:

valueb[c] := valuec,
qcolorb[c] := qcolorcb,
vasideb[c] := vasidecb.

3. For all c 6= b
If qcolorb[c] 6= pcolorb[c]

then datab[c] := valueb[c],
else datab[c] := vasideb[c].

4. Return (datab[1], . . . ,valueb, . . . , datab[n]).

Fig. 4.2. scan operation for process b.

(analogously for qcolorb[c]). In this section, we assume that all these variables are
stored in a single register. Section 4.4 describes how to eliminate this assumption. The
code for the update and scan operations appears in Figures 4.1 and 4.2, respectively;
the code for the Produce operation, called by the scan, appears in Figure 4.3.

At the start of a scan, the scanner b produces a new color for each updater c and
stores it in pcolorbc. (Colors produced by different processes or colors produced for
different processes are considered different even if they have the same value.) It then
reads valuec, vasidecb, and qcolorcb in a single atomic step. If qcolorcb is equal
to the color produced by b for c (and stored in pcolorbc), then b returns vasidecb
as the value for c; otherwise b returns valuec.

The updater b first reads pcolorcb and then writes its new valueb atomically
with qcolorbc := pcolorcb for all c. At the same time b updates vasidebc for all c
that it detects as having started to execute a concurrent scan.

The intuition behind the use of the vaside variable can be best described if we
consider an example where we have a “fast” updater b and a “slow” scanner c, where
c executes a single scan while b executes many updates. In this case, the updater
will update valueb each time but will update vasidebc only once, when it will detect
that c is scanning concurrently. Intuitively, vasidebc allows the scanner c to return a
value for process b that was written by b during an update that started no later than
the end of the color producing step of the current scan. Therefore, such a value can
depend only on values that are not more recent than the values returned by the scan.

We superscript the values of variables to indicate the execution of update or
scan in which they are written. For example pcolor`bc is the value of pcolorbc
written during scan S`b .

Next, we construct an explicit partial linearization order =⇒ as follows. Define
U jq ⇒ Sip to hold if Sip returns the value originally written by U jq . (Note that Sip may

read this value from vasidekqp, where k > j). Define =⇒ to be the transitive closure of
−→ ∪ ⇒. It follows from Lemmas 4.1 and 4.4 that the scan and update procedures

1856 DWORK, HERLIHY, PLOTKIN, AND WAARTS

1. For all c 6= b pcolorb[c] := pcolorbc + 1.
2. Atomically write for all c 6= b pcolorbc := pcolorb[c].

Fig. 4.3. Unbounded Produce operation for process b.

yield a weak snapshot memory.
Lemma 4.1. The relation =⇒ is a partial order.
Proof. It suffices to check that =⇒ is acyclic. Suppose there exists a cycle

A0, . . . , Ak, where adjacent operations are related by −→ or ⇒, and the cycle length
is minimal. Because −→ is acyclic and transitive, some of these operations must be
related only by ⇒. Since ⇒ goes only from update to scan operations, there are no
adjacent ⇒ edges. Thus, if the cycle is of length 1, then we must have A0 −→ A0,
which is a contradiction. Hence the cycle must be of length > 1. Since the cycle is
minimal, and −→ is transitive, there are no adjacent −→ edges and therefore for each
consecutive pair Ai and Ai+1, if Ai ⇒ Ai+1, then Ai 6−→ Ai+1. Therefore the edges
of the cycle must alternate between ⇒ and −→. It follows that k is odd. Without
loss of generality, assume A0 ⇒ A1.

We argue by induction that, for ` ≥ 0, we have that A0 starts before A2`+2

starts. Throughout the proof all subscripts are taken modulo k + 1. (In particular,
when k = 1 we have that A2 is precisely A0.) For the base case (` = 0), since
by assumption A0 ⇒ A1, it follows that A0 starts before A1 finishes (otherwise A1

would be returning a value written by an operation that had not even started and
therefore might never start, contradicting the regularity of atomic registers). Since by
construction A1 −→ A2 (alternating edges property), we have that A1 finishes before
A2 starts, and the base case follows.

Assume the result for `. We have A2`+2 ⇒ A2`+3 (alternating edges), and hence
again A2`+2 starts before A2`+3 finishes. By the inductive hypothesis, A0 starts before
A2`+2 starts and hence A0 starts before A2`+3 finishes. To finish the argument, note
that A2`+3 −→ A2`+4 (alternating edges), which implies that A0 starts before A2`+4

starts, completing the induction.
Recall that the cycle has even length and that this length is at least 2. Thus, A0

starts before Ak+1 starts, but since all subscripts are modulo k + 1 this says that A0

starts before itself, which is a contradiction.
To complete the proof that our implementation is a weak snapshot, we need only

to show that for each process our weak scan returns the value written by the latest
update ordered before that scan. We first show the two technical lemmas below.

Lemma 4.2. If a scan returns a value written by an update, then this up-
date terminates before the scan reads valueq.

Proof. Recall that vjq denotes the value originally written by U jq . Assume scan Sip
returns vjq . Recall that by design of the algorithm, there are two scenarios in which

Sip returns vjq : either (a) in step 3 of Sip qcolor ip[q] 6= pcolor ip[q] and vjq is the value

p read from valueq in step 2, or (b) qcolor ip[q] = pcolor ip[q] and vjq is the value in

vasideqp that p read in step 2. Recall that vjq can be written into vasideqp only by

U j
′
q , j′ > j (by inspection of the code for an update).

Case (a) can occur only if q wrote vjq to valueq before Sip reads that variable.

Since (by inspection of the code) that write is the last atomic action in U jq , the claim

follows. Case (b) can occur only if q wrote vjq to vasideqp before Sip reads that

variable. Since such a write must take place during U j
′
q , j′ > j, it follows that the

write must be after U jq terminates, and again the claim follows.

TIME-LAPSE SNAPSHOTS 1857

Lemma 4.3. Let U jq be the last update by process q to be ordered before Sip
by =⇒. U jq terminates before Sip reads valueq. Moreover, in step 1 of U jq , q reads

pcolori
′
pq for some i′ < i.

Proof. By definition of =⇒ there must be a sequence A0, . . . , Ak where adjacent
operations are related by −→ or ⇒ and where A0 = U jq and Ak = Sip. The proof
proceeds by induction on the length k of a minimal such sequence.

For the base case, k = 1, observe that either U jq −→ Sip or U jq ⇒ Sip. If U jq −→ Sip,
then the first part of the claim is immediate, and the second part of the claim follows
from the regularity of atomic registers.

We now consider the case in which U jq ⇒ Sip. By definition vjq is thus the value

returned for q by Sip. Lemma 4.2 thus implies the first part of the claim.

To complete the proof of the base case, we will show by contradiction that U jq
does not read pcoloripq but instead reads pcolori

′
pq for some i′ < i.

First, suppose for the sake of contradiction that U jq reads pcolori
′
pq for some i′ > i

in step 1 of the update. Then U jq writes vjq only after Sip ends, so by the regularity of

atomic registers Sip cannot return a value written by U jq ; that is, U jq 6⇒ Sip. It remains

only to show that U jq does not read pcoloripq.

Suppose otherwise; that is, suppose that, in step 1 of U jq , q reads pcoloripq and

thus qcolorjqp = pcoloripq = pcolor ip[q]. It follows from step 3 of the scan operation

that Sip could not have taken vjq from valueq because qcolorjqp = pcolor ip[q]. So Sip
must have taken vjq from vasideqp. This implies that there is some U j

′
q , j

′ > j, that

wrote vjq into vasideqp and that terminated before Sip performed step 2. We show

that there is no such U j
′
q . Since by assumption U jq reads pcoloripq, the monotonicity

of an atomic register implies that so does any later U j
′
q that terminates before Sip’s

read from q in step 2, and hence it follows from the code of the update operation
that any such later U j

′
q sees qcolorq[p] = qcolorqp and hence does not write vjq into

vasideqp. This completes the proof of the base case.
Assume the claim for k and suppose the minimal sequence from U jq to Sip is of

length k + 1. Then such a sequence has one of the following forms:
1. U jq −→ U lz =⇒ Sip.

2. U jq −→ Smg =⇒ Sip.

3. U jq ⇒ Smg =⇒ Sip.

For case 1, without loss of generality we can assume that U `z is the last update
by process z to be ordered before Sip by =⇒. Then by the inductive hypothesis, U `z
reads pcolori

′
pz for some i′ < i, and it terminates before Sip’s read in step 2. Since

U jq −→ U `z we have, by the monotonicity of atomic registers, that U jq reads pcolori
′′
pq

for some i′′ ≤ i′ < i, thereby establishing the second part of the claim. Now, p writes
pcoloripz during the Produce operation in step 1 of Sip. Since U `z reads only an

earlier value of pcolorpz, it follows from the regularity of atomic registers that U `z
began before the Produce of Sip completed. Since U jq −→ U `z we therefore have that

U jq completed before this Produce is completed, and the claim follows.
For case 2, observe that since ⇒ goes only from update to scan operations, we

have that any sequence from Smg to Sip is either of the form (2.i) Smg −→ U lz =⇒ Sip,

or (2.ii) Smg −→ Sip. By transitivity of −→, if (2.i) holds, then U jq −→ U lz =⇒ Sip, and

if (2.ii) holds, then U jq −→ Sip. This implies that a minimal sequence from U jq to Sip
cannot be of the form of case 2.

1858 DWORK, HERLIHY, PLOTKIN, AND WAARTS

For case 3, we have again that either (3.i) Smg −→ U lz =⇒ Sip, or (3.ii) Smg −→ Sip.

By Lemma 4.2, U jq must have completed before Smg has completed, and hence it

follows analogously to the above that a minimal sequence from U jq to Sip cannot be of
the form of case 3.

Note that Lemma 4.3 implies that our implementation satisfies Assumption 2.1.
Lemma 4.4. For each process, our weak scan returns the value written by the

latest update ordered before that scan by =⇒.
Proof. Let U jq be the last update by process q to be ordered before Sip by =⇒.

Since U jq is the last update of q ordered before Sip by =⇒, Sip could not have returned

vj
′
q for some j′ > j. Therefore, it is enough to show that Sip does not return vj

′
q for

j′ < j. Suppose otherwise.
From Lemma 4.3 it follows that U jq has completed before Sip performs its read

from q in step 2. Thus before the time Sip performs this read, vjq is written into

valueq. It follows from the code for a scan operation that if, after vjq is written into

valueq, the scan Sip returns some vj
′
q for j′ < j, then this was the value read by Sip

in vasideqp and Sip reads some qcolorj
′′
qp that is the same as pcoloripq.

Lemma 4.3 states that U jq reads pcolori
′
pq for some i′ < i. Thus, when U jq reads

pcolorpq in step 1, pcolorpq contains some pcolori
′
pq for i′ < i. The monotonicity

of atomic registers immediately implies that also when Ukq , for k ≤ j, reads pcolorpq

in step 1, it reads pcolori
′′
pq for some i′′ ≤ i′ < i. Thus, from step 1 of the up-

date operation it follows that for each k ≤ j, qcolorkqp 6= pcoloripq. Thus, the j′′

in the above paragraph must be > j.
Since, as reasoned above, qcolorjqp 6= pcoloripq, there exists j < j′′′ ≤ j′′ such

that qcolorj
′′′
qp 6= qcolorj

′′′−1
qp . But this implies that vasideqp is updated with

vj
′′′−1
q by update U j

′′′
q , contradicting the assumption that Sip returns vj

′
q read in

vasideqp, for some j′ < j.

4.2. Review of the Traceable Use abstraction. We use a simplified version
of the Traceable Use abstraction of Dwork and Waarts [20] in order to convert
the unbounded weak snapshot described in the previous section into a bounded one.
Recall that in the unbounded solution, when process b produces a new color for process
c, this new color was not previously produced by b for c. This feature implies that
when b sees valuec tagged by this new color it knows that this valuec is too recent
(was written after the scan began) and will not return it as the result of its scan.
However, the same property will follow also if when b produces a new color for c, it
will simply choose a color that is guaranteed not to tag a value of c unless b produces
it for c again. To do this b must be able to detect which of the colors it produced for
c may still tag c’s values. This requirement can be easily satisfied by incorporating a
simplified version of the Traceable Use abstraction.

In general, the goal of the Traceable Use abstraction is to enable the colors
to be traceable, in that at any time it should be possible for a process to determine
which of its colors might tag any current or future values, where by “future value”
we mean a value that has been prepared but not yet written. That is, in the case
of time-lapse snapshots, at any time a process p can determine, for each process q,
which of p’s colors currently appear, or may appear in the future, in pcolorpq or
qcolorqp. Although we allow a color that is marked as “in use” not to be used at
all, we require that the number of such colors be bounded.

Due to the asynchrony and concurrency, if revealing a color (i.e., writing a new

TIME-LAPSE SNAPSHOTS 1859

color) were done by a simple write, and obtaining a color (i.e., in order to tag a value)
were done by a simple read, the colors would not have been traceable. Therefore, to
achieve its goal, the Traceable Use requires the processes to communicate through
three types of wait-free operations—traceable-read, traceable-write, and garbage
collection:

• traceable-read allows the calling process to obtain the current color pro-
duced for it by another process—in other words, to consume a color. It takes
two parameters: the name c of the process from which the color is being con-
sumed (and to which the color belongs), and the name of the color (that is,
the shared variable holding the color).5 It returns the value of the consumed
color.
• traceable-write allows a process to update a variable containing its colors—

in other words, to reveal its new colors. It takes two parameters: the name
of the variable and a new value for the variable.
• garbage collection allows a process to detect all of its colors that are cur-

rently in use. It takes a list of shared variables in which the garbage collector’s
colors reside (intuitively, the list of where to look for the collector’s colors).
It returns a list of colors that may currently be in use.

The processes will communicate through the Traceable Use abstraction as fol-
lows. For process b to obtain a color produced for it by another process, b invokes
the traceable-read operation. To write a color that other processes may need to
obtain from it through the traceable-read operation, the process will perform the
traceable-write operation. Thus, if a variable written by b contains a color of c 6= b,
this color must have been consumed earlier by b; on the other hand, colors of b ap-
pearing in variables owned by b (meaning variables residing in single-writer registers
of which b is the writer) do not need to be consumed from anybody. When b writes
a new color for itself in one of its variables without consuming it from anybody, we
say that this color is produced at that time. Finally, to detect which of its colors are
in use in the system, the process will perform garbage collection.

Each process has n−1 pools of available colors, one for each other process. When
a color v is produced by a process b for process c, it is removed from the pool.
The color v is not available for reuse by b (cannot be returned to the pool) before
b invokes garbage collection and determines that v is not in use by the end of
garbage collection.

Before we specify the properties of the Traceable Use, some notation is in
order. First, it is important to distinguish between shared variables of an algorithm
that uses the Traceable Use abstraction and auxiliary shared variables needed for
the implementation of the abstraction. We call the first type of variables principal
shared variables, and the second type auxiliary.6 Only principal shared variables are
obtained through the traceable-read operation, revealed through the traceable-
write operation, and passed to the garbage collection procedure. For example, in
the weak snapshot system pcolorpq and qcolorpq, for any p and q, are principal
shared variables.

We now specify the situation in which a color is considered currently in use, and
therefore not available for reuse. Let E be a finite prefix of an execution of a system in
which communication is performed using the Traceable Use abstraction. Let E end

5For simplicity, the description here is slightly different from the corresponding one in [20].
6Sometimes the term auxiliary variables denotes variables introduced to facilitate a proof. We

are simply using the adjective auxiliary in its English sense.

1860 DWORK, HERLIHY, PLOTKIN, AND WAARTS

at time t. Then a color v belonging to b is in use at time t if there is some extension
Ê of E, where b does not produce v in Ê after time t, and v appears as a color of b
in some principal shared variable after time t of Ê. (Recall that colors produced by b
for different processes are considered different even if they have the same value; thus
b can produce v only for a specific process, say c.)

Finally, for 1 ≤ i ≤ n, let TW k
i (respectively, TRki) denote the kth traceable-

write (respectively, traceable-read) operation performed by process i. Xk
i denotes

a color written by i during TW k
i . Then Traceable Use is required to have the

following properties:
• Regularity: For any color Xa

p consumed by TRki , TW a
p begins before TRki

terminates, and there is no TW b
p such that TW a

p −→ TW b
p −→ TRki .

• Monotonicity: Let TRki , TR
k′
j (where i and j may be equal) be a pair of

traceable-read operations returning the colors Xa
p , X

b
p, respectively. If

TRki −→ TRk
′
j , then a ≤ b.

• Detectability: If, during garbage collection, a color v of process b was not
determined by b to be in use, then v will not be in use before b again produces
it.
• Boundedness: By taking the local pools to be sufficiently large, it is always

possible to find some color not returned as in use by the garbage collec-
tion procedure.

The regularity and monotonicity properties of the Traceable Use guarantee the
regularity and monotonicity properties of the bounded weak snapshot system. De-
tectability guarantees that a process will be able to safely recycle its colors. Bound-
edness guarantees that by taking the local pools to be sufficiently large, the producer
will always find colors to recycle.

Dwork and Waarts [20] presented an implementation of the Traceable Use under
four restrictions. Since the version we present here is a simplification of their abstrac-
tion, three of their restrictions (Uniqueness, Limited Indirection, and Limited Values)
are already imposed by the simplification. The remaining restriction is conservation.

• Conservation. Let TRkb consume a color v from c, and let TRk
′
b be the first

traceable-read operation of b from c to follow TRkb . Denote by t′ the time

in which TRk
′
b starts. Then if v appears in a principal shared variable of b at

some time t ≥ t′, it appears in this variable throughout the period [t′, t].
Very roughly, the intuition for this restriction is that in the implementation in [20],

when b performs garbage collection it examines certain auxiliary variables as well
as all the principal variables to see which colors are in use. Colors that are or will be
in use by c must therefore be in one of those places at all times, and moreover should
not be shifting back and forth between those places (because otherwise garbage
collection could repeatedly miss seeing a color v, reading a register just after v has
been moved to a different register and erased from the first one).

In the next section we prove that Traceable Use under these restrictions suffices
for our weak snapshot algorithm.

4.3. Bounded time-lapse snapshots. For simplicity of exposition, we first
present an algorithm that uses registers of size O(nv), where v is the maximum number
of bits in any process’s value. In section 4.4 we show how to modify this algorithm so
that registers of size O(n+ v) will suffice.

It is easy to see that the Traceable Use abstraction allows us to convert our
unbounded solution to a bounded one. In the unbounded solution each time a process

TIME-LAPSE SNAPSHOTS 1861

1.a. For all c 6= b x[c] := garbage collection(pcolorbc,qcolorcb).
1.b. For all c 6= b, choose from your local pool for c pcolor b[c] /∈ x[c].
2. traceable-write (pcolorb, pcolor b).

Fig. 4.4. Bounded Produce operation for process b.

performed a scan it produced a new color for each updater. In the bounded solu-
tion, the scanner will draw its colors from bounded pools, one pool for each updater.
(Again, colors produced by different scanners or for different updaters are considered
different.) The algorithm is exactly like the unbounded one, except that the processes
communicate through the Traceable Use operations. Roughly speaking, to get a
color produced for it by another process, the process uses the traceable-read oper-
ation; to write its new colors, it uses the traceable-write operation; and to find a
color it can produce again, it performs garbage collection.

Using the Traceable Use abstraction, the process will be able to narrow the set
of its colors suspected by it as colors that may tag values of another process, say c,
to contain no more than six values (discussed below). We take the pools to be of size
seven, thereby ensuring that whenever the process wants to perform a scan, it can
find, for each updater, a color it can reuse.

More specifically, in the bounded solution, every process has n− 1 pools of avail-
able colors, one pool for each other process. Each pool initially contains seven colors.
When a scanner b wants to produce a new color for updater c, it performs garbage
collection to determine which of its colors may currently be tagging values of c (and
therefore cannot be reused at this time). Any color determined by garbage collec-
tion not to be in use can be recycled without causing confusion. In general, garbage
collection ensures that when a process b produces v as its color for c for the kth
time, there is not, and never will be, anything in the system that contains v from
when it was produced by b for c for the (k − 1)st time. For example, suppose b pro-
duces the color 5 at time t1, later performs garbage collection, and then later, at
time t2, again produces the color 5. Thus, by definition, at time t1, b performs an
atomic write to pcolorb, setting pcolorbc := 5t1 , where the t1 in the superscript
indicates that this is the value written at time t1. Similarly, at time t2, b performs
an atomic write setting pcolorbc := pcolor b[c] = 5t2 . Since this second write oc-
curs as part of a scan operation, if b completes the scan, then at some time t > t2,
when performing step 2 of this scan, b sets qcolor b[c] := qcoloricb and later, in
step 3, tests qcolor b[c] = pcolor b[c] (= 5). Suppose that the two colors are equal,
that is, that qcoloricb = 5. Then the garbage collection procedure ensures that
qcoloricb = 5t2 and not 5t1 , that is, the update operation U ic reads 5t2 , the result
of the more recent write of 5, in pcolorcb.

In order to convert the unbounded solution to a bounded one, we replace the
Produce operation shown in Figure 4.3 by the Produce operation shown in Fig-
ure 4.4. The meaning of the notation in step 2 of the new Produce operation is that
all n− 1 colors pcolor b[i], i 6= b, are written atomically to pcolorbi.

Also, line 1 of the update operation shown in Figure 4.1 is replaced by the
following:

1. For all c 6= b, qcolor b[c] := traceable-read(c,pcolorcb).
We refer to the modified scan and update as the bounded scan and bounded

update, respectively.
We now prove that the resulting bounded construction is a time-lapse snapshot

algorithm. The proof follows along the same lines as for the unbounded construction
of section 4.1.

1862 DWORK, HERLIHY, PLOTKIN, AND WAARTS

First, the partial linearization order =⇒ on the bounded scan and update op-
erations is defined identically to the one defined in section 4.1 on the unbounded
scan and update operations. It follows from Lemmas 4.5 and 4.8 that the bounded
scan and update procedures yield a weak snapshot memory.

Lemma 4.5. The relation =⇒ is a partial order.
Proof. The proof is analogous to the proof of Lemma 4.1, when “regularity of

Traceable Use” is replacing “regularity of atomic registers.”
Lemma 4.6. If a bounded scan returns a value written by a bounded update,

then this update terminates before the scan reads valueq.
Proof. The proof is identical to the proof of Lemma 4.2.
Lemma 4.7. Let U jq be the last update by process q to be ordered before Sip

by =⇒. U jq terminates before Sip reads valueq. Moreover, in step 1 of U jq , q reads

pcolori
′
pq for some i′ < i.

Proof. The proof is analogous to the proof of Lemma 4.3, when “regularity of
Traceable Use” and “monotonicity of Traceable Use” are replacing “regularity of
atomic registers” and “monotonicity of atomic registers,” respectively, and in addition
Lemma 4.6 is replacing Lemma 4.2.

Note that Lemma 4.7 implies that our bounded construction satisfies Assump-
tion 2.1.

Lemma 4.8. For each process, our bounded weak scan returns the value written
by the latest bounded update ordered before that scan by =⇒.

Proof. The proof is along the same lines of the proof of Lemma 4.4. The difference
here is that in the bounded implementation, qcolormqp may contain the same color

as pcolorrpq even if Umq does not consume pcoloripq but consumes some pcolori
′
pq

for some i′ 6= i.
Let U jq be the last update by process q to be ordered before Sip by =⇒. Since U jq

is the last update of q ordered before Sip by =⇒, Sip could not have returned vj
′
q for

some j′ > j. Therefore, it is enough to show that Sip does not return vj
′
q for j′ < j.

Suppose otherwise.
From Lemma 4.7 it follows that U jq has completed before Sip performs its read

from q in step 2. So before the time Sip performs this read, vjq is written into valueq.

It follows from the code for a scan operation that if, after vjq is written into valueq,

the scan Sip returns some vj
′
q for j′ < j, then this was the value read by Sip in vasideqp

and Sip reads some qcolorj
′′
qp that is the same as pcoloripq.

Let qcolorkqp be the qcolorqp read by Sip when Sip performs its garbage collec-

tion operation. Step 1.b of the bounded Produce operation implies that qcolorkqp
contains a different color than the color contained in pcoloripq.

Therefore, there exists k < j′′′ ≤ j′′ such that qcolorj
′′′
qp 6= qcolorj

′′′−1
qp . Step

2 of the update operation implies that vasideqp is updated with vj
′′′−1
q by up-

date U j
′′′
q . Thus, if j ≤ k, then we get a contradiction to the assumption that Sip

returns vj
′
q read in vasideqp, for some j′ < j. To complete the proof, assume j ≥ k.

Lemma 4.7 states that U jq reads pcolori
′
pq for some i′ < i. The detectability

property of the Traceable Use implies that after the garbage collection done in
step 1 of Sip, the color contained in pcoloripq may appear in some qcolork

′
qp for

k′ ≥ k (and hence be in use) only if p produces it again and Uk
′

q consumes pcolori
′′
pq

for some i′′ ≥ i. Thus, qcolorjqp does not contain the same color as pcoloripq.

TIME-LAPSE SNAPSHOTS 1863

Thus there exists j < j′′′ ≤ j′′ such that qcolorj
′′′
qp 6= qcolorj

′′′−1
qp . Step 2 of

the update operation implies that vasideqp is updated with vj
′′′−1
q by update U j

′′′
q ,

contradicting again the assumption that Sip returns vj
′
q read in vasideqp, for some

j′ < j.
Lemmas 4.5 and 4.8 immediately imply the following.
Theorem 4.9. The bounded construction is a time-lapse snapshot algorithm.
Letting n be the number of processes in the system, the implementation of Trace-

able Use given in [20] requires O(n) steps per traceable-write (that is, O(n)
reads and writes of shared variables) and O(1) steps to consume one color using
the traceable-read operation. Applied to our algorithm, the construction in [20]
yields a cost of O(k) for garbage collection, where k is the number of variables
passed as parameters to the garbage collection procedure; moreover, when b in-
vokes garbage collection to detect how many of its colors for c are in use, garbage
collection detects at most six colors.7

Clearly, each Produce operation requires O(n) invocations of garbage collec-
tion, each of which costs O(1), and one invocation of traceable-write, and thus
takes O(n) steps. Each scan requires one invocation of Produce and O(n) simple
reads, and thus takes O(n) steps. Each update requires one simple write and O(n)
invocations of traceable-read, and hence takes O(n) steps.

4.4. Reducing the register size. The weak snapshot described above uses
registers of size O(nv) where v is the maximum number of bits in any variable valueb.
This is due to the fact that an updater b may set aside a different value for each scanner
c in a variable vasidebc, and all these values are kept in a single register. To reduce
the size of the registers, each updater b stores vasidebc in a separate register for each
c. Only after this has been accomplished, b atomically updates valueb and, for all
c 6= b, qcolorbc.

The modifications to the code are straightforward. Lines 2 and 3 of the code for
the scan (Figure 4.2) are replaced by lines 2′ and 3′ below.

2′. For all c 6= b atomically read
valueb[c] := valuec
qcolorb[c] := qcolorcb.

3′. For all c 6= b
If qcolorb[c] 6= pcolorb[c]

then datab[c] := valueb[c]
else read datab[c] := vasidecb.

Lines 2 and 3 of the code for the update operation (Figure 4.1) are replaced by
the following lines 2′ and 3′:

2′. For all c 6= b
if qcolorb[c] 6= qcolorbc then vasideb[c] := valueb
vasidebc := vasideb[c].

3′. Atomically write
valueb := new value
For all c 6= b, qcolorbc := qcolorb[c].

7This is because, in the notation of [20], when a process b wants to detect which of its colors for
c may currently be in use, it needs only to read Ai-PCOLORbc[b], for i = 1, 2, 3 (colors set aside by
b for c when b detects that c is trying to consume b’s color for c), B-PCOLORcb[b] (color written
by c for b when c is trying to consume b’s color for it), and qcolorcb; moreover, each garbage
collection needs to read these variables only once because in our application colors have what [20]
calls indirection of degree one (see section 8.3 of [20]).

1864 DWORK, HERLIHY, PLOTKIN, AND WAARTS

Observe that the time complexity of the modified algorithm is the same as the
original one.

Theorem 4.10. The modified algorithm is a time-lapse snapshot algorithm.
Proof. Clearly, the only difference between the modified and the original algo-

rithms is that the shared variables vasideqp and valueq are not written atomically
together by the update and are not read atomically together by the scan. If in every
execution of the modified algorithm whenever a scan Sip reads valuekq and vasidek

′
qp

(recall that vasidekqp is the value of vasideqp written by Ukq) either Sip returns valuekq
or vasidekqp = vasidek

′
qp, then every execution of the modified algorithm has a cor-

responding execution of the original algorithm, in which corresponding scans return
the same sets of values, and the modified algorithm is correct because the original
algorithm is correct.

Therefore, let us assume for the sake of contradiction that the scan Sip reads

valuekq and vasidek
′
qp and returns the latter, where the value of vasidekqp is different

from the value of vasidek
′
qp. We now show that this cannot happen. Since vasideqp is

written before valueq by an update and read after it by a scan, we have that k′ > k.
Since the scan Sip returns the value it read from vasideqp, we have pcoloripq =

qcolorkqp. It follows from the detectability property of Traceable Use that, after

GCip, pcoloripq is not in use it will not be used again until p produces it. So the

chronology is: Sip performs garbage collection, denoted GCip; S
i
p reads qcolorqp

during GCip; S
i
p sets pcoloripq to a value not currently in use; Ukq writes qcolorkqp =

pcoloripq; S
i
p reads qcolorkqp. Thus, Ukq consumes color pcoloripq.

By monotonicity of Traceable Use, for all k < k1 ≤ k′, Uk1
q consumes pcoloripq

and hence saw qcolorq[p] =qcolorqp when performing step 2 of the update opera-
tion. Hence no such Uk1

q changed the value in vasideqp, i.e., the value of vasidekqp is

the same as the value of vasidek
′
qp. This is a contradiction.

5. Applications. In this section, we explore two applications of the weak snap-
shot: bounded concurrent timestamping and randomized consensus. First we take
the bounded concurrent timestamping protocol of Dolev and Shavit [19] and show
that the labels can be stored in an abstract weak snapshot object, where each access
to the labels is through either the weak snapshot update or the weak snapshot scan.
The resulting protocol has running time, label size, and register size all O(n).

We then take the elegant randomized consensus protocol of Aspnes [5], and show
that replacing atomic snapshot with weak snapshot leads to an algorithm with an
expected number O(n(p2 +n)) of operations, matching the fastest bounded algorithm
known [12]. This is an improvement of Ω(n) over the original algorithm and an
improvement of Ω(logn) over what could be obtained by using the atomic snapshot
of [11].

5.1. Efficient bounded concurrent timestamping. Our definition of a con-
current timestamping system is a slightly stronger version (due to Gawlick [21]) of
the one given by Dolev and Shavit in [19]. In a concurrent timestamping system,
processes repeatedly choose labels, or timestamps, reflecting the real-time order of
events. More precisely, each process i has a label, denoted by `i. There are two kinds
of operations: labeling generates a new timestamp for the calling process, and scan
returns an indexed set of labels ¯̀ = 〈`1, . . . , `n〉 and an irreflexive total order ≺ on
the labels.

For 1 ≤ i ≤ n, let Lki (Ski) denote the kth labeling (scan) operation performed

TIME-LAPSE SNAPSHOTS 1865

1. For all c, read labelc := labelc.
2. labelb := f(label1, . . . , labeln).
3. Atomically write labelb := labelb.

Fig. 5.1. labeling operation for process b (Dolev–Shavit [21]).

by process i (process i need not keep track of k; this is simply a notational device
allowing us to describe long-lived runs of the timestamping system). Analogously, `ki
denotes the label obtained by i during Lki . In order to handle initial conditions, we
assume that each processor has an initial label denoted by `0i . To avoid distinguishing
between these initial labels and the labels assigned by labeling operations we say
that label l0i was assigned to process i by a fictitious initial labeling operation L0

i

that took place just before the beginning of the execution. Moreover, we define the
L0
i ’s for all i as concurrent. Correctness is defined by the following properties:

• Ordering. There exists an irreflexive total order
ts

=⇒ on the set of all labeling
operations,8 such that the following apply:

– Precedence. For any pair of labeling operations Lap and Lbq (where p

and q may be equal), if Lap −→ Lbq, then Lap
ts

=⇒ Lbq.

– Consistency. For any scan operation Ski returning (¯̀,≺), `ap ≺ `bq if and

only if Lap
ts

=⇒ Lbq.

• Regularity. For any label `ap in ¯̀ returned by Ski , Lap begins before Ski termi-

nates, and there is no Lbp such that Lap −→ Lbp −→ Ski .

• Monotonicity. Let Ski , S
k′
j (where i and j may be equal) be a pair of scan

operations returning the vectors ¯̀, ¯̀′, respectively, which contain labels `ap, `
b
p,

respectively. If Ski −→ Sk
′
j , then a ≤ b.

• Extended regularity. For any label lap returned by Ski , if Ski −→ Lbq, then

Lap
ts

=⇒ Lbq.
Dolev and Shavit describe a bounded concurrent timestamping system that uses

atomic multireader registers of size O(n) and whose scan9 and labeling operations
take time O(n2 log n) and O(n), respectively. Their labeling operation was simply
the performance of a collect of all labels10 and the writing of a new label based on the
ones collected. A paraphrased version of their code appears in Figure 5.1, where the
variables labelc and labelc are the local and global shared variables that contain the
current labels of process c; and f denotes the function used by Dolev and Shavit to
compute a new label. The exact details of this function are not relevant here, as will
be seen. The Dolev–Shavit scan was more involved. A paraphrased version of their
code appears in Figure 5.2, where g is a procedure for computing the order among
the obtained labels. Again, the exact values of k and details about g are not relevant
here.

Dolev and Shavit observed that the labels can be stored in an abstract atomic
snapshot object, where each access to the labels is through either atomic snapshot up-
date or scan operation. More specifically, they would replace the collect performed
during the labeling operation by an atomic snapshot scan, replace the simple writing

8Observe that this order does not have to be consistent with the partial linearization order on
the time-lapse snapshot update and scan operations.

9Note that this scan is different from our time-lapse snapshot scan.
10We say that a process collects a variable X if it reads Xc for every process c in some arbitrary

order.

1866 DWORK, HERLIHY, PLOTKIN, AND WAARTS

1. For i = 1 to k
For all c, read labelic := labelc.

2. Select for each c, labelc := labelic for some i.
3. Order (label1, . . . , labeln) using procedure g.
4. Return (label1, . . . , labeln) and their order.

Fig. 5.2. Timestamping scan operation for process b (Dolev–Shavit [21]).

1. Perform a time-lapse scan to read for all c, labelc := labelc.
2. labelb := f(label1, . . . , labeln).
3. Perform a time-lapse update to write labelb := labelb.

Fig. 5.3. Our labeling operation for process b.

of the new label with an atomic snapshot update, and replace their entire original
scan with an atomic snapshot scan. As mentioned in the introduction, this approach
was successfully pursued by Gawlick, Lynch, and Shavit [22].

However, as Dolev and Shavit note, this transformation has drawbacks. The size
of the atomic registers in all known implementations of atomic snapshot memory is
O(nv), where v is the size of the value of each process, and hence the size of the
atomic registers in the resulting timestamping system is O(n2) (because here v is a
label, and their labels are of size n). Second, since both update and scan operations
of the snapshot take O(n log n) steps [11],11 so do both labeling and scan operations
of the resulting timestamping system. Hence, while the number of steps performed
by a timestamping scan in the resulting timestamping system improves, the running
time of the labeling operation increases.

We show that when we modify the Dolev–Shavit timestamping system by re-
placing the collect performed during the labeling operation of [19] by a time-lapse
snapshot scan, replacing their simple writing of the new label with a time-lapse
snapshot update, and replacing their entire original scan with a time-lapse snapshot
scan, we get a timestamping system with linear running time, register size, and label
size. The code for the resulting labeling operation appears in Figure 5.3, where f is
the same function appearing in Figure 5.1. The code for the resulting timestamping
scan operation appears in Figure 5.4, where g is the same procedure as the one of
Figure 5.2.

Next we prove that the resulting system is indeed a bounded concurrent time-
stamping system. The proof of correctness of the Dolev–Shavit algorithm is long and
involved. Rather than prove from scratch the correctness of this new algorithm (a
very involved process; see [19, 22]), we argue by reduction to the correctness of the
original algorithm.

Lemma 5.1. Our modification of the Dolev–Shavit algorithm satisfies the regu-
larity and monotonicity properties.

Proof. Regularity follows directly from the regularity property of weak snapshots,
and monotonicity follows directly from the monotonicity of scans property of weak
snapshot.

The following lemma will be used to show that our modification of the Dolev–

11The atomic snapshot algorithm in [11], obtained more than a year after the results of this
paper were obtained, is the most efficient atomic snapshot algorithm using atomic single-writer–
multireader registers currently known. At the time the results of the present paper were obtained,
both labeling and scan operations of the best atomic snapshot algorithm [2] took O(n2) steps.

TIME-LAPSE SNAPSHOTS 1867

1. Perform a time-lapse scan to read for all c, labelc := labelc.
2. Order (label1, . . . , labeln) using procedure g.
3. Return (label1, . . . , labeln) and their order.

Fig. 5.4. Our timestamping scan operation for process b.

Shavit algorithm satisfies the ordering property.
Lemma 5.2. For each execution E of our algorithm, there exists a corresponding

execution of the Dolev–Shavit algorithm that produces the same sequence of labeling
operations, with corresponding labeling operations producing the same labels in both
executions.

Proof. Consider an execution Lp of the labeling operation. In our algorithm,
when a process performs a labeling operation it obtains the labels of the other pro-
cesses using a time-lapse snapshot scan and then writes the new label using a time-
lapse snapshot update, while in the original algorithm of Dolev and Shavit these
labels are obtained using a simple collect (one atomic read from each other process),
and are written using a simple atomic write. However, since when a process performs
a collect it reads all labels once each in an arbitrary order, and since by definition
each label returned by a weak snapshot scan was written by a labeling operation,
say Lkq , that by Assumption 2.1 terminated before the scan did and, by regularity
of time-lapse scan, such that no later Lq terminated before the scan started, we
have that the set of labels returned by the weak snapshot scan executed by Lp could
also have been returned by a simple collect executed in the same time interval. The
claim follows because the label written by the labeling operation in either algorithm
depends only on the set of labels obtained during this operation.

Next we show that the first part of the ordering property is satisfied.
Lemma 5.3. There exists an irreflexive total order on the labeling operations in

the execution of our algorithm that is consistent with the precedence relation on the
labeling operations.

Proof. This is immediate from Lemma 5.2. The total order is simply the one
guaranteed by the Dolev–Shavit algorithm for the corresponding execution. More
specifically, given an execution the total order on the labeling operations is as follows:
if one labeling operation reads (through a weak snapshot scan) the label produced
by another labeling operation, then the first operation is ordered after the second.
To get the total order, Dolev and Shavit take the transitive closure of this partial
order and extend it to a total order by considering the values of the labels taken
by the labeling operations. (The exact details of how these values are taken into
consideration to determine the total order are not relevant here.)

The following lemma shows that the second part of the ordering property also is
satisfied.

Lemma 5.4. The order produced by a scan operation of our timestamping algo-
rithm is consistent with the total order described in the proof of Lemma 5.3.

Proof. A scan operation of our timestamping algorithm obtains a set of labels
via an invocation of a weak snapshot scan. Consider a weak snapshot scan, say
S, performed in an execution E of our algorithm, that returns a set of labels ¯̀. To
compute the order on these labels, our algorithm invokes the appropriate procedure
in the Dolev–Shavit algorithm. Therefore, it remains to show that the order on these
labels produced by this procedure is consistent with the total order on the labeling
operations defined above.

We do this in two parts. In the first part we begin with scan S in an execution E

1868 DWORK, HERLIHY, PLOTKIN, AND WAARTS

of our algorithm and construct a modified execution E1, also containing S. We then
examine a corresponding execution Ê1 of the Dolev–Shavit algorithm, containing a
corresponding scan Ŝ and returning the same set of labels as does S. Since the two
algorithms use the same procedure to order the labels returned by a scan, we have
by the correctness of the Dolev–Shavit algorithm that the order determined by S is
consistent with the total order on the labeling operations in E1. In the second part
we show that the total order on the labeling operations in E1 is consistent with their
order in E.

Define a modified execution E1 of our algorithm where we stop each process in
E after it completes the labeling operation that generates its label in ¯̀. Think of
a labeling operation La as a pair of time-lapse snapshot operations (Sa, Ua), where
Sa −→ Ua. We write Lb =⇒′ La (read, La observes Lb) if Ub =⇒ Sa.

Claim 5.5. If a labeling operation La appears in both E1 and E, and Lib =⇒′ La
in E, then Lib is in E1.

Proof. Since La is in E1 we have that Ua =⇒ S in E. By assumption Lib =⇒′ La,
and thus U ib =⇒ Sa, and hence U ib =⇒ Sa −→ Ua =⇒ S, whence by transitivity

U ib =⇒ S. By definition of time-lapse snapshot, S returns vi
′
b for i′ ≥ i. Hence Lib is

in E1.
It follows from Claim 5.5 that the set of current labels in the end of E1 is still

¯̀. Now, consider an execution Ê1 of the Dolev–Shavit algorithm that corresponds to
our modified execution, and extend this corresponding execution by executing at the
end a scan, say Ŝ, of the Dolev–Shavit algorithm. Clearly, Ŝ returns the same labels
as in ¯̀. The order of the labels computed by the Dolev–Shavit scan Ŝ is consistent
with the total order on the labeling operations in Ê1 (by the correctness of the
Dolev–Shavit algorithm). Since the order determined on ¯̀ by S is exactly the same
as their order determined by Ŝ, and since the total order on the labeling operations
in E1 was defined to be identical to their order in Ê1, we have that the order on ¯̀

determined by S is consistent with the total order on the labeling operations in E1.
To complete the proof of the ordering property we show that the total order on

the labeling operations in E1 is consistent with their order in E. That is, we show
that for any two labeling operations La and Lb that appear in both executions E
and E1, La is ordered before Lb in the total order on labeling operations in E only if
La is ordered before Lb in the total order on labeling operations in E1. Recall how
the total order is determined (see the proof of Lemma 5.3). By Claim 5.5, La =⇒′ Lb
in E1 if and only if La =⇒′ Lb in E (and vice versa). Thus, if La is ordered before
Lb in E and after Lb in E1 it must be that the order between La and Lb in both
executions is determined based on the values of the labels taken. Thus one of these
operations, without loss of generality, La, results in a different value in E than in E1.
However, for this to occur there must be labeling operation Lc such that Lc =⇒′ La
in E but Lc 6=⇒′ La in E1, contradicting Claim 5.5. This completes the proof of the
lemma.

Finally we show the following.
Lemma 5.6. Our modification of the Dolev–Shavit algorithm satisfies the extended

regularity property.
Proof. Recall that our time-lapse snapshot algorithm satisfies Assumption 2.1:

a value returned by a scan was written by an update operation that terminated
before the scan does. Thus, since in our timestamping system the last operation
performed by a labeling operation is writing a new label, and since this is done by a
weak snapshot update, each label returned by a timestamping scan of our system is

TIME-LAPSE SNAPSHOTS 1869

assigned by a labeling operation, say L1, that terminated before the scan does, and
hence before the beginning of any labeling operation, say L2, preceded by the scan.

The precedence property of timestamping implies immediately that L1
ts

=⇒ L2.
Lemmas 5.1, 5.3, 5.4, and 5.6 immediately imply the following theorem.
Theorem 5.7. Our modification of the Dolev–Shavit algorithm yields a bounded

concurrent timestamping system.

5.2. Efficient randomized consensus. In a randomized consensus protocol,
each of n asynchronous processes starts with a preference taken from a two-element set
(typically {0, 1}), and runs until it chooses a decision value and halts. The protocol is
correct if it is consistent—no two processes choose different decision values; valid—the
decision value is some process’s preference; and randomized wait-free—each process
decides after a finite expected number of steps. When computing a protocol’s expected
number of steps, we assume that scheduling decisions are made by an adversary with
unlimited resources and complete knowledge of the processes’ protocols, their internal
states, and the state of the shared memory. The adversary cannot, however, predict
future coin flips.

Celebrated work of Rabin [39] reduces randomized consensus to the construction
of a global coin: a source of randomness visible to all participants in the protocol.
Virtually all randomized consensus algorithms rely on some form of a global coin;
indeed, the construction of the coin is invariably the bulk of the effort (see [16] for a
survey of results on this problem in the message-passing model).

The starting point for our algorithm is the randomized consensus protocol of Asp-
nes [5], and in particular Aspnes’s robust weak shared coin protocol, which guarantees
that all participating processes agree on the outcome of the coin flip, and an adversary
scheduler has only a slight influence on the outcome. Roughly speaking, in this pro-
tocol the n processes collectively undertake a one-dimensional random walk centered
at the origin with absorbing barriers at ±2n. The shared coin is implemented by a
shared counter. Each process alternates between reading the counter’s position and
updating it. Eventually the counter reaches one of the absorbing barriers, determining
the decision value. While the counter is near the middle of the region, each process
flips an unbiased local coin to determine the direction in which to move the counter.
If a process observes that the counter is within n of one of the barriers, however, the
process moves the counter deterministically toward that barrier.

More specifically, Figure 5.5 shows pseudocode for each process’s behavior in the
randomized consensus protocol. The protocol uses three shared counters: the first two
maintain a total of the number of participating processes that started with inputs 0
and 1, respectively, and the last is used as the counter for the robust weak shared
coin protocol. All of the counters start with an initial value of 0.

The protocol is optimized for the case where few processes participate. A process
is defined to be active if it takes at least one step before some process decides on a
value, and p denotes the total number of active processes in a given execution. The
protocol uses counters a0 and a1 to keep track of the number of active processes
by having each process increment one or the other of these counters as it starts the
protocol.

Aspnes implements each of the three shared counters as an n-element array of
atomic single-writer–multireader registers, one per process. All three counters are
read by a single atomic snapshot scan operation that reads the arrays implementing
them; i.e., all three n-elements arrays are read in one atomic snapshot scan operation
that returns a value for each of the three counters. To increment or decrement counter

1870 DWORK, HERLIHY, PLOTKIN, AND WAARTS

Shared data:
counter a0 with range [0, n] and initial value 0
counter a1 with range [0, n] and initial value 0
counter c with range [−4n, 4n] and initial value 0

Function Consensus(input)
increment ainput
repeat

read(a0, a1, c)
if c ≤ −2n then decide 0
else if c ≥ 2n then decide 1 fi
else if c ≤ −(a0 + a1) or a1 = 0 then decrement(counter) fi
else if c ≥ (a0 + a1) or a0 = 0 then increment(counter) fi
else

if coin() = 0 then decrement(counter)
else increment(counter)

fi
end

Fig. 5.5. Randomized consensus protocol (Aspnes [5]).

c, a process updates, through an atomic snapshot update operation that operates on
all three counters, its own field in the n-element array that implements counter c.
Careful use of modular arithmetic ensures that all values in the counter implementing
the robust weak shared coin remain bounded.

The expected running time of this consensus protocol, expressed in primitive
reads and writes, is O(n2(p2 + n)), where p is the number of processes that actually
participate in the protocol.

Since the three counters are updated and read through atomic snapshot opera-
tions, each of these counters is linearizable [25]: There exists a total order “

c
=⇒” on

increment, decrement, and read operations on each counter such that
• if A −→ B, then A

c
=⇒ B;

• each Read operation returns, for each counter, the sum of all increments and
decrements on the counter, ordered before the Read by

c
=⇒.

We replace the linearizable counter with a different data abstraction: by anal-
ogy with the definition of weak snapshot, a weak counter imposes the same two
restrictions but allows

c
=⇒ to be a partial order instead of a total order. Informally,

concurrent Read operations may disagree about concurrent increment and decrement
operations, but no others. We can construct a weak counter implementation from
Aspnes’s linearizable counter implementation simply by replacing the atomic snap-
shot scan (update) with a weak snapshot scan (update). We now argue that the
consensus protocol remains correct if we replace the linearizable counter with a more
efficient weak counter.

First notice that counters a0 and a1 allow the protocol to guarantee validity, since
the random walk is invoked only if both have nonzero values. These counters are also
used to minimize the range of the random walk, as follows. Define the true position
of the random walk at any instant to be the value the random walk counter would
assume if all operations in progress were run to completion without starting any new
operations.

TIME-LAPSE SNAPSHOTS 1871

For reads, increments, and decrements of the counter, let Rip denote the ith read

operation of process p, let Ijq denote the jth increment operation by q, and let Dj
q

denote the jth decrement operation by q.
Recall the definition of tscan from section 3 (the latest point during the interval

of the scan in which the spans of all values returned by the scan intersect). Our
discussion there implies that a scan observes all updates that terminate before its
tscan, and does not observe any update that starts after its tscan.

Aspnes’s proof of the expected running time of the protocol hinges on the following
lemma, which holds even if we replace the atomic snapshot scan by a weak snapshot
scan.

Lemma 5.8. Let τ be the true position of the random walk at tscan of Rp. If Rp
returns values c, a0, and a1 for the random walk counter and the two active counters,
then c− (a0 + a1 − 1) ≤ τ ≤ c+ (a0 + a1 − 1).

Proof. A process q affects the random walk’s true position only if it has started
to increment or decrement the random walk counter by time tscan. Any q that has
started to modify the random walk counter by the tscan of Rp has already finished
incrementing the appropriate active counter before that time, so Rp observes that
increment. Thus, Rp fails to observe at most (a0 + a1 − 1) increments or decrements
active at its tscan, and the result follows.

Aspnes [5] shows that Lemma 5.8 implies the following theorem.
Theorem 5.9 (Lemma 13 in [5]). Let n be the total number of processes and let

p be the number of processes that take at least one step before some process decides
on a value. Then the worst-case expected running time of the consensus protocol is
O(p2 +n) counter operations (i.e., scan or update operations on the shared counters).

A detailed proof appears in [5]. Roughly speaking, since p is both an upper bound
on the distance between the value c read by a process from the random walk counter
and the true position τ , and on the value of a0 + a1, we have that if |τ | ≥ 2p, then
|c| ≥ a0+a1 and the true position will move away from 0 thereafter. Thus, the random
walk has two absorbing barriers at 2p,−2p, and hence takes expected O(p2) counter
operations; to this value must be added O(n) counter operations until termination.

Theorem 5.9 implies the running time of our modification of Aspnes’s algorithm.
Recall that in our modification of this algorithm each counter operation is imple-
mented by a time-lapse scan or update, and hence each such operation takes O(n)
atomic steps. Thus, Theorem 5.9 implies that the worst-case expected running time
of our modification of Aspnes’s algorithm is O(n(p2 + n)) atomic read and writes
operations.

The proof that the modified consensus protocol is consistent depends on the
following lemma, which is analogous to a similar lemma in [5] and which, roughly
speaking, ensures that if any one process decides that the outcome of the coin is a
given value, say v, then all other processes will see values that cause them to push
the counter toward v (see the code in Figure 5.5).

Lemma 5.10. If Rip returns value v ≥ 2n, then all reads whose tscan is not

smaller than the tscan of Rip will return values ≥ n+ 1. (The symmetric claim holds
when v ≤ −2n.)

Proof. Suppose not. Pick an earliest (with respect to tscan) Rjq that violates the

hypothesis. Denote the tscan’s of Rip, R
j
q by tp, tq, respectively. Clearly, any difference

in the values returned by Rjq and Rip must be caused by updates observed by exactly
one of them (not necessarily the same one for each such update). It follows from the
definition of tscan that each update that completed before time tp was observed by

1872 DWORK, HERLIHY, PLOTKIN, AND WAARTS

Rip; i.e., all these updates are ordered before it by =⇒. Moreover, since tq ≥ tp, it

follows that each such update was also observed by Rjq. Thus, only updates that

completed after tp may be seen by exactly one of Rip, R
j
q.

Consider the set S containing all updates that completed at or after tp excluding,
for each z 6= p, the first such update. Since each of the updates in S started after
tp, none of them was observed by Rip. Let S1 denote the subset of S that contains all

updates in S that were observed by Rjq. To complete the proof it is enough to show
that each update in S1 was an increment. This immediately gives a contradiction to
our assumption that Rjq returns a value < n+ 1.

Since processes alternate between reading and modifying the counter, any up-
date Ukz in S1 must follow a read Rkz that started at or after tp and hence the
tscan of this read (tz) is not smaller than tp. In addition, any such Rkz completes
before tq (because, since Ukz is observed by Rjq, it must have started at or before tq),

and hence tp ≤ tz < tq. Since Rjq is the first to violate the claim, we have that any

such Rkz returns a value ≥ n + 1. Any counter modification that follows such a read
(Rkz) must be an increment (see step 5), and we are done.

6. Conclusions. We have defined the weak snapshot scan primitive and con-
structed an efficient implementation of it. We have given two examples of algorithms
designed using the strong primitive of atomic snapshot scan for which it was possible
to simply replace the expensive atomic snapshot with the much less expensive weak
snapshot scan. Indeed, it seems that in many cases atomic snapshot scan simply can
be replaced by weak snapshot scan. Our bounded construction relied on the Trace-
able Use abstraction of Dwork and Waarts [20]. Alternatively, we could have used the
weaker primitives of Vitányi and Awerbuch [44], Tromp [43], Kirousis, Spirakis, and
Tsigas [30], or Singh [41]. We also mentioned the implementation for the Traceable
Use provided by [20]; another implementation for the Traceable Use was recently
provided by Haldar [23].

In a similar spirit to the weak snapshot, one can define a weak concurrent time-
stamping system, which, roughly speaking, satisfies the properties of the standard

timestamping system except that the ordering
ts

=⇒ on labeling operations and the ≺
orders on labels are partial rather than total. Such a timestamping system is interest-
ing for two reasons: it is conceptually simple and it can replace standard timestamping
in at least one situation: Abrahamson’s randomized consensus algorithm [1].

In conclusion, we can generalize our approach as follows. Consider a concurrent
object with the following sequential specification:12

• Mutator operations modify the object’s state but do not return any values.
Mutator operations executed by different processes commute: applying them
in either order leaves the object in the same state.
• Observer operations return some function of the object’s state but do not

modify the object.
A concurrent implementation of such an object is linearizable if the precedence or-

der on operations can be extended to a total order =⇒ such that the value returned by
each observer is the result of applying all the mutator operations ordered before it by
=⇒. This kind of object has a straightforward wait-free linearizable implementation
using atomic snapshot scan [6].13 A weakly linearizable implementation is one that

12This definition is similar to Anderson’s notion of a pseudo read-modify-write operation [4].
Anderson, however, requires that all mutators commute, not just those applied by different processes.

13This implementation uses unbounded space.

TIME-LAPSE SNAPSHOTS 1873

permits =⇒ to be a partial order instead of a total order. This paper’s contribution
is to observe that (1) weakly linearizable objects can be implemented more efficiently
than any algorithm known for their fully linearizable counterparts, and (2) there are
certain important applications where one can replace linearizable objects with weakly
linearizable objects, preserving the application’s modular structure while enhancing
performance.

Acknowledgments. We would like to thank Jim Aspnes, Hagit Attiya, and Nir
Shavit for helpful discussions.

REFERENCES

[1] K. Abrahamson, On achieving consensus using a shared memory, in Proc. 7th ACM Sym-
posium on Principles of Distributed Computing, Toronto, Ontario, ACM, New York,
1988, pp. 291–302.

[2] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic snapshots
of shared memory, J. ACM, 40 (1993), pp. 872–890.

[3] J. Anderson, Composite registers, Distrib. Comput., 6 (1987), pp. 141–154.
[4] J. Anderson and B. Groselj, Beyond atomic registers: Bounded wait-free implementa-

tions of non-trivial objects, Sci. Comput. Programming, 19 (1992), pp. 197–237.
[5] J. Aspnes, Time- and space-efficient randomized consensus, J. Algorithms, 14 (1993),

pp. 414–431.
[6] J. Aspnes and M. P. Herlihy, Wait-free data structures in the asynchronous PRAM

model, in Proc. 2nd Annual Symposium on Parallel Algorithms and Architectures,
Crete, Greece, 1990, pp. 340–349.

[7] J. Aspnes and M. P. Herlihy, Fast randomized consensus using shared memory, J. Algo-
rithms, 11 (1990), pp. 441–461.

[8] J. Aspnes and O. Waarts, Randomized consensus in expected O(N log2 N) operations,
SIAM J. Comput., 25 (1996), pp. 1024–1044.

[9] H. Attiya, D. Dolev, and N. Shavit, Bounded polynomial randomized consensus, in Proc.
8th ACM Symposium on Principles of Distributed Computing, Edmonton, Alberta,
ACM, New York, 1989, pp. 281–294.

[10] H. Attiya, M. Herlihy, and O. Rachman, Efficient atomic snapshots using lattice agree-
ment, in Proc. 6th International Workshop on Distributed Algorithms, Lecture Notes
in Comput. Sci. 647, Springer-Verlag, New York, 1992, pp. 35–53.

[11] H. Attiya and O. Rachman, Atomic snapshots in O(n logn) operations, in Proc. 12th
ACM Symposium on Principles of Distributed Computing, Ithaca, NY, ACM, New
York, 1993, pp. 29–39.

[12] G. Bracha and O. Rachman, Randomized consensus in expected O(n2 logn) operations,
in Proc. 5th International Workshop on Distributed Algorithms, Delphi, Greece, 1991,
Lecture Notes in Comput. Sci. 579, Springer-Verlag, Berlin, 1992, pp. 143–150.

[13] G. Bracha and O. Rachman, Approximated Counters and Randomized Consensus, Tech-
nical report 662, Computer Science Department, Israel Institute of Technology, Haifa,
Israel, 1990.

[14] T. D. Chandra and C. Dwork, Using Consensus to Solve Atomic Snapshots, manuscript,
August 1992.

[15] K. M. Chandy and L. Lamport, Distributed snapshots: Determining global states of dis-
tributed systems, ACM Trans. Comput. Systems, 3 (1985), pp. 63–75.

[16] B. Chor and C. Dwork, Randomization in Byzantine agreement, Adv. Comput. Res., 4
(1989), pp. 443–497.

[17] B. Chor, A. Israeli, and M. Li, Wait–free consensus using asynchronous hardware, SIAM
J. Comput., 23 (1994), pp. 701–712.

[18] D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronism needed for
distributed consensus, J. ACM, 34 (1987), pp. 77–97.

[19] D. Dolev and N. Shavit, Bounded concurrent time-stamp systems are constructible!,
SIAM J. Comput.2̇6 (1997), pp. 418–455

[20] C. Dwork and O. Waarts, Simple and efficient bounded concurrent timestamping or
bounded concurrent timestamp systems are comprehensible!, in Proc. 24th ACM Sym-
posium on Theory of Computing, ACM, New York, 1992, pp. 655–666.

[21] R. Gawlick, Concurrent Timestamping Made Simple, M.Sc. thesis, MIT, Cambridge, MA,

1874 DWORK, HERLIHY, PLOTKIN, AND WAARTS

1992.
[22] R. Gawlick, N. Lynch, and N. Shavit, Concurrent timestamping made simple, in Proc.

Israel Symposium on Theory of Computing and Systems, Haifa, Israel, Lecture Notes
in Comput. Sci. 601, Springer-Verlag, Berlin, 1992, pp. 171–183.

[23] S. Haldar, Efficient Bounded Timestamping Using Traceable Use Abstraction—Is Writer’s
Guessing Better than Reader’s Telling?, Technical report RUU-CS-93-28, Department
of Computer Science, Utrecht University, Utrecht, The Netherlands, 1993.

[24] M. P. Herlihy, Wait-free synchronization, ACM Trans. Programming Languages and Sys-
tems, 13 (1991), pp. 124–149.

[25] M. P. Herlihy and J. M. Wing, Linearizability: A correctness condition for concurrent
objects, ACM Trans. Programming Languages and Systems, 12 (1990), pp. 463–492.

[26] A. Israeli and M. Li, Bounded time stamps, Distrib. Comput., 6 (1993), pp. 205–209.
[27] A. Israeli, M. Li, and P. M. B. Vitányi, Simple Multireader Registers using Timestamp

Systems, Technical report CS-R8758, CWI, Amstedam, 1987.
[28] A. Israeli and M. Pinhasov, A concurrent time-stamp scheme which is linear in time and

space, in Proc. 6th International Workshop on Distributed Algorithms, Lecture Notes
in Comput. Sci. 647, Springer-Verlag, Berlin, New York, 1992, pp. 95–109.

[29] L. Kirousis, E. Kranakis, and P. M. B. Vitányi, Atomic multireader register, in Proc.
2nd International Workshop on Distributed Algorithms, Berlin, 1987, Lecture Notes in
Comput. Sci. 312, Springer-Verlag, Berlin, New York, pp. 278–296.

[30] L. M. Kirousis, P. Spirakis, and P. Tsigas, Reading many variables in one atomic op-
eration: Solutions with linear or sublinear complexity, IEEE Trans. on Parallel and
Distributed Systems, 5 (1994), pp. 688–696.

[31] L. Lamport, Concurrent reading and writing, Commun. ACM, 20 (1977), pp. 806–811.
[32] L. Lamport, On Interprocess communication, part II: Algorithms, Distrib. Comput., 1

(1986), pp. 86–101.
[33] M. Li, J. Tromp, and P. M. B. Vitányi, How to Share Concurrent Wait-free Variables,

JACM, 43 (1996), pp. 723–746.
[34] M. Li and P. M. B. Vitányi, A Very Simple Construction for Atomic Multiwriter Reg-

ister, Technical report TR-8701, Aiken Computation Laboratory, Harvard University,
Cambridge, MA, 1987.

[35] M. Li and P. M. B. Vitányi, How to share concurrent asynchronous wait-free variables, in
Proc. ICALP (1989), Lecture Notes in Comput. Sci. 372, Springer-Verlag, Berlin, New
York, 1989, pp. 488–505.

[36] M. C. Loui and H. H. Abu-Amara, Memory requirements for agreement among unreliable
asynchronous processes, Adv. Comput. Res., 4 (1987), pp. 163–183.

[37] R. Newman-Wolfe, A protocol for wait-free atomic multi-reader shared variables, in Proc.
6th ACM Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, ACM, New York, 1987, pp. 232–248.

[38] G. Peterson, Concurrent reading while writing, ACM Trans. Programming Languages and
Systems, 5 (1983), pp. 46–55.

[39] M. Rabin, Randomized Byzantine generals, in Proc. 24th IEEE Symposium on Foundations
of Computer Science, Tuscon, AZ, IEEE Press, Piscataway, NJ, 1983, pp. 403–409.

[40] M. Saks, N. Shavit, and H. Woll, Optimal time randomized consensus—making resilient
algorithms fast in practice, in Proc. 2nd Annual ACM-SIAM Symposium on Discrete
Algorithms, San Francisco, CA, ACM, New York, 1991, pp. 351–362.

[41] A. Singh, Towards an understanding of unbounded variables in asynchronous systems,
Inform. Process. Lett., 42 (1992), pp. 7–17.

[42] A. Singh, J. Anderson, and M. Gauda, The elusive atomic register revisited, in Proc.
6th ACM Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, ACM, New York, 1987, pp. 206–221.

[43] J. Tromp, How to construct an atomic variable, in Proc. 3rd International Workshop on
Distributed Algorithms, Lecture Notes in Comput. Sci. 392, Springer-Verlag, New York,
1989, pp. 292–302.

[44] P. M. B. Vitányi and B. Awerbuch, Atomic shared register access by asynchronous hard-
ware, in Proc. 27th IEEE Symposium on Foundations of Computer Science, Toronto,
Ontario, IEEE Press, Piscataway, NJ, 1986, pp. 233–243.

THE CONSTRUCTION OF HUFFMAN CODES
IS A SUBMODULAR (“CONVEX”) OPTIMIZATION PROBLEM

OVER A LATTICE OF BINARY TREES∗

D. STOTT PARKER† AND PRASAD RAM‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1875–1905

Abstract. We show that the space of all binary Huffman codes for a finite alphabet defines a
lattice, ordered by the imbalance of the code trees. Representing code trees as path-length sequences,
we show that the imbalance ordering is closely related to a majorization ordering on real-valued
sequences that correspond to discrete probability density functions. Furthermore, this tree imbalance
is a partial ordering that is consistent with the total orderings given by either the external path
length (sum of tree path lengths) or the entropy determined by the tree structure. On the imbalance
lattice, we show the weighted path-length of a tree (the usual objective function for Huffman coding)
is a submodular function, as is the corresponding function on the majorization lattice. Submodular
functions are discrete analogues of convex functions. These results give perspective on Huffman
coding and suggest new approaches to coding as optimization over a lattice.

Key words. Huffman coding, adaptive coding, prefix codes, enumeration of trees, lattices,
combinatorial optimization, convexity, submodular functions, entropy, tree imbalance, Schur convex
functions, majorization, Moebius inversion, combinatorial inequalities, Fortuin–Kasteleyn–Ginibre
(FKG) inequality, quadrangle inequality, Monge matrices, dynamic programming, greedy algorithms.

AMS subject classifications. 94A15, 94A24, 94A29, 94A45, 90C25, 90C27, 90C39, 90C48,
52A41, 68Q20, 68R05, 05A05, 05A20, 05C05, 05C30, 06A07, 26B25, 26D15

PII. S0097539796311077

1. Introduction. The Huffman algorithm has been used heavily to produce
efficient binary codes for almost half a century now. It has inspired a large literature
with diverse theoretical and practical contributions. A comprehensive, very recent
survey is [1]. Although the algorithm is quite elegant, it is tricky to prove correct
and to reason about. While there may be little hope of improving on the O(n log n)
complexity of the Huffman algorithm itself,1 there is still room for improvement in
our understanding of the algorithm.

There is also plenty of room for improvement in our understanding of variants of
Huffman coding. Although the Huffman algorithm is remarkably robust in general
and has widespread use, it is far from optimal in many real applications. Huffman
coding is optimal only when the symbols to be coded are random and occur with fixed
probabilities. Time-varying dependencies are not captured by the Huffman coding
model, and optimal encoding of finite messages is not captured either.

Our motivation came from analysis of dynamic Huffman coding, a specific exten-
sion of Huffman coding in which the code used evolves over time. Recently, dynamic
coding algorithms have been studied heavily. Our initial idea was to define “rebalanc-
ing” operations on code trees and to use these dynamically (“on the fly”) in producing

∗Received by the editors October 25, 1996; accepted for publication (in revised form) September
8, 1997; published electronically May 21, 1999.

http://www.siam.org/journals/sicomp/28-5/31107.html
†Computer Science Department, University of California, Los Angeles, CA 90095-1596

(stott@cs.ucla.edu).
‡Xerox Corporation, El Segundo, CA 90245 (Prasad.Ram@usa.xerox.com).
1The algorithm is closely related to sorting, in the sense that the sorted sequence of a se-

quence of integer values 〈x1 · · · xn 〉 is obtainable directly from the optimal code tree for the values
〈 2x1 · · · 2xn 〉 (e.g., [26, p. 335]).

1875

1876 D. STOTT PARKER AND PRASAD RAM

better codes, in situations where the distribution of symbols to be coded varies over
time and/or is not accurately predictable in advance.

This paper reconstructs Huffman coding as an optimization over the space of
binary trees. A natural representation for this space is sequences of ascending path-
lengths, since this captures what is significant in producing optimal codes.

We show that the set of path-length sequences representing binary trees forms a
lattice, which we call the imbalance lattice. This lattice orders trees by their imbalance
and gives an organization for them that is useful in optimization. Our belief is that
having a better mathematical (and not purely procedural) understanding of coding
will ultimately pay off in improved algorithms.

The imbalance lattice and its imbalance ordering on trees depend on majorization
in an essential way. Majorization is an important ordering on sequences that has
many applications in pure and applied mathematics [27]. We have related it to greedy
algorithms directly [33]. Earlier majorization was recognized as an important property
of the internal node weights produced by the Huffman algorithm [13, 32], and in this
work we go further to clarify its pervasive role.

By viewing the space of trees as a lattice, a variety of new theorems and algorithms
become possible. For example, the objective functions commonly used in evaluating
codes are submodular on this lattice. Submodular functions are closely related to
convex functions (as we explain later; see Theorem 4.5) and are often easy to optimize
[6, 9, 23, 24, 25]. Huffman coding gives a significant example of the importance of
submodularity in algorithms.

2. Ordered sequences, rooted binary trees, and Huffman codes.

2.1. Ordered sequences. By a sequence we mean an ordered collection of non-
negative real values such as

x = 〈 x1 x2 · · · xn 〉.
Repetition of values in the sequence is permitted: the values xj need not be distinct.
The length of this sequence is n, and for simplicity we also refer to the set of such
sequences with the vector notation <+

n.
We introduce several useful operators on sequences:

ascending sort sort↑ (x) = 〈 x put in ascending order 〉,
descending sort sort↓ (x) = 〈 x put in descending order 〉,
sequence exponential 2−x = 〈 2−x1 · · · 2−xn 〉,
sequence logarithm −log2(x) = 〈 −log2(x1) · · · −log2(xn) 〉.

A density sequence is a nonnegative real-valued sequence whose entries sum to 1.
A distribution sequence is an ascending nonnegative sequence whose final entry is

1.
For simplicity, throughout this paper many sequences are implicitly sorted:
`, s, t, u denote ascending sequences of positive integer values

whose sequence exponentials 2−`, 2−s, 2−t are density sequences.
w denotes a descending sequence of positive real values.
v denotes an ascending distribution sequence.
x, y, z denote descending density sequences.

Note since ` is ascending, 2−` is descending; and since x is descending, −log2(x) is
ascending.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1877

x�������� XXXXXXXXx���� HHHH

x x
¡
¡
@
@x x xx x¡

¡
@
@

�
�
A
A

�
�
A
Ax x x x

Fig. 2.1. A binary tree having path-length sequence 〈 1 3 3 4 4 4 4 〉.

We also allow sequences to be operated upon as vectors. Thus, if x is a sequence
(vector) of length n and A is an n×n matrix, then Ax is a sequence (vector). Treating
sequences as vectors allows us to define several useful operators using matrix algebra.

2.2. Rooted binary trees and path-length sequences. Rooted binary trees
here are binary trees with a root node, in which every node is either a leaf node
or an internal node having one parent and two children. The order of the leaves is
insignificant, so a given tree is determined (up to permutation of the leaves) by the
lengths of the paths from the root node to each leaf node (the distance of the leaf
from the root). Thus we can represent equivalence classes of the rooted binary trees
with n leaves by sequences of n nonnegative integers, which give the path-length of
each leaf. For example, the path-length sequence

〈 1 3 3 4 4 4 4 〉

represents a binary tree with n = 7 leaves, of which one has path-length 1, two have
path-length 3, and four have path-length 4; it is shown in Figure 2.1.

Path-length sequences obey what we call the Kraft equality, a special case of the
Kraft inequality of noiseless coding theory (see, e.g., [10, p. 45]).

Theorem 2.1. For all n ≥ 1, 〈 `1 · · · `n 〉 is the sequence of path-lengths in a
rooted binary tree iff

n∑
i=1

2−`i = 1.

Thus ` is a path-length sequence iff 2−` is a density sequence.
Proof. The theorem is easily proven by induction on n. For the basis, with n = 1

we must have `1 = 0. The induction step follows by noticing that the two principal
subtrees of any binary tree must have sequences 〈`′1 · · · `′p〉 and 〈`′′1 · · · `′′q 〉 satisfying
the equality and that their composition has the sequence 〈 (`′1 +1) · · · (`′p+1)(`′′1 +1)
· · · (`′′q + 1) 〉, which again satisfies the equality.

Henceforth we assume that tree path-length sequences are in ascending sorted
order. Table 2.1 shows a lexicographic tabulation of all possible sequences for 1 ≤
n ≤ 7, along with Tn, the total number of inequivalent sequences of length n. Tn
is enumerated as sequence M0710 (A002572) in [39]. An upper bound on Tn can
be obtained from the Catalan number Cn, which computes the number of unordered
binary trees: for n ≥ 3, Tn ≤ 1

2Cn ≤ 2n−3. Gilbert [12], using the notation g(N) for
TN , points out that Tn is well approximated for n ≤ 30 by

Tn ' 0.148 (1.791)n.

1878 D. STOTT PARKER AND PRASAD RAM

Table 2.1
Path-length sequences for small values of n.

n 1 2 3 4 5 6 7 8
Tn 1 1 1 2 3 5 9 16

〈 0 〉 〈 1 1 〉 〈 1 2 2 〉 〈 1 2 3 3 〉
〈 2 2 2 2 〉

〈 1 2 3 4 4 〉
〈 1 3 3 3 3 〉
〈 2 2 2 3 3 〉

〈 1 2 3 4 5 5 〉
〈 1 2 4 4 4 4 〉
〈 1 3 3 3 4 4 〉
〈 2 2 2 3 4 4 〉
〈 2 2 3 3 3 3 〉

〈 1 2 3 4 5 6 6 〉
〈 1 2 3 5 5 5 5 〉
〈 1 2 4 4 4 5 5 〉
〈 1 3 3 3 4 5 5 〉
〈 1 3 3 4 4 4 4 〉
〈 2 2 2 3 4 5 5 〉
〈 2 2 2 4 4 4 4 〉
〈 2 2 3 3 3 4 4 〉
〈 2 3 3 3 3 3 3 〉

...

Table 2.2
Path-length sequences ‘ and their weighted path-length gw(‘) for w = 〈 189 95 73 71 28 23 21 〉.

‘ gw(‘)
〈 1 2 3 4 5 6 6 〉 1286
〈 1 2 3 5 5 5 5 〉 1313
〈 1 2 4 4 4 5 5 〉 1287

〈 1 3 3 3 4 5 5 〉 1238

〈 1 3 3 4 4 4 4 〉 1265
〈 2 2 2 3 4 5 5 〉 1259
〈 2 2 2 4 4 4 4 〉 1286
〈 2 2 3 3 3 4 4 〉 1260
〈 2 3 3 3 3 3 3 〉 1311

2.3. Huffman codes are optimal path-length sequences. A Huffman code
for a given positive weight sequence

w1 ≥ w2 ≥ · · · ≥ wn

consists of a binary tree, i.e., a path-length sequence ` = 〈 `1 `2 · · · `n 〉, which we
evidently want to be in ascending order,

`1 ≤ `2 ≤ · · · ≤ `n,

so that the weighted path-length

gw(`) =

n∑
i=1

wi `i

is minimal. Beyond the Kraft equality of Theorem 2.1, it is difficult to characterize
what it is that makes ` optimal. For example, Table 2.2 shows all feasible codes and
costs for the weight sequence w = 〈 189 95 73 71 28 23 21 〉, with n = 7.

Huffman’s breakthrough [18] was to identify an efficient algorithm that finds an
optimal tree, avoiding a search over the exponentially large space of trees. The algo-
rithm repeatedly combines the two tree leaves with least weight, whose sum becomes
the weight of a new leaf. The Huffman (optimal) tree in Table 2.2 has path lengths
` = 〈 1 3 3 3 4 5 5 〉 and total weighted path-length 1238. The Huffman algorithm
reflects a divide-and-conquer structure that has interesting properties on the space of
trees, but because of its procedural nature does little to characterize optimal trees.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1879

3. The imbalance lattice of binary trees. The optimality of a Huffman code
is determined by the match between the balance (or imbalance) between the code tree
and the weights of the symbols to be coded. In this section we show ternary balancing
exchanges give an imbalance ordering on binary trees that defines a lattice.

The idea of using lattices in coding dates back at least to Shannon in 1950 [38].
However, we have not found the lattice characterization of tree imbalance elsewhere.
Following considerable work in the early 1980s on enumeration of trees, Pallo classified
trees by their rotational structure (e.g., [30, 31]) and showed that they then form a
lattice. Our work differs from Pallo’s in that we classify trees by their path-length
(imbalance) structure.

3.1. Important properties of tree path-length sequences.
Theorem 3.1. Every path-length sequence ` has the form

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,
a sequence including 2k copies of its largest value q (where j, k > 0). Also, j is at
most the largest exponent of 2 in 2k, and therefore j ≤ log2(2k).

Proof. `must include 2k copies of its largest value q since otherwise
(
2q ·∑n

i=1 2−`i
)

is odd, contradicting the Kraft equality. Using this argument again on the shorter
path-length sequence obtained by replacing the 2k copies of q with k copies of (q−1),
the Kraft equality requires not only that j > 0 but also that j be at most the number
of times that 2 divides 2k.

Theorem 3.2. Except for the sequence 〈 1 2 3 . . . (n−2) (n−1) (n−1) 〉, any
path-length sequence contains at least three identical values.

Proof. The proof is by induction on the length n of the sequence. For the
basis, when n = 3 the only sequence is 〈 1 2 2 〉, satisfying the theorem. For the
induction step, suppose n > 3, and to the contrary of the theorem that there is a
sequence does not have three identical values. Let q be the smallest value in the
sequence appearing twice. We may assume q < (n−1), since otherwise the sequence is
〈 1 2 3 . . . (n−2) (n−1) (n−1) 〉. Construct the sequence of length n−1 that results
from replacing the two values q with one value (q−1). In this new sequence, q does
not appear at all (since there were only two before), and (q−1) appears at most twice.
Therefore, by induction, since this sequence does not have three identical values it is
〈 1 2 3 . . . (n−3) (n−2) (n−2) 〉. But since q < (n−1) and q does not appear in the
new sequence, this gives a contradiction.

3.2. Ternary exchanges determine tree imbalance. The insight that in-
spired us to write this paper is that it is possible to generate all binary tree path-length
sequences using ternary exchanges. Given any path-length sequence

〈· · · p · · · · · · · · · (q + 1) (q + 1) · · ·〉,
then the revision

〈· · · (p+ 1) (p+ 1) · · · · · · · · · q · · ·〉
is a path-length sequence also, because

2−p + 2−(q+1) + 2−(q+1) = 2−p + 2−q = 2−(p+1) + 2−(p+1) + 2−q.

Moreover, if the initial sequence is sorted in ascending order (so p ≤ q) and we replace
the rightmost p and leftmost two (q + 1)s, then the resulting sequence is still sorted.

1880 D. STOTT PARKER AND PRASAD RAM

t����� XXXXXt��� HHH
t t

¡¡@@t t��
��tt t¡¡@@

��AA ��AAt t t t
t����� XXXXXt��� HHH

t t
¡¡@@t t tt t¡¡@@

��AA ��AAt t t t��
��

〈 1 3 3 4 4 4 4 〉 〈 1 3 3 4 4 4 4 〉
↓ ↓

〈 2 2 2 4 4 4 4 〉 〈 2 2 3 3 3 4 4 〉t����� XXXXXt��� HHH
t
¡¡@@t t��
�� t tt t¡¡@@

��AA ��AAt t t t
t����� XXXXXt��� HHH

t
��AAt t��
�� t

¡¡@@t t tt t¡¡@@
��AAt t

Fig. 3.1. Balancing exchanges: 〈 1 3 3 4 4 4 4 〉 → 〈 2 2 2 4 4 4 4 〉 and 〈 1 3 3 4 4 4 4 〉 → 〈 2 2 3 3 3 4 4 〉.

(When p = q the two sequences are identical.) Dually, this exchange can be applied
in reverse; with sorted sequences, if we replace the leftmost two (p + 1)s and the
rightmost (q − 1), the result will still be sorted in ascending order.

The net effect of this exchange is to transfer two leaves dangling from level q to
level p. The two examples in Figure 3.1 show this pictorially.

Definition 3.3. Let p, q be integers such that 1 ≤ p < q < n. A balancing
exchange is a ternary exchange of the form

〈· · · p · · · · · · (q + 1) (q + 1) · · ·〉
↓ ↘ · · · ↘ ↓

〈· · · (p+ 1) (p+ 1) · · · · · · q · · ·〉.

It is called a minimal balancing exchange if (p+ 1) = q. An imbalancing exchange is
of the reverse form,

〈· · · (p+ 1) (p+ 1) · · · · · · q · · ·〉
↓ ↙ · · · ↙ ↓

〈· · · p · · · · · · (q + 1) (q + 1) · · ·〉.
Finally, we can define partial orders as the reflexive transitive closures of these re-
lations among sequences. Given two sequences s and t, we say that s is at least as
balanced as t,

s � t,

if there are sequences `1, . . . , `m (m ≥ 1) where t = `1, `m = s, and for each i,
1 ≤ i < m, there is a balancing exchange from `i to `i+1.

Minimal balancing exchanges, in which (p + 1) = q, are particularly significant.
The balancing exchange 〈 1 3 3 4 4 4 4 〉 → 〈 2 2 2 4 4 4 4 〉 in Figure 3.1 gives an ex-
ample. Minimal balancing exchanges are ternary exchanges of consecutive length val-
ues, so any tree path-length sequence of the form 〈· · · (q − 1) · · · (q + 1) (q + 1) · · ·〉
determines the more balanced tree path-length sequence 〈· · · q · · · q q · · ·〉 and vice
versa.

Theorem 3.4. If two path-length sequences differ, they differ in at least three
values. Also, if they differ in exactly three values, there is a ternary exchange between
the sequences.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1881

�
�

�
�
'

&
�
���

$$$Ã
!%

�
�
'

&
�
�������

#

"
'

&

t t t tt t t tt t tt tt t tttt

2222

1233

22233

13333

12344

223333

222344

133344

124444

123455
1234566

1235555

1244455

1333455

1334444

2224444

2233344

2333333

2223455

Fig. 3.2. The path-length imbalance ordering for n = 4, 5, 6, 7; edges denote ternary exchanges.

Proof. Direct consequence of the Kraft equality. The equality shows that two
path-length sequences cannot differ in one value. Similarly, there cannot be sequences
s and t differing in two values, since if the differences were the disjoint sequences of
positive integers 〈 si sj 〉 and 〈 ti tj 〉, then the Kraft equality would imply 2−si +
2−sj = 2−ti + 2−tj , which is false under the disjointness condition. Finally, sequences
differing in three integer values 〈 si sj sk 〉 and 〈 ti tj tk 〉 must satisfy 2−si + 2−sj +
2−sk = 2−ti + 2−tj + 2−tk , and a case analysis shows that this is solved only by
〈 si sj sk 〉 = 〈 p (q+1) (q+1) 〉 and 〈 ti tj tk 〉 = 〈 (p+1) (p+1) q 〉, corresponding
to a ternary exchange.

Theorem 3.5. The path-length imbalance ordering is a partial order.
Proof. It is reflexive and transitive by construction. Also the imbalance ordering

is antisymmetric, since s � t and t � s together imply s = t. Otherwise there would
be a sequence of balancing exchanges that transform t to s and ultimately back to t;
this is not possible, since each balancing exchange reduces by at least one the sum of
the values in the sequence.

The imbalance partial order is straightforward to derive for small values of n. In
Figure 3.2, it is displayed for n = 4, 5, 6, 7. The most imbalanced sequence appears
at the top of the partial order, and an edge from a sequence s down to another t
means that a balancing exchange is possible from s to t. It is evident from Figure 3.2
that the minimal exchanges define the bulk of the ordering. In order to provide a
deeper appreciation for its structure, Figure 3.3 presents the ordering for n = 6, 7, 8, 9.
Figures 3.2 and 3.3 suggest a number of results about the imbalance ordering.

Theorem 3.6. A sequence is on level k of the imbalance partial order (counting
from 0, the topmost and least balanced level) iff k minimal balancing exchanges are
needed to derive it from the least balanced sequence 〈 1 2 3 · · · (n−2) (n−1) (n−1) 〉.
In this situation the sum of the values in the sequence is

(n+ 2)(n− 1)

2
− k.

Thus the level of a sequence in the partial order is determined by the sum of its path-
length values.

Proof. By induction on k. For the basis k = 0, the sum of the path-lengths in the
least balanced sequence is (

∑n−1
i=1 i) + (n−1) = (n + 2)(n − 1)/2. For the induction

step, consider a sequence whose sum of values is (n+2)(n−1)
2 − k with k > 0. By

1882 D. STOTT PARKER AND PRASAD RAM

e
e

e
ee

Z
Z
ZZ

�
�
��

Z
Z
ZZ

�
�
��

Z
Z
ZZ

Z
Z
ZZ

J
J
J
J
JJ

b
b
b
bb

"
"
"
""

b
b
b
bb

b
b
b
bb

e
e
e
e
ee

b
b
b
bb

b
b
b
bb

b
b
b
bb

b
b
b
bb

b
b
b
bb

e
e
e
e
ee

b
b
b
bb

"
"
"
""

b
b
b
bb

"
"
"
""

223333

u = s−−−

222344
` = t−−−

133344

124444

123455

2333333

2233344

2224444

`+

s−−
1334444

u+

1333455

1244455

1235555

1234566

2223455
t−−

s−
13444444

13344455

13335555
u+

+

12445555

12444566

12355566

12346666

12345677

33333333

23333344

22334444

`++

22333455

22244455

22235555
t−

22234566

13334566

124555555

124455566

124446666

123556666

123555677

123466677

123457777

123456788

144444444
s

134444455

133445555

133444566

133355566
u+

+
+

133346666

133345677

124445677

223335555

222445555

222444566

222355566
t

222346666

333333344

222345677

233334444

223444444
`+++

223344455

223334566

233333455

s t s ∨ t s ∧ t

〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 6 6 〉 〈 1 3 3 3 5 5 5 6 6 〉 〈 2 2 3 4 4 4 4 4 4 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 3 3 3 4 5 6 6 〉 〈 1 3 3 4 4 4 5 6 6 〉 〈 2 2 3 4 4 4 4 4 4 〉
〈 1 3 4 4 4 4 4 5 5 〉 〈 2 2 3 3 3 4 5 6 6 〉 〈 1 3 3 4 4 4 5 6 6 〉 〈 2 2 3 3 4 4 4 5 5 〉
〈 1 2 4 5 5 5 5 5 5 〉 〈 2 2 3 3 3 4 5 6 6 〉 〈 1 2 4 4 5 5 5 6 6 〉 〈 2 2 3 3 3 5 5 5 5 〉
〈 1 2 4 5 5 5 5 5 5 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 1 2 4 4 4 5 6 7 7 〉 〈 2 2 2 4 4 5 5 5 5 〉
〈 1 2 4 4 5 5 5 6 6 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 1 2 4 4 4 5 6 7 7 〉 〈 2 2 2 3 5 5 5 6 6 〉

r
r
r
r
r

r
r
r
r
r
r
r
r

r

r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r

r
r
r
r
r

r

r

r
r
r

r

r

Fig. 3.3. The imbalance lattice, showing path-length sequences ordered by imbalance. The
sequence 〈 1 2 3 4 · · · 〉 is maximally imbalanced. The graphs display the (transitively reduced) path-
length imbalance ordering for n = 6, 7, 8, 9. For clarity, only a minimal subset of the imbalance
ordering is drawn; orderings in the transitive closure of the minimal set are omitted. The imbalance
ordering is also a lattice, with well-defined upper bounds s ∨ t and lower bounds s ∧ t for every pair
of trees s and t. Some trees are marked to clarify certain notions (contractions, lower expansions,
and upper expansions), and their use in derivation of the first entry in the table of representative
upper and lower bounds for n = 9.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1883

Theorem 3.2, this sequence must contain at least three identical values 〈 q q q 〉. Thus
there is a minimal balancing exchange to this sequence from another that contains
〈 (q−1) (q+1) (q+1) 〉. This sequence is at level k−1 by construction, and by induction
it has the stated sum.

Theorem 3.6 shows the significance of the level of a sequence in the imbalance
partial order.

Definition 3.7. The level of balance of a path-length sequence s is

(n+ 2)(n− 1)

2
− (sum of the path-length values in s).

3.3. Contractions and expansions of path-length sequences.
Definition 3.8. Let ` = 〈 `1 · · · `n 〉 be a tree path-length sequence of length n.

The contraction `− of ` is the sequence of length (n−1) defined by

`− = sort↑ (〈 `1 · · · `n−2 (`n−1 − 1) 〉).
The position i expansion of ` is the sequence of length (n+1) defined by

sort↑ (〈 `1 · · · `i−1 (`i+1) (`i+1) `i+1 · · · `n 〉).
As permitted by Theorem 3.1, if we write

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉
with j, k > 0, then 2k is the suffix length of `, and j is the suffix increment of `. The
contraction `− is then

`− = 〈 · · · (q−j) (q−1)

2k−2︷ ︸︸ ︷
q · · · q 〉.

The lower expansion `+ is the position n− 2k expansion of `:

`+ = 〈 · · · (q−j+1) (q−j+1)

2k︷ ︸︸ ︷
q · · · q 〉.

The upper expansion `+ is the position n expansion of `:

`+ = 〈 · · · (q−j)
2k−1︷ ︸︸ ︷

q · · · q (q+1) (q+1) 〉.

Note the definition for `+ assumes 2k < n. When 2k = n, requiring n to be a
power of 2 and ` = 〈 q · · · q 〉, where q = log2(n), the formula above does not define
`+. In this very special case we define `+ = `+ rather than leave `+ undefined.

These definitions will be used heavily throughout the rest of the paper. Figure 3.4
and Table 3.1 give examples for n = 7. Figure 3.3 also gives examples illustrating the
relationships these definitions produce among the imbalance orderings for successive
values of n.

Theorem 3.9. If ` is a path-length sequence, `+ � `+ and (`+)− � (`+)−

= `. Furthermore, either ` = (`−)+, or ` = (`−)+. Thus (`−)+ � ` � (`−)+.

1884 D. STOTT PARKER AND PRASAD RAM

Table 3.1
Path-length sequences of length 7, with their contractions and expansions. Note that all con-

tractions have length 6, and expansions length 8. Emboldened digits reflect changes from ‘ .

path-length suffix suffix lower upper
sequence length incr. contraction expansion expansion

‘ 2k j ‘ − ‘ + ‘ +

〈 1 2 3 4 5 6 6 〉 2 1 〈 1 2 3 4 5 5 〉 〈 1 2 3 4 6 6 6 6 〉 〈 1 2 3 4 5 6 7 7 〉
〈 1 2 4 4 4 5 5 〉 2 1 〈 1 2 4 4 4 4 〉 〈 1 2 4 4 5 5 5 5 〉 〈 1 2 4 4 4 5 6 6 〉
〈 1 2 3 5 5 5 5 〉 4 2 〈 1 2 3 4 5 5 〉 〈 1 2 4 4 5 5 5 5 〉 〈 1 2 3 5 5 5 6 6 〉
〈 1 3 3 3 4 5 5 〉 2 1 〈 1 3 3 3 4 4 〉 〈 1 3 3 3 5 5 5 5 〉 〈 1 3 3 3 4 5 6 6 〉
〈 1 3 3 4 4 4 4 〉 4 1 〈 1 3 3 3 4 4 〉 〈 1 3 4 4 4 4 4 4 〉 〈 1 3 3 4 4 4 5 5 〉
〈 2 2 2 3 4 5 5 〉 2 1 〈 2 2 2 3 4 4 〉 〈 2 2 2 3 5 5 5 5 〉 〈 2 2 2 3 4 5 6 6 〉
〈 2 2 2 4 4 4 4 〉 4 2 〈 2 2 2 3 4 4 〉 〈 2 2 3 3 4 4 4 4 〉 〈 2 2 2 4 4 4 5 5 〉
〈 2 2 3 3 3 4 4 〉 2 1 〈 2 2 3 3 3 3 〉 〈 2 2 3 3 4 4 4 4 〉 〈 2 2 3 3 3 4 5 5 〉
〈 2 3 3 3 3 3 3 〉 6 1 〈 2 2 3 3 3 3 〉 〈 3 3 3 3 3 3 3 3 〉 〈 2 3 3 3 3 3 4 4 〉

`+ = 〈 1 3 3 4 4 4 5 5 〉
upper expansion of ‘

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@
��AA ��AAt t t t

AA��t t����

`− = 〈 1 3 3 3 4 4 〉
contraction of ‘

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@������AAt t
` = 〈 1 3 3 4 4 4 4 〉

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@
��AA ��AAt t t t

`+ = 〈 1 3 4 4 4 4 4 4 〉
lower expansion of ‘

t����� XXXXXt��� HHH
t t

¡¡@@t t tt t¡¡@@
��AA ��AA ��AAt t t����t t t

Fig. 3.4. The contraction and expansions of the path-length sequence ‘ = 〈 1 3 3 4 4 4 4 〉.

Proof. `+ and `+ differ by a ternary exchange, so `+ � `+. From Theorem 3.1
we can assume

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,
and thus (`+)− = `. Furthermore (`+)− = ` if j = 1 and

(`+)− = 〈 · · · (q−j+ 1)(q−j+ 1)(q−1)

2k−2︷ ︸︸ ︷
q · · · q 〉 � `

if j > 1. Finally (`−)+ = ` if k = 1 (necessitating j = 1) and (`−)+ = ` if k > 1.
Consequently ` ∈ { (`−)+, (`−)+ }.

Theorem 3.10. If s � t , then s− � t−, s+ � t+, and s+ � t+.
Proof. Recall that if s � t, then there are sequences `1, . . . , `m (m ≥ 1) such

that t = `1, `m = s and for each i, 1 ≤ i < m, there is a balancing exchange from

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1885

`i to `i+1. Our approach here is very simple: to prove s− � t− we convert the
derivation t = `1, . . . , `m = s directly to the derivation t− = `1

−, . . . , `m− = s−. For
this it is sufficient to show that either each step from (`i)

− to (`i+1)− is a balancing
exchange, or (`i)

− = (`i+1)−. The former must hold if `i and `i+1 agree in the final
two positions. If they disagree,

`i = 〈 · · · p a · · · b q q 〉,
`i+1 = 〈 · · · (p+1) (p+1) a · · · b (q−1) 〉

because they define a balancing exchange, and by Theorem 3.1 necessarily b = (q−1).
Then

(`i)
− = sort↑ (〈 · · · p a · · · (q−1) (q−1) 〉),

(`i+1)− = sort↑ (〈 · · · (p+1) (p+1) a · · · (q−2) 〉).

If (p+1) = b = (q−1), then p = (q−2) and the two contractions are equal. If not, they
still differ by a balancing exchange. Proving s+ � t+ is similar, where (`i)+ = (`i+1)+

iff `i = 〈 · · · (q−j) q q · · · q 〉, `i+1 = 〈 · · · (q−j+1) (q−j+1) (q−1) · · · q 〉 and
j ≥ 2. Proving s+ � t+ is also similar, but easier, since then it is never the case
that (`i)

+ = (`i+1)+.

3.4. The vector lattice and distribution lattice. Recall [5] that a lattice is
an algebra 〈S,v,u,t〉 in which S is a set, v is a partial ordering on S, and for all
a, b ∈ S, there is a unique greatest lower bound (glb) au b and least upper bound (lub)
a t b. The lattice is called distributive if these operators satisfy the distributive law:

for all a, b, c in S, a u (b t c) = (a u b) t (a u c).

Optionally the lattice can have a greatest element > and least element ⊥.
Definition 3.11. Let ≤vec be the element-wise ordering on vectors (sequences)

in <n. Then

x ≤vec y iff xi ≤ yi for 1 ≤ i ≤ n.

Also define vector element-wise minima and maxima as

x minvec y = 〈 min(x1, y1) · · · min(xn, yn) 〉,
x maxvec y = 〈 max(x1, y1) · · · max(xn, yn) 〉.

Theorem 3.12. The nonnegative vectors 〈<+
n,≤vec,minvec,maxvec〉 form a

distributive lattice called the vector lattice.
The set P of distribution sequences of length n (ascending nonnegative vectors

v with vn = 1) also form a distributive lattice, 〈P,≤vec,minvec,maxvec〉, called the
distribution lattice, with least element ⊥ = 〈 0 0 · · · 0 1 〉 and greatest element > =
〈 1 1 · · · 1 1 〉.

Proof. The one-dimensional algebra 〈<+,≤,min,max〉 is a distributive lattice.
The vector properties required here follow from this.

3.5. The majorization lattice and density lattice. We reproduce basic ma-
jorization concepts developed in [34]. Majorization as defined here is an extension
of the classical majorization of Muirhead and Hardy, Littlewood, and Pólya [16],
which is useful in the study of inequalities. Marshall and Olkin [27] provide a very
good account of the classical theory and its applications. The classical theory defines

1886 D. STOTT PARKER AND PRASAD RAM

a majorization ordering on descendingly ordered (or sometimes ascendingly ordered)
multisets, and although quite beautiful it is also quite complex. We have transplanted
the theory to rely only on linear algebra and convexity. Thus the definitions in this
section are ours, and the results vary from those in [27].

Definition 3.13. The zeta matrix
∫

= (ζij) is defined by

ζij = 1 if i ≥ j, 0 otherwise.

The Möbius matrix ∂ = (µij) is defined by

µij = 1 if i = j, − 1 if j = i− 1, 0 otherwise.

The Möbius matrix is the inverse of the zeta matrix. For example, when n = 5:

∫
=

 1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

 ∂ =
∫ −1

=

 1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

 .

The Möbius matrix is also significant in that it corresponds directly to the concept
of pairwise exchange (of adjacent elements in a sequence). The theory of Möbius
inversion [36] gives a generalized notion of differential on partially ordered domains
(although here we consider only totally ordered sequences). We can think of

∫
as an

integral operator (which transforms a sequence to its left-to-right “integral”), with ∂
as its inverse differential operator.

Theorem 3.14. If x and y are density sequences (so
∑n
i=1 xi =

∑n
i=1 yi = 1),

then

x � y iff (
∫

x) ≤vec (
∫

y).

If v and v′ are distribution sequences, then ∂ v and ∂ v′ are density sequences and

v ≤vec v′ iff (∂ v) � (∂ v′).

Proof. (
∫

x) ≤vec (
∫

y) is equivalent to

x1 ≤ y1, x1 + x2 ≤ y1 + y2, . . . , x1 + x2 + · · ·+ xn ≤ y1 + y2 + · · ·+ yn.

Note that x is a density sequence iff (
∫

x) is a distribution sequence. The second
statement then follows since the Möbius and zeta transformations are inverses of one
another.

This isomorphism between≤vec and � implies that majorization defines a lattice.
Definition 3.15. Majorization lub and glb operators are definable by

x t y = ∂ ((
∫

x) maxvec (
∫

y)),
x u y = ∂ ((

∫
x) minvec (

∫
y)).

Theorem 3.16. The nonnegative reals ordered by majorization forms a distribu-
tive lattice 〈<+

n,�,u,t〉 called the majorization lattice.
The set D of density sequences of length n (nonnegative x with

∑n
i=1 xi = 1) forms

a distributive lattice 〈D,�,u,t,⊥,>〉 called the density lattice, with least element
⊥ = 〈 0 0 · · · 0 1 〉 and greatest element > = 〈 1 0 · · · 0 0 〉.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1887

Proof. The transformation x 7→ ∫
x defines a lattice isomorphism between the

vector and majorization lattices and between the distribution and density lattices.
Here x u y and x t y are defined just so as to be the majorization glb and lub:

z � x, z � y x � z, y � z
⇔ (

∫
z) ≤vec (

∫
x), (

∫
z) ≤vec (

∫
y) ⇔ (

∫
x) ≤vec (

∫
z), (

∫
y) ≤vec (

∫
z)

⇔ (
∫

z) ≤vec ((
∫

x) minvec (
∫

y)) ⇔ ((
∫

x) maxvec (
∫

y)) ≤vec (
∫

z)
⇔ z � ∂ ((

∫
x) minvec (

∫
y)) ⇔ ∂ ((

∫
x) maxvec (

∫
y)) � z

⇔ z � x u y. ⇔ x t y � z.

Thus the majorization algebra also forms a distributive lattice.
Even when x and y are in descending order, the sequences (x u y) and (x t y)

defined here are not necessarily in descending order:

x = 〈 2−2 2−2 2−3 2−4 2−4 2−4 2−4 2−4 2−4 〉

and

y = 〈 2−2 2−3 2−3 2−3 2−3 2−3 2−4 2−5 2−5 〉

yield the least upper bound

x t y = ∂ (
∫

x maxvec

∫
y) = 〈 2−2 2−2 2−3 2−4 2−4 2−3 2−4 2−5 2−5 〉.

See Figure 3.6.

3.6. The imbalance lattice: A discrete cousin of the majorization lat-
tice. Since every pair of sequences in Figures 3.2 and 3.3 has a unique glb and lub,
the imbalance ordering is not only a partial order but also a lattice. In this section we
prove this by showing that every pair of sequences s, t has a glb s ∧ t and lub s ∨ t.
We also relate the imbalance lattice directly to the majorization lattice, as illustrated
in Figures 3.5–3.7.

Theorem 3.17. On tree path-length sequences, the imbalance ordering is isomor-
phic to the majorization ordering. Specifically, whenever s and t are tree path-length
sequences, then

s � t iff 2−s � 2−t.

Proof. We show first that balancing exchanges cause a reduction in the majoriza-
tion ordering. Let s be the result of a balancing exchange on t (so s � t). Then the
following holds:

t = (· · · p u · · v (q + 1) (q + 1) · ·)

s = (· · · (p + 1) (p + 1) u · · v q · ·)

2−t = (· · · 2−p 2−u · · 2−v 2−(q+1) 2−(q+1) · ·)

2−s = (· · · 2−(p+1) 2−(p+1) 2−u · · 2−v 2−q · ·)∫
2−t = (· · S S+2−p S+2−p+2−u · · T T+2−(q+1) T+2−q · 1)∫
2−s = (· · S S+2−(p+1) S+2−p · · T−2−v T T+2−q · 1)

(0 · 0 + 2−(p+1) + 2−u · · + 2−v + 2−(q+1) 0 · 0)

Thus
∫

2−s and
∫

2−t differ only in the values appearing between p and q, and each
element in

∫
2−t − ∫

2−s is nonnegative, so 2−s � 2−t.

1888 D. STOTT PARKER AND PRASAD RAM

s = (1 2 4 4 5 5 5 6 6)

2−s = (2−1 2−2 2−4 2−4 2−5 2−5 2−5 2−6 2−6)∫
2−s = 2−7 (64 96 104 112 116 120 124 126 128)

t = (2 2 2 3 4 5 6 7 7)

2−t = (2−2 2−2 2−2 2−3 2−4 2−5 2−6 2−7 2−7)∫
2−t = 2−7 (32 64 96 112 120 124 126 127 128)∫

2−s maxvec

∫
2−t = 2−7 (64 96 104 112 120 124 126 127 128)

∂ (
∫

2−s maxvec

∫
2−t) = 2−7 (64 32 8 8 8 4 2 1 1)

= 2−s t 2−t = (2−1 2−2 2−4 2−4 2−4 2−5 2−6 2−7 2−7)

s ∨ t = (1 2 4 4 4 5 6 7 7)∫
2−s minvec

∫
2−t = 2−7 (32 64 96 112 116 120 124 126 128)

∂ (
∫

2−s minvec

∫
2−t) = 2−7 (32 32 32 16 4 4 4 2 2)

= 2−s u 2−t = (2−2 2−2 2−2 2−3 2−5 2−5 2−5 2−6 2−6)

s ∧ t = (2 2 2 3 5 5 5 6 6)

Fig. 3.5. Related points in the majorization and imbalance lattices, showing their connection.

s = (2 2 3 4 4 4 4 4 4)

2−s = (2−2 2−2 2−3 2−4 2−4 2−4 2−4 2−4 2−4)∫
2−s = 2−7 (32 64 80 88 96 104 112 120 128)

t = (2 3 3 3 3 3 4 5 5)

2−t = (2−2 2−3 2−3 2−3 2−3 2−3 2−4 2−5 2−5)∫
2−t = 2−7 (32 48 64 80 96 112 120 124 128)∫

2−s maxvec

∫
2−t = 2−7 (32 64 80 88 96 112 120 124 128)

∂ (
∫

2−s maxvec

∫
2−t) = 2−7 (32 32 16 8 8 16 8 4 4)

= 2−s t 2−t = (2−2 2−2 2−3 2−4 2−4 2−3 2−4 2−5 2−5)

s ∨ t = (2 2 3 3 4 4 4 5 5)

Fig. 3.6. Results of (2−s u 2−t) and (2−s t 2−t) are not necessarily in descending order.

s = (1 2 4 5 5 5 5 5 5)

2−s = (2−1 2−2 2−4 2−5 2−5 2−5 2−5 2−5 2−5)∫
2−s = 2−7 (64 96 104 108 112 116 120 124 128)

t = (2 2 2 3 4 5 6 7 7)

2−t = (2−2 2−2 2−2 2−3 2−4 2−5 2−6 2−7 2−7)∫
2−t = 2−7 (32 64 96 112 120 124 126 127 128)∫

2−s minvec

∫
2−t = 2−7 (32 64 96 108 112 116 120 124 128)

∂ (
∫

2−s minvec

∫
2−t) = 2−7 (32 32 32 12 4 4 4 4 4)

= 2−s u 2−t = (2−2 2−2 2−2 2−α 2−5 2−5 2−5 2−5 2−5)

−α = (−7 + log2(12)) ≈ −3.4150375

� (2−2 2−2 2−2 2−4 2−4 2−5 2−5 2−5 2−5)

s ∧ t = (2 2 2 4 4 5 5 5 5)

2− (s ∧ t) � (2−s u 2−t); the two differ where indicated. Nonintegral exponents occur for n ≥ 9.

Fig. 3.7. The imbalance lattice is not simply conjugate to a sublattice of the majorization lattice.

The proof of the converse, that 2−s � 2−t implies s � t for tree path-length

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1889

sequences s, t, can proceed by assuming a counterexample for which the difference in
the levels of balance of

m = (level of balance of s) − (level of balance of t)

is minimal. Since 2−s � 2−t let a, b, c, d be the rightmost aligned pairwise-differing
values among the two sorted sequences such that s = 〈· · · a · · · b · · ·〉 and t =
〈· · · c · · · d · · ·〉, where c < a, b < d because of the majorization inequality, a ≤ b and
c ≤ d because the sequences are ascending, c 6= d since c < a ≤ b < d, and finally 2−a+
· · ·+ 2−b = 2−c + · · ·+ 2−d, which is always possible by the Kraft equality. Because
b < d necessarily t = 〈· · · c · · · d d · · ·〉, since otherwise we reach a contradiction
(multiplying both sides of the equality by 2d makes the left side even but the right
side odd). Thus, if we define the result t′ = 〈· · · (c+ 1) (c+ 1) · · · (d− 1) · · ·〉 of
a balancing exchange on t = 〈· · · c · · · d d · · ·〉, then the level difference between s

and t′ is at most (m − 1), and 2−t′ � 2−t. Furthermore we claim 2−s � 2−t′ , using
the following schematic:

t = (· · · c u · d d · ·)

t′ = (· · · (c + 1) (c + 1) · · (d − 1) · ·)
s = (· · · a w · · b · ·)

2−t = (· · · 2−c 2−u · 2−d 2−d · ·)

2−t′ = (· · · 2−(c+1) 2−(c+1) · · 2−(d−1) · ·)

2−s = (· · · 2−a 2−w · · 2−b · ·)∫
2−t −

∫
2−s = (0 · 0 +(2−c − 2−a) +S1 · +Sk 0 · 0)∫

2−t −
∫

2−t′ = (0 · 0 +2−(c+1) +2−u · +2−d 0 · 0)∫
2−t′ −

∫
2−s = (0 · 0 +(2−(c+1) − 2−a) +(S1 − 2−u) · +(Sk − 2−d) 0 · 0)

Because 2−s � 2−t, the running totals S1, . . . , Sk are nonnegative. Also, (2−(c+1) −
2−a) ≥ 0 since c < a. Furthermore c ≤ (a − 1) ≤ w, implying S1 − 2−u = (2−c −
2−a) − 2w ≥ 2−(a−1) − 2−w ≥ 0. Finally Sk + 2−d − 2−b = 0, so b ≤ (d − 1)
implies Sk − 2−d = (2−b − 2−d)− 2−d = 2−b − 2−(d−1) ≥ 0. Thus

∫
2−s≤vec

∫
2−t′

(i.e., 2−s � 2−t′), contradicting the assumed minimality of m, and existence of a
counterexample.

Theorem 3.18. The imbalance ordering on binary trees determines a bona fide
lattice in which, for all s and t, the glb s∧ t and lub s∨ t are defined with the following
recursive algorithms, where the expansion used is chosen from among the lower and
upper expansions:

s ∧ t =

s if s � t,
t if t � s,
the greatest expansion of s− ∧ t−

that is also a lower bound for s and t otherwise;

s ∨ t =

t if s � t,
s if t � s,
the least expansion of s− ∨ t−

that is also an upper bound for s and t otherwise.

Proof. We must show that, whenever s and t are tree path-length sequences
of length n, there are unique path-length sequences s ∧ t and s ∨ t such that the
following hold:

• s ∧ t � s, t; also, if ` is any path-length sequence, then ` � s, t iff ` � s ∧ t.
• s, t � s ∨ t; also, if ` is any path-length sequence, then s, t � ` iff s ∨ t � `.

1890 D. STOTT PARKER AND PRASAD RAM

Table 3.2
Elaboration of the first example of representative bounds in Figure 3.3, showing how s∧ t and

s∨ t can be derived with their recursive algorithms.

n s t s ∧ t s ∨ t
9 〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 6 6 〉 〈 2 2 3 4 4 4 4 4 4 〉 〈 1 3 3 3 5 5 5 6 6 〉

↑ lower expansion ↑ upper expansion ↑ lower expansion ↑ upper expansion

8 〈 1 3 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 5 〉 〈 2 2 3 3 4 4 4 4 〉 〈 1 3 3 3 5 5 5 5 〉
↑ lower expansion ↑ lower expansion ↑ lower expansion ↑ lower expansion

7 〈 1 3 3 4 4 4 4 〉 〈 2 2 2 3 4 5 5 〉 〈 2 2 2 4 4 4 4 〉 〈 1 3 3 3 4 5 5 〉
↑ lower expansion ↑ upper expansion ↑ lower expansion ↑ upper expansion

6 〈 1 3 3 3 4 4 〉 〈 2 2 2 3 4 4 〉 〈 2 2 2 3 4 4 〉 〈 1 3 3 3 4 4 〉

This can be done by induction on n. We consider only the glb here, the proof for
the lub being similar. The theorem holds trivially for n ≤ 6, since then the trees are
totally ordered. Assume that it holds for sequences of size n−1 or less.

First, s and t must have a common lower bound: The glb s− ∧ t− exists by
induction, and (Theorems 3.9 and 3.10) lower expansion gives a lower bound

(s− ∧ t−)+ � (s−)+ � s, (s− ∧ t−)+ � (t−)+ � t.

Second, if s and t have two greatest lower bounds ` and `′, then they must be
equal: From ` � s, t and `′ � s, t we infer `− � s− ∧ t− and `′− � s− ∧ t− by
Theorem 3.10. Since furthermore ` and `′ are greatest lower bounds, s− ∧ t− � `−

and s− ∧ t− � `′−. Thus `− = `′−. By Theorem 3.9, the only way ` 6= `′ can arise
is that

` = (`−)+, `′ = (`−)+ or ` = (`−)+, `′ = (`−)+

so ` � `′ or `′ � `, contradicting their both being greatest lower bounds. Thus ` = `′.
Third, the algorithm produces a glb that is as good as any other lower bound:

Assuming this for (s− ∧ t−) by induction, there can be no lower bound ` 6= (s ∧ t)
such that (s− ∧ t−)+ � `, since otherwise (s− ∧ t−) � `− � s−, t−, contradicting
our assumption.

The table of nontrivial examples in Figure 3.3 gives an appreciation for glbs and
lubs. The first example (which is illustrated in the figure) is expanded in Table 3.2.
Note that the final pairs of entries in s and t are the same as the final pairs of entries
in s ∧ t and s ∨ t and that the suffix lengths of s and t are never shorter than those
of s ∧ t and s ∨ t.

Theorem 3.19. If s and t are path-length sequences of length n, then

s ∨ t =

{
(s− ∨ t−)+ if s = (s−)+ and t = (t−)+,
(s− ∨ t−)+ if s = (s−)+ and t = (t−)+;

s ∧ t =

{
(s− ∧ t−)+ if s = (s−)+ and t = (t−)+,
(s− ∧ t−)+ if s = (s−)+ and t = (t−)+.

Otherwise, if either s = (s−)+ and t = (t−)+, or s = (s−)+ and t = (t−)+, then
either s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+, or s∧ t = (s− ∧ t−)+ and s∨ t =
(s− ∨ t−)+.

Furthermore, if the final pairs of entries of s and t are 〈p p〉 and 〈q q〉, where
p ≤ q, then the final pairs of entries of s∧ t and s∨ t are, respectively, 〈p p〉 and
〈q q〉.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1891

Also, the suffix lengths of s and t are at least as long as those of (s∧ t) and
(s∨ t).

Proof. These properties follow by induction on n. For the basis, they all hold
trivially when n ≤ 6, since then the imbalance lattice is a total order and { s, t } =
{ s∨ t, s∧ t }, and the final two entries of any path-length sequence are a pair by
Theorem 3.1. For the induction step, we can write

s = 〈 · · · (p−i)
2h︷ ︸︸ ︷

p · · · p 〉, t = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,

s− = 〈 · · · (p−i) (p−1)

2h−2︷ ︸︸ ︷
p · · · p 〉, t− = 〈 · · · (q−j) (q−1)

2k−2︷ ︸︸ ︷
q · · · q 〉,

where i, j, h, k > 0, and we assume with no loss of generality that p ≤ q. There
are four cases to consider, depending on the suffix lengths 2h of s and 2k of t. In
the first, h = 1 and k = 1 (i.e., s = (s−)+ and t = (t−)+). Then i = 1 and
j = 1 by Theorem 3.1. By induction (s− ∧ t−) and (s− ∨ t−) have respective final
pairs 〈(p−1) (p−1)〉 and 〈(q−1) (q−1)〉 and have suffix lengths not exceeding those
of s− and t−. Now, by Theorem 3.10 (s− ∧ t−)+ � (s−)+ and (s− ∧ t−)+ � (t−)+.
Because (s−)+ = s and (t−)+ = t, the recursive algorithm in Theorem 3.18 will find
(s− ∧ t−)+ = s∧ t. Thus the final pair of s∧ t will be 〈p p〉, and it will have suffix
length 2. Similarly s∨ t = (s− ∨ t−)+ because s∨ t ∈ { (s− ∨ t−)+, (s− ∨ t−)+ },
and choosing (s− ∨ t−)+ gives a contradiction: if s = (s−)+ � (s− ∨ t−)+ and t =
(t−)+ � (s− ∨ t−)+, then (because of Theorem 3.10) s− = ((s−)+)−� ((s− ∨ t−)+)− 6=
((s− ∨ t−)+)− = s− ∨ t− and correspondingly t− = ((t−)+)−� ((s− ∨ t−)+)− 6=
((s− ∨ t−)+)− = s− ∨ t−, so the lub of s− and t− is not s− ∨ t−, a contradiction.
Again the final pair of s∨ t will be 〈q q〉, with suffix length 2.

The other three cases, where h > 1 and/or k > 1, are similar.

4. Submodularity of weighted path-length over the lattices. Huffman
codes for a positive descending weight sequence w = 〈w1 w2 · · · wn 〉 are binary tree
path-length sequences ` = 〈 `1 `2 · · · `n 〉 that minimize the weighted path-length

gw(`) =
n∑
i=1

wi `i.

In this section we show that gw is submodular over the lattice of trees, which helps
explain why efficient algorithms for finding optimal trees are possible at all.

4.1. Submodularity. Most work on submodular functions assumes that the lat-
tice is the lattice of subsets of a given set, the case originally emphasized by Edmonds
[6]. However, the definition applies to any lattice.

Definition 4.1. A real-valued function f : L → < defined on a lattice 〈L,v,u,t〉
is submodular if

f(x u y) + f(x t y) ≤ f(x) + f(y)

for all x, y ∈ L. Equivalently, f is submodular if a “differential” inequality holds:

∆2f(x, y)
def
= f(x) + f(y)− f(x u y)− f(x t y) ≥ 0.

Section 4.4 discusses the relationship between submodularity and convexity.

1892 D. STOTT PARKER AND PRASAD RAM

4.2. Submodularity of weighted path-length on the majorization lat-
tice. In this section we show that weighted path-length on the imbalance lattice of
trees (or a logarithmic variant on the majorization lattice of densities) is a submodular
function.

Define the function Gw on the majorization lattice of densities by

Gw(x) = gw(−log2(x)) = −
∑
i

wi log2(xi).

Notice that Gw is convex on <+
n, since its Hessian

∇2Gw =

(
∂2Gw(x)

∂xi∂xj

)
=

1

ln(2)
diag

(
wi
x2
i

)
is positive semidefinite there [27, p. 448]. (Recall that we are assuming all weights
are positive.)

Gw is actually also submodular on the majorization lattice. We prove this directly
now and show later how submodularity can be established using only vector calculus.

Theorem 4.2. Assuming w is a descending positive sequence of length n, Gw is
submodular on the majorization lattice. That is, for all nonnegative sequences x, y
of length n,

Gw(x u y) + Gw(x t y) ≤ Gw(x) + Gw(y).

Proof. By induction on n. For n = 1, the inequality is satisfied with equality.
Let an and bn be the nth entries of (x u y) and (x t y), respectively. The theorem
follows by induction if we can show that

wn · (−log2(an)) + wn · (−log2(bn)) ≤ wn · (−log2(xn)) + wn · (−log2(yn)).

Recall that x u y = ∂ ((
∫

x) minvec (
∫

y)) and x t y = ∂ ((
∫

x) maxvec (
∫

y)).
There are four cases, depending on X =

∫
x and Y =

∫
y and specifically on the final

values

Xn−1 =
n−1∑
i=1

xi, Xn =
n∑
i=1

xi, Yn−1 =
n−1∑
i=1

yi, Yn =
n∑
i=1

yi

as follows:
1. if Xn−1 ≤ Yn−1 and Xn ≤ Yn, then an = xn, bn = yn;
2. if Xn−1 ≥ Yn−1 and Xn ≥ Yn, then an = yn, bn = xn;
3. if Xn−1 ≤ Yn−1 and Xn ≥ Yn, then xn ≥ yn, an = Yn − Xn−1 = yn + ε,
bn = Xn − Yn−1 = xn − ε, where ε = (Yn−1 −Xn−1) ≥ 0 and ε ≤ xn − yn =
(xn max yn) − (xn min yn);

4. if Xn−1 ≥ Yn−1 and Xn ≤ Yn, then yn ≥ xn, an = Xn − Yn−1 = xn + ε,
bn = Yn −Xn−1 = yn − ε, where ε = (Xn−1 − Yn−1) ≥ 0 and ε ≤ yn − xn =
(xn max yn) − (xn min yn).

Each case satisfies wn · (−log2(an)) + wn · (−log2(bn)) ≤ wn · (−log2(xn)) + wn ·
(−log2(yn)) as needed; the first two cases satisfy it with equality, and in the last two
we have

an = (xn min yn) + ε, bn = (xn max yn) − ε,

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1893

but then assuming that xn, yn ≥ 0,

log2(an) + log2(bn) = log2(an bn) = log2(xn yn + η) ≥ log2(xn) + log2(yn),

where η = ε ((xn max yn)− (xn min yn)− ε) ≥ 0 and multiplying by −wn gives the
theorem.

4.3. Submodularity of weighted path-length on the imbalance lattice.
Theorem 4.3. Assuming that w is a descending positive sequence of length n,

gw is submodular on the imbalance lattice. That is, for all path-length sequences s, t
of length n,

gw(s ∧ t) + gw(s ∨ t) ≤ gw(s) + gw(t).

Proof. The proof is also by induction on n. The theorem holds with equality
for n ≤ 6, since then the lattice of path-length sequences is totally ordered. We
sketch the induction step from n−1 to n, showing ∆2gw(s, t) = (gw(s) + gw(t)) −
(gw(s∧ t) + gw(s∨ t)) ≥ 0 follows from ∆2gw(s−, t−) ≥ 0—where gw, when
applied to sequences of length (n−1), uses only the first (n−1) entries of w.

Recall that 2k is the suffix length of the path-length sequence

` = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉,
and j is its suffix increment. The suffix increment is 1 when (`−)+ = `, so

gw(`) =

{
gw(`−) + (wn−1 + q · wn) if ` = (`−)+ (i.e., k = 1),
gw(`−) + (wn−2k+1 + q · wn) if ` = (`−)+ (i.e., k > 1).

Thus gw(s) > gw(s−) and gw(t) > gw(t−) in all cases.
However, it can happen that gw(s∧ t) < gw(s− ∧ t−) or gw(s∨ t) < gw(s− ∨ t−)

because it is possible either that s− ∧ t− 6= (s∧ t)− or that s− ∨ t− 6= (s∨ t)−. Specif-
ically, it is possible that

s∧ t = 〈 · · · (q−j) (q−j)
2k︷ ︸︸ ︷

q · · · q 〉
and

s− ∧ t− = 〈 · · · (q−j−1)

2k︷ ︸︸ ︷
q · · · q 〉,

i.e., s∧ t = (s− ∧ t−)+ and s∧ t has suffix increment j > 1, in which case

gw(s∧ t) = gw(s− ∧ t−) + (wn−2k+1 − j · wn−2k + q · wn)

and the parenthesized expression can be negative.
From Theorem 3.19, the final pairs of entries of s and t are always the same as

the final pairs of entries of s ∧ t and s ∨ t, and the suffix lengths for each of s and
t cannot be less than those for each of (s∧ t) and (s∨ t). We now consider the same
four cases addressed in the proof of Theorem 3.19.

In the case where both s is the upper expansion of s− and t is the upper expansion
of t−, then by Theorem 3.19, s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+, so

∆2gw(s, t) = (gw(s) + gw(t)) − (gw(s∧ t) + gw(s∨ t))
= (gw(s−) + gw(t−)) − (gw(s− ∧ t−) + gw(s− ∨ t−)) + 0
= ∆2gw(s−, t−),

1894 D. STOTT PARKER AND PRASAD RAM

with the analysis above for gw(`) with k = 1. In this situation only the final pairs
of entries of s, t and of s∧ t, s∨ t can cause the two differences to be unequal, but
we now know them to give the same two pairs. Therefore in this case the theorem
follows by induction.

It remains to treat the cases where s is the lower expansion of s− or t is the
lower expansion of t−. In these cases it can happen that gw(s∧ t) < gw(s− ∧ t−) or
gw(s∨ t) < gw(s− ∨ t−) as noted above.

In the case where either s is the lower expansion of s− or t is the lower expan-
sion of t−, but not both, then by Theorem 3.19, either s∧ t = (s− ∧ t−)+ and
s∨ t = (s− ∨ t−)+, or s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+. The lower ex-
pansions among these two cannot yield as large a gw increase as the lower expansions
giving s and t, because they expand higher-indexed positions (their suffix lengths are
never longer), and the suffix increment of s− ∧ t− or s− ∨ t− can be greater than 1.
Therefore ∆2gw(s, t) ≥ ∆2gw(s−, t−).

In the final case where s is the lower expansion of s− and t is the lower expansion of
t−, then s∧ t = (s− ∧ t−)+ and s∨ t = (s− ∨ t−)+ (see Theorem 3.19). Moreover,
the lower expansions giving s∧ t and s∨ t cannot yield as large a gw increase as the
lower expansions giving s and t, so again ∆2gw(s, t) ≥ ∆2gw(s−, t−).

To see an example, the submodularity of gw can be verified on the lattice for
n = 9 and the weight sequence shown in Figure 5.1.

4.4. Submodularity as a discrete analogue of convexity. Although it is
very simply defined, submodularity is difficult to appreciate. Using only standard
vector calculus, we now clarify some basic relationships between submodularity and
notions of convexity. We have not seen this done elsewhere.

There are several reasons why submodularity plays an important role here, at the
crossroads between information and coding theory. First, submodularity is directly re-
lated to the Fortuin–Kasteleyn–Ginibre (FKG) “correlation” inequalities, which gen-
eralize a basic inequality of Tchebycheff on mean values of functions (hence expected
values of random variables). A fine survey of results with FKG-like inequalities is
[15].

Second, submodularity is closely related to convexity. Book-length surveys by
Fujishige [9] and Narayanan [28] review connections between submodularity and op-
timization (and even electrical network theory). The relationship between convexity
and submodularity was neatly summarized by Lovász with the following memorable
definition and result.

Definition 4.4. Given a finite set S of cardinality n, we can identify a {0, 1}-
vector t ∈ <+

n with any subset T ⊆ S specifying the incidence in T of the elements
in S (indexed in some fixed order).

Any nonnegative vector x ∈ <+
n can be decomposed uniquely into a sum of posi-

tive real values multiplied by “decreasing” {0, 1}-vectors. Specifically, x ∈ <+
n deter-

mines an integer k (0 ≤ k ≤ n) such that x has a unique greedy decomposition

x =

k∑
i=1

λi si,

where λi > 0, S1 ⊃ · · · ⊃ Sk are distinct subsets of S, and si is the {0, 1}-vector

identified with Si. For any function f : S → <+, its greedy extension f̂ : <+
n → <+

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1895

to nonnegative vectors is then defined by

f̂(x) = f̂

(
k∑
i=1

λi si

)
=

k∑
i=1

λi f(Si).

In fact, λ = ∂ (sort↑ (x)), using our notation.
Theorem 4.5 (see Lovász [25, p. 249]). f : S → <+ is submodular iff its greedy

extension f̂ : <+
n → <+ is convex.

Proof. The essence is that for positive constants λ ≤ κ and sets T 6= U ,

f̂(λ t+κu) = λ f(T∪U) + (κ−λ) f(U) ≤ λ f(T) + κ f(U) = f̂(λ t) + f̂(κu),

where t and u are the {0, 1}-vectors corresponding to T and U . The central inequality

is due to submodularity. Resisting 0 < λ < 1 and κ = (1 − λ) shows f̂ is convex.

Lovász goes on [25, p. 250–251] to point out that

min { f(X) | X ⊆ S } = min { f̂(x) | x ∈ [0, 1]n }
and that as a consequence there is a polynomial-time algorithm to minimize f .

The vector lattice 〈<+
n,≤vec,minvec,maxvec〉, is exactly the extension of the set

lattice to nonnegative vectors. Vector lattices, also called Riesz spaces, can be more
“natural” than set lattices in some ways. For example, submodularity has a natural
characterization.

Theorem 4.6 (see Lorentz [27, p. 150]). When twice differentiable, f is submod-
ular on the vector lattice 〈<+

n,≤vec,minvec,maxvec〉 iff

∂2f

∂xi∂xj
≤ 0 (i 6= j, 1 ≤ i, j ≤ n).

Proof. The proof is essentially by definition. Using the shorthand f〈 u v 〉 to
denote the expression f(〈 x1 . . . xi−1 u xi+1 . . . xj−1 v xj+1 . . . xn 〉) gives

∂2f

∂xi∂xj
= lim
εi,εj→0

f〈 (xi+εi) (xj+εj) 〉 − f〈 (xi+εi) xj 〉 − f〈xi (xj+εj) 〉+ f〈xi xj 〉
εi εj

≤ 0,

where the inequality comes from the fact that f is submodular, since with respect
to ≤vec, the points x = 〈 (xi+εi) xj 〉 and y = 〈 xi (xj+εj) 〉 have the upper and
lower bounds x maxvec y = 〈 (xi+εi) (xj+εj) 〉 and x minvec y = 〈 xi xj 〉. For
the converse, if f is not submodular on a rectangle defined by x = 〈 (xi+a) xj 〉
and y = 〈 xi (xj+b) 〉, Lorentz pointed out we can find a subrectangle on which
∂2f/∂xi∂xj > 0.

Note: the derivatives ∂2f
∂x2
i

can still be positive. In fact, the Hessian∇2f = (∂2f
∂xi∂xj

)

still can even be positive semidefinite (hence f can be convex), or be an M-matrix [3,
Chap. 6].

Theorem 4.7. When twice differentiable, F is submodular on the majorization
lattice 〈<+

n,�,u,t〉 iff for all i 6= j between 1 and n− 1,

∂2F (z)

∂zi∂zj
− ∂2F (z)

∂zi+1∂zj
− ∂2F (z)

∂zi∂zj+1
+

∂2F (z)

∂zi+1∂zj+1
≤ 0.

1896 D. STOTT PARKER AND PRASAD RAM

Proof. Theorem 3.16 shows that the Möbius transformation ∂ gives a bijection be-
tween the majorization lattice 〈<+

n,�,u, t〉 and the vector lattice 〈<+
n,≤vec,minvec,

maxvec〉. Thus f(x) = F (∂ x) is submodular on the vector lattice when F is sub-
modular on the majorization lattice. Expanding the inequality

∂2

∂xi∂xj
(F (∂ x)) =

∂2

∂xi∂xj
(f(x)) ≤ 0

(which follows from the previous theorem) with the chain rule gives the stated result,
because z = ∂ x = 〈x1 (x2−x1) (x3−x2) · · · (xn−xn−1) 〉.

Revisiting Theorem 4.2, Gw(z) = −∑n
i=1 wi log2(zi) satisfies

∂2Gw(z)

∂zi∂zj
− ∂2Gw(z)

∂zi+1∂zj
− ∂2Gw(z)

∂zi∂zj+1
+

∂2Gw(z)

∂zi+1∂zj+1

=
1

ln(2)

0, |i− j| > 1,
−wi/z2

i , i = j + 1,
−wi+1/z

2
i+1, j = i+ 1,

wi+1/z
2
i+1 + wi/z

2
i , i = j,

and, e.g., Gw(∂ x) = − w1 log2(x1) − ∑n−1
i=1 wi log2(xi+1 − xi) satisfies

∂2

∂xi∂xj
(Gw(∂ x)) =

1

ln(2)

−wi+1

(xi+1 − xi)2 ≤ 0 when j = i+ 1.

This gives two alternative proofs of Theorem 4.2, showing how such results can be
derived more easily.

Definition 4.8. A function F : <+
n → < is Schur convex if it preserves the

majorization ordering, i.e., x�y implies F (x) ≤ F (y).
Theorem 4.9. F is Schur convex on the majorization lattice iff f(x) = F (∂ x)

is monotone on the vector lattice.
Proof. Again a direct result of the bijection between the two lattices. If f is differ-

entiable, f is monotone on the vector lattice iff∇f(x) = 〈 ∂f/∂x1 · · · ∂f/∂xn 〉≥vec 0,
which implies

∂F

∂xi
(∂ x) − ∂F

∂xi+1
(∂ x) =

∂

∂xi
(F (∂ x)) =

∂

∂xi
f(x) ≥ 0 (1 ≤ i ≤ n−1).

This rederives the result that ∂F/∂zi ≥ ∂F/∂zi+1 when F is Schur convex [34].
Since monotonicity and convexity are related, Theorems 4.5, 4.6, 4.7, and 4.9

connect convexity, submodularity, Schur convexity, and majorization. There are ac-
tually many connections. See the survey [27, Chap. 6], in which submodular functions
are called L-subadditive functions. Just as Lovász showed for submodular functions
[25], Schur convex functions [37, 29] are closed under various operations: min, max,
convolution, composition with convex functions, etc. [27, Chap. 3]. Theorem 4.5 is
also reminiscent of symmetric gauge functions, which are Schur convex; see [27, p. 96].

5. Huffman coding as submodular dynamic programming. The results
of the previous sections can now be applied to Huffman coding.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1897

5.1. Nonmonotonicity of weighted path-length over the lattices. It is
important to realize that weighted path-length is not monotone on the imbalance lat-
tice, so greedy search may not always find its way to an optimal solution. This is illus-
trated by the example in Figure 5.1. For this problem the sequence 〈 2 2 3 3 4 4 4 5 5 〉
with cost 1298 is a local minimum: each of the 7 sequences reachable from it by
imbalancing exchanges and each of the 3 sequences reachable from it by balancing
exchanges have greater weighted path length. The diagram shows only the transitive
reduction of the imbalance lattice, omitting many balancing exchanges (because they
would clutter the picture), but it conveys the general situation for larger Huffman
coding problems. It shows that, even though it may do very well in practice, simple
hill-climbing along ternary exchanges is not guaranteed to find the optimum sequence.

Although weighted path-length gw is not monotone on the imbalance lattice of
trees, a monotone summary of weighted path-length gw

mon has the properties we
need.

In [25, p. 241], Lovász stated the following definition and theorem for set lattices
(easily proved for general lattices) about the “monotonization” of a function f .

Definition 5.1. If f : L → <+ is a real-valued function on a lattice L with
ordering relation v, define

fmon(x) = min { f(x′) | x′ v x }.

Theorem 5.2. If f is submodular, then fmon is also submodular.
Proof. From the definition of fmon, for all x, y in L, there exists a x′ v x such that

fmon(x) = f(x′) and a y′ v y such that fmon(y) = f(y′). But then (x′uy′) v (xuy)
and (x′ t y′) v (x t y), so

fmon(x u y) ≤ fmon(x′ u y′) ≤ f(x′ u y′),
fmon(x t y) ≤ fmon(x′ t y′) ≤ f(x′ t y′).

fmon(x u y) + fmon(x t y) ≤ f(x′ u y′) + f(x′ t y′)
≤ f(x′) + f(y′) (as f is submodular)
= fmon(x) + fmon(y).

Thus gw
mon is both submodular and monotone on the tree imbalance lattice.

5.2. Dynamic programming reconstruction of the Huffman algorithm.
Based the analysis above, we can derive Huffman codes by using a simple recursion.

Definition 5.3. The Huffman contraction w_ of a descending weight sequence
w = 〈w1 · · · wn 〉 is

w_ = sort↓ (〈 w1 · · · wn−2 (wn−1+wn) 〉).

Parenthetically, note that `− = − log2((2−`)_) for path-length sequences `. If
n ≥ 1 is the length of w, then the (most balanced) Huffman code for w is defined by

Huffman(w) =

{ 〈 0 〉 if n = 1,

better expansion(Huffman(w_) ,w) if n > 1;

better expansion(` ,w) =

{
`+ if gw(`+) ≤ gw(`+),

`+ otherwise.

1898 D. STOTT PARKER AND PRASAD RAM

e
e
e

e
ee

b
b
b
b
bb

"
"
"
"
""

b
b
b
b
bb

b
b
b
b
bb

e
e
e
e
e
ee

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

b
b
b
b
bb

e
e
e
e
e
ee

b
b
b
b
bb

"
"
"
"
""

b
b
b
b
bb

"
"
"
"
""

124555555

124455566

124446666

123556666

123555677

123466677

123457777

123456788

144444444

134444455

133445555

133444566

133355566

133346666

133345677

124445677

223335555

222445555

222444566

222355566

222346666

333333344

222345677

233334444

223444444

223344455

223334566

233333455

1386

1325

1341

1362

1351

1324

1340

1329

1433

1348

1314

1303

1276
f

1292

1281

1330

1314

1335

1324

1297

1313

1510

1302

1360

1359

1298

f

1303

1349

Code Cost
Path-length Weighted

Sequence Path-length
` gw(`)

123456788 1329
123457777 1340
123466677 1324
123555677 1351
123556666 1362
124445677 1330
124446666 1341
124455566 1325
124555555 1386
133345677 1281
133346666 1292

133355566 1276

133444566 1303
133445555 1314
134444455 1348
144444444 1433
222345677 1302
222346666 1313
222355566 1297
222444566 1324
222445555 1335
223334566 1303
223335555 1314
223344455 1298
223444444 1359
233333455 1349
233334444 1360
333333344 1510

s
s
s
s
s
s
s
s

s
s
s
s
s
s
s
s

s
s
s
s
s

s

s

s
s
s

s

s
The transitively reduced imbalance lattice for n = 9 showing,
for w = 〈 189 95 73 71 23 21 18 9 1 〉, the code cost gw(`) for
each path-length sequence `. The Huffman code 133355566,
with cost 1276, is the global minimum. The code 223344455,
with cost 1298, is a local minimum. (Because the graph shows
only the transitive reduction of the lattice, it omits some edges
corresponding to exchanges, but the minimum is localized.)

Fig. 5.1. Costs of all possible codes for the weights w = 〈 189 95 73 71 23 21 18 9 1 〉.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1899

For example, the example in Figure 5.1 can be traced through Figure 3.3 and
Table 2.2:

Huffman(〈 189 95 73 71 23 21 18 9 1 〉) = 〈 1 3 3 3 5 5 5 6 6 〉,
Huffman(〈 189 95 73 71 23 21 18 10 〉) = 〈 1 3 3 3 5 5 5 5 〉,
Huffman(〈 189 95 73 71 28 23 21 〉) = 〈 1 3 3 3 4 5 5 〉,
Huffman(〈 189 95 73 71 44 28 〉) = 〈 1 3 3 3 4 4 〉,
Huffman(〈 189 95 73 72 71 〉) = 〈 1 3 3 3 3 〉,
Huffman(〈 189 143 95 73 〉) = 〈 1 2 3 3 〉,
Huffman(〈 189 168 143 〉) = 〈 1 2 2 〉,
Huffman(〈 311 189 〉) = 〈 1 1 〉,
Huffman(〈 500 〉) = 〈 0 〉.

This dynamic programming definition is similar to the standard Huffman algo-
rithm, but it differs in a few ways. First, it considers only upper and lower expansions
of Huffman(w_); we prove momentarily that this is sufficient. Second, it produces a
unique Huffman code, which is the most balanced possible because it uses lower expan-
sions whenever possible. (This avoids the issue of multiplicity of solutions that arises in
implementation of the standard Huffman algorithm. For example, if w = 〈 3 2 2 1 〉,
then 〈 1 2 3 3 〉 is a Huffman code, but the more balanced sequence 〈 2 2 2 2 〉 is also
and will be produced by the algorithm above.)

Actually, the definition of Huffman(w) can be “simplified” somewhat. Note that
when

` = Huffman(w_) = 〈 · · · (q−j)
2k︷ ︸︸ ︷

q · · · q 〉

with suffix length 2k and suffix increment j, the condition on better expansion(`,w)
is

gw(`+) ≤ gw(`+)
⇔ gw(`) + wn−2k−1 − (j−1)wn−2k + q wn ≤ gw(`) + wn−1 + (q + 1)wn
⇔ wn−2k−1 − (j−1)wn−2k ≤ wn−1 + wn.

Going further, the proof of Theorem 5.5 below implies that this condition actually
can be simplified to take j = 1, so that better expansion(`,w) = `+ if wn−2k−1 ≤
wn−1 + wn.

Theorem 5.4. Huffman(w) is the most balanced optimal code for w.
Proof. Let s = Huffman(w), so that s is the cheaper of Huffman(w_)+ and

Huffman(w_)+, or is the former (which is more balanced) if they have equal cost.
Only these two expansions need be considered. Like the usual Huffman algorithm,

this algorithm assigns wn−1 and wn maximal path length. Therefore (wn−1 + wn)
must appear in the “suffix” of w_, i.e., among the 2k + 1 final entries, where 2k is
the suffix length of ` = Huffman(w_); and so it has path length either (q − 1) or q,
corresponding to the two possible expansions. Thus only Huffman codes are derived
with the algorithm above.

Submodularity of gw
mon now proves that there is a unique most balanced Huff-

man code (and thus greedy search will find this code). Suppose that s and t are
maximally balanced Huffman codes that are noncomparable in the balance ordering.
Then gw

mon(t) = gw(t) = gw(s). Because t is optimal gw
mon(s∨ t) = gw

mon(t).

1900 D. STOTT PARKER AND PRASAD RAM

Submodularity of gw
mon then implies that gw

mon(s∧ t) ≤ gw
mon(s). By the defini-

tion of gw
mon, gw

mon(s∧ t) = gw
mon(s). But then s∧ t is optimal—hence a Huffman

code—and it is more balanced than both s and t. This gives a contradiction.
Theorem 5.5. Huffman(w_) = Huffman(w)−.
Proof. We prove this by induction on the length n of w. The base case n = 2 is

trivial.
For the induction step, let s = Huffman(w), so by the previous theorem s is the

most balanced optimal code for w. Let ` = Huffman(w_). Since w_ has length
(n− 1), ` is the most balanced optimal code for w_ by the induction hypothesis. By
definition s is the better (cheaper or more balanced if equally cheap) of `+ or `+. We
consider two possibilities.

First, if s = `+, then ` = s− as required, because ` = (`+)− by Theorem 3.9.
Second, if s = `+, then wn−2k−1 − (j−1)wn−2k ≤ wn−1 + wn, where 2k is

the suffix length of `, j is its suffix increment, and by Theorem 3.1, j ≤ log2(2k) or
equivalently 2j−1 ≤ k. If j = 1 we find again ` = s− as required.

We now claim that j > 1 cannot arise in this second possibility where s = `+.
Let us first understand intuitively why this is so. When the suffix length j > 1,
` = 〈 · · · (q−j) q · · · q 〉 describes a tree that is perfectly balanced over its suffix,
but the rest is at least j levels shorter. The Huffman algorithm will construct such
a tree only when the final 2k weights of w_ are all of similar size, but wn−2k−1

is much larger. Specifically, wn−1 + wn < wn−2k−1, and wn−2k−1 is constrained to
be 2j−1 larger than the sum of the subsequent weights, or the Huffman algorithm
would construct a different tree. But wn−2k−1 is also constrained to be small by the
inequality in the definition of the Huffman algorithm; if it becomes too large, we get
s = `+ instead of s = `+. These two constraints turn out not to be simultaneously
satisfiable when j > 1.

Suppose that j > 1 and s = `+; then, since wn−1 + wn < wn−2k−1 we have two
cases.

1. wn−3 ≥ wn−1 + wn.
Let W = wn−3. Then wn−2k−1 > wn−2k+(2j−1−1)W and 2W ≥ wn−2k ≥
W , since j > 1 implies 2k ≥ 4 by Theorem 3.1, `n−2k−1 = (q − j), and
` = Huffman(w_) is constructed by the Huffman algorithm. These give the
first bound

wn−2k−1

wn−2k
> 1 + (2j−1 − 1)/2 = 2j−2 + 1/2.

However, from wn−2k−1 − (j−1)wn−2k ≤ wn−1 + wn it follows that

wn−2k−1 > wn−2k + (2j−1 − 1)W
≥ wn−2k + (2j−1 − 1) (wn−1 + wn)
≥ wn−2k + (2j−1 − 1) (wn−2k−1 − (j−1)wn−2k).

When j = 2, this simplifies to wn−2k−1 > wn−2k−1, a contradiction. When
j > 2, it gives the second bound

wn−2k−1

wn−2k
<

(j−1) − 1/(2j−1 − 1)

1 − 1/(2j−1 − 1)
.

However this contradicts the first bound for all j > 2.
2. wn−2k−1 > wn−1 + wn > wn−3.

This is like the previous case, but this time when W = wn−3 we can derive

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1901

only the weaker condition W > (wn−1 +wn)/2, because wn−3 ≥ wn−1 ≥ wn.
Still, the same first bound, essentially the second bound (with (2j−1 − 1)
divided by 2), and the same contradictions, are derivable.

Thus all cases reach a contradiction, implying as required that, in the second possi-
bility, j = 1 and ` = s−.

5.3. The importance of submodularity in dynamic programming. To-
gether, Theorems 5.4 and 5.5 show that Huffman coding (finding the most balanced
code that minimizes gw

mon) is a dynamic programming problem that can be solved
in various ways, because the problem enjoys elegant recursive properties.

Huffman coding gives another example of a dynamic programming problem that
can be sped up considerably because the objective function is submodular over the
solution space. Lawler [24] remarked:

If a discrete optimization problem can be solved efficiently, it is quite
likely that submodularity is responsible. In recent years there has
been a growing appreciation of the fact that submodularity plays a
pivotal role in discrete optimization, not unlike that of convexity in
continuous optimization.

Submodularity has a long history in dynamic programming. By 1781, Monge had
found a form of submodularity to be important in simplifying the transportation
problem [17]. In 1970, Edmonds [6] related submodularity to matroids and greedily
solvable optimization problems. In 1980, Yao [42] generalized upon Knuth’s famous
O(n2) algorithm for optimum binary search trees [21] by giving an O(n2) algorithm
for the dynamic programming problem

c(i, i) = 0,
c(i, j) = w(i, j) + min i<k≤j (c(i, k − 1) + c(k, j)) (i < j);

w(i, j) ≤ w(i′, j′) (i′ ≤ i ≤ j ≤ j′),
w(i, j) + w(i′, j′) ≤ w(i′, j) + w(i, j′) (i ≤ i′ ≤ j ≤ j′).

Yao called the final constraint the quadrangle inequality, noting that it implies the
(inverse) triangle inequality. Writing I = [i, j] and J = [i′, j′], defining a lattice of
intervals of indices in the dynamic programming array, these two constraints require
the function W ([a, b]) = −w(a, b) to be monotone decreasing (W (I) ≥W (J) if I ⊆ J)
and submodular (W (I) + W (J) ≥ W (I ∩ J) + W (I ∪ J)). Results from exploiting
the quadrangle inequality in dynamic programming appear in [2, 7, 35] for problems
ranging from DNA sequencing to minimum cost matching.

Mirroring Theorem 4.7, the Monge condition wi,j + wi+1,j+1 ≤ wi+1,j + wi,j+1

on an n × n weight matrix W is also equivalent to the requirement that, ignoring
its first column and row, the matrix ∂ W ∂ > is nonpositive. Burkard, Klinz,
and Rudolf [4], compiled a comprehensive survey of many incarnations of the Monge
condition.

Recently Klein [20] explored the connection between dynamic programming and
submodularity. Golin and Rote [14] developed dynamic programming algorithms
for prefix codes when the codeword letters have differing costs, a useful case not
handled by Huffman’s algorithm; they recently extended this work to exploit the
Monge property.

6. Other applications. The results here also can be used to gain further insight
about submodular dynamic programming, the Huffman coding problem, and perhaps

1902 D. STOTT PARKER AND PRASAD RAM

also about the applications of lattice concepts in coding. Almost all of the theorems
proved here admit interesting extensions and/or special cases. For example, a direct
corollary of Theorem 4.3 (using w = 〈 1 · · · 1 〉) is that the function mapping a path-
length sequence to its level of balance is submodular on the imbalance lattice. It
would be interesting to extend the work here for the t-ary codes discussed in [19].

Majorization, we believe, can be exploited further in characterizing optimal codes.
We have established that the imbalance ordering on tree path-length sequences ` is
isomorphic to the majorization ordering on exponentiated tree path-length sequences
x = 2−`. Thus any function that is Schur convex (i.e., “majorization-preserving”:
monotone with respect to the majorization ordering) on exponentiated path-length
sequences and hence monotone on the (continuous) majorization lattice will also be
monotone on the (discrete) imbalance lattice. Negative entropy is an important ex-
ample of such a function; related functions are discussed in [32].

Furthermore, the methods developed above hold out hope for entirely new ap-
proaches to Huffman coding. We sketch two possibilities.

6.1. Continuous approximation of Huffman codes. One possibility is that
we can attack the combinatorial problem of Huffman coding with a continuous, real-
valued optimization problem. Recall that Huffman coding can be expressed as an
optimization problem:

minimize

n∑
i=1

wi `i

subject to

n∑
i=1

2−`i = 1, `i > 0, integer (1 ≤ i ≤ n).

Dropping the integrality constraint gives an interesting continuous relaxation of Huff-
man coding that can be attacked numerically. For example, by treating the constraint
as a penalty function, the problem above can be solved numerically with something like
the system of equations ∂/∂`j

(∑n
i=1 wi `i + 1010 (1 − ∑n

i=1 2−`i)2
)

= 0 (1 ≤
j ≤ n). Using the example weight sequence w = 〈 189 95 73 71 23 21 18 9 1 〉 studied
earlier, a simple program found a unique real solution

` ≈ 〈 1.4 2.4 2.8 2.8 4.4 4.8 4.8 5.8 9.0 〉
for these equations, with objective ≈ 1241. As expected, this solution is near the
optimal Huffman code 〈 1 3 3 3 5 5 5 6 6 〉, with cost 1276.

When the relaxation is faithful to the original, it will be possible to find optimal
solutions quickly. The relaxed solution can be used to jump to the right neighborhood
in the imbalance lattice, from which balancing exchanges will walk to the optimal
code. The penalty function could clearly be varied, and perhaps could be changed to
encourage near-integral solutions.

Interior point methods on the majorization lattice may also be possible. Among
other things, it may be possible to define s ∧ t in terms of −log2

(
2−s u 2−t

)
and

s ∨ t in terms of −log2

(
2−s t 2−t

)
: they are often identical and always satisfy

2−s ∧ t � 2−s u 2−t, 2−s t 2−t � 2−s ∨ t

(because 2−s u 2−t and 2−s t 2−t are the glb and lub with respect to majorization).
For perspective, if α = 7− log2(12) ≈ 3.4150375 and β = (α− 1), the following

set of examples represent the unusual cases with n = 9 where −log2

(
2−s u 2−t

) 6=

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1903

(s ∧ t) or −log2

(
2−s t 2−t

) 6= (s ∨ t).

s t −log2

(
2−s u 2−t

)
s ∧ t

〈 1 2 4 5 5 5 5 5 5 〉 〈 1 3 3 3 4 5 6 7 7 〉 〈 1 3 3 α 5 5 5 5 5 〉 〈 1 3 3 4 4 5 5 5 5 〉
〈 1 2 4 5 5 5 5 5 5 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 2 2 2 α 5 5 5 5 5 〉 〈 2 2 2 4 4 5 5 5 5 〉
〈 1 3 4 4 4 4 4 5 5 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 2 2 β 4 4 4 4 5 5 〉 〈 2 2 3 3 4 4 4 5 5 〉

s t −log2

(
2−s t 2−t

)
s ∨ t

〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 4 5 6 7 7 〉 〈 1 4 β 3 4 5 6 7 7 〉 〈 1 3 3 3 4 5 6 7 7 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 4 6 6 6 6 〉 〈 1 4 β 3 4 6 6 6 6 〉 〈 1 3 3 3 4 6 6 6 6 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 3 5 5 5 6 6 〉 〈 1 4 β 3 5 5 5 6 6 〉 〈 1 3 3 3 5 5 5 6 6 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 4 4 4 5 6 6 〉 〈 1 4 β 4 4 4 5 6 6 〉 〈 1 3 3 4 4 4 5 6 6 〉
〈 1 4 4 4 4 4 4 4 4 〉 〈 2 2 2 4 4 5 5 5 5 〉 〈 1 4 β 4 4 5 5 5 5 〉 〈 1 3 3 4 4 5 5 5 5 〉

These examples suggest there may be algorithms that “round up”−log2

(
2−s u 2−t

)
to give s ∧ t, and “round down” −log2

(
2−s t 2−t

)
to give s ∨ t.

6.2. Practical applications in adaptive coding. In many practical situations
it is difficult or impossible to know a priori the weights w used in Huffman coding. A
natural idea, which occurred independently to Faller [8] and Gallager [11], is to allow
the weights to be determined dynamically and to have the Huffman code “evolve”
over time. Dynamic Huffman coding is the strategy of repeatedly constructing the
Huffman code for the input so far and using it in transmitting the next input symbol.
Knuth presented an efficient algorithm for dynamic Huffman coding in [22], and his
performance results for the algorithm show it consistently producing compression very
near (though not surpassing) the compression attained with static Huffman code for
the entire input.

Vitter [40, 41] then developed a dynamic Huffman algorithm that improves on
Knuth’s in the following way: rather than simply revise the Huffman tree after each
input symbol, Vitter also finds a new Huffman tree of minimal external path length∑
i `i and height maxi `i. With this modification Vitter was actually able to surpass

the performance of static Huffman coding on several benchmarks.
A small contribution we can make is to clarify the improvement of Vitter. Basi-

cally, Vitter’s algorithm differs from Knuth’s in constructing the optimal path-length
sequence that is also as balanced as possible. Note that minimizing the external path
length

∑
i `i is identical to maximizing the level of balance. Since there can be more

than one optimal code, and unnecessary imbalance tends to penalize the symbol cur-
rently being encoded, insisting on maximally balanced codes improves performance.

Another contribution of the lattice perspective here is to encourage development
of new adaptive coding schemes. As suggested in section 5.1, a move between ad-
jacent points in the lattice corresponds to minor alteration of codes, and by moving
through the lattice we incrementally modify the cost of a code. Hill-climbing then
gives greedy coding algorithms, and online hill-climbing gives adaptive coding algo-
rithms. Although we have shown that the codes produced by hill-climbing are not
guaranteed to be optimal, lattice-oriented adaptive coding algorithms may still have
a role to play in some coding situations, since the Huffman notion of optimality is not
really what is needed in the (currently popular and enormously important) adaptive
context.

For example, adaptive coding algorithms can start at any point in the lattice, as
long as both ends of the communication know which one. Rather than rely on the
dynamic Huffman algorithm to derive reasonable operating points for the code, or rely
on Knuth’s “windowed” algorithm [22], one can immediately begin with a mutually

1904 D. STOTT PARKER AND PRASAD RAM

agreed upon, “reasonable” initial code (depending on the type of information being
transmitted), and then adapt this code using some mutually agreed upon greedy
algorithm for moving in the imbalance lattice.

Acknowledgments. We are very grateful to Pierre Hasenfratz for insightful
comments that improved this paper. A conversation with Mordecai Golin, who pro-
vided us with an expanded version of [14], inspired us to discuss dynamic programming
explicitly in this paper. He also pointed out the survey [4] to us. Also, we are in-
debted to two anonymous referees for clarifications of the exposition, especially of the
significance of submodularity and of Shannon’s work [38].

REFERENCES

[1] J. Abrahams, Code and parse trees for lossless source encoding, in Proc. Compression & Com-
plexity of Sequences (SEQUENCES’97), Positano, Italy, 1997, IEEE Press, Piscataway,
NJ, to appear.

[2] A. Aggarwal, A. Bar-Noy, S. Khuller, D. Kravets, and B. Schieber, Efficient minimum
cost matching and transportation using the quadrangle inequality, J. Algorithms, 19 (1995),
pp. 116–143.

[3] A. Berman and R.J. Plemmons, Nonnegative matrices in the mathematical sciences, SIAM,
Philadelphia, PA, 1994.

[4] R.E. Burkard, B. Klinz, and R. Rudolf, Perspectives of Monge properties in optimization,
Discrete Appl. Math., 70 (1996), pp. 95–161.

[5] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University
Press, Cambridge, UK, 1990.

[6] J. Edmonds, Submodular Functions, Matroids and Certain Polyhedra, in Combinatorial Struc-
tures and Their Applications, R. Guy et al., eds., Gordon & Breach, New York, 1970,
pp. 69–87.

[7] D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano, Sparse dynamic programming. II.
Convex and concave cost functions, J. ACM, 39 (1992), pp. 546–567.

[8] N. Faller, An adaptive system for data compression, Record of the 7th Asilomar Conference
on Circuits, Systems, and Computers, Pacific Grove, CA, 1973, pp. 593–597.

[9] S. Fujishige, Submodular Functions and Optimization, North-Holland Elsevier, Amsterdam,
1991.

[10] R.G. Gallager, Information Theory and Reliable Communications, John Wiley, New York,
1968.

[11] R.G. Gallager, Variations on a theme by Huffman, IEEE Trans. Inform. Theory, IT-24
(1978), pp. 668–674.

[12] E.N. Gilbert, Codes based on inaccurate source probabilities, IEEE Trans. Inform. Theory,
IT-17 (1971), pp. 304–314. g(N) is analyzed on p. 309.

[13] C.R. Glassey and R.M. Karp, On the optimality of Huffman trees, SIAM J. Appl. Math., 31
(1976), pp. 368–378.

[14] M.J. Golin and G. Rote, A dynamic programming algorithm for constructing optimal prefix-
free codes for unequal letter costs, in Proc. ICALP 95, Z. Fulop and F. Gecseg, eds.,
Springer-Verlag, New York, 1995, pp. 256–267.

[15] R.L. Graham, Applications of the FKG inequality and its Relatives, in Mathematical Program-
ming: The State of the Art, B. Korte, A. Bachem, and M. Grötschel, eds., Springer-Verlag,
New York, 1983, pp. 115–131.

[16] G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities, Cambridge University Press,
Cambridge, UK, 1934.

[17] A.J. Hoffman. On Simple Linear Programming Problems, in Convexity, Proc. Seventh Sym-
posium in Pure Mathematics, Vol. VII, V. Klee, ed., AMS, 1961, pp. 317–327.

[18] D.A. Huffman, A method for the construction of minimum redundancy codes, Proc. IRE, 40
(1951), pp. 1098–1101.

[19] F.K. Hwang, Generalized Huffman trees, SIAM J. Appl. Math., 37 (1979), pp. 124–127.
[20] C.M. Klein, A submodular approach to discrete dynamic programming, European J. Opera-

tional Research, 80 (1995), pp. 145–155.
[21] D.E. Knuth, Optimum binary search trees, Acta Inform., 1 (1971), pp. 14–25.
[22] D.E. Knuth, Dynamic Huffman coding, J. Algorithms, 6 (1985), pp. 163–180.

HUFFMAN CODING AS SUBMODULAR OPTIMIZATION OVER A LATTICE 1905

[23] E. Lawler, Combinatorial Optimization: Networks & Matroids, Holt-Rinehart-Winston, New
York, 1976.

[24] E.L. Lawler, Submodular Functions & Polymatroid Optimization, in Combinatorial Op-
timization: Annotated Bibliographies, A.H.G. Rinnooy Kan, M. O’hEigeartaigh, and
J.K. Lenstra, eds., John Wiley & Sons, New York, 1985, pp. 32–38.

[25] L. Lovász, Submodular functions and convexity, in Mathematical Programming: The State of
the Art, B. Korte, A. Bachem, and M. Grötschel, eds., Springer-Verlag, New York, 1983,
pp. 235–257.

[26] U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.
[27] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications,

Academic Press, New York, 1979.
[28] H. Narayanan, Submodular Functions and Electrical Networks, North-Holland Elsevier, Am-

sterdam, 1997.
[29] A. Ostrowski, Sur quelques applications des fonctions convexes et concaves au sens de I.

Schur (offert en homage à P. Montel), J. Math. Pures Appl., 31 (1952), pp. 253–292.
[30] J.M. Pallo, Enumerating, ranking and unranking binary trees, Computer Journal, 29 (1986),

pp. 171–175.
[31] J.M. Pallo, Some properties of the rotation lattice of binary trees, Computer Journal, 31

(1988), pp. 564–565.
[32] D.S. Parker, Conditions for optimality of the Huffman algorithm, SIAM J. Comput., 9 (1980),

pp. 470–489.
[33] D.S. Parker and P. Ram, Greed and Majorization, Technical Report CSD-960003, UCLA

Computer Science Dept., Los Angeles, 1996.
[34] D.S. Parker and P. Ram, A Linear Algebraic Reconstruction of Majorization, Technical

Report CSD-970036, UCLA Computer Science Dept., Los Angeles, 1997.
[35] U. Pferschy, R. Rudolf, and G.J. Woeginger, Monge matrices make maximization man-

ageable, Oper. Res. Lett., 16 (1994), pp. 245–254.
[36] G.-C. Rota, On the foundations of combinatory theory I. Theory of Möbius functions, Z.

Wahrscheinlichkeitstheorie, 2 (1964), pp. 340–368.
[37] I. Schur, Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantenthe-

orie, Sitzungsber. Berl. Math. Ges., 22 (1923), pp. 9–20.
[38] C.E. Shannon, The Lattice Theory of Information, Proc. IRE Trans. Information Theory, 1

(1950). Reprinted in Claude Elwood Shannon: Collected Papers, IEEE Press, Piscataway,
NJ, 1993.

[39] N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, New
York, 1995.

[40] J.S. Vitter, Design and Analysis of Dynamic Huffman Codes, J. ACM, 34 (1987), pp. 825–845.
[41] J.S. Vitter, Algorithm 673: Dynamic Huffman coding, ACM Trans. Math. Software, 15 (1989),

pp. 158–167.
[42] F.F. Yao, Efficient dynamic programming using quadrangle inequalities, in Proc. 12th Annual

ACM Symp. on Theory of Computing, Los Angeles, CA, 1980, pp. 429–435.

TRACTABILITY OF PARAMETERIZED COMPLETION PROBLEMS
ON CHORDAL, STRONGLY CHORDAL, AND

PROPER INTERVAL GRAPHS∗

HAIM KAPLAN† , RON SHAMIR‡ , AND ROBERT E. TARJAN§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1906–1922

Abstract. We study the parameterized complexity of three NP-hard graph completion problems.
The minimum fill-in problem asks if a graph can be triangulated by adding at most k edges. We

develop O(ckm) and O(k2mn+ f(k)) algorithms for this problem on a graph with n vertices and m
edges. Here f(k) is exponential in k and the constants hidden by the big-O notation are small and
do not depend on k. In particular, this implies that the problem is fixed-parameter tractable (FPT).

The proper interval graph completion problem, motivated by molecular biology, asks if a graph
can be made proper interval by adding no more than k edges. We show that the problem is FPT
by providing a simple search-tree-based algorithm that solves it in O(ckm)-time. Similarly, we show
that the parameterized version of the strongly chordal graph completion problem is FPT by giving
an O(ckm logn)-time algorithm for it.

All of our algorithms can actually enumerate all possible k-completions within the same time
bounds.

Key words. design and analysis of algorithms, parameterized complexity, chordal graphs,
proper interval graphs, strongly chordal graphs, minimum fill-in, physical mapping of DNA

AMS subject classifications. 68Q20, 68R15, 05C85

PII. S0097539796303044

1. Introduction. The focus of this paper is the parameterized complexity of sev-
eral graph completion problems. Many well-known NP-hard problems can be stated
with a parameter k so that they have polynomial-time algorithms when k is fixed. (For
example, given a graph, decide if it has a vertex cover of size at most k, an indepen-
dent set of size at least k, or pathwidth at most k.) The way the complexity depends
on k varies dramatically, however. Some problems (e.g., vertex cover and pathwidth)
can be solved in linear time when k is fixed, but for others (like independent set) the
best known algorithms require Ω(nk) steps. How the complexity depends on k can
be crucial for applications in which small, fixed parameter values are important, as in
the problems we study here.

Downey and Fellows initiated a systematic complexity analysis of such prob-
lems [1, 9, 10]. They called those parameterized problems that have algorithms of com-
plexity O(f(k)nα) (with α a constant) fixed-parameter tractable (FPT) and defined

∗Received by the editors May 6, 1996; accepted for publication (in revised form) November 4,
1997; published electronically May 26, 1999. Portions of this paper were presented at the 34th Annual
IEEE Symposium on the Foundations of Computer Science, Santa Fe, NM, 1994, and were published
as Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-
in and physical mapping in Proceedings of the 35th Symposium on Foundations of Computer Science,
IEEE Computer Science Press, Los Alamitos, CA, 1994, pp. 780–791.

http://www.siam.org/journals/sicomp/28-5/30304.html
†AT&T Labs Research, 180 Park Ave, Florham Park, NJ 07932 (hkl@research.att.com).
‡Department of Computer Science, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv 69978, Israel (shamir@math.tau.ac.il). The work of this author was supported in part by a
grant from the Ministry of Science and the Arts, Israel.
§Department of Computer Science, Princeton University, Princeton, NJ 08544, and InterTrust

Technologies Corporation, Sunnyvale, CA 94086 (ret@cs.princeton.edu). The research of this author
at Princeton University was partially supported by NSF grant CCR-8920505 and Office of Naval
Research contract N00014-91-J-1463.

1906

PARAMETERIZED COMPLETION PROBLEMS 1907

a hierarchy of parameterized decision problem classes, FPT ⊆ W [1] ⊆ W [2] ⊆ · · ·,
with appropriate reducibility and completeness notions. They also conjectured that
each of the containments in this hierarchy is proper. (See [1, 9, 10] for definitions and
details.) Thus, for example, vertex cover and pathwidth are in FPT [3, 11, 24], but
independent set is W [1]-complete [1] and bandwidth is W[t]-hard for all t [4].

Let Π be a family of graphs such that Kn ∈ Π for every n. The Π-completion
problem is defined as follows. Given a graph G = (V,E), find a smallest set of edges
A such that G = (V,E ∪ A) ∈ Π. The parameterized version of the Π-completion
problem, denoted by Π-completion(k), asks whether there exists an edge set A such
that |A| ≤ k and G = (V,E ∪A) ∈ Π.

In this paper we study the parameterized complexity of Π-completion(k) for three
graph families Π; namely, chordal, proper interval, and strongly chordal graphs.

A graph is chordal (or triangulated) if every cycle of length four or more contains
a chord (an edge between nonadjacent vertices on the cycle). The chordal comple-
tion problem is also known as the minimum fill-in problem and has received a lot of
attention in the past due to its importance in sparse matrix computation (cf. [17]).
Rose [33] has shown that for a sparse, symmetric matrix, finding an order of Gaus-
sian elimination steps on diagonal elements that minimizes the number of nonzeros
generated in the elimination process (assuming no lucky cancellation of nonzeros) is
equivalent to solving the minimum fill-in problem on a corresponding graph.

Yannakakis [41] has shown that minimum fill-in is NP-complete. We focus here
on chordal completion(k) or fill-in(k), the parametrized version of the problem as
defined above. Here k is fixed (to be thought of as a small constant) and is not part
of the input. For a graph with n vertices and m edges, the problem can be solved
by enumeration in O(n2km)-time, but we seek an algorithm with better dependence
on k. In section 2 we describe two such algorithms. We first present a fairly simple,
O(ckm)-time search-tree-based algorithm, which already implies that the problem
is in FPT. The same technique was previously used by Downey and Fellows [11]
to prove parameterized tractability of vertex cover, dominating set in planar graph,
feedback vertex set, and face cover number of planar graph. We then develop a more
involved algorithm that gives a stronger complexity result: its multiplicative factor
depending on k is polynomial, and the exponential in k appears only as an additive
factor. Specifically, this algorithm has complexity O(k2nm + f(k)), where f(k) is
exponential in k. For appropriate values of k (growing with the graph size), this
algorithm will beat the simple algorithm. Here and throughout the paper we specify
the dependence of the complexity on k explicitly, and the constants hidden by the
big-O notation do not depend on k.

The second part of the paper deals with the parameterized complexity of the
proper interval completion (PIC) problem. An interval graph is a graph for which one
can assign an interval on the real line to each vertex so that two vertices are adjacent iff
their intervals intersect. It is a unit interval graph if all intervals assigned have equal
length. It is proper interval if it has an assignment in which no interval properly
contains another. The last two notions are equivalent for finite graphs [30]. Interval
completion problems arise in molecular biology and in the human genome project. In
physical mapping of DNA, a set of long contiguous intervals of the DNA chain (called
clones) is given, together with experimental information on their pairwise overlaps.
The goal is to build a map describing the relative position of the clones [7, 27, 22, 4].
We concentrate here on the biologically important case in which all clones have equal
length. In the presence of “false negative” errors (unidentified overlaps) the problem of

1908 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

building a map with fewest errors is equivalent to PIC. This problem is NP-hard [18].
But what about its complexity for a small fixed number of errors? Let PIC(k) be the
parameterized version of the problem, in which one asks for an augmenting set with
no more than k edges if one exists. We prove parameterized tractability of PIC(k) by
providing an O(ckm)-time algorithm.

The third part of the paper considers the parameterized version of the strongly
chordal completion problem (SCC(k)). The class of strongly chordal graphs was de-
fined and characterized by Farber [12]. Denote by N(v) the set of neighbors of a
vertex v, including v itself. A perfect elimination ordering of a graph G = (V,E) is an
ordering v1, v2, . . . , vn of V with the property that for each i, j, and l, if i < j, i < l,
and vl, vj ∈ N(vi), then vl ∈ N(vj). Rose [31] has shown that a graph is chordal
iff it admits a perfect elimination ordering. A strong elimination ordering of a graph
G = (V,E) is an ordering v1, v2, . . . , vn of V with the property that for each i, j, k,
and l, if i < j, k < l, vk, vl ∈ N(vi), and vk ∈ N(vj), then vl ∈ N(vj). A graph
is strongly chordal if it admits a strong elimination ordering. It is easy to see that
every strong elimination ordering is also a perfect elimination ordering, and thus every
strongly chordal graph is also a chordal graph. In addition every interval graph is
strongly chordal. One can obtain a strong elimination order for an interval graph G by
fixing a representation R of G and ordering the vertices in increasing right-endpoint
order of their intervals in R. Interest in strongly chordal graphs arises in several ways.
First, the problems of locating minimum weight dominating sets and minimum weight
independent dominating sets in strongly chordal graphs with real vertex weights can
be solved in polynomial time, whereas each of these problems is NP-hard for chordal
graphs [13]. Second, these graphs have surprisingly nice structural properties and are
intimately related to the class of totally balanced matrices [2]. We show that SCC(k)
is FPT by describing an O(ckm log n)-time algorithm for it.

Section 2 contains the algorithms for chordal completion. Section 2.1 describes
the simple search-tree–based algorithm, and section 2.2 gives the details of the more
involved O(k2nm+f(k))-time algorithm. Section 3 extends the search tree algorithm
of section 2.1 to solve PIC(k), and section 4 extends it to solve SCC(k). These
extensions require additional ideas in order to handle the obstructions characterizing
each particular graph family. Section 5 contains a summary and suggestions for some
further research.

2. Minimum fill-in. In this section we present two algorithms for fill-in(k).
In section 2.1 we begin by describing an O(ckm)-time algorithm for the problem.
Then in section 2.2 we use additional new ideas to develop an O(k2nm+ f(k))-time
algorithm. Which of these algorithms is faster depends on the size of k compared to
n and m. Both algorithms can actually enumerate all minimal k-triangulations of the
input graph within the same time bounds.

We will use the following notation. Let G = (V,E) be an undirected graph. For
X ⊆ V , we denote by GX the subgraph of G induced by the vertex set X. We define
the length of a path (cycle) as the number of edges on the path (cycle). A triangulation
of a graph G = (V,E) is a set of edges F where E ∩ F = ∅ and G̃ = (V,E ∪ F) is a
chordal graph. We will also say that the set of edges F triangulates G. If |F | ≤ k, then
F is a k-triangulation. We shall also refer to G̃ as a triangulation of G when there is
no confusion. We assume without loss of generality that G is connected and n ≥ 2;
thus n = O(m). A triangulation F is minimal if no proper subset of F triangulates G.

2.1. A linear algorithm for fixed k . A triangulation of a chordless cycle C
is a set T of chords of C such that there is no induced chordless cycle in C ∪ T . We

PARAMETERIZED COMPLETION PROBLEMS 1909

shall characterize and count the number of minimal triangulations of a cycle C. We
call a cycle an l-cycle if it contains l vertices. A triangle is a 3-cycle. The proof of the
following lemma is straightforward by induction.

Lemma 2.1. A minimal triangulation T of an n-cycle C consists of n−3 chords.
It partitions C into n− 2 triangles. Any two of these triangles are either disjoint or
share a chord. Every chord in T is shared by exactly two triangles.

The following lemma is well known (cf. [34] and the proof of Lemma 4.3, which
is similar).

Lemma 2.2. There is a 1-1 correspondence between the minimal triangulations
of a cycle with l vertices and the binary trees with l − 2 internal nodes.

Denote by cl the lth Catalan number, i.e., cl = (2l
l) 1

l+1 . Note that cl < 4l. Denote
the number of binary trees with n internal nodes by bn. The value bn satisfies the
recurrence b0 = 1, bn =

∑
i+j=n−1 bibj for n ≥ 1. The solution to this recurrence is

bn = cn (cf. [19]). Thus the following lemma is implied by Lemma 2.2.

Lemma 2.3. The number of minimal triangulations of an l-cycle is cl−2 ≤ 4l−2.

The algorithm will traverse part of a search tree in which each node corresponds
to a supergraph of G. This search tree is defined as follows. The graph G itself corre-
sponds to the root of the tree. In order to generate the children of an internal node x
that corresponds to a graph G′, one needs to find a chordless cycle C in G′. Node x
will have a child for each minimal triangulation of C. The graph corresponding to a
child is obtained by adding the corresponding minimal triangulation to G′. If |C| = l,
by Lemma 2.3 node x will have cl−2 children. Each leaf of the tree corresponds to a
chordal supergraph of G. Note that every minimal triangulation of G is represented
by at least one leaf.

One can find a chordless cycle C in a nonchordal graph with m edges in O(m+n)-
time by the maximum cardinality search (MCS) algorithm described in [37, 38]. Using
the algorithm described in [35] and the mapping described in Lemma 2.2, one can
generate all minimal triangulations in O(|C|)-time per triangulation.

The algorithm actually visits only the nodes of the search tree that correspond
to supergraphs of G with no more than k additional edges. If one such node is a leaf,
then we have found a k-triangulation. Otherwise, no such triangulation exists.

Theorem 2.4. All minimal k-triangulations of a graph G can be found in
O(24km)-time.

Proof. Let T be the subtree of the search tree traversed by the algorithm. For a
node x ∈ T let Gx = (V,Ex) be the corresponding supergraph of G, dx the maximum
length of a path from x to a leaf of T , and ax = max({|El| − |Ex| | l is a leaf
descendant of x}). Denote by lx the total number of leaves among the descendants
of x. By induction we prove that lx ≤ 4dx+ax . Thus the total number of nodes
in T is bounded by 2 · 42k. For each such node a linear amount of time is spent,
consisting of the time to generate it and the time to find a chordless cycle in the
graph corresponding to it.

Here is the induction argument. Assume the claim is true for all the chil-
dren of a node x. Let l be the length of the cycle detected at x. Let dmax =
max{dy | y is a child of x}, and let amax = max{ay | y is a child of x}. Using the
induction hypothesis, the number of leaf descendants of any of the cl−2 children of x
is bounded by 4dmax+amax . Thus the total number of leaf descendants of x is bounded
by 4l−24dmax+amax = 4dmax+1+amax+l−3 = 4dx+ax . The last equality follows from the
fact that the size of a minimal triangulation of a chordless l-cycle is l − 3, as stated
in Lemma 2.1.

1910 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

The algorithm for enumerating minimal k-triangulations can actually list the same
triangulation several times. We can eliminate this redundancy by storing solutions
in a table and checking each new solution to see if it has been found already. If we
use a k-dimensional search tree to store solutions, the extra time per search tree node
to test for redundancy is O(k log k). Using universal hashing [39] or dynamic perfect
hashing [16], the extra time per search tree node is O(k), but the algorithm becomes
randomized. These ideas apply equally well to the other enumeration algorithms
proposed in this paper.

2.2. An algorithm with a polynomial multiplicative factor. To achieve
an O(k2nm + f(k))-time bound for minimal k-triangulation, we first describe an
algorithm such that if G can be triangulated with no more than k edges, the algorithm
partitions the vertex set of G into two subsets A, B such that the size of A is O(k3)
and there are no chordless cycles in G that contain vertices in B. Then we prove that
obtaining a k-triangulation of G is equivalent to obtaining a (k − a)-triangulation of
A for some a ≥ 0.

2.2.1. Partitioning the graph. The algorithm uses three main procedures,
denoted P1, P2, P3, executed in sequence. These procedures are described below.

(P1) Extracting independent chordless cycles. This procedure starts with B =
V,A = ∅ and repeatedly finds a chordless cycle in GB using the MCS algorithm and
moves its vertices to A. Note that when P1 is finished, the induced subgraph on B is
chordal.

Let C1, . . . , Cj be the cycles extracted. The minimum number of chords needed
to triangulate each Ci is |Ci| − 3. The algorithm maintains a dynamic lower bound
cc on the minimum number of chords needed to triangulate G. After detecting the
chordless cycle Ci, it increases cc by |Ci| − 3. Thus, if at some point cc > k, the
algorithm can stop with a negative answer. Otherwise procedure P1 ends when there
are no more chordless cycles in B and cc =

∑j
i=1(|Ci| − 3) ≤ k.

The complexity of this part is O(km). The MCS algorithm runs in linear time and
the number of cycles detected is not greater than k since each cycle adds at least one
to the dynamic lower bound cc. The size of the set A after performing this procedure
is O(k).

(P2) Extracting related chordless cycles with independent paths. This procedure
looks for chordless cycles that intersect both parts of the current partition, A and B,
and contain at least two consecutive vertices in B, as long as such cycles exist. Let
C be such a cycle, |C| = l. If l > k + 3, the algorithm stops with a negative answer.
Otherwise every maximal subpath of C containing only vertices from B is moved into
A if its length is at least one. The increase to cc depends on the structure of C. We
need the following lemma in order to specify this increase precisely.

Lemma 2.5. Let C be a chordless cycle, and let p be a path in C of length l with
1 ≤ l ≤ |C| − 2. If l = |C| − 2, then in every minimal triangulation of C there are at
least l − 1 chords incident with at least one vertex of p. If l < |C| − 2, then in every
minimal triangulation of C there are at least l chords incident with at least one vertex
on p.

Proof. If l = |C| − 2, then every chord in a minimal triangulation of C is incident
with some vertex of p; thus the first part of the lemma holds. We prove the second
part by induction on the path length. Obviously there must be a chord incident with
at least one of the vertices on p; thus the lemma holds for paths of length one. Assume
the result is true for every path with length less than l. Let p be a path with length
l. Let (a, b) be a chord incident with p dividing the cycle C into two cycles C1, C2.

PARAMETERIZED COMPLETION PROBLEMS 1911

Case 1. a, b ∈ p. Let l1 be the length of the subpath of p that connects a and
b. Without loss of generality we can assume that l1 = |C1| − 1. Let p′ be the path
between the endpoints of p passing through (a, b) in C2, and let l2 = |p′|. There
must be at least l1 − 2 chords incident with p in C1 and according to the induction
hypothesis l2 chords incident with p′ in C2. Thus the total number of chords incident
with p will be at least (l1 − 2) + l2 + 1 = l.

Case 2. a ∈ p, b 6∈ p. Let p1 = p ∩ C1, p2 = p ∩ C2. For at least one i = 1, 2,
|pi| < |Ci| − 2. Without loss of generality assume that |p1| < |C1| − 2. By applying
the induction hypothesis and using the previous part of the lemma, we find that the
total number of chords incident with p is at least l1 + (l2 − 1) + 1 = l.

Suppose that C is a chordless l-cycle that contains j ≥ 1 disjoint maximal sub-
paths p1, . . . , pj , each of length at least one, that are in B. Let li = |pi|, i = 1, . . . , j.
Obviously if l1 = l − 2, then j = 1, i.e., there is only one such subpath. Otherwise
li < l − 2 for every 1 ≤ i ≤ j. Using the previous lemma, we can increase our
lower bound cc as follows. If there is only one such subpath, cc is increased by either
(l1 − 1) if l1 = l − 2 or l1 if l1 < l − 2. Otherwise cc is increased by the larger of
1
2

∑j
i=1 li (the factor 1

2 is needed because a chord can be counted twice in the sum)
and max{li | 1 ≤ i ≤ j}. P2 terminates whenever either cc is greater than k, in
which case it stops with a negative answer, or when there are no more cycles of the
appropriate kind.

In order to complete the description of P2 we need to specify how to detect a
chordless cycle C with consecutive vertices in B if such a cycle exists. The following
observation is useful.

Observation 2.6. There exists a chordless cycle C with at least two consecutive
vertices in B iff there exists an edge (x, y), x ∈ A, y ∈ B and a path between a vertex
in (N(y)−N(x)) ∩B and a vertex in N(x)−N(y) that avoids any other vertices in
N(x) ∪N(y).

One can detect whether such a path exists as follows: Delete N(x) ∩ N(y) and
(N(y) − N(x)) ∩ A from G. Find the connected components of G induced on the
other vertices. Check whether there is a vertex in (N(y) − N(x)) ∩ B and a vertex
in N(x)−N(y) in the same connected component. This process requires O(m)-time
per edge (x, y) and can be implemented so that if the path exists, then the process
will output a chordless cycle through (x, y) for which the other neighbor of y is also
in B.

Recall that the size of A after the execution of P1 is O(k). The number of vertices
added to A after the detection of each cycle by P2 is at most twice the increase to
cc. Since cc is never greater than k, the total number of vertices in A when P2 ends
remains O(k).

(P3) Adding essential edges in GA. For every nonadjacent pair of vertices y, z ∈ V
define Ay,z to be the set of all vertices x such that y, x, z appear consecutively on some
chordless cycle in G.

Lemma 2.7. If for some pair y, z ∈ A, (y, z) 6∈ E, |Ay,z| > 2k, then the edge
(y, z) is in every k-triangulation of G.

Proof. Assume that (y, z) is not in a k-triangulation G = (V,E) of G. Then there
must be a chord in E −E incident with each vertex in Ay,z. Since no more than two
such vertices can share a chord, |E − E| > k, which is a contradiction.

Edges (y, z) satisfying the lemma are called essential. For a triple y, x, z such
that (y, x) ∈ E, (x, z) ∈ E, (y, z) 6∈ E one can determine whether y, x, z appear
consecutively on some chordless cycle in linear time: They appear consecutively on

1912 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

a chordless cycle iff y and z are in the same connected component after deleting
N(x)− {y, z} from G.

P3 first calculates the sets Ay,z for every pair y, z ∈ A, (y, z) 6∈ E. Then for each
pair y, z ∈ A such that |Ay,z| > 2k, we add (y, z) to G′. Finally, we add to A all
vertices in each computed set Ay,z such that |Ay,z| ≤ 2k.

We now analyze the overall complexity of the partitioning scheme.

Lemma 2.8. (1) The execution of P2 takes O(knm)-time. (2) The execution of
P3 takes O(k2nm)-time.

Proof. (1) For each edge (x, y), x ∈ A, y ∈ B, it takes linear time to find a
chordless cycle through (x, y) with consecutive vertices in B. The size of A is always
O(k); thus the total number of edges incident with vertices of A is always O(kn). For
each such edge we may have to run the test mentioned above once, giving a total time
complexity O(knm).

(2) Since the size of A when P3 begins its execution is O(k), the number of triples
y, x, z such that (y, x), (z, x) ∈ E, (y, z) 6∈ E, y, z ∈ A, is O(k2n). For each triple we
need to check whether there exists a path between y and z after deleting N(x)−{y, z}
from G. As mentioned above, this can be done by identifying connected components
of G on the remaining vertices and then checking whether y and z are in the same
connected component.

Thus the overall complexity of the partitioning procedure is dominated by the
complexity of P3, which is O(k2nm). Before the call to P3, the size of the set A is
O(k). Procedure P3 may add O(k) additional vertices to A for each pair of vertices
in A prior to its execution so that we end up with O(k3) vertices in A.

Let Es be the set of essential edges detected by P3, and let G′ = (V,E ∪ Es).
Denote by A2, B2 the partition of the vertex set before the execution of P3 and by
A, B the final partition.

The following lemma will be useful in establishing the correctness of the parti-
tioning scheme and the completion algorithm.

Lemma 2.9. Let G = (V,E) be a graph and v ∈ V . Let F be a set of edges
between vertices of G such that

(1) each e ∈ F is a chord in a chordless cycle Ce of G,

(2) F ∩ E = ∅,
(3) v is not an endpoint of any e ∈ F .

Denote by G+ the graph obtained from G by adding the edges in F . If there exists a
chordless cycle C in G+ with v1, v, v2 occurring consecutively on C, then either there
exists a chordless cycle in G on which v1, v, v2 occur consecutively or there exists a
chordless cycle De = v, x1, . . . , xt, v in G such that the path p = x1, . . . , xt is part of
a cycle Ce for some e ∈ F , and p contains one of the endpoints of e.

Proof. For an e = (x, y) ∈ F let P 1
e and P 2

e denote the two paths on Ce between
x and y with x and y removed from each path. Since Ce is chordless, for every e such
that v ∈ Ce, v is not adjacent to any vertex either on P 1

e or on P 2
e .

Case 1. For every e ∈ F such that v 6∈ Ce, there exists a path Pe ∈ {P 1
e , P

2
e } such

that v is not adjacent in G to any vertex on Pe. Consider the cycle C. Replacing
every edge e ∈ F along C by Pe, one gets a cycle C ′ in G (not necessarily chordless or
simple) with the property that v is not adjacent to any vertex in C ′ −{v1, v2}. Since
edges in F are not incident with v, the edges (v, v1) and (v, v2) exist in G. Since C
is chordless, (v1, v2) 6∈ E. Thus C ′ contains a chordless cycle in G on which v1, v, v2

occur consecutively.

Case 2. For some e = (x, y) ∈ F , v is adjacent to a vertex u1 ∈ P 1
e and a vertex

PARAMETERIZED COMPLETION PROBLEMS 1913

u2 ∈ P 2
e . Since C is chordless in G+, v must be nonadjacent either to x or to y in G.

Without loss of generality assume v is not adjacent to x and that u1 and u2 are the
closest to x among all vertices on P 1

e and P 2
e , respectively, that are adjacent to v. De

is the chordless cycle in G consisting of the path between u1 and u2 through x on Ce
and v.

The correctness of the partitioning scheme is captured by the following theorem.
Theorem 2.10. When the partitioning procedure ends, the graph G′ has no

chordless cycles with vertices in B.
Proof. The proof is by contradiction. Suppose that there is a chordless cycle

C ∈ G′ such that C ∩ B 6= ∅, and let v be a vertex in C ∩ B. Denote by v1 and v2

the two neighbors of v on C. Cycle C must contain at least one essential edge since
otherwise C exists in G and either v would have been moved to A or (v1, v2) would
have been added as an essential edge. Let F be the set of essential edges on C. By
the definition of an essential edge, for each e = (x, y) ∈ F there is a chordless cycle
Ce in G in which e is a chord. Moreover, if P 1

e and P 2
e are the two paths connecting

x and y on Ce, then either P 1
e or P 2

e consists of a single vertex ze ∈ B2. Since v is in
B, it is not incident with any essential edge. Applying Lemma 2.9 we find that one
of the following things must happen.

(1) There exists in G a chordless cycle on which v1, v, v2 occur consecutively. Thus
either v should have been in A or (v1, v2) should have been added as an essential edge,
and we obtain a contradiction.

(2) There exists a chordless cycle De in G on which v and ze occur consecutively
for some e ∈ F . Since both v and ze are in B2, they both should have been moved to
A by P2, and again we obtain a contradiction.

2.2.2. Triangulating the graph. All that remains is to show that once we
have partitioned the graph, it suffices to look for (k− a)-triangulations of the smaller
graph with vertex set A, where a is the number of essential edges added during the
partitioning algorithm. This is the content of Theorem 2.13 below. In order to prove
the theorem we need some background and preliminary results.

We define the elimination of a vertex v from G as the operation that deletes v
from G and adds an edge between every nonadjacent pair among v’s neighbors. Let
α = v1, . . . , vn be an ordering of the vertices of a graph G = (V,E). We denote by
Gi, 0 ≤ i ≤ n the graph obtained from G after eliminating the first i vertices in α
(G0 = G). Let x and y be two vertices in G = (V,E). An x,y separator of G is a
set S ⊆ V − {x, y} such that when S is deleted from G, x and y occur in different
connected components.

The following characterization of minimal triangulations was proved by Ohtsuki,
Cheung, and Fujisawa.

Theorem 2.11 (see [28]). A triangulation F of G = (V,E) is minimal iff for
each (x, y) ∈ F , there exists no x, y separator S of G such that S is a clique of the
triangulated graph G̃ = (V,E ∪ F).

Using this theorem we prove the following lemma that is needed for the proof of
Theorem 2.13.

Lemma 2.12. Let F be a minimal triangulation of a graph G = (V,E). Any edge
in F is a chord in a chordless cycle of G.

Proof. Let v1, . . . , vn be a perfect elimination ordering of G̃ = (V,E ∪ F). We
use this ordering to eliminate vertices from G. Since F is minimal, for each edge
e = (u,w) ∈ F there exists an index k, k ≥ 1, such that e ∈ Gk but e 6∈ Gk−1.

We claim that u and w are connected in Gk−1 by a path such that none of its

1914 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

vertices is adjacent to vk. Here is the proof of the claim. Assume that no such path
exists. Then the set NGk−1

(vk) − {u,w} separates u and w in Gk−1. But it follows

from the definition of a perfect elimination ordering that this set is a clique in G̃k−1.
Since F is a minimal triangulation of G, we must also have that G̃k−1 is a minimal
triangulation of Gk−1. This contradicts Theorem 2.11 and the claim follows.

We obtain that e is a chord of a chordless cycle in Gk−1. This cycle consists of u,
vk, and w occurring consecutively and a shortest path between u and w that avoids
the neighborhood of vk in Gk−1. We finish the proof by showing that e is also a chord
of a chordless cycle of G. This is done by arguing that if C is a chordless cycle in Gj
for some j, 1 ≤ j ≤ n, then there exists a chordless cycle C ′ in Gj−1 that is either
identical to C or contains one additional vertex. If all the edges in C are in Gj−1,
then C ′ = C is a chordless cycle in Gj−1. Otherwise there is an edge (x, y) in C that
is not in Gj−1. For each such edge both its endpoints must be adjacent to vj . Of the
vertices on C only x and y can be adjacent to vj since otherwise C is not chordless
in Gj . Take C ′ to be C with the vertex vj added between x and y.

Theorem 2.13. Let A,B be a partition of the vertex set V of a graph G = (V,E)
such that the vertices of every chordless cycle in G are contained in A. A set of edges
F is a minimal triangulation of G iff F is a minimal triangulation of GA.

Proof. Let F be a minimal triangulation of GA. We need to prove that G̃ =
(V,E ∪ F) is chordal. Assume that G̃ is not chordal. Let C be a chordless cycle in
G̃. Since G̃ induced on A is chordal, C ∩B 6= ∅. By assumption, G does not contain
chordless cycles with vertices in B; hence C must not exist in G and thus it contains
at least one edge from F and |C ∩A| ≥ 2. Let v be a vertex in C ∩B. According to
Lemma 2.12, each edge e ∈ F is a chord in a chordless cycle Ce of G whose vertices
are in A. Since F is a minimal triangulation of GA, v is not an endpoint of any edge
in F . Using Lemma 2.9 we conclude that there must be a chordless cycle with v on
it in G, contradicting the assumptions of the theorem.

To prove the other direction, let F be a minimal triangulation of G. There exists
F ′ ⊆ F that is a minimal triangulation of GA. According to the first part of the
proof, F ′ also triangulates G. Since F is minimal, we conclude that F ′ = F .

2.2.3. Overall running time. The final step of the algorithm is to look for
(k − a)-triangulations in vertex set A, as justified by Theorem 2.13. One can find
one or all such triangulations by the algorithm described in section 2.1. Since the
size of A is O(k3), the running time for this step is O(k624k). The total time for
the three-step partitioning process is O(k2nm), giving a time bound for the entire
algorithm of O(k2nm + k624k). This algorithm has a better bound than the simple
algorithm only for k = Ω(log n). It would be a nice result to obtain an algorithm with
a running time of O(km+ f(k)). We leave this as an open problem.

3. Proper interval completion. A proper interval supergraph G = (V,E ∪F)
of a graph G = (V,E) with |F | ≤ k is called a k-proper interval supergraph of G.

The algorithm presented in section 2.1 can be easily modified to produce all
possible k-proper interval supergraphs of a graph, using the following observations.
Proper interval graphs are exactly the chordal graphs that do not contain any of
the three obstructions in Figure 3.1 as an induced subgraph [40]. Deng, Hell, and
Huang [8] have recently described an algorithm that checks whether a graph G is a
proper interval graph. In case G is indeed a proper interval graph the algorithm can
provide a proper interval representation for G. The running time of the algorithm
is O(m), and it does not use complicated data structures such as PQ-trees [5]. It is

PARAMETERIZED COMPLETION PROBLEMS 1915

y
yy y

v2

v1

v3 v4

(b)

y
y
yyy y

v1

v5

v4v6

v2 v3

(c)

yy
y y
y

y

v3v2

v4 v5

v6

v1

(a)

��
��PPPP

aaa
\
\
\�
�
�
!!
!

 J

J
J
J
J
J
JJ

�
�
��S

S
SS

Fig. 3.1. Obstructions for chordal graphs that are not proper interval. (a) Tent. (b) Claw. (c)
Net.

straightforward to check that in case the input graph is not a proper interval graph
one can use the information maintained by the algorithm to extract either a chordless
cycle or one of the obstructions in Figure 3.1 in linear time.

The k-completion algorithm will traverse part of a search tree defined as follows.
The graph G itself corresponds to the root of the tree. Let x be a node of the search
tree corresponding to a supergraph Gx of G that is not a proper interval graph. The
children of x are obtained as follows. The algorithm by Deng, Hell, and Huang is
applied to Gx to find either a chordless cycle or one of the obstructions in Figure 3.1.
If a chordless cycle C is found in Gx, then every minimal triangulation of C gives rise
to a child of x as in section 2.1. In case an obstruction is found, x has a child for
every edge e between vertices of the obstruction that is not part of the obstruction.
The supergraph corresponding to such a child is Gx ∪ {e}. Thus if the obstruction
found is a tent the node has six children, if it is a claw it has three, and if it is a net
it has nine.

Each leaf in the search tree thus defined corresponds to a proper interval super-
graph of G. Note that every minimal proper interval supergraph of G is represented
by at least one leaf. As in section 2.1, the nodes of the search tree that are actually
traversed correspond to supergraphs with no more than k additional edges. If one
such node is a leaf, then we have found a k-proper interval supergraph. Otherwise,
no such supergraph exists.

We summarize the result presented in this section in the following theorem. Its
proof is analogous to the proof of Theorem 2.4 and is hence omitted.

Theorem 3.1. All k-proper interval supergraphs of a graph can be found in
O(24km)-time.

Remark . Rose, Tarjan, and Lueker proved that if G = (V,E) is triangulated and
G = (V,E∪F) with F 6= ∅, F ∩E = ∅ is triangulated, then there exists an edge e ∈ F

1916 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

such that G = (V,E ∪ {e}) is also triangulated [32, Lemma 2]. Using this lemma,
while traversing the search tree as described above one can avoid generating non-
triangulated children of nodes that correspond to triangulations of G. Each minimal
proper interval completion of G is still guaranteed to be represented by at least one
leaf. In this version of the algorithm one uses the MCS algorithm to detect chordality
and find a chordless cycle as long as a chordal supergraph has not been reached. When
reaching a chordal supergraph, the algorithm by Deng, Hell, and Huang is applied to
get one of the obstructions in Figure 3.1. The children of the node are then generated
as described above. Finally, the MCS algorithm is applied to each of the children
in order to avoid traversing those that are not chordal. Those that are chordal are
further expanded. Such an implementation would use the algorithm of Deng, Hell,
and Huang only on chordal graphs and hence a somewhat simpler version of it would
suffice.

4. Strongly chordal completion. A chord (v, w) in an even cycle C is odd if
the paths connecting v and w on C contain an odd number of edges.

The following characterization of strongly chordal graphs is due to Farber [12].
Theorem 4.1. A graph G is strongly chordal iff G is chordal and every even

cycle of length at least six in G has an odd chord.
An odd chord in an even cycle C partitions C into two smaller even cycles C1 and

C2. Any odd chord in C1 or C2 is an odd chord in C as well. A 4-cycle decomposition
of an even chordless cycle C is a minimal set T of odd chords in C such that there is
no induced even chordless cycle of length at least six in C + T .

Next we characterize and count the number of minimal 4-cycle decompositions of
an even cycle C. Let |C| = n.

The proof of the following lemma is straightforward by induction.
Lemma 4.2. A minimal 4-cycle decomposition T of an even n-cycle C consists

of (n2 − 2) chords. It partitions C into (n2 − 1) 4-cycles. Every two of these 4-cycles
are either disjoint or share a chord. Every chord is shared by exactly two 4-cycles.

A ternary tree is a tree in which each internal node has three children. The follow-
ing theorem establishes a correspondence between the set of 4-cycle decompositions
of an even n-cycle and the set of ternary trees with n − 1 leaves and n

2 − 1 inter-
nal nodes. This correspondence is similar to the one stated in Lemma 2.2 between
minimal triangulations of a chordless n-cycle and binary trees with n− 1 leaves.

Lemma 4.3. The number of 4-cycle decompositions of an even n-cycle C is equal
to the number of ternary trees with n

2 − 1 internal nodes.
Proof. For every even n-cycle C, construct an invertible mapping from the set of

4-cycle decompositions of C to the set of ternary trees with n
2 − 1 internal nodes, as

follows. The construction is by induction on the length of the cycle. Assume that one
has constructed an invertible mapping for every cycle C ′, where |C ′| ≤ n − 2. Let
C be an n-cycle, and let e be a fixed edge on C. Let T be a 4-cycle decomposition
of C, and let Ce = {e, e1, e2, e3} be the 4-cycle in C + T which includes e. If ei,
i ∈ {1, 2, 3} is a chord, let Ci be the cycle C − Ce + {ei}. The 4-cycle decomposition
T induces a 4-cycle decomposition Ti of Ci. The tree which corresponds to T has a
root (associated with the edge e); the ith child of the root is a leaf if ei ∈ C or the
root of the ternary tree which corresponds to Ti under the mapping associated with
Ci if ei is a chord. It is straightforward to verify that the mapping defined above is
indeed invertible.

Denote the number of ternary trees with n internal nodes by tn. The value
tn satisfies the following recurrence: t0 = 1 and tn = Σ{i+j+k=n−1}titjtk if n ≥

PARAMETERIZED COMPLETION PROBLEMS 1917

1. According to Graham, Knuth, and Patashnik [19, p. 349], the solution to this
recurrence is

tn =

(
3n+ 1

n

)
1

3n+ 1
,

which is no greater than 23n = 8n. Together with Lemma 4.3 we obtain the following.
Lemma 4.4. The number of 4-cycle decompositions of an even n-cycle C is no

greater than 8
n
2−1.

4.1. Finding an even cycle without odd chords. The neighborhood matrix
of a graph is a symmetric 0-1 matrix with rows and columns indexed by the set of
vertices of the graph and with an entry of 1 iff the corresponding two vertices are
equal or adjacent in the graph. A doubly lexical ordering of a matrix is an ordering
of the rows and of the columns so that the rows, as vectors, are lexically increasing
and the columns, as vectors, are lexically increasing. Lexical ordering of vectors is the
standard dictionary ordering, except that vectors will be read from highest to lowest
coordinate. Thus row vectors will be compared from right to left and column vectors
from bottom to top. A matrix M is symmetric if its rows and columns are indexed by
the same set S and M(s, t) = M(t, s) for all s, t ∈ S. A symmetric ordering of such
an M is an ordering of S. It is not true that every symmetric matrix has a symmetric
doubly lexical ordering. But it was proved by Lubiw [26] that a symmetric matrix
that has a dominant diagonal, meaning that M(s, s) ≥ M(s, t) for all s, t ∈ S, has
a symmetric doubly lexical ordering. In particular, the neighborhood matrix of any
graph has a symmetric doubly lexical ordering.

A cycle matrix is a 0-1 n × n matrix, n ≥ 3, with exactly two 1’s in each row
and in each column and such that no proper submatrix has this property. A totally
balanced matrix is a 0-1 matrix with no cycle submatrices.

Farber [12] proved the following characterization of strongly chordal graphs.
Theorem 4.5. A graph is strongly chordal iff its neighborhood matrix is totally

balanced.
A Γ is an ordered 0-1-valued 2× 2 matrix with exactly one 0, in the bottom right

corner:

Γ =

(
1 1
1 0

)
.

Lubiw proved the following property [26, Theorem 5.2] of a doubly lexical 0-1 matrix
M with rows R and columns C.

Theorem 4.6. Let M be an ordered doubly lexical 0-1 matrix with rows R and
columns C. Any 2× 2 submatrix of M formed by r1 < r2 ∈ R and c1 < c2 ∈ C with
M(r1, c2) = M(r2, c1) = 1, M(r2, c2) = 0 is, for some k ≥ 3, embedded in a k × k
submatrix of M formed by r1 < r2 < · · · < rk ∈ R and c1 < c2 < · · · < ck ∈ C with
M(ri, ci+1) = M(ri+1, ci) = 1 for i = 1, . . . , k − 1, M(rk, ck) = 1, and M(ri, cj) = 0
for other i, j except possibly i = j = 1. In particular, any Γ submatrix is embedded in
a cycle submatrix. See Figure 4.1.

Together with the observation that in any ordering of a cycle submatrix there is
a Γ submatrix, Theorem 4.6 reestablishes the following result.

Theorem 4.7 (see [20, 2]). A 0-1 matrix has a Γ-free ordering iff it is totally
balanced. Moreover, a doubly lexical ordering of a totally balanced matrix is Γ-free.

The following theorem makes a link between cycle submatrices in a neighborhood
matrix of a graph G and chordless cycles or even cycles without odd chords in G.

1918 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

c1 c2 c3 c4 ci ck
r1 ? 1 0 0
r2 1 0 1 0
r3 0 1 0 1 0
r4 0 0 1 0 .

. . .
. 0 1

ri 1 0 .
0 . . .

. 0 1
rk 1 1

Fig. 4.1. Every Γ submatrix can be embedded in a cycle submatrix.

Theorem 4.8. Let M be a neighborhood matrix of a graph G and let N be a k×k
cycle submatrix of M with rows r1 < r2 < · · · < rk and columns c1 < c2 · · · < ck. Let
VN = {vl | l = ri or l = cj , 1 ≤ i, j ≤ k}. Then either the vertices of VN form an even
cycle without odd chords or there exists a subset C ⊆ VN that induces a chordless
cycle.

Proof. If ri 6= cj for every 1 ≤ i, j ≤ k, VN clearly forms an even cycle without odd
chords. Assume ri = cj for some i and j. This implies that N(i, j) = M(ri, cj) = 1.
Let i′ be the other row in which column j has a 1 and let j′ be the other column in
which row i has a 1. N(i′, j′) = 0 since otherwise we get a contradiction to the fact
that N is a cycle submatrix. Thus ri′ 6= cj′ . Among the vertices in VN , vri is adjacent
only to vri′ and vcj′ . These two are not adjacent, but there is a path connecting them
in V − {vri}. Thus there exists a chordless cycle C ⊆ VN through vri .

Let M be a symmetric n×n neighborhood matrix of a connected graph G with m
edges and n vertices. Using Paige and Tarjan’s implementation [29] of the algorithm
described by Lubiw [26], one can obtain a doubly lexical ordering of M in O(m log n)-
time. Lubiw [26] also shows how to search for a Γ submatrix in a doubly lexically
ordered M in O(m)-time. Given a Γ submatrix in a doubly lexically ordered M , a
cycle submatrix that contains it can also be found in O(m)-time [26]. According to
Theorem 4.8, either the rows and columns of this cycle submatrix induce an even cycle
without odd chords or a subset of them induce a chordless cycle in G. As suggested
by the proof of Theorem 4.8, this cycle can be extracted from the cycle submatrix in
O(m)-time.

4.2. The k-completion algorithm. As in sections 2.1 and 3, the k-completion
algorithm will traverse part of a search tree in which each node corresponds to a
supergraph of G. This search tree is defined as follows. The graph G itself corresponds
to the root of the tree. In order to generate the children of an internal node x that
corresponds to a graph G′, one needs to find either a chordless cycle or an even
cycle without odd chords in G′. In case a chordless cycle C is found, node x will
have a child for each minimal triangulation T of C. If an even cycle without odd
chords, C, is found, x will have a child for each 4-cycle decomposition of C. The
graph corresponding to a child is obtained by adding the corresponding minimal
triangulation or 4-cycle decomposition to G′. If C is a chordless l-cycle, by Lemma 2.3
node x will have at most cl−2 children. If C is an even l-cycle without odd chords,

PARAMETERIZED COMPLETION PROBLEMS 1919

then x will have t l
2−1 children. Each leaf of the tree corresponds to a strongly chordal

supergraph of G. Note that every such supergraph of G that is minimal is represented
by at least one leaf.

Remark . In the case that a chordless cycle C is found in the graph corresponding
to a node x, it will be more efficient to generate a child only for each triangulation T
of C such that C + T has no even cycles without odd chords.

One can find a chordless cycle C in a nonchordal graph with m edges and n
vertices in O(m)-time by using the MCS algorithm described in [37, 38]. An even
cycle without odd chords can be found in a chordal graph that is not strongly chordal
in O(m log n)-time using Paige and Tarjan’s implementation [29] of Lubiw’s algo-
rithm [26], as described in section 4.1. Obviously, one can use Paige and Tarjan’s
algorithm for both tasks in order to simplify the implementation while getting some
penalty in the performance. The algorithm described in [35] can be easily extended
to enumerate all ternary trees with n internal nodes, spending O(n)-time for each.
Applying Lemma 4.3, one obtains an algorithm that enumerates all 4-cycle decompo-
sitions of an even cycle C in O(|C|)-time for each. It is straightforward to check that
a more involved enumeration procedure that enumerates all minimal strongly chordal
triangulations of a chordless even cycle C in O(|C|)-time for each could be designed
as well, based on the ideas in [35].

The nodes of this search tree that are actually traversed correspond to supergraphs
of G with no more than k additional edges. If one such node is a leaf, then we have
found a strongly chordal supergraph with no more than k additional edges. Otherwise,
no such supergraph exists. The proof of the following theorem is analogous to the
proof of Theorem 2.4.

Theorem 4.9. All minimal strongly chordal supergraphs of a graph G with no
more than k additional edges can be found in O(82km log n)-time.

Remark . An alternative implementation that avoids traversing nonchordal chil-
dren of chordal supergraphs can be designed as described in the remark at the end of
section 3.

Remark . For dense matrices, Spinrad describes a faster algorithm which can
obtain a doubly lexical ordering in O(n2)-time [36]. Hence the complexity of the algo-
rithm described above can be improved for dense graphs to O(82k min(n2,m log n))-
time.

5. Concluding remarks. We have presented polynomial algorithms for the
fixed-parameter version of three graph completion problems: chordal completion(k),
strongly chordal completion(k), and proper interval completion(k). Note that the
class of proper interval graphs is a subset of the strongly chordal graphs, which are a
subset of the chordal graphs. Our results immediately imply that chordal completion,
strongly chordal completion, and proper interval completion have a polynomial-time
algorithm when k is part of the input but restricted to be at most logarithmic in the
size of the graph.

Another important graph family that we have not discussed in this paper is in-
terval graphs. The interval completion(k) problem has an important application in
molecular biology, as discussed in section 1. Its NP-completeness was proved in [23].
NP-completeness is also implied by the proof of Yannakakis [41] for chordal graph
completion, as the graphs generated in that proof are chordal iff they are interval. To
date the complexity status of the parametric version of the problem is open. It is not
known whether the problem is in FPT or hard for some level of the W-hierarchy. The
obstructions that have to exist in a chordal graph that is not interval are described

1920 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

in [25]. An arbitrarily large obstruction X could exist in a graph that is not interval
but could be made interval with the addition of any one out of O(|X|) edges. This
causes difficulties when one tries to apply the techniques of this paper to this graph
class.

When the input is restricted to bounded-degree interval graphs for some fixed
bound d, the obstruction size is bounded by O(d) and the search tree technique
applies to get a quadratic FPT result using the characterization of [25]. It is an open
problem whether this obvious bound can be improved.

For the molecular biology application in physical mapping, one can assume that
the ratio of sizes of the largest and the smallest clones is at most a small constant
c (in practice, c = 10 suffices). Fishburn and Graham [15] (see also [14, Chapter
8]) provided characterizations for interval graphs which have such length restrictions.
Their results, together with the characterizations of [25], imply that the obstruction
size is O(c) and thus for this case, too, the search tree technique applies and the
k-completion problem is FPT.

After a preliminary version of this paper appeared in [21], Cai published a pa-
per [6] that rediscovers our simple search-tree-based algorithm for chordal completion(k)
(see section 2.1). Using a better-known bound on the lth Catalan number, namely,
cl = O(4l/l3/2), and a lemma showing that ci+1cj+1 ≤ ci+j+1, Cai proves that our
algorithm in fact runs in O((4k/(k + 1)3/2)(m+ n))-time. Cai also proves a straight-
forward generalization of our Theorem 3.1. This generalization says that the parame-
terized version of the graph modification problem with respect to any graph property
that can be characterized by a finite set of forbidden induced subgraphs is FPT. The
proof of this generalization is similar to the proof of Theorem 3.1.

REFERENCES

[1] K. Abrahamson, R. Downey, and M. Fellows, Fixed-parameter intractability II, in Proc.
10th Symposium on Theoretical Aspects of Computer Science (STACS ’93), Lecture Notes
in Comput. Sci. 665, Springer–Verlag, Berlin, 1993, pp. 374–385.

[2] R. P. Anstee and M. Farber, Characterizations of totally balanced matrices, J. Algorithms,
5 (1984), pp. 215–230.

[3] H. L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth,
in Proc. 25th ACM Symposium on the Theory of Computing, ACM Press, New York, 1993,
pp. 226–234.

[4] H. L. Bodlaender, M. R. Fellows, and M. T. Hallet, Beyond NP-Completeness for prob-
lems of bounded width: Hardness for the W hierarchy (extended abstract), in Proc. 26th
ACM Symposium on the Theory of Computing, ACM Press, New York, 1994, pp. 449–458.

[5] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs,
and planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335–379.

[6] L. Cai, Fixed-parameter tractability of graph modification problems for hereditary properties,
Inform. Process. Lett., 58 (1996), pp. 171–176.

[7] A. V. Carrano, Establishing the order of human chromosome-specific DNA fragments, in
Biotechnology and the Human Genome, A. D. Woodhead and B. J. Barnhart, eds., Plenum
Press, New York, 1988, pp. 37–50.

[8] X. Deng, P. Hell, and J. Huang, Linear-time representation algorithms for proper circular-
arc graphs and proper interval graphs, SIAM J. Comput., 25 (1996), pp. 390–403.

[9] R. G. Downey and M. R. Fellows, Fixed-parameter intractability, in Proc. 7th Structure
in Complexity Theory Conference (Structures ’92), Boston, MA, 1992, IEEE Computer
Society Press, Los Alamitos, CA, pp. 36–49.

[10] R. G. Downey and M. R. Fellows, Fixed-parameter tractability and completeness III: Some
structural aspects of the W hierarchy, in Complexity Theory: Current Research (Proc. 1992
Dagstuhl Workshop on Structural Complexity), Cambridge University Press, Cambridge,
UK, 1993, pp. 191–226.

PARAMETERIZED COMPLETION PROBLEMS 1921

[11] R. G. Downey and M. R. Fellows, Parameterized computational feasibility, in Complexity
Theory: Current Research, K. Ambos-Spies, S. Homer, and U. Schoning, eds., Cambridge
University Press, New York, 1993, pp. 166–191.

[12] M. Farber, Characterizations of strongly chordal graphs, Discrete Math., 43 (1983), pp. 173–
189.

[13] M. Farber, Domination, independent domination, and duality in strongly chordal graphs,
Discrete Appl. Math., 7 (1984), pp. 115–130.

[14] P. Fishburn, Interval Orders and Interval Graphs, John Wiley, New York, 1985.
[15] P. Fishburn and R. L. Graham, Classes of interval graphs under expanding length restric-

tions, J. Graph Theory, 9 (1985), pp. 459–472.
[16] M. L. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with o(1) worst case

access time, J. ACM, 31 (1984), pp. 538–544.
[17] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems,

Prentice–Hall, Englewood Cliffs, NJ, 1981.
[18] M. C. Golumbic, H. Kaplan, and R. Shamir, On the complexity of DNA physical mapping,

Adv. Appl. Math., 15 (1994), pp. 251–261.
[19] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for

Computer Science, Addison–Wesley, Reading, MA, 1989.
[20] A. J. Hoffman, A. W. J. Kolen, and M. Sakarovitch, Totally balanced and greedy matrices,

SIAM J. Alg. Discrete Methods, 6 (1985), pp. 721–730.
[21] H. Kaplan, R. Shamir, and R. E. Tarjan, Tractability of parameterized completion problems

on chordal and interval graphs: Minimum fill-in and physical mapping, in Proc. 35th Sym-
posium on Foundations of Computer Science, IEEE Computer Science Press, Los Alamitos,
CA, 1994, pp. 780–791.

[22] R. M. Karp, Mapping the genome: Some combinatorial problems arising in molecular biology,
in Proc. 25th Annual ACM Symposium on the Theory of Computing, ACM Press, New
York, 1993, pp. 278–285.

[23] T. Kashiwabara and T. Fujisawa, An NP-complete problem on interval graphs, in IEEE
International Symposium on Circuits and Systems (12th), Institute of Electrical and Elec-
tronics Engineers, Piscataway, NJ, 1979, pp. 82–83.

[24] T. Kloks, Treewidth, Ph.D. thesis, Dept. of Computer Science, Utrecht University, Utrecht,
The Netherlands, 1993.

[25] C. G. Lekkerkerker and J. C. Boland, Representation of a finite graph by a set of intervals
on the real line, Fund. Math., 51 (1962), pp. 45–64.

[26] A. Lubiw, Doubly lexical orderings of matrices, SIAM J. Comput., 16 (1987), pp. 854–879.
[27] R. Nagaraja, Current approaches to long-range physical mapping of the human genome, in

Techniques for the Analysis of Complex Genomes, R. Anand, ed., Academic Press, London,
1992, pp. 1–18.

[28] T. Ohtsuki, L. K. Cheung, and T. Fujisawa, Minimal triangulation of a graph and optimal
pivoting order in a sparse matrix, J. Math. Anal. Appl., 54 (1976), pp. 622–633.

[29] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM J. Comput., 16
(1987), pp. 973–989.

[30] F. S. Roberts, Indifference graphs, in Proof Techniques in Graph Theory, F. Harary, ed.,
Academic Press, New York, 1969, pp. 139–146.

[31] D. J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl., 32 (1970),
pp. 597–609.

[32] D. J. Rose, R. E. Tarjan, and G. S. Lueker, Algorithmic aspects of vertex elimination on
graphs, SIAM J. Comput., 5 (1976), pp. 266–283.

[33] J. D. Rose, A graph-theoretic study of the numerical solution of sparse positive definite systems
of linear equations, in Graph Theory and Computing, R. C. Reed, ed., Academic Press,
New York, 1972, pp. 183–217.

[34] D. D. Sleator, R. E. Tarjan, and W. P. Thurston, Rotation distance, triangulations, and
hyperbolic geometry, J. AMS, 1 (1988), pp. 647–681.

[35] M. Solomon and R. A. Finkel, A note on enumerating binary trees, J. ACM, 27 (1980),
pp. 3–5.

[36] J. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Inform. Process. Lett., 45 (1993),
pp. 229–235.

[37] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs,
text acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

[38] R. E. Tarjan and M. Yannakakis, Addendum: Simple linear-time algorithms to test chordal-
ity of graphs, text acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs,

1922 HAIM KAPLAN, RON SHAMIR, AND ROBERT E. TARJAN

SIAM J. Comput., 14 (1985), pp. 254–255.
[39] M. N. Wegman and J. L. Carter, New classes and applications of hash functions, in Proc.

20th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Alamitos, CA, 1979, pp. 175–182.

[40] G. Wegner, Eigenschaften der Nerven Homologische Eihfacher Familien in Rn, Ph.D. thesis,
Götingen University, Götingen, Germany, 1967.

[41] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Discrete Meth-
ods, 2 (1981), pp. 77–79.

TREE DATA STRUCTURES FOR N-BODY SIMULATION∗

RICHARD J. ANDERSON†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 1923–1940

Abstract. In this paper, we study data structures for use in N -body simulation. We concentrate
on the spatial decomposition tree used in particle-cluster force evaluation algorithms such as the
Barnes–Hut algorithm. We prove that a k-d tree is asymptotically inferior to a spatially balanced
tree. We show that the worst case complexity of the force evaluation algorithm using a k-d tree is
Θ(n log3 n logL) compared with Θ(n logL) for an oct-tree. (L is the separation ratio of the set of
points.)

We also investigate improving the constant factor of the algorithm and present several methods
which improve over the standard oct-tree decomposition. Finally, we consider whether or not the
bounding box of a point set should be “tight” and show that it is safe to use tight bounding boxes
only for binary decompositions. The results are all directly applicable to practical implementations
of N -body algorithms.

Key words. N-body simulation, Barnes–Hut algorithm, spatial data structures

AMS subject classifications. 85-08, 68P05

PII. S0097539797326307

1. Introduction. The gravitational force computation problem is as follows:
Given a set of n particles, compute the net gravitational force exerted on each particle
by the other particles. The solution of this problem is required in the inner loop of N -
body simulation. The problem can be solved by a direct method, which is to compute
all pairwise interactions of particles. This yields an O(n2) algorithm. However, much
faster algorithms have been developed that use hierarchical spatial data structures to
cluster particles. In this paper we study different tree data structures with the goal
of minimizing the number of force evaluations performed during the computation.

We concentrate on particle-cluster algorithms, where the data structure is tra-
versed independently for each particle. The Barnes–Hut algorithm [3] is the standard
particle-cluster algorithm now in use. We study issues which relate both to asymptotic
performance and to the constant factors of the run time. Our performance measure
is the number of force evaluations performed with respect to a fixed error threshold.
We give a collection of results which show how different tree properties influence the
performance of algorithms. In terms of impact, our most significant results are in
section 6 and show that k-d trees are asymptotically less efficient than oct-trees. In
section 7 we explore how to improve the constant factors of the algorithm by improv-
ing the data structure, and in section 8 we give some results for different definitions
of the boundary of a cell.

1.1. Astrophysical simulation. N -body simulation is a very important tool in
astrophysical research. It is essentially the only way to perform experiments to inves-
tigate basic cosmological problems. Massive simulations are used to study problems
such as the formation of large-scale structure in the universe. Simulations may use as
many as 50 million particles and may run for tens of thousands of CPU hours. We
consider the problem, How does the choice of a spatial data structure influence the

∗Received by the editors August 25, 1997; accepted for publication (in revised form) December
31, 1997; published electronically June 3, 1999.

http://www.siam.org/journals/sicomp/28-6/32630.html
†Department of Computer Science and Engineering, University of Washington, Box 352350, Seat-

tle, WA 98195-2350 (anderson@cs.washington.edu).

1923

1924 RICHARD J. ANDERSON

performance of the force evaluation algorithm? The work was specifically motivated
by discussions with astrophysicists on whether it is better to base a code on k-d trees
or on oct-trees.

Our efforts are directed toward the astrophysical N -body problem. Although the
N -body problem arises in many scientific disciplines, there are important differences
between the versions of the problem that have a strong influence on which algorithm
is the most practical. An important aspect of the problem in astrophysics is that the
data often have a very nonuniform distribution with regions of high concentration and
regions of low concentration. This means that algorithms which are best for uniform
distributions are not necessarily suggestive of the real cases of interest.

There is a debate on whether “O(n)” methods or “O(n log n)” methods are best
for N -body simulation. To date, all massive astrophysical simulations have been based
on the “O(n log n)” methods, so we concentrate on the methods in actual use, even
though they are “asymptotically inferior.”

1.2. Overview. The next two sections give background on the force computa-
tion algorithm and on the tree data structures. This is followed by a performance
analysis of spatial and density decompositions. The results on density decompositions
were surprising in that they established bounds which were substantially worse than
anticipated and they debunked the use of k-d trees in N -body codes. We then consider
the degree of decomposition and argue that binary decomposition is likely to be sub-
stantially better than higher-degree decomposition. Finally, we address the question
of whether the boundary of a cell should be tightened to the smallest enclosing box.
Our result is that the tighter bounds can be used for a binary decomposition, but for
higher-degree cases tighter bounds can lead to substantially worse performance.

1.3. Related work. There has been very little theoretical research done on
comparing data structures for N -body simulation. More attention has been paid
to the asymptotic performance of the algorithms and to the accuracy properties of
particular codes.

A series of papers introduced particle-cluster algorithms in the early- to mid-
eighties [1, 12, 3], with the version developed by Barnes and Hut [3] receiving the
most attention with respect to implementation.

The fastest bounds for the force computation problem are for the fast multipole
method of Greengard and Rokhlin [11, 10, 7, 15], which is a cluster-cluster algorithm.
Although the algorithm is O(n) time, it is not used in astrophysical research. This
is primarily because the constant factors in the algorithm are very large, although
memory is also a problem. Greengard’s algorithm is more suited for uniform distri-
butions than for the concentrated distributions encountered in astronomy. The issue
of asymptotic run time of the force computation is complicated by the fact that tree
construction in general is Ω(n log n) which dominates in the case of simulation. How-
ever, many of the ideas in Greengard’s algorithm are applicable to the particle-cluster
algorithms and practical N -body codes are becoming more Greengard-like by using
higher-degree series expansions. There are also algorithms that may be viewed as a
synthesis of Greengard’s algorithm and a particle cluster algorithm [4, 5]. Many of the
issues relating to the force evaluation algorithm are orthogonal to the data structure
used, so some of the results of this paper may carry over to a larger context.

Papers that have addressed the accuracy of N -body simulations have generally
compared different force evaluation strategies [6] or have studied the trade-off between
accuracy and run time [18]. A paper by Makino [13] studies the performance of

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1925

oct-trees versus nearest-neighbor trees (a data structure outside of the scope of this
paper.)

In terms of data structures, an important related paper is the fair-split tree paper
by Callahan and Kosaraju [7]. Although they developed their data structure to get
an improved result for cluster-cluster algorithms, it turns out to be very close to the
data structure we advocate in this paper. Some work in mainstream computational
geometry also ties in directly with this, in particular work on the all-nearest-neighbor
problem [19, 8].

2. Particle-cluster algorithm. The particle-cluster algorithm approximates
the force that a set of particles exerts on a single particle by first dividing the set
of particles into clusters and then summing the approximate force that each cluster
exerts on the particle. The division into clusters is based upon a spatial decomposition
tree. One version of the particle-cluster algorithm was originally described by Barnes
and Hut [3]. They described the algorithm in terms of an oct-tree, although the
definition of the algorithm does not depend upon the particular type of tree.

A hierarchical decomposition of a set S can be represented by a tree T . Each
node of the tree has an associated subset of S. The sets associated with the children
of a node form a partition of the set associated with the node. We often refer to the
tree nodes as cells. Given a tree T , the following recursive algorithm computes the
force on a particle x:

ForceEval(x, T)
if GoodApproximation(x, T)

return ApproxForce(x, T)
else

return
∑

T ′ child of T

ForceEval(x ,T ′).

Let Tpart denote the set of particles associated with the root of T . The routine
GoodApproximation returns true if all of the particles in Tpart are far enough from
x that the force approximation is considered accurate. This test is referred to as
the opening criterion. In this paper the opening criterion is based on the ratio of
the diameter of Tpart to the distance from x to the center of mass of Tpart . Let d
be the distance from x to the center of mass of Tpart , s the diameter of Tpart , and
θ an accuracy parameter; the good approximation test returns true if s ≤ θd and
false otherwise.1 (Note that with this definition of the opening criterion, the accuracy
increases as the value of θ decreases.) The routine ApproxForce gives an approximation
of the force that the particles in Tpart exert on x. The simplest approximation treats
all of the mass of Tpart as being at the center of mass, although in practice more
sophisticated approximations are used.

The run time of the algorithm that solves the N -body problem by calling Force-
Eval on every particle is generally considered to be O(n log n), although it does depend
upon the distribution of the particles and the height of the tree. The algorithm spends
almost all of its time performing the force evaluations. We can measure how good a
particular tree is by counting the number of force evaluations that take place—this is
a very accurate model of the run time.

1The results in this paper are fairly robust with respect to different choices of opening criteria.
For example, an alternate opening criterion uses the radius (distance from the center of mass of Tpart

to the farthest point in Tpart) instead of the diameter. The parameter θ controls the accuracy of the
simulation. In practice values close to 1.0 are chosen.

1926 RICHARD J. ANDERSON

3. Trees. Our problem is to determine the best tree data structure to use in
the particle-cluster algorithm. We consider the algorithm to be fixed (meaning there
is a given opening criterion and force evaluation function), and we look at different
options for the spatial decomposition tree. We measure how good a tree is by the
number of force evaluations that the algorithm performs in computing the force.

As an abstract problem, we could consider the following: For a fixed N -body
algorithm, given a set of points S, find a tree T that minimizes the number of force
evaluations. Instead of tackling this general problem (which appears to be difficult),
we restrict ourselves to several tree data structures based upon orthogonal decomposi-
tion. There are many different methods for constructing an orthogonal decomposition
tree [17]. We consider three options that can be applied independently, yielding eight
separate tree data structures.

The first option is the degree of the decomposition. The natural choices are
either a binary decomposition or a decomposition into orthants (quadrants in two
dimensions, octants in three).

The second option is the method that keeps the decomposition balanced. We can
either balance spatially, so that each cut is equidistant from the cell boundary, or
balance based upon density, where the number of particles on each side of the split is
equal.2 When performing a binary split, the longest dimension of the cell is split.3 A
quad-tree is a quaternary spatial balanced decomposition, and a k-d tree is a binary
density decomposition.

The third option in constructing trees relates to the definition of cell boundary.
We consider the particles associated with a cell to be enclosed in a rectangular box,
which is the boundary of the cell. One method for choosing the rectangular boxes is
to subdivide boxes when cells are split. This method is referred to as loose bounds
and is the way that boundaries are generally defined for quad-trees. An alternate way
of defining the boundary is to take the smallest rectangle that encloses the points.
This is referred to as tight bounds. When cells are split, the location (and even the
dimension) of the split depends upon the boundary. This means that the tight bound
and loose bound tree for the same particle set will have a different structure. Note
that when tight bounds are used, the bounding box is computed before the cell is
split; this is different from using loose bounds for computing all of the splits and then
using tight bounding boxes when evaluating the opening criterion.

3.1. Results. We give a series of results that suggest that a binary spatially
balanced decomposition with tight bounds is the best choice of those considered. We
use L to denote the separation ratio of a set of points. This is the ratio of the maximum
distance between points to the minimum distance between points.

• For k-d trees, we establish an Θ(n logd n logL) bound for the particle-cluster
algorithm in dimension d (where d = 1, 2, or 3). This shows that the spatially
balanced decomposition algorithms are asymptotically superior to the density
decomposition algorithms.
• We show that the particle-cluster algorithm takes Θ(n logL) time for loose

spatial decompositions. This is asymptotically optimal.
• We give a heuristic argument that shows that binary trees are more efficient

2There are a number of possible definitions of density balancing when a nonbinary split is used.
The performance of nonbinary density balancing is sufficiently poor that the details are not worth
exploring.

3An alternate method is to cycle through the dimensions in order when splitting cells. The results
in this paper are applicable to this variation.

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1927

than higher-degree trees. In two dimensions, the expected number of force
evaluations of a binary tree is 75% of the number for a quad-tree, and in three
dimensions the expected number of force evaluations of a binary tree is 53%
of an oct-tree. We also investigate other methods for improving the constant
factor in the number of force evaluations.
• Intuitively, tight bounds should reduce the number of force evaluations be-

cause the diameters of the cells will be smaller. For binary trees, we show that
tight bounds have the same asymptotic behavior as loose bounds. However,
for quad-trees we show that the worst case for tight bounds is Ω(n3/2), so
tight bounds can hurt the performance of non–binary tree–based algorithms.

4. Particle-cluster algorithm performance. We begin with a general lower
bound on the performance of the particle-cluster algorithm. The result is that there
exists a set of n particles with separation ratio L that requires Ω(n logL) evaluations
per particle for any decomposition tree. Suppose the cell C has diameter s, and the
center of mass of C is at distance d from the point of evaluation. The opening criterion
is to expand the cell if s ≥ θd for some fixed parameter θ.

Theorem 4.1. For any L, n < L < eθn, there exists a set of n particles with
separation ratio L such that any decomposition tree requires Ω(n logL) force evalua-
tions.

Proof. The bad case distribution consists of n
2 particles evenly spaced on the in-

terval [0, n2) (the lower interval) and n
2 particles with geometrically increasing spacing

on the interval [L1/2, L] (the upper interval). The argument shows that for each par-
ticle in [0, n2) there are at least α logL force evaluations. The particles in the upper

interval are {pn
2 +1, . . . , pn}, with pj located at L̂j where L̂ = L1/n.

Suppose that there is some particle pi in the lower interval for which there are
fewer than lnL

4θ force evaluations. There must be some cell C containing at least

x = 2θn
lnL particles from the upper interval which is evaluated when computing the

force on pi. (The bound on L ensures that x is at least 2.) We show that the
normalized size of C is at least θ, so that it fails the GoodApproximation test. (The
normalized size of a cell with respect to a fixed particle is the cell’s size divided by
its distance from the particle.) We can consider the case where C contains exactly
x particles, since a cell with more particles will have a greater normalized size. Let
C = {pj , . . . , px−1}. We compute the normalized size of C with respect to the particle
at 0 (which gives the smallest normalized size for all particles in the lower interval).
The diameter s of C is L̂j+x−1 − L̂j . The distance from the evaluation point to C is
the center of mass of C. This is

1

x

x−1∑
i=j

L̂i =
1

x
L̂j

x−1∑
i=0

L̂i =
1

x
L̂j
L̂x − 1

L̂− 1

≤ 1

x
L̂j
L̂x − 1

ln L̂
.

Thus

s

d
≥ xL̂j(L̂x−1 − 1) ln L̂

L̂j(L̂x − 1)

≥ x ln L̂

L̂
=
x lnL

nL̂
≥ x lnL

2n
≥ θ.

1928 RICHARD J. ANDERSON

The one detail we haven’t covered yet is the possibility that a cell in the decom-
position does not consist of a consecutive set of points. Let C ′ be a cell containing x
points, starting at position j, and let C be the cell containing {pj , . . . , pj+x−1}. We
show that sC′

dC′
≥ sC

dC
, which implies that any cell containing more than x particles fails

the approximation test. The cell with x particles, starting at pj , ending at pk+x−2,
with minimum normalized size is {pj , pk, . . . , pk+x−2} (since this is the distance that
maximizes center-of-mass distance subject to the constraints). Now, to minimize the
normalized size over all cells of the form {pj , pk, . . . , pk+x−2}, we take k = j − 1,
getting the cell C.

L is a measure of the lack of uniformity in a set of particles. Since matter is
distributed nonuniformly throughout the universe, simulations exhibit areas of high
mass density and areas of low mass density. However, in practice L is bounded since
computation is done with fixed precision operations. Thus, although L is a relevant
factor, it is not going to be extremely large. It is probably worth distinguishing
between logL and logn in stating results, but logL should still be viewed as being a
relatively small quantity.4

5. Spatial decomposition. Many implementations of the particle-cluster algo-
rithm have used quad-trees or oct-trees, including the implementation of Barnes and
Hut. We give a performance bound for the oct-tree–based algorithm which shows
how its performance depends upon the number and the distribution of particles. The
key for the result is the observation that a sphere of radius r can only intersect a
constant number of disjoint cubes with radius at least αr. This is at the heart of
the packing arguments we allude to. The proof is similar to the correctness proofs of
several all-nearest-neighbor algorithms [19, 8]. The necessity of accounting for “below
evaluations” has been ignored by papers in the physics literature.

Theorem 5.1. Let Dave be the average leaf depth of an oct-tree T . The number
of force evaluations performed by the particle-cluster algorithm on T is O(nDave).

Proof. We need to account for all of the force evaluations. A force evaluation
occurs when we compute the force that a cell C exerts upon a particle x. The depth
of a particle x in the tree is the depth of the leaf cell that contains x.

We distinguish between two cases of force evaluation in this analysis. An above
evaluation occurs between x and C if the depth of C is less than or equal to the depth
of x, and a below evaluation occurs between x and C if the depth of C is greater than
the depth of x.

We begin by arguing that if x is at depth D, x is involved in at most αD above
evaluations for an appropriate constant α (which depends upon the accuracy param-
eter θ). Let C be a cell on level j that is involved in an above evaluation with x. Let
C ′ be the parent of C, d′ the distance from x to the center of mass of C ′, and s′ the
diameter of C ′. Since the GoodApproximation test fails for C ′, we must have d′ < s′

θ .

The number of cells of diameter s′ that are of distance no more than s′
θ from x is

bounded by a constant. This, in turn, bounds the number of above evaluations for x
with cells on level j. (The straightforward analysis gives a bound of α = 3

√
3π(1+ 1

θ)3

in three dimensions.)

We now account for the below evaluations. Suppose that there is a below evalua-
tion between x and C. This evaluation is charged to the closest particle y to x that is

4It is a mistake to place much emphasis on pathological examples that use exponential differences
in separation. However, it is also a mistake to view uniformly random data as the typical case for
simulation.

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1929

�
�
�
�
�T
T
T
T
T �

�
�
�
�T
T
T
T
T

T
TT�
��

Fig. 5.1. Triangular decomposition.

inside of C. We now argue that if y is at depth D, y is charged for at most βD below
evaluations for some constant β. The argument is similar to the above argument.
Let x be a particle on level j that has a below evaluation charged to y. Suppose the
evaluation is between x and the cell C, with C ′ the parent of C. Let d′ be the distance
from x to the center of mass of C ′, s the diameter of the leaf cell containing x, and s′

the diameter of C ′. We must have d′ < s′
θ and s ≥ s′. The number of cells of diameter

s that are at a distance of no more than s′
θ from the center of mass of C ′ is bounded

by a constant, giving the result. (The analysis gives a bound of β = 4
√

3π(1 + 1
θ)3 in

three dimensions.)
Putting the two parts together, we have a bound of O(nDave) on the number of

force evaluations.
If the particles have separation ratio L, the depth of the oct-tree is O(logL), so

we have an O(n logL) bound for the algorithm. The proof does not require that cells
be cubes, just that they satisfy a packing lemma. The theorem is applicable to any
decomposition that satisfies the following definition.

Definition 5.2. A decomposition is packable if there exists a constant β such
that for every s, a sphere of radius s can interest at most β disjoint cells with diameter
at least s.

Since a binary spatial decomposition is packable, the run time of the particle-
cluster algorithm for binary spatial trees also has an O(n logL) run time bound.
One can come up with many other decompositions that are packable. For example,
Figure 5.1 shows decomposition of the plane based upon equilateral triangles. This
decomposition would satisfy the same asymptotic run time bound as a quad-tree.

6. Density decomposition.
k-d trees. A k-d tree is a generalization of a balanced binary tree to higher

dimensions. Each cell of a k-d tree divides a point set into two equal-size sets by
splitting along a chosen dimension. A different dimension may be chosen at each
level. (The implementation we consider is based upon splitting the longest side of
each cell.) A k-d tree has the property that its height is logarithmic in the number of
points. k-d trees have been used in a number of N -body implementations, including
the early implementation of Appel [1] and in the University of Washington KD-grav
code [9].

We show that in the worst case, an N -body algorithm using k-d trees is inferior
to an algorithm with a spatially balanced decomposition. There is a bad case point
set where the points all lie on a line. This one-dimensional bad case can then be
repeated in two and three dimensions to get the worst-case results. We show that in
dimension d (for d = 1, 2, or 3) the worst-case performance of the k-d tree algorithm
is Θ(n logd n logL), compared with Θ(n logL) for spatially balanced trees such as oct-
trees.5 (We restrict attention to d ≤ 3 since this is the range of practical interest.

5Since the lower bound is based upon contrived distributions, it is natural to ask if these apply
to practice. It turns out that there are bad case examples based on data distributions used in real
astrophysical simulations which give an Ω(n log2 n logL) bound in three dimensions.

1930 RICHARD J. ANDERSON

The results appear to generalize to higher dimensions.)

One-dimensional lower bound. We begin with the one-dimensional case. This
is really the essence of the bad case for k-d trees. The two- and three-dimensional
cases magnify the difficulty in order to get even worse bounds. We assume that L

is in the range n2 ≤ L ≤ 3n
1/2

and give the proofs for the case where the accuracy
parameter θ is equal to 1.

Theorem 6.1. The worst-case performance for the one-dimensional k-d tree–
based particle-cluster algorithm is Ω(n logL log n).

Proof. We construct the point set P = {p1, . . . , pn}. Let P1 = {p1, . . . , pn/2} and
P2 = {pn/2+1, . . . , pn}. We get the bad case bound by counting the number of force
evaluations that occur when determining the force that the points in P2 exert on the
points in P1.

The points in P1 are evenly spaced in the interval [1, n2].

The points in P2 are divided into about logL intervals, with the sizes of the inter-
vals increasing exponentially. When computing the force on a point in P1, each one
of these intervals is subdivided roughly logn times, giving the bound of Ω(logL log n)
work per point in P1.

Let Ik be the interval [3k−1, 3k]. Points from P2 are assigned to the intervals
Ilog3 n+1, . . . , Ilog3 L. Let w = log3 L − log3 n − 1 be the number of intervals. For
convenience, we assume that both n and w are powers of 2. (The argument can be
modified to remove this assumption.) We assign n

2w points to Ik (log3 n < k ≤ log3 L).
The points assigned to Ik are evenly spaced on the first half of the interval (meaning
the subinterval [3k−1 + 1, 3

23k−1]) with the exception of one point, which is assigned
to the high end of the interval.

We now consider the cost of traversing the tree for P2, using a point from P1.
The points in P2 are represented by a tree, which has a node ik corresponding to each
of the intervals Ik, for log3 n < k ≤ log3 L. From each point in P1, we visit each of
these nodes, and from these nodes we traverse the tree to some leaf. The node ik has

n/2w descendents, so it has height log(n/2w). Since we are assuming n2 ≤ L ≤ 3n
1/2

,
it follows that the bound is Ω(n logL log n).

The only modification necessary to handle the case of an arbitrary θ is to use a
base of 3θ instead of a base of 3 in defining the intervals. This gives the bound of
Ω(n logθ L log n) for arbitrary θ.

One-dimensional upper bound. We now prove a corresponding upper bound
on the run time of the one-dimensional particle-cluster algorithm.

Theorem 6.2. The worst-case performance for the one-dimensional particle-
cluster algorithm using a k-d tree is O(n logL log n).

Proof. A k-d tree has log n levels. For a fixed point p, consider the set of nodes
visited while evaluating the force on p. These nodes can be divided into nodes for
intervals to the left of p, including p, and to the right of p. There are at most log n
intervals that contain p. We will now consider the nodes to the right of p and for
convenience we assume that p is located at the origin.

Let I1 and I2 be on the same level with different parents, and suppose p visits both
I1 and I2. Let the parents of I1 and I2 be I ′1 and I ′2, respectively, with I ′1 = [x1, y1]
and I ′2 = [x2, y2]. Assuming that I2 is to the right of I1, we must have x2 ≥ (1 +θ)x1.
(If that were not the case, then the interval I ′1 would not have been expanded in the
evaluation of p.) It follows that there are at most log(1+θ) L intervals to the right of
p on a level that are evaluated for p. Thus the number of elements evaluated for p is
at most 4 log(1+θ) L log n+ log n, so the total work is O(n logL log n).

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1931

Higher dimensional lower bounds. The bad case generalizes to higher di-
mensions in a fairly natural manner. The way we do this is by repeating the one-
dimensional construction logn times so that we have log n columns, each of which
gives the one-dimensional bad case. We will have n

2 particles in the first column, n4 in
the second, n8 in the third, and so on. This construction gives us the following results.

Theorem 6.3. The worst-case performance for the two-dimensional particle-
cluster algorithm using a k-d tree is Ω(n logL log2 n).

Proof. We arrange the n particles in logn columns, where column Ci has n
2i

particles and one additional particle. The particles in column Ci have x coordinate i
and y coordinates that correspond to the one-dimensional construction on n

2i particles.
The one other particle has coordinates (2L, 0). The construction of the k-d tree creates
the columns as skinny rectangles, since the extra point at (2L, 0) leads to a series of
vertical subdivisions. Figure 6.1 shows how the addition of the single point causes
the skinny vertical rectangles to be formed. Each of the vertical rectangles contains
points arranged as in the one-dimensional lower bound.

The columns contain about n
2 particles that are within distance n

2 of the origin.
Each one of these particles is going to have logL(log n − i − log logL) interactions
with intervals from Ci, which gives the Ω(n logL log2 n) bound.

Fig. 6.1. Decomposition in skinny rectangles.

In three dimensions, we take a stack of log n two-dimensional bad case examples
to pick up another factor of logn. The same trick is used in which a single, far-off
particle causes the k-d tree to have a collection of slices with a specific structure.

Theorem 6.4. The worst-case performance for the three-dimensional particle-
cluster algorithm using a k-d tree is Ω(n logL log3 n).

These examples show that in the worst case k-d trees are a factor of log3 n worse
than spatially balanced trees. However, the bad case distributions are contrived and
relatively delicate, so it is natural to ask if k-d trees are problematic from a practical
point of view: Is the bad behavior observed in real simulations? Consider the two-
dimensional distribution shown in Figure 6.2A, where n particles are placed on a√
n × √n grid and additional particles are placed at (i, L) and (L, i) for 1 ≤ i ≤√
n. When these particles are divided by a k-d tree, a collection of long skinny

rectangles is generated, as shown in Figure 6.2B. Each of the long skinny rectangles
is further decomposed in a collection of long skinny rectangles. When the force is
computed on a particle, the long skinny rectangles will fail the GoodApproximation
test. It is straightforward to verify that this leads to Ω(log2 n) force evaluations per

1932 RICHARD J. ANDERSON

particle. Although this is not as bad as the construction used in Theorem 6.3, it is
worse than the spatially balanced decomposition. Significantly, this distribution is
similar to ones used in simulations that investigate how the internal structure of a
galaxy is influenced by neighboring galaxies [14]. The main galaxy is modeled at high
resolution, and the other galaxies are modeled as single particles; thus the particles
near the origin correspond to the main galaxy, and the particles at (i, L) and (L, i)
are the other galaxies in the cluster. Simulations of this type of structure using the
k-d tree algorithm were observed to have serious performance problems.

A: Particle distribution B: Partial k-d tree decomposition

..

...

...

...

...

...

...

...

...

...

...

..

................................

Fig. 6.2. Bad case distribution from galaxy simulation.

Higher dimensional upper bounds. We now generalize the upper bound re-
sult to cover two dimensions. The situation is more complex than the one-dimensional
case because we must take the shape of the cells into account. We show that each par-
ticle evaluates O(log2 n logL) cells. We begin with a technical lemma, which restricts
attention to cells of a given level that intersect a region.

Lemma 6.5. Let B be an s×s region. The number of cells of level j with diameter
greater than s intersecting B is O(log n).

Proof. A cell is said to be fat if both of its sides have length at greater than s
2 , and

it is skinny if one side has length longer than s
2 and the other has length at most s

2 .
Our first observation is that the number of fat cells with two fat children that

both intersect B is bounded by a constant. This implies that there are O(log n) fat
cells intersecting B (since if we consider the subtree made up of fat cells that intersect
B, the number of nodes of degree two is bounded by a constant, and the tree height
is at most log n). The number of skinny cells that intersect B and are children of fat
cells is also O(log n). The descendents of a cell S on a given level form a partition
of S. If S is skinny with a shorter side of length l, and S′ is a skinny descendent
of S, S′ also has a shorter side of length l since the longest side is partitioned and
once both sides of a cell have length at most s

2 the cell is no longer considered skinny.
This means that S can have at most three skinny descendents on any given level that
intersect B. This gives the O(log n) bound on the number of cells of diameter at least
s intersecting B on any level.

We can now give the bound on the number of evaluations on a fixed particle,
which gives the bound on the performance of the algorithm.

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1933

Theorem 6.6. In two dimensions, a particle p is involved in O(log2 n logL)
evaluations.

Proof. Consider cells of diameter between s and 2s which are expanded when
computing the force on p. Each one of these cells must be within a distance of 2s

θ ,
since they fail the GoodApproximation test. Lemma 6.5 implies that the number of
cells of diameter at least s within this distance is O(log2 n). Since the maximum cell
size is L, we pick up the factor of logL to sum over all groups of cells.

Extending the result to three dimensions does not require any new ideas. We pick
up an extra logarithmic factor because we need to consider cells that have a small
length on one or two sides.

Theorem 6.7. In three dimensions, a particle p is involved in O(log3 n logL)
evaluations.

Proof (sketch). The proof follows that of Theorem 6.6. A lemma analogous to
Lemma 6.5 is used, which shows that a cube of size s can be intersected by at most
O(log2 n) cells of size s of a fixed level.

7. Degree bounds. We now turn our attention to the problem of determining
what the best decomposition strategy is for a spatially balanced decomposition. In
our model, where we count only force evaluations, we can do better than an oct-tree
decomposition. A binary decomposition splits the longest dimension of a cell evenly.
This means that three levels of splitting accomplishes exactly the same decomposition
as a single level of an oct-tree. However, the binary tree may require fewer force
evaluations since there are cases where a single binary split is sufficient for cells to pass
the accuracy test, so that two evaluations are done instead of eight. In this section,
first we give an analysis that supports the use of binary trees over oct-trees, and then
we consider other methods of decomposition which give additional improvements.

7.1. Interaction regions. It is possible to adapt Theorem 5.1 to give a bound
that includes the constant factor, although it will be pessimistic. A more accurate
“heuristic” analysis based upon the interaction region of a cell can be used to evaluate
different decomposition strategies. A cell C partitions the points in space into two
regions, GC , the points where the force approximation of C is considered good, and
BC , the points where the approximation is bad. GC and BC are the outside and the
inside of a sphere of radius θ−1s centered at the center of mass of C. If C ′ is the parent
of C, the interaction region of C is defined to be GC ∩BC′ . The interaction region of
C is roughly the set of points for which a force evaluation will use the approximation
from the cell C. Figure 7.1 shows the interaction region for cell C (the upper right
quadrant of C ′) as a doughnut with an off-center hole.

We can use the interaction region to determine the probability that the evaluation
at a random point involves a particular cell. (The interaction regions can also be
used for an average case analysis with respect to a random set of points [6, 16].)
Experimental results show that the interaction area, or the size of the interaction
region, is a very good predictor of the algorithm’s run time [6, 2].

We give a pair of results which suggest that a binary tree requires fewer force
evaluations than a quad-tree or an oct-tree for the same set of points.

Theorem 7.1. Assuming that the center of mass is at the center of each cell and
θ < 1.19, the total interaction area of a binary spatial decomposition tree is 75% of
the interaction area of a quad-tree for the same set of points.

Proof. Consider a k × k cell C. In a quad-tree, C has four children, each of size
k
2 × k

2 . Each child has an interaction region of size 3
2πθ

−2k2, so the total interaction
area of the children is 6πθ−2k2.

1934 RICHARD J. ANDERSON

C

C’

B
C’

B
C

G
C’

Fig. 7.1. Interaction region.

Now consider a k×k cell C in a binary tree. C has two k× k
2 cells as children and

has four k
2 × k

2 children as grandchildren. The interaction area of each of the children
is 3

4πθ
−2k2 and the interaction area of each of the grandchildren is also 3

4πθ
−2k2,

giving a total interaction area of 9
2πθ

−2k2.
The bound on θ ensures that BC and GC′ are disjoint (otherwise a correc-

tion factor must be added to account for a small crescent where GC′ intersects
BC).

We can get an even stronger result in three dimensions.
Theorem 7.2. Assuming that the center of mass is at the center of each cell and

θ < 0.93, the total interaction area of a binary spatial decomposition tree is 53% of
the interaction area of an oct-tree.

7.2. Other decompositions. Even though it is only a heuristic argument that
ties the size of the interaction region to the performance of N -body algorithms, a
strong correlation with experimental evidence has been observed. We shall treat the
interaction region as the figure of merit of a decomposition. When comparing different
decompositions with the same degree, we want to look at the size of interaction
regions of cells with the same volume, with the smaller interaction region giving
better performance.

We begin by comparing a quad-tree decomposition with the triangular decompo-
sition shown in Figure 5.1. We show that the triangular decomposition will probably
be less effective than a quad-tree.

Theorem 7.3. A quad-tree cell of unit area has interaction region of area 6πθ−2,
and a triangular cell of unit area has interaction region of area 12√

3
πθ−2.

Hence, the size of the interaction area of the triangular decomposition is 15%
larger than the interaction area of the quad-tree decomposition.

A more interesting case is the comparison of a binary decomposition of a square

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1935

with a binary decomposition of a rectangle with aspect ratio 1 :
√

2. The result is
that the latter has an interaction region that is about 5% smaller than the former.
This is interesting since it shows that the binary decomposition of the square is not
optimal.

Theorem 7.4. In two dimensions, the interaction area of a binary tree based on
cells with aspect ratio 1 :

√
2 is 94.2% of the interaction area of a binary tree based

on square cells.
Proof. Let C be a unit square. C is decomposed into 1× 1

2 cells C ′1 and C ′2 that
in turn are decomposed into 1

2 × 1
2 cells C ′′1 , C ′′2 , C ′′3 , and C ′′4 . C ′1 has interaction area

πθ−2(2− 5
4) and C ′′1 has interaction area πθ−2(5

4 − 1
2). This gives a total interaction

area of 9
2πθ

−2 for the six cells.

Let Ĉ be a 4
√

2 × 1
4√2

rectangle. Ĉ is decomposed into 1
4√2
× 4√2

2 cells Ĉ ′1 and

Ĉ ′2 that in turn are decomposed into
4√2
2 × 1

2 4√2
cells Ĉ ′′1 , Ĉ ′′2 , Ĉ ′′3 , and Ĉ ′′4 . Ĉ ′1 has

interaction area πθ−2((
√

2+ 1√
2
)−(1√

2
+
√

2
4)) and Ĉ ′′1 has interaction area πθ−2((1√

2
+

√
2

4)− (
√

2
4 + 1

4
√

2
)) This gives a total interaction area of 3

√
2πθ−2 for the six cells.

If we evaluate the expressions, we see that the interaction area in the second case
is 5.8% less.

We can prove a similar result in three dimensions, giving about a 10% improve-
ment over the decomposition from a cubical cell.

Theorem 7.5. In three dimensions, the interaction volume of a binary tree based
on cells with aspect ratio 1 : 21/3 : 22/3 is 89.7% of the interaction volume of a binary
tree based on cubical cells.

We now consider a different approach for reducing the number of force evalua-
tions: Instead of using a tree data structure to represent the data structure, use a
directed acyclic graph (DAG). The DAG allows a choice of decompositions for cells.
For example, with a binary decomposition, a square cell, , can be decomposed hor-
izontally, , or vertically, . The idea is that based upon the location of the point
that we are evaluating the force on, we choose the decomposition that minimizes the
amount of work. The decompositions and both decompose into , so the extra
storage required is minimal.

We can show that this data structure reduces the interaction area of the binary
spatial decomposition.

Theorem 7.6. Assume that the center of mass is at the center of each cell and
θ = 1.0. In two dimensions the interaction area of the DAG is 93% of the interaction
area of a tree for a square cell, and in three dimensions the interaction volume of the
DAG is 88% the interaction volume of a tree for a cubical cell.

Proof. For the two-dimensional case, we superimpose two binary decompositions,
one that is horizontal and one that is vertical. We consider the regions of space that
result in different sets of force evaluations and choose the decomposition that mini-
mizes the number of force evaluations. We need only to count the number of force
evaluations with respect to the rectangular regions, since a square region will either
be evaluated or not be evaluated independent of whether the vertical or horizontal
decomposition is used. Figure 7.2 shows a decomposition of space into regions corre-
sponding to how many evaluations a point requires with respect to large rectangles
with a horizontal or a vertical decomposition. Figure 7.3 shows the regions (marked
X and Y) where a horizontal decomposition gives a savings over a vertical decompo-
sition. In the X region the two horizontal rectangles are used, instead of decomposing
a rectangle into squares, and in the Y region one of the rectangles is used and the

1936 RICHARD J. ANDERSON

Table 7.1
Interaction sizes for decomposition DAG.

θ Two-d Three-d
0.8 0.947 0.907
0.9 0.940 0.895
1.0 0.934 0.880
1.1 0.927 0.870
1.2 0.921 0.859

other is split into squares. Computing this area (which we did numerically) gives the
cost savings.

In three dimensions, there are 12 separate decompositions to consider. The bound
was computed numerically. Table 7.1 shows the interaction areas and volumes in two
and three dimensions for selected values of θ. The results are scaled so that the tree
has interaction volume 1.0.

2 2

2

2

1 1

1

1

Fig. 7.2. Interaction regions.

X X

Y

Y

Fig. 7.3. Regions with lower horizontal cost than vertical cost.

The significance of these results is that they show that it is possible to improve
over the natural decompositions with a small amount of extra work. (However, the

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1937

• •
•
•

• •
• •

• •
•
•

• •
• •

Fig. 8.1. Binary decomposition with loose and tight bounds.

two schemes—optimizing the aspect ratio and using a DAG instead of a tree—cannot
be combined to gain additional benefit.) Given the tremendous amount of CPU time
devoted to simulation algorithms, even a small improvement in the constant factor
translates into a big real-time savings.

8. Cell bounds. When we compute the boundary of a cell, we have a choice
of using either “loose” or “tight” bounds. The bounds are loose if they are inherited
from the bounds of the parent cell, and they are tight if they are the actual bounds of
the point set. See Figure 8.1 for an example that shows the distinction between the
bound types. Note that the region boundaries are computed as the tree is constructed
so that the tree structure depends upon the type of boundary.

The potential advantage of tight bounds is that region sizes will be smaller so
that cells are more likely to pass the good approximation test and reduce the number
of evaluations. Experimental results show that tight bounds generally do lead to a
work savings, especially when the data is clustered.

To give theoretical support for using tight bounds, we show that binary spatial
decomposition trees with tight bounds have the same asymptotic run time as the trees
with loose bounds. However, this result holds only for binary trees. We show that for
quad-trees, tight bounds can lead to trees that are much worse than trees with loose
bounds.

8.1. Binary spatial decomposition with tight bounds. We now show that
an algorithm that uses binary trees with tight bounds has the same asymptotic run
time as an algorithm with loose bounds. We prove this by giving a packing lemma
that says that only a constant number of disjoint cells with diameter at least s can
intersect a sphere of radius θs. Using the lemma, the argument of Theorem 5.1 applies.

The following lemma is based on a packing lemma for fair-split trees proved
by Callahan and Kosaraju [7]. (We establish the lemma in two dimensions; the
generalization to three dimensions is straightforward.)

Lemma 8.1. The maximum number of disjoint cells of diameter at least s of a
tight binary spatial decomposition tree that can intersect a ball of radius θs is bounded
by a constant.

Proof. For each cell C, we define an outer rectangle C.outer. If C has children C ′

and C ′′, then C.outer is divided to give C ′.outer and C ′′.outer. C ′ and C ′′ are the
contractions of C ′.outer and C ′′.outer to the smallest rectangles enclosing the point
sets. The outer rectangles give a valid spatial decomposition of the space. Figure 8.2
illustrates the outer rectangles for a cell C being split into cells C ′ and C ′′.

We show that if C ′ is a child of C, then

min(C ′.outer.height, C ′.outer.width) ≥ 1

2
max(C.height, C.width).

1938 RICHARD J. ANDERSON

If C is the root, then the bound holds (we assume that the outer rectangle of the
root is a square). Suppose C is not the root. Let Ĉ be the parent of C and suppose
the bound holds for C and Ĉ. We can assume that C ′ is formed by a horizontal cut
of C, so C.height ≥ C.width. We have

C ′.outer.height ≥ 1

2
C.height ≥ 1

2
C.width

and

C ′.outer.width = C.outer.width ≥ 1

2
Ĉ.width ≥ 1

2
C.width.

If a cell C ′ has diameter at least s, then

max(C.height, C.width) ≥ max(C ′.height, C ′.width) ≥ s√
2
,

with C the parent of C ′. Thus, we have

min(C ′.outer.height, C ′.outer.width) ≥ s

2
√

2
.

This implies that at most a constant number of disjoint cells with diameter at least s
can intersect a ball of radius θs.

C’’.outer

C’’

C’

C’.outerC.outer

C

Fig. 8.2. Cell decomposition into outer regions cost.

Theorem 8.2. The run time of the particle-cluster algorithm using a tight binary
spatial decomposition tree on a set of n particles with separation ratio L is O(n logL).

Proof. We use Lemma 8.1 with Theorem 5.1 to get the bound. The height of the
TBSD tree is O(logL).

8.2. Tight bounds for quad-trees. The result that the use of tight bounds
does not increase the asymptotic worst-case amount of work that a binary tree–based
algorithm performs is not surprising—intuitively the use of more accurate cell bounds
should speed up the computation. However, a similar result does not hold for higher
degree trees. We show that the use of tight bounds can drastically increase the amount
of work performed by a quad-tree–based algorithm. The bound below shows that the
amount of work can increase by a factor of Ω(n1/2/ log n).

The problem is that if tight bounds are used, the regions can have a high aspect
ratio. The reason that this is bad is that long skinny regions do not satisfy a suitable
packing lemma (such as Lemma 8.1) so that it is not possible to get a good bound on
the number of interactions that a particle will have with regions of a particular size.
The basic idea used to construct the bad example in two dimensions is to use a set of
points distributed uniformly in a rectangle with dimensions h and w where h � w.

TREE DATA STRUCTURES FOR N -BODY SIMULATION 1939

Since the bounds are tight, the bounding box for the region is an h×w rectangle. The
quad-tree splits each dimension evenly so at each level rectangles with aspect ratio
h : w are formed. When the force on a particle is evaluated there are a large number
of nearby rectangles that must be used. The two-dimensional example generalizes to
three dimensions and gives an Ω(n5/3) bound.

Theorem 8.3. There exists a set of n points with separation ratio nO(1) for
which the particle-cluster algorithm using a quad-tree with tight bounds has Ω(n3/2)
run time.

Proof. For convenience, assume that n is a power of 4 and θ = 1. We place a
particle at (i, j

√
n) for 0 ≤ i, j < n. The quad-tree decomposition divides this set in

cells with aspect ration 1 :
√
n. The cells immediately above the leaves each contain

four points and have dimensions 1×√n. When computing the force on a particle, we
examine at least

√
n/2 of these cells, giving Ω(n3/2) work over all.

9. Conclusions and future work. The argument of this paper is that a binary,
spatially balanced decomposition tree with tight bounds is the best data structure to
use in N -body simulation algorithms. We have shown that spatial decompositions are
asymptotically superior to density-based decompositions. The result led to changes
in one of the major N -body codes in use for astrophysical research. By analyzing
the interaction areas of cells, we expect close to a 50% reduction in the number of
force evaluations for a binary tree as opposed to an oct-tree. We also show that tight
bounding boxes can be used for binary trees without hurting run time bounds, while
for higher degree tight bounding boxes can cause a substantial slowdown.

We have established a set of theoretical results that support specific design choices
in practical N -body algorithms. The question of which is the best decomposition
strategy to use is still open. Lemma 7.6 raises the intriguing possibility that DAG-
based algorithms could be superior to tree-based algorithms. There is the potential to
extend our results to other N -body algorithms beyond the particle-cluster algorithms
and also to look at a wider collection of tree decompositions.

REFERENCES

[1] A. W. Appel, An efficient program for many-body simulation, SIAM J. Sci. Statist. Comput.,
6 (1985), pp. 85–103.

[2] R. J. Anderson and S. D. Sandys, An experimental study of tree data structures for N-body
simulation, manuscript, 1996.

[3] J. E. Barnes and P. Hut, A hierarchical O(N logN) force-calculation algorithm, Nature, 324
(1986), pp. 446–449.

[4] J. A. Board, Z. S. Hakura, W. D. Elliot, D. C. Gray, W. J. Blanke, and J. F. Leathrum,
Scalable Implementations of Multipole-Accelerated Algorithms for Molecular Dynamics,
Technical Report 94-002, Department of Electrical Engineering, Duke University, Durham,
NC, 1994.

[5] J. A. Board, Z. S. Hakura, W. D. Elliot, and W. T. Rankin, Scalable Variants of Multipole-
Accelerated Algorithms for Molecular Dynamics Applications, Technical Report 94-006,
Department of Electrical Engineering, Duke University, Durham, NC, 1994.

[6] G. Blelloch and G. Narlikar, A practical comparison of N-body algorithms, manuscript,
1995.

[7] P. B. Callahan and S. R. Kosaraju, A decomposition of multi-dimensional point-sets with
applications to k-nearest-neighbors and n-body potential fields, J. Assoc. Comput. Mach.,
42 (1995), pp. 67–90.

[8] K. L. Clarkson, Fast algorithms for the all nearest neighbors problem, in 24th Symposium
on Foundations of Computer Science, 1983, pp. 226–232.

[9] M. Dikaiakos and J. Stadel, A Performance Study of Cosmological Simulations on Message-
Passing and Shared-Memory Multiprocessors, 1995, available from http://www-hpcc.astro.
washington.edu/.

1940 RICHARD J. ANDERSON

[10] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[11] L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT Press,
Cambridge, MA, 1988.

[12] J. G. Jernigan and D. H. Porter, A tree code with logarithmic reduction of force terms,
hierarchical regularization of all variables and explicit accuracy controls, J. Astrophys.
Suppl., 71 (1989), pp. 871–893.

[13] J. Makino, Comparison of two different tree algorithms, J. Comput. Phys., 88 (1990), pp.
393–408.

[14] B. Moore, N. Katz, G. Lake, A. Dressler, and A. Oelmer, Jr., Galaxy harassment and
the evolution of clusters of galaxies, Nature, 379 (1996), pp. 613–616.

[15] J. H. Reif and S. R. Tate, N-body Simulation I: Fast Algorithms for Potential Field Evaluation
and Trummers’s Problem, Technical Report N-96-002, Department of Computer Science,
University of North Texas, Denton, TX, 1996.

[16] J. K. Salmon, Parallel Hierarchical N-body Methods, Ph.D. thesis, California Institute of
Technology, Pasadena, CA, 1990.

[17] H. Samet, The Design and Analysis of Spatial Data Structures, Addison–Wesley, Reading,
MA, 1989.

[18] J. K. Salmon and M. S. Warren, Skeletons from the treecode closet, J. Comput. Phys., 111
(1994), pp. 136–155.

[19] P. M. Vaidya, An optimal algorithm for the all-nearest-neighbors problem, in 27th Symposium
on Foundations of Computer Science, 1986, pp. 117–122.

THE POWER OF VACILLATION IN LANGUAGE LEARNING∗

JOHN CASE†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 1941–1969

Abstract. Some extensions are considered of Gold’s influential model of language learning
by machine from positive data. Studied are criteria of successful learning featuring convergence
in the limit to vacillation between several alternative correct grammars. The main theorem of this
paper is that there are classes of languages that can be learned if convergence in the limit to up to
(n+ 1) exactly correct grammars is allowed but which cannot be learned if convergence in the limit
is to no more than n grammars, where the no more than n grammars can each make finitely many
mistakes. This contrasts sharply with results of Barzdin and Podnieks and, later, Case and Smith
for learnability from both positive and negative data.

A subset principle from a 1980 paper of Angluin is extended to the vacillatory and other criteria of
this paper. This principle provides a necessary condition for avoiding overgeneralization in learning
from positive data. It is applied to prove another theorem to the effect that one can optimally
eliminate half of the mistakes from final programs for vacillatory criteria if one is willing to converge
in the limit to infinitely many different programs instead.

Child language learning may be sensitive to the order or timing of data presentation. It is shown,
though, that for the vacillatory success criteria of this paper, there is no loss of learning power for
machines which are insensitive to order in several ways simultaneously. For example, partly set-driven
machines attend only to the set and length of sequence of positive data, not the actual sequence itself.

A machine M is weakly n-ary order independent
def⇔ for each language L on which, for some ordering

of the positive data about L, M converges in the limit to a finite set of grammars, there is a finite
set of grammars D (of cardinality ≤ n) such that M converges to a subset of this same D for each
ordering of the positive data for L. The theorem most difficult to prove in the paper implies that
machines which are simultaneously partly set-driven and weakly n-ary order independent do not lose
learning power for converging in the limit to up to n grammars. Several variants of this theorem are
obtained by modifying its proof, and some of these variants have application in this and other papers.
Along the way it is also shown, for the vacillatory criteria, that learning power is not increased if
one restricts the sequence of positive data presentation to be computable. Some of these results are
nontrivial lifts of prior work for the n = 1 case done by the Blums; Wiehagen; Osherson, Stob, and
Weinstein; Schäfer; and Fulk.

Key words. computational learning theory, inductive reference, language learning, recursion
theory, topology

AMS subject classifications. 68Q, 68T05, 68S05, 03D, 92J40, 54E51, D0944

PII. S0097539793249694

1. Introduction. In [46] Gold introduced his seminal model of language learn-
ing: Imagine, as pictured in (1.1) just below, a machine M being fed data about
membership in a (formal) language L and, as a result, outputting over time a series
of grammars p0, p1, p2, . . . , pt, pt+1, . . . conjectured to be for L:1

p0, p1, p2, . . . , pt, pt+1, . . .←M← data re L.(1.1)

∗Received by the editors May 28, 1993; accepted for publication (in revised form) September
22, 1997; published electronically June 3, 1999. This research was supported in part by NSF grant
CCR-8713846. This paper is an expansion with corrections of J. Case, The Power of Vacillation,
in Proceedings of the Workshop on Computational Learning Theory, D. Haussler and L. Pitt, eds.,
Morgan Kaufmann, San Mateo, CA, 1988, pp. 133–1424.

http://www.siam.org/journals/sicomp/28-6/24969.html
†Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716

(case@cis.udel.edu).
1We have oriented the arrows in (1.1) so that elements later in the series p0, p1, p2, . . . , pt, pt+1, . . .

will correctly appear to be coming out of the machine M later: they will appear closer to M than
earlier elements of the series.

1941

1942 JOHN CASE

For our present purposes, it will suffice to consider two kinds of data presentation and
one kind of success from [46]. For expository convenience, and, as noted in section 2
below, without loss of generality, we can consider all languages L to be subsets of the
set of nonnegative integers.

Data about L are either

1. informant, a listing of every nonnegative integer with a clear indication of
whether or not it is in L, or

2. text, an arbitrary listing of all and only the elements of L.

Gold took quite seriously, as a model of child language learning, the case of data
presentation by arbitrary text, where M receives all and only positive information
about L. Justification for this point of view can be found, for example, in [9, 13],
where it is noted from field work that children don’t need corrections to learn language.

Regarding successful language learning, referring to (1.1) above: for Gold, ma-

chine M identifies language L
def⇔ M fed any text for L, outputs a corresponding

sequence p0, p1, p2, . . . such that, for some t, pt = pt+1 = pt+2 = · · · and pt is a correct
grammar for L. In other words, M identifies L⇔ on each text for L, the correspond-
ing conjectures of M converge, in the limit, to some fixed final conjecture, and that
final conjecture is correct.2 Gold showed that no M so identifies the entire class of
regular languages [48], but some M does identify the class of finite languages. Angluin
[1, 2] presents other classes L natural from the perspective of formal language theory
such that some M identifies each language in L.

Many cognitive scientists seek to model all of cognition by computer program
[77, 50], and Gold’s model of language learning from text (positive information) by
machine has been very influential in contemporary theories of natural language and in
mathematical work explicitly motivated by its possible connection to human language
learning (see, for example, [76, 93, 94, 66, 68, 8, 44, 15, 69, 70, 38, 39, 53, 5]).

In the present paper we consider some new criteria of success extending Gold’s
basic model above. Suppose that we fix an integer n > 0. Consider the following
criterion of success (again based on (1.1) above). We say that M TxtFexn-identifies

L
def⇔ M, on any text for L, outputs corresponding conjectures p0, p1, p2, . . . such that

there is a t for which

1. the sequence pt, pt+1, pt+2, . . . contains at most n distinct grammars, and
2. each of the grammars pt, pt+1, pt+2, . . . is correct.

Of course, Gold’s identification criterion above is just TxtFex1-identification. It is
well known [82] that equivalent grammars (e.g., pt, pt+1, pt+2, . . . as above) can be so
different from one another that in some cases it is not possible to prove in Zermelo–
Frankel set theory [49] that they are equivalent. This suggests that a suitably clever M
might be able to TxtFexn+1-identify a larger class of languages than any machine,
however clever, could TxtFexn-identify. Unfortunately, it was already known [12]
that, at least in the case where the data are informant instead of text, one gets
no more learning power with (n + 1) correct programs in the limit than with n.
Surprisingly, then, the main theorem of the present paper (Theorem 3.3 in section 3
below) implies that, nonetheless, for learning from text , larger classes of languages
can be learned with up to (n+ 1) correct programs in the limit than with up to n.

Theorem 3.3 suggests, then, the possibility that evolutionary pressure for in-
creased learning power may have resulted in human language learning strategies that

2N.B.: It is not required that M signal when it has reached its final conjecture—in general it
doesn’t know when and if it has.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1943

involve convergence to vacillating between n > 1 correct grammars in the limit. This
is examined more critically in section 7 below. Regarding, though, the size of n, we
note that at least one of n distinct grammars would have to be of size proportional
to the size of n (i.e., to logn); hence, for extraordinarily large n, at least one of n
distinct grammars would be too large to fit in our heads—unless, as seems unlikely,
human storage mechanisms admit infinite regress. Osherson and Weinstein [71] in-
troduced the case where the number of final grammars is finite but unbounded, and
independently [28, 71] (see also [72]) introduced the case where the number of final
grammars is infinite (TxtBc-identification). We briefly introduced the case, discussed
above, of up to n final grammars in [15].

The proof of Theorem 3.3 employs an (n+1)-ary self-reference argument [18], and
an informal thesis is presented and discussed after the statement of Theorem 3.3 that
self-referential examples witnessing an existence theorem portend natural examples
witnessing that theorem.

Case and Lynes [28] considered, among other things, the learning of grammars
for languages where a single final grammar is allowed to have a bounded number
of mistakes (anomalies). The mistakes are about which objects are (and which are
not) in the corresponding language. In [30, 31, 15] there are discussion, motivation,
and interpretation of results about inferring anomalous programs for functions. The
results in [30, 31, 15] and in this paper show that allowing anomalies increases learning
power. Clearly, anomalous programs are tolerable provided the number of anomalies
is small. Hence, it is plausible that people have evolved language learning strategies
that exploit the greater learning power achieved by converging to slightly incorrect
grammars. Theorem 3.3 says, more generally than indicated above, that for each n > 0
some classes of languages can be algorithmically learned (in the limit) by converging to
up to n+1 different, exactly correct grammars; but these classes cannot be learned by
converging (in the limit) to up to n different grammars, where the up to n grammars
are each allowed to have a finite number of anomalies

Corollary 3.7 below specifies a two-dimensional hierarchy involving TxtFexab -
identification: learning up to b final grammars each with up to a mistakes.

Theorem 3.11 implies that, in passing from learning finitely many anomalous
grammars in the limit to learning infinitely many, one can eliminate half of the anoma-
lies, and that’s optimal! Intuitively, since (with positive data only) one is missing
approximately half of the information, one can eliminate half of the anomalies only.

If L is a nonempty language, then some texts for L are noncomputable sequences,
but in a completely computable universe, no parents can generate a noncomputable
sequence of data for their children. Hence, it is interesting to consider RecTxtFexab -
identification, which is similar to TxtFexab -identification except that success is re-
quired only on computable presentations of positive data, on all recursive texts. It
might be expected that a suitably clever machine M might be able to exploit the
recursiveness of texts to learn larger classes of languages than any machine required
to succeed on arbitrary texts, but Corollary 3.1 below implies that this is not the case
(generalizing the b = 1 case essentially from [96, 3]). We say, then, that the restriction
to recursive texts is circumvented.

Angluin, in her seminal paper [1], presents a severe constraint on TxtFex1-
identification of classes of languages: the subset principle. Basically, she shows that if
M TxtFex1-identifies a class of languages L, then for each L ∈ L there is a finite set
D (called a tell tale) contained in L such that D is not contained in any proper sub-
language of L in L. Intuitively, this necessary condition prevents overgeneralization in

1944 JOHN CASE

learning from positive data [1, 8]. Theorem 4.4 below generalizes the subset principle
to the criteria of success TxtFexab -identification and TxtBca-identification, where
the a in TxtBca-identification allows each of the infinitely many final grammars con-
verged to have up to a anomalies. Theorem 4.4 is also used to prove Theorem 3.11
below.

A child learning a language may or may not be sensitive to the order or timing of
presentation of positive data. For TxtFexab -identification (and variants thereof) we
mathematically consider several kinds of insensitivity of a machine M to data order:

1. set-driven: M’s output at any point depends only on the set of positive data
it’s seen up to that point (not on the sequence in which it was presented).

2. partly set-driven: M’s output at any point depends only on the set of positive
data it’s seen up to that point and on the length of the sequence in which it
was presented.

3. b-ary order independent: for languages L on which for some text M converges
to a finite set of final grammars, M converges to the same set (of cardinality
≤ b) of final grammars for each text for L.

4. weakly b-ary order independent: for languages L on which for some text M
converges to a finite set of final grammars, there is a finite set of grammars
D (of cardinality ≤ b) such that M converges to a subset of this D for each
text for L.

In section 5 below, we prove several theorems, each witnessing that, for suitably
clever M’s simultaneously exhibiting some insensitivities as above and circumventing
the restriction to recursive texts, there is no loss of learning power (with respect
to TxtFexab -identification or the variants thereof). For example, Theorem 5.5 implies
that the power of TxtFexab -identification is unaffected by the restriction to M’s which
are simultaneously partly set-driven and weakly b-ary order independent and which
circumvent the restriction to recursive texts. Theorem 5.5 is the hardest theorem
herein to prove, and the other theorems in section 5 are proved by modifications
and/or simplifications of the proof of Theorem 5.5. Some of the theorems in section 5
generalize predecessors for TxtFex0

1-identification [3, 93, 90, 38, 70, 39] but are much
harder to prove. Some of the theorems in section 5 are applied in the present paper
and in other papers.

In section 7 we discuss briefly computable universe hypotheses, present some
critical discussion as promised above, and sketch some areas for future investigation.

2. Preliminaries. We now proceed more formally.
N denotes the set of natural numbers, { 0, 1, 2, . . . }.
ϕ denotes a fixed acceptable programming system for the partial computable

functions: N → N [81, 65, 79, 80, 83]. ϕp denotes the partial computable function
computed by the program (with code number) p in the ϕ-system.3 Thanks to the
device of Gödel or code numbering [82] we can treat languages over any finite alphabet

as subsets of N. Wp
def
= the domain of ϕp, the r.e. language (⊆ N) recognized (or

enumerated) by program (grammar) p in the ϕ-system [82].
Definition 2.1. A language learning function is a computable mapping from fi-

nite sequences, of natural numbers and #’s, into (Gödel numbers of) programs (gram-
mars) in the ϕ-system.

3The acceptable systems are those universal programming systems such as Turing machines, C,
and Lisp into which one can compile from any programming system. We characterized them as
those universal systems for the partial computable functions in which one can implement any control
structure [83].

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1945

E denotes the class of all r.e. languages (⊆ N).

Definition 2.2. A text for a language L is a mapping T from N into (N ∪
{#}) such that L is the set of natural numbers in the range of T . T is said to be for
L⇔ T is a text for L. The content of a sequence, of natural numbers and #’s, is the
set of natural numbers in its range; content(·) denotes the content of its argument.

Intuitively, one can think of a text for a language as an enumeration of the objects
in the language with the #’s representing pauses in the listing of such objects. For
example, the only text for the empty language is just an infinite sequence of #’s.

Intuitively, if F is a learning function and σ is a finite initial segment of a text
for a language L, then F(σ) represents F’s conjecture as to a grammar for L based
on the data about L in σ.

Variables σ and τ (with or without decorations4) range over finite initial segments
of texts T . ‖σ‖ denotes the length of σ. σ �σ′ denotes the sequence formed by adding
σ′ to the end of σ. Hence, if τ = σ � σ′, then, ∀x ∈ N,

τ(x) =

{
σ(x) if x < ‖σ‖;
σ′(x− ‖σ‖) if ‖σ‖ ≤ x < ‖σ‖+ ‖σ′‖;
undefined otherwise.

Furthermore, σ � x, where x ∈ (N ∪ {# }), denotes σ � σ′, where σ′ = { (0, x) }.
card(D) denotes the cardinality of D. I+ denotes the set of positive integers.

We take a and c to range over (N ∪ {∗}) and b and d to range over (I+ ∪ {∗}).
Intuitively, ∗ denotes the unbounded but finite. For example, “card(D) ≤ ∗” means
that D is finite. We adopt the convention that (∀i ∈ N)[i < ∗ < ∞]. ∆ is the
symmetric difference operator for sets/languages. L1 =a L2 ⇔ card(L1∆L2) ≤ a.
(“=0” denotes, then, ordinary set equality.) L1 6=a L2 means that it is not the case
that L1 =a L2.

“⊂” denotes “is a proper subset of,” and “⊃” denotes “is a proper superset of.”
Set theoretically, as in [47], we treat sequences as functions, and, in general, functions,
finite, partial, or total, as single-valued sets of ordered pairs.5 Hence, we can and do
meaningfully compare them with “⊆,” “⊂,” “⊇,” and “⊃.” It follows, for example,
that, if T is a text, “τ ⊂ T” means that “the finite sequence τ is an initial segment
of the infinite sequence T .”

The quantifier “∃∞τ” means “there exists infinitely many τ .”

We use “|” to mean “such that.”

Definition 2.3. Suppose F is a learning function and T is a text. We say F(T)
converges (written: F(T)⇓) ⇔ {F(τ) | τ ⊂ T} is finite. If F(T)⇓, then F(T) is
defined = {p | (∃∞τ ⊂ T)[F(τ) = p]}; otherwise, F(T) is undefined.

Definition 2.4. A language learning function, F, TxtFexab -identifies an r.e.
language L ⇔ (∀ texts T for L)[F(T)⇓ = a set of cardinality ≤ b and (∀p ∈ F(T))[Wp

=a L]].

In TxtFexab -identification the b is a “bound” on the number of final grammars
and the a a “bound” on the number of anomalies allowed in these final grammars. As
above, a “bound” of ∗ just means unbounded but finite.

Definition 2.5. TxtFexab denotes the class of all classes L of languages such
that some learning function TxtFexab -identifies each language in L.

4Decorations are subscripts, superscripts, primes, and the like.
5Hence, the sequence of numbers w0, w1, w2, . . . is identified with function f such that, for each

i ∈ N, f(i) = wi, and this f is also identified with its graph { (i, f(i)) | i ∈ N }.

1946 JOHN CASE

Intuitively, L ∈ TxtFexab ⇔ there is an algorithm p, computing a learning func-
tion F, such that, if p is given any listing T of any language L ∈ L , it outputs a
sequence of grammars converging in a nonempty set, F(T), of no more than b gram-
mars, and each of these grammars makes no more than a mistakes in generating L,
i.e., if p is given any listing of any language L ∈ L , it outputs a sequence of grammars,
and, past some point in this sequence, each grammar seen (over and over) is from a
set of no more than b grammars and each of these “final” grammars makes no more
than a mistakes in generating L.

TxtFex0
1-identification is equivalent to Gold’s [46] seminal notion of identifica-

tion, also referred to as TXTEX-identification in [28] and (indirectly) as INT in [72,
71, 70]. TxtFexa1-identification is just TXTEXa-identification from [28]. For n > 0,
TxtFex0

n-identification is just our notion of TXTFEXn-identification from [15].
Osherson and Weinstein [71] were the first to define TxtFex0

∗ and TxtFex∗∗; they
called them BEXT and BFEXT, respectively.

It is common in the literature to use TXTEXa
b to mean the special case of

TXTEXa where the total number of changes of output (or mind changes) is bounded
above by b. N.B.: The b in TxtFexab has a totally different meaning from the b
in TXTEXa

b ; the former is a bound on the number of different programs an asso-
ciated machine eventually vacillates between in the limit; the latter is a bound on
mind changes for convergence to a single final program.

Definition 2.6. A text T is recursive ⇔ T , as a function: N→ (N ∪ {# }), is
computable.6

Learning power under TxtFexab -identification might be affected if one requires
success only on all recursive texts for a language. This is interesting since, for example,
if the universe is completely algorithmic, then all real language texts generated by
parents for their children are recursive!7

Definition 2.7. A language learning function, F, RecTxtFexab -identifies an
r.e. language L ⇔ (∀ recursive texts T for L)[F(T)⇓ = a set of cardinality ≤ b and
(∀p ∈ F(T))[Wp =a L]].

Definition 2.8. RecTxtFexab denotes the class of all classes L of languages
such that some learning function RecTxtFexab -identifies each language in L.

It is interesting to consider what happens to learning power if the final pro-
grams/grammars for TxtFexab -identification are required to be “nearly” minimal size
and, hence, even more likely to fit in one’s head.

Let mingrammar(L) denote min({ p |Wp = L }).
Definition 2.9. F TxtMfexab -identifies a class of languages L ⇔ (∃ recursive h)

(∀L ∈ L)[F TxtFexab -identifies L ∧ (∀T for L)(∀p ∈ F(T))[p ≤ h(mingrammar(L))]].
h in Definition 2.9 plays the role of a computable amount by which the final pro-

grams can be larger than minimal size. This size restriction of course does not hold
in general, and, for TxtMfex0

1-identification, it is not as severe as requiring that the
final program be strictly minimal size. Mathematically, TxtMfexab -identification is
well behaved, e.g., it turns out not to depend on the choice of acceptable system;
it also does not depend on the choice of Blum program size measure [11] (by his
recursive-relatedness result in [11]). The lack of dependence on the choice of accept-
able system is in contrast with the variant of TxtMfex0

1-identification in which we
require h to be the identity function (see [23]). The study of learning nearly minimal

6The r.e. languages are characterized as those which are the content of some recursive text [82].
7See further discussion in section 3 below.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1947

size programs began with [35] in the context of learning programs for functions (see
also [52, 19, 20, 37]).

Definition 2.10. TxtMfexab = {L | (∃F)[F TxtMfexab -identifies L]}.
Similarly, we may define RecTxtMfexab -identification and RecTxtMfexab as

TxtMfexab -identification and TxtMfexab , respectively, restricted to recursive texts
(see Definitions 2.7 and 2.8 above).

Next, for mathematical completeness and interest, we introduce the cases of suc-
cess criteria for which the number of final grammars is possibly infinite, not necessarily
finite as it is for TxtFexab -identification. Definitions 2.11 and 2.12 are from [28]. The
a ∈ { 0, ∗ } cases were independently introduced in [71, 72].

The quantifier “∀∞k” means “for all but finitely many k ∈ N.”

Definition 2.11. F TxtBca-identifies L⇔ (∀ texts T for L)(∀∞k)[WF(T [k]) =a

L].

Definition 2.12. TxtBca denotes the class of all classes L of languages such
that some learning function TxtBca-identifies each language in L.

∅ denotes the empty set of natural numbers.

Fix canonical indexings of the finite sets of natural numbers and of the finite initial
segments of texts each one to one onto N [82, 65].8 In the following, finite sets and
segments are sometimes identified with their corresponding canonical indices. Hence,
a reference to a least finite set or segment really refers to a finite set or segment with
least canonical index. Also, when we compare finite sets or segments by <,≤, · · · we
are comparing their corresponding canonical indices.

〈·, ·〉 denotes a fixed pairing function [82], a computable, surjective, and injective
mapping from N × N into N.

For A ⊆ N, A denotes (N−A), the complement of A.

We let F (with or without decorations) range over learning functions.

3. Results on vacillation in learning. This section presents our main results
regarding the vacillatory learning criteria of the present paper.

In this section we defer proofs of three results until we have the benefit of some
of the concepts and results from sections 4 and 5 below. Section 6 contains the three
deferred proofs.

The definition of TxtFexab -identification (Definition 2.5 above) requires success
for each order of data presentation. For each nonempty r.e. language, there are con-
tinuum many such orders (texts) [47] yet only countably many recursive ones (since
there are only countably many Turing machine programs for computing the recur-
sive texts [82]). In a completely computable universe (which ours might be), there
are really only recursive texts available to be presented to learning machines. Of
course the universe may be such that, while all the language learners are computable,
there are some noncomputable phenomena too. As noted in [70], since the utterances
of children’s caretakers depend heavily on external environmental events, such influ-
ences might introduce a random component into naturally occurring texts. It is, then,
interesting and important to compare learning power where success is required on all
texts with the cases where it is required only on all recursive texts.

Wiehagen [96] essentially notes that RecTxtFex0
1 = TxtFex0

1 (a related re-
sult was first proved in [3]), and [28] essentially observes that (∀a)[RecTxtFexa1 =

8The canonical index of a finite set or segment is, then, a numerical code of it.

1948 JOHN CASE

TxtFexa1]. We have, more generally, the following corollary.9

Corollary 3.1.
1. (∀a, b)[RecTxtFexab = TxtFexab].
2. (∀a, b)[RecTxtMfexab = TxtMfexab].

Hence, for all the vacillatory learning criteria of the present paper, it makes no
difference in learning power whether or not we restrict the texts to be recursive! By
contrast, for TxtBca, learning procedures can exploit the assumption that they are
receiving recursive texts; for TxtBca, the restriction to recursive text does make a
difference in learning power [28, 36].

The topic of learning nearly minimal size programs/grammars is treated in greater
depth in [23]. Herein we present results about such criteria only in the contexts
of recursive text (Corollary 3.1) and of restrictions on learning functions (section 5
below). There is a small amount of additional discussion below in section 7.

RecTxtFex0
1 = TxtFex0

1 entails that, if a given learning function F RecTxtFex0
1-

identifies some class, some learning function F′ will TxtFex0
1-identify it. However, by

the following proposition, in some cases we cannot have F′ = F.
Proposition 3.2. There is a learning function which RecTxtFex0

1-identifies a
language which it fails to TxtFex0

1-identify.
Proof. Let K = { p | p ∈ Wp }, a well-known r.e., nonrecursive set [82]. Suppose

k is a recursive function with range K [82]. Let Ks = { k(s′) | s′ < s }. CA denotes
the characteristic function of A ⊆ N, the function 1 on A and 0 off A. Clearly,
(∀x)[lims→∞ CKs(x) = CK(x)]. Let Sτ = the set of all x ∈ the domain of τ such that
CK‖τ‖ agrees with τ on all inputs ≤ x. Let

agree(τ) =

{
0 if Sτ = ∅;
1 + max(Sτ) otherwise.

It is easy to see that

[T = CK ⇒ lim
τ⊂T

agree(τ) =∞]

and that

[T 6= CK ⇒ lim
τ⊂T

agree(τ) <∞].

Let p0 be a program such that Wp0
= { 0, 1 }. Let

τ− =
{ ∅ if τ = ∅;
τ ′ if τ = τ ′ � x.

(3.1)

Let

F(τ) =

{
agree(τ) if agree(τ) > agree(τ−);
p0 otherwise.

Let L = { 0, 1 }. Clearly, CK is a nonrecursive text T for L such that F(T)6⇓, yet F
on any recursive text for L converges to p0, a program for L.

Next is our main theorem. It says that, for each n > 0, some classes of languages
can be algorithmically learned (in the limit) by converging to up to n + 1 different,

9The proof of Corollary 3.1 is deferred to section 6 since it employs Theorems 5.5 and 5.8 from
section 5.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1949

exactly correct grammars; however, these classes cannot be learned by converging (in
the limit) to up to n different grammars, where the up to n grammars are each allowed
to have a finite number of anomalies! Allowing one more grammar in the limit makes
a big difference in learning power.

Hence, it is possible that, for some n > 0, people have evolved language learning
strategies that exploit the greater learning power achieved by converging in the limit
to up to n+ 1 rather than to up to n grammars (see a critical discussion in section 7
below).

Theorem 3.3. Suppose n > 0. Let Ln+1 equal

{L |L is ∞ ∧ (∃e0, . . . , en)[We0 = · · · =Wen =L ∧ (∀∞〈x, y〉∈L)[y∈{e0, . . . , en}]] }.
Then Ln+1 ∈ (TxtFex0

n+1 −TxtFex∗n).
The detailed proof of Theorem 3.3 is deferred to section 6 since it depends, in

part, on Definitions 5.1 and 5.4 and Theorem 5.6 in section 5.
The reader may note that the languages in the class Ln+1 from Theorem 3.3 have

an intriguing self-referential character. It is useful to discuss this feature a bit in the
interest of anticipating and answering a possible objection to the use of self-reference
in witnessing the separation result of Theorem 3.3.

In the proof of Theorem 3.3, to handle the self-referential character of Ln+1, we
employ the (n + 1)-ary recursion theorem, a folk theorem generalizing the Kleene
recursion theorem [82, p. 214] and the Smullyan double recursion theorem [87]; it is
also a consequence of our operator recursion theorem [14], an infinitary analogue of
the finitary recursion theorems.

Intuitively, the (n+ 1)-ary recursion theorem provides a means for transforming
any sequence of n+ 1 programs p0, . . . , pn into a corresponding sequence of programs
e(p0), . . . , e(pn) such that each e(pi) first creates quiescent copies of e(p0), . . . , e(pn)
(including a self-copy, a copy of e(pi) itself), and then each e(pi) runs pi on the
quiescent copies of e(p0), . . . , e(pn) any together with any externally given input.
Each e(pi), in effect, has complete (low level) knowledge of e(p0), . . . , e(pn) (including
self-knowledge, knowledge of e(pi) itself), and pi represents how e(pi) uses its self-
knowledge, its knowledge of the other e(pj)’s, and its knowledge of the external world.
Infinite regress is not required since each e(pi) creates the copies of e(p0), . . . , e(pn)
externally to itself. One mechanism to achieve this creation is a generalization of the
self-replication trick isomorphic to that employed by single-celled organisms [14]. An-
other is for the programs e(p0), . . . , e(pn) to look in a common mirror to see which
programs they are. Reference [18] provides a tutorial on thinking about and applying
recursion theorems.10 Herein, our application of the (n + 1)-ary recursion theorem
(to prove Theorem 3.3) will be informal and the sequence p0, . . . , pn will be implicit.

Now for the possible objection: On the one hand, we argue above that Theo-
rem 3.3 suggests a possibility regarding human language learning; on the other hand,
we prove it by self/other reference, and it is common to regard self-referential exam-
ples as unnatural. For example, Gödel proved his famous incompleteness theorem by a
self-reference argument [45, 62], and his self-referential sentence providing an unprov-
able truth of, for example, First Order Peano Arithmetic (FOPA) is not natural—no
number or combinatorial theorist would care whether it was true or false.

We answer this objection about self-referential proofs of existence theorems with
the following.

10See [78] for discussion and applications of recursion theorems in severely resource-limited con-
texts.

1950 JOHN CASE

Informal Thesis 1. If a self-referential example witnesses the existence of a
phenomenon, there are natural examples witnessing same!

For this informal thesis we present a brief plausibility argument and one piece
of empirical evidence. Plausibility: Self-reference arguments lay bare an underlying
simplest reason for the theorems they prove [82, 18]; if a theorem is true for such a
simple reason, the “space” of reasons for its truth may be broad enough to admit
natural examples. Empirical: Although Gödel proved his famous first incompleteness
theorem by a self-reference argument, many years afterwards, Paris and Harrington
[75] and later Friedman [84, 85] found quite natural examples of combinatorial truths
of first order arithmetic not provable in FOPA.11 In fairness, regarding the above
informal thesis, we note, for example, that the Blum speed-up theorem [10] was origi-
nally proved by a self-reference argument,12 but natural witnesses to even exponential
speed-up have not (yet) been found. However, even the self-reference proofs of this
result are fairly complicated; hence, one might expect that natural examples are es-
pecially hard to find.

For some theoretical work instigated by Barzdin and dealing, in part, with elim-
inating dependence on self-referential examples, see Fulk’s work on robust function
learning in [40].

Corollary 3.4. (∀a)[TxtFexa1 ⊂ TxtFexa2 ⊂ · · · ⊂ TxtFexa∗].
Corollary 3.5 (Osherson and Weinstein [71]). TxtFex0

1 ⊂ TxtFex0
∗.

We announced in [15] that we could prove TxtFex0
1 ⊂ TxtFex0

2 by analyzing
Osherson and Weinstein’s proof of the immediately preceding corollary. Under our
direction Karen Ehrlich generalized the combinatorics of this proof to get TxtFex0

2 ⊂
TxtFex0

3. The combinatorics for this approach to the general case are unpleasant.
Reference [70] contains a recursion theorem proof of the immediately preceding corol-
lary based on the proof in [71], but the same combinatorial difficulties occur in at-
tempting to generalize this proof. We sought a combinatorially cleaner self-reference
proof. A later conversation about this with Royer led to Royer and Kurtz supplying
us with essentially the self-referential sets we use in Theorem 3.3 above. We believe
their self-referential examples are somewhat simpler than those we had been working
with. They also supplied some of the crucial combinatorics for the diagonal argument
that goes with a special case.

It is interesting to note that if one modifies the definition of TxtFexan-identification
to require that the learning function must converge to exactly n grammars, then the
hierarchy of Corollary 3.4 above collapses.13

If we restrict our attention to languages which are the (pairing function coded)
graphs of total functions, then it is essentially shown (the a = 0 case in [12] and the
a > 0 cases in [31]) that the hierarchy again collapses. Hence, in the case of “scientific
inference,” i.e., the case of learning programs for computable functions, there is no
power in vacillation.14

Therefore, Corollary 3.4 is very sensitive to minor perturbations. We should men-

11See [78] for an example from complexity theory.
12See also Young’s version in [98] and our operator recursion theorem variant in [86].
13Just output every nth grammar.
14For computable functions f , one can think of input x as coding a scientific experiment and

the output f(x) as coding the corresponding experimental result. In this way results about learn-
ing programs for functions can be interpreted as results about finding predictive explanations for
phenomena—as results about scientific induction. For more on this see [3, 31, 22, 7, 21, 56]. Regard-
ing the names of the learning criteria studied in the present paper, originally [31] “Ex” stood for “ex-
planatory,” “Fex” stood for “finitely explanatory,” and Bc for “behaviorally correct.”

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1951

tion, however, that there are some interesting effects on learning power for vacillatory
function learning wrought by bounding suitably sensitive measures of the computa-
tional complexity of the learning functions themselves [24] and by the introduction of
noisy input data [25].

The next proposition provides a dual to Theorem 3.3. There are classes which
can be learned with one program in the limit and with up to m+ 1 anomalies in that
program which cannot be learned with finitely many programs in the limit, but with
each having no more than m anomalies.

Proposition 3.6. (TxtFexm+1
1 −TxtFexm∗) 6= ∅.

Proof. We identify total functions f with { 〈x, f(x)〉 | x ∈ N }. Let L = { total f |
ϕf(0) =m+1 f }. Clearly, L ∈ TxtFexm+1

1 . Also, L ∈ TxtFexm∗ together with Theo-
rems 2.6 and 2.9 from [31] yields a contradiction.

In [4] it is shown that {L | L =m+1 N } also witnesses the separation of Proposi-
tion 3.6.

Clearly, from Theorem 3.3 and Proposition 3.6 we have our main corollary.

Corollary 3.7. TxtFexab ⊆ TxtFexcd ⇔ [b ≤ d and a ≤ c].

In Corollary 3.7, we see that all and only the obvious inclusions hold. Hence, allow-
ing more anomalies, final grammars, or both enhances learning power, but anomalies
and final grammars cannot in general completely substitute for one another. For ex-
ample, TxtFex0

2 is incomparable to TxtFex1
1. That is, there are classes which can

be learned with no mistakes and up to two final grammars which cannot be learned
with up to one mistake and one final grammar, and there are other classes which can
be learned with up to one mistake and one final grammar which cannot be learned
with no mistakes and up to two final grammars.

Corollary 3.8 (Case and Lynes [28]). TxtFex0
1 ⊂ TxtFex1

1 ⊂ · · · ⊂ TxtFex∗1.
Osherson and Weinstein [71] independently showed the case of TxtFex0

1 ⊂
TxtFex∗1 from the previous corollary.

Corollary 3.9 (Osherson and Weinstein [71]). TxtFex0
∗ ⊂ TxtFex∗∗.

Next we spell out the connections between TxtFexab and TxtBca
′
. Of course,

allowing infinitely many grammars in the limit is not so realistic for modeling language
learning but, nonetheless, it is mathematically interesting to make the comparisons.

Proposition 3.10. TxtBc0 −TxtFex∗∗ 6= ∅.
Proof. As in the proof of Proposition 3.6, we identify total functions f with

{ 〈x, f(x)〉 | x ∈ N }. Let L = { total f | (∀∞k)[ϕf(k) = f] }. Clearly L ∈ TxtBc0.
Also, L ∈ TxtFex∗∗ together with Theorems 2.12 and 3.1 from [31] yields a contra-
diction.

Remark 1. Proposition 3.10 still holds even if we restrict TxtBc0-identification
to recursive texts.

The next theorem says that, in passing from learning finitely many anomalous
grammars in the limit to learning infinitely many, one can eliminate half of the anoma-
lies, and that’s optimal! This contrasts with the function learning case [31], where,
by a result of Steel, one can so eliminate all of finitely many anomalies. Intuitively, in
the present context, since one is missing in the input data the negative information,
i.e., since one is missing approximately half the information, one can eliminate only
half of the anomalies.

Theorem 3.11. TxtFexm∗ ⊆ TxtBcm
′ ⇔ m ≤ 2.m′; furthermore, {L | L

=2m+1 N } ∈ (TxtFex2m+1
1 −TxtBcm).

In Theorem 3.11 we see that some excluded inclusions are, at first glance, unex-
pected. Its proof is deferred to section 6 since it depends on Theorem 4.4 in section 4

1952 JOHN CASE

below.
Clearly, we have the following corollary.
Corollary 3.12 (see [28]). The class of cofinite sets is in(

TxtFex∗1 −
⋃
m∈N

TxtBcm

)
.

We have not yet worked out all the relationships analogous to those in Theo-
rem 3.11 and Corollary 3.12 for the cases in which TxtBca-identification is restricted
to recursive texts. As noted above in this section, the restriction to recursive texts
does affect TxtBca-identification [28, 36].

4. Topological results. We next present several useful results which can be de-
scribed as topological. The exact connections to topology (actually, to Baire category
theory and Banach–Mazur games [49]) we will not pursue herein, but on that subject
the interested reader can consult [67, 70].

Definition 4.1. Suppose that σ ⊆ τ ⊂ T, with T a text. Then

F[σ, τ] = { p | (∃σ′ ⊇ σ | σ′ ⊆ τ)[p = F(σ′)] }

and

F[σ, T] = { p | (∃σ′ ⊇ σ | σ′ ⊂ T)[p = F(σ′)] }.

Suppose that σ is a finite initial segment of a text T . Picture F being fed T
one element at a time and imagine watching the successive corresponding output
programs. Then, for example, from Definition 4.1 immediately above, F[σ, T] is the
set of all these output programs one sees from the time F is fed all of σ.

Definition 4.2. σ in L⇔ content(σ) ⊆ L.
Just below is a variant of a fundamental lemma from [71] convenient for this

paper. An original, not-so-general version of this lemma is from [3] (see also [67, 70]).
Variations on its proof will appear in other proofs.

Lemma 4.3. Suppose L ∈ E. Suppose that, for each text T for L, an arbitrary
σT ⊂ T is chosen. Then, for these choices, let

P =
⋃

T for L

F[σT , T].

It follows that

(∀σ in L)(∃τ ⊇ σ | τ in L)(∀τ ′ ⊇ τ | τ ′ in L)[F(τ ′) ∈ P].(4.1)

Proof. Suppose the hypotheses. Suppose for contradiction the negation of (4.1).
Hence,

(∃σ in L)(∀τ ⊇ σ | τ in L)(∃τ ′ ⊇ τ | τ ′ in L)[F(τ ′) 6∈ P].(4.2)

Let T be a fixed text for L. We recursively define another text T ′ for L as follows. Let
τ0 = σ and τ ′0 = τ0�T (0). Suppose (recursively) that τn and τ ′n ⊃ σ are defined and in
L. By (4.2) we may take τn+1 to be the least⊇ τ ′n such that [τn+1 in L ∧ F(τn+1) 6∈ P].
Let τ ′n+1 = τn+1 � T (n + 1). Let T ′ =

⋃
n∈N τ ′n. Clearly, T ′ is a text for L and

T ′ =
⋃
n∈N τn too, with τ0 ⊂ τ1 ⊂ τ2 ⊂ · · · . By the choice of τn’s, for each n ∈ N,

F(τn+1) 6∈ P . Therefore, F[σT ′ , T
′] 6⊆ P , a contradiction.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1953

The I = Fex0
1 case of the following theorem is from [1]. She calls the finite

sets D featured tell tales. The theorem witnesses a severe constraint called the subset
principle on learning from positive data. See [1, 8] regarding the importance of the
subset property for avoidance of overgeneralization in learning languages from positive
data. See [54, 95] for discussion regarding the possible connection between this subset
principle and a more traditionally linguistically oriented one in [64].

We let 2∗ def
= ∗.

Theorem 4.4. Suppose I ∈ {Fexab ,Bca } and F TxtI-identifies L. Then

(∃D finite ⊆ L)(∀L′ ⊆ L | D ⊆ L′ ∧ L′ 6=2a L)[F does not TxtI-identify L′].(4.3)

It would be interesting to have a complete characterization from Theorem 4.4.
Some progress was made in [6], where it is essentially shown that, for any uniformly
decidable class of recursive languages L, a learning function F witnesses that L is in
TxtBca ⇔ each L ∈ L satisfies (4.3) above.15

To prove Theorem 4.4 it is useful to have the following combinatorial lemma
whose proof is omitted by reason of being straightforward.

Lemma 4.5. Suppose [A =a B ∧ B =a C]. Then A =2a C.
Proof. Suppose the hypotheses. For each T for L, choose a suitably large σT ⊂ T

that

(∀τ ⊇ σT | τ ⊂ T)[WF(τ) =a L].

Let

P =
⋃

T for L

F [σT , T].

Then (∀p ∈ P)[Wp =a L]. Hence, by Lemma 4.3,

(∃τ ⊇ ∅ | τ in L)(∀τ ′ ⊇ τ | τ ′ in L)[F(τ ′) ∈ P].16(4.4)

Let D = content(τ), a finite subset of L. Suppose [D ⊆ L′ ⊆ L ∧ L′ 6=2a L]. Let T ′

be a text for L′ such that T ′ ⊃ τ . Then, since any τ ′ ⊂ T ′ is in L, we have by (4.4)
that

(∀τ ′ ⊇ τ | τ ′ ⊂ T ′)[F(τ ′) ∈ P].

Hence, (∀τ ′ ⊇ τ | τ ′ ⊂ T ′)[WF(τ ′) =a L 6=2a L′]. Therefore, by Lemma 4.5, (∀τ ′ ⊇ τ |
τ ′ ⊂ T ′)[WF(τ ′) 6=a L′]. Hence, F does not TxtI-identify L′.

Clearly, in the proof of Theorem 4.4 there is no use of the computability of F.
The limitation Theorem 4.4 witnesses on learning from texts is purely topological
having nothing to do with algorithmicity. Corollary 4.6 and the nonlearnability half
of Theorem 3.11 above, proved from Theorem 4.4, likewise do not depend on
algorithmicity.

15This complements a related characterization in [1] of the uniformly decidable classes of recur-
sive languages in TxtFex0

1. Reference [6] also provides a related characterization of the uniformly
decidable classes of recursive languages in TxtFex∗1. References [63, 57] contain characterizations of
uniformly decidable classes of recursive languages in important special cases of TxtFex0

1, and [26]
contains characterizations of language learning with noisy texts.

16τ is, then, what is suggestively called a locking sequence [70].

1954 JOHN CASE

Corollary 4.6 (see [71, 28]). Suppose that L contains an infinite language L
and all its finite sublanguages. Then L 6∈ TxtBc∗. Hence, the class of regular lan-
guages 6∈ TxtBc∗.

Theorem 4.4 does not imply that if a learning function TxtFex0
1-identifies an

infinite language, it must fail to TxtFex0
1-identify each proper sublanguage. In fact

we have the following proposition, a variant of which, regarding function learning,
appears in [18].

Proposition 4.7. There is in TxtFex0
1 an infinite r.e. collection of infinite

languages of the form {We0 ⊃We1 ⊃We2 ⊃ · · · }.
Proof. By the operator recursion theorem [14], there is an infinite r.e. sequence

of self-other referential programs e0, e1, e2, . . . such that, for each i ∈ N,

Wei = { ei, ei+1, ei+2, . . . }.

We omit the straightforward verification.
Gold [46] proved Corollary 4.6 with TxtFex0

1 in place of TxtBc∗ and was clearly
concerned that his result meant that only rather puny language classes could be
learned from positive data. However, Wiehagen [96] presents a class of r.e. languages
in TxtFex0

1 which contains a finite variant of each r.e. language. Wiehagen’s class
is obviously quite hefty. Angluin presents examples natural from the perspective of
formal language theory that also are in TxtFex0

1 [1, 2]. All these classes in TxtFex0
1

(of course) satisfy the subset principle (of Theorem 4.4), and, in particular, they are
not closed under finite sublanguages as is the class of regular languages.

Suppose that N is a class of natural languages learnable from text and which
contains some language L and also an infinitely different natural sublanguage L′ of L.
For example, L′ might be the class of imperative sentences of L. Theorem 4.4 above
causes no apparent problem since a finite tell-tale D for L need not (and should not)
be contained in L′. It may be useful for linguists to try to find such tell-tale D’s for
natural languages L. Of course such a D shouldn’t be contained in, for example, L′,
the set of imperative sentences of L, but should nonetheless be salient empirically to
the learning of L.

The following stability property is useful for studying the criteria RecTxtFexab .
Definition 4.8. Suppose that L is r.e. Then L recursively b-stabilizes F ⇔

(∀ recursive T for L)(∃D | card(D) ≤ b)[F(T)⇓ = D].

The following lemma, which is useful to this paper, combines the topological with
the algorithmic. It generalizes predecessors from [3, 38, 70].

Lemma 4.9. Suppose that L is r.e. and recursively b-stabilizes F. Then

(∀σ in L)(∃D | card(D) ≤ b)(∃τ ⊇ σ | τ in L)(∀τ ′ ⊇ τ | τ ′ in L)[F(τ ′) ∈ D].(4.5)

Proof. Suppose the hypothesis on L and, for contradiction, the negation of (4.5).
Hence,

(∃σ in L)(∀D | card(D) ≤ b)(∀τ ⊇ σ | τ in L)(∃τ ′ ⊇ τ | τ ′ in L)[F(τ ′) 6∈ D].(4.6)

Let T be a fixed recursive text for L. We recursively define another recursive text T ′

for L as follows. Let τ0 = σ and τ ′0 = τ0 � T (0). Let τ ′′0 = the shortest ⊆ τ ′0 such
that card(F[τ ′′0 , τ

′
0]) ≤ b. (For b = ∗, τ ′′n will = ∅, for all n ∈ N.) Let D0 = F[τ ′′0 , τ

′
0].

Suppose (recursively) that τn, τ ′n, and τ ′′n are defined and in L, τn, τ
′
n ⊃ σ, τ ′′n ⊆ τ ′n,

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1955

and that Dn = F[τ ′′n , τ
′
n]. By (4.6) we may algorithmically find a τn+1 ⊇ τ ′n such that

[τn+1 in L ∧ F(τn+1) 6∈ Dn]. Let τ ′n+1 = τn+1 � T (n + 1). Let τ ′′n+1 = the shortest
⊆ τ ′n+1 such that [τ ′′n+1 ⊇ τ ′′n ∧ card(F[τ ′′n+1, τ

′
n+1]) ≤ b]. Let Dn+1 = F[τ ′′n+1, τ

′
n+1].

Let T ′ =
⋃
n∈N τ ′n. Clearly, T ′ is a recursive text for L and T ′ =

⋃
n∈N τn too, with

τ0 ⊂ τ1 ⊂ τ2 ⊂ · · · . By the choice of τn’s, for each n ∈ N, F(τn+1) 6∈ Dn. Therefore,
F(T ′)6⇓ to a set of cardinality ≤ b, a contradiction to the hypothesis on L.

5. Insensitive or restricted learning functions. It is interesting to ask
whether or not child language learning exhibits sensitivity to the order or the timing
of presentation of data. We consider herein some mathematical versions of this ques-
tion. Several mathematical definitions have been given for various different notions of
insensitivity to order, essentially for the case of TxtFex0

1-identification [3, 93, 90, 38,
70, 39].

We extend these definitions of insensitive or restricted learning functions naturally
to the context of the vacillatory learning criteria of the present paper,17 and we
investigate the interesting mathematical questions of whether learning functions with
these insensitivities or restrictions thereby lose learning power. Answering many of
these questions for the vacillatory criteria is much more difficult than for the TxtFex0

1

case.18

As noted above, we also apply some of our results in this section to help us prove
results in this and other papers.

Definition 5.1 (Wexler [93, 70]). F is called set-driven ⇔ (∀σ, τ | content(σ) =
content(τ))[F(σ) = F(τ)].

Reference [93] essentially notes that set-driven learning functions are insensitive
to time (unlike text learnability). The next defined restriction in effect provides some
degree of sensitivity to timing.

Definition 5.2 (Schäfer [90, 70], Fulk [38, 39]). F is called partly set-driven
(synonym [38, 39]: rearrangement independent) ⇔ (∀σ, τ | ‖σ‖ = ‖τ‖ ∧ content(σ)
= content(τ))[F(σ) = F(τ)].

Intuitively, F is set-driven (respectively, partly set-driven) iff, for each σ, F(σ)
depends only on the content of σ (respectively, depends only on the length and content
of σ).

First Schäfer [90, 70] and later Fulk [38, 39] independently showed that set-driven
learning functions can’t TxtFex0

1-identify some classes of languages that unrestricted
learning functions can, but partly set-driven learning functions do not restrict learn-
ing power with respect to TxtFex0

1-identification. Fulk additionally showed that
set-driven learning functions can’t even TxtBc0-identify some language classes in
TxtFex0

1. He interprets the difference in power between set-driven and partly set-
driven learning functions as witnessing the need for time greater than the size of the
content of the input to “think” about the input.

Osherson, Stob, and Weinstein [70] observed that the power of TxtFex0
1-

identification on infinite r.e. languages is not limited by set-driveness.

17For the so-called order independence notions (Definition 5.4), in the interest of conceptual
parsimony, but without loss of generality in theorems, we render them purely syntactically rather
than as a mixture of syntactical and semantical (as their precursor notions are in the prior literature).
The precursor notions required the final programs/grammars also to be correct, a semantic constraint
which we eliminate from the definitions.

18In many cases it is especially difficult to prove that the simultaneous presence of several insen-
sitivities leads to no loss of learning power. We had several painful experiences, for example, with
subtly incorrect, alternative constructions to the one in the proof of Theorem 5.5.

1956 JOHN CASE

The following definition presents a convenient term paralleling that from Defini-
tion 4.8.

Definition 5.3. A text T stabilizes F ⇔ F(T)⇓.
While identification of a language L requires identification for each order of pre-

sentation of (text for) L, the final (correct) grammar(s) converged to may be different
for different texts. As noted in [70], this would seem to be a source of strength, since
for a learning machine’s forcing the final grammars to be the same for each text
might involve its (algorithmically) recognizing grammar equivalence, i.e., recogniz-
ing { 〈x, y〉 | Wx = Wy }, but as is well known [82], this set is not algorithmically
recognizable (r.e.) (nor is its complement).19

Order independent machines are insensitive to which text is used for L in that their
final grammars depend only on L, not on the order of presentation. Their grammars
along the way can, of course, depend on the text.

If, for some n > 0 and for some a, humans TxtFexan+1-identify a language L but
do not TxtFexan-identify it, it is interesting whether, nonetheless, some environments
and corresponding texts for L cause them to output fewer final conjectures than n+ 1.
There is a corresponding and ostensibly weaker notion of order independence in which,
for each text, the set of final grammars converged to is always contained in (but not
necessarily equal to) some finite set of final grammars.

These order independence notions clearly capture a very different kind of insensi-
tivity to order of data presentation than the set-driven notions above.20 The formal
definition for our order independence notions immediately follows.

Definition 5.4.
1. We call a learning function, F, b-ary order independent ⇔ (∀ L r.e. | some

text for L stabilizes F)(∃D of cardinality ≤ b)(∀ texts T for L)[F(T)⇓ = D].
2. We call a learning function, F, weakly b-ary order independent ⇔ (∀ L r.e. |

some text for L stabilizes F)(∃D of cardinality ≤ b)(∀ texts T for L)[F(T)⇓ ⊆
D].

Osherson, Stob, and Weinstein [70], adapting a related result of L. Blum and M.
Blum [3], essentially show that order independent learning functions can TxtFex0

1-
identify the same classes of languages that unrestricted learning functions can.

The first theorem of the present section (Theorem 5.5 below) implies that learning
power (with respect to TxtFexab -identification) is not decreased by restricting learning
functions to be simultaneously partly set-driven and weakly b-ary order independent.
Furthermore, it implies that one can also simultaneously circumvent the restriction
to recursive texts. It generalizes parts of Fulk’s kitchen sink theorem [39,
Theorem 13, p. 6] and [38, Chapter 5, Theorem 21], which covered the TxtFex0

1

case only; however, the lift to Theorem 5.5 ostensibly requires a much more difficult
proof.21

For nontrivially vacillatory criteria, it is open whether (full) order independence
can be combined with partly set-driven without loss of learning power.

Theorem 5.5’s proof is the most difficult of the present paper. Fortunately, the
other proofs of theorems in this section are modifications and/or simplifications of the
proof of Theorem 5.5.

19In fact, more importantly, since this set is Π0
2-complete [82], it is not even algorithmically

recognizable by a limiting [88] or mind-changing procedure (but its complement is).
20One can think of them as global and the set-driven notions as local.
21In the present paper we do not consider the restriction to so-called prudence [70], a primary

concern of [39]. Prudent learning functions are those which never conjecture a grammar p without
being able to learn Wp. On that subject the interested reader may also wish to consult [51, 55].

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1957

Theorem 5.5. There is an algorithm for transforming any b and (an algorithm
for) a learning function F into a corresponding (algorithm for a) learning function F′

such that
1. F′ is both partly set-driven and weakly b-ary order independent, and
2. (∀ r.e. L)[F RecTxtFexab -identifies L ⇒ F′ TxtFexab -identifies L].

Proof. Suppose that pad is a one-to-one computable function such that (∀n, p)
[Wpad(p,n) = Wp] [65, 83]. Intuitively, pad(p, 0),pad(p, 1),pad(p, 2), . . . are just padded
variants of program p which have the same recognizing behavior as p but which differ
from one another syntactically.

Suppose F and b are given. Define F′ on τ thus. Set n = ‖τ‖ and A = content(τ).
(∗ In the definition of F′(τ) the only dependence on τ will be on n and A to make

sure F′ is partly set-driven. ∗)
Search for the least 〈D1, σ1〉 such that22

1. card(D1) ≤ b,
2. content(σ1) ⊆ A, and
3. (∀σ′ ⊇ σ1 | σ′ ≤ n ∧ content(σ′) ⊆ A)[F[σ1, σ′] ⊆ D1].23

(∗ Clearly, such a 〈D1, σ1〉 will always exist since σ1 may be chosen big enough not
to be contained in any σ′ ≤ n. ∗)

(∗ Suppose τ in L. Clause 3 provides a bounded (by n) approximation to

(∀σ′ ⊇ σ1 | content(σ′) ⊆ L)[F[σ1, σ′] ⊆ D1].(5.1)

(5.1) is a useful stability condition. ∗)
Once 〈D1, σ1〉 is found:

set i = 1;
while [card(Di) > 1 ∧ a least 〈D′, σ′〉 ≤ n is found such that D′ ⊂

D1 ∧ σ′ ⊃ σi ∧ content(σ′) ⊆ A ∧ (∀σ′′ ⊇ σ′ | σ′′ ≤ n ∧
content(σ′′) ⊆ A)[F[σ′, σ′′] ⊆ D′]]24

do (∗ Pump down from Di and ratchet up from σi, preserving
apparent stability. ∗)
increment i by 1;
set 〈Di, σi〉 = 〈D′, σ′〉

endwhile;
set F′(τ) = pad(F(σi), 〈D1, σ1〉).

Clearly, by construction, F′ is partly set-driven.
Intuitive discussion. Something like the while loop in (the algorithm for) F′

is essential. It is crucial for establishing Claim 3 below. If stopping with a search
for 〈D1, σ1〉 sufficed, Theorem 3.3 above could not hold. Nothing like this while loop
is needed to handle the cases of TxtFexa1 . The use of pad is a variant of its use in
[38, 39] and serves below in the proof of F′’s weak b-ary order independence in a
combinatorially similar role.25

22It is useful to recall here that, from section 2, 〈·, ·〉 is a numerical pairing function and that we
identify finite sets and initial segments of texts with their corresponding canonical indices (numbers).
The word least, then, refers to least numerical value.

23Again, it is useful to recall that, from section 2, we identify finite initial segments of texts with
their corresponding canonical indices (numbers). Hence, in the inequality, “σ′ ≤ n, ” we are treating
σ as its numerical canonical index.

24N.B.: It is useful to recall here that, from section 2 above, “⊂” denotes “is a proper subset of,”
and “ ⊃ ” denotes “is a proper superset of.”

25Intuitively, it helps make weak b-ary order independence true by preventing, for many r.e. lan-
guages L, the presence of some text for L that stabilizes F′.

1958 JOHN CASE

Here’s an intuitive way to think about this construction. Imagine a chimpanzee
given an infinite collection of different kinds of sticks, some of which can be joined to-
gether to make longer sticks. Each stick points overhead in a particular direction with
respect to the vertical. Above the chimp, but out of its sight, is a bunch of bananas
it would like to knock down with a suitably large joined-together stick pointing in
just the right direction to hit the bananas. However, it can’t tell when it has actually
reached the bunch of bananas even though it does reach them (so the poor thing
never knows when it has succeeded and it never actually gets to eat the bananas).
All it can tell is that some time after any choice of a (leaning) tower of sticks is not
pointing quite right, one of the sticks will explode, knocking down all of the sticks
above it, and it has to try again. The exploding sticks are quite like the injuries in a
recursion-theoretic priority argument [88].

The sticks correspond to the σ’s, and one should think of them as initial seg-
ments of branches in an infinite-branching, upward-pointing tree similar to the finite-
branching (rightward pointing) tree in [82, p. 157]. For each input τ to F′, when the
while loop finishes, it provides some sequence of successively longer joined together
sticks σ1 ⊂ · · · ⊂ σm, with m the final value of i. A larger input to F′, τ ′ ⊃ τ , may
result in a different sequence of sticks, σ1 ⊂ · · · ⊂ σm′ , from the while loop. The stick
that exploded is the σi with least i such that σi 6= σi. “Success” for the chimpanzee is
described by Claim 1 below. We continue this discussion after the statement of that
claim.

Claim 1. If L recursively b-stabilizes F, then, for each text T for L, there is
a maximum j ≥ 1 such that the algorithm for F′ above on T eventually has stable
values for 〈D1, σ1〉, . . . , 〈Dj , σj〉, i.e., values that are the same for (the algorithm for)
F′’s calculation of F′(τ) for all but finitely many τ ⊂ T. This j will also be ≤ b.
Furthermore, if there is such a maximum j for some text for L, values of this maximum
j and associated stable values of 〈D1, σ1〉, . . . , 〈Dj , σj〉 will be independent of the
choice of text for L.

Continued discussion. If L recursively b-stabilizes F and T is a text for L,
then this claim does not imply that, for all but finitely many τ ⊂ T , the while loop
on input τ stops with the same 〈D1, σ1〉, . . . , 〈Dj , σj〉—only that the while loop stops
with 〈D1, σ1〉, . . . , 〈Di, σi〉, for some i ≥ j. Success for the chimpanzee discussed
above is the stabilization on σ1 ⊂ · · · ⊂ σj , but even after this stability is reached,
any sticks returned by the while loop, σi, for i > j, will “explode” on some longer
input to F′.

Suppose L recursively b-stabilizes F and T is a text for L. Suppose j is as in
the previous paragraph. As F is being fed successively longer initial segments of T ,
eventually σj is reached. We also like to think about the changing σi’s subsequently
found, where i > j, as a flickering flame above σj . Stability implies that, for infinitely
many τ ⊂ T , the flame may die down to exactly the level of σj itself; however, for all
but finitely many τ ⊂ T , it does not dip below or destroy σj .

Proof of Claim 1. Suppose that L recursively b-stabilizes F. Then by Lemma 4.9,

(∃D | card(D) ≤ b)(∃σ ⊇ ∅ | σ in L)(∀σ′ ⊇ σ | σ′ in L)[F(σ′) ∈ D].(5.2)

(The algorithm for) F′ on texts for L will eventually stabilize in its choice of 〈D1, σ1〉
to be the same for each T ′ for L: it will stabilize its choice of 〈D1, σ1〉 to be the
least 〈D,σ〉 satisfying (5.2). This is since, for all but finitely many τ ⊂ T , ‖τ‖
and content(τ) will be big enough to find counterexamples to all the finitely many
〈D′, σ′〉 < this least 〈D,σ〉 satisfying (5.2). Of course, once a 〈D′, σ′〉 is rejected for

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1959

being 〈D1, σ1〉, it’s not picked up again by (the algorithm for) F′ on bigger input
since counterexamples don’t go away for bigger input. Once the choice of 〈D1, σ1〉
has stabilized on a T for L, say, on all sufficiently large τ ⊂ T ; on such suitably
large τ , the while loop eventually terminates with a final value for i, say iτ , which
is ≤ b since card(D1) ≤ b, and the while loop looks for proper subsets of the Di’s.
Clearly, as above, on suitably large τ ⊂ T , there is a maximum i ≤ the while loop’s
iτ ’s with 〈D1, σ1〉, . . . , 〈Di, σi〉 eventually stable, and, also clearly, this maximum i is
independent of texts for L.

Claim 2. F′ is weakly b-ary order independent.
Proof of Claim 2. Suppose that T for L stabilizes F′. We need to show, then,

that (∃D of cardinality ≤ b)[
⋃
T ′ for L F′(T ′)⇓ ⊆ D]. Once (the algorithm for) F′ on

(successively longer τ ⊂) T rejects a candidate for 〈D1, σ1〉, it cannot rechoose that
candidate later since counterexamples to the stability demanded of 〈D1, σ1〉 do not
go away. F′ on T outputs programs of the form pad(F(σi), 〈D1, σ1〉), where 〈D1, σ1〉
is a candidate for stability at the first level, so to speak. Since, by assumption just
above, T does stabilize F′ for some finite D, F′(T)⇓ = D, and then, since pad is
one-to-one, the 〈D1, σ1〉 argument to it cannot take on infinitely many values as
F′ is fed T. Since F′ can’t jump back to rejected previous choices of 〈D1, σ1〉, (the
algorithm for) F′ on T eventually finds a stable value for 〈D1, σ1〉. Hence, by a
simple restatement of the proof of Claim 1 above, there is a maximum i such that
(the algorithm for) F′ on T eventually has stable values for 〈D1, σ1〉, . . . , 〈Di, σi〉, and
the value of i is independent of texts for L. Let imax denote this maximum i. Hence,
(∀τ ⊇ σimax | τ in L)[F(τ) ∈ Dimax]. Therefore,⋃

T ′ for L

F′(T ′)⇓ ⊆ pad(Dimax, 〈D1, σ1〉).(5.3)

This latter set of programs has cardinality ≤ b since Dimax does. Therefore, F′ is
weakly b-ary order independent.

N.B.: There is no guarantee that (5.3) is an equality since we may have that, on
some T for L, for all but finitely many τ ⊂ T , and for the corresponding σiτ ’s from the
while loop, the programs pad(F(σiτ), 〈D1, σ1〉) miss some values in pad(Dimax, 〈D1, σ1〉).

Claim 3. Suppose L recursively b-stabilizes F. Let imax be the maximum i from
Claim 1 (independent of the choice of text for L). Let

DRec =
⋃

recursive T for L
T ⊃ σimax

F(T).

Equivalently,

DRec ={F(τ) | τ in L ∧ τ ⊇ σimax ∧(∃ recursive T for L)(∃∞τ ′ ⊂ T)[F(τ ′)=F(τ)]}.
(5.4)

Then DRec = Dimax.
Proof of Claim 3. Suppose the hypotheses. Clearly, DRec ⊆ Dimax. It remains

to show Dimax ⊆ DRec. In that interest, suppose p ∈ Dimax. We will show p ∈ DRec.
By the maximality of imax,

¬(∃σ′ ⊇ σimax | σ′ in L)(∀σ′′ ⊇ σ′ | σ′′ in L)[F[σ′, σ′′] ⊆ Dimax − { p }].

1960 JOHN CASE

Hence,

(∀σ′ ⊇ σimax | σ′ in L)(∃σ′′ ⊇ σ′ | σ′′ in L)[F(σ′′) = p].(5.5)

Let T be a fixed recursive text for L. We recursively define another recursive text T ′

for L as follows. Let τ0 = σimax and τ ′0 = τ0 �T (0). Suppose (recursively) that τn and
τ ′n ⊃ σimax are defined and in L. By (5.5) we may algorithmically find a τn+1 ⊇ τ ′n
such that [τn+1 in L ∧ F(τn+1) = p]. Let τ ′n+1 = τn+1 �T (n+ 1). Let T ′ =

⋃
n∈N τ ′n.

Clearly, T ′ is a recursive text for L and T ′ =
⋃
n∈N τn too, with τ0 ⊂ τ1 ⊂ τ2 ⊂ · · · .

By the choice of τn’s for each n ∈ N, F(τn+1) = p. Hence, T ′ is a recursive text for
L such that [T ′ ⊃ σimax ∧ F on T ′ outputs p infinitely often]. Therefore, by (5.4),
p ∈ DRec.

Claim 4. (∀ r.e. L)[F RecTxtFexab -identifies L ⇒ F′ TxtFexab -identifies L].
Proof of Claim 4. Suppose that L is r.e. and F RecTxtFexab -identifies L. It

remains to be shown F′ TxtFexab -identifies L. Clearly, L recursively b-stabilizes F.
Therefore, by Claim 1, a maximum imax exists with eventually stable values for
〈D1, σ1〉, . . . , 〈Dimax, σimax〉 independent of texts for L in the operation of (the algo-
rithm for) F′. Clearly, (∀p ∈ DRec)[Wp =a L]. By Claim 3, DRec = Dimax, so we have
(∀p ∈ Dimax)[Wp =a L]. Hence, (∀p ∈ pad(Dimax, 〈D1, σ1〉))[Wp =a L]. Therefore,
by (5.3), F′ TxtFexab -identifies L.

This ends the proof of Theorem 5.5.
The next theorem (Theorem 5.6) implies that learning power for infinite r.e.

languages (with respect to TxtFexab -identification) is not decreased by restricting
learning functions to be simultaneously (completely) set-driven and weakly b-ary order
independent. Furthermore, it implies that one can also simultaneously circumvent the
restriction to recursive texts.

Theorem 5.6. There is an algorithm for transforming any b and (an algorithm
for) a learning function F into a corresponding (algorithm for a) learning function F′

such that
1. F′ is both set-driven and weakly b-ary order independent, and
2. (∀ ∞ r.e. L)[F RecTxtFexab -identifies L ⇒ F′ TxtFexab -identifies L].

Proof. Modify (the algorithm for) F′ in the proof above of Theorem 5.5 by setting
n = card(content(τ)) (instead of setting n = ‖τ‖). Since for infinite L this n grows,
one can apply the rest of the proof of Theorem 5.5 mutatis mutandis.26

Royer and Kurtz suggested to us that the use of set-driven learning functions
could simplify the proof of at least a special case of Theorem 3.3 and Jun Tarui
pointed out to us that weak b-ary order independence would further simplify proving
Theorem 3.3. The proof herein of Theorem 3.3 makes use of Theorem 5.6.

We believe it is not possible to replace weak b-ary order independence with b-
ary order independence in Theorems 5.5 and 5.6, contrary to our slightly overzealous
claims in [16]. However, we have the following result (Theorem 5.7) with Fulk (who
is not responsible for the possibly incorrect claims in [16]). Theorem 5.7 implies that
learning power (with respect to TxtFexab -identification) is not decreased by simul-
taneously restricting learning functions to be (fully) b-ary order independent and
circumventing the restriction to recursive texts. It also implies that one can also si-
multaneously have a technical property we call determination by single text (part 2
of the theorem).

This theorem has application in [23], and the (full) b-ary order independence is
important for that application.

26With appropriate (and straightforward) changes being made.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1961

Theorem 5.7 (Case and Fulk). There is an algorithm for transforming any b and
(an algorithm for) learning function F into a corresponding (algorithm for a) learning
function F′ such that

1. F′ is b-ary order independent,
2. (∀ r.e. L)[F′ TxtFexab -identifies L on some text for L ⇒ F′ TxtFexab -

identifies L], and
3. (∀ r.e. L)[F RecTxtFexab -identifies L ⇒ F′ TxtFexab -identifies L].

Proof. Suppose that F and b are given. The algorithm for F′ is much like that
in the proof of Theorem 5.5 above, with some exceptions as noted below. τ− is as
defined in (3.1). In defining F′ on τ , we assume we have iteratively (on successively
larger τ ′ ⊂ τ) kept a priority queue of programs/grammars, which queue is initially
empty. Proceed initially as in the algorithm in the proof of Theorem 5.5 above, but
if the value of 〈D1, σ1〉 associated with τ is 6= the value of 〈D1, σ1〉 associated with
τ−, empty the priority queue, and output ‖τ‖; otherwise, continue down through the
end of the while loop and then let

σ = σiτ ,(5.6)

where, as in the proof of Theorem 5.5, iτ is the final value of i from the while loop
for input τ . Next, in increasing order of σ′ such that σ′ in A, σ′ ≤ n, and σ′ ⊇ σ (σ
from (5.6)), put F(σ′) on the tail of the priority queue; when that is all done, output
the front of the priority queue.

The outputting of ‖τ‖ upon witnessing an instability in the choice of 〈D1, σ1〉 is
essentially a combinatorial device from [3], and it plays the role that pad did in the
proof of Theorem 5.5 above, similarly controlling thrashing in the choice of 〈D1, σ1〉
when some T for L stabilizes F′. This makes F′ weakly b-ary order independent.
Clearly, if some text for L stabilizes F′, by the priority queue mechanism, for any T
for L, F′(T)⇓ = Dimax, where Dimax is from the proof of Theorem 5.5. Hence, F′ is
b-ary order independent. Clause 2 of Theorem 5.7 clearly follows. To prove clause 3
of Theorem 5.7, one can apply appropriate portions of the proof of Theorem 5.5
mutatis mutandis.

We do not know if there are analogues of Theorems 5.5 and 5.6 above for TxtMfexab -
identification. The use of pad in the proofs of those theorems wreaks havoc with pro-
gram/grammar size. However, we do have the next three theorems, the first of which
has application in [23].

These theorems say that we can have, for TxtMfexab -identification, without loss
of learning power, either

1. b-ary order independence, determination by single text, and circumvention of
the restriction to recursive texts (Theorem 5.8);

2. partly set-driven learning functions and circumvention of the restriction to
recursive texts (Theorem 5.9); or

3. (completely) set-driven learning functions and circumvention of the restriction
to recursive texts (Theorem 5.10), but this latter conjunction is guaranteed
for infinite languages only.

Theorem 5.8 (Case and Jain). There is an algorithm for transforming any b
and (an algorithm for) a learning function F into a corresponding (algorithm for a)
learning function F′ such that

1. F′ is b-ary order independent,
2. (∀ r.e. L)[F′ TxtMfexab -identifies L on some text for L ⇒ F′ TxtMfexab -

identifies L], and

1962 JOHN CASE

3. (∀ r.e. L)[F RecTxtMfexab -identifies L ⇒ F′ TxtMfexab -identifies L].
Proof. The proof of Theorem 5.7 suffices mutatis mutandis.
The next theorem was independently noticed by Jain.
Theorem 5.9 (Case and Jain). There is an algorithm for transforming any b

and (an algorithm for) a learning function F into a corresponding (algorithm for a)
learning function F′ such that

1. F′ is partly set-driven, and

2. (∀ r.e. L)[F RecTxtMfexab -identifies L ⇒ F′ TxtMfexab -identifies L].
Proof. The proof of Theorem 5.5 above with the elimination of any mention of pad

and weak b-ary order independence, mutatis mutandis, suffices to prove the present
theorem.

Similarly, the proof of Theorem 5.6 above may be modified along the lines sug-
gested in the proof of Theorem 5.9 to prove the following theorem.

Theorem 5.10. There is an algorithm for transforming any b and (an algorithm
for) a learning function F into a corresponding (algorithm for a) learning function F′

such that
1. F′ is set-driven, and

2. (∀ ∞ r.e. L)[F RecTxtMfexab -identifies L ⇒ F′ TxtMfexab -identifies L].
We expect that the theorems of this section will be generally useful for work in

the area.

6. Proofs deferred from section 3. In section 3 we deferred proofs of three
results until we had the benefit of some of the concepts and/or results from sections 4
and 5. The present section contains those deferred proofs and, for convenience, we
restate each result being proved.

Clearly, the second conclusion of Theorem 5.5 and the third conclusion of Theo-
rem 5.8 yield the following corollary.

Corollary 6.1.
1. (∀a, b)[RecTxtFexab = TxtFexab].

2. (∀a, b)[RecTxtMfexab = TxtMfexab].
As we noted in section 3, the proof of the next theorem depends, in part, on

Definitions 5.1 and 5.4 and Theorem 5.6.
Theorem 6.2. Let Ln+1 equal

{L | L is ∞ ∧ (∃e0, . . . , en)[We0 = · · · = Wen = L ∧ (∀∞〈x, y〉 ∈ L)[y ∈ { e0, . . . , en }]] }.
Then Ln+1 ∈ (TxtFex0

n+1 −TxtFex∗n).

Proof. Clearly, Ln+1 ∈ TxtFex0
n+1.27

Suppose for contradiction that F TxtFex∗n-identifies Ln+1. Each member of Ln+1

is infinite; hence, thanks to Theorem 5.6, we may suppose, without loss of generality,
that F is set-driven and weakly n-ary order independent. Therefore, in particular,
we may write F(D) for F(σ), where D = content(σ). By implicit application of a
padded version of the n + 1-ary recursion theorem there are distinct self-other ref-
erentials e0, e1, . . . , en defining We0 ,We1 , . . . ,Wen , respectively, in successive stages s
as follows.28

For each i ≤ n, let Wei,s = the finitely much of Wei defined before stage s
described below; also set Wei,0 = ∅. Go to stage 0.

27The role of self-reference in this proof is, in part, to make this positive portion of the theorem
immediate while scarcely affecting the difficulty of the negative portion.

28The padding is just to make e0, e1, . . . , en syntactically pairwise distinct. It should be clear in
the staging construction how each ei significantly uses its knowledge of e0, . . . , ei, . . . , en.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1963

begin stage s
if card({F(We0,s),F(We1,s), . . . ,F(Wen,s) }) ≤ n

then
for each i ≤ n, set Wei,s+1 = Wei,s ∪ { 〈s, ei〉 }

else
for each i ≤ n, set Wei,s+1 = [[

⋃
j≤nWej ,s] ∪ { 〈s, e0〉 }]

endif;
go to stage s+ 1

end (∗ stage s ∗).
Case 1. (∀∞s)[card({F(We0,s),F(We1,s), . . . ,F(Wen,s) }) ≤ n]. Then each of We0 ,

We1 , . . . ,Wen ∈ Ln+1, yet they are pairwise 6=∗. Hence, since this is Case 1, at each
sufficiently large stage s, for at least one of the (n + 1) i’s ≤ n, program/grammar
F(Wei,s) fails to generate a finite variant of Wei . Therefore, for at least one i ≤
n, (∃∞s)[WF(Wei,s

) 6=∗ Wei]. Hence, this Wei is not TxtFex∗n-identified by F, a
contradiction.

Case 2. (∃∞s)[card({F(We0,s),F(We1,s), . . . ,F(Wen,s) }) = n+ 1] (say, at stages

s0 < s1 < s2 < · · ·). Then We0 = We1 = · · · = Wen ∈ Ln+1. Let ~Wei,s be an

increasing order enumeration of Wei,s. Hence, ~Wei,s is also a finite initial segment of

a text. Let Ti = ~Wei,s0 � ~Wei,s1 � ~Wei,s2 �· · · . Clearly Ti is a text for Wei , which equals
We0 . Since F is weakly n-ary order independent, there is a set D of cardinality ≤ n
such that ⋃

i≤n
F(Ti)⇓ ⊆ D.(6.1)

However, since this is Case 2 and by the choice of s0, s1, s2, . . . , the left-hand side of
(6.1) has cardinality > n, a contradiction.

As we noted in section 3 above, the proof of the next theorem depends on Theo-
rem 4.4.

Theorem 6.3. TxtFexm∗ ⊆ TxtBcm
′ ⇔ m ≤ 2.m′; furthermore, {L | L =2m+1

N } ∈ (TxtFex2m+1
1 −TxtBcm).

Proof. This proof employs previously unpublished techniques used to prove a
similar result for TxtFexa1 in [28].

Suppose that F TxtFex2m
∗ -identifies L. We will construct an F′ which TxtBcm-

identifies L, and then it will suffice to prove the furthermore clause.

Define F′ on τ thus. First calculate p = F(τ). By Kleene’s S-m-n theorem [82],
find pτ such that Wpτ = ((Wp∪content(τ))− the m least numbers not in content(τ)).
Output pτ .

Suppose that T is a text for L ∈ L. Let D = F(T)⇓. Hence, (∀p ∈ D)[Wp =2m L].
For all sufficiently large τ ∈ T , p = F(τ) ∈ D and pτ patches any mistakes of
omission of p; furthermore, pτ removes m elements, including up to m of the mistakes
of commission of p (if any) and, perhaps in the process, it creates new mistakes of
omission.

Case 1. The number of mistakes of commission in such a p is ≥ m. Of course this
number of mistakes is ≤ 2m. Then pτ removes m of these mistakes of commission
leaving a residue of ≤ m errors.

Case 2. The number m′ of mistakes of commission in such a p is < m. Then pτ
removes all these errors of commission, but creates m−m′ new errors (of omission);
however, this number is still ≤ m.

1964 JOHN CASE

In each case, for such p, pτ has ≤ m errors. Therefore, F′ TxtBcm-identifies
L ∈ L.

Let L = {L | L =2m+1 N }. Clearly, L ∈ TxtFex2m+1
1 . Suppose for contradic-

tion that L ∈ TxtBcm as witnessed by learning function F. Hence, in particular, F
TxtBcm-identifies N. Therefore, by Theorem 4.4,

(∃D finite)(∀L | D ⊆ L ∧ L 6=2m N)[F does not TxtBcm-identify L].(6.2)

Pick L ⊇ D such that card(L) = 2m + 1. Then L ∈ L, but by (6.2), F does not
TxtBcm-identify L, a contradiction.

7. Concluding remarks. In this section we discuss briefly computable universe
hypotheses, present some critical discussion about the applicability to human language
learning of Gold-style models and our main theorem (Theorem 3.3 above), and sketch
some areas for future investigation.

We have considered (among other possibilities) computable models of learning
on computable data sequences. The whole universe or humanly significant portions
of it may be computable and/or discrete. Such possibilities are taken seriously—for
example, in [99, 92, 91, 34, 17, 15, 29]. In a discrete, random universe with only com-
putable probability distributions for its behavior (e.g., a discrete, quantum mechanical
universe), the expected behavior will still be computable [32, 42, 43].29 In such a uni-
verse any beings (e.g., humans) who have cognition, including language learning and
scientific induction, will be subject to the constraint that at least their expected be-
havior will be computable; hence, any theorems about computable learning agents
will inform us, to some extent, of the possible behaviors of those beings. It would
appear that human genetic programs make use of error correction in an attempt to
circumvent “random” influences, including those from the quantum mechanical level.
It is plausible that human cognitive programs built on top of the wetware the genetic
programs partly construct do likewise. Hence, computability of cognition may be a
pretty good model.

Even if cognition is computable (although perhaps too complicated for mere hu-
mans to figure out how it’s done), there are still problems realistically modeling hu-
man language learning with Gold’s paradigm. References [58, 59] present empirical
evidence that semantics in addition to positive information may be essential to human
language learning. It seems clear that denotation and social reinforcers play crucial
roles in the human case, but not in Gold’s paradigm. In [15] the report on Chapter 6
of [38] is partly motivated by treating negative information as a more mathematically
tractable possible substitute for semantic information. Reference [61] notes that in
homes where parents do supply improvements to child utterances (a subtle form of
correction or negative information), there is increased speed of language acquisition.
It is not clear if the relation is causal, but Theorem 22 in [5] implies there are cases
where a significant improvement in language learning speed (as calibrated by the num-
ber of mind-changes required to reach a single final correct grammar) results from the
presence of minimal negative information. Largely unexplored, but of some interest,
is the extension of [5] to TxtFexab -identification.

We originally suggested in [16] on the basis of our main corollary (Corollary 3.7 to
Theorem 3.3) that Gold’s model be extended to embrace the success criteria TxtFexab

29Sources such as [73, 74], sadly, seem to have overlooked the important result in [32] that the
expected input/output behavior of a Turing machine with random oracle subject to a computable
probability distribution is computable (and constructively so).

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1965

for “small” values of a and b. We consider next a possible difficulty. In the proof
of Theorem 3.3, for each F, the associated set(s) We0 ,We1 , . . . ,Wen may, in some
cases, differ considerably in computational complexity from one another, and Osher-
son pointed out to us that there is no apparent corresponding vacillation in human
language performance. However, in the proof of Theorem 3.3, for each F, the associ-
ated set(s) We0 ,We1 , . . . ,Wen are each actually recursive; hence, for each F, there is
a Blum complexity measure Φ [10, 48] such that Φe0 = Φe1 = · · · = Φen ; therefore, if
performance were measured by such a Φ, vacillatory learning would increase learning
power but without a corresponding vacillation in performance. Technical questions
remain open regarding which stronger quantificational variants of the argument in
the previous sentence can be made. In another direction, we note that the proof of
Theorem 3.3 permits a modification so that the relative density of output of all the
final programs/grammars but one is as small as we like. Hence, the performance vac-
illation may exist, but significant degradations in articulateness potential might be
confined to rare episodes. Even if such episodes do not exist for humans, they might
be tolerated in an artificial system.

In spite of the limitations to date of modeling human language learning with
(extensions of) Gold’s paradigm, we believe that many of the theorems (e.g., Theo-
rem 4.4) in this area nonetheless give some insights. The state of the art is weakly
analogous to modeling the thermodynamics of fluids without taking into account
van der Waal’s forces: one may still get some understanding of the reality so
modeled.

Speaking of Theorem 4.4, it would be mathematically interesting to explore what
happens to the subset principle for TxtBc-identification restricted to recursive texts.

It is interesting to place further feasibility restrictions on the criteria of success. As
noted in section 5 above, [23] studies TxtMfexab -identification, the restricted variant
of TxtFexab -identification which requires that final programs/grammars be nearly
minimal size. For language learning, bounding complexity of learning machines as in
[33] or [24] remains to be explored. Translating relative solvability results into relative
feasibility results, as in [97], would be very interesting to pursue in the context of the
present paper. In section 5 there are several results about no loss of learning power in
passing from some learning function F to an insensitive or restricted learning function
F′. How does the complexity of such F′’s compare to that of F? If the complexity
of F′ in some cases must be significantly greater than that of F, then one could
plausibly conjecture that child language learning is highly sensitive to the order of
data presentation.

Can we get versions of our separation results robust in the sense of [40]?

Much of the work in Gold-style learning theory on success criteria extending
Gold’s is motivated by attempts to assuage the negative results in this area. Reference
[53] mentions a common argument to the effect that very strong negative results about
language learnability in [46] provide evidence that human language learning must
involve some innately stored information! The negative results suggest, among other
things, that

1. general purpose learning is not possible, and
2. alleged human general purpose learning is an illusion brought about by our

having innate information stored for a large and varied collection of domains
[41, 89].

In the practical context of robot planning, McDermott [60] says, “Learning makes
the most sense when it is thought of as filling in the details in an algorithm that is

1966 JOHN CASE

already nearly right.” In the context of function learning, [27] provides several models
of learning from examples together with approximately correct programs. Included are
models in which the maximal probability of learning all the computable functions is
proportional to how tightly the approximately correct programs envelope the data.
Unexplored, but very interesting, is how to provide such models for language learn-
ing from positive data. Success might provide some insight into the form of innate
knowledge for human language learning.

Acknowledgments. The author thanks the University of Rochester’s Computer
Science Department for support and for providing an excellent working environment
in the academic year 1987–88, during which some of the work on the present paper
was completed. The author is also grateful to the anonymous referees and others
mentioned in the text for many helpful comments.

REFERENCES

[1] D. Angluin, Inductive inference of formal languages from positive data, Inform. and Control,
45 (1980), pp. 117–135.

[2] D. Angluin, Inference of reversible languages, J. ACM, 29 (1982), pp. 741–765.
[3] L. Blum and M. Blum, Toward a mathematical theory of inductive inference, Inform. and

Control, 28 (1975), pp. 125–155.
[4] G. Baliga and J. Case, Learnability: Admissible, co-finite, and hypersimple sets, J. Comput.

System Sci., 53 (1996), pp. 26–32.
[5] G. Baliga, J. Case, and S. Jain, Language learning with some negative information, J.

Comput. System Sci., 51 (1995), pp. 273–285.
[6] G. Baliga, J. Case, and S. Jain, Synthesizing enumeration techniques for language learn-

ing, in Proceedings of the Ninth Annual Conference on Computational Learning Theory,
Desenzano del Garda, Italy, ACM Press, New York, 1996, pp. 169–180.

[7] G. Baliga, J. Case, S. Jain, and M. Suraj, Machine learning of higher order programs, J.
Symbolic Logic, 59 (1994), pp. 486–500.

[8] R. Berwick, The Acquisition of Syntactic Knowledge, MIT Press, Cambridge, MA, 1985.
[9] R. Brown and C. Hanlon, Derivational complexity and the order of acquisition in child

speech, in Cognition and the Development of Language, J. Hayes, ed., Wiley, New York,
1970.

[10] M. Blum, A machine independent theory of the complexity of recursive functions, J. ACM, 14
(1967), pp. 322–336.

[11] M. Blum, On the size of machines, Inform. and Control, 11 (1967), pp. 257–265.
[12] J. Barzdin and K. Podnieks, On the theory of inductive inference, in Proceedings of the

Mathematical Foundations for Computer Science, Math. Inst. Slovak Acad. Sci., Bratislava,
1973, pp. 9–15 (in Russian).

[13] M. Braine, On two types of models of the internalization of grammars, in The Ontogenesis of
Grammar: A Theoretical Symposium, D. Slobin, ed., Academic Press, New York, 1971.

[14] J. Case, Periodicity in generations of automata, Math. Systems Theory, 8 (1974), pp. 15–32.
[15] J. Case, Learning machines, in Language Learning and Concept Acquisition, W. Demopoulos

and A. Marras, eds., Ablex, Stanford, CT, 1986.
[16] J. Case, The power of vacillation, in Proceedings of the Workshop on Computational Learning

Theory, D. Haussler and L. Pitt, eds., Morgan Kaufmann, San Francisco, 1988, pp. 133–
142.

[17] J. Case, Turing machine, in Encyclopedia of Artificial Intelligence, 2nd ed., S. Shapiro, ed.,
John Wiley and Sons, New York, 1992.

[18] J. Case, Infinitary self-reference in learning theory, J. Experiment. and Theoret. Art. Intell.,
6 (1994), pp. 3–16.

[19] K. Chen, Tradeoffs in Machine Inductive Inference, Ph.D. thesis, Computer Science Depart-
ment, State University of New York at Buffalo, Buffalo, NY, 1981.

[20] K. Chen, Tradeoffs in the inductive inference of nearly minimal size programs, Inform. and
Control, 52 (1982), pp. 68–86.

[21] J. Case, S. Jain, and S. Ngo Manguelle, Refinements of inductive inference by Popperian
and reliable machines, Kybernetika, 30 (1994), pp. 23–52.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1967

[22] J. Case, S. Jain, and A. Sharma, On learning limiting programs, Internat. J. Found. Comput.
Sci., 3 (1992), pp. 93–115.

[23] J. Case, S. Jain, and A. Sharma, Vacillatory learning of nearly minimal size grammars, J.
Comput. System Sci., 49 (1994), pp. 189–207.

[24] J. Case, S. Jain, and A. Sharma, Complexity issues for vacillatory function identification,
Inform. and Comput., 116 (1995), pp. 174–192.

[25] J. Case, S. Jain, and F. Stephan, Vacillatory and BC learning on noisy data, in Proceedings
of the 7th International Workshop on Algorithmic Learning Theory (ALT’96), Sydney,
Australia, October, 1996, Lecture Notes in Artificial Intelligence 1160, Springer-Verlag,
Berlin, 1996, pp. 285–298.

[26] J. Case, S. Jain, and A. Sharma, Synthesizing noise-tolerant language learners, in Proceed-
ings of the 8th International Workshop on Algorithmic Learning Theory (ALT’97), Sendai,
Japan, Lecture Notes in Artificial Intelligence, Springer, Berlin, 1997.

[27] J. Case, S. Kaufmann, E. Kinber, and M. Kummer, Learning recursive functions from
approximations, J. Comput. System Sci., 55 (1997), pp. 183–196.

[28] J. Case and C. Lynes, Machine inductive inference and language identification, in Proceedings
of the 9th Annual Colloquium on Automata, Languages, and Programming (July 1982),
Lecture Notes in Comput. Sci., 140, Springer-Verlag, Berlin, pp. 107–115.

[29] J. Case, D. Rajan, and A. Shende, Representing the spatial/kinematic domain and lattice
computers, J. Experiment. Theoret. Art. Intell., 6 (1994), pp. 17–40.

[30] J. Case and C. Smith, Anomaly hierarchies of mechanized inductive inference, in Proceedings
of the 10th Annual Symposium on the Theory of Computing, ACM, New York, 1978, pp.
314–319.

[31] J. Case and C. Smith, Comparison of identification criteria for machine inductive inference,
Theoret. Comput. Sci., 25 (1983), pp. 193–220.

[32] K. deLeeuw, E. Moore, C. Shannon, and N. Shapiro, Computability by probabilistic ma-
chines, in Automata Studies, Ann. of Math. Stud., 34, Princeton University Press, Prince-
ton, NJ, 1956, pp. 183–212.

[33] R. Daley and C. Smith, On the complexity of inductive inference, Inform. and Control, 69
(1986), pp. 12–40.

[34] R. Feynman, Simulating physics with computers. Phusics of computation, Part II, Internat.
J. Theoret. Phys., 21 (1981/82), pp. 467–488.

[35] R. Freivalds, Minimal Gödel numbers and their identification in the limit, Lecture Notes in
Comput. Sci., 32, Springer-Verlag, Berlin, 1975, pp. 219–225.

[36] R. Freivalds, Recursiveness of the enumerating functions increases the inferrability of recur-
sively enumerable sets, Bull. Euro. Assoc. Theoret. Comput. Sci., 27 (1985), pp. 35–40.

[37] R. Freivalds, Inductive inference of minimal programs, in Proceedings of the Third Annual
Workshop on Computational Learning Theory, M. Fulk and J. Case, eds., Morgan Kauf-
mann, San Francisco, 1990, pp. 3–20.

[38] M. Fulk, A Study of Inductive Inference Machines, Ph.D. thesis, State University of New York
at Buffalo, Buffalo, NY, 1985.

[39] M. Fulk, Prudence and other conditions on formal language learning, Inform. and Comput.,
85 (1990), pp. 1–11.

[40] M. Fulk, Robust separations in inductive inference, in Proceedings of the 31st Annual Sym-
posium on Foundations of Computer Science, St. Louis, MO, IEEE Press, Piscataway, NJ,
1990, pp. 405–410.

[41] C. Gallistel, A. Brown, S. Carey, R. Gelman, and F. Keil, Lessons from animal learning
for the study of cognitive development, in Epigenesis of Mind: Essays on Biology and
Cognition, S. Carey and R. Gelman, eds., Erlbaum, Hillsdale, NJ, 1991, pp. 3–37.

[42] J. Gill, Probabilistic Turing Machines and Complexity of Computation, Ph.D. thesis, Univer-
sity of California, Berkeley, CA, 1972.

[43] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6
(1977), pp. 675–695.

[44] L. Gleitman, Biological dispositions to learn language, in Language Learning and Concept
Acquisition, W. Demopoulos and A. Marras, eds., Ablex, Stanford, CT, 1986.

[45] K. Gödel, On formally undecidable propositions of Principia Mathematica and related systems
I, in Kurt Gödel: Collected Works, Vol. I, S. Feferman, ed., Oxford University Press,
Oxford, UK, 1986, pp. 145–195.

[46] E. Gold, Language identification in the limit, Inform. and Control, 10 (1967), pp. 447–474.
[47] P. Halmos, Naive Set Theory, Springer-Verlag, New York, 1974.
[48] J. Hopcroft and J. Ullman, Introduction to Automata Theory Languages and Computation,

Addison-Wesley, Reading, MA, 1979.

1968 JOHN CASE

[49] T. Jech, Set Theory, Academic Press, New York, 1978.
[50] P. Johnson-Laird, The Computer and the Mind: An Introduction to Cognitive Science, Har-

vard University Press, Cambridge, MA, 1988.
[51] S. Jain and A. Sharma, Prudence in vacillatory language identification, Math. Systems The-

ory, 28 (1995), pp. 267–279.
[52] E. Kinber, On a theory of inductive inference, in Fundamentals of Computation Theory,

Lecture Notes in Comput. Sci. 56, Springer-Verlag, Berlin, 1977, pp. 435–440.
[53] D. Kirsh, PDP learnability and innate knowledge of language, in Connectionism: Theory and

Practice, S. Davis, ed., Oxford University Press, New York, 1992, pp. 297–322.
[54] S. Kapur, B. Lust, W. Harbert, and G. Martohardjono, Universal grammar and learn-

ability theory: The case of binding domains and the “subset principle,” in Knowledge and
Language, vol. I, E. Reuland and W. Abraham, eds., Kluwer, Dordrecht, 1993, pp. 185–216.

[55] S. Kurtz and J. Royer, Prudence in language learning, in Proceedings of the Workshop on
Computational Learning Theory, D. Haussler and L. Pitt, eds., Morgan Kaufmann, San
Francisco, 1988, pp. 143–156.

[56] S. Lange and P. Watson, Machine discovery in the presence of incomplete or ambiguous
data, in Algorithmic Learning Theory, Reinhardsbrunn Castle, Germany, Lecture Notes in
Artificial Intelligence 872, K. Jantke and S. Arikawa, eds., Springer-Verlag, Berlin, 1994,
pp. 438–452.

[57] S. Lange, T. Zeugmann, and S. Kapur, Characterizations of monotonic and dual monotonic
language learning, Inform. and Comput., 120 (1995), pp. 155–173.

[58] D. Moeser and A. Bregman, The role of reference in the acquisition of a miniature artificial
language, J. Verbal Learning and Verbal Behavior, 11 (1972), pp. 759–769.

[59] D. Moeser and A. Bregman, Imagery and language acquisition, J. Verbal Learning and Verbal
Behavior, 12 (1973), pp. 91–98.

[60] D. McDermott, Robot planning, AI Magazine, 13 (1992), pp. 55–79.
[61] D. McNeill, Developmental psycholinguistics, in The Genesis of Language, F. Smith and G. A.

Miller, eds., MIT Press, Cambridge, MA, 1966, pp. 15–84.
[62] E. Mendelson, Introduction to Mathematical Logic, 3rd ed., Brooks-Cole, San Francisco, CA,

1986.
[63] Y. Mukouchi, Characterization of finite identification, in Proceedings of the Third Interna-

tional Workshop on Analogical and Inductive Inference, Dagstuhl Castle, Germany, Octo-
ber 1992, Lecture Notes in Artificial Intelligence 642, K. P. Jantke, ed., Springer-Verlag,
Berlin, 1992, pp. 260–267.

[64] R. Manzini and K. Wexler, Parameters, binding theory and learnability, Linguistic Inquiry,
18 (1987), pp. 413–444.

[65] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms, North-
Holland, Amsterdam, 1978.

[66] D. Osherson, M. Stob, and S. Weinstein, Ideal learning machines, Cognitive Sci., 6 (1982),
pp. 277–290.

[67] D. Osherson, M. Stob, and S. Weinstein, Note on a central lemma of learning theory, J.
Math. Psych., 27 (1983), pp. 86–92.

[68] D. Osherson, M. Stob, and S. Weinstein, Learning theory and natural language, Cognition,
17 (1984), pp. 1–28.

[69] D. Osherson, M. Stob, and S. Weinstein, An analysis of a learning paradigm, in Language
Learning and Concept Acquisition, W. Demopoulos and A. Marras, eds., Ablex, Stanford,
CT, 1986.

[70] D. Osherson, M. Stob, and S. Weinstein, Systems That Learn: An Introduction to Learning
Theory for Cognitive and Computer Scientists, MIT Press, Cambridge, MA, 1986.

[71] D. Osherson and S. Weinstein, Criteria for language learning, Inform. and Control, 52
(1982), pp. 123–138.

[72] D. Osherson and S. Weinstein, A note on formal learning theory, Cognition, 11 (1982), pp.
77–88.

[73] R. Penrose, The Emperor’s New Mind, Oxford University Press, New York, 1989.
[74] R. Penrose, Shadows of the Mind, Oxford University Press, New York, 1994.
[75] J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, in Hand-

book of Mathematical Logic, J. Barwise, ed., North–Holland, Amsterdam, 1977.
[76] S. Pinker, Formal models of language learning, Cognition, 7 (1979), pp. 217–283.
[77] Z. Pylyshyn, Computation and Cognition: Toward A Foundation For Cognitive Science, MIT,

Cambridge, MA, 1984.
[78] J. Royer and J. Case, Subrecursive Programming Systems: Complexity and Succinctness,

Progr. Theoret. Comput. Sci., Birkhäuser, Boston, 1994.

THE POWER OF VACILLATION IN LANGUAGE LEARNING 1969

[79] G. Riccardi, The Independence of Control Structures in Abstract Programming Systems,
Ph.D. thesis, State University of New York at Buffalo, Buffalo, NY, 1980.

[80] G. Riccardi, The independence of control structures in abstract programming systems, J.
Comput. System Sci., 22 (1981), pp. 107–143.

[81] H. Rogers, Gödel numberings of partial recursive functions, J. Symbolic Logic, 23 (1958), pp.
331–341.

[82] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New
York, 1967 (reprinted, MIT Press, Cambridge, MA, 1987).

[83] J. Royer, A Connotational Theory of Program Structure, Lecture Notes in Comput. Sci. 273,
Springer-Verlag, New York, 1987.

[84] S. Simpson, Nonprovability of certain combinatorial properties of finite trees, in Harvey
Friedman’s Research on the Foundations of Mathematics, L. Harrington, M. Morley,
A. Schedrov, and S. Simpson, eds., North–Holland, Amsterdam, 1985, pp. 87–117.

[85] S. Simpson, Unprovable theorems and fast-growing functions, in Logic and Combinatorics,
Contemp. Math. 65, S. Simpson, ed., AMS, Providence, RI, 1987, pp. 359–394.

[86] C. Smith, A Recursive Introduction to the Theory of Computation, Springer-Verlag, New York,
1994.

[87] R. Smullyan, Theory of Formal Systems, Ann. of Math. Stud. 47, Princeton University Press,
Princeton, NJ, 1961.

[88] R. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.
[89] E. Spelke, Initial knowledge: Six suggestions, Cognition, 50 (1994), pp. 431–445.
[90] G. Schäfer-Richter, Über Eingabeabhangigkeit und Komplexitat von Inferenzstrategien,

Ph.D. thesis, RWTH Aachen, Aachen, Germany, 1984.
[91] T. Toffoli and N. Margolus, Cellular Automata Machines, MIT Press, Cambridge, MA,

1987.
[92] T. Toffoli, Cellular Automata Machines, Technical report 208, Comp. Comm. Sci. Dept.,

University of Michigan, Ann Arbor, MI, 1977.
[93] K. Wexler and P. Culicover, Formal Principles of Language Acquisition, MIT Press, Cam-

bridge, MA, 1980.
[94] K. Wexler, On extensional learnability, Cognition, 11 (1982), pp. 89–95.
[95] K. Wexler, The subset principle is an intensional principle, in Knowledge and Language, vol.

I, E. Reuland and W. Abraham, eds., Kluwer, Dordrecht, 1993, pp. 217–239.
[96] R. Wiehagen, Identification of formal languages, in Mathematical Foundations of Computer

Science, Lecture Notes in Comput. Sci. 53, Springer-Verlag, New York, 1977, pp. 571–579.
[97] R. Wiehagen and T. Zeugmann, Too much information can be too much for learning effi-

ciently, in Proceedings of the Third International Workshop on Analogical and Inductive
Inference, Dagstuhl Castle, Germany, October 1992, Lecture Notes in Artificial Intelligence
642, K. Jantke, ed., Springer-Verlag, Berlin, 1992, pp. 72–86.

[98] P. Young, Easy constructions in complexity theory: Gap and speed-up theorems, Proc. Amer.
Math. Soc., 37 (1973), pp. 555–563.

[99] K. Zuse, Rechnender Raum, Vieweg, Braunschweig, 1969 (translated as Calculating Space,
Tech. Transl. AZT–70–164–GEMIT, MIT Project MAC, MIT, Cambridge, MA, 1970).

AN ASSOCIATIVE BLOCK DESIGN ABD(8,5)∗

A. E. BROUWER†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 1970–1971

To Maja, on the occasion of her seventeenth birthday.

Abstract. An associative block design is a certain balanced partition of a hypercube into smaller
hypercubes. We construct such a design, thus settling the smallest open case.

AMS subject classification. 05B30

PII. S0097539797316622

An ABD(k,w) is a b × k matrix (where b = 2w) with entries from {0, 1, ∗} such
that (i) the stars form a 1-design: each row has k−w stars and each column b(k−w)/k
stars, and (ii) the rows represent disjoint subsets of {0, 1}k. Here a row represents the
set of binary vectors of length k obtained by replacing its stars in all possible ways
by 0s and 1s.

This concept was introduced in 1974 by Rivest [4, 5, 6] in order to find a hash
function with good worst-case behavior with respect to partial-match queries. For
example, the eight rows

00*0 11*1

100* 011*

*100 *011

1*10 0*01

form an ABD(4, 3).
In order to save space, let us extend our alphabet with the minus sign, where

a row containing r minus signs stands for the 2r rows obtained by replacing these
minus signs in all possible ways by 0s and 1s. Then the only other ABD(4, 3) is the
following:

*000

*111

-*10

-0*1

-10*

The theory is as follows (see [1, 2, 3, 6]).
Proposition 0.1. (i) ([6]) An ABD(k,w) has exactly bw/(2k) 0s and bw/(2k)

1s in each column. In particular, bw/(2k) is an integer.
(ii) ([1]) In an ABD(k,w) with w > 0 any given star pattern occurs in an even

number of rows. Moreover, among the rows with a given star pattern there are as
many with an even number of 1s as with an odd number of 1s.

(iii) For w ≤ 4 the only ABD(k,w) are the trivial ones with w = 0 or w = k
(represented, respectively, by a single row of stars or minus signs only) and the two
examples shown above.

(iv) ([2]) If w > 3, then k ≤ w(w − 1)/2.

∗Received by the editors February 2, 1997; accepted for publication July 2, 1997; published
electronically June 3, 1999.

http://www.siam.org/journals/sicomp/28-6/31662.html
†University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, the Netherlands

(aeb@win.tue.nl).

1970

AN ASSOCIATIVE BLOCK DESIGN ABD(8,5) 1971

(v) ([3]) There is no ABD(10, 5).
(vi) ([6]) If ABD(ki, wi) exist for i = 1, 2, then there also is an ABD(k1k2, w1w2).
(vii) ([1]) Suppose that k ≥ w > 0 and k′ ≥ w′ > 0 and k′ ≥ k and w′/k′ ≥ w/k.

Then if an ABD(k,w) exists, and 2w
′
w′/(2k′) is an integer, then ABD(k′, w′) also

exists.
One may use generating function arguments to get more detailed information on

the possible star patterns. See [1].
The purpose of this note is to show that an ABD(8, 5) exists:

-0000*** *01*10*0

-0001*** -*1*1*11

-001*0** **11*001

-**1010* *10*00*0

*0*1*110 *1*0*001

01*111 *10011

-**1110* -1*0*10*

-*1*00*0 *1**0110

*010**01 *1**1000

-*1*0*11 -1**1*10

*010*1*0 *101*0*1

Now the smallest open case is the question of whether an ABD(12, 6) exists.

Acknowledgment. This note was inspired by a letter from Knuth, who asked
whether there had been any progress on ABDs since 1976 and in particular whether
the existence of an ABD(8, 5) was still open.

REFERENCES

[1] A. E. Brouwer, On associative block designs, in Combinatorics (Proc. Fifth Hungarian Colloq.,
Keszthely, 1976), Vol. I, Colloq. Math. Soc. János Bolyai 18, North-Holland, Amsterdam,
1978, pp. 173–184.

[2] J. A. La Poutré, A theorem on associative block designs, Discrete Math. 58 (1986), pp. 205–208.
[3] J. A. La Poutré and J. H. van Lint, An associative block design ABD(10, 5) does not exist ,

Utilitas Math., 31 (1987), pp. 219–225.
[4] R. L. Rivest, On hash-coding algorithms for partial match retrieval , in Proceedings of the 15th

Annual Symposium on Switching and Automata Theory, Long Beach, CA, IEEE Comput.
Soc., 1974, pp. 95–103.

[5] R. L. Rivest, Analysis of Associative Retrieval Algorithms, Laboratoire de recherche en
informatique et automatique, IRIA rapport 54, Institut de Recherche d’Informatique et
d’Automatique, Domaine de Voluceau, Rocquencourt, Le Chesnay, France, 1974.

[6] R. L. Rivest, Partial-match retrieval algorithms, SIAM J. Comput., 5 (1976), pp. 19–50.

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS∗

RONITT RUBINFELD†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 1972–1997

Abstract. In this paper, we study the general question of how characteristics of functional
equations influence whether or not they are robust. We isolate examples of properties which are
necessary for the functional equations to be robust. On the other hand, we show other properties
which are sufficient for robustness. We then study a general class of functional equations, which are
of the form ∀x, y F [f(x − y), f(x + y), f(x), f(y)] = 0, where F is an algebraic function. We give
conditions on such functional equations that imply robustness.

Our results have applications to the area of self-testing/correcting programs. We show that self-
testers and self-correctors can be found for many functions satisfying robust functional equations,
including algebraic functions of trigonometric functions such as tan x, 1

1+cot x
, Ax

1−Ax , coshx.

Key words. program testing, property testing, functional equations

AMS subject classifications. 68Q40, 68Q60, 68Q25, 13P99

PII. S0097539796298625

1. Introduction. The mathematical field of functional equations is concerned
with the following prototypical problem: given a set of properties (functional equa-
tions) over a particular domain, completely characterize the set of functions that
satisfy them. For example, the linearity property over the integers is ∀x, y ∈ Z f(x+
y)− f(x)− f(y) = 0. The functions mapping from Z to Z that satisfy the linearity
property, referred to as the solution set of the functional equation, is F = {f |f(x) =
c · x, c ∈ Z}. The linearity property is one of the famous, well-studied functional
equations referred to as Cauchy’s equations and has been studied over many other
domains and ranges with various properties (see the text by Aczél [3]). Functional
equations are used widely in the study of the various functions that arise in areas
such as mathematics, physics, and economics. Several general classes of functional
equations have been identified. For example, algebraic addition theorems, of the form

∀x, y F [f(x+ y), f(x), f(y)] = 0,

where F is any algebraic function, were used as a starting point in the development
of the theory of elliptic curves by Weierstrass. Other types of functional equations
include difference equations, iteration equations, multivariate functional equations,
and systems of functional equations.

In section 2, we present the definition of functional equations given in [3]. For the
purposes of this introduction, we define functional equations as follows: let D,R be
an arbitrary domain and range. Let T be a range containing 0, and F : Rk×Dk → T
be a function that is computable via applying a finite number of known functions
(in this paper we use −,+,×, \, hyperbolic functions, trigonometric functions, and
cth roots for constant c). Let a neighborhood over the domain D be an ordered k-
tuple in Dk and let N ⊆ Dk. The general form of a functional equation is then

∗Received by the editors February 12, 1996; accepted for publication (in revised form) December
1, 1997; published electronically June 3, 1999. A preliminary version of this work has appeared in
Proc. 35th IEEE Conference on Foundations of Computer Science, 1994, pp. 288–299.

http://www.siam.org/journals/sicomp/28-6/29862.html
†Department of Computer Science, Cornell University, Ithaca, NY 14853 (ronitt@cs.cornell.edu).

This research was supported by ONR Young Investigator Award N00014-93-1-0590 and United
States–Israel Binational Science Foundation grant 92-00226.

1972

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1973

Table 1.1
Examples of functions satisfying addition theorems over the reals.

Equation Solution

f(x+ y) =
f(x)+f(y)
1−f(x)f(y)

f(x) = tanAx

f(x+ y) =
f(x)f(y)−1
f(x)+f(y)

f(x) = cotAx

f(x+ y) =
f(x)+f(y)

1+[f(x)f(y)/a2]
f(x) = a tanhBx

f(x+ y) =
f(x)f(y)
f(x)+f(y)

f(x) = C/x

f(x+ y) =
f(x)+f(y)−2f(x)f(y)

1−2f(x)f(y)
f(x) = 1

1+cotAx

f(x+ y) =
f(x)+f(y)−1

2f(x)+2f(y)−2f(x)f(y)−1
f(x) = 1

1+tanAx

f(x+ y) =
f(x)+f(y)+2f(x)f(y)

1−f(x)f(y)
f(x) = Ax

1−Ax

f(x+ y) =
f(x)+f(y)−2f(x)f(y)

1−f(x)f(y)
f(x) = −Ax

1−Ax

f(x+ y) =
f(x)+f(y)−2f(x)f(y) cos a

1−f(x)f(y)
f(x) = sinAx

sin (Ax+a)

f(x+ y) =
f(x)+f(y)−2f(x)f(y) cosh a

1−f(x)f(y)
f(x) = sinhAx

sinh (Ax+a)

f(x+ y) =
f(x)+f(y)+2f(x)f(y) cosh a

1−f(x)f(y)
f(x) = − sinhAx

sinh (Ax+a)

f(x+ y) = f(x)f(y)−
√

1− f(x)2
√

1− f(y)2 f(x) = cos (Ax)

f(x+ y) = f(x)f(y) +
√
f(x)2 − 1

√
f(y)2 − 1 f(x) = cosh (Ax)

∀(x1, . . . , xk) ∈ N , F [f(x1), . . . , f(xk), x1, . . . , xk] = 0. We denote the functional
equation by (F,N) when D,R, T are understood from the context. A particular
solution of a functional equation is a function f : D → R for which F evaluates
to 0 on all choices of neighborhoods in N . The general solution, F , is the family of
functions that are solutions to the functional equation. Tables 1.1 and 1.2 give several
examples of functional equations and their solution sets over the reals [3], [25]. In
section 2, we describe the formal definition of characterizations as given by Rubinfeld
and Sudan in [38], which can be viewed as a generalization of functional equations.

All functional equations involve a “for all” quantifier. Here we are interested in
comparing the solution with the functional equation when the “for all” quantifier is
replaced by a “for most” quantifier. To illustrate, we give a simplified definition of ro-

bustness. For a given δ, define G def
= {f |Pr(x1,...,xk)∈N [F [f(x1), . . . , f(xk), x1, . . . , xk]

= 0] ≥ 1−δ}. Clearly G contains F . However, is it the case that each function in G\F
is essentially the same (equal on most inputs in D) as some function in F? Slightly

more precisely, we say that two functions are ε-close over D if |{x∈D|f(x) 6=g(x)}|
|D| ≤ ε.

For some small constant ε, if each function in G is ε-close to some function in F , then
in some sense, the “for most” quantifier is sufficient to characterize the same class of
functions as the “for all” quantifier, and we say that the functional equation is (ε, δ)-

1974 RONITT RUBINFELD

Table 1.2
Examples of functions satisfying F [f(x− y), f(x+ y), f(x), f(y)] = 0 over the reals.

Equation Solution

f(x+ y) + f(x− y) = 2f(x) f(x) = Ax+ a

f(x+ y) + f(x− y) = 2f(x)f(y) f(x) = 0, cosAx, coshAx

f(x+ y) + f(x− y) = 2[f(x) + f(y)] f(x) = Ax2

f(x+ y)− f(x− y) = 2f(y) f(x) = Ax

f(x+ y)f(x− y) = f(x)2 f(x) = a

f(x+ y)− f(x− y) = 4
√
f(x)f(y) f(x) = Ax2

f(x+ y)f(x− y) = f(x)2 − f(y)2 f(x) = Ax, k sinAx, k sinhAx

robust. A formal and more general definition due to [38] is given in section 2. Often it
is the case that N and F are defined and are known to be (ε, δ)-robust over an infinite
set S of domains and corresponding neighborhood sets. For example, the linearity
property can be defined for all domains that are groups where for each group G, the
corresponding neighborhood set is {x, y, x +G y|x ∈ G} (+G is the group operation
for G), and the linearity property is ∀x, y, x+G y f(x+G y)−G f(x)−G f(y) = 0. The
linearity property is known to be (2δ, δ)-robust when the domain and range are any
finite group for any δ < 2

9 [26]. We are interested in the case when for all ε < 1, there
is a constant δ such that (F,N) is (ε, δ)-robust over each of the domains in S. In this
case, we say that (F,N) is robust over S (note that robustness is only interesting if
1
δ is much smaller than |N |).

Previous results on robust characterizations. Robustness and related no-
tions are used implicitly in a number of works [19], [9], [29], [10], [7], [6]. In the
following sections, we describe the applications of robustness to program testing and
to the study of probabilistically checkable proof systems.

There are many characterizations that are known to be robust: the first nontrivial
characterization shown to be robust for constant ε, δ was the linearity property over
finite groups in the work of Blum, Luby, and Rubinfeld [19]. Coppersmith [26] gives a
particularly elegant proof of the robustness of the linearity property as well as improves
the allowable parameters of ε, δ to the following: if f(x+y)−f(x)−f(y) = 0 is satisfied
for a constant greater than 7

9 fraction of the choices of x, y in the group G, then there
is some function g(z) = c · z such that f(x) = g(x) for at least 5

9 of the x in G.
Coppersmith also gives an example which shows that δ = 7

9 is a type of a threshold;
i.e., there is a function which satisfies f(x+ y)− f(x)− f(y) = 0 for 7

9 fraction of the
choices of x, y in the group G, but which does not agree with any linear function on
more than 1

3 of the domain. Bellare et al. [11] show that one can get a tighter result
on the range of δ that is useful over domains of the type GF (2)n where Coppersmith’s
example does not apply. Robust characterizations of total degree d polynomials are
given in [38].1 Robust characterizations of maximum degree d polynomials are given

1The total degree of a polynomial is the maximum over all terms of the total degree of a term.
The total degree of a term is the sum of the individual degrees of each variable in the term.

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1975

in several works [9], [29], [10], [38].2 These results apply to polynomials over finite
fields Zp (p prime) and finite subsets of rational domains. The first formal definition
of robustness was given in [38]. Very recently, robust characterizations of functions
satisfying linear recurrence relations have been given by Kumar and Sivakumar [33].

Our results. Our goal is to characterize the fundamental characteristics of func-
tional equations that make them robust, in order to gain an understanding of how
broadly robustness applies. It happens that the structure of the neighborhoods inN is
very important to whether a characterization is robust. We present a graph theoretic
characterization of neighborhood sets N , which is used to quantify the connectivity
of N . In Theorem 3.2, we show that high connectivity of N is necessary for N to be
robust. Since the functional equations which relate inputs that are linear functions
of a single variable (e.g., ∀x, f(x) − f(x + 1) − 1 = 0) are known not to have this
connectivity property, we can conclude that they are not robust. On the other hand,
in Theorem 3.4, we show that when N = Dk, and the set of solutions to (F ,N) is
rich enough, (F ,N) is robust.

We next investigate conditions on the class of functional equations of the general
form ∀x, y F [f(x− y), f(x+ y), f(x), f(y)] = 0 that imply robustness. We focus on
domains that are finite groups and certain types of subsets of infinite groups, such
as those of the form Dn,s = { is

∣∣ |i| ≤ n} (see the beginning of subsection 2.1) and
others that are of use in studying periodic functions. In the case of domains that
are finite groups and domains used for studying periodic functions, testing that a
function satisfies a functional equation over a domain will involve neighborhood sets
that are chosen from the same domain. In the case of domains that are subsets
of infinite groups of the form Dn,s = { is

∣∣ |i| ≤ n}, testing that a function satisfies a
functional equation will involve neighborhood sets that are chosen from a larger subset
of the same infinite group. Our results apply to ranges that have a group structure. In
Theorems 4.1 and 6.4, we show that if the equation can be written as ∀x, y f(x+y) =
G[f(x), f(y)] (a special case of algebraic addition theorems referred to as an addition
theorem), then it is robust as long as G satisfies G[a,G[b, c]] = G[G[a, b], c] ∀a, b, c
(which is satisfied by all of our examples of addition theorems). The proofs for all
types of domains rely on the same techniques. Since the proofs of the results over finite
group domains are simpler to state, we give them first in order to highlight the main
ideas. This work leads to self-testers for several families of trigonometric functions
including tanAx, 1

1+cot x ,
Ax

1−Ax , coshAx, and several examples from [3], [4], [22] given
in Table 1.1. A general format for constructing self-testers is given in sections 5 and
6, and a self-tester for the particular example of the cosh function is given in section
6.3. We then give techniques that apply to functions which satisfy other functional
equations (the first three examples in Table 1.2), including d’Alembert’s equation
∀x, y f(x+ y) + f(x− y) = 2f(x)f(y) in section 4.2. In this case, the range must be
a field containing 2.

Robustness and self-testing/correcting. In order to allow a programmer to
use programs that are not known to be correct on all inputs, result checkers were
introduced by Blum [15] and Blum and Kannan [18], and soon after, the related
paradigms of self-testers and self-correctors were introduced by Blum, Luby, and
Rubinfeld [19]. (A notion similar to self-correctors was independently proposed by
Lipton [34].) The paradigm of self-testers and self-correctors is intended to fit into

2The maximum degree of a polynomial is the maximum over all variables of the maximum degree
of the variable in any term.

1976 RONITT RUBINFELD

the framework of result checkers, and in fact it is observed that a self-tester and a
self-corrector for a function can be combined to give a checker [19]. If a function has
a checker, then one can determine whether program P is giving the correct answer
on a particular input or whether there is a bug in the program. If a function has a
self-corrector, then given a program P for computing the function that is correct on
most inputs, one can transform P into a new randomized program that is correct on
each input with high probability and is almost as efficient as running P . Self-testers
allow one to ascertain that P is correct on a large enough fraction of the inputs
so that it is capable of being self-corrected. More formal definitions of self-testers
and self-correctors are given in section 5. If a function has both a self-tester and
a corresponding self-corrector, then an unreliable program can be used to reliably
compute the function.

Problems that can be viewed as linear or low degree polynomial functions, such
as matrix multiplication, integer division, sine/cosine, integer multiplication, the mod
function, modular multiplication, polynomial multiplication, modular exponentiation,
fast Fourier transform and determinant, have been shown to have self-testers and self-
correctors [19], [8], [34], [23], [31], [37], [38], [2], [28], [21]. Although many functions
can be viewed as linear functions or low degree polynomials over an appropriate group
structure, one concern was that these might be the only examples of functions that
have self-testers and self-correctors. Using the new robustness results, we show that
self-testers and self-correctors can be found for numerical functions that previously
did not have self-testers and self-correctors. The techniques used to derive our results
seem amenable to further generalization and may apply to an even wider variety of
numerical functions.

We concentrate on self-testers which operate by finding properties (such as func-
tional equations) that should be satisfied by any correct program and then testing
that the program satisfies the properties for randomly chosen inputs. In this work, we
study the characteristics of the properties that make them usable for testing. Proper-
ties that can be tested more efficiently than computing the function f are particularly
interesting for constructing good tests for programs.

The idea of testing programs by verifying that programs satisfy properties known
to be satisfied by the functions being computed is not new to the self-testing/correcting
approach. For example, matrix multiplication routines have been tested by verifying
that the outputs satisfy the distributive property [39]. The work of Cody and Stoltz
[25] proposes the use of Taylor series in order to test programs for exponential inte-
grals. These techniques apply to Bessel functions and Dawson’s integral. The work
of Vainstein [42], [43], [44], [45] suggests the use of polynomial checks for testing and
correcting programs. In the language previously defined, polynomial checks are those
functional equations for which the function F is a polynomial and the neighborhoods
are ordered sets of the form (x, x+a1, x+a2, . . . , x+ak) for fixed constants a1, . . . , ak.
These functional equations can be used to test functions that are algebraic functions
of trigonometric functions. The work of Cody [24] suggests the following test for
programs computing the real gamma function over the reals:

Pick random x and verify that P (2x) = (2π)−1/222x−1/2P (x)P (x+1
2).

In all of the above cases, it is clear that any correct program for the function must pass
these recommended tests. However, none of the works mentioned in this paragraph
give any formal evidence that programs that pass these tests should be usable. On
the contrary, it is easy to come up with examples of programs that pass the above
tests but do not compute the correct function on a large fraction of inputs.

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1977

Still, it has been shown that in many cases using properties to test programs is
mathematically justified (cf. [19], [37], [31], [38]). Essentially one can show that some
of these tests can be used in conjunction with other simple tests in order to determine
that a program is correct on most inputs. In order to show that such tests work,
the main technique used has been to partition the problem into three tasks: first,
find properties that characterize a family of functions, F , containing the function f .
For example, one can find functional equations satisfied by specific classes of finite
degree rational functions of x, ex, sinx using the results of [43], [16]. Second, show
that these properties are robust, so that it is possible to efficiently test whether the
program is computing a function that is close to some function in F . We call this task
property testing. Third, find other efficient tests which allow the user to determine
whether or not the program is computing the correct function within F . We call this
latter task equality testing. Equality testing can often be done much more efficiently
once it is known that the program is essentially computing some member of F . For
example, the function f(x) = x mod R is uniquely specified by the properties that
(1) f is linear, i.e., ∀x, y f(x) + f(y) ≡ f(x + y) mod R, (2) f has slope 1, i.e.,
∀x f(x) + 1 ≡ f(x+ 1) mod R. Using the robustness of linearity, if (1) is satisfied for
most x, y (greater than a 7

9 fraction), then there is some function g(x) = cx mod R
such that f(x) = g(x) for most x. If in addition (2) is satisfied for most x then
f(x) = x mod R for most x. (Note that if R is considered to be part of the input,
then it is not enough to test only that property (2) is satisfied for any constant fraction
of the x ∈ [0..R − 1].) Thus, it is only necessary to check that the program satisfies
the given properties at a relatively small number (in this case, a constant independent
of |x|, |R|) of randomly selected inputs in order to guarantee that the program usually
computes the correct values. This paper concentrates on the task of property testing.

It is shown in [19] that self-correctors exist for any function that is random self-
reducible,3 since if the program is known to be correct on most inputs, then the
correct value of the function at any particular input x can be inferred, even though
the program may be incorrect on input x. In particular, any function satisfying
the linearity property is random self-reducible [19]. On a related note, the use of
polynomial checks (or the functional equations that are defined by the polynomial
checks) for the correction of programs with few errors is suggested in [43], and Blum
et al. [16] build on the work of [43] to give self-correctors for the same functions.
Here we observe that efficient self-correctors exist for functions satisfying any one
of a class of functional equations, namely, those of the general form ∀x, y F [f(x −
y), f(x + y), f(x), f(y)] = 0, where F is an algebraic function that has the property
that given three of f(x− y), f(x+ y), f(x), f(y), F can be used to efficiently solve for
the remaining one. A similar result was obtained independently by Blum et al. [16],
where self-correcting using functional equations is studied in much greater depth.

Organization of paper. In section 2 we present the formal definitions of exact
and robust characterizations from [38]. In section 3 we investigate certain general
properties of functional equations that influence whether they are robust. In section 4
we present technical theorems showing conditions under which the general functional
equation F [f(x − y), f(x + y), f(x), f(y)] = 0 is robust on domains that are finite

3f is random self-reducible if f can be computed at any particular input x via f(x) =
G[f(y1), . . . , f(yk), y1, . . . , yk], where G can be computed asymptotically faster than f and the yi’s
are uniformly distributed, although not necessarily independent [19]. This notion of random self-
reducibility is somewhat different than other definitions given by [20], [1], [30], where the requirement
on G is that it be computable in polynomial time.

1978 RONITT RUBINFELD

groups. In section 5 we present the self-testers and self-correctors based on the general
form of the functional equation ∀x, y F [f(x− y), f(x+ y), f(x), f(y)] = 0. In section
6 we show how to convert the self-testers and self-correctors shown for finite groups
into self-testers and self-correctors that apply to functions over rational domains.
The completely specified self-tester and self-corrector for the particular example of
the cosh function is described in section 6.3. In section 7 we discuss our conclusions
and directions for further research.

2. Functional equations and characterizations. In this section, we give the
definitions of functional equations and exact and robust characterizations. We also
show a relationship between functional equations and probabilistically checkable proof
systems.

2.1. Domains and ranges. Throughout this paper, we focus on the follow-
ing three kinds of domains: The first are finite subsets of the rationals of the form
Dn,s = { is

∣∣ |i| ≤ n}, where n, s are integers. These domains are not necessarily closed
under addition and multiplication. This class includes domains that can be internally
represented in a computer, corresponding to fixed point arithmetic, which have been
used in previous work on self-testing and self-correcting [31], [37]. The second type of
domain that we are interested in are finite groups. Even for functions that are not de-
fined over finite group domains, it is much simpler to first reason about the functional
equations that they satisfy over finite group domains since they are closed under addi-
tion and then to use the techniques of [31], [37] (described in section 6) for converting
results on finite group domains into results on rational domains. The third class of
domains are of use when studying periodic functions: Dbs = {i · s∣∣ i ∈ Z}, where b/s
is an integer, and addition and multiplication is performed mod b. For example,
D2π

2π/10 = {0, 2π/10, 4π/10, 6π/10, . . . , 18π/10}. Note that any function f : Dbs → R
corresponds to a function f̂ : Zb/s → R by f̂(i) = f(i · s mod b). Thus results on
the finite group domains can be immediately applied to this third class of domains.
The range of the functions considered can in general be arbitrary. If not specified,
the range is assumed to be the reals.

In Tables 1.1 and 1.2, solutions to functional equations over the reals are given.
It may happen that the functional equation over the reals characterizes a family of
functions that is a proper subset of the functions characterized by the same functional
equation over Dp,s. In section 5.2 we show that this does not limit the ability to
construct self-testers for programs for these functions, due to the equality testing
performed by self-testers.

2.2. Functional equations. In the text by Aczél [3, p. 1] , functional equations
are defined by first defining a term.

Definition 2.1 (term—[3, p. 1]).
1. The independent variables x1, . . . , xk are terms.
2. Given that A1, . . . , Am are terms and that H is a function of m variables,

then H(A1, . . . , Am) is also a term.
3. There are no other terms.

Definition 2.2 (functional equation—[3, p. 2]). A functional equation is an
equation A1 = A2 between two terms A1, A2 which contains k independent variables
x1, . . . , xk and n ≥ 1 unknown functions H1, . . . , Hn of j1, . . . , jn variables, respec-
tively, as well as a finite number of known functions.

The known functions used in [3] include addition; subtraction; division; multipli-
cation; and exponentiation, trigonometric, and hyperbolic functions. In this paper,

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1979

we will also include all functions computable by a Turing machine. Later in [3, p. 3]
it is also noted that the functional equation must be identically satisfied for certain
values of the variables (x1, . . . , xk) figuring in them, called the domain. (We use the
term neighborhood set in this paper.) A particular solution of a functional equation
is a function that satisfies the equation in the given domain (neighborhood set). The
general solution is the set of all solutions belonging to the class of admissible func-
tions, which can, for example, be defined by the analytic properties (measurability,
differentiability, continuity, boundedness), other properties such as computability by
a polynomial time Turing machine, by initial and boundary conditions and/or by
conditions given in the form of another functional equation.

2.3. Exact and robust characterizations. We now present the definitions of
characterizations and robust characterizations given by [38]. D is used to represent a
finite domain. We consider families of functions F where f ∈ F maps elements from
domain D to range R (we use R to denote the range of a function and < to denote
the set of real numbers). T is a range containing 0. We illustrate these definitions
using the example of linear functions. Here D = R = T = Zp and the family of linear
functions is {fa|a ∈ Zp where fa(x) = a · x}.

Definition 2.3 (neighborhoods—[38]). ND is a k-local neighborhood if it is an
ordered tuple of (not necessarily distinct) k points (x1, . . . , xk) from Dk. A k-local
collection of neighborhoods ND is a (multi)set of k-local neighborhoods. When D is
understood from the context, we drop it from the subscript.

Definition 2.4 (properties—[38]). PD,R,T is a k-local property if it is a function
from Rk × Dk to T . We say that a function f : D → R satisfies a property PD,R,T
over a neighborhood ND = (x1, . . . , xk) if PD,R,T (f(x1), . . . , f(xk), x1, . . . , xk) = 0.4

When D,R, T are understood from the context, we drop them as subscripts.

Definition 2.5 (exact characterizations—[38]). We say that (PD,R,T , ND) is
an exact characterization of a family F of functions if a function f : D → R satisfies
PD,R,T over all neighborhoods ND ∈ ND exactly when f ∈ F . The characterization
is k-local if the property PD,R,T and the collection ND is k-local. When D,R, T are
understood from the context, we drop them as subscripts.

In our example, R = T = D = D′ = Zp. The collection of neighborhoods
is N = {(x, y, x + y)|x, y ∈ Zp}. The property P which for {x1, x2, x3} computes
P(f(x1), f(x2), f(x3), x1, x2, x3) = f(x1) + f(x2) − f(x3) is 3-local. (P,N) is a
3-local characterization of the family of the linear functions {f |f(x) = c · x, c ∈ Zp}.

Definition 2.6 (robust characterizations—[38]). Let D′ ⊆ D. Let PD,R,T be a
property over a collection of neighborhoods ND; let F be such that (D,R, T ,PD,R,T ,
ND) is an (PD,R,T ,ND) is an exact characterization of F . We say that the char-
acterization A ≡ (D′,PD,R,T ,ND) is an (ε, δ)-robust characterization of F in G if
whenever a function f ∈ G satisfies PD,R,T on all but δ fraction of the neighborhoods
in ND, it is ε-close on domain D′ to some function g ∈ F .5 When D,D′,R, T are
understood from the context, we drop those parameters.

We remark that in order for a robust characterization to be useful, membership

4This is a slight modification of the definition in [38], where the function f satisfies PD,R,T if
PD,R,T (f(x1), . . . , f(xk), x1, . . . , xk) = 1 and the range of the function PD,R,T is {0, 1} instead of
T .

5It is convenient for our results in this paper to define ND as a multiset and to define robust
characterizations in terms of picking neighborhood sets from the uniform distribution on ND. Al-
ternatively, one can define robust characterizations in terms of a distribution on ordered sets, where
ND would correspond to the support of the distribution.

1980 RONITT RUBINFELD

in G should be efficient to test, choosing a random neighborhood in ND should be
efficient, and D′ should be a fairly large subset of D. All of our results have these
properties. In most examples, G will be the set of all functions; however, we will see
examples in which it is useful to have G be a smaller, efficiently recognizable, set of
functions.

To continue with the example of linear functions, a theorem of [19] can be used
to say that for any finite group G and any δ < 2

9 , (PG,NG) is a (2δ, δ)-robust charac-
terization of the linear functions mapping G to G.

In order to test if f is close to some member of F , one would need to sample at
least 1

δ of the neighborhoods in N and test if P holds on these neighborhoods. Thus,
1
δ is referred to as the efficiency of the characterization.

We now define what it means for a characterization to be robust over a class.

Definition 2.7. Let S = {(A1,F1,G1), (A2,F2,G2), . . .} be such that for all i,
Ai = (D′i,PDi,Ri,Ti ,NDi) and (PDi,Ri,Ti ,NDi) is an exact characterization of Fi. We
say that (P,N) is robust over the family S if

1. there is a function N which takes as input i and returns a Turing machine M
such that M on input a random string chooses a random member N ∈ NDi ;

2. there is a function P which takes as input i and returns a Turing machine
that on input N ∈ NDi computes PDi,Ri,Ti(N);

3. for all ε < 1 there is a δ < 1 such that for all i, Ai is an (ε, δ)-robust
characterization.6

In order for a robust characterization over a class to be useful, the functions (P,N)
should have a uniform and concise description. In particular, functional equations
have a natural interpretation as a concise description of robust characterizations over
a class. In this paper, we consider variations of the following two basic types of classes.

In the first type of class, we capture the property that a functional equation is
(ε, δ)-robust over all domains that have a certain structure, such as finite groups. The
functional equation P,N is described with a generic group or field operation. Let
Di = D′i = Ri = Ti = Gi, where Gi is the ith group (for an arbitrary ordering of the
groups) with group operator +Gi . PDi,Ri,Ti and NDi are then the functions obtained
by using the group operator +Gi . In our linearity example, P(i) = PDi,Ri,Ti is the
function P(f(x1), f(x2), f(x3), x1, x2, x3) = f(x1)+Gi f(x2)−Gi f(x3). The collection
of neighborhoods N = {(x, y, x+Gi y)|x, y ∈ Gi}.

In the second type of class, we concentrate on finite subsets of various sizes of
an infinite group. The functional equation is defined over a large, possibly infinite
domain such as the rationals. However, the robust characterization is defined over a
finite subset of the domain. Let Di = Dni,s, D′i = Di,s for ni ≥ i (the exact value of
ni is determined by the robust characterization) and R = T = <. P,N always return
the same function which maps the rationals to the reals. In our linearity example,
P is the function P(f(x1), f(x2), f(x3), x1, x2, x3) = f(x1) + f(x2) − f(x3) and N
is a carefully chosen subset of {(x, y, x + y)|x ∈ Dni,s, y ∈ Dni,s} (see section 6).
Operations +,− are the usual group operations over the reals.

Our results specify the class of domains and ranges over which the functional
equation is robust. When S is understood from the context, we say that (P,N) is
robust.

6The only interesting case is when the size of S is infinite, since otherwise there are always
constants ε, δ such that all characterizations in the collection are (ε, δ)-robust.

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1981

2.4. Robustness and probabilistically checkable proofs. A language L in
NP has a probabilistically checkable proof system if there is a probabilistic polynomial
time Turing machine V (the verifier) that has read access to a source of random strings
R and to a proof P for the membership of x in L, such that (1) if x ∈ L, there exists
a proof P of membership in the language such that V accepts P with probability 1
(where the probability is over the random strings R) and (2) if x is not in L, for all
proofs P ′, V accepts proof P ′ with probability at most 1

4 [29]. The linearity test and
tests for low total degree polynomial functions that are given in [19], [37], [6] have
been used to construct probabilistically checkable proof systems in the recent results
of [6], [14], [12] (tests that functions are low degree in each variable are given and
used in [9], [29], [7]). Much recent research has been devoted to expanding the range
of the robustness parameter δ for which these tests work, as it directly influences the
strength of results showing that it is computationally difficult to approximate certain
NP-complete problems [36], [11], [12].

Conversely, Sudan [41] has noted that the property of being a probabilistically
checkable proof can actually be viewed as an example of a robust functional equa-
tion (where the definition of F is generalized to include all polynomial time circuits):
in the work of Arora, Lund, Motwani, Sudan, and Szegedy [6], each probabilisti-
cally checkable proof P can be viewed as a truth table of a function. If P is n bits
long, then P can be thought of as the function P : [1 . . . n] → {0, 1}; i.e., P (i) is
the ith bit of the proof. The protocol followed by V is to choose an r-bit random
string y, perform a computation in order to determine a constant number of locations
σ1(y), . . . , σk(y), query the proof at those locations, and then perform another compu-
tation on input (y, P (σ1(y)), . . . , P (σk(y))) in order to determine whether to accept
or reject the proof. More formally, let N = {(σ1(y), . . . , σk(y))|y ∈ {0, 1}r}. The
verifier’s choice of a random string in {0, 1}r determines a choice of a neighborhood
(y1, . . . , yk) from N by the computation yi = σi(y). The verifier then tests whether a
relationship ∀(y1, . . . , yk) ∈ N , F [P (y1), P (y2), . . . , P (yk), y] = 0 is satisfied, where F
is computable by a polynomial time Turing machine and describes the computation
of the verifier that determines whether to accept or reject the proof. In [6] it is shown
that one can construct an (F,N) that characterizes the set of valid proofs; i.e., valid
proofs are exactly those bit strings P for which F [P (y), P (σ1(y)), . . . , P (σk(y)), y] = 0
is satisfied for all random strings y. Furthermore only proofs that are close (equal on
most bits) to some valid probabilistically checkable proof are passed with probability
≥ 3/4.

3. Characterizing robust functional equations. We turn to the general
question of how to distinguish functional equations that are robust from those that are
not in order to arrive at a better understanding of what makes a functional equation
robust. It turns out that the structure of the neighborhood set is a very important
determining factor to whether or not the functional equation is robust. To illustrate,
the following are three characterizations of the lines F = {f |f : Zp → Zp, f(x) =
ax + b for a, b ∈ Zp} (this family of lines is different from the one discussed previ-
ously) and over the class S in which Ri = Ti = Di = D′i = Zpi where pi is the ith
prime:

1. ∀x1, x2, x3 ∈ Zpi , f(x1)−f(x2)
x1−x2

= f(x2)−f(x3)
x2−x3

.
2. ∀x1, x2 ∈ Zpi , f(x1) − 2f(x2) + f(2x2 − x1) = 0 or, equivalently, ND =
{(x1, x2, 2x2 − x1)|x1, x2 ∈ Zpi} and ∀(x1, x2, x3) ∈ ND, f(x1) − 2f(x2) +
f(x3) = 0.

3. ∀x1 ∈ Zpi , f(x1)−2f(x1+1)+f(x1+2) = 0 or, equivalently, ND = {(x1, x1+

1982 RONITT RUBINFELD

1, x1 + 2)|x1 ∈ Zpi} and ∀(x1, x2, x3) ∈ ND, f(x1)− 2f(x2) + f(x3) = 0.

In all three characterizations, the property is the same (although simplified in the lat-
ter two characterizations because of the specially chosen neighborhoods) and ensures
that the points (x1, f(x1)), (x2, f(x2)), (x3, f(x3)) all lie on a single line. The only
difference in the three characterizations is the collection of neighborhoods over which
it is defined. However, the choice of neighborhoods heavily influences the robustness
of the characterizations. A simple counting argument (similar to the one described
later in section 3.2) shows that the first property is (δ, δ)-robust for all δ < 1. The
second property is (2δ, δ)-robust for δ < 1

1082 [38]. It is easy to see that for all ε, the
third property is not (ε, δ)-robust over S for any constant δ. Thus the richness of the
neighborhood set influences the robustness as well as the complexity of computing
PD,R,T . Another interesting quantity related to the neighborhood set is the number
of random bits required to choose a random element of the neighborhood set (or the
logarithm of the size of the neighborhood set). Reducing this quantity, even by a
constant factor, while not significantly affecting the range of δ, ε achievable for main-
taining a robust characterization (and thus not significantly reducing the efficiency of
the characterization), has been useful for constructing more efficient probabilistically
checkable proofs [14], [12].

We begin by investigating two extreme types of functional equations:

1. A k-minimal neighborhood set is one in which ND is described by k− 1 func-
tions σ1(x), . . . , σk−1(x), where the σi’s are arbitrary functions mapping D
to D. ND is of the form {(x, σ1(x), . . . , σk−1(x))|x ∈ D}. Since once the
first element of the neighborhood is chosen, the other elements are uniquely
determined, the cardinality of the neighborhood set is at most |D|. ND in
the third example uses a 3-minimal neighborhood set. A minimal functional
equation is one in which the neighborhood set is k-minimal for some constant
k.

2. A k-total neighborhood set is one in which ND = Dk, relating the function at
each input x to function values at all subsets of k−1 other inputs. ND in the
first example uses a 3-total neighborhood set. A total functional equation is
one in which the neighborhood set is k-total for some constant k.

We isolate a key combinatorial property of the neighborhood sets of functional equa-
tions and show that having this property is a necessary condition for robustness. We
apply this combinatorial property to show a general condition under which functional
equations with minimal neighborhood sets are not robust. As we will see later, this
result implies that certain methods of testing programs used in practice are related to
this class and are therefore provably faulty. For example, our techniques apply to the
functional equation that is used to test the real gamma function [24, p. 5]. On the
other hand, we mention an example, given by Sudan [41], of a minimal equation that
is robust. We then show conditions under which k-total equations are always robust.

In the following, we assume that D = D′.
3.1. Minimal functional equations. One might conjecture that minimal

equations cannot be robust, since for most inputs x, the function value at x is re-
lated to the function values at very few other inputs. We show a class of minimal
equations that are provably not robust. We then describe an example of a minimal
robust functional equation.

A combinatorial property of robustness. We first define a graph which
captures much of the information in the neighborhood set ND = {(x, σ1(x, ȳ), . . . ,

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1983

σk(x, ȳ))|x ∈ D, ȳ ∈ Dk}: given the functional equation ∀x ∈ D, ȳ ∈ Dk, F [f(x),
f(σ1(x, ȳ)), . . . , f(σk(x, ȳ))] = 0, for σi : D × Dk → D, we define the undirected
multigraph GND = (V,E), where the vertices correspond to elements of D and the
edges are E = {(x, σj(x, ȳ))|x ∈ D, ȳ ∈ Dk, 1 ≤ j ≤ k} (there may be more than one
edge between u and v if there is more than one i, ȳ such that σi(u, ȳ) = v).

For example, the graph of ∀x ∈ Z, f(x)+1−f(x+1) = 0 corresponds to a path,
and the graph of ∀x, y, f(x) + f(y)− f(x+ y) = 0 corresponds to a complete graph
with two edges between every pair of nodes.

The following result applies to functional equations defining classes of functions
that can be thought of as codewords with very large (>> 1

2) distance.

Definition 3.1. An α-separated function family F over domain D is one for
which |F| ≥ 2 and ∀fi, fj ∈ F , P rx∈D[fi(x) = fj(x)] ≤ α.

For example, for all of the functional equations mentioned in Tables 1.1, 1.2, for
all α, there are integers n, s such that the functional equations over the domain Dn,s
characterize α-separated function families.

The following theorem shows a relationship between the connectivity of GND and
the robustness of the functional equation (F,ND): if (F,ND) is (ε, δ)-robust, then
more than δ/k fraction of the edges in the graph GN must be removed in order to
separate GN into two “large” components, each of size ≥ (ε+ α)|V |.

Theorem 3.2. Let N = {(x, σ1(x, ȳ), . . . , σk(x, ȳ))|x ∈ D, ȳ ∈ Dk}. Suppose
that F , characterized by (F,N), is an α-separated function family. If GN has a set
of edges E′ such that (1) |E′| ≤ δ

k |E| and (2) removing E′ separates the vertices of
GN into two components, each of size ≥ (ε+α)|V |, then (F,N) is not an (ε, δ)-robust
characterization.

Proof. Suppose E′ separates GF into sets A,B. Consider the function h which
labels vertices in A according to f1 and vertices in B according to f2 for some f1, f2 ∈
F . Since F is α-separated, we have that ∀fi ∈ F , P rx∈D[fi(x) 6= h(x)] ≥ ε. However,
only tests using edges that cross the cut will fail. Since x, ȳ are chosen uniformly, the
edges are also chosen uniformly. Thus tests will fail with probability ≤ δ.

Application to minimal functional equations. It is easy to see that for any
minimal equation F of the form F [f(x), f(σ(x))] = 0, GF can be separated into two
large components by removing very few edges (by Theorem 3.2), and thus for all
classes S in which the domain size is not bounded, the functional equation (F,N) for
N = {(x, σ(x))|x ∈ D} over S is not robust.

It was shown by Klawe [32] that for any given ε, any graph on n nodes whose
edges are defined by a constant number of linear functions has a cut containing o(n)
edges which separates the graph into two large portions, each containing an ε fraction
of the nodes. The following corollary applies to functional equations relating points
x to points that are linear functions of x.

Corollary 3.3. Given n, s, let Dn,s = D = D′. R = T = <. Let σ1, . . . , σk
be any family of linear functions over the rationals of the form σi(x) = ax+ b, where
a, b are rational, and let F be an α-separated function family satisfying the equation
F [f(x), f(σ1(x)), f(σ2(x)), . . . , f(σk(x))] = 0. Then there exists a constant 0 < ε < 1

such that (F,N) is not (ε, δ)-robust for any constant δ.

Thus, if S is a class such that Di,s = Di = D′i, then Ri = Ti = <, and σ1, . . . , σk
are any family of linear functions over the rationals of the form σi(x) = ax+ b, where
a, b are rational, the functional equation (F,N) for N = {(x, σ1(x), . . . , σk(x))|x ∈ D}
over S is not robust. A similar result applies for linear functions over finite groups.

1984 RONITT RUBINFELD

This corollary shows that many tests that are used in practice to test programs
should be used with more care. For example, in the functional equation

∀x, f(2x)− (2π)−1/222x−1/2f(x)f(x+ 1/2) = 0

used for testing the real gamma function by [24], all of the σi’s are linear functions
(σ1(x) = 2x, σ2(x) = x + 1

2). Thus the corollary implies that there exist programs
which are very different from any solution to this functional equation, yet pass the test
most of the time. The direct use of polynomial checks suggested in [43] also yields
functional equations which are not robust due to Corollary 3.3; however, the work
of [16] shows how to transform the polynomial checks into more general functional
equations for which the negative results in this section do not apply.

A robust minimal functional equation. Previous examples of robust func-
tional equations have always been usable for self-correction as well. This might lead
one to think that usability for self-correction might be another necessary condition for
robustness. However, this may note be the case: it is not known how to use minimal
functional equations for self-correction. Even so, there are minimal functional equa-
tions that are robust and can therefore be used to self-test. We describe an example
of a minimal functional equation that is robust. The following example was given by
Sudan [41].

We say that a graph G(V,E) is an α-expander if for all S ⊆ V, |S| ≤ |V |/2, the
set of nodes that are neighbors of S (not including nodes in S), is of size ≥ α|S|. Fix
constants d and α. Let Gi(V,E) be any degree d α-expander on i nodes, such that
the vertices are labelled by elements of the domain D. Let the functional equation
be ∀(u, v) ∈ E, f(u) − f(v) = 0. Since Gi is connected, the only functions which
are solutions to this functional equation are the constant functions. Assume that the
functional equation is satisfied for most (u, v) ∈ E. Suppose one deletes all edges
for which the functional equation does not hold. Since Gi is an expander, there must
exist a large connected component in Gi (containing at least a constant fraction of the
nodes), even after deleting the edges. The large connected component will correspond
to elements of the domain that agree with a single constant function. Let S be the
class corresponding to the above functional equation on G0, G1, Then for all ε,
there is a δ such that the above functional equation is (ε, δ)-robust on S.

3.2. Total functional equations. On the other end of the spectrum, we con-
sider a class of functional equations where there are no restrictions on the way inputs
are related, and we show that if some technical conditions are satisfied, then they are
always robust.

Given D and R, let F [f(x), f(y1), . . . , f(yk−1), x, y1, . . . , yk−1] = 0, ∀x, y1, . . . , yk
be a k-total functional equation characterizing functions f : D → R. Assume further
that F can be solved for f(x), namely, f(x) = G[f(y1), . . . , f(yk−1), x, y1, . . . , yk−1]
∀y1, . . . , yk−1 (because of the totality of the equation, F and G depend on x, y1, . . . ,
yk−1 as well as the function values at those points). We say that the solution F
to equation F is (k − 1)-complete if ∀((y1, w1), . . . , (yk−1, wk−1)) ∈ (D,R)k−1, ∃f ∈
F such that f(yi) = wi for all 1 ≤ i ≤ k − 1. An example of a (k − 1)-complete
function family is the family of degree (k − 1) polynomials. The following theorem,
which says that k-total functional equations that characterize k−1-complete function
families are necessarily robust, can be viewed as a generalization of a known theorem
for degree (k − 1) univariate polynomials (cf. [40]).

Theorem 3.4. Let N = Dk. Suppose the k-total functional equation F [f(x), f(y1),
. . . , f(yk−1), x, y1, . . . , yk−1] ≡ f(x)−G[f(y1), . . . , f(yk−1), x, y1, . . . , yk−1] = 0

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1985

∀x, y1, . . . , yk−1 has a k − 1-complete solution F . Then (F,N) is (δ, δ)-robust ∀0 <
δ < 1.

Proof. Suppose f satisfies Prx,ȳ[f(x) = G[f(y1), . . . , f(yk−1), x, y1, . . . , yk−1]] ≥
1 − δ. Then there exists z1, . . . , zk−1, a particular setting of the yi’s, such that the
test works for ≥ 1 − δ of the x’s. Let g(x) be the function in F determined by
the values of the program at z1, . . . , zk−1. Then Prx[g(x) = f(x)] ≥ 1 − δ. Thus
∀x, y1, . . . , yk−1 g(x)−G[g(y1), . . . , g(yk−1), x, y1, . . . , yk−1] = 0.

Any function f that satisfies such a total functional equation F can be computed,
given the value of the function at any fixed k locations, as efficiently as evaluating the
functional equation G. Thus, if F and G have the same complexity, the functional
equation is not useful for self-testing, since it does not have the “little-oh property”
described in [18]. However, it is possible that more efficient self-testers can be con-
structed by looking at a smaller, carefully chosen, set of neighborhoodsN and showing
that the functional equation is still robust over N . Given ~σ = (σ1, . . . , σk−1), such
that σi : D×Dk−1 → D, suppose functional equations F [f(x), f(y1), . . . , f(yk−1), x,
y1, . . . , yk−1] = 0 ∀x, y1, . . . , yk−1, and F [f(x), f(σ1(x, z̄)), . . . , f(σk−1(x, z̄)), x, σ1

(x, z̄), . . . , σk−1(x, z̄)] = 0 ∀x, z̄ both have the same complete solution F . Due to
the structure of the σ’s, it might be the case that F is easier to compute on those
tuples defined by the σ’s (for example, efficient polynomial degree tests have been con-
structed by only performing tests on points that are evenly spaced: σi(x, z) = x+ iz
[38]). If F is also robust over random choices of x, z̄, then a more efficient tester can
be constructed.

We use a bound on the runtime of the program being tested to devise a tester.
The works of Blum et al. [17] and Micali [35] also construct checkers based on bounds
on the runtime of the program being checked but use very different methods. Let
the distribution V~σ be the distribution defined by picking x ∈ D, z̄ ∈ Dk−1 randomly,
and outputting (x, σ1(x, z̄), . . . , σk−1(x, z̄)). Let U be the distribution defined by
picking x, y1, . . . , yk−1 ∈ D and outputting (x, y1, . . . , yk−1). If the σ’s look “random
enough,” we have the following theorem showing a sense in which F is robust over
random choices of x, z̄. This theorem implies that it is enough to test points related
by the σ’s.

Theorem 3.5. Let Time(c) ≡ {f |f is computable on inputs of length n in time
nc}. Let c be an arbitrary constant, and fix 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. Let E1 denote
the functional equation F [f(x), f(y1), . . . , f(yk−1), x, y1, . . . , yk−1] = 0 ∀x ∈ D, ȳ ∈
Dk−1, and E2 denote the functional equation F [f(x), f(σ1(x, z̄)), . . . , f(σk−1(x, z̄)),
x, σ1(x, z̄), . . . , σk−1(x, z̄)] = 0 ∀x ∈ D, z̄ ∈ Dk−1. Assume that

1. E1 and E2 have the same complete solution F ,
2. F can be computed by a circuit of size (log |D|)c,
3. no circuit of size ≤ (k + 1)(log |D|)c can distinguish inputs from V~σ and U

with more than δ advantage,
4. E1 is (ε, 2δ)-robust.

Then E2 can be used to test all programs running in time (log |D|)c: if Prx,R[F [P (x),
P (σ1(x, z̄)), . . . , P (σk−1(x, z̄)), x, σ1(x, z̄), . . . , σk−1(x, z̄)] = 0] ≥ 1 − δ, and P runs
in ≤ (log |D|)c steps, then there is a f ∈ F such that Prx[P (x) = f(x)] ≥ 1−ε. Thus,
(F ,Dk) is an (ε, δ)-robust characterization of F in Time(c).

Proof. Suppose that there exists some program P running in time (log |D|)c which
is wrong at ≥ ε inputs in D but passes the tester with probability > 1−δ. We use it to
construct a program A of size ≤ (k+1)(log |D|)c that can distinguish between outputs
from distributions V and U with more than δ advantage (which contradicts (3)). A re-

1986 RONITT RUBINFELD

ceives w, z1, . . . , zk−1, and tests whether F [P (x),P (z1),. . . , P (zk−1),x,z1, . . . , zk−1] =
0. A outputs 1 if P passes the test and 0 if P fails. By Theorem 3.4, Prx,y1,...,yk−1∈U
[F [P (x), P (y1), . . . , P (yk−1), x, y1, . . . , yk−1] 6= 0] ≥ 2δ, and by the assumption,
Prx,y1,...,yk−1∈V [F [P (x), P (y1), . . . , P (yk−1), x, y1, . . . , yk−1] 6= 0] < δ.

4. Robustness of ∀x, y, F [f(x− y), f(x+ y), f(x), f(y)] = 0. We study
conditions under which any member of the general class of functional equation ∀x,
y F [f(x − y), f(x + y), f(x), f(y)] = 0 is robust. We show that addition theorems
∀x, y f(x+ y) = G[f(x), f(y)] for which G satisfies G[a,G[b, c]] = G[G[a, b], c] ∀a, b, c
(which all of our examples satisfy) are robust over the class S, such that the domains
in S are finite groups, and then we give a technique which applies to a number of
functional equations that are not addition theorems. Our techniques apply to all
functional equations in Table 1.1 as well as the first three functional equations in
Table 1.2. We conjecture that all functional equations in this class are robust.

All results can be extended to rational domains of the form Dp,s = { is
∣∣|i| ≤ p}

using standard techniques from [31], [37]. We give an example of such an extension
in section 6. Our only assumption on R in subsection 4.1 is that it is a (possibly
infinite) group. In subsection 4.2 we assume that R is a field.

4.1. Addition theorems. We show that any addition property ∀x, y f(x +
y) = G[f(x), f(y)] is (2δ, δ)-robust for δ < 1

8 and G that satisfies G[a,G[b, c]] =
G[G[a, b], c] ∀a, b, c (we do not attempt to optimize the relationship between ε and δ
in our proofs of (ε, δ)-robustness—see [13], [26], and [11] for techniques for improving
this relationship). Therefore, knowing that f(x + y) = G[f(x), f(y)] holds at more
than a 7

8 fraction of the (x, y) pairs is enough to conclude that f agrees with some
solution of the addition theorem G on at least 3

4 fraction of the inputs. One can verify
that G satisfies G[a,G[b, c]] = G[G[a, b], c] ∀a, b, c in all of the examples given in Table
1.1.

At the end of this subsection, we consider the requirement that G[a,G[b, c]] =
G[G[a, b], c] ∀a, b, c. We show that that if the domain is a subset of a field, such
that rational functions are defined (a function f(x, y) = p(x, y)/q(x, y) where p, q
are polynomials), then we can make a general claim for any constant degree rational
function G that is based on the number of zeros that a rational function can have.
Similar results that apply to algebraic functions can be proven for domains over which
algebraic functions are defined (see [46]).

We now show that any additional theorem satisfying ∀a, b, c G[a,G[b, c]] =
G[G[a, b], c] is robust. This proof follows an outline similar to Coppersmith’s version
of the proof of robustness of the linearity test which is described in [19]. However,
the inner manipulations are different. Hence, whereas Coppersmith’s proof works for
any δ ≤ 2

9 , here we require δ ≤ 1
8 .

Theorem 4.1. Let D = D′ be a finite group and R = T a group. Let N add =
{(x, y, x + y)|x, y ∈ D}. Let G be such that G satisfies ∀a, b, c ∈ R G[a,G[b, c]] =
G[G[a, b], c]. Let F (x1, x2, x3) = f(x3)−G[f(x1), f(x2)] on neighborhoods (x1, x2, x3) ∈
N add. Then for all δ < 1

8 , (F,N add) is (2δ, δ)-robust. Letting S be a class such that
Di = D′i are finite groups and Ri = Ti are groups, then since for all ε < 1

4 , (F,N add)
is (ε, ε2)-robust, (F,N add) is robust over S.

Proof of Theorem 4.1. To prove the theorem, we will show that if Prx,y∈RD[f(x+
y) = G[f(x), f(y)]] ≥ 1 − δ, for δ < 1

8 , then there exists a function g such that (1)
Prx∈RD[f(x) = g(x)] ≥ 1− 2δ and (2) ∀x, y g(x+ y) = G[g(x), g(y)].

Define g(x) to be majz∈D{G(f(x− z), f(z))}, where maj of a set is the function

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1987

that picks the element occurring most often (choosing arbitrarily in the case of ties).
We first show that g is 2δ-close to f .

Lemma 4.2. g and f agree on more than 1− 2δ fraction of the inputs from D.
Proof. Consider the set of elements x such that Prz[f(x) = G[f(x−z), f(z)]] < 1

2 .
If the fraction of such elements is more than 2δ, then it contradicts the condition that
Prx,y [f(x+ y) = 0G [f(x), f(y)]] ≥ 1 − δ. For all remaining elements, f(x) =
g(x).

Next we show a sense in which g is well-defined.
Lemma 4.3. For all x, Prz[g(x) = G[f(x− z), f(z)]] ≥ 1− 2δ.
Proof.7

Pry,z
[
G[f(x− y), f(y)]

= G[G[f(x− y − z), f(z)], f(y)]
= G[f(x− y − z), G[f(z), f(y)]]
= G[f(x− (y + z)), f(y + z)]] ≥ 1− 2δ.

The first and third equality hold with probability 1− δ by our assumption on f
and since x − y, y, z, x − y − z, z + y are all uniformly distributed in D. The second
equality always holds since G[a,G[b, c]] = G[G[a, b], c] ∀a, b, c.

The lemma now follows from the well-known fact that the probability that the
same object is drawn twice from a set in two independent trials lower bounds the
probability of drawing the most likely object in one trial: suppose the objects are
ordered so that pi is the probability of drawing object i. Without loss of generality
p1 ≥ p2 ≥ · · ·. Then the probability of drawing the same object twice is

∑
i p

2
i ≤∑

i p1pi = p1.
Finally, we prove that g satisfies the addition theorem everywhere.
Lemma 4.4. For all x, y, g(x+ y) = G[g(x), g(y)].
Proof.

Pru,v
[
G[g(x), g(y)]

= G[G[f(u), f(x− u)], G[f(v), f(y − v)]]
= G[f(u), G[f(x− u), G[f(v), f(y − v)]]]
= G[f(u), G[G[f(x− u), f(v)], f(y − v)]]
= G[f(u), G[f(x− u+ v), f(y − v)]]
= G[f(u), f(x+ y − u)]
= g(x+ y)

]
> 1− 8δ > 0.

By Lemma 4.3, the first equality holds with probability 1−4δ and the last equality
holds with probability 1− 2δ. By the assumption on f , the fourth and fifth equalities
each hold with probability 1−δ. The other equalities always hold, since G[a,G[b, c]] =
G[G[a, b], c] ∀a, b, c. Since the statement is independent of u, v and holds with positive
probability, it must hold with probability 1. This also proves Theorem 4.1.

4.1.1. Addition theorems that satisfyG[a,G[b, c]] = G[G[a, b], c] ∀a, b, c.
If the domain is a large enough subset of a field, such that rational functions are de-
fined (a function f(x, y) = p(x, y)/q(x, y) where p, q are polynomials), and if G is a
rational function such that the numerator has bounded degree, then one can show
that G satisfies G[a,G[b, c]] = G[G[a, b], c] ∀a, b, c.

7For conciseness, we use a somewhat nonstandard notation: for random variables a, b, c, we reason
about the probability that a = c by using an intermediate variable b, using Pr[a = c] ≥ Pr[a = b =
c] ≥ 1− Pr[a 6= b]− Pr[b 6= c].

1988 RONITT RUBINFELD

Theorem 4.5. Let G be a constant degree rational function such that the degree
in each variable of the numerator of the rational function H(a, b, c) ≡ G[a,G[b, c]] −
G[G[a, b], c] is bounded by N . Assume that G is such that one of the solutions f to the
functional equation ∀x, y f(x+y) = G[f(x), f(y)] takes on at least (N+1)3 values (in
particular, |R| > (N +1)3). Then G satisfies G[a,G[b, c]] = G[G[a, b], c] ∀a, b, c ∈ R.

Proof. Since H is a rational function, it will suffice to show that H evaluates
to 0 on many inputs and therefore must be identically 0. The inputs for which we
show that H evaluates to 0 will correspond to outputs of functions f that satisfy the
addition theorem at all x, y.

Given any function f satisfying ∀x, y f(x + y) = G[f(x), f(y)], since D is asso-
ciative we have that f(x + y + z) = G[f(x), f(y + z)] = G[f(x + y), f(z)], and so
G[f(x), G[f(y), f(z)]] = G[G[f(x), f(y)], f(z)].

Suppose that there exists a solution f of f(x + y) = G[f(x), f(y)] that takes on
at least N3 distinct values V = {v1, . . . , vN3}. Since ∀a, b, c ∈ V, H(a, b, c) = 0, we
know that H(a, b, c) ≡ 0 [47].

4.2. d’Alembert’s equation and others. In this section, we show that the
robustness of functional equations of the form ∀x, y F [f(x−y), f(x+y), f(x), f(y)] =
0, is not limited to addition theorems by showing that when the domain D is a finite
group, and the range R = T is a field containing 2, d’Alembert’s equation ∀x, y f(x+
y) + f(x − y) = 2f(x)f(y) is a robust property on G = {f |Prx∈D[f(x) = 0] ≤ 1

20}.
Since membership in G is easy to test, these robustness results lead to self-testers
as described later. The techniques in this section can also be used to show that the
equations ∀x, y f(x+y)+f(x−y) = 2[f(x)+f(y)] and ∀x, y f(x+y)+f(x−y) = 2f(x)
are robust over G.

This result does not allow us to test functions that are in F but not in G such
as the 0-function. For carefully chosen domains, other functions that are solutions to
these functional equations (see Table 1.2) can also take the value 0 on more than 1

20
fraction of the domain: for example, cosx takes the value 0 on half of the domain
D = {i · π/2|0 ≤ i ≤ 3}. The result can still be used to construct self-testers for
functions satisfying d’Alembert’s equation. We discuss this further in section 5.

For the following three robustness results, let N d’Alembert = {(x, y, x + y, x −
y)|x, y ∈ D}.

Theorem 4.6. Let F (x1, x2, x3, x4) = 2f(x1)·f(x2)−f(x3)−f(x4). Let F be the
function family characterized by (F,N d’Alembert). Then for δ ≥ 1

80 , (F,N d’Alembert)
is a (4δ, δ)-robust characterization of F in G. In particular, if Prx,y[f(x+ y) + f(x−
y) = 2f(x)f(y)] ≥ 1 − δ ≥ 79

80 and f ∈ G, then the function g(x) ≡ majy∈D, f(y) 6=0

{ f(x+y)+f(x−y)
2f(y) } satisfies (1) Prx[f(x) = g(x)] ≥ 1 − 4δ and (2) ∀x, y g(x + y) +

g(x− y) = 2g(x)g(y).
Theorem 4.7. Let F (x1, x2, x3, x4) = 2f(x1)+2f(x2)−f(x3)−f(x4). Let F be

the function family characterized by (F,N d’Alembert). Then for δ ≥ 1
80 , (F,N d’Alembert)

is a (4δ, δ)-robust characterization of F in G. In particular, if Prx,y[f(x + y) +
f(x − y) = 2(f(x) + f(y))] ≥ 1 − δ ≥ 79

80 and f ∈ G, then the function g(x) ≡
majy∈D, f(y) 6=0{ f(x+y)+f(x−y)

2 − f(y)} satisfies (1) Prx[f(x) = g(x)] ≥ 1− 4δ and (2)
∀x, y g(x+ y) + g(x− y) = 2(g(x) + g(y)).

Theorem 4.8. Let F (x1, x2, x3, x4) = 2f(x1)−f(x3)−f(x4). Let F be the func-
tion family characterized by (F,N d’Alembert). Then for δ ≥ 1

80 , (F,N d’Alembert) is a
(4δ, δ)-robust characterization of F in G. In particular, if Prx,y[f(x+y) +f(x−y) =

2f(x)] ≥ 1−δ ≥ 79
80 and f ∈ G, then the function g(x) ≡ majy∈D, f(y) 6=0{ f(x+y)+f(x−y)

2 }

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1989

satisfies (1) Prx[f(x) = g(x)] ≥ 1− 4δ and (2) ∀x, y g(x+ y) + g(x− y) = 2g(x).
The proofs in this section are similar in flavor to the proofs of the robustness

of the addition theorems, but since the functional equation is defined on inputs that
are related in different ways, we have to take advantage of different aspects of the
structure of their relationship in order to get the desired results. The proofs of all
three theorems follow the same outline. In the following, we give the proof of Theorem
4.6.

Proof of Theorem 4.6. Using techniques identical to those in Lemma 4.2, we have
the following lemma.

Lemma 4.9. g and f agree on more than 1− 4δ fraction of the inputs from D.

Lemma 4.10. For all x, Pry[g(x) = f(x+y)+f(x−y)
2f(y)] ≥ 1−δ′ where δ′ = 4δ+2· 1

20 .

Proof. Pry,z[f(y) 6= 0 and f(z) 6= 0 and
2f(z)(f(x+ y) + f(x− y))

= (f(x+ y + z) + f(x+ y − z))
+(f(x− y − z) + f(x− y + z))

= (f(x+ y + z) + f(x− y + z))
+(f(x− y − z) + f(x+ y − z))

= 2f(y)(f(x+ z) + f(x− z))]
≥ 1− 4δ − 2 · 1

20 .

f(y) = 0 or f(z) = 0 with probability at most 2 · 1
20 . The first and third equalities

each hold with probability 1− 2δ by our assumption on f and since all the references
to f are uniformly distributed in D. The second equality always holds. If f(y), f(z)

are both nonzero and all equalities hold, then f(x+y)+f(x−y)
2f(y) = f(x+z)+f(x−z)

2f(z) . The

lemma now follows from the fact that the probability that the same object is drawn
twice from a set in two independent trials lower bounds the probability of drawing
the most likely object in one trial.

Finally, we can prove that g satisfies d’Alembert’s equation everywhere.
Lemma 4.11. For all x, y, 2g(x)g(y) = g(x+ y) + g(x− y).
Proof.
Prz

[
f(z) 6= 0 and f(z) · (g(x+ y) + g(x− y))

= f(x+y+z)+f(x+y−z)+f(x−y+z)+f(x−y−z)
2

= 2g(x)f(y+z)+2g(x)f(y−z)
2

= 2g(x) · g(y) · f(z)
]

> 1− 5δ′ − 1
20 > 0.

f(z) = 0 with probability at most 1
20 . By Lemma 4.10, the first, second, and third

equalities hold with probability 1− 2δ′, 1− 2δ′, and 1− δ′, respectively. If f(z) 6= 0
and all equalities hold, then 2g(x)g(y) = g(x+ y) + g(x− y). Since the statement is
independent of z and holds with positive probability, it must hold with probability
1.

5. Self-testing/correcting from functional equations. We give informal
definitions of self-testers and self-correctors. Formal definitions are given in [19]. An
(ε1, ε2)-self-tester (0 ≤ ε1 < ε2) for f on D must fail any program that is not (1− ε2)-
close to f on D and must pass any program that is (1 − ε1)-close to f on D (the
behavior of the tester is not specified for programs that are (1 − ε2)-close but not
(1− ε1)-close to f). The tester should satisfy these conditions with error probability
at most β, where β is a confidence parameter input by the user. For simplicity, we

1990 RONITT RUBINFELD

assume that ε1 = 0, and we drop that parameter from our claims. An ε-self-corrector
for f on D is an algorithm C that uses program P as a black box, such that for every
x ∈ D and β, Pr[CP (x) = f(x)] ≥ 1− β for every P which is (1− ε)-close to f on D.
Furthermore, all require only a small multiplicative overhead over the running time
of P and are different, simpler, and faster than any correct program for f in a precise
sense defined in [18]. Checkers can be constructed by finding both a self-tester and a
self-corrector for the function [19].

In this section, we give self-correctors and self-testers that are based on the class of
functional equations of the form F [f(x− y), f(x+ y), f(x), f(y)] = 0. We will use the
robustness theorems proved earlier for the self-testers but not for the self-correctors.
We refer to the function computed by the program as P , and the correct function
as f : D → R. For purposes of exposition, we assume that D is a finite group. All
results can be extended to rational domains of the form Dp,s = { is

∣∣|i| ≤ p} using
known techniques from [31], [37] (see section 6). We assume that R is an (possibly
infinite) abelian group.

5.1. Self-correctors. The following self-corrector works for any function sat-
isfying ∀x, y f(x) = G[f(x − y), f(x + y), f(y)]. This includes functions satisfying
an addition theorem of the form f(x + y) = G[f(x), f(y)], since letting z = x + y,
f(z) = G[f(z − y), f(y)]. Self-correctors for functions that are not solvable for f(x),
but are solvable for another of f(x− y), f(x+ y), f(y) can be similarly constructed.

Program self-correct(x, β)

N ← O(ln(1/β))
Do for m = 1, . . . , N

Pick y ∈R D
answerm ← G[P (x− y), P (x+ y), P (y)]

Output the most common answer in {answerm : m = 1, . . . , N}
Theorem 5.1. Given D a finite group, and P and f functions over domain D.

If P is 1
12 -close to f over D, then ∀x, Pr[Self-Correct(x, β) = f(x)] ≥ 1− β.

The proof of this theorem follows the format in [19] and is based on the fact that
since calls to P are made on uniformly distributed inputs in D, at each iteration, all
calls are answered correctly by P with probability at least 3

4 .

The existence of an ε-self-corrector for a class of functions F trivially implies that
for any two functions f1, f2 ∈ F , the quantity Prx[f1(x) 6= f2(x)], or the distance
between f1 and f2, must be large. Thus, the existence of self-correctors for F implies
that the functions in F can be thought of as a collection of codewords with large
distance.

5.2. Self-testers. In this section we show self-testers based on robust functional
equations of the form F [f(x−y), f(x+y), f(x), f(y)] = 0. In all of our examples only
a constant number of additions and multiplications are required to perform a test.
Furthermore, only a constant number of tests need to be performed. It often happens
that more than one functional equation can be used to specify a function family; the
user can determine which of the robust functional equations is best to use for testing
based on criteria such as efficiency and ease of programming.

When a family of functions satisfies the property, equality testing must be done
to determine that the program is computing the correct function within the family.
Although equality testing is often easier than the original testing task, it may still be
inefficient, as in the case of multivariate polynomials [38]. For the functions considered
in this paper, the problem of equality testing can be solved efficiently. We assume that

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1991

the function values are given at a constant number of inputs, such that these values
in conjuction with the property F are enough to completely specify the function.
For example, for functions satisfying addition theorems, the function values at 0 and
all generators of the group suffice to completely specify the function. In particular,
if the group is cyclic and generated by 1, only f(0) and f(1) are required since
f(x + 1) = G[f(x), f(1)]. Similarly, over Dp,s it is enough to specify the function at
0, 1

s ,
−1
s . It is often the case that there are certain inputs at which the function is

much easier to compute and that these inputs can be used for the equality testing.

It may happen that the functional equation over the reals characterizes a different
family of functions than the same functional equation over Dp,s. For example, suppose
we are given F , a set of functions that is a solution to the functional equation over
the reals. The set of functions that we are interested in testing is F ′ = {g | g :
Dp,s → R,∃f ∈ F such that ∀x ∈ Dp,s, f(x) = g(x)}, the set of functions that are
restrictions of functions in F to the domain Dp,s. Consider also F ′′, the solutions to
the functional equation over Dp,s. Then, since functions in F ′′ must satisfy a subset
of the constraints satisfied by F ′, F ′ ⊆ F ′′. It can happen that F ′ is a proper subset
of F ′′. Nevertheless, to test that a program purporting to compute function f ∈ F ′
is correct, the property test determines whether the program agrees on most inputs
with some function g in F ′′, and the equality test will then determine that g = f as
long as it is given the correct values of f at the inputs required for the equality test.

We concentrate on functions that can be tested by testers of the form given below.
In the following, δ0 is the maximum δ for which the functional equation is robust (see
Theorems 4.1, 4.6, 4.7, 4.8), and the function values specifying f are given as a list
(xi, yi), 0 ≤ i ≤ c where yi = f(xi).

Program self-test((x0, y0), (x1, y1), . . . , (xc, yc), δ0, β)

N ← O(max{ 1
δ0
, 24} ln(2/β))

Do for m = 1, . . . , N {Property Test}
Pick u, v ∈R D
if F [P (u− v), P (u+ v), P (u), P (v)] 6= 0 output FAIL and halt

Do for i = 1, . . . , c {Equality Test}
If self-correct(xi, β/c) 6= yi output FAIL and halt

Output PASS

Theorem 5.2. Given domain D a finite group, range R an abelian group, and
functions P and f mapping D to R. If F is (2δ, δ)-robust over domain D, and if P
is not (1

12)-close to f on D, then Pr[Self-Test(x, β) = FAIL] ≥ 1− β. If P ≡ f , then
Self-Test outputs PASS. Thus, Self-Test is a 1

12 -self-testing program for f on D.

The proof of the theorem is based on the robustness of F , which tells us that
if there is no function g such that (1) g is usually equal to P and (2) g satis-
fies the property everywhere, then P is reasonably likely to fail the test. Fur-
thermore, if there is such a function g, the equality tests are likely to fail unless
g(x0) = f(x0), . . . , g(xc) = f(xc) which ensures that g ≡ f . Thus P fails unless it is
usually equal to f . It is easy to see that by altering the choice of N , one can construct
ε-self-testers for any ε < 1

12 .

The above self-tester is not sufficient for testing functions using d’Alembert’s equa-
tion, since we have proved its robustness only under the condition that the function P
is 0 on ≤ 1

20 of the inputs. To fix this, one may use an algorithm that depends on the
fraction of inputs on which f takes the value 0. The solution to d’Alembert’s equation
over < is all functions of the form 0, cosAx, coshAx. The 0 function is trivial to test.
The coshAx functions are never 0, so a program purporting to compute coshAx can

1992 RONITT RUBINFELD

be first tested to ensure that it does not output 0 on more than 1
20 of the domain, and

then the above tester may be used. The cosAx functions are 0 only at odd multiples
of π

(2A) . If the odd multiples of π
(2A) constitute at most 1

20 of the domain, then a sim-

ilar procedure to the one for coshAx may be used. Otherwise one can use a different
functional equation for which cosAx is a solution. Alternatively, suppose the pro-
gram can be modified to compute over a larger domain D̂ which contains D such that
f(x) = 0 on at most 1

20 of D̂. (For example, if f(x) = cosx,D = {i·π/2|0 ≤ i ≤ p−1},
then choose D̂ = {i · π/20|0 ≤ i ≤ 10p− 1}.) Then one can test the program over D̂.
If the program passes the test, it is possible to test the program on D by using the
self-corrector based on d’Alembert’s equation to correctly compute f at any input in
D ⊆ D̂.

6. Extensions to rational domains. In this section, we show the self-testers
and self-correctors that result from extending the results in section 5 to rational
domains. We consider rational domains of the form Dn,s = { is

∣∣ |i| ≤ n}.
The theorems follow the same outline as in the finite fields case, but certain

additional technical details must be addressed. These technical details are similar to
those used in [31], [38].

6.1. Self-correctors. The following self-corrector works for any function satis-
fying ∀x, y f(x) = G[f(x − y), f(x + y), f(y)]. Self-correctors for functions that are
not solvable for f(x), but are solvable for another of f(x − y), f(x + y), f(y) can be
similarly constructed.

As in [31], we assume that the program has been tested over a larger domain
Dm,s in order to self-correct over the domain Dn,s (this requires the more general
definitions of self-correcting given in [31]). It suffices that m > 12n.

Program self-correct(x, β)

N ← O(ln(1/β))
Do for i = 1, . . . , N

Pick y ∈R Dm,s
answeri ← G[P (x− y), P (x+ y), P (y)]

Output the most common answer in {answeri : i = 1, . . . , N}
Theorem 6.1. Let m,n be such that m > 12n. If P is (1

24)-close to f over Dm,s,
then ∀x ∈ Dn,s, P r[Self-Correct(x, β) = f(x)] ≥ 1− β.

The proof of this theorem follows the format in [31].

Proof of Theorem 6.1. By the assumption on P , P (y) is correct with probability
at least 1 − 1

24 . Two bad events can happen when picking x + y: either x + y is
not in Dm,s in which case we know nothing about the probability that P (x + y)
is correct, or x + y is in Dm,s but happens to be one of the inputs for which P is
incorrect. By our choice of m, the first bad situation happens with probability ≤ 1

24 .
The second bad situation happens with probability ≤ 1

24 . If neither of these happens,
then P (x + y) = f(x + y). The same argument can be made for P (x − y). Thus, at
each iteration, answeri = f(x) with probability at least 1− 2 1

24 − 3 1
24 >

3
4 .

6.2. Self-testers. The following is a self-tester for addition theorems over the
rational domain Dm,s. We test the program over a larger domain Dp,s in order to
certify that it is usually correct over Dm,s. It suffices that p > 11m. As in section 5.2,
we assume the function values specifying f are given as a list of pairs (xi, yi), 0 ≤ i ≤ c
where yi = f(xi). In addition we assume that xi ∈ Dn,s for all i.

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1993

The self-tester is based on finding a neighborhood N add′Dp,s such that (Dm,s,
FDp,s,<,<,N add′Dp,s) is an (ε, ε/2)-robust characterization.

Program self-test((x0, y0), (x1, y1), . . . , (xc, yc), n,m, δ0, β)
N ← O(max{ 4

δ0
, 48} ln(2/β))

{Property Test}
Do for m = 1, . . . , N

Choose i ∈ {1, 2, 3, 4}
If i = 1 then {x1 ← x, x2 ← x− y, x3 ← y}
Pick x ∈R Dm,s and y ∈R Dp,s

if P (x) 6= G[P (x− y), P (y)] output FAIL and halt
Else if i = 2 then {x1 ← x, x2 ← x− y, x3 ← y}
Pick x, y ∈R Dp,s

if P (x) 6= G[P (x− y), P (y)] output FAIL and halt
Else if i = 3 then {x1 ← x+ y, x2 ← x, x3 ← y}
Pick x, y ∈R Dp,s

if P (x+ y) 6= G[P (x), P (y)] output FAIL and halt
Else {i = 4} {x1 ← x, x2 ← y, x3 ← x− y}
Pick x, y ∈R Dp,s

if P (x) 6= G[P (y), P (x− y)] output FAIL and halt
{Equality Test}
Do for i = 1, . . . , c

If self-correct(xi, β/c) 6= yi output FAIL and halt
Output PASS

We have the following theorem.
Theorem 6.2. Let p,m, n be such that p > 11m and m > 12n. Let the function

values (xi, yi) specifying f be such that xi ∈ Dn,s. If P is not 1
24 -close to f on Dm,s,

then Pr[Self-Test(x, β) = FAIL] ≥ 1 − β. If P ≡ f , then Self-Test outputs PASS.
Thus, Self-Test is a 1

24 -self-testing program for f on Dm,s.
In order to show the above theorem, we need the following to show that the

addition theorems are robust properties over rational domains.
Lemma 6.3. If (1) Prx∈Dm,s,y∈Dp,s [P (x + y) = G[P (x), P (y)]] ≥ 1 − δ, (2)

Prx,y∈Dp,s [P (x) = G[P (x−y), P (y)]] ≥ 1−δ, (3) Prx,y∈Dp,s [P (x+y) = G[P (x), P (y)]] ≥
1− δ, (4) Prx,y∈Dp,s [P (x) = G[P (y), P (x− y)]] ≥ 1− δ, for δ < 1

48 , then there exists
a function g such that

1. Prx∈Dm,s [P (x) = g(x)] ≥ 1− 2δ = 1− 1
24 ,

2. ∀x, y ∈ Dm,s g(x+ y) = G[g(x), g(y)].

Let N add′ be the multiset such that picking random (x1, x2, x3) ∈ N add′ is the
same as picking inputs from the above distribution. If the functional equation is
satisfied with probability at least 1− δ

4 when neighborhoods are chosen from N add′ ,
then each of the four conditions of the theorem are met. Thus we have the following
theorem.

Theorem 6.4. Let R = T be a group. Let G be such that G satisfies ∀a, b, c ∈
R G[a,G[b, c]] = G[G[a, b], c]. Let F (x, y) = P (x+ y)−G[P (x), P (y)]. Then for all
δ < 1

48 , (Dm,s, FDp,s,R,T ,N add′Dp,s) is (2δ, δ4)-robust.
Proof of Lemma 6.3. Define g(x) to be majz∈Dp,s{G(P (x− z), P (z))}.
The Lemma 6.5 follows from the first condition on P and a counting argument.
Lemma 6.5. g and P agree on more than 1 − 2δ fraction of the inputs from

Dm,s.
For the following lemmas, set γ = m

2p .

1994 RONITT RUBINFELD

Lemma 6.6. For all x ∈ D2m,s, Prz∈Dp,s [g(x) = G[P (x−z), P (z)]] ≥ 1−δ′ where
δ′ = 2δ + 2γ.

Proof. For x ∈ D2m,s, Pry∈Dp,s [x+ y ∈ Dp,s] ≥ 1− γ. Thus,

Pry,w∈Dp,s
[
G[P (x− y), P (y)]

= G[G[P (x− w), P (w − y)], P (y)]

= G[P (x− w), G[P (w − y), P (y)]]

= G[P (x− w), P (w)]]

≥ 1− 2δ − 2γ.

By the fourth condition on P , the first equality holds with probability 1 − δ − 2γ.
By the second condition on P , the third equality holds with probability 1 − δ. The
second equality always holds.

The lemma now follows from the observation that the probability that the same
object is drawn twice from a set in two independent trials lower bounds the probability
of drawing the most likely object in one trial.

Finally, we prove that g satisfies the addition theorems everywhere.

Lemma 6.7. For all x, y ∈ Dm,s, g(x+ y) = G[g(x), g(y)].

Proof.
Pru,v∈Dp,s

[
G[g(x), g(y)]

= G[G[P (u), P (x− u)], G[P (v), P (y − v)]]

= G[P (u), G[P (x− u), G[P (v), P (y − v)]]]

= G[P (u), G[G[P (x− u), P (v)], P (y − v)]]

= G[P (u), G[P (x− u+ v), P (y − v)]]

= G[P (u), P (x+ y − u)]

= g(x+ y)
]

≥ 1− 3δ′ − 2δ − 3γ = 1− 8δ − 9γ > 0.

By Lemma 6.6, the first equality holds with probability 1 − 2δ′ and the last
equality holds with probability 1− δ′ (since x+ y ∈ D2m,s). By the third assumption
on P , the fourth equality holds with probability 1− δ− γ. By the second assumption
on P , the fifth equality holds with probability 1− δ− 2γ. The other equalities always
hold, due to the structure of G.

Since the statement is independent of u, v and holds with positive probability, it
must hold with probability 1. This also proves Lemma 6.3.

6.3. An example: Testing the cosh function. In this subsection we will
illustrate how to apply the above techniques to construct a self-tester and self-corrector
for a particular function, namely, the cosh function, over a given domain. Suppose
that one would like to reliably use a program that purports to compute the cosh
function over the domain D2k,2k = { i

2k

∣∣ |i| ≤ 2k} (the numbers between –1 and 1

with k bits of precision). Assume that the correct values of cosh 0, cosh −1
2k
, cosh 1

2k

are given and that the program purports to compute cosh over the larger domain
D2k+8,2k = { i

2k

∣∣|i| ≤ 2k+8}. Recall that cosh is one of the solutions to the functional

equation ∀x, yf(x + y) = f(x)f(y) +
√
f(x)2 − 1

√
f(y)2 − 1. Furthermore, cosh(x)

is the only solution to the functional equation that agrees with the given values of

cosh 0, cosh −1
2k
, cosh 1

2k
, since f(0), f(1

2

k
), f(−1

2k
) determine the values of f over the

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1995

whole domain D2k+8,2k via f(i+1
2k

) = f(1
2k

)f(i
2k

) +
√
f(1/2k)2 − 1

√
f(i/2k)2 − 1 and

f(i−1
2k

) = f(−1
2k

)f(i
2k

) +
√
f(−1/2k)2 − 1

√
f(i/2k)2 − 1.8

One should first test the program over the domain D2k+4,2k = { i
2k

∣∣ |i| ≤ 2k+4},
using the tester given in subsection 6.2 (with δ0 = 1

48 , s = 2k,m = 2k+4, p = 2k+8, n =
2k so that p > 11m and m > 12n). By Theorem 6.2 (which in turn uses Theorem
6.4), if the program is always correct on domain qD2k+8,2k = { i

2k

∣∣ |i| ≤ 2k+8} the

tester will output PASS, and if the program is incorrect on greater than 1
24 fraction

of the domain D2k+4,2k = { i
2k

∣∣ |i| ≤ 2k+4}, then the tester will output FAIL. If the

program is incorrect on less than 1
24 fraction of the domain D2k+4,2k , one can use the

self-corrector in subsection 6.1 (with s = 2k,m = 2k+4, n = 2k so that m > 12n) in
order to compute the correct value of coshx for all x ∈ D2k,2k = { i

2k

∣∣ |i| ≤ 2k}. The
correctness of the self-corrector is guaranteed by Theorem 6.1.

7. Conclusions and directions for further research. We have studied the
question of when functions characterized by functional equations of the form ∀x, y
F [f(x − y), f(x + y), f(x), f(y)] = 0 are robust. However, we still do not have a
complete answer to this question. Even for addition theorems ∀x, y f(x + y) =
G[f(x), f(y)], we do not know what happens when G does not satisfy G[a,G[b, c]] =
G[G[a, b], c] ∀a, b, c. More generally, many other general types of functional equa-
tions have been identified, including those on multivariate functions and systems of
functional equations, but we do not know which ones are robust. Given a functional
equation, is there an (efficient) algorithm to determine whether or not it is robust?
Is it the case that any property that leads to a self-corrector is robust?

Systems of functional equations can be used to define more than one unknown
function by their joint properties. For example, Pexider’s equations are f(x + y) =
g(x) + h(y), f(x+ y) = g(x)h(y), f(xy) = g(x) + h(y), and f(xy) = g(x)h(y), which
are generalizations of Cauchy’s original functional equations. These equations have
applications to the library setting [19], where programs for several functions can be
used to self-test and self-correct each other, as long as none of the answers are a priori
assumed to be correct. The library setting has been used to find checkers that are
significantly more efficient for functions such as determinant and rank. Are there
any other examples of functions where their mutual properties lead to more efficient
testers?

It is important to find methods to extend all robustness results to the case of real-
valued computation as in [31], [5], [27]. One point of difficulty is that in real-valued
computation, none of the functional equations will be satisfied exactly, even when the
program is giving very good approximations to the correct answers. Thus, the area of
functional inequalities, which is the investigation of which families of functions satisfy
inequalities such as |f(x+y)−f(x)−f(y)| ≤ ε, directly applies to this setting. Much of
the work in [31], [5], [27] has been in relating the class of functions that are solutions to
functional inequalities to the class of functions that are solutions of the corresponding
functional equations. Several functional inequalities have been shown to be robust
in [31], [5], [27]. Other related results used for testing matrix multiplication, linear
system solution, matrix inversion, and determinant computation are in [5].

Acknowledgments. We wish to thank Mike Luby, for initial conversations that
eventually led to the idea behind this work, and Nati Linial for directing us to the

8Self-testers and self-correctors for cosh x can be constructed via other functional equations that
coshx satisfies as long as they are shown to be robust and equality testing is possible.

1996 RONITT RUBINFELD

area of functional equations as well as to many of the references. We thank Madhu
Sudan for many interesting conversations, comments, and insights on this work. We
also thank Richard Zippel for his technical advice on the zero testing of algebraic
functions and for guiding us through the literature regarding the scope of the theorems
in this paper. We thank S. Ravi Kumar and Funda Ergün for discussions regarding
the definitions in this paper and comments on the write-up. We thank S. Ravi Kumar
and D. Sivakumar for pointing out an error. We thank Lucian Bebchuk, Ran Canetti,
Oded Goldreich, Diane Hernek, Sandy Irani, Mike Luby, Dana Ron, and especially
the anonymous referee for greatly improving the presentation of this paper.

REFERENCES

[1] M. Abadi, J. Feigenbaum, and J. Kilian, On hiding information from an oracle, J. Com-
put. System Sci., 39 (1989), pp. 29–50.

[2] L. Adleman, M. Huang, and K. Kompella, Efficient checkers for number-theoretic com-
putations, Inform. and Comput., 121(1995), pp. 93–102.

[3] J. Aczél, Lectures on Functional Equations and Applications, Academic Press, New York,
1966.

[4] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Cambridge Univer-
sity Press, Cambridge, UK, 1989.

[5] S. Ar, M. Blum, B. Codenotti, and P. Gemmell, Checking approximate computations
over the reals, in Proc. 25th Annual ACM Symp. Theory of Computing, 1993, pp. 786–
795.

[6] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and
the intractability of approximation problems, in Proc. 33rd IEEE Symp. Foundations of
Computer Science, 1992, pp. 14–23.

[7] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, in
Proc. 33rd Annual IEEE Symp. Foundations of Computer Science, 1992, pp. 2–13.

[8] D. Beaver and J. Feigenbaum, Hiding instances in multioracle queries, in Proc. 7th Annual
Symp. Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 415,
Springer-Verlag, 1990, pp. 37–48.

[9] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover
interactive protocols, Comput. Complexity, 1 (1991), pp. 3–40.

[10] L. Babai, L. Fortnow, L. Levin, and M. Szegedy, Checking computations in polyloga-
rithmic time, in Proc. 23rd Annual ACM Symposium on Theory of Computing, 1991,
pp. 21–31.

[11] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan, Linearity testing in
characteristic two, Proc. 36th Annual Symp. Foundations of Computer Science, 1995,
pp. 434–441.

[12] M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs, and nonapproximability–
Toward tight results, SIAM J. Comput., 27 (1998), pp. 804–915.

[13] M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient probabilistically checkable
proofs, in Proc. 25th Annual ACM Symp. Theory of Computing, 1993, pp. 294–304.

[14] M. Bellare and M. Sudan, Improved non-approximability results, in Proc. ACM
Symp. Theory of Computing, 1994, pp. 184–193.

[15] M. Blum, Designing Programs to Check Their Work, Tech. report TR-88-009, International
Computer Science Institute, University of California at Berkeley, Berkeley, CA, 1988.

[16] M. Blum, B. Codenotti, P. Gemmell, and T. Shahoumian, Self-Correcting for Function
Fields of Finite Transcendental Degree, Procc. 22nd Internat. Colloquium ICALP 95,
Lecture Notes in Comput. Sci. 944, 1995, pp. 547–557.

[17] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor, Checking the correctness
of memories, Proc. 32nd Annual Symp. Foundations of Computer Science, 1991, pp.
90–99.

[18] M. Blum and S. Kannan, Program correctness checking...and the design of programs that
check their work, in Proc. 21st Annual ACM Symp. on Theory of Computing, 1989, pp.
86–97.

[19] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numer-
ical problems, J. Comput. System Sci., 47 (1993), pp. 549–595.

[20] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-

ON THE ROBUSTNESS OF FUNCTIONAL EQUATIONS 1997

random bits, SIAM J. Comput., 13 (1984), pp. 850–864.
[21] M. Blum and H. Wasserman, Program result-checking: A theory of testing meets a test of

theory, in Proc. 35th FOCS, 1994, pp. 382–392.
[22] E. Castillo and M. R. Ruiz-Cobo, Functional Equations and Modelling in Science and

Engineering, Marcel Dekker, New York, 1992.
[23] R. Cleve and M. Luby, A Note on Self-Testing/Correcting Methods for Trigonometric

Functions, Tech. report TR-90-032, International Computer Science Institute, University
of California at Berkeley, Berkeley, CA, 1990.

[24] W. J. Cody, Performance evaluation of programs related to the real gamma function, ACM
Trans. Math. Software, 17 (1991), pp. 46–54.

[25] W. J. Cody and L. Stoltz, The use of Taylor series to test accuracy of function programs,
ACM Trans. Math. Software, 17 (1991), pp. 55–63.

[26] D. Coppersmith, untitled manuscript, December 1989 (result described in [19]).
[27] F. Ergün, S. R. Kumar, and R. Rubinfeld, Approximate checking of polynomials and

functional equations, Proc. 37th IEEE Symp. Foundations of Computer Science, 1996,
pp. 292–303.

[28] F. Ergün, S. R. Kumar, and D. Sivakumar, Self-testing without the generator bottleneck,
SIAM J. Comput., to appear.

[29] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy, Approximating clique is
almost NP-complete, in Proc. 32nd IEEE Symp. on Foundations of Computer Science,
1991, pp. 2–12.

[30] J. Feigenbaum and L. Fortnow, Random-self-reducibility of complete sets, SIAM J. Com-
put., 22 (1993), pp. 994–1005.

[31] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-
testing/correcting for polynomials and for approximate functions, in Proc. 23rd Annual
ACM Symposium on Theory of Computing, 1991, pp. 32–42.

[32] M. Klawe, Limitations on explicit constructions of expanding graphs, SIAM J. Comput.,
13 (1984), pp. 156–166.

[33] S. Ravi Kumar and D. Sivakumar, Efficient self-testing/self-correction of linear recur-
rences, Proc. 37th IEEE Foundations of Computer Science, 1996, pp. 602–611.

[34] R. Lipton, New directions in testing, in Distributed Computing and Cryptography, DIMACS
Ser. Discrete Math. Theoret. Comput. Sci. 2, AMS, Providence, RI, 1991, pp. 191–202.

[35] S. Micali, Computationally-sound proofs, Proc. 35th Annual Symp. Foundations of Com-
puter Science, 1994, pp. 436–453.

[36] A. Polischuk and D. Spielman, Nearly linear size holographic proofs, Proc. 26th ACM
Symp. on Theory of Computing, 1994, pp. 194–203.

[37] R. Rubinfeld and M. Sudan, Testing polynomial functions efficiently and over rational do-
mains, in Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadel-
phia, 1992, pp. 23–43.

[38] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

[39] N. Schriver, personal communication, February 1990.
[40] M. Sudan, Efficient Checking of Polynomials and Proofs and the Hardness of Approxima-

tion Problems, Ph.D. thesis, University of California, Berkeley, CA, 1992.
[41] M. Sudan, personal communication, 1994.
[42] F. Vainstein, Error detection and correction in numerical computations by algebraic meth-

ods, Proc. 9th Internat. Symp. AAECC-9, Lecture Notes in Comput. Sci. 539, Springer-
Verlag, New York, 1991.

[43] F. Vainstein, Algebraic Methods in Hardware/Software Testing, Ph.D. thesis, Boston Uni-
versity, Boston, MA, 1993.

[44] F. Vainstein, Low redundancy polynomial checks for numerical computation, Appl. Algebra
Engrg., Comm. Comput., 7 (1996), pp. 439–447.

[45] F. Vainstein, Self checking design technique for numerical computations, J. VLSI Design,
5 (1995), pp. 385–392.

[46] R. Zippel, Zero testing of algebraic functions, Inform. Process. Lett., 61 (1997), pp. 63–67.
[47] R. Zippel, Effective Polynomial Computation, Kluwer Academic Publishers, Norwell, MA,

1993.

NEW RESULTS ON THE OLD k-OPT ALGORITHM
FOR THE TRAVELING SALESMAN PROBLEM∗

BARUN CHANDRA† , HOWARD KARLOFF‡ , AND CRAIG TOVEY§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 1998–2029

Abstract. Local search with k-change neighborhoods is perhaps the oldest and most widely
used heuristic method for the traveling salesman problem, yet almost no theoretical performance
guarantees for it were previously known. This paper develops several results, some worst-case and
some probabilistic, on the performance of 2- and k-opt local search for the traveling salesman problem,
with respect to both the quality of the solution and the speed with which it is obtained.

Key words. graph algorithms, analysis of algorithms, explicit machine computation and pro-
grams (in optimization heading), explicit machine computation and programs (in computer science
heading)

AMS subject classifications. 05C85, 68Q25, 49-04, 68-04

PII. S0097539793251244

1. Introduction. Local search with k-change neighborhoods is perhaps the old-
est and most widely used heuristic method for the traveling salesman problem (TSP)
[12, 16]. Given a graph G = (V,E) and a tour T of G (“tour” is synonymous with
“Hamiltonian cycle”), a tour T ′ is said to be obtained from T by an improving k-
change if T ′ is shorter than T , and T ′ is obtained by removing k edges from T and
adding a disjoint set of k edges. The k-opt algorithm starts with an arbitrary ini-
tial tour and incrementally improves on this tour by making successive improving
k′-changes for any k′ ≤ k, terminating when no such improving changes can be made.
This paper develops several results, some worst-case and some probabilistic, on the
performance of 2- and k-opt algorithms for the TSP, with respect to the two principal
criteria, quality and speed. Regarding quality: how good is a locally optimal solution?
The only results on this question that we are aware of are due to Grover [6] and Lueker
[15]. Grover proves that for any (symmetric) TSP instance, any 2-optimal tour has
length at most the average of all tour lengths. (This result also was credited to Edel-
berg [15, p. 7] but without reference.) Lueker gives a construction for which this bound
is tight when tour lengths differ. Our results regarding solution quality are as follows:

• For TSPs satisfying the triangle inequality (i.e., the distances are those in an
n-point metric space), the worst-case performance ratio of 2-opt is at most
4
√
n for all n and at least 1

4

√
n for infinitely many n. The k-opt algorithm

can have a performance ratio that is at least 1
4n

1
2k for infinitely many n.

• For TSPs embedded in the normed space Rm, the worst-case performance
ratio of 2-opt, and hence k-opt, is O(log n). If the points are embedded in R2

and the distances are Euclidean, then there is a c > 0 such that the worst-case
performance ratio of 2-opt is at least c · logn

log log n for infinitely many n.

∗Received by the editors June 29, 1993; accepted for publication (in revised form) May 14, 1997;
published electronically June 23, 1999.

http://www.siam.org/journals/sicomp/28-6/25124.html
†Department of Computer Science, University of New Haven, West Haven, CT 06516

(barun@charger.newhaven.edu).
‡College of Computing, Georgia Tech, Atlanta, GA 30332-0280 (howard@cc.gatech.edu). This

author was supported in part by NSF grant CCR 9107349.
§School of Industrial and Systems Engineering and College of Computing, Georgia Tech, Atlanta,

GA 30332-0280 (ctovey@isye.gatech.edu). This author was supported in part by NSF grant DDM-
9215467.

1998

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 1999

• For all norms on Rm, there exists a constant c such that any 2-optimal tour
on any TSP instance in the unit hypercube (with norm-induced distances)
has length less than cn1−1/m. A corollary is that for random instances in the
hypercube, i.e., points are sampled independently and identically distributed
(i.i.d.) from the uniform distribution on the hypercube, with high probability,
the performance ratio of 2-opt, even if it makes the worst possible sequence of
improvements, is O(1). Furthermore, the expected value of the performance
ratio is also O(1).

Regarding speed: how many iterations does local search require? There seem to be
three previous results on this question. The first two of these are worst-case. Lueker
[15] constructs a TSP instance for which there exists an exponentially long sequence
of improving 2-changes. Johnson, Papadimitriou, and Yannakakis [7] and Krentel [10]
prove the existence of instances with exponentially long improving sequences with re-
spect to k-changes, for all sufficiently large k. (In fact, [7] and [10] prove something
much stronger: there are an integer k, instances of the TSP, and initial tours such
that, starting with the initial tour, every sequence of moves each of which is an im-
proving k′-change (for some k′ ≤ k) and which terminates with a k-optimal tour has
exponential length. Furthermore, Krentel [11] claims that k = 8 suffices.)

Here we extend Lueker’s construction for all k > 2, giving explicit instances with
exponentially long improving sequences.

The third previously known result is probabilistic. Kern [9] shows that for random
Euclidean instances on the unit square, the probability is at least 1 − c/n that the
expected number of iterations required by 2-opt is O(n16), where c is a constant
independent of the number of points n. It was not known if the expected number of
iterations is polynomial. Our main probabilistic results regarding speed are:

• For random Euclidean instances in the unit square, the expected number of
iterations required by 2-opt is O(n10 log n).
• For random L1 instances in the unit hypercube, the expected number of

iterations required by 2-opt is O(n6 log n).
Taken together, our results provide the first theoretical proof of the quality of 2-opt as
a heuristic for random TSP instances in the unit square. In particular, the expected
time is polynomial, and the expected worst-case performance ratio is bounded by a
constant.

2. Preliminaries. We begin by stating some definitions and notation that will
be used throughout the paper.

A metric space (V, d) is a nonempty set V of points and a function d : V ×V → R,
called distance, satisfying the following properties for all x, y, z ∈ V :

(i) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z).
A norm N on Rm is a function || · || : Rm → R satisfying the following properties:
(i) For all x ∈ Rm, ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0;
(ii) ‖cx‖ = |c| · ‖x‖ for every c ∈ R and x ∈ Rm;

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for every x, y ∈ Rm.
A norm N induces a distance function defined as dN (x, y) = ‖x− y‖. If the norm of
an m-dimensional vector x = (x1, x2, . . . , xm) is defined as p

√|xp1|+ |xp2|+ · · ·+ |xpm|,
where p is a positive integer, then the corresponding metric is called the Lp metric.
The L2 metric is called the Euclidean metric.

A geometric graph is given by a finite nonempty set V of points in Rm and a norm

2000 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

N on Rm. The graph is a complete weighted graph on V with the weight of edge
{x, y} being dN (x, y) = ||x−y||. When the metric considered is the Euclidean metric,
the graph is called a Euclidean graph. Given a weighted graph G = (V,E) we refer to
the weight or length of an edge e ∈ E by wt(e). Given a collection of edges E′ ⊆ E,
the weight wt(E′) of E′ is the sum of the weights of the edges in E′; if the edges in
E′ form a tour T ′, we also refer to wt(T ′) as the length of the tour. We denote an
optimal tour by OPT (G). Since we work only in complete graphs in a metric space
(so given V , G = (V,E) is completely determined), we also abuse notation slightly
and refer to OPT (V).

Given a weighted graph G = (V,E) and a tour T of G, a tour T ′ is said to be
obtained from T by an improving k-change if T ′ is shorter than T , and T ′ is obtained
by removing a set of k edges from T and adding a disjoint set of k edges. A tour T is
said to be k-optimal if for all k′ ≤ k, no improving k′-change can be made to T . The
k-opt algorithm starts with an arbitrary initial tour T0 and incrementally improves on
this tour by finding T1, T2, . . . , Tz, where Ti+1 is obtained from Ti by an improving
k′-change for some k′ ≤ k, and Tz is k-optimal.

The k-opt algorithm can start from many different initial tours, and even starting
from the same initial tour, k-opt can end up in many different k-optimal tours. All
the upper bounds in this paper are proved for the worst possible outcome of k-opt.

3. Bounds on performance ratios in metric spaces.

3.1. An upper bound for 2-opt. In this subsection we show that if the points
are chosen from a metric space, then the worst-case performance ratio of 2-opt is
bounded by 4

√
n.

As a preliminary, we first prove that the performance ratio of k-opt cannot be
bounded by a function of n if the triangle inequality is not imposed.

Theorem 3.1. For all k ≥ 2, for all n ≥ 2k + 8, for all M > 0, there exists a
complete weighted graph G on n vertices, with strictly positive weights, containing a
k-optimal tour T ′ such that wt(T ′)/OPT (G) > M.

Proof. We prove the result for all k even and n ≥ 2k + 6. The result will follow
for k odd since k-optimality implies (k − 1)-optimality. The idea of the construction
is to take a pair of Hamiltonian cycles in G which differ by a (k + 1)-change. We set
the weights of all edges in these cycles to ε; all other edges in G are given very large
weight. For one special edge in the first cycle, we change the weight to 1. This keeps
the first cycle k-optimal but now its weight is many times that of the second cycle.

The graph G has n vertices denoted 1, 2, . . . , n. Its edge weights are as follows.
1. wt(1, 2) = 1.
2. wt(i, i+ 1) = ε for all i > 1, and wt(n, 1) = ε.
3. wt(k + 3, 2k + 4) = ε.
4. wt(j, 2k + 4− j) = ε for all 1 ≤ j ≤ k.
5. All other edges have weight kn.

The two tours, the optimal T and the k-optimal T ′, differ only in the order in
which they visit 1, 2, 3, . . . , 2k+4. Both tours visit 2k+4, 2k+5, 2k+6, . . . , n−2, n−
1, n, 1 in that order. T ′ starts with 1, 2, 3, 4, . . . , 2k+ 3, 2k+ 4, whereas T starts with
1; 2k+3, 2k+2, 2, 3; 2k+1, 2k, 4, 5; 2k−1, 2k−2, 6, 7; . . . ; k+5, k+4, k, k+1; k+2, k+3,
2k+4. (The semicolons appear only to help the reader.) This tour has weight nε. For
k = 2, T is 1; 7, 6, 2, 3; 4, 5, 8; 9, 10, 11, 12, . . . , n. When k = 8 and n = 26, the optimal
tour T is 1; 19, 18, 2, 3; 17, 16, 4, 5; 15, 14, 6, 7; 13, 12, 8, 9; 10, 11, 20; 21, 22, 23, 24, 25, 26.
See Figure 1.

The tour T ′ is 1, 2, 3, . . . , n with weight 1+(n−1)ε. To verify that T ′ is k-optimal,

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2001

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c

c c c

��
��
��
��
��
��
��
��
��
��
��
��
��

1

2

3

4

5

6

7

8

9
10 11

12

13

14

15

16

17

18

19 20 21 22

Fig. 1. Part of the optimal tour T (dashed edges) and part of the k-optimal tour T ′ (solid
edges) for k = 8.

observe that when ε < 1, any tour which can be obtained from T ′ by an improving
k′-change, k′ ≤ k, must have weight nε, but T is the unique Hamiltonian cycle in G
consisting entirely of ε-cost edges and T cannot be obtained from T ′ by an improving
k′ change (T ′ has k+ 1 edges not in T). If we set ε = 1/((M + 1)n), the performance
ratio will exceed M , as desired.

The performance ratio can be bounded by a function of n if the triangle inequality
is imposed. We will prove that if the points are chosen from a metric space, then the
worst-case performance ratio of 2-opt is bounded by 4

√
n.

Let M be any arbitrary metric space with a distance function d. Let V be a set of
points in M , and let n = |V |. Let OPT (V) be an optimal tour on V and let T (V) be
any 2-opt tour. We first state a simple fact which follows from the triangle inequality.

Fact 3.2. V ′ ⊆ V ⇒ wt(OPT (V ′)) ≤ wt(OPT (V)).
Lemma 3.3. For any k ∈ {1, 2, . . . , n}, let Ek = {edges e ∈ T (V)|wt(e) >

2·wt(OPT (V))√
k

}. Then |Ek| < k.

Proof. Suppose otherwise; so for some k, r := |Ek| ≥ k. Orient the edges
of T (V) in a consistent manner, i.e., so that the directed edges form a directed
Hamiltonian cycle. Consider the directed edges (with the same orientation) of Ek,
(t1, h1), (t2, h2), . . . , (tr, hr), where the ti’s are the tails and the hi’s are the heads of
these directed edges.

We first see that not too many tails can be clustered very closely together. Con-

sider any sphere of radius wt(OPT (V))√
k

around some point in the metric space. We

show that the number of tails (of edges from Ek) in this sphere is less than
√
k.

Suppose otherwise, so that the tails ti1 , ti2 , . . . , tip all lie in the sphere for some

p ≥ √k. Let hi1 , hi2 , . . . , hip be the corresponding heads. For any u 6= v, d(tiu , tiv) ≤
2·wt(OPT (V))√

k
, since tiu and tiv lie in the sphere. This implies that d(hiu , hiv) ≥

2·wt(OPT (V))√
k

, since otherwise we get a shorter valid tour (T (V)∪{(tiu , tiv), (hiu , hiv)})
−{(tiu , hiu), (tiv , hiv)} with a 2-change operation. But since, by supposition, we have

2002 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

p ≥ √k heads and these heads are pairwise at a distance at least 2·wt(OPT (V))√
k

apart,

the optimal tour on these heads is of length at least 2·wt(OPT (V)), which contradicts
Fact 3.2.

Now we show that a large number of tails have to be at a large distance apart.

Pick any arbitrary tail ti and consider the sphere of radius wt(OPT (V))√
k

centered around

ti. “Kill” all the tails within this sphere. By the above argument, fewer than
√
k tails

can have been killed. Now pick any remaining “live” tail and kill all tails in the sphere
centered at this tail. Repeat this process until all tails have been killed. Since there
are at least k tails and in a single iteration we kill fewer than

√
k tails, this process

can be repeated more than
√
k times. Clearly, the tails at the center of the spheres

are at a distance greater than wt(OPT (V))√
k

apart from each other, and there are greater

than
√
k of them; therefore, the optimal tour on the tails is of length greater than

wt(OPT (V)), which contradicts Fact 3.2.

Theorem 3.4. wt(T (V))
wt(OPT (V)) ≤ 4

√
n.

Proof. Note that Lemma 3.3 implies that the weight of the kth largest edge is at

most 2·wt(OPT (V))√
k

. Hence

wt(T (V)) =

n∑
k=1

wt(kth largest edge)

≤
n∑
k=1

2 · wt(OPT (V))√
k

= 2 · wt(OPT (V))

n∑
k=1

1√
k

≤ 2 · wt(OPT (V))

∫ n

x=0

1√
x

= 4 · wt(OPT (V)) · √n.

3.2. Lower bounds for 2-opt and k-opt. Next we show that the upper bound
for 2-opt’s performance ratio given by Theorem 3.4 is tight to within a factor of 16.
We also provide lower bounds for k-opt.

Theorem 3.5. For any k ≥ 2, for infinitely many values of n, there exists a
complete weighted n-node graph Gk,n with positive edge weights satisfying the triangle

inequality, and a k-optimal tour Tk,n of Gk,n, such that
wt(Tk,n)

wt(OPT (Gk,n)) ≥ 1
4 · n1/2k if

k ≥ 3, and
wt(Tk,n)

wt(OPT (Gk,n)) ≥ 1
4

√
n if k = 2.

Define the girth of a graph as the number of edges in its smallest cycle, provided
it is not a forest.

Lemma 3.6. Suppose there exists a connected unweighted graph Gk,n,m, with
n vertices and m edges, having girth at least 2k, in which every vertex has even
degree. Then there is an m-vertex complete weighted graph G1 with positive edge
weights satisfying the triangle inequality and a k-optimal tour T of G1 such that

wt(T)
wt(OPT (G1)) ≥ m

2n .

Proof. Assume that we are given Gk,n,m = G = (V,E). Since G is connected and
every vertex has even degree, G has an Eulerian tour ET .

Using G and ET , we construct a complete weighted graph G1 = (V1, E1) and a
tour T for G1. Let V (G) = {x1, x2, . . . , xn}. We think of each vertex xi in G as a

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2003

“supervertex” corresponding to degG(xi)/2 vertices in G1, so

V1 = {x1,1, . . . , x1,degG(x1)/2, . . . , xn,1, . . . , xn,degG(xn)/2}.

The number of vertices in G1 is (degG(x1) + · · ·+ degG(xn))/2 = m.
Let dG(xi, xj) be the length of the shortest path from xi to xj in G. The edge

weights of G1 are as follows:
1. for all i, s, t, s 6= t, wt(xi,s, xi,t) = ε, where ε = 1

n2 ;
2. for all i, j, s, t, i 6= j, wt(xi,s, xj,t) = dG(xi, xj).

By inspection, it is easy to see that the edge weights of G1 satisfy the triangle in-
equality.

The tour T on G1 is constructed as follows. Suppose that the rth vertex of the
Eulerian tour ET of G is vertex xi. Suppose that this is the lth time ET has entered
and exited vertex xi, 1 ≤ l ≤ deg(xi)/2. Then the rth vertex of tour T of G1 is xi,l.
Since ET enters and exits each vertex xi of G exactly degG(xi)/2 times and there are
precisely degG(xi)/2 vertices in each supervertex, this procedure gives us a tour T .
Note that for all {xi, xj} ∈ E there is a unique pair s, t such that {xi,s, xj,t} ∈ T .

Since the weight of the minimum spanning tree of G1 is at most (n − 1) + (n ·
n · ε) = n and edge weights satisfy the triangle inequality, wt(OPT (G1)) ≤ 2n. In
the tour T , there are m edges each of weight 1, and so wt(T) = m. Hence we get

wt(T)
wt(OPT (G1)) ≥ m

2n , so all we need to prove Lemma 3.6 is the following.

Claim 3.7. T is k-optimal.
Proof. If not, then there is a tour T ′ of G1 which is obtained from T by a k′-change

operation, k′ ≤ k, such that wt(T ′) < wt(T).
A closed walk is a walk which begins and ends at the same vertex, repeated edges

and vertices allowed. A simple closed walk is a closed walk with no repeated edges.
Claim 3.8. Viewing T and T ′ as sets of edges, there are sets C ⊆ T − T ′ and

C ′ ⊆ T ′ − T such that C ∪ C ′ is the edge set of a simple closed walk, |C| = |C ′| ≤ k,
wt(C) > wt(C ′), and every vertex in V1 is incident to the same number (0, 1, or 2)
of edges of C as C ′.

Proof. Let ∆ denote symmetric difference. Since for all v ∈ V1, degT∆T ′v is either
0, 2, or 4, T∆T ′ can be partitioned into a collection of vertex-disjoint simple closed
walks P1, P2, . . . , Ps. Further, since wt(T) > wt(T ′), at least one of the Pi, say, P1,
has to satisfy wt(P1 ∩T) > wt(P1 ∩T ′). Since |P1 ∩T | = |P1 ∩T ′|, it is easy to verify
that C = P1 ∩ T and C ′ = P1 ∩ T ′ have the desired properties.

Let C,C ′ be as in Claim 3.8. Let G2 = (V,E2) be a weighted multigraph with
the following edges. Between every pair of distinct vertices there will be one edge of
positive integral weight and zero or one edge of weight −1. Specifically, between xi
and xj , i 6= j, there is an edge in E2 of weight dG(xi, xj), which is a positive integer.
For that xi and xj , if there are s, t such that {xi,s, xj,t} ∈ C, then (s and t are unique
and) in addition to the edge of positive weight between xi and xj , there is an edge in
E2 between xi and xj of weight −dG(xi, xj). A crucial fact is that −dG(xi, xj) = −1
in this case, because every edge in T is of weight 1. Let us denote the set of edges
of positive weight in E2 as D′ and let us denote the set of edges of weight −1 as D.
Each edge in C gives rise to exactly one edge in D, so |D| = |C| ≤ k.

Note that there is an obvious correspondence between the edges of G1 and the
edges of positive weight in G2: the vertices inside a supervertex in G1 are merged into
a single vertex in G2, with the intrasupervertex edges in G1 “disappearing.”

Edges from C ′, like arbitrary edges of G1, are either of weight ε or of positive
integral weight. An edge in C ′ of positive integral weight is an edge {xi,s, xj,t} for some

2004 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

i 6= j having weight dG(xi, xj) and is said to correspond to the edge in D′ between xi
and xj of weight dG(xi, xj). An edge in C ′ of weight ε is said to correspond to nothing.
An edge in C is of unit length and is an edge {xi,s, xj,t} such that dG(xi, xj) = 1,
i.e., {xi, xj} ∈ E. Such an edge is said to correspond to the edge in D (of weight
−1) between xi and xj . (Several edges of C ′ may correspond to the same edge in
D′. However, different edges in C correspond to different edges in D.) With this
correspondence, the simple closed walk in G1 which uses each edge in C ∪C ′ exactly
once corresponds to a closed walk P in G2. (Edges of weight ε are not needed and do
not appear.) P need not be simple since edges in D′ may have several “preimages”
in C ′. Since each edge in C ∪ C ′ is traversed exactly once and different edges in C
correspond to different edges in D, it follows that no edges in D are traversed twice.
Each, in fact, is traversed exactly once by P . The weight of P , which is the sum of the
weights of the edges it traverses, counting multiplicities, is at most wt(C ′)−wt(C) < 0.

Let G3 = (V,E3) be a weighted multigraph obtained by replacing each edge from
G by two edges, one of weight +1 and one of weight −1. An edge of G2 of positive
integral weight is an edge between some xi and xj with i 6= j. Such an edge has weight
dG(xi, xj) and is said to correspond to some fixed (shortest) path in G3 between xi
and xj consisting of dG(xi, xj) edges of weight +1. An edge of G2 of weight −1
between, say, xi and xj , is said to correspond to the identical edge in G3. (There will
be many more negative edges in G3 than there are in G2, since C is small.) With
this correspondence, the closed walk P in G2 corresponds to a closed walk W in G3

of the same weight. Edges of weight +1 may be traversed many times, but no edge
of weight −1 can be traversed even twice, since no edge of weight −1 is traversed
twice by P . Let the edges of weight +1 in W be edges c1, c2, . . . , cr occurring in
W m1,m2, . . . ,mr times, respectively. The number of edges of weight +1 in W ,
including multiplicities, of course, equals

∑r
j=1mj . Since wt(W) = wt(P) < 0 and

wt(W) = (
∑r
j=1mj)+ |D|(−1), we have m1 +m2 + · · ·+mr < |D|. Also, the number

of edges in W is (
∑r
j=1mj) + |D| < 2|D| ≤ 2k.

One of the following must be true:
• For every edge in W of weight −1, there is another edge in W with the

same endpoints. But since W never has two negative edges with the same
endpoints, this other edge must have weight +1. We infer that wt(W) ≥ 0,
a contradiction.
• There is some edge in W of weight −1 such that there is no other edge in
W with the same endpoints. But since W is a closed walk, this implies that
there is some set S ⊆ W of edges, |S| > 2, such that S is the edge set of a
cycle (without repeated vertices, of course). Since S ⊆ W and W has fewer
than 2k edges, S also has fewer than 2k edges. But then there is a cycle in G
corresponding to S, and this cycle has fewer than 2k edges since S has fewer
than 2k edges, a contradiction since the girth of G is at least 2k.

Lemma 3.9. For all k ≥ 2, for infinitely many n the graphs Gk,n,m of Lemma 3.6

exist with m
2n ≥ m1/2k

4 .
Proof. To prove that these graphs exist for infinitely many n, it suffices to show

that for any n0, there exists such a graph Gk,n,m with n > n0.
We first present an extremal graph-theoretic lemma [4, Theorem 1.4′, Chapter

III].

Fact 3.10. Let q, δ, and g be positive integers such that q ≥ (δ−1)g−1−1
δ−2 . Then

there exists a δ-regular graph (all vertices have degree δ) having 2q vertices and girth
at least g.

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2005

Let p ≥ n0 be a positive integer. Let q = (2p)2k−1, δ = 2p, and g = 2k.
The parameters q, δ, g satisfy the hypothesis of Fact 3.10; let G′ be the graph from
Fact 3.10. G′ has 2q vertices, girth at least 2k, and is (2p)-regular. Let G be the
largest connected component of G′. We claim that G has the desired properties.

Clearly, G is connected, every vertex has even degree, and the girth is at least
2k. Let n = |V (G)|. Since p ≥ n0 and G is 2p-regular, we get n > 2p > n0. Let
m = |E(G)|. Since G is 2p-regular, m = pn ≤ p(2q) = 2p(2p)2k−1 = (2p)2k, which

implies that m
2n = p

2 ≥ m1/2k

4 . This completes the proof of Lemma 3.9.
Lemma 3.11. For infinitely many n the graphs G2,n,m of Lemma 3.6 exist with

m
2n =

√
m
4 .

Proof. We will prove the result for all values of n which are multiples of 4. Let
p = n/4. Let G = K2p,2p, i.e., a complete bipartite graph with 2p vertices on each
side. G is connected, every vertex has even degree, and G has no cycles of length 3.
G has exactly m = 4p2 edges so m/n = p =

√
m/2.

Theorem 3.5 now follows from Lemmas 3.6, 3.9, and 3.11.

4. Bounds on performance ratios for geometric graphs. In the previous
section we found that the triangle inequality by itself ensures a Θ(

√
n) worst-case

performance ratio. Now we put stronger conditions on the distances, requiring them
to be induced by a norm on Rm, and show that the worst-case performance ratio is
between c log n/ log log n and O(log n).

4.1. The upper bound. We find an upper bound on the performance ratio of
any 2-optimal tour for geometric graphs, under any norm and in any dimension. A
large portion of this subsection is based on concepts presented in [5].

We begin by stating a well-known property about norms and introducing a few
definitions. Consider any positive integer m ≥ 2 and any norm N on Rm. Let dN (x, y)
denote the distance between x and y in the metric generated by N . Let d(x, y) denote
the Euclidean distance between x and y. By the well-known comparability of norms
[14, p. 132], there exist lN , uN > 0 such that for every x and y,

lN · dN (x, y) ≤ d(x, y) ≤ uN · dN (x, y).(1)

In this section we use the concept of angles. As usual, angles are defined by the
inner product and the Euclidean metric. The angle between a and b in Rm is

arccos
a · b

||a||2||b||2 ,

which we take to be in the interval [0, π].
Consider any norm N on Rm. For lN and uN satisfying (1), let θN = arctan(lN

4uN
).

Define the angle between directed line segments −→ux and −→vy to be the angle between the
vectors x−u and y−v. (

−→
ab denotes a line segment directed from a to b.) Two directed

line segments −→ux and −→vy are said to be similar-directional (with respect to N , lN , and
uN) if the angle between them is at most θN . More intuitively, similar-directional
means that the two directed line segments point in almost the same direction, since
the angle θN is small. Note that for θN < π/2, if −→ux and −→vy are similar-directional,
then −→ux and −→yv are not similar-directional. N , lN , and uN will be implicit when we
write similar-directional instead of similar-directional with respect to N , lN , and uN .

Let V be a finite nonempty set of points in Rm with norm N . Let G be the
geometric graph induced by V . Let T ′ be a 2-optimal tour of G with (directed) edge
set E′ (2-optimality is with respect to distances on the metric induced by N).

2006 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

�������������
u = v̄

ȳ

x

γ d

d

d
b

a

c
QQ
QQ
QQ
QQ
QQ
QQ
QQze

d

f·

dd��
�
���

�
�
�
���

v y

TT

TT

TT

TT

TT

TT

TT

g

Fig. 2. Illustration for Lemma 4.1 (Case 1).

Build a set E′ of directed line segments in Rm corresponding to E′ as follows.
Suppose the tour T ′ = (v1, v2, . . . , vn, v1). Then E′ = {−−→v1v2,−−→v2v3, . . . ,−−−−→vn−1vn,−−→vnv1}.
Every vertex is the tail of exactly one line segment in E′ and the head of exactly one
line segment in E′.

We now present an important technical lemma. Intuitively, this lemma says that,
if there are two similar-directional directed line segments −→ux and −→vy in E′, then u and
v must be separated by a distance greater than half the length of the shorter segment.
Consequently, the originating points of two similar-directional segments cannot be too
close together.

Lemma 4.1. Let G = (V,E) be a geometric graph in Rm under norm N . Let T ′ be
a 2-optimal tour of G having (directed) edge set E′. Let −→ux and −→vy be any two similar-
directional segments in E′. If dN (u, x) ≤ dN (v, y), then dN (u, v) > 1

2 · dN (u, x).

Proof. Let lN , uN > 0 be the constants defined in (1) and θN = arctan lN
4uN

. Let
γ be the angle between directed segments −→ux and −→vy. To prove the lemma we assume
that

dN (u, x) ≤ dN (v, y), γ ≤ θN , and dN (u, v) ≤ 1

2
· dN (u, x)(2)

and we derive a contradiction.
Note that since lN ≤ uN , tan θN = lN

4uN
< 1. Therefore, if γ ≥ π/4, γ > θN .

Thus, we may assume that γ < π/4.
Consider the configuration obtained by translating −→vy in space such that v coin-

cides with u. Let v̄ = u be the translate of v, and let ȳ be the translate of y. Points
u = v̄, x, ȳ lie in a 2-dimensional plane. The situation is illustrated by Figures 2
and 3.

Throughout this proof we use primed lower-case letters, a′, b′, c′, . . . to denote
distances in the N metric, while unprimed lower-case letters denote distances in the
Euclidean metric. For example, if a′ = dN (x, y), then a = d(x, y), and vice versa.

Let a′ = dN (v, y), b′ = dN (u, x), c′ = dN (x, ȳ), and g′ = dN (x, y). (Recall that
a = d(v, y), b = d(u, x), c = d(x, ȳ), and g = d(x, y) are the corresponding Euclidean
distances.) Using this notation, (2) implies that

b′ ≤ a′ and dN (u, v) ≤ 1

2
b′.(3)

Claim 4.2. g′ ≥ a′.

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2007

u = v̄

ȳ

x

γ c

c

c

b

a

c

z

e

f

d

�������������������������� ��
��
��
��
��
��
��
��
��

AA
AA
AA
AA
AA
AA·AA��

��

��

��

��

��

��

��

��

��

��

��

��cc B
B
B
B
BBM

B
B
B
B
BBM

g

yv

Fig. 3. Illustration for Lemma 4.1 (Case 2).

Proof. Suppose otherwise. We first see that |{u, x, v, y}| = 4. Clearly, u 6= x
and v 6= y. Clearly, u 6= v, since otherwise u is the tail of two line segments in E′,
−→ux and −→uy. Similarly, x 6= y. If u = y, then dN (u, v) = dN (v, y) and dN (u, v) ≤
1
2dN (u, x) ≤ 1

2dN (v, y), which is a contradiction. If v = x, then dN (u, v) = dN (u, x)
and dN (u, v) ≤ 1

2dN (u, x), which is a contradiction. Hence, |{u, x, v, y}| = 4.
By assumption, dN (u, v) ≤ 1

2dN (u, x) < dN (u, x), and g′ < a′, so dN (u, v) +
dN (x, y) < dN (u, x) + dN (v, y). Also, (u, v) is not in E′, because if it were, either
−→uv ∈ E′ or −→vu ∈ E′. But if −→uv ∈ E′, then the vertex u is the tail of two line segments
in E′, namely, −→ux and −→uv, and if −→vu ∈ E′, then the vertex v is the tail of two line
segments in E′, namely, −→vy and −→vu. Similarly, (x, y) 6∈ E′. However, now we can
interchange two edges from the tour T ′, (u, x) and (v, y), with the two edges (v, u)
and (y, x) which are not in the tour, to get a smaller valid tour, which contradicts the
2-optimality of T ′.

We now consider two cases: a ≥ b and a < b.
The case in which a ≥ b is illustrated in Figure 2 where z is on the line containing

v̄ and ȳ and xz is perpendicular to that line, d′ = dN (x, z), e′ = dN (v̄, z), and
f ′ = dN (z, ȳ). Since γ < π/4 and a ≥ b, z does belong to the segment v̄ȳ.

The case in which a < b is illustrated in Figure 3, where z is on the line containing
u and x and ȳz is perpendicular to that line, d′ = dN (ȳ, z), e′ = dN (u, z), and
f ′ = dN (z, x). Since γ < π/4 and a < b, z does belong to the segment ux.

Case 1. a ≥ b (a and b are Euclidean distances). See Figure 2.
Using (3) and the triangle inequality several times, we obtain

g′ ≤ c′ + dN (y, ȳ) = c′ + dN (u, v) ≤ c′ + 1

2
b′ ≤ d′ + f ′ +

1

2
b′,

implying

d′ ≥ g′ − 1

2
b′ − f ′ ≥ a′ − f ′ − 1

2
b′ = e′ − 1

2
b′ ≥ e′ − 1

2
(d′ + e′),

2008 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

which implies

d′
(

1 +
1

2

)
≥ e′

(
1− 1

2

)
.

Using (1) we have

1− 1
2

1 + 1
2

≤ d′

e′
≤ uNd

lNe
=
uN
lN

tan γ,

implying

tan γ ≥ lN (1− 1
2)

uN (1 + 1
2)

=
lN

3uN
>

lN
4uN

= tan θN .

Since tan γ > tan θN , we have γ > θN , a contradiction.
Case 2. a < b (a and b are Euclidean distances). See Figure 3.
Using (3) and the triangle inequality several times, we obtain

g′ ≤ c′ + dN (y, ȳ) = c′ + dN (u, v) ≤ c′ + 1

2
b′ ≤ d′ + f ′ +

1

2
b′,

implying

d′ ≥ g′ − 1

2
b′ − f ′ ≥ b′ − f ′ − 1

2
b′ = e′ − 1

2
b′ ≥ e′ − 1

2
a′ ≥ e′ − 1

2
(d′ + e′)

(the second inequality follows from g′ ≥ a′ ≥ b′), which implies

d′
(

1 +
1

2

)
≥ e′

(
1− 1

2

)
.

As in Case 1, we obtain γ > θN , a contradiction.
This completes the proof of Lemma 4.1.
We now analyze the weight of the tour T ′. In Rm, for any angle α > 0, consider

a cover of Rm by some finite number B(d, α) of circular (overlapping) cones, all
having the same origin P , such that two distinct points different from P in the same
cone form, at P , an angle at most α. We use in Theorem 4.3 the well-known fact
that B(d, α) is finite for every α > 0 and every d. This covering problem has been
extensively studied. We mention the following upper bound due to Rogers [17]:

B(m,α) is O

(
m3/2

(
log

m

sin(α/2)

)(
1

sin(α/2)

)m)
.

Theorem 4.3. Fix m and a norm N on Rm. Let G = (V,E) be an n-vertex
geometric graph in Rm under norm N . Let OPT be the weight of the optimal tour
on G. Let T ′ be any 2-optimal tour of G. Then the weight of T ′ is O(log n) · OPT .
(The constant implicit in the big O depends on m and N .)

Proof. Let θN = arctan(lN
4uN

), where the constants lN , uN > 0 are according
to (1). At some arbitrary point P in Rm, we cover the space by a constant number
of circular cones C1, C2, . . . , CB(m,θN), such that every two line segments containing
P and lying within the same cone subtend, at P , an angle at most θN . As noted,
B(m, θN) depends only on d and N .

Call these the original cones. Construct B(m, θN) congruent cones around each
of the n vertices of G by translating each original cone so that its origin shifts from

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2009

P to that vertex. Hence, corresponding to each vertex of G are B(m, θN) cones, one
cone corresponding to each of the original cones C1, C2, . . . , CB(m,θN). Let Cji be the
cone with its origin at vertex j that is a translate of original cone Ci.

Let E′ be the edge set of the 2-optimal tour T ′. Let E′ be the set of directed
line segments corresponding to E′. Let E′i be the set of directed line segments in E′

that appear in ∪jCji. We claim that the sum of the weights of the segments in E′i is
bounded by O(log n) · wt(OPT), for 1 ≤ i ≤ B(m, θN). Since the sets E′i cover the
set E′ and the number of cones is a constant, proving this claim is enough to prove
the lemma.

Clearly, all the directed line segments in E′i are similar-directional. Hence, by
Lemma 4.1, if −−→u1v1 and −−→u2v2 are two directed line segments in E′i and if the former
one is shorter, then dN (u1, u2) > 1

2dN (u1, v1).
Let T be an optimal tour on G, so wt(T) = OPT . We are now going to account

for the length of the line segments in E′i, using the length of the edges in T . For
integer l, call an edge in E′i long if its length is at least OPT/l. Consider a walk along
the edges of T starting from an arbitrary vertex and ending at the same vertex. As
we walk along the path, we encounter the originating points of the long line segments
in E′i. Let the order of the long line segments encountered from E′i be −→e1 , . . . ,−→eq .

We claim that for all l ≥ 2, E′i contains fewer than 2l long line segments. Consider
the first two long directed line segments encountered, −→e1 and −→e2 . By Lemma 4.1, the
distance between the originating points of −→e1 and −→e2 is longer than 1

2OPT/l. Hence
the distance along T between the originating points of −→e1 and −→e2 is also longer than
1
2OPT/l. Continuing along T from the originating point of −→e2 to the originating
point of −→e3 , and so on to the portion of T from the originating point of −→eq back to
the originating point of −→e1 , we find that OPT , the total length of T , is longer than
q[OPT/(2l)]. This is only possible if the number q of long line segments satisfies
q < 2l.

This means, if l = 2j , j ≥ 1, that the sum of the lengths of all the line segments
in E′i of length in [OPT/2j , OPT/2j−1] is at most (2 · 2j)[OPT/2j−1] = 4 · OPT .
Now setting l = 2j , j = 1, . . . , dlg ne, the sum of the lengths of line segments in E′i is
less than

OPT +

dlgne∑
j=1

4 ·OPT ≤ (5 + lg n)OPT.

Since B(m, θN) is constant (dependent only on m and N), we conclude that wt(E′)
is O(log n) ·OPT .

4.2. A lower bound for 2-opt under L2.
Theorem 4.4. There exists a constant c > 0 such that for infinitely many values

of n, there exists an n-node graph Gn embedded in the Euclidean plane under the L2

metric and a 2-optimal tour Tn of Gn such that wt(Tn)
wt(OPT (Gn)) ≥ c · logn

log log n .

We will prove the result for those values of n which satisfy n = 2(1+p2 +p4 +p6 +
· · ·+ p2p) + 2p + p2p + 1 for any positive odd integer p ≥ 3. Note that p > c′ logn

log log n

for some c′ > 0.
We exhibit a set of n vertices V (all lying on the n × n grid in the Euclidean

plane) such that wt(OPT (V)) is at most 18 · p2p. We then construct a 2-optimal
tour T on V of weight at least 2p · p2p ≥ 2c′ logn

log log n · p2p. Hence, we will get that
wt(T)

wt(OPT (V)) ≥ c′
9 · logn

log log n .

2010 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEYe
e

e

e e e e

eeee e e
ee eee e eee

eee e

layer 0

layer 1

layer 2

layer p

0 p2p 2p2p 3p2p

Fig. 4. The tour T .

Our construction is a modification of a construction by Alon and Azar [1]. (Also
see Bentley and Saxe [3].)

We construct V in three parts, V1, V2, and V3. The vertices in V1 are in p + 1
layers, where each layer is a set of equally spaced points on a horizontal line of length
p2p. The coordinates of the points in level i, 0 ≤ i ≤ p, are (jai, bi), where ai = p2p−2i

and 0 ≤ j ≤ p2p/ai, and bi will be defined later. Thus a0 = p2p, a1 = p2p−2, . . . , and
ap = 1. Hence in layer 0 there are only two points, in layer 1 there are p2 + 1, in

layer i there are p2i + 1 = p2p

ai
+ 1 points, up to layer p, which contains p2p + 1 points.

Let b0 = 0. The vertical distance between layer i and layer i + 1 (i.e., bi+1 − bi) is

ci = p2p−1−2i, for all i. Note that p · ai+1 = p · p2p−2i−2 = ci = p2p−2i

p = ai
p .

V2 is a copy of V1 shifted to the right. For every vertex in V1 with coordinates
(e, f), there is a vertex in V2 with coordinates (e+2p2p, f). These are the only vertices
in V2.

Finally, we fill in the gaps in the topmost layer to get V3. Since ap = 1, let
V3 = {(j, bp)|p2p < j < 2 · p2p}. The set of all the vertices is V = V1 ∪ V2 ∪ V3. Note
that |V | = n.

Claim 4.5. wt(OPT (V)) ≤ 18p2p.
Proof. Since wt(OPT (V)) is no more than twice the weight of the optimal span-

ning tree, it suffices to show that there is a spanning tree of weight at most 9p2p.
Consider the spanning tree built as follows: for every point in every layer, other than
the bottom layer, draw a vertical line to the point directly above it in the next higher
layer. Also draw the horizontal line in the topmost layer (layer number p). The total
length of this tree is at most

3p2p + 2

p−1∑
i=0

ci

(
p2p

ai
+ 1

)
≤ 3p2p

(
1 +

p−1∑
i=0

2ci
ai

)
= 3p2p

(
1 + p

2

p

)
= 9p2p.

Define the tour T on V to be as shown in Figure 4. Note that since p + 1 is
even, we can always construct this tour.

Claim 4.6. wt(T (V)) > 2p · p2p.

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2011

Proof. Consider just the horizontal edges in T . Each layer has horizontal edges
whose combined weight is at least 2p2p and there are p+ 1 layers.

Claim 4.7. T is 2-optimal.
We first present some simple notation. For any point A, let Ax, Ay be its x and

y coordinates. We use AB to refer to both the edge (line segment) and its length.
(AB)x is the length of the projection of AB onto the x-axis; i.e., (AB)x = |Ax−Bx|.
We define (AB)y similarly. Note that AB ≥ (AB)x, (AB)y. We say that two edges
AB and CD, which are either both vertical or both horizontal, overlap if the following
holds: let the projection of AB onto the infinite line containing CD be A′B′. Then
A′B′ ∩ CD consists of more than a single point.

We next state and prove a simple geometric lemma.
Lemma 4.8. Let EF and GH be horizontal line segments in the Euclidean plane,

Gx ≤ Ex < Fx ≤ Hx. Let EF = 1, GH = q2, q ≥ 1, so Gx ≤ Ex ≤ Hx − 1. Let the
vertical distance between EF and GH be z. If z ≥ q, then min{EG+FH,EH+FG} ≥
EF +GH.

Proof. Let z ≥ q. Clearly, EH + FG > EG + FH, so all we need to prove
is that EG + FH ≥ EF + GH. For 0 ≤ a ≤ q2 − 1, define f(a) =

√
a2 + q2 +√

(q2 − 1− a)2 + q2. Let a = Ex −Gx. Then Hx − Fx = (q2 − 1)− a. EG+ FH =√
a2 + z2 +

√
(q2 − 1− a)2 + z2 ≥

√
a2 + q2 +

√
(q2 − 1− a)2 + q2 = f(a). Since

EF +GH = q2 + 1, in order to show that EG+FH ≥ EF +GH, it suffices to show,
for 0 ≤ a ≤ q2 − 1, that f(a) ≥ q2 + 1.

We will show that the minimum value of f(a) in the interval [0, q2 − 1] occurs at

a = (q2 − 1)/2. This suffices since f(q
2−1
2) = q2 + 1.

f ′(a) =
a√

a2 + q2
− (q2 − 1− a)√

(q2 − 1− a)2 + q2

=
1√

1 + (qa)2
− 1√

1 + (q
q2−1−a)2

.

In the interval [0, q
2−1
2), a < q2 − 1 − a, and hence f ′(a) < 0. In the interval

(q
2−1
2 , q2−1], a > q2−1−a, and hence f ′(a) > 0. Hence, the minimum value of f(a)

in the interval [0, q2 − 1] occurs at a = (q2 − 1)/2.
Proof of Claim 4.7. Suppose otherwise. Thus, in a single 2-change operation,

from T we can get another tour T ′ such that wt(T ′) < wt(T). Label the four vertices
involved as A,B,C,D so that E(T)−E(T ′) = {AB,CD}, E(T ′)−E(T) = {AC,BD},
and AC + BD < AB + CD. Note that the vertices A,B,C,D have to be distinct,
since in a single 2-change operation we cannot replace two edges out of one vertex.

Since all edges in E(T) are either horizontal or vertical, there are three cases.
Case 1: AB and CD are both vertical edges. If AB and CD overlap, then they

are the two vertical edges which face each other. But then
(AC)x + (BD)x ≥ 2p2p ≥ AB + CD. If AB and CD don’t overlap,
assume without loss of generality that Ay, By ≤ Cy < Dy. If Ay < By,
then (AC)y ≥ AB and (BD)y ≥ CD. If Ay > By, then
(BD)y ≥ AB + CD.

Case 2: One of AB or CD is horizontal and the other is vertical. Assume
without loss of generality that AB is horizontal and CD is vertical. By
construction, and since A,B,C,D are all distinct, exactly one of the
following subcases has to be true.

2012 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

Subcase (i): Either Cy = Ay = By or Dy = Ay = By. Then, by construction,
Ax, Bx < Cx = Dx or Ax, Bx > Cx = Dx. If Cy = Ay, then
(BD)y = CD and, by construction, (AC)x ≥ AB. Similarly, if
Dy = By, then (AC)y = CD and (BD)x ≥ AB.

Subcase (ii): Cy, Dy > Ay = By. Since AB is horizontal (Ax 6= Bx) and CD is
vertical (Cx = Dx), either Cx 6= Ax or Dx 6= Bx. If Cx 6= Ax, then,
by construction, (AC)x ≥ AB and, by construction, (BD)y > CD.
Similarly, if Dx 6= Bx, then (BD)x ≥ AB and (AC)y > CD.

Subcase (iii): Cy, Dy < Ay = By. If Cy < Dy, then (AC)y = (AD)y + CD
and, by construction, (AD)y > AB, implying (AC)y > AB+CD.
Similarly, if Dy < Cy, then (BD)y > AB + CD.

Case 3: AB and CD are both horizontal edges.
Subcase (i): AB and CD are nonoverlapping. Assume without loss of generality

that Ax, Bx ≤ Cx < Dx. If Ax < Bx, then (AC)x ≥ AB and
(BD)x ≥ CD. If Bx < Ax, then (BD)x ≥ AB + CD.

Subcase (ii): AB and CD are overlapping. Assume without loss of generality
that AB is the smaller, higher edge and that Cx ≤ Dx, so Cx ≤
Ax, Bx ≤ Dx. Suppose AB is l levels above CD, l ≥ 1. Then
CD = p2l · AB. The difference in height between them is AB ·
(p+ p3 + · · ·+ p2l−1) ≥ AB · pl. Scaling all three quantities so that
AB = 1, we see that the hypotheses of Lemma 4.8 are satisfied,
and hence AC +BD ≥ AB + CD.

5. Bounds on the length of 2-optimal tours in the unit hypercube. In
this section we show that for every m and every norm on Rm there is a O(n1−1/m)
upper bound on the length of any 2-optimal tour on n points in the m-dimensional
unit hypercube. (The constant implicit in the big O depends on m and the norm.)

Notation: an arc is an ordered pair (h, t), h, t ∈ Rm. The Euclidean norm of v is
denoted ||v||2, the Euclidean distance between h and t is denoted d2(h, t) := ||h− t||2,
and the (directed) line segment between them is denoted ht. The orientation of an arc
(h, t) is the (Euclidean) unit-length vector (h − t)/||h − t||2, if h 6= t. The difference
between two orientations r and s is the angle between them as defined in section 4,
i.e., arccos(r · s). Thus the orientations of (h, t) and (t, h) differ by π.

Given a norm N on Rm, we can define a metric dN by dN (x, y) := ||x− y||N for
all x, y ∈ Rm.

Theorem 5.1. For any dimension m ≥ 2, for any norm N on Rm, there exists
a constant cm,N such that, for any set S of n points in [0, 1]m, any tour on S which
is 2-optimal with respect to the metric dN has length (defined by dN) less than cm,N ·
n1−1/m.

Proof. Choose m and N . As in section 4.1, by the comparability of norms, there
exists a constant KN ≥ 1 such that d2(x, y)/KN ≤ dN (x, y) ≤ KN · d2(x, y) for all
x, y. For a given ε > 0, define the long arcs in T as those of length at least ε in dN .
For each long arc (h, t), define the heart of the arc as the interior of the hypercylinder
of Euclidean radius r = (1/KN)ε/8 and length dN (h, t)/2 in the metric dN , with the
height oriented parallel to ht and the center of the hypercylinder at the midpoint of
segment ht. In the 2-dimensional case the heart is a rectangle of Euclidean width
(1/KN)ε/4.

We say that arc (h1, t1) attacks arc (h2, t2) if and only if the line segment h1t1

intersects the heart of h2t2. Note that attacking is not a symmetric relation.
At times it will be convenient to refer to the heart of a segment, or to say that

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2013

a line segment attacks another, even if the segment’s endpoints are not tour points.
The intended meaning is obvious.

Let 0 < θ < π/2 be an angle whose value will be chosen later. A family of arcs
is any collection of long arcs in Rm from a 2-optimal tour, whose orientations differ
pairwise by at most θ.

Lemma 5.2. No arc attacks another arc in the same family.
Proof. We prove the lemma in three steps. First, it suffices to consider the case

where arcs have length exactly ε (in norm N). Second, if two arcs are parallel, of
N -length ε, and one attacks the other, then they violate 2-optimality by at least ε/4.
Third, if two arcs are oriented within θ and one attacks the other, and both are of
N -length ε, then they can be made parallel while still attacking, while changing things
by less than ε/4.

Step 1 begins with a simple geometric definition.
Definition 5.3. If the line segment HT contains the line segment ht, and their

orientations are consistent (so d(H,h) ≤ d(H, t)), then we say HT is an extension of
ht.

For any four points h1, t1, h2, t2, define the function

GN (h1, t1, h2, t2) := dN (h1, t1) + dN (h2, t2)− dN (h1, h2)− dN (t1, t2).

The function GN measures the decrease in tour length if arcs (h1, t1) and (h2, t2) are
removed in a 2-change operation. The two arcs cannot both be in a 2-optimal tour
if GN is strictly positive. (If GN is positive, we can swap out arcs (h1, t1), (h2, t2)
and swap in either arcs (h1, h2), (t1, t2) or arcs (h2, h1), (t2, t1). The tour remains
connected.) The following lemma implies that if a pair of arcs has positive GN value,
then so does any pair of extensions of these arcs.

Lemma 5.4. Let hiti for i = 1, 2 be two directed line segments. Now let HiT i,
i = 1, 2, be extensions of hiti, i = 1, 2, respectively. Then GN (h1, t1, h2, t2) ≤
GN (H1, T 1, H2, T 2).

Proof. Observe how GN changes as the shorter segments are stretched by ex-
tending the endpoints in turn. Because H1, h1, and t1 are collinear and any norm
scales, dN (h1, t1) = dN (H1, t1)−dN (H1, h1). By the triangle inequality, dN (H1, h2)−
dN (h1, h2) ≤ dN (H1, h1) = dN (H1, t1)−dN (h1, t1). Thus extending h1 to H1 cannot
decrease GN . By a symmetric argument the other components of GN are nondecreas-
ing as the segments are extended and Lemma 5.4 follows.

Suppose long arc (H1, T 1) attacks long arc (H2, T 2). Obviously, the segment
H1T 1 is an extension of some segment h1t1 that has length dN (h1, t1) = ε and that
also attacks (H2, T 2). Now consider all segments that are of N -length ε and can be
extended to H2T 2. The union of the hearts of these segments is a hypercylinder of
Euclidean radius (1/KN)ε/8 and N -length dN (H2, T 2) − ε/2 ≥ dN (H2, T 2)/2, with
the same center as that of the heart of (H2, T 2), so it contains the heart of (H2, T 2).
Therefore, at least one of these segments is attacked by h1t1. Denote an attacked
segment by h2t2.

By Lemma 5.4, if GN (h1, t1, h2, t2) > 0, then GN (H1, T 1, H2, T 2) > 0. To prove
our lemma it therefore suffices to consider the case dN (h1, t1) = dN (h2, t2) = ε. This
completes step 1 of the proof.

For step 2, we consider the case of arc h1t1, which attacks h2t2 and is parallel to
it, with both of N -length ε. Thus dN (h1, t1) = dN (h2, t2) = ε. We have

GN (h1, t1, h2, t2) = dN (h1, t1) + dN (h2, t2)− dN (h1, h2)− dN (t1, t2).

2014 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

Let P be a point on the infinite line containing h1 and t1 so that h1P is perpendicular
to Ph2. We have

dN (h1, h2) ≤ dN (h1, P) + dN (P, h2).

Now

dN (P, h2) ≤ KNd2(P, h2) ≤ KNr =
1

8
ε.

Now

dN (h1, P) ≤ 3

4
dN (h1, t1) =

3

4
ε.

So

dN (h1, h2) ≤ 3

4
ε+

1

8
ε =

7

8
ε.

Similarly, let Q be a point on the infinite line containing h2 and t2 such that Qt2

is perpendicular to Qt1. Then

dN (t1, t2) ≤ dN (t1, Q) + dN (Q, t2) ≤ KNd2(t1, Q) +
3

4
dN (h2, t2) ≤ KNr +

3

4
ε =

7

8
ε.

Therefore,

GN (h1, t1, h2, t2) ≥ 2ε− 7

8
ε− 7

8
ε =

ε

4
.

For step 3, suppose that two segments h1t1, h2t2 of N -length ε have orientation
differing by at most θ. Without loss of generality assume that the first attacks the
second. Let R be a point on the segment h1t1 which lies in the heart of h2t2. Holding
R fixed, rotate the segment h1t1 so that it becomes parallel to h2t2. Let the angle by
which the segment is rotated be ξ; note that 0 ≤ ξ ≤ θ. Let h̃1 and t̃1 be the points
that h1 and t1 are rotated into, respectively. We have

GN (h1, t1, h2, t2) = dN (h1, t1) + dN (h2, t2)− dN (h1, h2)− dN (t1, t2),

GN (h̃1, t̃1, h2, t2) = dN (h̃1, t̃1) + dN (h2, t2)− dN (h̃1, h2)− dN (t̃1, t2),

and therefore

|GN (h1, t1, h2, t2)−GN (h̃1, t̃1, h2, t2)|

≤ |dN (h1, t1)− dN (h̃1, t̃1)|+ |dN (h1, h2)− dN (h̃1, h2)|+ |dN (t1, t2)− dN (t̃1, t2)|.
Consider first |dN (h1, t1)− dN (h̃1, t̃1)|. By the triangle inequality,

−dN (h̃1, h1)− dN (t1, t̃1) ≤ dN (h̃1, t̃1)− dN (h1, t1) ≤ dN (h̃1, h1) + dN (t1, t̃1).

Thus

|dN (h̃1, t̃1)− dN (h1, t1)| ≤ dN (h̃1, h1) + dN (t1, t̃1) ≤ KN [d2(h̃1, h1) + d2(t1, t̃1)].

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2015

Now

|dN (h1, h2)− dN (h̃1, h2)| ≤ dN (h1, h̃1) ≤ KNd2(h1, h̃1)

and

|dN (t1, t2)− dN (t̃1, t2)| ≤ dN (t1, t̃1) ≤ KNd2(t1, t̃1).

Therefore,

|GN (h1, t1, h2, t2)−GN (h̃1, t̃1, h2, t2)| ≤ KNd2(h̃1, h1) +KNd2(t1, t̃1) +KNd2(h1, h̃1)

+KNd2(t1, t̃1)

= 2KN [d2(h1, h̃1) + d2(t1, t̃1)]

= 2
√

2KN [(
√

1− cos ξ)(d2(R, h1) + d2(R, t1))] (bythelawofcosines)

= 2
√

2KN (
√

1− cos ξ)d2(h1, t1)

≤ 2
√

2KN (
√

1− cos ξ)[KNdN (h1, t1)]

= 2
√

2K2
N (
√

1− cos ξ)ε

≤ [2
√

2K2
N

√
1− cos θ]ε.

Now choose 0 < θ < π/2 such that 2
√

2K2
N

√
1− cos θ < 1/4. This completes the

third and final step of the proof of Lemma 5.2.
Definition 5.5. The soul of an arc ht is the hypercylinder defined as is the heart

of the arc but with Euclidean radius (1/KN)ε/16 and N -length dN (h, t)/4, which is
half that of the heart.

Lemma 5.6. If the souls of two long arcs intersect, then they attack each other.
Proof. Let p be a point of intersection of the souls of (h1, t1) and (h2, t2). Let pi

denote the point on segment hiti of minimum Euclidean distance to p. Then, on the
one hand, pi is in the soul of (hi, ti) and d2(p, pi) < (1/KN)ε/16 for i = 1, 2. By the
triangle inequality we have d2(p1, p2) < (1/KN)ε/8.

On the other hand, the heart of (h1, t1) has Euclidean radius (1/KN)ε/8, and
it extends (in metric dN) dN (h1, t1)/8 ≥ ε/8 beyond the soul along the arc in both
directions as well. Therefore, for any point q of the arc that is in the soul, its open
Euclidean ball of radius (1/KN)ε/8 (the set of points at Euclidean distance less than
(1/KN)ε/8 from q) is completely contained in the heart.

Taking q = p1, it follows that p2 is in the heart of (h1, t1). Therefore, (h2, t2)
attacks (h1, t1). Taking q = p2, it follows that p1 is in the heart of (h2, t2) and (h1, t1)
attacks (h2, t2).

Any soul is contained in the slightly larger than unit hypercube of (Euclidean)
side length 1 + 2(1/KN)ε/16 and volume at most k1 = (9/8)m (if ε ≤ 1). By Lemmas
5.2 and 5.6 the sum of the volumes of the souls in a family F is at most k1.

Now the volume of the soul of arc (h, t) is k2ε
m−1dN (h, t) for some constant

k2 = k2(N). So

k2ε
m−1

∑
(h,t)∈F

dN (h, t) ≤ k1

2016 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

and hence ∑
(h,t)∈F

dN (h, t) ≤ k1ε
1−m/k2.

This bounds the sum of the lengths of long arcs in a single family.
For every possible orientation ||u||2 = 1, define a corresponding set Fu = {v |

||v||2 = 1, v · u > cos(θ/2)}. Notice that for any T the set Fu induces a family of arcs
of T . The set of all Fu is an open cover of the compact unit sphere {u| ||u||2 = 1}.
Extract a finite subcover of cardinality k3. Note that k3 is independent of T and n.
However, since θ depends on N (and m), so does k3.

For all T the subcover provides a finite collection of families whose union is the
set of all long arcs in the tour T . Therefore, the sum of the lengths of all long arcs in
T is bounded by k3[k1ε

1−m/k2].
The total N -length of all short arcs is obviously bounded by nε. Choose ε =

n−1/m. The sum of the N -lengths of all arcs in T is less than nε + k1k3

k2
ε1−m =

n1−1/m + k1k3

k2
n−(1−m)/m = cm,Nn

1−1/m with cm,N = 1 + k1k3/k2, and Theorem 5.1
is proved.

For the 2-dimensional case we can use a region larger than the soul and change a
few other details to get an explicit bound on tour length.

Corollary 5.7. In the 2-dimensional Euclidean case, the length of any 2-optimal
tour is less than 8

√
51
√
n+ 459 if n ≥ 816.

Proof. Define the left heart of a long arc as that half of the arc’s heart which lies
strictly to the left of the arc when we are walking from tail to head. In this Euclidean
case, the radius of the heart is ε/8 and its length is d2(h, t)/2. Also, θ is any positive
angle with cosine exceeding 127/128.

Lemma 5.8. The left hearts of arcs in a family are mutually disjoint.
Proof. Suppose that two long arcs (h1, t1) and (h2, t2) have intersecting left hearts.

Suppose further that the two arcs’ orientations differ by η where 0 ≤ η ≤ θ. We show
that one of the arcs attacks the other and that the result follows from Lemma 5.2.

Let q be a point of intersection of the left hearts. Drop a perpendicular from q to
segment hiti at intersection point qi, i = 1, 2. Consider without loss of generality the
case d2(q, q1) ≤ d2(q, q2). We prove that in this case arc (h1, t1) attacks (h2, t2).

Extend the line segment qq2 to point q22 so that q2 is the midpoint of the other
points: q2 = (q + q22)/2. Observe that the entire segment qq22 is within the heart
(not necessarily the left heart) of (h2, t2). Therefore, all we have to do to prove that
(h2, t2) is attacked is to verify that the segment h1t1 intersects this segment qq22.

Let p denote the point of intersection of the (infinite) lines h1t1 and qq22. The
intersection p is sure to exist because η < π/2. First, we show that p is “between” q
and q22 or simply that d2(q, p) ≤ d2(q, q22). Since η ≤ θ, we have

d2(q, q1)

d2(q, p)
= cos η ≥ 1/2.

Hence d2(q, p) ≤ 2d2(q, q1) ≤ 2d2(q, q2) = d2(q, q22) as desired.
Second, we show that p is between h1 and t1. Now

d2(q1, p)

d2(q, q1)
= tan η ≤ tan θ ≤

√
3.

Also, q is in the left heart of (h1, t1) and q1 lies on that arc. Therefore, d2(q, q1) ≤ ε/8.
Finally, recall that the arc (h1, t1) is long, whence d2(h1, t1) ≥ ε. Putting these

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2017

inequalities together, we find that q1 and p are near each other:

d2(q1, p) ≤
√

3d2(q, q1) ≤ ε
√

3/8 < ε/4 ≤ d2(h1, t1)/4.

Since q1 is in the middle half of the arc, d2(q1, p) ≤ d2(h1, t1)/4 implies that p
lies in the arc (h1, t1). Therefore, p is the desired point of intersection of the two
segments, (h2, t2) is attacked, and the lemma is proved.

Any left heart is contained in the square of side 1+ε/4 and area at most 1+9ε/16
(since ε ≤ 1). By Lemma 5.8 the sum of the areas of the left hearts in a family F is
at most 1 + 9ε/16.

The area of the left heart of arc (h, t) is εd2(h, t)/16. Thus

(ε/16)
∑

(h,t)∈F
d2(h, t) ≤ 1 + 9ε/16

and hence ∑
(h,t)∈F

d2(h, t) ≤ 16/ε+ 9.

The number of families needed to cover the circle is d 2π
arccos (127/128)e = 51. There-

fore, the sum of the lengths of all long arcs in T is bounded by 51(16/ε + 9) =
816/ε+ 459.

Choose ε =
√

816/
√
n, which is at most 1 if n ≥ 816. The sum of the lengths of all

arcs in T is less than
√

816
√
n (for the short arcs) +(

√
816
√
n+459) = 8

√
51
√
n+459

and Corollary 5.7 is proved.

6. Expected value of the performance ratio in the unit hypercube. In
this section we combine Theorem 5.1 with well-known distributional properties of
optimal tour lengths to show that the expected performance ratio is bounded by a
constant.

Let Sn be any set of n points in the m-dimensional unit hypercube [0, 1]m ⊂ Rm.
Let OPT (Sn) be an optimal tour (under norm N) on Sn, and let T (Sn) be a 2-optimal
tour (under norm N). Let In be n points picked i.i.d. from the m-dimensional unit
hypercube under the uniform distribution.

As an immediate corollary to Theorem 5.1 and a lower bound of Ω(n(m−1)/m) on

E[OPT (In)] [8], we infer that there exists a constant γm,N such that E[wt(T (In))]
E[OPT (In)] ≤

γm,N for all n; the ratio of the expected values is bounded. We now show that
wt(T (In))

wt(OPT (In)) is O(1) with high probability and that the expected value of this ratio is

O(1).
The following is easily obtainable from [8, Lemma 3, p. 190]: There exist constants

FN > 0 and 0 < ρ < 1 such that for all n > 1,

P
[
wt(OPT (In)) ≤ FN · n

m−1
m

]
≤ ρn.

From this and Theorem 5.1 we get the following theorem.
Theorem 6.1.

P

[
wt(T (In)) ≥ cm,N

FN
· wt(OPT (In))

]
≤ ρn.

2018 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

Corollary 6.2. For all m and all norms N on Rm there exists a constant c′m,N
such that

E

[
wt(T (In))

wt(OPT (In))

]
≤ c′m,N ,

where T (In) (respectively, OPT (In)) is the length of the longest 2-optimal tour (re-
spectively, the shortest tour) on the points In with respect to N .

Proof. We first note that for any set of points Sn, wt(T (Sn))
wt(OPT (Sn)) ≤ n; this fol-

lows, since if the diameter (under norm N) of Sn is D, then wt(T (Sn)) ≤ nD and
wt(OPT (Sn)) ≥ D.

Let n0 be such that for all n ≥ n0, nρ
n ≤ 1. Let

δN = max
2≤n≤n0

E

[
wt(T (In))

wt(OPT (In))

]
.

Now consider n ≥ n0.

E

[
wt(T (In))

wt(OPT (In))

]
= P [wt(T (In)) <

cm,N
FN

· wt(OPT (In))] · E
[

wt(T (In))

wt(OPT (In))

∣∣∣∣wt(T (In))

<
cm,N
FN

· wt(OPT (In))

]
+P [wt(T (In)) ≥ cm,N

FN
· wt(OPT (In))] · E

[
wt(T (In))

wt(OPT (In))

∣∣∣∣wt(T (In))

≥ cm,N
FN

· wt(OPT (In))

]
<
cm,N
FN

+ ρnn

≤ cm,N
FN

+ 1.

Taking c′m,N = max{δN , cm,NFN
+ 1}, we are done.

7. Expected running time of 2-opt. This section gives polynomial upper
bounds on the average number of iterations of 2-opt under the L2 and L1 norms.

7.1. The L2 metric. In the first subsection, we prove that the average number
of iterations done by the 2-opt local-improvement algorithm on n random points in
the Euclidean unit square is O(n10 log n). Prior to this paper, no polynomial upper
bound on the expected time was known. However, Kern proved a related result [9].

Theorem 7.1. There is a c such that the probability that 2-opt does more than
n16 iterations is at most c/n.

Kern’s proof allows the possibility that 2-opt does exponentially many iterations
with probability Ω(1/n). Kern writes: “Our approach does not seem to yield inter-
esting results about average running times.” We will prove that the expected time is
polynomial, and we will rely heavily on Kern’s lemmas in doing so.

The basic idea of Kern’s proof is to show that, with probability at least 1− c/n,
every iteration decreases the cost by at least ε(n) > 0; the initial tour being of length

at most
√

2n, the number of iterations can then not exceed
√

2n
ε(n) .

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2019

To prove that the expected number of iterations is polynomial, we need the fol-
lowing definitions and lemma from [9].

Definition 7.2. Given points P,Q,R, S ∈ [0, 1]2, define G(P,Q,R, S) = [d(P,Q)
+ d(R,S)]− [d(P,R) + d(Q,S)].

Definition 7.3. Given three points P,Q,R in the unit square and ε > 0, define
Bε(P,Q,R) to be the set of points S in the unit square such that |G(P,Q,R, S)| ≤ ε.

Lemma 7.4 (see [9]). There is a K ≥ 1 with the following property. For any
three points P,Q,R in the unit square with P 6= Q, the area of Bε(P,Q,R) (which is
the conditional probability that |G(P,Q,R, S)| ≤ ε, given P,Q,R) is bounded above by
K
√
ε/d(P,Q).
Let X1, X2, . . . , Xn be points chosen independently and uniformly at random from

the unit square.
Definition 7.5. If i, j, k, l are distinct elements of {1, 2, . . . , n}, define F (i, j, k, l)

= G(Xi, Xj , Xk, Xl).
Definition 7.6. Define H = {(i, j, k, l, i′, j′, k′, l′) such that i, j, k, l, i′, j′, k′, l′ ∈

{1, 2, . . . , n}, |{i, j, k, l}| = |{i′, j′, k′, l′}| = 4, and {i, j, k, l} 6= {i′, j′, k′, l′}}.
Definition 7.7. Given n random points X1, X2, . . . , Xn in the unit square, define

F̂ = min{F (i′, j′, k′, l′) : (i, j, k, l, i′, j′, k′, l′) ∈ H

and 0 < F (i, j, k, l) ≤ F (i′, j′, k′, l′)}.

Definition 7.8. Let N = min{n!, 1/F̂}.
We now give a very rough road map of the proof that the expected number of

iterations done by 2-opt is O(n10 log n). It is not hard to see that any two consecutive
improving 2-changes involve distinct 4-sets of vertices. By the definition of F̂ , 2-opt
must decrease the cost of the tour by at least F̂ in any two consecutive iterations. The
cost of the initial tour being at most

√
2n, the number of iterations cannot exceed

2
√

2n/F̂ . Clearly, the number of iterations never exceeds n!. Thus the number of
iterations done is at most min{(2n√2)·n!, 2n

√
2/F̂} = (2n

√
2)N. Our goal is therefore

to bound E[N].
Notice that if F̂ ∈ [ε2 , ε), then N , which is at least 1

2n
√

2
times the number of

iterations, is bounded by 2
ε . The chance that F̂ is in this interval is bounded by

Cn8ε, since P [F̂ ≤ ε] ≤ Cn8ε (this is Lemma 7.11). Hence the contribution to the
expected value of N due to [ε2 , ε) is bounded by 2Cn8. Since N = n! if F̂ < 1

n! and

F̂ ≤ 2 always, we need consider only lg n!+O(1) intervals, each of which contributes at
most 2Cn8 to E[N]. Thus E[N] is O(n8 lg n!), and the expected number of iterations
is O(n10 log n).

Now we continue with the proof.
Lemma 7.9. Let ε > 0. Choose points X1, X2, . . . , Xn in the unit square in-

dependently and uniformly at random. Let (i, j, k, l, i′, j′, k′, l′) ∈ H. Suppose that
l 6∈ {i′, j′, k′, l′} and that l′ 6∈ {i, j, k, l}.

1. If {i, j} 6= {i′, j′}, then P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε] ≤ 64π2K2ε.
2. If {i, j} = {i′, j′}, then P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε] ≤ 14πK2ε·lg 1

ε
if ε ≤ 1

2 .
Proof. From Lemma 7.4 we have

P [Xl ∈ Bε(Xi, Xj , Xk) : Xi, Xj , Xk] = P [|F (i, j, k, l)| ≤ ε : Xi, Xj , Xk] ≤ K
√
ε

d(Xi, Xj)
.

2020 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

Then

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε : Xi, Xj , Xk, Xi′ , Xj′ , Xk′]

(notice that l and l′ must be distinct from each other and from i, j, k, i′, j′, k′, although
the latter six need not be distinct)

= P [Xl ∈ Bε(Xi, Xj , Xk), Xl′ ∈ Bε(Xi′ , Xj′ , Xk′) : Xi, Xj , Xk, Xi′ , Xj′ , Xk′]

≤ K
√
ε

d(Xi, Xj)

K
√
ε

d(Xi′ , Xj′)

=
K2ε

d(Xi, Xj)d(Xi′ , Xj′)
.

Therefore,

lP [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε : Xi, Xj , Xk, Xi′ , Xj′ , Xk′]

≤ K2ε

d(Xi, Xj)d(Xi′ , Xj′)

and therefore

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε : Xi, Xj , Xi′ , Xj′] ≤ K2ε

d(Xi, Xj)d(Xi′ , Xj′)
.(4)

If {i, j} 6= {i′, j′}, then

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε]

=

∞∑
r=0

∞∑
s=0

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε :

d(Xi, Xj) ∈ [2−r, 2−r+1), d(Xi′ , Xj′) ∈ [2−s, 2−s+1)]

·P [d(Xi, Xj) ∈ [2−r, 2−r+1), d(Xi′ , Xj′) ∈ [2−s, 2−s+1)]

Now

P [d(Xi, Xj) ∈ [2−r, 2−r+1), d(Xi′ , Xj′) ∈ [2−s, 2−s+1)]

≤ P [d(Xi, Xj) ≤ 2−r+1, d(Xi′ , Xj′) ≤ 2−s+1]

≤ π(2−r+1)2π(2−s+1)2

since {i, j} 6= {i′, j′}. Thus

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε]

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2021

≤
∞∑
r=0

∞∑
s=0

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε :

d(Xi, Xj) ∈ [2−r, 2−r+1), d(Xi′ , Xj′) ∈ [2−s, 2−s+1)]

·P [d(Xi, Xj) ∈ [2−r, 2−r+1), d(Xi′ , Xj′) ∈ [2−s, 2−s+1)]

≤
∞∑
r=0

∞∑
s=0

K2ε

2−r2−s
π(2−r+1)2π(2−s+1)2

= 16π2

∞∑
r=0

∞∑
s=0

K2ε2r2s2−2r2−2s

= 16π2K2ε ≤
∞∑
r=0

∞∑
s=0

2−r2−s

= 16π2K2ε

(∞∑
r=0

2−r
)(∞∑

s=0

2−s
)

= 64π2K2ε.

If instead {i, j} = {i′, j′}, we have

P [Xl ∈ Bε(Xi, Xj , Xk) : Xi, Xj , Xk] = P [|F (i, j, k, l)| ≤ ε : Xi, Xj , Xk] ≤ K
√
ε

d(Xi, Xj)
.

From (4) we know that

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε : Xi, Xj] ≤ K2ε

d(Xi, Xj)2
.

Thus

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε]

=

∞∑
s=0

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε : d(Xi, Xj) ∈ [2−s, 2−s+1)]

·P [d(Xi, Xj) ∈ [2−s, 2−s+1)].

Since

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε : d(Xi, Xj) ∈ [2−s, 2−s+1)] ≤ min

{
K2ε

(2−s)2
, 1

}
= min{K2ε22s, 1},

we have

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε]

≤
∞∑
s=0

P [d(Xi, Xj) ∈ [2−s, 2−s+1)] ·min{K2ε22s, 1}

2022 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

≤
∞∑
s=0

P [d(Xi, Xj) ≤ 2−s+1] ·min{K2ε22s, 1}

≤
∞∑
s=0

4π2−2s ·min{K2ε22s, 1}.

Now K2ε22s < 1 if and only if s < 1
2 lg 1

K2ε . Therefore, the quantity is at most

b 1
2 lg 1

K2ε
c∑

s=0

4π2−2sK2ε22s +
∞∑

s=d 1
2 lg 1

K2ε
e
4π2−2s · 1

≤ 4πK2ε

(
1 +

1

2
lg

1

K2ε

)
+ 8πK2ε.

If ε ≤ 1
2 , then since K ≥ 1 we have

4πK2ε

(
1 +

1

2
lg

1

K2ε

)
+ 8πK2ε ≤ 14πK2ε · lg 1

ε
.

Lemma 7.10. Let ε > 0. Let (i, j, k, l, i′, j′, k′, l′) ∈ H.
1. If |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≤ 1, then P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤
ε] ≤ 64π2K2ε.

2. If |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≥ 2 and ε ≤ 1
2 ,then

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε] ≤ 64π2K2ε · lg 1

ε

.
Proof. By the symmetry in F , we have F (a, b, c, d) = F (c, d, a, b) = F (b, a, d, c).

This means that it is possible to move any one of the indices into the final position
without changing the value of F (a, b, c, d). Formally, if x ∈ {a, b, c, d}, then there
is a permutation (a′, b′, c′, d′) of {a, b, c, d} such that d′ = x and F (a′, b′, c′, d′) =
F (a, b, c, d) always.

Since {i, j, k, l} 6= {i′, j′, k′, l′}, we can find an x in {i, j, k, l}− {i′, j′, k′, l′} and a
y in {i′, j′, k′, l′} − {i, j, k, l}. By moving x and y to the last position, without loss of
generality we may assume that l 6∈ {i′, j′, k′, l′} and l′ 6∈ {i, j, k, l}.

Now we invoke Lemma 7.9. If |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≤ 1, clearly {i, j} 6=
{i′, j′}. Lemma 7.9 implies that P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε] ≤ 64π2K2ε.

If |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≥ 2, then possibly {i, j} = {i′, j′} and possibly
not. In the former case, P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε] ≤ 14πK2ε · lg 1

ε ≤
64π2K2ε · lg 1

ε (if ε ≤ 1
2). In the latter case, P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤

ε] ≤ 64π2K2ε.
Recall the definition of F̂ :

F̂ = min{F (i′, j′, k′, l′) : (i, j, k, l, i′, j′, k′, l′) ∈ H and 0 < F (i, j, k, l) ≤ F (i′, j′, k′, l′)}.

Lemma 7.11. Let n ≥ 8 and let C = 9280π2K2. Let 2−n
2 ≤ ε ≤ 1

2 . Then

P [F̂ ≤ ε] ≤ Cn8ε.

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2023

In P [F̂ ≤ ε] ≤ Cn8ε, the n8 comes from the fact that H in the definition of F̂ has
at most n8 8-tuples. The ε comes from Lemma 7.4, which has a

√
ε. Very roughly,

because F̂ involves two 4-tuples, we will be able to replace the
√
ε in Lemma 7.4 with

its square, ε.
Proof. In this terminology, F̂ ≤ ε if and only if there is an 8-tuple (i, j, k, l, i′, j′,

k′, l′) ∈ H such that 0 < F (i, j, k, l) ≤ ε and 0 < F (i′, j′, k′, l′) ≤ ε. Then

P [F̂ ≤ ε] ≤
∑

P [|F (i, j, k, l)| ≤ ε, |F (i′, j′, k′, l′)| ≤ ε],

where the summation is over H. There are at most n8 8-tuples (i, j, k, l, i′, j′, k′, l′) ∈
H such that |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≤ 1. There are at most 122n6 8-tuples such
that |{i, j, k, l} ∩ {i′, j′, k′, l′}| ≥ 2. By Lemma 7.10, if 0 < ε ≤ 1

2 , then

P [F̂ ≤ ε] ≤ n8(64π2K2ε) + 144n6

(
64π2K2ε lg

1

ε

)
.

Since 2−n
2 ≤ ε ≤ 1

2 ,
1
ε ≤ 2n

2

and lg 1
ε ≤ n2. Thus the preceding expression is no

more than n8(64π2K2)ε+ 144n6(64π2K2n2)ε = n8(9280π2K2)ε. Let C = 9280π2K2.

Therefore, P [F̂ ≤ ε] ≤ Cn8ε if 2−n
2 ≤ ε ≤ 1

2 and n ≥ 8.

Recall that N = min{n!, 1/F̂}.
Lemma 7.12. E[N] ≤ 4Cn9 lg n if n ≥ 8.
Proof. We have

E[N] ≤
dlgn!e∑
r=−1

P [F̂ ∈ [2−r, 2−r+1)] · 2r + P

[
F̂ <

1

n!

]
· n!

≤
dlgn!e∑
r=−1

P [F̂ ≤ 2−r+1]2r + P

[
F̂ <

1

n!

]
n!.

Thus

E[N] ≤
1∑

r=−1

P [F̂ ≤ 2−r+1]2r +

dlgn!e∑
r=2

P [F̂ ≤ 2−r+1]2r + P

[
F̂ <

1

n!

]
n!

≤
(

1

2
+ 1 + 2

)
+

dlgn!e∑
r=2

(Cn82−r+1)2r + Cn8 1

n!
n!

= 3.5 + 2Cn8(dlg n!e − 1) + Cn8

≤ 3.5 + 2Cn8(n lg n)

≤ 4Cn9 lg n,

since we are assuming n ≥ 8.
Theorem 7.13. The average number of 2-changes made by algorithm 2-opt

when run on n i.i.d. uniform random points in the Euclidean unit square is at most
(8C
√

2)n10 lg n, for any n ≥ 8.

2024 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

Proof. If a 2-change is made, replacing edges (xi, xj) and (xk, xl) by (xi, xk)
and (xj , xl), then the same four vertices {i, j, k, l} cannot be used in an improving
2-change in the next iteration. Therefore, any two consecutive improving 2-changes
involve distinct 4-tuples of vertices.

By the definition of F̂ , 2-opt must decrease the cost of the tour by at least F̂ in
any two consecutive iterations. The cost of the initial tour being at most

√
2n, the

number of iterations cannot exceed 2
√

2n/F̂ . Clearly, the number of iterations never
exceeds n!.

The number of iterations done is at most

min

{
(2n
√

2) · n!,
2n
√

2

F̂

}

= (2n
√

2) ·min

{
n!,

1

F̂

}
= (2n

√
2)N.

Thus the average number of iterations is at most (2n
√

2)E[N] ≤ (8C
√

2)n10 lg n
for all n ≥ 8.

7.2. The L1 metric. In this subsection we bound the expected number of it-
erations of 2-opt under the L1 norm. In contrast with Theorem 7.13 the proof is
somewhat nonconstructive, but it is fairly short and the polynomial is of lower order.

Theorem 7.14. Let n points be independently sampled from the uniform distri-
bution in the m-dimensional unit hypercube. Let 2-opting be performed with respect
to the L1 norm. Then the expected number of iterations required is O(n6 log n).

Proof. Let Im denote the unit hypercube. Suppose v1, v2, v3, v4 are four points
sampled independently from the uniform distribution on Im. Let Z denote the random
variable equal to G(v1, v2, v3, v4) = ||v1−v2||1 + ||v3−v4||1−||v1−v3||1−||v2−v4||1.
Note that distances are computed according to the L1 norm.

We study the distribution of Z. For clarity we focus on the case m = 2 and use
remarks to extend the proof to the m-dimensional case.

The four points in I2 are defined by eight (4m) random variables, denoted xi, yi :
i = 1, . . . , 4, and drawn independently from the uniform distribution on [0, 1]. Let
g(x1, . . . , x4) = |x1 − x2|+ |x3 − x4| − |x1 − x3| − |x2 − x4|. Then Z is the sum of the
i.i.d. variables X and Y where X = g(x1, x2, x3, x4) and Y = g(y1, y2, y3, y4). The key
is to understand the distribution of X, because X + Y will have a distribution found
as the convolution of two i.i.d. variables with this distribution. (In m dimensions, Z
is the m-fold convolution of i.i.d. variables with this distribution.)

Lemma 7.15. With probability 1/3 the variable X = 0; with probability 2/3 the
variable X is distributed according to a continuous density function h̄ on [−2, 2].

Proof. Consider the conditional distribution of X, conditioned on the event π1 =
{x1 ≥ x2 ≥ x3 ≥ x4}. Notice that X = 2x3 − 2x2 under this condition. Now if we
take four samples i.i.d. from the uniform distribution and let W equal the difference
between the third and second largest, then obviously W has a continuous density
function. Therefore, X has continuous conditional density function conditioned on
event π1. We denote the conditional probability density by hπ1 .

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2025

By symmetry, for seven other π’s we can make the same argument, and for each
we get a continuous conditional probability density function hπi . For eight additional
πi’s the conditional distribution is like −W , i.e., twice the difference between the
second and third largest.

For the last eight πi, the conditional distribution of X is degenerate with all its
mass at zero. This occurs when the projections of the arcs on the x-axis overlap and
have opposite orientations.

The unconditional density function of X is

h =

24∑
i=1

1

24
hπi .

Therefore, X has a hybrid distribution. It has a mass point of weight 8/24 = 1/3
at 0. The remaining 2/3 of the mass has continuous density because each of the 16
contributing hπi ’s is continuous.

When the distribution of X is convolved with itself to get Z, the result is a hybrid
distribution: Z = 0 with probability 1/9; Z is distributed according to a continuous
density, denoted h̄2, with probability 8/9. This is because X and Y are indepen-
dent. (In higher dimensions each additional convolution is of two independent hybrid
distributions, each containing one mass point at zero, and continuous everywhere
else, and these properties are obviously preserved in the sum of the distributions.)
In m dimensions, the probability is (1/3)m that a given random 4-tuple of points
has Z = 0; Z is distributed according to a continuous density, denoted h̄m, with
probability 1− (1/3)m.

A local improvement algorithm will not make any of the 2-changes corresponding
to 4-tuples where Z = 0. The algorithm will be fast if there are no very small positive
Z values.

Now consider the density function h̄m. It is continuous everywhere on [−2m, 2m]
and is symmetric around 0. Since a continuous function on a compact set attains its
maximum, h̄m has a maximum M . This implies that

P [0 < |Z| ≤ ε] ≤ 2Mε for all ε > 0.

Now let S denote a sample of n points on Im. Let ∆ denote the smallest of all
nonzero absolute differences in tour length from 2-changes:

∆ = min
v1, v2, v3, v4 ∈ S

G(v1, v2, v3, v4) 6= 0

|G(v1, v2, v3, v4)|

(where the minimum is over distinct points). Since the minimum is taken over fewer
than n4 4-tuples, we get

P [∆ < ε] < n4(2Mε) = cn4ε.

By the same argument as in Lemma 7.12, with an n4 instead of an n8 term, we
have E[min{n!, 1/∆}] ≤ 4cn5 log n. The cost of the initial tour being at most 2n, the
expected number of iterations is at most (2n)4cn5 log n, which is O(n6 log n).

2026 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

8. Extending Lueker’s construction. In 1976, Lueker [15] constructed, for
each n ≥ 4, a family of n-node weighted cliques Gn on vertex set {x0, x1, x2, . . . , xn−1}
with the property that the naive 2-opt algorithm can do at least 2bn/2c−2 iterations.
Although the only thing we need from his construction is that each of the tours
includes the edge {x0, xn−1}, we give Lueker’s (unpublished) construction here: For
each 0 ≤ i < j ≤ n− 1, define the weight wij of edge {xi, xj} as follows.

1. j is even.
(a) If i=0, then wij = 22j .
(b) If i is positive and odd, then wij = 22i+3.
(c) If i is positive and even, then wij = 22i.

2. j is odd.
(a) If i=0, then wij = 22j+3.
(b) If i is positive and odd, then wij = 22i+4.
(c) If i is positive and even, then wij = 22i+3.

For q ≤ bn/2c − 1, let aq = 〈x1, x2, x3, . . . , x2q〉 and let a′q be its reverse. Lueker
proves the following theorem.

Theorem 8.1. Let T be a tour of Gn that contains the block 〈x0, aq, x2q+1〉. Then
there is a sequence of at least 2q−1 improving 2-changes which lead to the replacement
of this block by 〈x0, a

′
q, x2q+1〉 (and which leaves the rest of the tour unchanged).

We refer to [15] for a proof, which converts the string 〈x0, aq, x2q+1, x2q+2, x2q+3〉
to 〈x0, a

′
q, x2q+1, x2q+2, x2q+3〉 in at least 2q−1 steps by induction, then to 〈x0, a

′
q,

x2q+2, x2q+1, x2q+3〉 in one step, then to 〈x0, x2q+1, x2q+2, aq, x2q+3〉 in one step, then
to 〈x0, x2q+1, x2q+2, a

′
q, x2q+3〉 in at least 2q−1 steps by a clever use of the induc-

tive assertion, and last to 〈x0, x2q+2, x2q+1, a
′
q, x2q+3〉. Notice that, as claimed, edge

{x0, xn−1} is in all tours.
It is now our job to extend the result to all k ≥ 3. Since k ≥ 4 is easy, we do that

case first.
Theorem 8.2. For any k ≥ 4, for any N ≥ 2k, there is an N -vertex weighted

graph on which there exists a sequence of at least 2bN/2c−k improving k-changes.
Proof. The idea is to take Gn and add 2(k− 2) new vertices at distance one from

each other and from the original vertices. Any 2-change in the original proof can be
converted to a k-change in the new graph by flipping two original edges and k − 2
new ones.

Let l = k − 2 and add to Gn 2l new vertices:

s, t, y1, z1, y2, z2, . . . , yl−1, zl−1.

The distance between any pair of these vertices, as well as that between these new
vertices and the n old ones, is 1. Let

A = {{y1, z1}, {y2, z2}, {y3, z3}, . . . , {yl−1, zl−1}},

L = {{s, y1}, {z1, y2}, {z2, y3}, . . . , {zl−1, t}},

and

R = {{s, z1}, {y1, z2}, {y2, z3}, . . . , {yl−1, t}}.

The key fact is that A ∪ L is the edge set of a Hamiltonian path from s to t among
the new vertices, A ∪R is the edge set of a Hamiltonian path from s to t among the

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2027

new vertices, and A,L,R are pairwise disjoint. Furthermore, A ∪ L and A ∪R differ
in exactly l edges.

Now let S, T be the edge sets of any two tours of Gn that both contain edge
{x0, xn−1} and share exactly n − 2 edges. Let S′ = (S − {x0, xn−1}) ∪ ({{x0, s},
{xn−1, t}} ∪ A ∪ L) and T ′ = (T − {x0, xn−1}) ∪ ({{x0, s}, {xn−1, t}} ∪ A ∪ R). S′

induces a tour of the new graph, T ′ induces a tour of the new graph as well, and S′

and T ′ differ in exactly 2 + l = k edges. Since all the new edges have weight 1, if
moving from S to T on the original graph is a cost-decreasing 2-change, then moving
from S′ to T ′ in the new graph is a cost-decreasing k-change. (In the next step, we
can interchange the roles of the y’s and z’s, since they are symmetric.)

Lueker’s proof gives a sequence of at least 2bn/2c−2 cost-decreasing 2-changes on
an n-vertex graph (if n ≥ 4). The new graph we built has N = n+2l = n+2(k−2) =
n+ 2k − 4 vertices, and there is a sequence of 2bn/2c−2 cost-decreasing k-changes. In
terms of the number N of vertices in the new graph, the number of k-changes is at
least 2bN/2c−k.

Now we tackle k = 3.
Theorem 8.3. For each even N ≥ 8, there is an N -vertex weighted graph on

which there exists a sequence of at least 2bN/4c−1 improving 3-changes.
Proof. We use wij to denote the weight of {xi, xj} in Gn. Let wii = 0 for all

i. Take two copies of Gn. One copy has vertex set V = {x0, . . . , xn−1}; the other
has vertex set V ′ = {x′0, . . . , x′n−1}. The weight of edge {x′i, x′j}, i 6= j, and that of
{xi, x′j} equals wij . Call the new 2n-node graph Hn.

Let S be the edge set of any tour inGn containing edge {x0, xn−1}. There is an ob-
vious associated tour of Hn: Let A = S−{{x0, xn−1}}. Let A∗ = {{x′i, x′j}|{xi, xj} ∈
A}. Then the associated tour contains edges S′ = {{x0, x

′
n−1}, {x′0, xn−1}} ∪A∪A∗.

It is not hard to see that S′ is the edge set of a tour in Hn.
We will prove the following. Let S be any tour of Gn containing {x0, xn−1},

and let S′ be the associated tour of Hn. Let T be a tour of Gn obtained from S
by one cost-decreasing 2-change, such that the 2-change does not involve the edge
{x0, xn−1}. Then the tour T ′ of Hn associated with T can be obtained from S′ via
two cost-decreasing 3-changes. (We are implicitly identifying tours with their edge
sets.)

Consider the tour S as directed from x0 to xn−1. Suppose that the 2-change
involves swapping the edges {xi, xj}, {xk, xl}, where, in S, the vertex xi is the first
among the four visited by S, xj is second, xl is third, and xk is fourth. Since the 2-
change results in a tour T , it must replace the two missing edges by {xi, xl}, {xk, xj}.
(If they were replaced by {xi, xk}, {xl, xj}, then the new “tour” would be discon-
nected.)

Let S′ and T ′ be the tours of Hn associated with S and T , respectively. S′ and
T ′ differ only in that to get from S′ to T ′ one drops the four edges {xi, xj}, {x′i, x′j},
{xk, xl}, {x′k, x′l} and adds {xi, xl}, {x′i, x′l} and {xk, xj}, {x′k, x′j}.

We know that switching from S to T decreased the cost; thus (wij +wkl)− (wil+
wkj) > 0. In S′, we have the four edges {xi, xj}, {xk, xl}, {x′i, x′j}, {x′k, x′l}. We leave
the last one unchanged and change the first three to {xi, xl}, {xk, x′j}, {x′i, xj}. It is
easy to see that the new “tour” is indeed a tour, so this is a valid 3-change, provided
that we have decreased the cost. The decrease in cost is

(wij + wkl + wij)− (wil + wkj + wij) = (wij + wkl)− (wil + wkj),

2028 BARUN CHANDRA, HOWARD KARLOFF, AND CRAIG TOVEY

which we know to be positive. The next 3-change leaves edge {xi, xl} unchanged. It
flips {xk, x′j}, {x′i, xj}, {x′k, x′l} to {xk, xj}, {x′i, x′l}, {x′k, x′j}. The decrease in cost is

(wkj + wkl + wij)− (wil + wkj + wkj) = (wij + wkl)− (wil + wkj),

which we know to be positive. The resulting edge set contains {xk, xj}, {x′k, x′j},
{xi, xl}, {x′i, x′l} and is otherwise the same as S′; thus it is T ′ and therefore a tour.

Lueker’s proof gave 2bn/2c−2 2-changes on an n-vertex graph, n ≥ 4. We have
N = 2n, and we make two 3-changes for each original 2-change. In terms of N , we
have 2bN/4c−1 3-changes if N ≥ 8 is even.

9. Open problems.
• One of the best TSP algorithms in actual experiments [2] is the Lin–Kernighan

algorithm [13], a local search algorithm with a more complex neighborhood
structure. Since a Lin–Kernighan optimal tour is also 2-optimal, all the upper
bounds on the performance ratio of 2-opt also hold for Lin–Kernighan. Can
one do better for Lin–Kernighan?
• Our lower bounds on the performance ratio of k-opt are obtained by showing

that there is some k-optimal tour of large weight. Suppose that we start with
a random tour and then deterministically make improving k-changes. Can
we get better performance guarantees?
• Can Lueker’s results be extended to the Euclidean plane; i.e., is there a

graph in the Euclidean plane for which there exists an exponential number
of improving 2-changes?
• Can Theorem 3.4 be generalized to any k-opt algorithm; i.e., for arbitrary

metric spaces can it be proved that, as k increases, the performance guarantee
of the k-opt algorithm improves?

Acknowledgments. We thank Jim Dai, Bob Foley, Tony Hayter, Mark Krentel,
Mike Todd, David Shmoys, and Sundar Vishwanathan for helpful discussions on the
material of the paper and George Lueker for kindly permitting us to include his
construction in section 8. We also thank the two anonymous referees for their remarks.

REFERENCES

[1] N. Alon and Y. Azar, On-line Steiner trees in the Euclidean plane, in Proc. 8th ACM Sym-
posium on Computational Geometry, Berlin, 1992, pp. 337–343.

[2] J. L. Bentley, Invited talk at the 1st SIAM Symposium on Discrete Algorithms, San Francisco,
1990.

[3] J. L. Bentley and J. Saxe, An analysis of two heuristics for the Euclidean traveling salesman
problem, in Proc. 18th Allerton Conference on Communication, Control and Computing,
Urbana-Champaign, IL, 1980, pp. 41–49.

[4] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[5] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph span-

ners, in Proc. 8th ACM Symposium on Computational Geometry, Berlin, 1992, pp. 192–201.
[6] L. K. Grover, Local search and the local structure of NP-complete problems, Oper. Res. Lett.,

12 (1992), pp. 235–243.
[7] D. J. Johnson, C. H. Papadimitriou, and M. Yannakakis, How easy is local search?, J.

Comput. System Sci., 37 (1988), pp. 79–100.
[8] R. M. Karp and J. M. Steele, Probabilistic analysis of heuristics, in The Traveling Salesman

Problem, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., John
Wiley and Sons, New York, 1985, pp. 181–205.

[9] W. Kern, A probabilistic analysis of the switching algorithm for the Euclidean TSP, Math.
Programming, 44 (1989), pp. 213–219.

NEW RESULTS ON THE OLD k-OPT ALGORITHM FOR THE TSP 2029

[10] M. W. Krentel, Structure in locally optimal solutions, in Proc. 30th Symposium on Founda-
tions of Computer Science, Research Triangle Park, NC, 1989, pp. 216–221.

[11] M. W. Krentel, personal communication, Rice University, Houston, TX.
[12] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, eds., The Traveling

Salesman Problem, John Wiley and Sons, New York, 1985.
[13] S. Lin and B. W. Kernighan, An effective heuristic for the traveling salesman problem, Oper.

Res., 21 (1973), pp. 489–516.
[14] L. Loomis and S. Sternberg, Advanced Calculus, Addison-Wesley, Reading, MA, 1968.
[15] G. Lueker, Unpublished manuscript, Princeton University, Princeton, NJ, 1975.
[16] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-

plexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.
[17] C. A. Rogers, Covering a sphere with spheres, Mathematika, 10 (1963), pp. 157–164.

PARALLEL COMPLEXITY OF NUMERICALLY ACCURATE
LINEAR SYSTEM SOLVERS∗

MAURO LEONCINI† , GIOVANNI MANZINI‡ , AND LUCIANO MARGARA§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2030–2058

Abstract. We prove a number of negative results about practical (i.e., work efficient and
numerically accurate) algorithms for computing the main matrix factorizations. In particular, we
prove that the popular Householder and Givens methods for computing the QR decomposition are
P -complete, and hence presumably inherently sequential, under both real and floating point number
models. We also prove that Gaussian elimination (GE) with a weak form of pivoting, which aims
only at making the resulting algorithm nondegenerate, is likely to be inherently sequential as well.
Finally, we prove that GE with partial pivoting is P -complete over GF(2) or when restricted to
symmetric positive definite matrices, for which it is known that even standard GE (no pivoting) does
not fail. Altogether, the results of this paper give further formal support to the widespread belief
that there is a tradeoff between parallelism and accuracy in numerical algorithms.

Key words. P -complete problems, parallel complexity, NC algorithms, inherently sequential
algorithms, matrix factorization, numerical stability

AMS subject classifications. 68Q22, 68Q25, 65F05

PII. S0097539797327118

1. Introduction. Matrix factorization algorithms form the backbone of many
numerical libraries, such as LINPACK and LAPACK [7, 2]. They are also available as
primitive routines in state-of-the-art scientific computing environments like MATLAB
[17]. Indeed, factoring a matrix is almost always the first step of many scientific
computations, and usually the one which places the heaviest demand in terms of
computing resources. Some authors have investigated the parallel complexity of the
most popular and important matrix factorizations, namely, the (P)LU and QR(Π)
decompositions (see section 2 for definitions and simple properties). A list of positive
known results follows.

1. LU decomposition is in arithmetic NC, whenever it exists, i.e., provided that
the leading principal minors of the input matrix are nonsingular (in this case we will
say that the matrix is strongly nonsingular) [19, 21].

2. QR decomposition is in arithmetic NC for matrices with full column rank,
since it easily reduces to LU decomposition of strongly nonsingular matrices [19].

3. PLU decomposition is in arithmetic NC for nonsingular matrices [8]. The
algorithm for finding a permutation matrix P such that PTA is strongly nonsingular

∗Received by the editors September 10, 1997; accepted for publication July 5, 1998; published
electronically June 23, 1999. This work merges and extends preliminary results that appeared as
Parallel complexity of Householder QR factorization, in Proc. European Symp. on Algorithms, Lec-
ture Notes in Comput. Sci. 1136, Springer-Verlag, New York, 1996, pp. 290–301, and On the parallel
complexity of matrix factorization algorithms, in Proc. 9th ACM Symp. on Parallel Algorithms and
Architectures, ACM, New York, 1997, pp. 63–71.

http://www.siam.org/journals/sicomp/28-6/32711.html
†Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125 Pisa, Italy and IMC-

CNR, Via S. Maria 46, I-56126 Pisa, Italy (leoncini@di.unipi.it). The work of this author was
supported by Murst 40% funds.
‡Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Via

Cavour 84, I-15100 Alessandria, Italy and IMC-CNR, Via S. Maria 46, I-56126 Pisa, Italy
(manzini@mfn.al.unipmn.it). The work of this author was supported by Murst 40% and 60% funds.
§Dipartimento Scienze dell’Informazione, Università di Bologna, Mura Anteo Zamboni 7, I-40127

Bologna, Italy (margara@cs.unibo.it).

2030

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2031

builds upon the computation of the lexicographically first maximal independent subset
(LFMIS) of the rows of a matrix, which is in NC2 [3].1

4. QRΠ factorization of an arbitrary matrix A is in arithmetic NC [8]. A
permutation Π such that the leftmost n× r submatrix of A has full column rank, for
r = rank(A), can be found by computing the LFMIS of sets of (column) vectors.

Unfortunately, none of the above algorithms seems to be of practical worth. Ex-
cept for [21], they boil down to fast parallel determinant or inverse matrix computa-
tions (see, e.g., [5, 9]), and the few experiments and theoretical analyses that have
been performed indicate that these are very unstable in general [4, 6, 22]. Moreover,
the analysis in [4] of Reif’s LU factorization algorithm [21] suggests that the latter
can be highly unstable as well. Indeed, finding a numerically stable NC algorithm to
compute the LU (or QR) decomposition of a matrix can be regarded as one important
open problem in parallel computation theory [11].

That a positive solution to the above problem may not be just around the corner
is confirmed by the negative complexity results that can be proved for the stable
algorithms adopted in practice to compute the LU and QR decompositions, namely,
Gaussian elimination (GE) and the Householder and Givens methods (HQR and GQR,
respectively).

In 1989 Vavasis proved that GE with partial pivoting (GEP), which is the stan-
dard method for computing the PLU decomposition, is P -complete over the reals
or the rationals [24]. Note that, strictly speaking, membership in P could not be
defined for the real number model. When dealing with real matrices and real number
computations, we then assume implicitly that the class P be defined to include the
problems solvable in polynomial time on such models as the real RAM (see [20]).
The result in [24] was proved by showing that a decision problem defined in terms of
GEP’s behavior was P -complete. For parallel complexity theory the P -completeness
result implies that GEP is likely to be inherently sequential, i.e., admitting no NC
implementations unless P = NC. Leoncini proved then that GEP is probably even
harder to parallelize, in the sense that no O(n

1
2−ε) time PRAM implementation can

exist unless all the problems in P admit polynomial speedup [13].
In this paper we prove new negative results for the classical factorization algo-

rithms. We consider the methods of Householder’s reflections and of Givens’ rotations
to compute the QR decomposition of a matrix. The main use of the QR decompo-
sition is within iterative methods for the computation of the eigenvalues of a matrix
and to compute least squares solutions to overdetermined linear systems [10]. More-
over, even though QR decomposition is usually not adopted to solve systems of linear
equations on uniprocessor machines, both HQR and GQR are potential competitors
of GE to solve linear systems stably in parallel. To date, the fastest stable parallel
solver is based on GQR and is characterized by O(n) parallel time on an O(n2) pro-

cessor PRAM [23], while both GEP and HQR run in O(n log n) time with O(n2

log n)
processors. Also, GQR is especially suitable for solving large sparse systems, given
its ability to annihilate selected entries of the input matrix at very low cost.

We also consider the application of GEP to special classes of matrices and study
a weaker form of pivoting which we will call minimal pivoting (GEM). Under minimal
pivoting, the pivot chosen to annihilate a given column is the first nonzero on or
below the main diagonal. Minimal pivoting is especially suitable for systolic-like
implementations of linear system solvers (see, e.g., [12], although it is not referred

1Not to be confused with the analogous LFMIS problem of graph theory, which is known to be
P -complete [11].

2032 M. LEONCINI, G. MANZINI, AND L. MARGARA

to by this name). Minimal pivoting can be regarded as the minimum modification
required for GE to be nondegenerate on arbitrary input matrices. Finally, we consider
GEP over GF(2), where it clearly coincides with GEM.

The results we obtain are listed below.

1. We prove that HQR and GQR are P -complete over the real or floating point
numbers. We exhibit reductions from the NAND circuit value problem (NANDCVP)
with fanout ≤ 2. In particular, what we prove to be P -complete is deciding the sign
of a given diagonal element of the upper triangular matrices R computed by either
HQR or GQR. Our reductions seem to be more intricate than the simple one in [24].
This is probably a consequence of the apparently more complex effect of reflections
and rotations with respect to the linear combinations of GE. We would like to stress
that the P -completeness proofs for the case of floating point arithmetic apply directly
to, and have been checked with, the algorithms available in MATLAB using the IEEE
754 standard for floating point arithmetic. In other words, the negative results apply
to widely “in-use” software.

2. We extend Vavasis’ result proving that GEP is P -complete on input strongly
nonsingular matrices. This class includes matrices which naturally arise in practical
applications, namely, diagonally dominant and symmetric positive definite matrices.
Note that plain GE (no pivoting) is guaranteed not to fail on input a strongly non-
singular matrix. However, since it is usually unstable, one still uses GEP.

3. We prove that GEM is P -complete on input nonsingular matrices. By this
result we also obtain a different proof that GEP is P -complete. In fact, GEP and GEM
compute the same factorization on input the special class of matrices that correspond
to fanout 2 nand circuits.

4. We prove that GEP is P -complete over GF(2). The general status (P -
complete or NC-computable) of GEP over finite fields is one of the open problems in
[11].

5. We show that a known NC algorithm for computing a PLU decomposition of
a nonsingular matrix corresponds to GE with a nonstandard pivoting strategy which
differs only slightly from minimal pivoting. Also, we prove that GE with such a non-
standard strategy is P -complete on input arbitrary matrices, which somehow accounts
for the difficulty of finding an NC algorithm to compute the PLU decomposition of
possibly singular matrices.

The completeness results have been proved by using a general framework for re-
ducing circuit computations to matrix factorization algorithms with a common struc-
tural kernel. The development of such a framework is by itself a major contribution
of this paper.

The results presented here give further evidence of the pervasiveness of a phe-
nomenon that also has been observed by numerical analysts (from a more practical
perspective)—namely, that there is a “tradeoff” between the degree of parallelism, on
the one hand, and nondegeneracy and accuracy properties of numerical algorithms,
on the other [6].

The rest of this paper is organized as follows. In section 2 we introduce a little
notation and give some preliminary definitions. In section 3 we describe the general
framework for proving the P -completeness of the factorization algorithms. In sections
4 and 5 we address QR decomposition via Householder’s reflections and Givens’ rota-
tions, respectively. In section 6 we prove our negative results for GE with partial and
minimal pivoting. In section 7 we show a correspondence between a known NC PLU
decomposition algorithm and GE. We conclude with some further considerations and

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2033

open problems. In Appendix A we describe the factorization algorithms considered
in this paper. In Appendix B we give some basic definitions about the floating point
number representation. More material about the algorithms and the computer arith-
metic can be found in many excellent textbooks (in particular, see [10]). Finally, we
include one technical proof in Appendix C.

2. Preliminaries. We use standard notation for matrices and matrix-related
concepts (see [10]). Matrices are denoted by capital letters. The (i, j) entry of a
matrix A is referred to by either aij or [A]ij . Vectors are designated by lowercase
letters, usually taken from the end of the alphabet, e.g., x, y, etc. Note that the
notation x refers to a column vector, i.e., an n× 1 matrix, for some n ≥ 1.

The ith row (resp., column) of a matrix A is denoted by ai∗ (resp., a∗i). A minor
of a matrix A is any submatrix of A. A principal minor is any square submatrix of A
defined by the same set of row and column indices.

The symbols I and O denote the identity matrix (with [I]ij = 1 if i = j and 0
otherwise) and the zero matrix (such that [O]ij = 0), respectively. The zero vector is
denoted using the symbol 0. The transpose of A is the matrix B such that bij = aji.
B is denoted by AT . A matrix Q is orthogonal when QTQ = I. A permutation
matrix P is a matrix which is zero everywhere except for just one 1 in each row and
column. Any permutation matrix is orthogonal. The transpose of a (column) vector
x is the row vector xT , i.e., a matrix of size 1× n, for some n.

Let A be a square matrix of order n.
(i) The LU decomposition of A is a pair of matrices 〈L,U〉, such that L is lower

triangular (i.e., lij = 0 for j > i) with unit diagonal elements, U is upper triangular,
and A = LU . For an arbitrary (even nonsingular) matrix A the LU decomposition
might not be defined. A sufficient condition for its existence (and uniqueness) is that
A be strongly nonsingular.

(ii) The PLU decomposition of A is a triple of matrices 〈P,L, U〉 such that L
and U are as above, P is a permutation matrix, and PTA = LU (or, equivalently,
A = PLU). The PLU decomposition is always defined but not unique.

(iii) The QR decomposition of A is a pair of matrices 〈Q,R〉, such that Q is
orthogonal, R is upper triangular, and A = QR. The QR decomposition always
exists.

In all the above cases, if A is m × n, with m < n, and when the factorization
exists, we get a matrix that is properly said to be in row echelon form (rather than
upper triangular). Its leftmost m ×m minor is upper triangular while its rightmost
m× (n−m) minor is, in general, a dense submatrix. However, when no confusion is
possible, we will always speak of the triangular factor of a given factorization.

A detailed description of the algorithms considered in this paper can be found
in Appendix A. The details, however, are not necessary to understand the common
structure of the reductions. Some details will be required in the proofs of Theorems
4.3 and 5.3, which deal with the floating point version of the QR algorithms. Except
for these, the following general description is sufficient. It defines a class F of matrix
factorization algorithms that includes, among others, the classical QR algorithms and
GE.

Let A be the input matrix. The algorithms in F take A to upper triangular
form by applying a series of transformations that introduce zeros in the strictly lower
triangular portion of A, from left to right. The notation A(k) is usually adopted to
indicate the matrix obtained after k−1 transformations, and its elements are referred

to by a
(k)
ij . a

(k)
ij is zero for j < min{i, k}. A transformation is applied during one stage

2034 M. LEONCINI, G. MANZINI, AND L. MARGARA

of the algorithm.

Every algorithm A ∈ F satisfies the following properties.

p1. If aij = 0, for j = 1, . . . , s, then a
(k)
i∗ = ai∗, k = 1, . . . , s. In other words, if

the first s entries in row i are zero, then the first s stages of A do not modify row i.
p2. If column k has a complementary nonzero structure with respect to columns

j = 1, . . . , k − 1 (by which we mean aij 6= 0 ⇒ aik = 0 for any i), then a
(j)
∗k = a∗k,

i.e., column k is not affected by the first k − 1 transformations.
p3. This is a property that we will call proper embedding of a matrix A into a

larger matrix E. Let A be of order k and let R be the triangular factor computed
by A on input A. Also, let E be a matrix having a minor EA = A. Suppose that,
as a consequence of the repeated applicability of p1 and p2, the first k − 1 stages
of algorithm A on input E affect only EA and possibly some columns with higher
indices. Then E(k) contains R as the minor corresponding to EA. In other words, the
factorization of A, viewed as a part of E, is the same as the factorization of A alone.

p4. Stage k modifies the entry (i, j) only if i, j ≥ k. In particular, it introduces
zeros in the kth column of A(k−1) without destroying the previously introduced zeros.
In view of this, and to avoid some redundant descriptions, in the rest of this paper we

will use the notation A(k) to indicate the submatrix of A(k) with elements from a
(k)
kk

rightward and downward.

3. A framework for reductions to F . Our P -completeness results are all
based on reductions from the NANDCVP, a restricted version of the CVP (circuit
value problem) which we now briefly recall.

Input : the description of a k-input Boolean circuit C composed
entirely of fanin 2 nand gates, and Boolean values x1, . . . , xk.

Output : the value C(x1, . . . , xk) computed by C on input x1, . . . , xk.

NANDCVP is P -complete, as reported in [11]. In order to simplify the proofs
we will further assume, without loss of generality, that each gate of C has fanout at
most 2. We shall prove in this section the following general result, which applies to
any factorization algorithm A ∈ F :

There is an encoding scheme of logical values and a logspace bounded
transducer M with the following properties: given the description
of a fanout 2 nand circuit C and Boolean inputs x1, . . . , xk for C,
M builds a matrix AC of order nC such that, if AC = XR is the
factorization computed by algorithm A, with R upper triangular,
then [R]nC ,nC is the encoding of C(x1, . . . , xk).

We shall prove (Theorem 3.1) that the transducer does exist provided that there
are certain elementary matrices with well-defined properties. We will later show that
such matrices actually exist for the algorithms considered in this paper.

Unfortunately, a formal description and the proof of correctness of the transducer
will require quite a large amount of details. In spite of this, the idea behind the
construction is easy. Hence we first describe the reduction in an informal way and only
afterward proceed to a formal derivation. Moreover, we have actually implemented
the transducer as a collection of MATLAB m-files. These and the elementary matrices
for the floating point versions of HQR and GQR, and of GEM as well (whose real and
floating point versions are coincident), are available electronically [16].

3.1. Informal description. Let A ∈ F and let a and b denote appropriate
numerical encodings of arbitrary truth values a, b. We need three kinds of (square)
elementary matrices for A to simulate basic logical operations.

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2035

F =

Fig. 1. N-D matrix composition: effect of the first ν − 1 stages.

The first such matrix is the nand N . It has [N]11 = a and [N]22 = b and, if we
apply A to compute the factorization of N , we get the encoding of NAND(a, b) in the
right bottom entry of the upper triangular factor.

The second elementary matrix is the duplicator D. It has [D]11 = a. Let d be
the order of D. Then the application of d − 2, rather than d − 1, stages of A to D
is sufficient to triangularize D. The trailing 2 × 2 principal minor of the triangular
factor is (a

0
0
a).

The third elementary matrix is the copier or wire W . It has [W]11 = a, and if we
compute the factorization of W we get a in the right bottom entry of the triangular
factor.

Using these matrices as the building blocks we can construct a matrix AC that
simulates the circuit C. The structure of AC is close to block diagonal, with one N
block for each nand gate in the circuit C. Duplicator blocks are used to simulate
fanout 2 nand gates, and wire blocks to route the computed values according to the
circuit’s structure. As the factorization of a block diagonal matrix could be performed
by independently factoring the single blocks, a certain degree of overlapping between
the blocks is necessary to pass around the computed values. The key idea is to
repeatedly use the proper embedding property of the factorization algorithms.

To illustrate how the preceding scheme can work in practice, and to see where the
difficulties may appear, consider first the construction of a submatrix which simulates
a fanout 2 nand gate. The basic idea is to append a duplicator to a nand block as
shown in Figure 1 (left). The dark gray area is a minor FN of F such that FN = N .
Analogously, the light gray area is a minor FD equal to D (in principle). Finally, the
white zones contain zeros. The right bottom entry of FN coincides with the top left
entry of FD. This is an example of proper embedding, for, if N has order ν, the first
ν − 1 steps affect only FN (and the first ν entries of the columns with indices greater
than the indices of FN). This is a consequence of property p1. However, after ν − 1
stages of A the encoding of NAND(a, b) is exactly where required, i.e., in the top left
entry of FD, from where it can be duplicated. Note, however, that the whole first row
of FD has possibly been modified (i.e., the black-colored entries of Figure 1 (right)).
Hence, for the simulation to proceed correctly, it is required that the black entries
store the rest of the first row of D by the time the algorithm reaches stage ν. We
cannot rely on their initial contents.

As a second example, Figure 2 describes how a W block, of order w, can be used
to pass a value to a possibly far away place. The dark gray area represents a minor
of T equal to a W block. Note that the minor is split across nonconsecutive rows
and columns, namely, those with indices 1 through w − 1 and the one with index
t (t = order of T). As before, the white zones contain zeros, while the light gray
area is of arbitrary size and stores arbitrary values. This situation again represents

2036 M. LEONCINI, G. MANZINI, AND L. MARGARA

T =

Fig. 2. Routing of a logical value.

a b

��e1
��e2 ��e3
��e4
XOR(a, b)

AC =

N

N

N

N

D

Fig. 3. Circuit C computing XOR(a, b) (left) and the structure of the corresponding matrix AC

(right).

a proper embedding, so that the first w − 1 stages of A on input T will result in the
factorization of the W block. This implies that (the encoding of) the logical value
initially in the top left entry has been copied to the right bottom entry.

To get an idea of what a complete matrix might looks like, see Figure 3, where
the circuit C computing the exclusive or of two bits is considered. The corresponding
matrix AC has four N blocks, one D block, and four W blocks denoted by different
gray levels. Note, however, that Figure 3 does not yet incorporate the solution to the
“black entries” problem mentioned above.

3.2. Elementary matrices. To prove the correctness of the transducer (see
Theorem 3.1 below) it is convenient to introduce a block partitioning of the elementary
matrices defined in the previous section. Let E ∈ {N,D,W} denote one such matrix.
We partition E as

E =

 EI ĒI ÊI
ĒM EM ÊM
ĒO ÊO EO

 ,(1)

where the diagonal blocks EI , EM , and EO are square matrices and EI and EO are
also diagonal (i.e., with nonzero entries only on the main diagonal). We will refer to
EI and EO as the input and output submatrices and let i and o denote their orders,
respectively. Note that an elementary matrix actually defines a set of matrices. In fact,

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2037

we regard the i diagonal entries of EI as the input places. A particular elementary
matrix is obtained by filling the input place(s) with the encoding of some logical
value(s).

We can now formally define the “behavior” of the elementary matrices with re-
spect to the factorization algorithm A.

Nand matrix (N). We let ν denote the order of N , which has i = 2 and o = 1
in the block partitioning (1), and set [N]11 = a, [N]22 = b. If XN = R is the
factorization computed by A, we have

R =

∗ ∗

. . .
...

∗ ∗
c

 ,

where c is the encoding of NAND(a, b). If, as is often required in practice, R overwrites
the input matrix, the value c will replace NO, and this is the reason why we defined
EO in (1) as the output submatrix. The same remark applies to the other elementary
matrices. We also require that, for any real value x, an auxiliary vector aN = aN(x) =
(0, 0, a3, . . . , aν)T can be defined such that XaN = (∗, . . . , ∗, x)T . Using the auxiliary
vectors we can solve the “black entries” problem outlined in section 3.1. Intuitively,
by appending auxiliary vectors to the right of N in AC (instead of simply zeros, as in
Figure 1 (left)), we can obtain the desired values in the black-colored entries of Figure
1 (right). As we will see in the proof of Theorem 3.1, the initial zeros in the auxiliary
vector prevent the problem from pumping up in the construction of AC .

Duplicator matrix (D). Let d denote the order of D, which has i = 1 and
o = 2 in the block partitioning (1), and set [D]11 = a. If XD = R is the incomplete
factorization computed by A, i.e., X represents the first d−2 transformations applied
to D by A, we obtain

R =

∗ ∗

. . .
...

∗ . . . ∗
a 0
0 a

 .

We also require that, for any pair of real numbers x and z, an auxiliary vector aD =
aD(x, z) = (0, a2, . . . , ad)

T can be defined such that XaD = (∗, . . . , ∗, x, z)T .
Wire matrix (W). Let w denote the order of W , which has i = o = 1 in the

block partitioning (1), and set [W]11 = a. If XW = R is the factorization computed
by A, we get

R =

∗ ∗

. . .
...

∗ ∗
a

 .

We also require that, for any real number x, an auxiliary vector aW = aW (x) =
(0, a2, . . . , aw)T can be defined such that XaW = (∗, . . . , ∗, x)T .

As we shall see, elementary matrices (including auxiliary vectors) exist for both
Householder’s and Givens’ methods and for GE as well.

2038 M. LEONCINI, G. MANZINI, AND L. MARGARA

3.3. Construction and correctness. In this section we present our main re-
sult (Theorem 3.1) on the existence of a single reduction scheme that works for any
algorithm in F . We still require some definitions.

Suppose that C has k input variables and let k′ ≥ k be the number of places (i.e.,
inputs to the gates) where the variables are used. k′ is the number of inputs counting
multiplicities. Let the gates of C be sorted in topological order. Given a specific
assignment of logical values to the input variables, we may then refer to the ith actual
input as the ith value from the input set that is required at some gate, 1 ≤ i ≤ k′.

When we say that AC has an input row at position i, we mean that, initially, row
i is either i−1︷ ︸︸ ︷

0, . . . , 0,a, 0, [N̄I]1∗, [N̂I]1∗, 0T

(2)

or i−2︷ ︸︸ ︷
0, . . . , 0, 0,a, [N̄I]2∗, [N̂I]2∗, 0T

 ,(3)

where a is the encoding of one of the actual inputs to C.
Theorem 3.1. Let elementary matrices N , D, and W be given for A ∈ F . For

any fanout 2 nand circuit C with input variables x1, . . . , xk and any truth assignment
to x1, . . . , xk, we can build a square matrix AC such that the following hold:

(a) AC has order nC = O(n), where n is the number of gates in C.
(b) If AC = XR is the factorization computed by A, then [R]nC ,nC is the en-

coding of C(x1, . . . , xk).
(c) AC has a number of input rows which equals the number k′ ≥ k of actual

inputs to C; the ith such row has either the structure (2) or (3) depending on whether
the ith actual input to C enters the first or the second input of some gate.

(d) Any actual input affects AC only through one input place.
The construction can be done by using O(log n) work space.
Proof. We prove the result by induction on n. Let z1, . . . , zk′ , for k′ ≥ k, be the

actual inputs to C and let a and b be the encodings of z1 and z2, respectively. The
case n = 1 is easy. We only have to set AC = N , with [AC]11 = a and [AC]22 = b.
Clearly nC = O(1). Property (b) follows from the definition of N . Properties (c)
and (d) are easily verified as well. In particular, AC has exactly two input rows at
positions 1 and 2, with structure (2) and (3), respectively, and this clearly matches
the number of actual inputs to C. Finally, the actual inputs affect AC only through
the input places [AC]11 and [AC]22.

Now suppose that the number of gates in C is n > 1, and let g1, . . . , gn be a
topological ordering of the DAG representing C. Clearly, all the inputs to g1 are
actual inputs to C. Let C ′ be the circuit with g1 removed and any of its outputs
replaced with x1, the first input variable. Since C ′ has n − 1 gates, we may assume
that AC′ can be constructed which satisfies the induction hypothesis. To build AC
we simply extend AC′ to take g1 into account. There are two cases, depending on the
fanout of g1. We fully work out only the case of fanout 1. The other case is similar
but is more tedious to develop fully (and for the reader to follow).

1. Let gh be the gate connected to the output of g1. Suppose, without loss of
generality, that g1 provides the first input to gh. By the induction hypothesis (in
particular, by (c)) AC′ has the following structure:

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2039

↓
ih

← ih.AC′ =

X1 x1 x2 X2 X3 X4

0T a 0 [N̄I]1∗ [N̂I]1∗ 0T

yT1 0 γ yT2 yT3 yT4
Z1 z1 z2 Z2 Z3 Z4

AC′ has an input row at some position ih corresponding to the first input to gate
gh and a is the encoding of x1. Note that, by property (d), the actual logical value
encoded by a affects only the definition of AC′ through the entry (ih, ih). Using AC′
and N and W elementary matrices we define AC as follows:

AC =

NI N̄I N̂I O O 0 0 O O O

N̄M NM N̂I A1 O a′1 0 O O O

N̄O N̂O NO aT1 0T α 0 0T 0T 0T

O O W̄M WM O ŴM 0 A2 A3 O
O O 0 O X1 x1 x2 X2 X3 X4

0T 0T W̄O ŴO 0T WO 0 aT2 aT3 0T

0T 0T 0T 0T yT1 0 γ yT2 yT3 yT4
O O 0 O Z1 z1 z2 Z2 Z3 Z4

.

We set [AC]11 = a and [AC]22 = b. The minor enclosed in boxes is a set of w − 1 (w
is the order of W) auxiliary column vectors for N that we choose such that

X

 O 0
A1 a′1
aT1 α

 =

 ∗ ∗
∗ ∗
W̄I ŴI

 ,

where X is the matrix that factorizes N . Observe that only the ihth row of AC′ has
been modified by replacing a, [N̄I]1∗, and [N̂I]1∗ with WO, aT2 , and aT3 , respectively.

In what follows we regard AC as a block 8× 10 matrix, and when we refer to the
ith row (or column) we really mean the ith block of rows (columns). Nonetheless, AC
is square, if AC′ is, with order ν + w − 2 plus the size of AC′ . Using property (a) of
the induction hypothesis we then see that nC = O(n). It is easy to prove that AC
enjoys properties (b) through (d) as well. Assume C has k′ actual inputs. Since g1

has fanout 1, C ′ has k′−1 actual inputs and, by induction, AC′ has k′−1 input rows.
Now, by the above construction, AC has exactly (k′ − 1) − 1 + 2 = k′ input rows,
which proves (c). Property (d) also easily holds. To prove (b) we use the properties
of F . By p1, the application of ν − 1 stages of A to AC affects only the first three
(blocks of) rows. Thus N (including its auxiliary vectors) is properly embedded in
AC , and hence after the first ν − 1 stages of A, we get

A
(ν−1)
C =

WI W̄I 0T ŴI 0 0T 0T 0T

W̄M WM O ŴM 0 A2 A3 O
0 O X1 x1 x2 X2 X3 X4

W̄O ŴO 0T WO 0 aT2 aT3 0T

0T 0T yT1 0 γ yT2 yT3 yT4
0 O Z1 z1 z2 Z2 Z3 Z4

 ,

where WI = c is the encoding of NAND(z1, z2). The submatrix enclosed in boxes is a

2040 M. LEONCINI, G. MANZINI, AND L. MARGARA

set of ν − 2 auxiliary vectors for W that we choose such that

X

 0T 0
A2 A3

aT2 aT3

 =

 ∗ ∗
∗ ∗

[N̄I]1∗ [N̂I]1∗

 ,

where X is the transformation matrix that triangularizes W . Note that the entries
corresponding to the first elements of auxiliary vectors contain zeros, as required. If
the first element (in the definition) of auxiliary vectors were not zero, we would be
faced with the additional problem of guaranteeing that the first ν − 1 stages would
set these entries to the required values.

It is easy to see that W (including its auxiliary vectors) is properly embedded in

A
(ν−1)
C so that additional w − 1 stages of A lead to

A
(n+w−2)
C =

X1 x1 x2 X2 X3 X4

0T NI 0 [N̄I]1∗ [N̂I]1∗ 0T

yT1 0 γ yT2 yT3 yT4
Z1 z1 z2 Z2 Z3 Z4

 ,

with NI = WI = c. The correctness now follows from the induction hypothesis and
property p4.

2. The full description of the fanout 2 case is definitely more tedious but does
not introduce additional difficulties. AC extends AC′ by means of an initial N block,
followed by a D block, followed by two W blocks. Taking the partial overlapping into
account, it immediately follows that the order of AC is ν + d− 1 + 2(w − 2) plus the
order of AC′ .

The construction of matrix AC can be done in space proportional to logn by sim-
ply reversing the steps of the above inductive process. That is, instead of constructing
AC′ and using it to build AC , which would require more than logarithmic work space,
we compute and immediately output the first ν+w−2 (or ν+d−1+2(w−2) in case
of a first gate with fanout 2) rows and columns. We also compute and output row
ih (or the two rows where the output of a fanout 2 gate has to be sent). All of this
essentially can be done in space O(log n) by copying the elementary matrices N , D,
and W to the output medium. The only possible problem might be the computation
of ih, but this is not the case. In fact, for any 1 ≤ i ≤ n, let f2(i) be the number of
fanout 2 nand gates preceding gate i in the linear ordering of C. This information can
be obtained, when required, by repeatedly reading the input and using only O(log n)
work space for counting. It easily follows from the above results that the index of the
top left entry π(h) of the hth N block is

π(h) = f2(h)(2(w − 2) + ν + d− 1) + (h− 1− f2(h))(ν + w − 2) + 1

= (h− 1)(ν + w − 2) + f2(h)(d+ w − 3) + 1.

Hence ih will be either π(h) or π(h) + 1, depending on whether the value under
consideration is the first or second input to gh.

The MATLAB program that implements the transducer [16] is indeed logspace
bounded. It uses only the definition of the blocks and simple variables (whose contents
never exceed the size of AC) in magnitude. No data structure depending on n is
required. Clearly, as it is implemented using double precision IEEE 754 arithmetic,
it can properly handle only the circuits with up to approximately 253 gates.

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2041

N =

a 0 0 0 0 0 0 − 5
4 0 0

0 b −1 −2 0 0 0 0 0 0
0 2 0 0 0 − 579

145 − 211
145 0 0 0

0 2 0 0 0 − 23
116 − 70

29 0 0 0
0 0 3 1 0 0 0 0 0 0
0 0 4

3 1 0 0 0 0 2575
3552 0

0 0 4
3

33
8 0 0 0 0 − 38525

10656 0
4
3 0 0 0 0 0 5

4 0 125
72 0

0 0 0 0 0 4
3 0 1 25

24
25
12x

 .

Fig. 4. The N block for HQR.

4. Householder’s QR decomposition algorithm. In this section we prove
that HQR is presumably inherently sequential under both exact and floating point
arithmetic. This is done by proving that a certain set H, defined in terms of HQR’s
behavior, is logspace complete for P .

H = {A:A is n×n, A = QR is the factorization computed by HQR, and [R]nn > 0}.

Note that by HQR we mean the classical Householder’s algorithm presented in many
numerical analysis textbooks. In particular we refer to the one in [10]. This is also the
algorithm available as a primitive routine in scientific libraries (such as LINPACK’s
ZQRDC [7]) and environments (like MATLAB’s qr [17]).

We begin with the simple result about the membership in P .
Theorem 4.1. H is in P under both exact and floating point arithmetic.
Proof. The proof follows from standard implementations, which perform O(n3)

arithmetic operations and O(n) square root computations (see, e.g., [10]).
According to the result of section 3, to prove that H is also logspace hard for P

it is sufficient to exhibit an encoding scheme and the elementary matrices required in
the proof of Theorem 3.1. As we will see, however, the floating point case requires
additional care to rule out the possibility of fatal roundoff error propagations.

Theorem 4.2. H is logspace hard for P under the real number model of arith-
metic.

Proof. We simply list the three elementary matrices required by Theorem 3.1.
For each elementary matrix E, the corresponding auxiliary vector aE is shown as an
additional column of E. That the matrices enjoy the properties defined in section 3.2
can be automatically checked using any symbolic package, such as Mathematica.

N is the 9×10 matrix of Figure 4, where a,b ∈ {−1, 1} are the encoding of logical
values (1 for True and −1 for False) and x is an arbitrary real number. Performing
eight steps of HQR on input N gives N = QR with [R]9,9 = c and [R]9,10 = x, where
c = 1−a−b−ab

2 is the arithmetization of NAND(a, b) under the selected encoding.
D is the 6× 7 matrix shown in Figure 5 (left). Performing four steps of HQR on

input D gives D = QR with [R]5,5 = [R]6,6 = a, [R]5,6 = [R]6,5 = 0, [R]5,7 = z, and
R6,7 = x, where z and x are arbitrary real numbers.

W is the 2× 3 matrix of Figure 5 (right). Performing one step of HQR on input
W gives W = QR with [R]2,2 = a and [R]2,3 = x, for x an arbitrary real num-
ber.

Applying a floating point implementation of HQR to any single block defined
in Theorem 4.22 results in approximate results. For instance, we performed the QR

2More precisely, to the best possible approximations of the blocks under the particular machine
arithmetic.

2042 M. LEONCINI, G. MANZINI, AND L. MARGARA

D =

a −1 −2 0 0 0 0
2 0 0 0 − 579

145
− 211

145
0

2 0 0 0 − 23
116

− 70
29

0
0 3 1 0 0 0 0
0 4

3
1 0 0 0 27 x+254 z

222

0 4
3

33
8

0 0 0 4767 x+256 z
1776

 W =

(
a − 5

4
0

4
3

0 5 x
3

)

Fig. 5. The D and W blocks for HQR.

decomposition of the four N matrices using the built-in function qr available in MAT-
LAB. We found that the relative error affecting the computed encoding of NAND(a, b)
ranged from a minimum of 0.5ε to a maximum of 3ε. Here ε is the roundoff unit and
equals 2.2204 · 10−16 under IEEE 754 standard arithmetic. These might appear to be
insignificant errors. However, for a matrix containing an arbitrary number of blocks,
the roundoff error may accumulate to a point where it is impossible to recover the
exact (i.e., 1 or −1) result. Clearly, direct error analysis is not feasible here, since it
should apply to an infinite number of reduction matrices. Our solution is to control
the error growth by “correcting” the intermediate results as soon as they are “com-
puted” by nand blocks. Note that, by referring to the values computed by a certain
elementary matrix E, we mean precisely the nonzero values one finds in the last row of
the triangular factor computed by HQR on input E (including the auxiliary vectors).
Analogously, the input values to E are the ones computed by the elementary matrix
preceding E in AC .

Theorem 4.3. H is logspace hard for P under finite precision floating point
arithmetic.

Proof. We take duplicator and wire blocks as in Theorem 4.2 and provide a new
definition for nand blocks so that they always compute exact results. To do this, we
have to consider again the structure of AC , as resulting from Theorem 3.1.

Let gi be the ith gate in the topological ordering of C, and let gj and gk be the
gates providing the inputs to gi. Let N (l) denote the N block of AC corresponding
to gl, according to the construction of Theorem 3.1. To prove the result we maintain
the invariant that the values computed by N (1), N (2), . . . , N (i−1) are exact. This is
clearly true for i = 1. Using the invariant we first verify that the errors affecting the
values computed by N (i) can be bounded by a small multiple of the roundoff unit.
We then use the bound to show how to redefine N so that it computes exact results,
thus extending the invariant to N (i).

From the proof of Theorem 3.1 we know that the output of N (j) (and similarly of
N (k)) is placed in one of the input rows of N (i) as a consequence of the factorization
of possibly a D followed by a W block. It follows that the error affecting the output of
N (i) is due only to the above factorizations and to the factorization of N (i) itself. Since
there is a limited number of structural cases (depending on the fanout of gates j and
k) and considering all the possible combinations of logical values involved, the largest
error ever affecting the output of N (i) can be determined by direct (but tedious) error
analysis or, more simply, by test runs. For the purpose of the following discussion
we may safely assume that the relative errors affecting the computed quantities are
bounded by cε, for some constant c of order unit (c is actually smaller than 10). In
other words, we may assume that the actual outputs of N (i) are a(1+δ) and x(1+η),
with |δ|, |η| ≤ cε. Recall that x is the last entry of the generic auxiliary vector aN(x)

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2043

of N after the factorization (see the definition of N in section 3.2). Here, however,
we require that x be a machine number (i.e., a rational number representable without
error under the arithmetic under consideration).

Having a bound on the error, we are now ready to show how to “correct” the
erroneous outputs. The new nand block, denoted by Ncorr, extends N with two
additional rows and columns, as shown below:

Ncorr =

 N aN(−1) 0
bT 0 −(2m + 1)
0T 2m 0

 ,

where

bT = (

8︷ ︸︸ ︷
0, . . . , 0, 2m)

and m is some positive integer (to be specified below). Note that aN(−1) is precisely
that auxiliary vector for the old N that produces −1 as output, i.e.,

aN(−1) = (

8︷ ︸︸ ︷
0, . . . , 0,−25

12
)T .

The auxiliary vector for Ncorr is

(

10︷ ︸︸ ︷
0, . . . , 0, (2m + 1)x).

Thus, a first requirement on m is that the quantity (2m + 1)x be a computer number.
As the length of the significand of 2m+1 is m+1, we see that a sufficient condition is
that the length of the significand of x does not exceed t−m− 1 (for the definition of
t see Appendix B). Now, let us apply HQR to Ncorr extended by its auxiliary vector.
As N is properly embedded in Ncorr, after eight stages of HQR we get (using the
above result on the error)

N
(9)
corr =

 a(1 + δ) −1 + η 0 0
2m 0 −(2m + 1) 0
0 2m 0 (2m + 1)x

 .

A second condition that we place on m is that 2m + a(1 + δ) = 2m + a, to get rid of
the error δ. An easy argument shows that this implies m > dlog ce. Thus, recalling
the bound on |δ| and |η|, we see that m ≥ 5 is sufficient. As a consequence, the length

of x cannot exceed t− 6. The actual reflection matrix applied to N
(9)
corr is then

I − 1

2m(2m + 1)

(
a(2m + 1)

2m

)(
a(2m + 1) 2m

)
,

which, by easy floating point computation, gives

N
(10)
corr =

(
a(1− δ) −1 0

2m 0 (2m + 1)x

)
.

Applying one more stage now leads to the correct results a and x. The above require-
ment on x is by no means a problem. In fact, the only auxiliary values ever required
are the nonzero elements in the input rows of the blocks that possibly follow nand
elementary matrices, i.e., D and W blocks. These are simply −1, −2, and −5/4, all
of which can be represented exactly with a three-bit significand.

The elementary matrices of Theorem 4.3 are available for the general transducer
implemented in MATLAB. In particular, Ncorr is defined with m = 30.

2044 M. LEONCINI, G. MANZINI, AND L. MARGARA

5. QR decomposition through Givens’ rotations. In this section we prove
that the set

G = {A:A is n× n, A = QR is the factorization computed by GQR, and [R]nn > 0}
is logspace complete for P . The way we present the results of this section closely
follows the methodology of section 4. Here, however, we need to further discuss the
particular algorithm considered. In fact, the computation of the QR decomposition
can be done in various ways using plane (or Givens’) rotations. Different from House-
holder’s reflections, a single plane rotation annihilates only one element of the matrix
to which it is applied, and different sequences of annihilation result in different algo-
rithms. By the way, this degree of freedom has been exploited to obtain the currently
faster (among the known accurate ones) parallel linear system solvers [23, 18]. We also
note that there is no GQR algorithm available in MATLAB (nor in libraries such as
LINPACK or LAPACK), which instead provides the primitive planerot to compute
a plane rotation. The hardness results of this section apply to the particular algo-
rithm that annihilates the subdiagonal elements of the input matrix by proceeding
downward and rightward. This choice places GQR in the class F defined in section
2, with the position that one stage of the algorithm is the sequence of plane rotations
that introduce zeros in one column.

Theorem 5.1. G is in P under both exact and floating point arithmetic.
Proof. For the proof, see, e.g., [10]. We point out only that the membership in P

holds independently of the annihilation order.
Theorem 5.2. G is logspace hard for P under real number arithmetic.
Proof. As in Theorem 4.2, we simply list the three elementary matrices extended

with the generic auxiliary vector. The matrices are shown in Figures 6 through 8,
where a,b ∈ {−1, 1} are encodings of logical values (1 for True and −1 for False)
and x and z are arbitrary real numbers. Again, that the matrices enjoy the properties
defined in section 3.2 can be verified with the help of a symbolic package.

We now switch to the more delicate case of finite precision arithmetic.
Theorem 5.3. G is logspace hard for P under finite precision floating point

arithmetic.
Proof. We apply the ideas of Theorem 4.3. That is, we extend the definition of N

so that it always computes the exact results. Here, however, there is a subtle problem
whose solution requires a different definition of the duplicator block. Let us look at
the details. If we apply a floating point implementation of GQR to the block of Figure
7, we clearly get approximate results. In particular, instead of (a

0
0
a), in the bottom

right corner of R we get (a(1+δ′)
ε′′

ε′

a(1+δ′′)). Even if δ′, δ′′, ε′, and ε′′ are of the order of

the roundoff unit ε, the fact that ε′′ is not zero causes the whole construction to fail.
Note that the same kind of approximate results are obtained under HQR, but with no
damage there. For suppose that ε′′ is in column k of AC and consider stage k of both
algorithms. In HQR one single transformation annihilates the whole column so that
the contribution of a tiny ε′′ to the kth transformation matrix is negligible. On the
other hand, in GQR the elements are annihilated selectively and, if ε′′ is not a true
zero, one additional plane rotation is triggered between rows k and k+1 which places
zero in the entry (k+ 1, k). Unfortunately, this rotation also has the effect of placing
a positive value in position (k, k), thus (possibly) altering the sign that encoded the
logical value being passed around and causing the whole simulation to fail in general.

We thus need to replace the duplicator with one that returns a true zero in the
entry (d, d − 1) of the incomplete factor R. To do this we must exploit the proper-

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2045

N =

a 0 1 0 0 0 1 1 1 1 0
0 b 0 1 0 0 0 0 0 0 0
2 0 3 0 0 0 3−3

√
65

16
−3+

√
65

4 − 183+25
√

65
64 − 723+125

√
65

384 0

0 1 0 2 0
39

√
13
7

2 + 4
√

30 −19ζ
14 0 0 α 0

0 1 0 3 0 6
√

13
7 +

√
30 −4ζ

7 0 0 β 0

0 1 0 4 0
29

√
13
7

2 + 3
√

30 −17ζ
14 0 0 γ 0

0 1 0 5 0 7
√

30+5
√

91
2

√
10−3ζ

2 0 0 δ 0

2 0 4 0 0 0 5−3
√

65
8

−1+
√

65
2 − 97+25

√
65

32 − 357+125
√

65
192 0

0 0 0 0 0 0 0 0 1 0 −5 x
3

0 0 0 0 0 4
3 0 −1 0 − 125

96 0

.

α =
−16625

√
5
2

504
+

875
√

15
2

112
− 4875

√
91

1792
+

2375
√

371

1008
, β =

125

64

(
3

√
53

7
−3

√
13

7
− 6

√
5

2
+

√
15

2

)
,

γ =
−14875

√
5
2

504
+

2625
√

15
2

448
− 3625

√
91

1792
+

2125
√

371

1008
, δ = 125

(√
371

48
−

5
√

5
2

18
+

7
√

15
2

128
− 5
√

91

256

)

ζ = 7
√

10 +
√

371.

Fig. 6. The N block for GQR.

D =

a 1 0 0 0 0

1 2 0
39

√
13
7

2 + 4
√

30 −19ζ
14

(
−39

√
13
7

2 + 4
√

30

)
x+

(
−19
√

5
2 +

19

√
53
7

2

)
z

1 3 0 6
√

13
7 +

√
30 −4ζ

7

(
−6
√

13
7 +

√
30

)
x+

(
4
√

53
7 − 4

√
10

)
z

1 4 0
29

√
13
7

2 + 3
√

30 −17ζ
14

(
−29

√
13
7

2 + 3
√

30

)
x+

(
−17
√

5
2 +

17

√
53
7

2

)
z

1 5 0 7
√

30+5
√

91
2

√
10−3ζ

2

(
7
√

15
2 − 5

√
91

2

)
x+
(
−10
√

10 + 3
√

371
2

)
z

ζ = 7

√
10 +

√
371.

Fig. 7. The D block for GQR.

ties of floating point arithmetic. Let m and M denote the length of the significand
and the largest exponent e such that 2e can be represented in the arithmetic under
consideration, respectively. For the standard IEEE 754, m = 53 and M = 1023. The
nonzero entries of the floating point D block, shown in Figure 9, are powers of 2. In
this way any operation will be either exact or simply a no operation.

As the new auxiliary vector, we define

aD(x, y) =
(

0, y2M−2, 1, 1, x2m, 2−M , 2m, 2m, 2m−d
m
2 e, 2m−d

m
2 e
)T

.

Note that the only assignments to x and y we need are 0 and 1 or 1 and 0.

The rest of the proof is now similar to that of Theorem 4.3. We show how to
correct the slightly erroneous values computed by an N block, assuming that the
previous N blocks return exact results. Let N stand for the nand block adopted for

2046 M. LEONCINI, G. MANZINI, AND L. MARGARA

W =

a 1 1 0
2 3 −3+

√
65

4
− 15 x

4
−
√

65 x
4

2 4 −1+
√

65
2

− 9 x
2
−
√

65 x
2

 .

Fig. 8. The W block for GQR.

D =

a 1 0 0 0 0 0 0 0 0
0 1 2−m 2−M+2m+1 −2M−1 0 0 0 0 0

2−m 2−3m 1 0 0 0 0 0 0 0
0 0 2−M+3m+2 1 2M−1 0 0 0 0 0
0 0 2−M+1+m 0 2−M+2m+1 0 0 0 0 0
0 0 0 2−m 2M−1−m 1 0 0 0 0
0 0 0 0 2−b

m
2
c 0 1 0 0 0

0 0 0 0 0 2−b
m
2
c 0 1 0 0

0 0 0 0 0 0 2−d
m
2
e 0 1 0

0 0 0 0 0 0 0 2−d
m
2
e 0 1

.

Fig. 9. The D block for floating point GQR.

the exact arithmetic version of GQR (Figure 6). The new nand block is then

Ncorr =

 N 0 0
cT 1 0
0T 2−d

m
2 e 1

 ,

where

cT = (

9︷ ︸︸ ︷
0, . . . , 0, 2−b

m
2 c).

As the new auxiliary vector, we take

aNcorr(x) =

 8︷ ︸︸ ︷
0, . . . , 0,−5

3
x2m, 0, 2m, 2m−d

m
2 e

T

,

i.e., the first 10 entries of aNcorr(x) coincide with aN(x2m). Now, let us apply GQR
to Ncorr extended by its auxiliary vector. As N is properly embedded in Ncorr, after
nine stages of GQR we get

N
(10)
corr =

a(1 + δ) 0 0 x2m(1 + η)
2−bm/2c 1 0 2m

0 2−dm/2e 1 2m−dm/2e

 ,

where |δ|, |η| ≤ cε, for some small constant c of order unit. The plane rotation to

annihilate the entry (2, 1) of N
(10)
corr is represented by

G1 =
1√

a2(1 + δ)2 ⊕ 2−2bm/2c ⊗
(

a(1 + δ) 2−bm/2c

−2−bm/2c a(1 + δ)

)
=

(
a 2−bm/2c

1+δ

− 2−bm/2c
1+δ a

)
,

and its application in floating point gives

N
(10)
corr =

(
a 0 a2m ª x2dm/2e(1 + ζ)

2−dm/2e 1 2m−dm/2e

)
,

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2047

where 1 + ζ = 1+η
1+δ and |ζ| ≤ 2ε + O(ε2). The crucial point is that, if x can be

represented with no more than 2bm/2c significant bits, the alignment of the fractional
part performed during the execution of a2m ª x2dm/2e(1 + ζ) will simply cause the
contribution x2dm/2eζ to be lost. Hence, the computed element in the entry (1, 3) will
be a2m − x2dm/2e. However, one more rotation produces the exact values a and x in
the last row. Note that the only value required in place of x is 1.

6. GE with pivoting. In this section we consider the algorithm of GE with
partial pivoting, or simply GEP, a technique that avoids nondegeneracies and ensures
(almost always) numerical accuracy. We also consider the lesser-known minimal piv-
oting technique, GEM, one that guarantees only that a PLU factorization is found.
Minimal pivoting has been adopted for systolic-like implementations of GE [12]. A
brief description of these algorithms is reported in Appendix A.

We prove that GEM is P -complete, unless applied to strongly nonsingular matri-
ces, while GEP is P -complete even when restricted to strongly nonsingular matrices.
Finally, we prove that GEP is P -complete over GF(2).

6.1. Partial pivoting. The proof we give here builds on the original proof in
[24] and hence does not share the common structure of the other reductions in this
paper. Essentially we show that, with little additional effort with respect to Vavasis’
proof, we can exhibit a reduction in which the matrix obtained is strongly nonsingular.
As already pointed out, strongly nonsingular matrices are of remarkable importance
in practical applications. This class contains symmetric positive definite (SPD) and
diagonally dominant matrices, which often arise from the discretization of differential
problems. Observe that, with any such matrix in input, plain GE (no pivoting) is
nondegenerate, but it is not stable in general and hence is not the algorithm of choice.

As in [24], what we actually prove to be P -complete is the following set:

L = {(i, j, A) : A is strongly nonsingular and, on input A, GEP uses
row i to eliminate column j }.

Theorem 6.1. The set L is logspace complete for P over the real or rational
numbers.

We postpone the technical proof of Theorem 6.1 to Appendix C but give an
example that shows the way the matrix given in [24] is modified. Figure 10 depicts
the reduction matrix MC corresponding to the circuit of Figure 3, obtained according
to the rules in [24]. The matrix is nonsingular; however, it can be seen that the leading
principal minor of order 2 is singular. The matrix we obtain, according to Theorem
6.1, is shown in Figure 11. It can be easily seen that our matrix is strongly diagonally
dominant by rows and hence strongly nonsingular.

6.2. Minimal pivoting. The technique of minimal pivoting, i.e., selecting as
the pivot row at stage k the first one with a nonzero entry (below or on the main
diagonal) in column k, is probably the simplest modification that allows GE to cope
with degenerate cases. However, such a simple technique is sufficient to make GE
P -complete. Note that, even if no formal error analysis is available for GEM, it is not
difficult to exhibit matrices (that can plausibly appear in real applications) such that
the error incurred by GEM is very large. Actually, GEM is likely to be as unstable
as standard GE (no pivoting).

Consider the following set:

L′ = {A : A is n× n, PA = LU is the factorization computed by
GEM, and [U]nn > 0}.

2048 M. LEONCINI, G. MANZINI, AND L. MARGARA

−3.9 · · · · · · · · · · ·
a · 1 1 · · 1 · · · · ·
· −3.9 · · · · · · · · · ·
· b 1 · 1 · · 1 · · · ·
· · −3.9 · · · · · · · · ·
1 1 4 1 1 · · · 1 · · ·
· · · −3.9 · · · · · · · ·
1 · 1 4 · 1 · · · 1 · ·
· · · · −3.9 · · · · · · ·
· 1 1 · 4 1 · · · · 1 ·
· · · · · −3.9 · · · · · ·
· · · 1 1 4 · · · · · 1

Fig. 10. Matrix MC corresponding to the exclusive or circuit. The symbol · stands for a zero

entry.

−3.9 · · · · · · · · · · · · · · · · ·
a 10 · · 1 · 1 · · · · · · · · · · ·
· · −3.9 · · · · · · · · · · · · · · ·
· · b 10 1 · · · 1 · · · · · · · · ·
· · · · −3.9 · · · · · · · · · · · · ·
1 · 1 · 4 10 1 · 1 · · · · · · · · ·
· · · · · · −3.9 · · · · · · · · · · ·
1 · · · 1 · 4 10 · · 1 · · · · · · ·
· · · · · · · · −3.9 · · · · · · · · ·
· · 1 · 1 · · · 4 10 1 · · · · · · ·
· · · · · · · · · · −3.9 · · · · · · ·
· · · · · · 1 · 1 · 4 10 · · · · · ·
· 20 · · · · · · · · · · 30 · · · · ·
· · · 20 · · · · · · · · · 30 · · · ·
· · · · · 20 · · · · · · · · 30 · · ·
· · · · · · · 20 · · · · · · · 30 · ·
· · · · · · · · · 20 · · · · · · 30 ·
· · · · · · · · · · · 20 · · · · · 30

Fig. 11. The matrix AC for the computation of XOR(a, b).

Theorem 6.2. The set L′ is logspace complete for P under both real and finite
precision floating point arithmetic.

Proof. The set is clearly in P , as GEM runs in time O(n3) under both models of
arithmetic. We first show that L′ is also logspace hard for P when the input matrices
are singular and then show how to restrict the input set. As GEM belongs to the class
F , to prove the hardness of L′ we simply list the three elementary matrices required
by Theorem 3.1. Note that the matrices are the same for both models of arithmetic,
as the operations performed by GEM in floating point are exact. The encoding of
logical values here is 0 for False and 1 for True. The matrices are depicted in Figures
12 and 13.

AC is clearly singular. Now consider the following matrix BC of order 2nC , where
nC is the order of AC :

BC =

(
AC E
E O

)
,(4)

where E is the matrix with 1 on the antidiagonal and 0 elsewhere. The determinant
of BC can be easily proved to be ±1. Moreover, if P̄BC = L̄Ū is the factorization
computed by GEM, then [Ū]nC ,nC = [U]nC ,nC , where U is the upper triangular factor
computed by GEM on input AC . Note, then, that what we prove to be P -complete
is not exactly L′ but a set with a slightly more complicated definition.

As usual, in the following the notation A
(k)
C will be used to denote the matrix

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2049

N =

a 0 0 0 0 0
0 b 0 0 0 0
1 1 0 0 −1 0
0 1 0 0 −1 0
1 1 0 0 0 x

 W =

 a 0 1 0
1 0 0 0
−1 0 0 x

Fig. 12. The nand (left) and wire (right) blocks for GEM.

D =

a 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 −1 0 0
−1 0 0 0 0 0 0 0 0 0 0 x
−1 0 0 0 0 0 0 0 0 0 0 z
0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 z
0 0 0 1 0 0 0 0 0 −1 1 0
0 0 0 0 1 0 0 0 0 0 0 0

Fig. 13. The D block for GEM.

obtained after k − 1 stages of GEM on input AC and considering only the entries

(i, j) with i, j ≥ k. However, by writing B
(k)
C we mean the submatrix obtained after

k − 1 stages of GEM (on input BC) and considering only the entries (i, j) such that
k ≤ i, j ≤ nC . With this position, to prove that the output of C can be read off entry
(nC , nC) of the U factor of BC , we show that the executions of GEM on input AC
and on input BC result in identical submatrices A

(k)
C and B

(k)
C , for 0 ≤ k ≤ nC . The

proof is by induction. Initially, for k = 1, the equality follows from the definition of

BC . Consider stage k ≥ 1. If column k of A
(k)
C contains a nonzero element below or

on the main diagonal, say, at row index i, then the selected pivot row is the ith under
both executions. The result follows then from the induction hypothesis and the fact
that exactly the same operations are performed on the elements of the submatrices.

If no nonzero element is found in column k of A
(k)
C , then stage k of the first execution

has no effect, and hence A
(k+1)
C = A

(k)
C . Under the second execution (the one on input

BC) by construction the pivot is taken from row 2nC − k + 1. However, the pivot is
the only nonzero element in row 2nC − k+ 1 and thus the effect of this step is simply

the exchange of rows k and 2nC − k + 1. However, once more B
(k+1)
C = B

(k)
C .

Two concluding remarks are in order. First, we note that the application of GEP
to the elementary matrices of Theorem 6.2 would return the same factors determined
by GEM. This is because the only nonzero elements appearing during the factor-
izations are −1 and 1, and hence the first nonzero in a column is also the largest
magnitude element in that column. Within our general framework, this observation
represents another proof that GEP is presumably inherently sequential. The first such
proof was given in [24].

As the second observation, we note that the set L′ of Theorem 6.2 would be
NC computable if the input set were restricted to the class of strongly nonsingular
matrices. In fact, on input these matrices GEM and standard GE behave exactly the
same.

2050 M. LEONCINI, G. MANZINI, AND L. MARGARA

6.3. Completeness over GF(2). The status of GEP over finite fields (i.e.,
whether P -complete or NC-computable) is mentioned as an open problem in [11].
Over finite fields there is clearly no question of stability, so the only problem is to find
a nonzero pivot at each stage. Under these circumstances GEP is intended to select,
as the pivot for stage l, the first nonzero element in column l below or on the main
diagonal and thus coincides with GEM. Consider the set

F = {(A, l, k) : A is n× n with entries over a finite field, and the
pivot for the lth stage of GEP is taken from row k}

mentioned in [11].
Theorem 6.3. The set F is logspace complete for P over GF(2).
Proof. We first show that deciding whether the element [U]nn (where U is the

upper triangular factor computed by GEM on input A) is 0 or 1 is P -complete. This
is easy using our general framework. The elementary matrices are exactly the ones
given in Theorem 6.2, where −1 has to be interpreted as the additive inverse of 1 in
GF(2) (and thus replaced by 1). Next we prove that this decision problem can be
easily reduced to membership in F . To see this, it is sufficient to observe the behavior
of GEP on input a nand elementary matrix. It is easy to check that the following row
permutations take place:

(i) 1↔ 3 and 2↔ 4, if the logical inputs are both 0;
(ii) 1↔ 3 if the inputs are 0 and 1 (in this order);
(iii) 2↔ 3 if the inputs are 1 and 0;
(iv) no permutation if the inputs are both 1.

It follows that the first nonzero is taken from row 3 in either the first or the second
stage provided that some input is 0, and hence if the output is 1. By our construction,
no row corresponding to the last nand block in the reduction matrix AC is used to
eliminate previous columns. Hence, to decide whether the element [U]nn is 0 or 1 is
equivalent to asking whether (AC , nC − 4, nC − 2) ∈ F or (AC , nC − 3, nC − 2) ∈ F ,
where nC is the size of AC .

7. On NC algorithms for the PLU decomposition. In this section we
show that a known NC algorithm for computing a PLU decomposition of a nonsin-
gular matrix (see [8]) corresponds to GE with a nonstandard pivoting strategy which
is only a minor variation of minimal pivoting. This result seems to be just a “curios-
ity”; however, we can prove that the same strategy is inherently sequential on input
arbitrary matrices, which can be seen as further evidence of the difficulties of finding
an NC algorithm to compute the PLU decomposition of possibly singular matrices.

The new strategy will be referred to as minimal pivoting with circular shift and
the corresponding elimination algorithm referred to simply as GEMS. The reason for
its name is that GEMS, like GEM, searches the current column (say, column k) for
the first nonzero element. Once one is found, say in row i, a circular shift of rows k
through i is performed to bring row i in place of row k (and the latter in place of row
k + 1).

Theorem 7.1. Computing the PLU factorization returned by GEMS on input a
nonsingular matrix is in arithmetic NC2.

Proof. We consider the algorithm of Eberly [8]. Given A, nonsingular of order n,
let Ai denote the n × i matrix formed from the first i columns of A, i = 1, . . . , n. If
Si denotes the set of indices of the lexicographically first maximal independent subset
of the rows of Ai, then |Si| = i, since Ai has full column rank. Moreover, Si ⊆ Si+1,
i = 1, . . . , n − 1. Note that the computation of all the Si is in NC2 (see [3]). Now,

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2051

let S1 = {j1}, and, for i = 2, . . . , n, Si+1 − Si = {ji+1}. Then a permutation P such
that PTA has LU factorization is simply

P = (ej1 |ej2 | . . . |ejn),

where ei is the ith unit (column) vector. Clearly, once P has been determined,
computing the LU factorization of PTA can be done in polylogarithmic parallel time
using known algorithms. We now show by induction on the column index k that P is
the same permutation determined by GEMS. The basis is trivial, since j1 is the index
of the first nonzero element in column 1 of A. Now, for k > 1, let

(ej1 | . . . |ejk |elk+1
| . . . |eln)TA = LkUk = Lk

(
Rk Bk
O Ak

)
(5)

be the (partial) factorization computed by GEMS, where Rk is upper triangular with
nonzero diagonal elements (since A is nonsingular) and the unit vectors elk+1

, . . . , eln
extend ej1 , . . . , ejk to form a permutation matrix. Clearly, minimal pivoting ensures
that lk+1 < · · · < ln. Now, the next pivot row selected by GEMS is the one corre-
sponding to the first nonzero element in the first column of Ak. Let k + 1 ≤ i ≤ n
denote the index of the pivot row. Since GE does nothing but linear combinations
between rows, it follows that the initial matrix Ak+1 satisfies

det
(
(ej1 | . . . |ejk |elm)TAk+1

)
= 0,

for any m ∈ {k + 1, . . . , i− 1}, and

det
(
(ej1 | . . . |ejk |eli)TAk+1

) 6= 0.

This in turn implies that Si+1 = {j1, . . . , jk, li}, i.e., that li = jk+1.
We now show that GEMS is inherently sequential by proving that the set

L′′ = {A: A is n× n, PA = LU is the factorization computed
by GEMS, and [U]nn > 0}

is P -complete. Clearly, that L′′ is in P is obvious, so what remains to prove is the
following.

Theorem 7.2. L′′ is logspace hard for P .
Proof. Once more, GEMS is in the class F . So we simply give the elementary

matrices. This is very easy. Everything is the same as in the first part of the proof of
Theorem 6.2, except for the auxiliary vector of D. The new definition for aD(x, z) is

aD(x, z) = (x− z, z,−x, x− z, 0, 0, 0, 0, 0, 0, 0)T .

It is an easy but interesting exercise to understand why the second part of The-
orem 6.2, which extends the P -completeness result to nonsingular matrices, does not
work here. (We know that it cannot work, in view of Theorem 7.1.)

8. Conclusions and open problems. The matrices corresponding, for both
Householder’s and Givens’ algorithms, to a circuit C are singular, in general. More
precisely, the duplicator elementary matrix is singular, so that all the matrices that
do not correspond to simple formulas (fanout 1 circuits) are bound to be singular.
All the attempts we made to extend the proofs to nonsingular matrices failed. The
reason for this state of affairs could be an interesting subject in itself. To see that

2052 M. LEONCINI, G. MANZINI, AND L. MARGARA

Table 1
Parallel complexity of GE with different pivoting strategies and for different classes of input

matrices. The results proved in this paper are in boldface.

General Nonsingular Strongly nonsingular
matrices matrices matrices

GEP Inherently seq. Inherently seq. Inherently seq.
GEM Inherently seq. Inherently seq. NC
GEMS Inherently seq. NC NC

the reason for these failures might be deeper than simply our technical inability, we
mention a result of Allender et al. [1] about the “power” of singular matrices. They
prove that the set of singular integer matrices is complete for the complexity class
C=L.3 The result extends to the problem of verifying the rank of integer matrices.
Of course, our work is at a different level: we are essentially dealing with presumably
inherently sequential algorithms for problems that parallelize very well (using different
approaches). However, the coincidence suggests that nonsingular matrices might not
have enough power to map a general circuit. This is the major open problem for the
QR algorithms.

Also, for general matrices, it would be interesting to know the status of House-
holder’s algorithm with column pivoting, which is particularly suitable for the accurate
rank determination under floating point arithmetic.

For what concerns Givens’ rotations, an obvious open problem is to determine
the status of other annihilation orderings, especially the ones that proved to be very
effective in limited parallelism environments [23, 18]. We suspect that these lead to
inherently sequential algorithms as well.

Finally, Table 1 provides a summary of the known results for the three pivoting
strategies investigated in this paper for GE.

As already mentioned, the results of this paper support the belief that there is a
tradeoff between parallelism, on the one hand, and nondegeneracy and accuracy, on
the other, in numerical algorithms [6]. We suspect that far deeper work is needed
to either prove such a tradeoff on a solid theoretical ground or to exhibit stable
algorithms substantially more efficient than the ones adopted by numerical analysts
for decades.

Appendix A. Algorithms for matrix factorization. In this appendix we
describe the factorization algorithms considered in this paper.

Gaussian elimination (GE). GE computes the LU decomposition of A (whenever
it exists) by determining a sequence of n − 1 elementary transformations M (k) with
the following properties:

A(1) = A,
A(k+1) = M (k)A(k), k = 1, . . . , n− 1,

a
(k)
ij = 0, i > j and j < k,

U = A(n),

L =
∏(

M (k)
)−1

.

In other words, the transformation A(k+1) = M (k)A(k) sends to zero the elements
in column k of A(k) below the main diagonal, leaving the already introduced zeros

3A set A is in C=L provided that there is a nondeterministic logspace bounded Turing machine
M such that x ∈ A iff M has the same number of accepting and rejecting computations on input x.

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2053

unchanged. The kth transformation M (k) is defined as I − τeTk , where

τT = (0, . . . , 0, τk+1, . . . , τn)

and τi = a
(k)
ik /a

(k)
kk , i = k + 1, . . . , n. If, for some k, a

(k)
kk = 0, the algorithm fails.

However, it can be proved that, if A is strongly nonsingular, a
(k)
kk 6= 0, k = 1, . . . , n.

GE with partial pivoting (GEP). GEP computes a PLU decomposition of A.
GEP never fails. As in GE, the matrices L and U are built using a sequence of
elementary transformations. However, before applying M (k) to A(k), GEP determines
the minimum index h such that

|a(k)
hk | = max

k≤i≤n
|a(k)
ik |

and swaps the rows k and h of A(k). If the maximum above is 0, the algorithm sets
A(k+1) = A(k). The rule used for choosing the index h is an example of pivoting
strategy, and the row h itself is called the pivot row.

GE with minimal pivoting (GEM). This is similar to GEP, with the only difference

being that h is the minimum among the indices i, k ≤ i ≤ n, such that a
(k)
ik 6= 0. If

no such index exists, the algorithm sets A(k+1) = A(k).
QR factorization via Householder’s reflections (HQR). HQR applies a sequence

of n− 1 elementary orthogonal transformations Q(k) to A, i.e.,
A(0) = A,
A(k+1) = Q(k)A(k), k = 1, . . . , n− 1,

a
(k)
ij = 0, i > j and j < k,

R = A(n−1).

Since the Q(k) are orthogonal, we can write

A = (Q(1))T (Q(2))T · · · (Q(n−1))TR = QR,

which represents the factorization computed by the algorithm. The matrix Q(k) is
defined as follows. Let

a =

0
...
0

a
(k−1)
kk

...

a
(k−1)
nk

, and define v =

0
...
0

a
(k−1)
kk

...

a
(k−1)
nk

+

0
...
0

θ
√
aTa
...
0

,(6)

where θ = a
(k−1)
kk /|a(k−1)

kk | is the sign of a
(k−1)
kk . Then

Q(k) =

{
I − 2

vT v
vvT if v 6= 0,

I otherwise.
(7)

The important point to observe is that there are other possible strategies for choosing
θ in (6) that would produce the same effect of annihilating the kth column. However,
the choice adopted here is be preferred for stability reasons.

2054 M. LEONCINI, G. MANZINI, AND L. MARGARA

QR factorization via Givens’ rotations (GQR). GQR applies to general real ma-

trices. It computes a sequence of n(n−1)
2 transformations (called rotations), such that

each transformation annihilates one element below the main diagonal, leaving all the
already introduced zeros unchanged. GQR annihilates the subdiagonal part of the
matrix in the natural order (left to right and top to bottom).

The rotation used to annihilate a selected entry aji of a matrix A is the orthogonal
matrix Gij defined as follows:

Gij =

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

←− i

←− j
,

where c = aii√
a2
ii

+a2
ji

and s =
−aji√
a2
ii

+a2
ji

. One can easily verify that Gij is indeed

orthogonal and that the entry j, i of Gij ·A is zero.

Appendix B. Floating point number representation. A floating point
system S is characterized, on a particular computer, by four integers: the base b of
the representation (usually b = 2), the precision t, and the range of the exponent
[`, L]. A number f ∈ S has the form

f = ±.b1b2 · · · bt × be,

where 0 ≤ bi < b and ` ≤ e ≤ L. It is also required that b1 6= 0, which is a
normalization condition. The sequence .b1b2 · · · bt is the significand , while e is the
exponent .

If fl(x) is the (rounded or chopped) floating point representation of a real x, then

fl(x) = x(1 + δ)

(if no exceptional condition occurs), where |δ| ≤ ε and

ε =

1
2b

1−t for rounded arithmetic,

b1−t for chopped arithmetic.

ε is the so-called machine precision or roundoff unit and is used for roundoff error anal-
ysis. In particular, let � denote the floating point implementation of the arithmetic
operation · ∈ {+,−,×, /}. If x, y ∈ S, then

x� y = fl(x · y) = (x · y)(1 + η),(8)

where |η| ≤ ε. Equation (8) is known as the standard model of arithmetic. A property
that plays a crucial role in our reduction is the following. Let a and b be floating
point numbers such that |b| < ε|a|. Then a⊕ b = a.

Appendix C. Proof of Theorem 6.1. The set is clearly in P . Now, given
a nand circuit C with n inputs and gates together, we define a strongly nonsingular

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2055

matrix AC such that, for k = 1, . . . , n, if the output of node k of C (either an input
or a nand gate) is True, the pivot for step 2k − 1 will be taken from row 2k − 1, or
else the pivot will be taken from row 2k.

For the benefit of the reader, we first briefly recall the P -completeness proof for
nonsingular matrices given in [24]. Let MC denote the matrix corresponding to the
circuit C according to [24] (see Figure 10). If the circuit has n inputs and gates, the
matrix MC has order 2n. However, the circuit simulation takes place while performing
the elimination of the first n columns, with columns n + 1, . . . , 2n having the only
purpose of ensuring nonsingularity. For example, in the matrix of Figure 10 the first
two columns correspond to the inputs a, b, while, for i = 3, . . . , 6, column i corresponds
to gate i− 2. For the circuit inputs a logical value False is represented by the value
4, while a logical value True is represented by the value 3.75. When one executes
GEP on MC , a logical value False for a certain input or gate yields a pivot 4 in the
corresponding column, whereas a logical value True yields a pivot −3.9. Therefore,
the sequence of rows selected by GEP provides us with the output of each gate in the
circuit C.

The proof in [24] is based on the observation that a nand gate outputs False

unless one of its inputs is False. This fact is mirrored in the matrix MC , where the
pivot of each column is 4 unless that value is modified in a previous elimination step.
The structure of the matrix is such that the processing of a pivot 4, corresponding to
a False output, changes the status of the gates receiving that output from False to
True. This change of status is achieved by subtracting 0.25 from an entry initially set
to 4. This ensures that at the due time the pivot in the corresponding column will be
−3.9. For example, in the matrix of Figure 10 the selection of the pivot 4 in column
4 (corresponding to a False output for gate 2) reduces the 4 entry in column 6 by
0.25, ensuring that the pivot for that column will be −3.9 (corresponding to a True

output for gate 4). Note that the 1’s in the first n columns of MC correspond to the
wires of the circuit, one pair of 1’s for each wire. Below and to the right of each 4
entry there is a number of 1’s equal to the fanout of the corresponding gate, which in
the following we assume be at most two.

Our matrix AC has order 3n. The 2n × 2n leading principal submatrix of AC ,
denoted by A′C , is the main submatrix. The odd-numbered columns of A′C are
precisely the columns of the first half of the matrix MC . The even-numbered columns
of A′C are called the auxiliary columns; for k = 1, . . . , n, column 2k of A′C contains
the entry 10 in position 2k, and zero elsewhere. Outside the main submatrix, the
entries aij of AC are all zero except for a2n+k,2k = 20 and a2n+k,2n+k = 30, k =
1, . . . , n. For example, for the circuit of Figure 10, the corresponding matrix AC is
shown in Figure 11. Note that AC is strongly diagonally dominant and hence strongly
nonsingular.

Define the circuit area of the matrix AC to be the set of odd-numbered columns
of the main submatrix. Also, for i = 1, . . . , n, let

wi =
2n∑

j=2i+1

|a2n+i,j |.

The value wi can be seen as the weight of certain entries in row 2n+ i (see Figure 14).
The proof of the theorem is now a consequence of property p1 (defined in section

2) and of the following lemma.
Lemma C.1. For k = 1, . . . , n the following facts hold for GEP on input AC :
(a) The pivot for step 2k − 1 is either −3.9 or 4;

2056 M. LEONCINI, G. MANZINI, AND L. MARGARA

A′C

W
◦
◦
◦
◦
◦
◦ ◦

◦
◦
◦
◦
◦

Fig. 14. The structure of the matrix AC . The area labeled W contains the entries which
contribute to the weights wi’s. The symbol ◦ denotes the position of the initial nonzero entries
outside the main submatrix A′C .

(b) step 2k − 1 modifies the circuit area as the kth step in the elimination of
matrix MC ;

(c) step 2k− 1 does not affect the auxiliary (even-numbered) columns with index
greater than 2k;

(d) the pivot for step 2k is 20.0;
(e) step 2k affects neither the circuit area nor the auxiliary columns with index

greater than 2k;
(f) at the end of step 2k, wi ≤ 2.5, for i = 1, 2, . . . , n.

Proof. The proof is by complete induction on k. The basis is trivial. For the
induction hypothesis, let k > 1 and suppose that (a) through (f) hold for any i < k.

Consider step 2k− 1 of GEP. By the induction hypothesis, the entries in column
2k − 1 with row index less than 2n contain the same values generated during the
elimination process on the matrix MC . This means that a2k−1,2k−1 = −3.9 and

a2k,2k−1 =
{

4 if the output of gate k is False,
3.75 or 3.50 otherwise.

Moreover, for 2k < i ≤ 2n, we have |ai,2k−1| ≤ 1.5 (see part (d) of Lemma 3.2 in [24]).
For the entries with row index larger than 2n, we have, for 2n < i < 2n+ k,

|ai,2k−1| ≤ wi−2n ≤ 2.5,

because of (f), and, for i ≥ 2n + k, we have ai,2k−1 = 0 by property p1. It follows
that the pivot is 4 if the output of the gate k is False, and −3.9 otherwise, hence
proving part (a) and, consequently, part (b).

To prove (c) we first observe that the pivot at step 2k − 1 is either a2k−1,2k−1

or a2k,2k−1. By the induction hypothesis we know that the first 2k − 2 elimination
steps did not affect the auxiliary columns 2k, 2k + 2, . . . , 2n. Hence, for j even,
2k < j ≤ 2n, at the beginning of step 2k − 1 both a2k−1,j and a2k,j are zero. It
follows that, regardless of the pivot, step 2k − 1 does not affect column j.

In order to prove (d), consider step 2k of GEP. We need to show that the element
with the largest modulus in column 2k at the beginning of step 2k is a2n+k,2k which,

COMPLEXITY OF LINEAR SYSTEM SOLVERS 2057

−3.9 0 · · · 0 · · · 0
4 10 · · · 1 · · · 1
.
.
.

.

.

.
.
.
.

.

.

.
1 0 · · · yr · · · ys
.
.
.

.

.

.
.
.
.

.

.

.
1 0 · · · zr · · · zs
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
α1 α2 · · · αr · · · αs

−→

4 10 · · · 1 · · · 1
0 39

4 · · · 39
40 · · · 39

40

.

.

.
.
.
.

.

.

.
.
.
.

0 − 5
2 · · · yr − 1

4 · · · ys − 1
4

.

.

.
.
.
.

.

.

.
.
.
.

0 − 5
2 · · · zr − 1

4 · · · zs − 1
4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 α2 − 5
2α1 · · · αr − 1

4α1 · · · αs − 1
4α1

.

Fig. 15. The effect of the elimination of column 2k − 1 over columns 2k, r, s when the pivot
is 4. Since the fanout of each gate is at most 2 no other column in the main submatrix is affected.
We also show how step 2k − 1 modifies a row outside the main submatrix.

by property p1, is equal to 20.0. Also by property p1, we know that at step 2k we
have ai,2k = 0 for 2n + k < i ≤ 3n. Hence, we need only to prove that |ai,2k| < 20.0
for 2k ≤ i < 2n + k. We consider two cases. If at step 2k − 1 the pivot is −3.9, the
annihilation of column 2k − 1 does not affect column 2k. Hence, at the beginning of
step 2k we have a2k,2k = 10, ai,2k = 0, for 2k < i ≤ 2n, and, for 2n < i < 2n + k,
|ai,2k| ≤ wi−2n ≤ 2.5. Vice versa, if at step 2k − 1 the pivot is 4, the elimination of
column 2k−1 does affect column 2k. As a result, at the beginning of step 2k we have
a2k,2k = 39/4, and two entries in column 2k are equal to −5/2. For the entries ai,2k,
with 2n < i < 2n+ k, we have (see Figure 15) ai,2k = α2 − 5

2α1, where |αi| ≤ 2.5 (by
part (f) of the induction). Hence, a2n+k,2k = 20.0 is the largest entry in column 2k
and is the pivot chosen by GEP.

To prove (e) we simply note that all the entries in the pivot row with column
index less than or equal to 2n are zero. Therefore, the annihilation of column 2k does
not affect the main submatrix outside column 2k.

To prove (f), we fix an index i and analyze how steps 2k − 1 and 2k affect the

weight wi =
∑2n
j=2i+1 |a2n+i,j |. Again we consider two cases, depending on the pivot

chosen at step 2k− 1. If this is −3.9, GEP sends a2n+i,2k−1 to zero without affecting
the other entries in row 2n+ i. Similarly, step 2k sends a2n+i,2k to zero without side
effects. Thus, the weight wi remains bounded by 2.5. A special case is when i = k.
In fact, at the beginning of step 2k GEP swaps rows 2k and 2n+ k. In this case the
new value wk depends on the entries a2k,j , with 2k < j ≤ 2n. By parts (b), (c), and
(e) of the induction, one can see that at the beginning of step 2k there are at most
four entries a2k,j 6= 0 and that

∑
2k<j≤2n |a2k,j | ≤ 2.5. Hence, at the end of step 2k

we have wk ≤ 2.5, as claimed. Suppose now that the pivot at step 2k− 1 is 4. In this
case the effects of step 2k − 1 on row 2n + i, i 6= k, are shown in Figure 15. Since
step 2k simply sends to zero the entry in column 2k (i.e., α2 − 5

2α1), the weight wi
decreases by an amount of at least |α1|/2 + |α2|. Finally, for i = k, reasoning as for
the previous case, we get wk ≤ 2.5.

REFERENCES

[1] E. Allender, R. Beals, and M. Ogihara, The complexity of matrix rank and feasible systems
of linear equations, in Proc. 28th Annual IEEE Symp. on Theory of Computing (STOC),
IEEE Computer Society Press, Los Alamitos, CA, 1996, pp. 161–167.

2058 M. LEONCINI, G. MANZINI, AND L. MARGARA

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.
Hammarling, A. McKenney, S. Ostrouchov, and D. Sorenson, Lapack Users’ Guide,
SIAM, Philadelphia, PA, 1992.

[3] A. Borodin, J. von zur Gathen, and J. Hopcroft, Fast parallel matrix and GCD compu-
tations, Inform. and Control, 52 (1982), pp. 241–256.

[4] B. Codenotti, M. Leoncini, and F. P. Preparata, On the role of arithmetic fast parallel
matrix inversion, Algorithmica, submitted.

[5] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), pp. 618–623.
[6] J. W. Demmel, Trading Off Parallelism and Numerical Stability, Lapack Working Note 53,

Tech. report ut-cs-92-179, Univ. of Tennessee, Knoxville, TN, June 1992. Available online
at http://www.cs.utk.edu/˜library/1992.html

[7] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide,
SIAM, Philadelphia, PA, 1979.

[8] W. Eberly, Efficient parallel independent subsets and matrix factorizations, in Proc. 3rd IEEE
Symposium on Parallel and Distributed Processing, IEEE Computer Society Press, Los
Alamitos, CA, 1991, pp. 204–211.

[9] J. Von zur Gathen, Parallel linear algebra, in Synthesis of Parallel Algorithms, J. Reif, ed.,
Morgan–Kaufmann, San Mateo, CA, 1993, pp. 573–617.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1996.

[11] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel Computation, Oxford
University Press, New York, NY, 1995.

[12] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays Trees Hyper-
cubes, Morgan–Kaufmann, San Mateo, CA, 1992.

[13] M. Leoncini, On the parallel complexity of Gaussian elimination with pivoting, J. Comput.
System Sci., 53 (1996), pp. 380–394.

[14] M. Leoncini, G. Manzini, and L. Margara, Parallel complexity of Householder QR factor-
ization, in Proc. European Symp. on Algorithms, Lecture Notes in Comput. Sci. 1136,
Springer-Verlag, New York, 1996, pp. 290–301.

[15] M. Leoncini, G. Manzini, and L. Margara, On the parallel complexity of matrix factorization
algorithms, in Proc. 9th ACM Symp. on Parallel Algorithms and Architectures, ACM, New
York, 1997, pp. 63–71.

[16] M. Leoncini, G. Manzini, and L. Margara, Companion MATLAB c© software to “Par-
allel Complexity of Numerically Accurate Linear System Solvers,” available online at
http://www.imc.pi.cnr.it/ manzini/transducer/

[17] Using Matlab 5.1, The Mathworks Inc., Natick, MA, 1997.
[18] J. J. Modi and M. R. B. Clarke, An alternative Givens ordering, Numer. Math., 43 (1984),

pp. 83–90.
[19] V. Pan, Complexity of parallel matrix computations, Theoret. Comput. Sci., 54 (1987), pp. 65–

85.
[20] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,

NY, 1985.
[21] J. H. Reif, O(log2 n) time efficient parallel factorization of dense, sparse separable, and banded

matrices, in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, ACM, New
York, 1994, pp. 278–289.

[22] A. H. Sameh and R. P. Brent, Solving triangular systems on a parallel computer, SIAM J.
Numer. Anal., 14 (1977), pp. 1101–1113.

[23] A. H. Sameh and D. J. Kuck, On stable parallel linear system solvers, J. ACM, 25 (1978),
pp. 81–91.

[24] S. A. Vavasis, Gaussian elimination with pivoting is P -complete, SIAM J. Discrete Math., 2
(1989), pp. 413–423.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION IN NEAR
CONSTANT WORK PER POINT∗

JOHN H. REIF†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2059–2089

Abstract. Given the n complex coefficients of a degree n − 1 complex polynomial, we wish to
evaluate the polynomial at a large number m ≥ n of points on the complex plane. This problem is
required by many algebraic computations and so is considered in most basic algorithm texts (e.g.,
[A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974]). We assume an arithmetic model of computation, where on each step we can
execute an arithmetic operation, which is computed exactly. All previous exact algorithms [C. M.
Fiduccia, Proceedings 4th Annual ACM Symposium on Theory of Computing, 1972, pp. 88–93; H.
T. Kung, Fast Evaluation and Interpolation, Carnegie-Mellon, 1973; A. B. Borodin and I. Munro,
The Computational Complexity of Algebraic and Numerical Problems, American Elsevier, 1975; V.
Pan, A. Sadikou, E. Landowne, and O. Tiga, Comput. Math. Appl., 25 (1993), pp. 25–30] cost at
least work Ω(log2 n) per point, and previously, there were no known approximation algorithms for
complex polynomial evaluation within the unit circle with work bounds better than the fastest known
exact algorithms. There are known approximation algorithms [V. Rokhlin, J. Complexity, 4 (1988),
pp. 12–32; V. Y. Pan, J. H. Reif, and S. R. Tate, in Proceedings 32nd Annual IEEE Symposium on
Foundations of Computer Science, 1992, pp. 703–713] for polynomial evaluation at real points, but
these do not extend to evaluation at general points on the complex plane.

We provide approximation algorithms for complex polynomial evaluation that cost, in many
cases, near constant amortized work per point. Let k = log(|P |/ε), where |P | is the sum of the
moduli of the coefficients of the input polynomial P (z). Let P̃ (zj) be an ε-approx of P (z) if ε upper

bounds the modulus of the error of the approximation P̃ (zj) at each evaluation point zj , that is,

|P (zj) − P̃ (zj)| ≤ ε; note that ε is an absolute error bound rather than a relative error bound. In
many applications (particularly in signal processing) the evaluation points zj are fixed and require

only polylogarithmic k = log(|P |/ε) = O(logO(1) n); for these cases we get a surprising reduction in
work by use of approximation algorithms, as compared to the fastest known exact algorithms.

We ε-approx complex degree n − 1 polynomial evaluation at m ≥ n logn/ log2 k fixed points
on or within the unit disk in the complex plane in amortized work O(log2 k) per point, which is
O(log2 logn) for polylogarithmic k. If the m points are not fixed, then we have increased amortized
work O(log2 k+logm) per point, which is O(logm) for polylogarithmic k and m ≥ n logn/ log k, and
is still substantially below the previous bound of Ω(log2 m) for known exact algorithms. We further
reduce our amortized bounds for special sets of evaluation points widely used in signal processing
applications. The chirp transform is equivalent to evaluating a complex degree n − 1 polynomial
at the chirp points, which are ζj , j = 0, . . . ,m − 1, for some fixed complex number ζ. We ε-approx
complex degree n− 1 polynomial evaluation at these m chirp points, where m ≥ n logn/ log2 k and
|ζ| ≤ 1 in amortized work O(log k) per point, whereas the previous best bounds for exact evaluation
(via the chirp transform) were Ω(logm) per point [A. V. Aho, K. Steiglitz, and J. D. Ullman, SIAM
J. Comput., 4 (1975), pp. 533–539]. All these results use an interesting reduction to fast multipole
algorithms for solving Trummer’s problem.

Using instead a reduction to approximate real polynomial evaluation (by interpolation at the
Chebyshev points), in total work O(n log k), we

• ε-approx the evaluation of a degree n polynomial at the first n powers of the n′th root of
unity, where n′ ≥ Ω(n2/k), and

• ε-approx the n-point DFT for certain inputs with descending coefficient magnitude.
All of our results require polylogarithmic (that is, logO(1) n) depth with the same work bounds. We
also provide a lower bound for a wide class of schemes for approximate evaluation of a degree n− 1
polynomial on the unit circle; namely, we prove that if a scheme uses an approximation polynomial
of degree k − 1, then it can be convergent only over a small fraction O(k/n) of the unit circle. We
believe this is the first lower bound of this sort proved, and the proof uses an interesting reduction

∗Received by the editors July 14, 1997; accepted for publication (in revised form) May 26, 1998;
published electronically June 23, 1999. This work was supported by NSF grant NSF-IRI-91-00681 and
Army Research Office contract DAAH-04-96-1-0448. A preliminary version of this paper appeared
in 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997.

http://www.siam.org/journals/sicomp/28-6/32429.html
†Department of Computer Science, Duke University, Durham, NC 27708-0129 (reif@cs.duke.edu,

http://www.cs.duke.edu/∼reif/HomePage.html).

2059

2060 JOHN H. REIF

to the approximation of a matrix product by a matrix of reduced rank.
Key words. algebraic computation, discrete Fourier transform (DFT), fast Fourier transform

(FFT), multipoint polynomial evaluation, complex plane, approximate algorithm

AMS subject classifications. 12Y05, 12-04, 65D15, 65D05, 41A21, 41A10, 68Q25

PII. S0097539797324291

1. Introduction. The following subsections give an extended description of mo-
tivation, statement of the problem, and comparison with prior work.

1.1. Machine model. For most of this paper, we assume an arithmetic circuit
model of sequential computation, where each basic arithmetic or logical operation such
as addition, subtraction, multiplication, division, and comparison over the domain of
rational numbers can be exactly computed in one step. The floor and ceiling opera-
tions are not allowed in this model. (One of our results assumes an extended arithmetic
model, where given a real θ, then eiθ = cos(θ)+i sin(θ) can be computed in O(1) steps.
The assumptions made for the extended arithmetic model will be stated during pre-
sentation of our algorithms.) We also assume an arithmetic (EREW) PRAM model
of parallel computation, where the processors can execute these arithmetic operations
in parallel, with exclusive reading and exclusive writing into locations of the shared
memory. The computation is sequential if there is only one processor. The resource
metrics of this model are: parallel time (the time to compute the outputs) and work,
which is the total number of such steps summed over all processors.

1.2. Multipoint polynomial evaluation and interpolation. The multipoint
polynomial evaluation problem over ring D is defined as follows:
Input: n coefficients p0, . . . , pn−1 ∈ D defining a polynomial

P (z) =
n−1∑
j=0

pjz
j

of degree n− 1 and m evaluation points

z0, . . . , zm−1 ∈ D.
Output: The values P (z0), . . . , P (zm−1).

The multipoint polynomial interpolation problem over ring D is defined as follows:
Input: n distinct interpolation points z0, . . . , zn−1 ∈ D and n values y0, . . . , yn−1 ∈ D.
Output: coefficients p0, . . . , pn−1 ∈ D defining the unique polynomial

P (z) =
n−1∑
j=0

pjz
j

of degree n− 1 such that yj = P (zj) for j = 0, . . . , n− 1.
The multipoint complex (real) polynomial evaluation and interpolation problems

restrict D to the complex numbers C (real numbersR, respectively). Exact algorithms
for multipoint polynomial evaluation and interpolation use modular techniques devel-
oped in the initial work of Moenck and Borodin [27], Borodin and Munro [4], Horowitz
[25], Fiduccia [16], and Kung [26] and were improved by Borodin and Munro [5] to
the best known work bounds: O((n+m) log2(n+m)) for evaluation and O(n log2 n)
for interpolation. An error analysis for these algorithms is given by Newbery [28].
Pan et al. [31] also gave polynomial evaluation and interpolation algorithms with at
least this same work, which in certain cases provide improved numerical stability.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2061

1.3. Multipoint polynomial evaluation at a small number of points. A
special case of the multipoint polynomial evaluation problem is where the polynomial
P (z) has degree n−1, where n is much larger than the number m of evaluation points
z0, . . . , zm−1. This special case has been well known since the early days of algebraic
computation and is frequently used in recursive algorithms for multipoint polynomial
evaluation.

Proposition 1.1. The work to evaluate a polynomial P (z) of degree n − 1 at
m < n evaluation points z0, . . . ,zm−1 is O(n) plus dn/me times the work to evaluate
a polynomial of degree m− 1 at m evaluation points over the same domain.

Proof. Given P (z) of degree n− 1, we define dn/me polynomials

P0(z), . . . , Pdn/me−1(z)

of degree at most m− 1, where

P (z) =

dn/me−1∑
j=0

Pj(z)z
jm.

To initialize, we precompute the (trivial) multipoint evaluation zmk for each k =
0, . . . ,m − 1. Then for each j = 0, . . . , dn/me − 1 we do the multipoint evaluation
Pj(zk) for k = 0, . . . ,m− 1 and also compute each zjmk by multiplication of zmk times

z
(j−1)m
k .

By application of Proposition 1.1, combined with previous exact algorithms [27,
16, 26, 5] for m point polynomial evaluation for dn/me polynomials of degree m− 1,
which require work O(m log2m) each, we have the m point polynomial evaluation
problem, for m ≤ n, which can be computed within work

dn/me(m log2m) ≤ O(n log2m).

Also, the multipoint polynomial evaluation problem, for m ≥ n, can be solved within
work

m/nO(n log2 n) ≤ O(m log2 n).

Hence we have the following proposition.
Proposition 1.2. The multipoint polynomial evaluation problem costs work ≤

O((m+ n) log2 min(n,m)).

1.4. The DFT and generalizations. An nth root of unity ω satisfies ωn = 1
and ωj 6= 1 for 1 ≤ j < n. The nth root of unity over the complex numbers C is
ω = ei2π/n, where i =

√−1. The n roots of unity over C are ω0, ω1, . . . , ωn−1.
The discrete Fourier transform (DFT) problem over the complex numbers C is

defined as follows:
Input: coefficients p0, . . . , pn−1 ∈ D defining a polynomial

P (z) =

n−1∑
j=0

pjz
j

of degree n− 1.
Output: The values

P (ω0), P (ω1), . . . , P (ωn−1).

2062 JOHN H. REIF

The celebrated fast Fourier transform (FFT) algorithm of Cooley and Tukey [9]
(which, according to Cooley, Lewis, and Welch [8], originates with early work by
Runge and König [36] and had early use in the works of Danielson and Lanczos [11]
and Good [20]) provides the DFT in work O(n log n) (also see Gentleman and Sande
[17] and Rabiner and Rader [32] for efficient implementations of the DFT).

The DFT−1, which is the inverse problem to the DFT (that is, interpolation from
the n roots of unity), reduces to multiplying 1

n by the evaluation of a given polynomial
at the inverses of each of the n roots of unity. Since for each of the n roots of unity
ωj , the inverse ω−j = ωn−j is also one of the n roots of unity (now reverse ordered),
the DFT−1 can also be solved via the FFT in work O(n log n). The chirp transform
generalizes the FFT to the evaluation of a polynomial of degree n− 1 over the points
ζj , for a complex constant ζ. The chirp transform can be computed in work O(n log n)
by a generalization of the FFT algorithm. By a reduction to convolution and thus
DFT, the following has also been shown.

Proposition 1.3 (see Aho, Steiglitz, and Ullman [2]). For fixed complex con-
stants s0, s1, ζ, the generalized chirp transform problem of evaluation of a polynomial
of degree n− 1 over the points s0 + s1ζ

j for j = 0, . . . , n− 1 (and also the inverse of
this problem, that of interpolation from these chirp points) can be solved within work
O(n log n).

By application of Proposition 1.1, we have the following proposition.
Proposition 1.4. For fixed complex constants s0, s1, ζ, the generalized chirp

transform problem of evaluation of a polynomial of degree n − 1 for over the points
s0 + s1ζ

j for j = 0, . . . ,m− 1 can be solved within work O((m+ n) log min(n,m)).
Recently, Dutt and Rokhlin, [14] gave an ε-approx algorithm for evaluation of a

degree n−1 polynomial at n−1 points on a unit circle with work O(n log n+n log(1/ε))
and Dutt, Gu, and Rokhlin [12] gave an ε-approx algorithm for interpolation of a
degree n − 1 polynomial from n − 1 Chebyshev points on a unit circle with work
O(n log(1/ε)).

1.5. Organization of this paper. The results of this paper are summarized
in the abstract. Section 1 provides the standard definitions of the assumed arith-
metic model of computation, multipoint polynomial evaluation and interpolation,
the DFT, and generalizations to the chirp transform (see also Aho, Steiglitz, and
Ullman [2]).

Section 2 gives our main result, Theorem 2.7, an approximate complex polynomial
evaluation algorithm using a reduction to Trummer’s problem which we approximately
solve by multipole algorithms. We first define Trummer’s problem in subsection 2.1
and describe Multipole methods for approximately solving Trummer’s problem in sec-
tion 2.2. We then give an algorithm for multipoint complex polynomial re-evaluation
by reduction to Trummer’s problem in section 2.3, and finally in section 2.4 we use this
reduction to do approximate complex polynomial evaluation via DFT and multipole
algorithms.

Note. Our computational model assumes each arithmetic operation yields exact
results; thus, it is not yet known if our algorithm yields the performance given in the-
ory if each arithmetic operation is computed in approximate floating point. However,
implementations (see [22, 15]) of fast multipole algorithms using approximate floating
point operation do give excellent performance in practice.

Section 3 describes known results for approximate real polynomial evaluation;
section 3.1 defines the Chebyshev point evaluation problem and known algorithms;
section 3.2 bounds the errors of interpolation at the Chebyshev points; and section 3.3

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2063

describes known methods for approximate real polynomial evaluation via interpolation
at the Chebyshev points.

Section 4 has a secondary (less general) result: it gives approximate polynomial
evaluation on a circle in a number of interesting cases, using classical methods of real
approximation by interpolation at the Chebyshev points. Subsection 4.1 describes
approximate polynomial evaluation on a circle via interpolation at the Chebyshev
angles and section 4.2 gives an alternative method which is proved in Appendix A.

Section 5 proves a lower bound for a wide class of schemes for polynomial eval-
uation on the unit circle; namely, there is no general approximation method, using a
low degree polynomial, that is convergent over a large fraction of the unit circle.

Appendix B gives an algorithm for exact Chebyshev point evaluation in O(n log n)
work, which is useful for the approximate real polynomial evaluation results of section
3 (this can be used as an alternative for a somewhat more complex algorithm for
Chebyshev point evaluation of Gerasoulis [18]).

2. Approximate complex polynomial evaluation via the multipole
methods.

2.1. Trummer’s problem. We define the (generalized) Trummer’s problem
over the complex plane C:
Input: n points a0, . . . , an−1 ∈ C, n weights c0, . . . , cn−1 ∈ C, defining a rational
function ψ(z) =

∑n−1
j=0

cj
z−aj , and also m ≥ n evaluation points z0, . . . , zm−1 ∈ C.

Output: The values ψ(z0), . . . , ψ(zm−1).
Trummer’s problem has widespread application to calculation of electrostatic and

gravitational forces. Gerasoulis [18] (also see Gerasoulis, Grigoriadis, and Sun [19])
gave an exact algorithm for Trummer’s problem, requiring O(m log2m) work. For
the case where m = n and aj = zj , for j = 1, . . . , n, Gerasoulis defined a polynomial

σ(z) = Πn−1
j=0 (z − aj) and its derivative σ(1)(z) = dσ(z)

dz . By l’Hôpital’s rule (the limit
is preserved by taking derivatives), we have the following proposition.

Proposition 2.1.

ψ(aj) =
cj

σ(1)(aj)

for j = 0, . . . , n− 1
Thus Gerasoulis gave a reduction of the probem of evaluation of ψ(z) to evaluation

of σ(1)(z) at the n points a0, . . . , an−1, which requires O(n log2 n) work for the exact
solution of Trummer’s problem. The result of Gerasoulis also easily extends (e.g., by
use of additional weights cj with value 0) to allow for exact solution of the generalized
Trummer’s problem, as defined above, in O(m log2m) work.

2.2. Multipole methods. Let k = log(|C|/ε), where |C| = ∑n−1
j=0 |cj | is the sum

of the moduli (the modulus of complex number reiθ is r) of the weights c0, . . . , cn−1

and ε is a given absolute error bound on each output. Greengard and Rokhlin [21]
(also see Carrier, Greengard, and Rokhlin [7]) gave an ε-approx algorithm, known
as the multipole algorithm, for Trummer’s problem using an O(k) term rational se-
ries expansion of O(k) terms and requiring O(mk2) work over the complex plane.

They computed ε-approx values ψ̃(a0), . . . , ψ̃(am) such that |ψ(aj) − ψ̃(aj)| ≤ ε for
j = 0, . . . ,m−1. Given the n points a0, . . . , an−1 ∈ C for Trummer’s problem, rational
function ψ(z), and also m ≥ n evaluation points z0, . . . , zm−1 ∈ C, the multipole algo-
rithm requires using these m+n points to construct a certain tree-like data structure
known as the well-separated decomposition; see Callahan and Kosaraju [6] for details.

2064 JOHN H. REIF

Given these m + n points, the well-separated decomposition algorithm of Callahan
and Kosaraju [6] costs work O(m logm). Also, Pan, Reif, and Tate [30] (see Reif and
Tate [33] for the full paper) gave an O(m log logm) algorithm for the well-separated
decomposition in the case where the input points have logarithmic bit-precision. As-
suming a well-separated decomposition, the Multipole algorithm over the complex
plane was improved by Greengard and Rokhlin [22] to O(mk log k) work by use of the
FFT, to do each of the O(m) operations on O(k) term power series required by this
multipole algorithm, each within work O(k log k). Later work by Pan, Reif, and Tate
[30] (see Reif and Tate [34] for the full paper) gave a further substantial improve-
ment, which remains the most efficient known algorithm for approximate solution of
the Trummer’s problem.

Lemma 2.2. Given a well-separated decomposition of the set of the input points,
a Trummer’s problem for m evaluation points can be ε-approx on every output within
work O(m log2 k), where k = log(|C|/ε).

The algorithm of [30, 34] uses a reduction from Trummer’s problem for m eval-
uation points to ε-approx solution of a (slightly generalized) Trummer’s problem of
size m′ ≤ m/kc for a constant c with cost O(m′k log k) ≤ O(m), and also solves
O(m′) instances of Trummer’s problem; each has m/m′ ≤ kc evaluation points cost-
ing O((m/m′) log2 k) per such instance, resulting in the total cost

O(m′(m/m′) log2 k) ≤ O(m log2 k).

Note. In the special case that the m evaluation points are chirp points, the algo-
rithm of [30, 34] can be sped up as follows: again we compute an ε-approx solution of
a (slightly generalized) Trummer’s problem of size m′ ≤ m/kc with cost O(m′k log k)
≤ O(m) and also solve O(m′) instances of Trummer’s problem with m/m′ ≤ kc chirp
evaluation points, with the reduced cost O((m/m′) log k) for each such instance, re-
sulting in a somewhat reduced total cost O(m′(m/m′) log k) ≤ O(m log k).

2.3. Reduction to Trummer’s problem. The multipoint polynomial
re-evaluation problem over C is defined as follows:
Input: n distinct points a0, . . . , an−1 ∈ C and n values y0, . . . , yn−1 ∈ C defining a
unique polynomial P (z) of degree n − 1 such that yj = P (aj) for j = 0, . . . , n − 1,
and m re-evaluation points z0, . . . , zm−1 ∈ C, which are distinct from these points
a0, . . . , an−1.
Output: The values P (z0), . . . , P (zm−1).

Note that in the polynomial re-evaluation problem, the coefficients of the input
polynomial are not explicitly given.

Given as input n distinct points a0, . . . , an−1 ∈ C, and values y0, . . . , yn−1, let
σ(z) = Πn−1

j=0 (z − aj). Our basic approach is as follows. We construct the rational
function ψ(z) = P (z)/σ(z), which can be expanded as a Trummer’s function ψ(z)

=
∑n−1
j=0

cj
z−aj . The weights c0, . . . , cn−1 ∈ C are determined by reversing the formula

of Proposition 2.1, as follows in this proposition.
Proposition 2.3. Suppose we set cj = yj/σ

(1)(aj) for j = 0, . . . , n − 1, where

σ(1)(z) = dσ(z)
dz . Then P (z) = ψ(z)σ(z) for all z, where ψ(z) =

∑n−1
j=0

cj
z−aj , and P (z)

is the unique degree n− 1 polynomial such that P (a0) = y0, . . . , P (an−1) = yn−1.
Proof. If P (z) = ψ(z)σ(z), then for j = 0, . . . , n− 1,

cj = lim
z→aj

(z − aj)ψ(z) = lim
z→aj

(z − aj)(P (z)/σ(z))

= P (aj)/σ
(1)(aj) = yj/σ

(1)(aj).

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2065

We will exactly compute the values σ(1)(aj), j = 0, . . . , n − 1. We will compute
or approximate (as in certain specialized cases described below) the values σ(zj),
j = 0, . . . ,m − 1. Next we apply the efficient multipole method of [30, 34] (Lemma

2.2) to construct an ε-approx solution ψ̃(z0), . . . ,ψ̃(zm−1) of this Trummer’s problem,

such that |ψ(zj)− ψ̃(zj)| ≤ ε for j = 0, . . . ,m− 1. If we exactly compute σ(zj), then

we approximate each P (zj) by P̃ (zj) = ψ̃(zj)σ(zj). Otherwise, we approximate each

P (zj) by P̃ (zj) = ψ̃(zj)σ̃(zj), where σ̃(zj) is an ε∗-approx to σ(zj) (as determined
below).

Proposition 2.4. For j = 0, . . . ,m− 1, the P̃ (zj) are an ε̂-approx to the P (zj),
where if the σ(zj) are exactly computed, then

ε̂ ≤ εmax
j
|σ(zj)|,

and if each σ(zj) is ε∗-approx by σ̃(zj), then

ε̂ ≤ (ε∗ + max
j
|σ(zj)|)ε+ (2 + 3ε∗/min

j
|σ(zj)|)|P |,

where |P | = ∑n−1
j=0 |pj |.

Proof. First suppose the σ(zj) are exactly computed, so ε∗ = 0. By definition,

P (zj) = ψ(zj)σ(zj) and P̃ (zj) = ψ̃(zj)σ(zj), so we have

|P (zj)− P̃ (zj)| = |ψ(zj)σ(zj)− ψ̃(zj)σ(zj)|
= |ψ(zj)− ψ̃(zj)||σ(zj)| ≤ ε|σ(zj)|.

Otherwise, suppose each σ(zj) is ε∗-approx by σ̃(zj). We have |ψ(zj)| ≤ |P |/|σ(zj)|,
and |ψ̃(zj)| ≤ ε+ |ψ(zj)| ≤ ε+ |P |/|σ(zj)|, so

|ψ̃(zj)||σ(zj)| ≤ |σ(zj)|ε+ |P |,
and also

|ψ(zj)|+ |ψ̃(zj)| ≤ ε+ 2|ψ(zj)| ≤ ε+ 2|P |/|σ(zj)|.
Furthermore, |σ(zj)− σ̃(zj)| ≤ ε∗, so |σ̃(zj)| ≤ ε∗ + |σ(zj)|, and

|ψ(zj)σ̃(zj)| ≤ ε∗|ψ(zj)|+ |P | = ε∗(|P |/|σ(zj)|) + |P |.
Also,

(|ψ(zj)|+ |ψ̃(zj)|)|σ(zj)− σ̃(zj)| ≤ ε∗(ε+ 2|P |/|σ(zj)|).
Note that

P (zj)− P̃ (zj) = ψ(zj)σ(zj)− ψ̃(zj)σ̃(zj)

= (ψ(zj) + ψ̃(zj))(σ(zj)− σ̃(zj)) + ψ(zj)σ̃(zj)− ψ̃(zj)σ(zj).

Hence

|P (zj)− P̃ (zj)| = |ψ(zj)σ(zj)− ψ̃(zj)σ̃(zj)|
≤ (|ψ(zj)|+ |ψ̃(zj)|)|σ(zj)− σ̃(zj)|+ |ψ(zj)σ̃(zj)|+ |ψ̃(zj)σ(zj)|
≤ ε∗(ε+ 2|P |/|σ(zj)|) + (ε∗(|P |/|σ(zj)|) + |P |) + (|σ(zj)|ε+ |P |)
= (ε∗ + |σ(zj)|)ε+ (2 + 3ε∗/|σ(zj)|)|P |.

2066 JOHN H. REIF

To approximately compute each of the σ(zj), given zj (and with fixed aj) for
j = 0, . . . ,m − 1, we define a unitary Trummer’s problem of size m where we spe-
cialize the yj to 1 but keep the aj fixed as before. Hence, since the aj are fixed,
the weights are fixed as cj = 1/σ(1)(aj), and so can be assumed to be precomputed.
This corresponds to defining a constant polynomial P ∗(z) = 1 = ψ∗(z)σ(z); with this
specialization, ψ∗(z) = 1/σ(z). Next we can apply again Lemma 2.2 to construct an

ε-approx solution: ψ̃∗(z0), . . . , ψ̃∗(zm−1) of the unitary Trummer’s problem. Then we

define σ̃(z) = 1/ψ̃∗(z), and use σ̃(zj) as an approximation to σ(zj).
Proposition 2.5. For j = 0, . . . , n− 1, each

σ̃(zj) = 1/ψ̃∗(zj)

is an ε∗-approx to σ(zj), where

ε∗ =
ε|σ(zj)|2

1− |σ(zj)|ε .

Proof. The error is bounded as

|σ̃(zj)− σ(zj)| = | 1

ψ̃∗(zj)
− 1

ψ∗(zj)
| = | ψ̃

∗(zj)− ψ∗(zj)
ψ∗(zj)ψ̃∗(zj)

| = |ψ̃
∗(zj)− ψ∗(zj)|
|ψ∗(zj)ψ̃∗(zj)|

≤ ε

|ψ∗(zj)||ψ̃∗(zj)|
≤ ε

|ψ∗(zj)|(|ψ∗(zj)| − ε) = ε∗

for

ε∗ =
ε|σ(zj)|2

1− |σ(zj)|ε ,

since σ(z) = 1/ψ∗(z), and

|ψ̃∗(zj)| ≥ |ψ∗(zj)| − ε =
1− |σ(zj)|ε
|σ(zj)| .

2.4. Approximate complex polynomial evaluation via DFT and multi-
pole algorithms. Let ω = ei2π/n be the nth root of unity ∈ C. We assume the n
roots of unity ωj , for j = 1, . . . , n − 1 are precomputed. Let us specialize the points
a0, . . . , an−1 to be the n roots of unity, so aj = ωj for j = 0, . . . , n − 1. Then it is
known (e.g., see Aho, Hopcroft, Ullman [1]) that σ(z) = Πn−1

j=0 (z − ωj) = zn − 1. In
this case, each σ(zj) = znj − 1 can be exactly computed by repeated squaring with

work only O(log n). Since σ(1)(z) = nzn−1 in this case, and ωn = 1, each

σ(1)(aj) = σ(1)(ωj) = nωj(n−1) = n/ωj = nωn−j .

Thus each σ(1)(aj) costs one multiplication to compute from the known (precomputed)
root of unity ωn−j . Also,

max
j
|σ(zj)| ≤ 1 + max

j
|zj |n.

Note that if all the re-evaluation points zj , for j = 0, . . . ,m− 1, are on or within the
unit disk,

max
j
|zjn| ≤ max

j
|zj |n ≤ 1.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2067

This implies that

max
j
|σ(zj)| ≤ 1 + max

j
|zjn| ≤ 2,

so by Proposition 2.4 (where we fix ε∗ = 0 since the σ(zj) are exactly computed) we
have the following lemma.

Lemma 2.6. Let the points a0, . . . , an−1 be the n roots of unity, and all the re-
evaluation points zj, j = 0, . . . ,m− 1 be on or within the unit disk, so |zj ≤ 1, and
let the zj be distinct from the n roots of unity. We construct an ε-approx solution

ψ̃(z0), . . . , ψ̃(zm−1) of the resulting Trummer’s problem. Then for j = 0, . . . ,m − 1,
each P (zj) is 2ε-approx by

P̃ (zj) = ψ̃(zj)σ(zj).

Now we bound the work. Given as input the coefficients of a degree n − 1 poly-
nomial P (z), we can exactly evaluate P (z) at the n roots of unity by applying the
DFT algorithm to the coefficients of P (z) in work O(n log n). Now given m evaluation
points z0, . . . , zm−1 on or within the unit disk, and distinct from the n roots of unity,
we apply the above reduction to Trummer’s problem. Let |P | =

∑n−1
j=0 |pj |. Since

σ(1)(z) = dσ(z)
dz = nzn−1, it follows that |σ(1)(ωj)| = n. Hence the coefficients cj =

P (ωj)/σ(1)(ωj) of Trummer’s problem have magnitude

|cj | = |P (ωj)|/n = |P |/n
and have summed magnitude

|C| =
n−1∑
j=0

|cj | = |P |.

We compute all the σ(aj) by O(n) multiplications (of n times each of the precomputed
roots of unity). If the input evaluation points z0, . . . , zm−1 are fixed, then we can
assume a precomputed well-separated decomposition of the set containing all the n
roots of unity and the set of m evaluation points. Also, when the input evaluation
points are fixed, we can assume precomputed σ(zj), j = 0, . . . ,m− 1.

By the efficient multipole algorithm of [30, 34] (Lemma 2.2) the resulting Trum-
mer’s problem of size m can be ε-approx on every output within work O(m log2 k),
where k = O(log(|C|/ε)) = O(log(|P |/ε)). Thus if m ≥ (n log n)/ log2 k, then the
total work for m fixed evaluation points is O(m log2 k). By Proposition 2.4, for

j = 0, . . . ,m− 1, the P̃ (zj) are an ε̂-approx to the P (zj), where

ε̂ = εmax
j
|σ(zj)| ≤ 2ε,

since maxj |σ(zj)| ≤ 2. Thus the approximation errors are upper bounded by 2ε, and
rescaling (to simplify notation) 2ε to ε, we have the following theorem.

Theorem 2.7. Suppose we are given a complex degree n− 1 polynomial P (z), m
fixed evaluation points on or within the unit disk (with a precomputed well-separated
decomposition), and a given ε > 0. Let k = O(log(|P |/ε)). Then we can compute
an ε-approx of this complex polynomial evaluation problem within work O(m log2 k +
n log n). If m ≥ (n log n)/ log2 k, the amortized work per evaluation point is bounded
by O(log2 k).

2068 JOHN H. REIF

Note. For practical implementation of approximate polynomial evaluation via
Theorem 2.7, one may substitute a theoretically less efficient multipole algorithm
in place of the efficient multipole algorithm of [30, 34] (Lemma 2.2), which costs
O(m log2 k) work. For example, the FFT-accelerated fast multipole algorithm of
Greengard and Rokhlin [22], which requires O(mk log k) work, in theory gives an
improvement over the bounds of O(n log2 n) for exact algorithms if k ≤ o((log2 n)/
log log n) and moreover is known to be very efficient in practice. This FFT-accelerated
fast multipole algorithm was implemented by Elliott and Board [15] on a variety of
high performance machines, gives the currently fastest running multipole algorithm
implementation known in practice (as opposed to theory) on these machines, and is
used in many molecular simulation applications. Another approach would be to do a
careful implementation of the multipole algorithm of Reif and Tate [30, 34], which may
provide improved performance in practice, over the FFT-accelerated fast multipole
algorithm.

Further note. We can reduce the work bounds of Theorem 2.7 for the special case
of m chirp evaluation points, a Trummer’s problem for m chirp evaluation points can
be ε-approx on every output within work O(m log k). Thus the work bounds given in
Theorem 2.8 can in this case be reduced by replacing log2 k by log k.

The case where the m evaluation points are not fixed. For small k =
o(n), the most costly parts of the above approximate complex polynomial evaluation
algorithm is the computation of the σ(zj) and the well-separated decomposition, both
costing work O(m logm) in the worst case. We now describe how to reduce this
cost by approximate computation of the σ(zj) and, in certain cases, more efficient
computation of the well-separated decomposition.

Again, we will assume that the input evaluation points z0, . . . , zm−1 are on or
within the unit disk; however, we redefine aj = rωj where ω is the nth root of unity.
Let r = (1 + 1

n) and note rn ≈ e. Recall (e.g., see Aho, Hopcroft, Ullman [1]) that

Πn−1
j=0 (z − ωj) = zn − 1. In this case we redefine

σ(z) =

n−1∏
j=0

(z − rωj) = rn
n−1∏
j=0

(z
r
− ωj

)
= rn

((z
r

)n
− 1
)

= zn − rn.

Since |zj | ≤ 1, we have

|σ(zj)| = |znj − rn| ≤ |zj |n + rn ≤ 1 + rn ≈ 1 + e.

Also,

|σ(zj)| = |zn − rn| ≥ |rn| − |zn| ≤ rn − 1 ≈ e− 1.

Since we again have

σ(1)(z) =
dσ(z)

dz
= nzn−1

in this specialized case, and since |aj | = 1, each

σ(1)(aj) = σ(1)(rωj) = n(rωj)n−1,

so

|σ(1)(aj)| = nrn−1 ≈ ne/r.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2069

1. Approximate computation of the σ(zj) via the unitary Trummer’s problem. If
the input evaluation points are not fixed, we might exactly compute all the
σ(zj) = znj − rn by powering in O(m log n) work. Instead, we will approxi-
mately compute the σ(zj), j = 0, . . . ,m− 1. To do this, as described above,
define a unitary Trummer’s problem of size m where we specialize the weights
to be 1, so ψ∗(z) = 1/σ(z). Since for each j, the aj = rωj are fixed, we can as-
sume the σ(1)(aj) = n(rωj)n−1 are precomputed, thus providing the weights
cj = 1/σ(1)(aj). Applying Lemma 2.2 again, the resulting unitary Trummer’s
problem of size n is ε-approx on every output σ̃(zj), so |σ(zj) − σ̃(zj)| ≤ ε,
with the same work O(m log2 k). We assume ε ≤ 1/4. By Proposition 2.5,

each σ̃(z) = 1/ψ̃∗(zj) is an ε∗-approx to σ(zj), where

ε∗ = max
j

ε|σ(zj)|2
1− |σ(zj)|ε ≤

ε(1 + e)2

1− (1 + e)ε
≤ O(ε),

since we have shown maxj |σ(zj)| ≤ 1 + e and we have assumed ε ≤ 1/4. By

Proposition 2.4, for j = 0, . . . ,m − 1, each P̃ (zj) are an ε̂-approx to P (zj),
where

ε̂ ≤ (ε∗ + max
j
|σ(zj)|)ε+ (2 + (3ε∗)/min

j
|σ(zj)|)|P | ≤ O(ε|P |).

2. Computation of the well-separated decomposition. We can compute a well-
separated decomposition of the set union of the m ≥ n evaluation points
and the aj = rωj , j = 0, . . . , n − 1 within work O((n + m) log(n + m)) ≤
O(m logm) by the algorithm of Callahan and Kosaraju [6]. Alternatively,
if the points have logarithmic bit-precision, then the algorithm of [30, 34]
computes, within work O((n + m) log log(n + m)) ≤ O(m log logm), a well-
separated decomposition the set of m evaluation points. Furthermore, since
the aj = rωj , j = 0, . . . , n − 1 are regularly spaced on the radius r circle, a
simple modification of the well-separated decomposition algorithm of [30, 33]
can be used to compute a well-separated decomposition of the set union of n
roots of unity and the set of m evaluation points, within work O(m log logm).

In either case, we proceed as follows. We apply the above construction, for
re-evaluation via Trummer’s problem, to P (z). Since |σ(1)(rωj)| ≈ ne/r, the co-
efficients cj = P (ωj)/σ(1)(ωj) of the Trummer’s problem have summed magnitude
|C| ≈ |P |r/e ≤ O(|P |), so we may let

k = O(log(|C|/ε)) = O(log(|P |/ε)).
Again the resulting Trummer’s problem of size m can be ε′-approx on every output us-
ing the efficient multipole algorithm of [30, 34] (Lemma 2.2) within work O(m log2 k).
For j = 0, . . . ,m− 1, let

P̃ (zj) = ψ̃(zj)σ̃(zj)

be the resulting approximation of P (zj). In either case, the error of approximation

of P (zj) by P̃ (zj) is bounded as |P̃ (zj)− P (zj)| ≤ ε̂. Thus, by rescaling (to simplify
notation) the total error O(ε̂) to ε, we have the following theorem.

Theorem 2.8. Suppose we are given a complex degree n− 1 polynomial P (z), m
evaluation points (which are not fixed) on or within the unit disk, and a given ε, 0 <
ε < 1/4. Let k = O(log(|P |/ε)). Then we can compute an ε-approx of this complex

2070 JOHN H. REIF

polynomial evaluation problem within work O(m(logm + log2 k) + n log n). Thus, if
m ≥ (n log n)/(logm+ log2 k), then we require amortized work O(logm+ log2 k) per
evaluation point.

Note. If the m evaluation points have logarithmic bit-precision, then the com-
plexity bounds of Theorem 2.8 can be improved by application of the well-separated
decomposition algorithm of [30, 33]; in this case each appearance of logm in Theorem
2.8 can be replaced with log logm.

Further note. In the special case that the m evaluation points are chirp points,
a Trummer’s problem for m chirp evaluation points can be ε-approx on every output
within work O(m log k). Thus the work bounds given in Theorem 2.8 can in this case
be reduced by replacing log2 k by log k.

3. Chebyshev points and approximate real polynomial evaluation.

3.1. The Chebyshev point evaluation problem. Let ω = ei2π/n
′

be the n′th
root of unity over the complex numbers C. Note that

ωj = cos(j2π/n′) + isin(j2π/n′).

Let m ≤ n′. The (n′,m)-Chebyshev points are the set of m real parts xj = cos(j2π/n′)
of the powers ωj , for j = 0, 1, . . . ,m− 1. (This is slightly nonstandard notation, but
convenient for our purposes.) Given real constants s0, s1 the shifted (n′,m)-Chebyshev
points are real values

x′j = s0 + s1 cos(j2π/n′).

The (shifted) (n′,m)-Chebyshev point evaluation problem is the multipoint real eval-
uation problem of evaluating a polynomial of degree n − 1 at the set of m (shifted,
respectively) (n′,m)-Chebyshev points. The (shifted) (n′, n)-Chebyshev point inter-
polation problem is the multipoint real interpolation problem of interpolating a poly-
nomial of degree n − 1 from the set of n (shifted, respectively) (n′, n)-Chebyshev
points.

Pan [29] has given an O(n log2 n) algorithm for the (4n, n)-Chebyshev point eval-
uation problem and the shifted version of this problem. The results of Gerasoulis [18]
imply an O(n log n) algorithm for (n′, n)-Chebyshev point evaluation, for n′ = O(n),
which uses a reduction to Trummer’s problem for Chebyshev points. In the appendix
we give an alternative algorithm (using a recursive algorithm and a reduction to the
DFT and by application of Proposition 1.1) for (n′, n)-Chebyshev point evaluation
(and also interpolation) with these same work bounds but yielding a simpler algo-
rithm.

Lemma 3.1. For n′ ≤ O(n), the (n′,m)-Chebyshev point evaluation problem can
be solved in work O((n+m) log min(n,m)), and the (n′, n)-Chebyshev point interpo-
lation problem can be solved in work O(n log n). (The circuit depth is O(log n).) Also,
the shifted version of these problems can be solved within the same work bounds.

3.2. Approximate real evaluation via interpolation at the Chebyshev
points. Interpolation at the Chebyshev points is a well-known classical method for
approximation of real functions (see, for example, Dahlquist and Björck [10] and Henry
[24]). Fix an interval I = [L,U] of the real line of length |I| = U −L. Let f(x) be any

real function over I. We say f̃(x) is an ε-approx of f(x) over I if |f(x) − f̃(x)| ≤ ε

for any x ∈ I. Fix f̃(x) to be the degree k polynomial derived by interpolating f(x)
at the shifted (2k, k)-Chebyshev points x′j = U+L

2 + U−L
2 cos(jπk), for j = 0, . . . , k− 1,

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2071

which are on the interval I = [L,U]. Thus f̃(x) is the unique degree k polynomial

such that f̃(x′j) = f(x′j) for j = 0, . . . , k − 1. Let

f (k)(x) =
dkf(x)

dkx

be the kth derivative of f(x) with respect to x.

Proposition 3.2 (see Dahlquist and Björck [10]). For any x ∈ I, f̃(x) is an
ε-approx of f(x), for

ε =
2(|I|/4)k

k!
max
y∈I
|f (k)(y)|.

3.3. Approximate real polynomial evaluation via interpolation at the
Chebyshev points. Rokhlin [35] applied Proposition 3.2 for a fast algorithm for the
discrete Laplace transformation. Fix P (x) to be a real polynomial of degree n−1. As
observed in Pan, Reif, and Tate [30], direct application of the well-known Proposition
3.2 immediately gives an ε-approx to the real multipoint evaluation problem for P (x)
at any given m real points x0, . . . , xm−1. By Lemma 3.1, the shifted (2k, k)-Chebyshev
point evaluation problem for P (x) can be solved within work O(n log k). Known exact
algorithms [16, 26, 5] for k-point polynomial interpolation require work O(k log2 k).

By Proposition 1.2, the multipoint polynomial evaluation problem for P̃ (x) at the
real points x0, . . . , xm−1 ∈ I can be solved within work O(m log2 k). Thus an ε-
approx of the multipoint polynomial evaluation problem for P (x) at any m real points

∈ I can be solved within work O(m log2 k), where ε = 2(|I|/4)k

k! maxy∈I |P (k)(y)|. Let
β = log(|P |/ε), where |P | is the sum of the moduli of the coefficients of P . Assuming
without loss of generality (w.l.o.g.) k = o(n), note that if we fix I = [−1, 1] we have
that

max
y∈I
|P (k)(y)| ≤ max

y∈I
max
k≤j<n

j!

(j − k)!
y−(j−k)|P | ≤ max

k≤j<n
j!

(j − k)!
2−(j−k)|P |,

which is maximized when j = k, so

max
y∈I
|P (k)(y)| ≤ j!

(j − k)!
2−(j−k)|P | ≤ k!|P |.

Setting the degree of P̃ to be k − 1, where k = log(|P |/ε), we have that

ε ≤ 2(|I|/4)k

k!
max
y∈I
|P (k)(y)| ≤ |P |/2k−1,

implying, by Proposition 3.2, the following known result.
Lemma 3.3 (see Pan, Reif, and Tate [30] and also Bini and Pan [3]). An ε-approx

of the multipoint polynomial evaluation problem for a degree n−1 polynomial P (x) at
any m ≥ n real points ∈ [−1, 1] can be solved within work O(m log2 min (n, k)), where
k = log(|P |/ε).

So far we have assumed that P (x) has only real coefficients. Note that if P (x) has
complex coefficients, then we can let P (x) = P0(x) + iP1(x) where P0(x), P1(x) have
only real coefficients. Then application of Lemma 3.3 for each of the P0(x), P1(x)

2072 JOHN H. REIF

implies that for k = log(|P |/ε), the resulting error of approximation for evaluation of
P (x) is a

√
2 factor more, that is,

√
2ε. Hence rescaling (to simplify notation) the

error
√

2ε to ε, we have the following lemma.
Lemma 3.4. An ε-approx of the multipoint polynomial evaluation problem for

a degree n − 1 polynomial P (x) with complex coefficients at any m ≥ n real points
∈ [−1, 1] is solved in work

≤ O(m log2 min (n, log(|P |/ε))).

By Lemma 3.1, the (n′,m)-Chebyshev point evaluation problem for the degree

k− 1 polynomial P̃ (x) at shifted (n′,m)-Chebyshev points can be solved within work
O(m log k). All Chebyshev points are within the interval I = [−1, 1]. Setting k =
log(|P |/ε), we have again that ε ≤ |P |/2k−1 implying the improved result.

Lemma 3.5. An ε-approx of the (n′,m)-Chebyshev point evaluation problem for
a degree n− 1 polynomial P (x) is solved in work

O((m+ n) log min (n, log(|P |/ε))).

(The parallel time is O(log min (n, log(|P |/ε))).)
4. Approximate evaluation on a circle.

4.1. Approximate polynomial evaluation on a circle via interpolation
at the Chebyshev angles. We further reduce our amortized work bounds for spe-
cial sets of evaluation points. By reduction to approximate evaluation of Trummer’s
problem via the Multipole algorithm, we have already shown how to ε-approx complex
degree n − 1 polynomial evaluation at m ≥ n log n chirp points ζj , j = 0, . . . ,m − 1,
for some fixed complex number ζ, |ζ| ≤ 1 in amortized work O(log k) per point. Using
quite distinct techniques, we give in this section a reduction from ε-approx complex
degree n− 1 polynomial evaluation at m ≥ n points on a circle of radius r to approx-
imate real polynomial evaluation, again in amortized work O(log2 k) per point. Let

i =
√−1. Fix a complex polynomial P (z) =

∑n−1
j=0 pjz

j of degree n− 1 and let

|P | =
n−1∑
j=0

|pj |.

Let ε > 0 be a given error bound. Let z = reiθ range on a circle of radius r, and
define the angle of z to be θ(z) = θ. We now consider the evaluation of P (z) at a
set of points zj = reiθj for j = 1, . . . ,m over an interval of a circle of radius r with
angular bounds θj ∈ [0,∆], for a positive real ∆ ≤ 2π. The set of points reiθj , for
j = 0, . . . ,m − 1, are regularly spaced on the circle of radius r if the θj are a linear
function of j (for example, the n roots of unity are regularly spaced on the unit circle).
The polynomial P (z) is (k, t)-descending if the magnitude of the coefficients drops as

|pj | ≤ nO(1)|P |
(
t

j

)k
,

for j = k, . . . , n− 1. Here we prove the following.
Theorem 4.1. Suppose we are given a complex polynomial P (z) =

∑n−1
j=0 pjz

j of

degree n− 1, and a fixed set of evaluation points zj = reiθj for j = 0, . . . ,m− 1 on a
circle of radius r with angular range θj ∈ [0,∆]. Let c = 1 if the evaluation points are

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2073

regularly spaced and otherwise c = 2. Then an ε-approx of this multipoint polynomial
evaluation problem can be computed within work O(m logc k) if either 1. r = 1 and
∆ ≤ k

e(n−1) , or 2. r = 1 and P (z) is (k, k/(eπ))-descending, or 3. r ≤ 1/(eπ). Here

k = 1
2 log(|P |/ε) +O(1) in cases 1 and 3 and k = O(log(n|P |/ε)) in case 2.

Proof. Restrict z to the upper half circle of radius r, so z = reiθ, where i =
√−1,

and 0 ≤ θ ≤ π. Let Q(θ) = P (reiθ) =
∑n−1
j=0 qje

ijθ, where qj = rjpj , and P (z) =∑n−1
j=0 pjz

j . Fix a number k which divides n, to be determined below. The exact
evaluation of P (z) at the evaluation points zj , for j = 0, . . . ,m−1, can be done by an
exact evaluation of Q(θ) at the real points θ0, . . . , θm−1, where zj = reiθj . Instead, we
will do an ε-approximate evaluation of P (z) at the evaluation points z0, . . . , zm−1, as

follows. We can assume w.l.o.g. that each 0 ≤ θj ≤ π. Since P (−z) =
∑n−1
j=0 pj(−z)j

=
∑n−1
j=0 p

′
jz
j , where p′j = −pj if j is odd, and else p′j = pj , the case where the

evaluation points zj = reiθj are on the lower half circle can be reduced to this case
by multiplication of the zj by eiπ = −1, and switching the sign of the coefficients pj
of P (z) where j is odd. We construct a degree k − 1 polynomial Q̃(θ) which gives an

ε-approx of polynomial Q(θ). To construct Q̃(θ), we do an exact evaluation of Q(θ) at
the shifted (2k, k)-Chebyshev points θ′j = π cos(jπ/k) for j = 0, . . . , k−1 over the real
interval I = [0,∆], for a given ∆, 0 < ∆ ≤ 2π. To do this first step, we can exactly

evaluate P (z) at reiθ
′
j for j = 0, . . . , k− 1, which in general costs work O(n log2 k) by

Proposition 1.1; or if the evaluation points are regularly spaced, then by Proposition
1.4 this costs O(n log k). We could now exactly interpolate a degree k− 1 polynomial

Q̃(θ) from Q(θ′j) = P (reiθ
′
j), for j = 0, . . . , k − 1, which are the values of Q(θ) at

these shifted (2k, k)-Chebyshev points θ′0, θ
′
1, . . . , θ

′
k−1. By the known algorithms of

[16, 26, 5], the exact interpolation of polynomial Q̃(θ) at these k points cost work
O(k log2 k). Also, by known algorithms (see Proposition 1.2), we can exactly evaluate

Q̃(θj) for j = 0, . . . ,m − 1, in work O(m log2 k), and if these evaluation points are
regularly spaced, then this costs work O(m log k) by the chirp transform (Proposition
1.4).

Lemma 4.2. For k = o(n), and 0 ≤ θ ≤ ∆, then

|Q(k)(θ)| =
∣∣∣∣dkQ(θ)

dkθ

∣∣∣∣
is bounded by O(k!|P |∆−k) if either 1. r = 1 and ∆ ≤ k

e(n−1) ≤ π, or ∆ = π and

either 2. r = 1 and P (z) is (k, k/(eπ))-descending, or 3. r ≤ 1/(eπ).
Proof.

dkeijθ

dkθ
=

j!

(j − k)!
(ij)keijθ,

so

Q(k)(θ) =
dkQ(θ)

dkθ
=
n−1∑
j=k

qj
j!

(j − k)!
(ij)keijθ.

Since |i| = |ei| = 1, and |qj | = |pj |rj , we have

|Q(k)(θ)| =
n−1∑
j=k

|qj |jk =

n−1∑
j=k

|pj |rjjk.

2074 JOHN H. REIF

1. Now suppose r = 1 and ∆ ≤ k
e(n−1) . Then by the Stirling approximation to

factorial, k! ≥ (k/e)k and so

jk ≤ (k/e)k∆−k ≤ k!∆−k.

Hence we have

|Q(k)(θ)| ≤
n−1∑
j=k

|pj |jk ≤ O(|P |k!∆−k).

2. Next, suppose r = 1, and ∆ = π, and P (z) is (k, k/(eπ))-descending; so by
definition, the magnitude of the coefficients of P (z) drops as

|pj | ≤ nO(1)|P |(k

jeπ
)k,

for j = k, . . . , n− 1. Then

|pj |rjjk ≤ nO(1)|P |(k/(eπ))k ≤ O(nO(1)|P |k!∆−k).

Thus,

|Q(k)(θ)| ≤
n−1∑
j=k

|pj |rjjk ≤
n−1∑
j=k

O(nO(1)|P |k!∆−k) ≤ O(nO(1)|P |k!∆−k).

3. Finally, suppose r ≤ 1/(eπ) and ∆ = π. Since |Q(k)(θ)| increases with r, to
upper bound |Q(k)(θ)| we can assume w.l.o.g. that r is at its maximum value
r = 1/(eπ). By taking derivatives, it is easy to verify that 1/(eπ) ≤ (seπ)−1/s

for any s ≥ 1. So

1/(eπ) = min
s≥1

(seπ)−1/s = min
j≤k

(
k

jeπ

)k/j
(by the substitution j = sk). Hence for each r ≤ 1/(eπ), we can bound
rj ≤ (k

jeπ)k and so for all j ≥ k we have

rjjk ≤ (k/(eπ))k ≤ k!∆−k,

since ∆ = π and k! ≥ (k/e)k. Thus,

|Q(k)(θ)| ≤
n−1∑
j=k

|pj |rjjk ≤
n−1∑
j=k

|pj |k!∆−k ≤ O(|P |k!∆−k).

To complete the proof of Theorem 4.1, we need to bound the approximation
errors for evaluation of Q̃(θ) at all the given evaluation points; this is implied by the
following proof of ε-approximate evaluation of P (z). Since |I| = ∆, then by Lemma

4.2 and Proposition 3.2 the error in the approximation of P (z) = Q(θ) by Q̃(θ), for
θ ∈ I = [0,∆] is upper bounded by

2

k!
(|I|/4)kmax

θ∈I
|Q(k)(θ)| ≤ O(|P |(∆/4)k∆−k) ≤ O(|P |4−k)

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2075

in cases 1 and 3, and in case 2, the error is upper bounded by O(nO(1)|P |4−k). Hence
the error is upper bounded by O(ε) if in cases 1 and 3 we set k = 1

2 log(|P |/ε) +O(1)
and in case 2 we set k = O(log(n|P |/ε)). Finally, note that the (empty) restriction
0 ≤ θ ≤ π = ∆ in cases 2 and 3 allows z to range over any point on the upper half
circle of fixed radius r, so we have the following lemma.

Lemma 4.3. Q̃(θ) is an ε-approx of P (z) at any point z = reiθ on the upper half
circle of fixed radius r, where 0 ≤ θ ≤ ∆, if either 1. r = 1 and ∆ ≤ k

e(n−1) ≤ π, or

2. r = 1 and P (z) is (k, k/(eπ))-descending, or 3. r ≤ 1/(eπ).
Thus, we have proven Theorem 4.1.
Cases 1 and 2 of Theorem 4.1 imply the following corollary.
Corollary 4.4. In total work O(n log k) we can
1. ε-approx the evaluation of a degree n polynomial at the first n powers of the
n′th root of unity, where n′ ≥ Ω(n2/k), and

2. ε-approx the n-point DFT in total work O(n log k) for inputs with (k, k/(eπ))-
descending coefficient magnitude.

Note. If the input set of evaluation points are not fixed, the result as given in
Theorem 4.1 holds with the same work bounds, assuming an extended arithmetic
model where, given a real θ, then eiθ = cos(θ) + i sin(θ) can be computed in O(1)
steps. This assumption is not required if the points are fixed, as assumed in Theorem
4.1, or regularly spaced (as in Corollary 4.4). Also this assumption is not required in
the alternative construction given in subsection 4.2, even if the input set of evaluation
points are not fixed.

4.2. An alternative approach to approximate evaluation on a circle via
approximate real polynomial evaluation. We now give an alternative construc-
tion for a similar, but slightly weaker, result as Theorem 4.1, by use of a surprisingly
simple algorithm (the proof is somewhat more involved, however), which uses complex
polynomials rather than real polynomials.
Input: The coefficients of degree n − 1 complex polynomial P (z), and m ≥ n eval-
uation points zj = reiθj , for j = 0, . . . ,m − 1 on an interval of a circle of radius
r = 1 with | cos(θj)| ≤ ∆. We assume either 1. ∆ ≤ k

e(n−k) , or 2. P (z) is (k,
√

2/8)-

descending. In case 1. let k be the smallest power of 2 which is ≥ log(
√

2|P |/ε), and
in case 2. let k be the smallest power of 2 which is O(log(n|P |/ε)). In any case we
assume k = o(n).

[0] Partition the set of evaluation points {zj |j = 1, . . . ,m− 1} into 4 sets

{zj,h|j = 0, . . . ,mh − 1}, h = 0, . . . , 3,

such that |ihθj,h − π/2| ≤ π/4 for each j = 0, . . . ,mh.
Comment: Multiplication by i = eiπ/2 shifts the angle by π/2.
For h = 0, . . . , 3 do
1. Define polynomial Ph(z) = P (ihz). Evaluate Ph(z) at

z′j = r(x′j + i
√

1− (x′j)2),

where

x′j = cos(jπ/k)/
√

2,

for j = 0, . . . , k − 1, in work O(n log2 k) (by Proposition 1.1).

2076 JOHN H. REIF

2. Interpolate the degree k−1 complex polynomial P̃h(z) from the values Ph(z′j),
for j = 0, . . . , k − 1, in work O(k log2 k).

3. Evaluate polynomial P̃h(z) at the given evaluation points zj,h for j = 0, . . . ,
mh−1. If these evaluation points are regularly spaced, then this costs workO(mh log k)
by the chirp transform (Proposition 1.4) and otherwise costs work O(mh log2 k) by

Proposition 1.1. This gives P̃h(zj) which ε-approx Ph(zj), for j = 0, . . . ,mh − 1.

Output: P̃ (zj) which ε-approx P (zj), for j = 0, . . . ,m− 1.
We prove the following in Appendix A.
Theorem 4.5. P̃ (z) is an ε-approx of P (z) at any point z = r(x + iy) on the

unit circle of fixed radius r = 1 where |θ(z) − π/2| ≤ π/4 and |x| ≤ ∆ if either 1.
∆ ≤ k

e(n−k) or 2. P (z) is (k,
√

2/8)-descending.

The work is again O(n log2 k) + O(m logc k) ≤ O(n log2 k + m logc k). Also, the
circuit depth can be seen to be O(logc k) with this same work bound.

4.3. Dutt and Rokhlin’s approximation of a polynomial on the unit
circle. A further method for approximation of a polynomial over an interval of the
unit circle is proposed by Dutt and Rokhlin [14], who give an approximation to a
polynomial P (z), as follows. Fix a real constant α, 0 < α < π/3. They define a
mapping τ from complex numbers z = eiθ on the unit circle to real x = τ(z) =
3 tanα cot(θ/2) and use this mapping to define the real function f(x) = P (z). They

use a degree k − 1 polynomial f̃(x) to approximate P (z) at angular positions θ,

6α ≤ θ ≤ 2π − 6α. The polynomial f̃(x) interpolates f(x) at the shifted (2k, k)-

Chebyshev points aj = − cos((j − 1/2)π/k) and is defined, for |x| ≤ 1, as f̃(x)

=
∑k−1
j=1 f(aj)

∏
` 6=j (x−a`aj−a`). Note that f̃(aj) = f(aj) for j = 1, . . . , k − 1. Dutt and

Rokhlin [14] prove that f̃(x) approximates fh(x) = P (z), with relative error O(1/5k)
over some portion of this interval. Our Theorem 5.1 implies that the length of the
interval where these error bounds can be obtained must be very small.

5. Approximation everywhere on the unit circle is not possible. Here
we show that it is not possible to approximate an arbitrary polynomial by a small
degree polynomial over a large portion of the unit circle. Fix an angular interval
[0,∆] for 0 ≤ ∆ ≤ 2π and an error ε, 0 ≤ ε < 1. Let us define an (k,∆) circle ε-approx
evaluation scheme for a degree n−1 polynomial P (z) to be a degree k−1 polynomial

f̃(x) which ε-approx P (z) = f(x) at all angular positions θ ∈ [0,∆], where τ is a
mapping from complex numbers z = eiθ on the interval of the unit circle, θ ∈ [0,∆]
to real x = τ(z). We now prove that any (k,∆) circle ε-approx evaluation scheme in
general only can be convergent for angular positions θ ∈ [0,∆], where ∆ ≤ O(k/n).

Theorem 5.1. There is no (k,∆) circle ε-approx evaluation scheme for every
degree n− 1 polynomial P (z), where kd2π/∆e < n and ε(ε+ 2|P |) < 1.

Proof. Let H = d2π/∆e. We can use the (k,∆) circle ε-approx evaluation scheme
to define for each h, 0 ≤ h < H a degree k − 1 polynomial fh(x) that ε-approx P (z)
for x = τ(zω−2πh/H). For a complex number z, define h(z) to be the integer h such
that 2πh/H ≤ |angle(z)| < 2π(h+ 1)/H.

Proposition 5.2. Given a complex degree n− 1 polynomial P (z), and a (k,∆)
circle ε-approx evaluation scheme, we can construct H = d2π/∆e polynomials (f0(x),
. . . , fH−1(x))=POLY-APPROXk(P), each of degree k− 1, such that for any z on the
unit circle, fh(x) is an ε-approx of P (z), for h = h(z) and x = τ(zω−2πh/H).

Polynomial Convolution is defined as follows:
Input: Complex coefficients p0, . . . , pn−1, q0, . . . , qn−1, defining degree n− 1 polyno-

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2077

mials P (z) =
∑n−1
j=0 pjx

j and Q(z) =
∑n−1
j=0 qjx

j .
Output: Complex coefficients q0, . . . , q2n−2, defining degree 2n− 2 product polyno-
mial R(z) = P (z)Q(z) =

∑2n−2
`=0 r`x

`, where

r` =
n−1∑

j=0,0≤`−j<n
pjq`−j .

Next we show the following.
Lemma 5.3. Suppose there is a (k,∆) circle ε-approx evaluation scheme. Then,

given complex n-vectors u, v, we can construct vectors ũ = ROW-COMPRESS k(u),
ṽT = COLUMN-COMPRESSk(vT) of size O(k) (where ũ depends only on u and
not on v, and furthermore ṽ depends only on v and not on u) such that ũT ṽ is an
ε1-approx of uTv for ε1 ≤ ε(ε+ |u|+ |v|).

Proof. Given complex n-vectors u = (u0, . . . , un−1)T , v = (v0, . . . , vn−1)T , we
can compute the inner product

uTv =
n−1∑
j=0

ujvj

by computing the nth coefficient

rn =

n−1∑
j=0

pjqn−j =

n−1∑
j=0

ujvj = uTv

of the product polynomial R(z) = P (z)Q(z) as defined above and where pj = uj and
qj = vn−j , for j = 0, . . . , n − 1. Let ω = eiπ/n be the (2n)th root of unity, where

i =
√−1. By the convolution theorem, uTv = rn = 1

2n

∑2n−1
j=0 ω−njP (ωj)Q(ωj).

For each of P (z), Q(z) defined above, by Proposition 5.2 we can construct H =
d2π/∆e degree k− 1 polynomials (f0(x), . . . , fH−1(x)) = POLY-APPROXk(P), and
(g0(x), . . . , gH−1(x)) = POLY-APPROXk(Q), such that for any z on the unit circle,

P̃h(z) = fh(x) is an ε-approx of P (z), and Q̃h(z) = gh(x) is an ε-approx of Q(z), for

h = h(z) and x = τ(zω−2πh/H). For h = 0, . . . , H − 1 let fh(x) =
∑k−1
a=0 fh,ax

a and

gh(x) =
∑k−1
b=0 gh,bx

b. Let δ = n/H. For each integer j, 0 ≤ j < 2n, let hj be the

number h ∈ {0, . . . , H − 1} such that δh ≤ j < δ(h+ 1). Then we have that P̃hj (ω
j)

is an ε-approx of P (ωj), and Q̃hj (ω
j) is an ε-approx of Q(ωj). We will approximate

rn = 1
2n

∑2n−1
j=0 ω−njP (ωj)Q(ωj) by r̃n = 1

2n

∑2n−1
j=0 ω−nj P̃hj (ω

j)Q̃hj (ω
j).

Proposition 5.4. |rn − r̃n| ≤ ε(ε+ |P |+ |Q|).
Proof. Since |ω−nj | = 1 and for h = hj ,

|P (ωj)Q(ωj)− P̃h(ωj)Q̃h(ωj)| ≤ |P (ωj)(Q(ωj)− Q̃h(ωj)) + (P (ωj)− P̃h(ωj))Q̃h(ωj)|

≤ |P (ωj)||Q(ωj)− Q̃h(ωj)|+ |P (ωj)− P̃h(ωj)||Q̃h(ωj)| ≤ ε(|P |+ ε+ |Q|).

Thus we have

|rn − r̃n| ≤ 1

2n

2n−1∑
j=0

|ω−nj ||P (ωj)Q(ωj)− P̃hj (ωj)Q̃hj (ωj)|

2078 JOHN H. REIF

≤ 2n

2n
ε(ε+ |P |+ |Q|) = ε(ε+ |P |+ |Q|).

Surprisingly, we can contract the expansion of r̃n as follows in this proposition.
Proposition 5.5. r̃n =

∑H−1
h=0

∑k−1
a=0 fh,ash,a, where sh,a =

∑k−1
b=0 gh,bch,a+b,

and the ch,` are complex scalar constants dependent only on h, `, n, and δ.
Proof. The (2n)th root of unity is defined ω = eiπ/n. For a fixed small constant

α, each power ωj , for 0 ≤ j < n, is mapped to the real dj = τ(ωj) which is a constant
(that is, the dj need not be computed, and instead are provided by the algebraic

circuit that we construct) for fixed n and α. For h = hj , we have defined P̃h(ωj)

= fh(dj−δh) =
∑k−1
a=0 fh,ad

a
j−δh and similarly,

Q̃h(ωj) = gh(dj−δh) =

k−1∑
b=0

gh,bd
b
j−δh.

Thus for h = hj , we can expand

P̃h(ωj)Q̃h(ωj) =

(
k−1∑
a=0

fh,ad
a
j−δh

)(
k−1∑
b=0

gh,bd
b
j−δh

)
=

k−1∑
a,b=0

fh,agh,bd
a+b
j−δh.

Interchanging the order of summation (bringing the summation of j inside and a
summation of h outside), we get

r̃n =
1

2n

2n−1∑
j=0

ω−njP̃hj (ω
j)Q̃hj (ω

j) =
H−1∑
h=0

k−1∑
a=0

fh,ash,a,

where we define the associated prefix sums to be

sh,a =
1

2n

k−1∑
b=0

gh,b

δ(h+1)−1∑
j=δh

ω−njda+b
j−δh

=
k−1∑
b=0

gh,b

 1

2n

δ(h+1)−1∑
j=δh

ω−njda+b
j−δh

 =
k−1∑
b=0

gh,bch,a+b,

and where we define the associated scalar constants to be

ch,` =
1

2n

δ(h+1)−1∑
j=δh

ω−njda+b
j−δh.

Thus, Proposition 5.5 follows.
Note that the sh,a are defined independently of the fh,a. To complete the proof

of Lemma 5.3, we define ũ = ROW-COMPRESSk(u) and ṽT = COLUMN-
COMPRESSk(vT), where for each h = 0, . . . , H − 1 and for each a = 0, . . . , k − 1,

ũhk+a = fh,a

and

ṽhk+a = sh,a.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2079

Thus by the convolution theorem and Proposition 5.5,

r̃n =
H−1∑
h=0

k−1∑
a=0

fh,ash,a =
Hk−1∑
`=0

ũ`ṽ` = ũT ṽ.

Note that

|u| =
∑
|uj | =

∑
|pj | = |P |

and

|v| =
∑
|vj | =

∑
|qj | = |P |.

Now, given an error bound ε1 > 0, let

ε = ε1/(ε+ |P |+ |Q|) = ε1/(ε+ |u|+ |v|).
By Proposition 5.4, approximation error ε1 ≤ ε(ε + |u| + |v|), so we have proved
Lemma 5.3.

Given two n×n matrices A,B (with rows and columns indexed from 0 to n− 1),

we now approximate the inner product AB, where (AB)`,m =
∑n−1
j=0 A`,jBj,m; this is

the inner product of the `th row of A times the mth column of B. Now again fix an
error bound ε1 > 0. Let

k = O(log((‖A‖∞ + ‖BT ‖∞)/ε1),

where ‖A‖∞ is the maximum, for any row of A, of the sum of the moduli of elements
of the row, and ‖BT ‖∞ is the maximum, for any column of B, of the sum of the
moduli of elements of the column. We can precompute approximation polynomials of
degree k−1 and their associated prefix sums for each of the rows of A and each of the
columns of B. That is, we define an n× (Hk) matrix Ã = ROWS-COMPRESSk(A)

and an (Hk) × n matrix B̃ = COLUMNS-COMPRESSk(B) such that for each

` = 0, . . . , n − 1 we define row Ã` = ROW-COMPRESSk(A`) (where A`, Ã` denote

the `th row vectors of matrices A, Ã, respectively) and for each m = 0, . . . , n− 1 we

define column B̃−,m = COLUMN-COMPRESSk(B−,m) (where B−,m, B̃−,m denote

the mth columns of matrices B, B̃, respectively). Then by Lemma 5.3, Ã`B̃−,m is

an ε-approx to A`B−,m. Hence, for each 0 ≤ `,m < n, (ÃB̃)`,m is an ε-approx to
(AB)`,m. Hence we have the following lemma.

Lemma 5.6. Suppose there is a (k,∆) circle ε-approx evaluation scheme. Then

given two n × n matrices A,B, we can ε1-approximate the inner product AB by ÃB̃
for

ε1 ≤ ε(ε+ |u|+ |v|).
Proposition 5.7. An n×n matrix of rank < n cannot ε1-approximate an n×n

identity matrix, for any ε1 < 1.
Proof. Suppose, for the sake of contradiction, that an n × n matrix M̃ of rank

< n is an ε1-approx of n × n matrix I, so ‖M̃ − I‖∞ ≤ ε1. Then since M̃ has rank

< n, there is an x 6= 0 such that ‖x‖∞ = 1 and M̃x = 0. Thus

‖M̃x− Ix‖∞ = ‖Ix‖∞ = ‖x‖∞ = 1,

2080 JOHN H. REIF

so

‖M̃ − I‖∞ ≥ ‖M̃x− Ix‖∞/‖x‖∞

= 1 > ε1,

a contradiction.
We now consider the case where A,B are n× n identity matrices. Their product

M = AB is also an identity matrix. But M̃ = ÃB̃ is the product of an n × (kH)
matrix and a (kH) × n matrix and thus has rank ≤ kH. Recall that the statement

of Theorem 5.1 makes the assumption that kH = kd2π/∆e < n, so M̃ has rank < n.

But Lemma 5.6 states that M̃ is an ε1-approximation to I = AB, a contradiction of
Proposition 5.7. Hence Theorem 5.1 follows.

Appendix A. Proof of an alternative approximate evaluation on a circle.

Proof of Theorem 4.5. We give a proof of this alternative construction in stages,
first considering a somewhat more complex algorithm.

An approach to approximate evaluation on a circle via approximate
real polynomial evaluation. We will derive and prove the alternative algorithm
given in subsection 4.2 by the use of classic real polynomial approximation techniques
which provide our error analysis, but we observe at the end of this subsection that
we do not need to explicitly construct the real approximation polynomials. Restrict
z to the circle of radius r, so z = r(x + iy), where x, y are real and x + iy is on the
unit circle, so y =

√
1− x2. Note that an expansion of P (z) in terms of x, y gives

P (z) = R(x) + iS(x)y, for polynomials R(x), S(x) of degree n − 1. For simplicity,
let us assume, w.l.o.g., P (z) has real coefficients p0, . . . , pn−1 ∈ R, so R(x), S(x)
are real polynomials. The exact evaluation of P (z) at the evaluation points zj , for
j = 0, . . . , n−1, might be done by an exact evaluation of R(x), S(x) at the real points
x0, . . . , xn−1, where zj = xj + iyj , so P (zj) = R(xj) + iS(xj)yj . Instead, we consider
(see also Bini and Pan [3]) an approach for an ε-approximate evaluation of P (z) at the
evaluation points z0, . . . , zm−1 using approximation of real polynomials (we will later
show we can avoid explicit construction of these real polynomials). Fix a number k
which divides n, to be determined below. We could construct degree k−1 polynomials
R̃(x), S̃(x), which give an ε′-approx of polynomials R(x), S(x), where ε′ = ε/

√
2. Then

P̃ (z) = R̃(x) + iS̃(x)y is an ε-approx of P (z) over the circle of radius r, since

|P (z)− (R̃(x) + iS̃(x)y)| ≤
√

(R(x)− R̃(x))2 + (S(x)− S̃(x))2 ≤
√

2ε′ = ε.

To construct R̃(x), S̃(x), we could do an exact evaluation of R(x), S(x) at the shifted
(2k, k)-Chebyshev points x′j = ∆cos(jπ/k), for j = 0, . . . , k − 1 over the real interval
I = [−∆,∆], for a positive real ∆ ≤ 1. To do this first step, we can exactly evaluate
P (z) at

z′j = r
(
x′j + i

√
1− (x′j)2

)
,

for j = 0, . . . , k − 1, which costs work O(n log k) by Proposition 1.4. Then, we could

exactly interpolate a degree k − 1 real polynomial R̃(x) from the real parts R(x′j) of
P (z′j), for j = 0, . . . , k − 1. We could also interpolate a degree k − 1 real polynomial

S̃(x) from the real values s0, s1, . . . , sk−1, where

isj

√
1− (x′j)2

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2081

is the complex part of P (z′j). By Lemma 3.1, the exact interpolation of polynomials

R̃(x), S̃(x) at these (2k, k)-Chebyshev points cost work O(k log k).
Exponential coefficient growth: The key difficulty with this approach.

Next we need to bound the approximation errors for evaluation of R̃(x), S̃(x) at
all the evaluation points. To apply Proposition 3.2 we need to upper bound, the

maximum moduli of R(k)(x) = dkR(x)
dkx

(the kth derivative of R(x) with respect to x),

and S(k)(x) = dkS(x)
dkx

over the interval I = [−∆,∆]. Unfortunately, straightforward
application of the binomial expansion (in terms of x and y) to bound the moduli
of coefficients of R(x) and S(x) give bounds on |R|, |S| (the sums of the moduli of
the coefficients of R(x), S(x)) that grow exponentially with the degree n − 1. Thus

application of Lemma 3.4 to evaluate R̃(x), S̃(x) at all the evaluation points gives the
work bound of the form

O(n log log(|R|/ε′)) = O(n log(n+ log(1/ε′))),

since in this case

log(2n/ε′) = n+ log(1/ε′).

The same difficulty occurs for ε′-approximate evaluation of the polynomial S(x).
Evaluation at restricted intervals. To avoid this difficulty, we will do only an

ε-approximate evaluation of P (z) at a restricted interval on the radius r circle, where
| cos(θ(z))| ≤ ∆ or, for the case of descending input coefficients,

|x| ≤ 1√
2
≤ ∆ =

1

max(
√

2, 8(n− 1− k)/
√

2)
.

Then we can do an ε-approximate evaluation of P (z) over the entire circle of radius
r by a number of separate evaluations of P (z), each at a consecutive segment of the
circle. The following lemma provides useful bounds on the k derivatives of R(x), S(x).

Lemma A.1. Suppose r = 1 and either 1. ∆ ≤ k
e(n−k) or 2. P (z) is (k,

√
2/8)-

descending. For

|x| ≤ ∆ ≤ 1√
2
,

the modulus of the kth derivative (with respect to x) of z = r(x+ iy) (where x+ iy is
on the unit circle) is bounded as ∣∣∣∣dkzdkx

∣∣∣∣ ≤ O(rk!8k).

Also, ∣∣∣∣dkP (z)

dkx

∣∣∣∣ , ∣∣∣R(k)(x)
∣∣∣ ,

and |S(k)(x)| are bounded in case 1 by O(k!|P |∆−k) and in case 2 by O(k!nO(1)|P |∆−k).

Proof. We shall show that dz
dx = r(1 − if1(x)) and, for k ≥ 2, dkz

dkx
= −irfk(x),

where fk(x) is a sum of at most 2k−1 terms, each of the form c(k) xa

y2b+1 , where |c(k)|
≤ O(k!2k) is the term’s coefficient, and 0 ≤ a, b ≤ k are integers. We prove this by

2082 JOHN H. REIF

construction of a derivative tree, which is a binary tree whose nodes are such terms.
Since y =

√
1− x2, dydx = −x

y3 , we have dz
dx = 1− if1(x) where f1(x) = x

y3 , so we define

the root to be f1(x). Note that for k > 1,

dkz

dkx
= −id

k−1f1(x)

dk−1x
.

Inductively, assume the label of a node is a term of form c(k) xa

y2b+1 labeling a node,

since the derivative of c(k) xa

y2b+1 with respect to x is the sum of terms c(k)(2b + 1)
xa

y2(b+1)+1 and c(k)a x
a−1

y2b+1 , we let its left and right children be labeled by these two

terms, respectively. Note that since we take k derivatives, the tree has depth k − 1,
and so there are at most 2k−1 terms at the leaves of the tree. The leaves will be the
terms of dk−1f1(x)

dk−1x
. The leaf with largest coefficient modulus is reached by a length

k− 1 path of left branches down the tree, so the maximum coefficient modulus of any
leaf can be upper bounded as

|c(k)| ≤ (2k − 1)(2k − 3) · · · 3 · 1 ≤ k!2k−1.

Since |x| ≤ 1√
2
,

y ≥
√

1− x2 ≥ 1/
√

2,

so

1/y2b+1 ≤ (
√

2)2k+1 ≤ 2k+1.

Thus the modulus of each leaf term c(k) xa

y2b+1 is upper bounded by |c(k)|2k+1 ≤
k!2k−12k+1 O(k!4k). Hence |fk(x)| ≤ the product of the number 2k−1 of terms at the
leaves times their maximum modulus O(k!4k), so |fk(x)| ≤ O(k!8k). This implies∣∣∣∣dkzdkx

∣∣∣∣ ≤ r(1 + |fk(x)|) ≤ O(rk!8k).

Note that for j > k,

j!

(j − k)!
≈ (j − k)k

for k = o(n), since by the Stirling approximation to factorial,

j! ≈ (j)je−j
√

2πj,

(j − k)! ≈ (j − k)j−ke−(j−k)
√

2π(j − k),

and (
j

j − k
)j−k

=

(
1 +

k

j − k
)j−k

≈ ek;

so

j!

(j − k)!
≈ jj

(j − k)j−k
e−k ≈ (j − k)ke−kek ≈ (j − k)k.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2083

Since |z| ≤ r, we have |dkP (z)
dkz

| ≤∑n−1
j=k

j!
(j−k)!r

j−k|pj |. By the chain rule of derivatives,

dkP (z)

dkx
=
dkz

dkx

dkP (z)

dkz
,

so ∣∣∣∣dkP (z)

dkx

∣∣∣∣ ≤ ∣∣∣∣dkzdkx

∣∣∣∣ ∣∣∣∣dkP (z)

dkz

∣∣∣∣ ≤ O(rk!8k)
n−1∑
j=k

j!

(j − k)!
rj−k|pj |.

Thus ∣∣∣∣dkP (z)

dkx

∣∣∣∣ ≤ O(rk!8k)
n−1∑
j=k

j!

(j − k)!
rj−k|pj | ≤ O(rk!8k)

n−1∑
j=k

(j − k)krj−k|pj |.

1. Now suppose r = 1 and ∆ ≤ 1
8(n−k) . Then

∑n−1
j=k (8(j−k))k|pj | ≤ |P |∆−k, so

(8(j − k))k|pj | ≤ |P |(1/
√

2)k ≤ O(|P |∆−k).

Thus,∣∣∣∣dkP (z)

dkx

∣∣∣∣ ≤ O(rk!8k)
n−1∑
j=k

(j − k)krj−k|pj | ≤ O(k!)
n−1∑
j=k

(8(j − k))krj−k+1|pj |

≤ O(k!|P |∆−k).

Since P (z) = R(x) + iS(x)y, we have

dkP (z)

dkx
= R(k)(x) + i

(
S(k)(x)y +

xS(x)

y

)
.

Hence for |x| ≤ ∆,

|R(k)(x)| ≤
∣∣∣∣dkP (z)

dkx

∣∣∣∣ ≤ O(k!|P |∆−k).

Also, |xS(x)
y | ≤ |P (z)| ≤ |P |, so

|S(k)(x)| ≤
∣∣∣∣dkP (z)

dkx

∣∣∣∣+

∣∣∣∣xS(x)

y

∣∣∣∣ ≤ ∣∣∣∣dkP (z)

dkx

∣∣∣∣+ |S(x)|
∣∣∣∣xy
∣∣∣∣

≤
∣∣∣∣dkP (z)

dkx

∣∣∣∣+O(|P |)

≤ O(k!|P |∆−k).

2. Next suppose r = 1. If P (z) is (k,
√

2/8)-descending, then, by definition, the
magnitude of the coefficients of P (z) drops as

|pj | ≤ nO(1)|P |
(√

2

j8

)k

2084 JOHN H. REIF

for j = k, . . . , n− 1. Then
∑n−1
j=k (8(j − k))k|pj | ≤ |P |∆−k), so

(8(j − k))k|pj | ≤ nO(1)|P |(1/
√

2)k ≤ O(nO(1)|P |∆−k).

Thus in this case,∣∣∣∣dkP (z)

dkx

∣∣∣∣ ≤ O(rk!8k)
n−1∑
j=k

(j − k)k|pj | ≤ O(k!)
n−1∑
j=k

(8(j − k))k|pj |

≤ O(k!nO(1)|P |∆−k).

Also,

|S(k)(x)| ≤ O(k!nO(1)|P |∆−k).

Since |I| = 2∆, for I = [−∆,∆], by Propositions 3.2 and A.1, the error in the

approximation of R(x) by R̃(x), for |x| ≤ ∆, is upper bounded in case 1 by

2

k!
(|I|/4)kmax

x∈I
R(k)(x) ≤ O(|P |(∆/2)k∆−k) ≤ O(|P |2−k)

and in case 2 by O(nO(1)|P |2−k). This error is upper bounded by O(ε′) if we set
k = log(|P |/ε) + O(1) in case 1 or k = O(log(n|P |/ε)) in case 2. Also, the error in

the approximation of S(x) by S̃(x), for |x| ≤ ∆, is upper bounded by

2

k!
(|I|/4)kmax

y∈I
S(k)(y) ≤ ε′.

Hence

|P (z)− (R̃(x) + iS̃(x)y)| ≤ ((R(x)− R̃(x))2 + (S(x)− S̃(x))2)1/2 ≤
√

2ε′ = ε.

Thus we have proved the error bounds given in Theorem 4.5 for the case

P̃ (z) = R̃(x) + iS̃(x)y.

A simplification avoiding construction of real polynomials. Finally, we
observe that we do not need to explicitly construct real approximation polynomials
defined above. For simplicity, we assume, w.l.o.g., for each evaluation point zj that
|θ(zj)− π/2| ≤ π/4. Instead, we do the following:

• In work O(n log2 k), interpolate the degree k − 1 complex polynomial P̃ (z)

from the values P (z′j), for j = 0, . . . , k − 1, where z′j = r(x′j + i
√

1− (x′j)2),

and x′j = cos(jπ/k)/
√

2, for j = 0, . . . , k − 1.

Comment: Thus we construct P̃ (z) = (R̃(x) + iS̃(x)y), without explicitly

constructing R̃(x), S̃(x).

• Evaluate polynomial P̃ (z) exactly at the given evaluation points z0, . . . , zm−1,
within work O(m logc k), where c = 2 by Proposition 1.1 (or c = 1 by Propo-
sition 1.4 if these evaluation points are regularly spaced).

Comment: Thus we evaluate P̃ (z) = (R̃(x)+iS̃(x)y), at the given evaluation

points, without explicitly evaluating R̃(x), S̃(x).

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2085

Thus we have derived the algorithm as defined in subsection 4.2, which provides
a somewhat simpler implementation of Theorem 4.5.

Appendix B. Exact Chebyshev point evaluation in O(n logn) work.
Let P (x) be a polynomial of degree n − 1. Let ω = ei2π/n

′
be the n′th root of

unity over the complex numbers C, for some n′ ≥ n, such that n divides n′. We wish
to exactly evaluate P (x) at the (n′, n)-Chebyshev points, which we defined to be the
real parts x0,j = cos(j2π/n′) of the powers z0,j = ωj = eji2π/n

′
, for j = 0, . . . , n− 1.

For simplicity, we assume n is a power of 2 and n′ = 2n. For each ` = 0, . . . , log n,
• let n` = n/2`, n′` = n′/2`,
• let z`,j+n` = −z`,j , and if ` > 0 then let z`,j = 2z2

`−1,j − 1, and

• let x`,j = real(eji2π/n
′
`) = cos(j2π/n′`) denote the (n′`, n`)-Chebyshev points.

By the identities cos(2θ) = 2 cos2(θ)−1 and cos(θ+π) = − cos(θ), we have a recursive
definition of these (n′`, n`)-Chebyshev points.

Proposition B.1. For each ` = 0, . . . , log n and all j = 0, . . . , n` − 1, x`,j+n` =
−x`,j and if ` > 0 then x`,j = 2x2

`−1,j − 1.
The key idea behind our algorithm is as follows:
• Starting with the polynomial P to be evaluated, we define two polynomials P0

and P1 as the unique polynomials such that P (x) = P0(2x2−1)+xP1(2x2−1).
• The map from x to 2x2 − 1 sends cos θ to cos 2θ, that is, it maps Chebyshev

points to Chebyshev points. If the original set of Chebyshev points contains
both x and −x, then this map collapses them, so the number of points to
be evaluated is halved. Thus the problem of evaluating P at the (n′, n)-
Chebyshev points reduces to evaluating P0 and P1 at (n′/2, n/2)-Chebyshev
points.
• To apply this argument recursively, we compute the polynomials at each node

of a logarithmic depth tree, by their evaluations on suitably defined points.
This process can be initiated at the leaves, since there evaluation is the same
as the coefficient itself.

We define a full binary tree of depth logn which we call the (n′, n)-Chebyshev
evaluation tree, whose nodes of depth ` = 0, . . . , log n are the set {0, 1}` of binary
strings of length `. The root is labeled with the input polynomial Pλ(x) = P (x),
where λ is the empty string. Each node β ∈ {0, 1}` of the tree is labeled with a
degree n` − 1 polynomial Pβ(x) and if ` < log n, node β has two children β0, β1 with
labels consisting of the unique degree n`+1 − 1 polynomials Pβ0(x), Pβ1(x) such that
Pβ(x) = Pβ0(2x2 − 1) + xPβ1(2x2 − 1). In contrast with the O(n log2 n) algorithm
of Pan [29], we will not actually compute these polynomials, but they will aid us in
definition of our algorithm. However, we will compute for each node β ∈ {0, 1}` two
sets of values

{Fβ,j = Pβ(z`,j)|j = 0, . . . , n` − 1}
and

{φβ,j = Pβ(x`,j)|j = 0, . . . , n` − 1}.
Proposition B.2. For each β ∈ {0, 1}logn, φβ,0 = Fβ,0. For each ` = 0, . . . ,

(log n)− 1, β ∈ {0, 1}` and j = 0, . . . , n` − 1,
1. Fβ,j = Fβ0,j + z`,jFβ1,j, Fβ,j+n` = Fβ0,j − z`,jFβ1,j, and so
2. Fβ0,j = (Fβ,j + Fβ,j+n`)/2, Fβ1,j = (Fβ,j − Fβ,j+n`)/(2z`,j), and similarly
3. φβ,j = φβ0,j + x`,jφβ1,j, φβ,j+n` = φβ0,j − x`,jφβ1,j, and so

2086 JOHN H. REIF

4. φβ0,j = (φβ,j + φβ,j+n`)/2, φβ1,j = (φβ,j − φβ,j+n`)/(2x`,j).
Proof. For ` = |β| = log n, since Pβ is a degree 0 polynomial, we have φβ,0 =

Pβ = Fβ,0.
1. By definition, for ` ≥ 0, Fβ,j = Pβ(z`,j) = Pβ0(z`+1,j) + z`,jPβ1(z`+1,j) =
Fβ0,j +z`,jFβ1,j . Also by definition, z`,j+n` = −z`,j , so Fβ,j+n` = Pβ(z`,j+n`)
= Pβ(−z`,j) = Pβ0(2(−z`,j)2 − 1) − z`,jPβ1(2(−z`,j)2 − 1) = Pβ0(z`+1,j) −
z`,jPβ1(z`+1,j) = Fβ0,j − z`,jFβ1,j .

2. The reverse formulas for Fβ0,j , Fβ1,j follow from linear solution of the previous
two equations.

3. By definition, for ` ≥ 0, φβ,j = Pβ(x`,j) = Pβ0(x`+1,j) + x`,jPβ1(x`+1,j)
= φβ0,j + x`,jφβ1,j . By Proposition B.1, x`,j+n` = −x`,j , so φβ,j+n` =
Pβ(x`,j+n`) = Pβ(−x`,j) = Pβ0(2(−x`,j)2 − 1) − x`,jPβ1(2(−x`,j)2 − 1) =
Pβ0(x`+1,j)− x`,jPβ1(x`+1,j) = φβ0,j − x`,jφβ1,j .

4. The reverse formulas for φβ0,j , φβ1,j follow from linear solution of the previous
two equations.

Our algorithms for exact Chebyshev point evaluation and interpolation.
We now show how to do (n′, n)-Chebyshev point evaluation by a recursive algorithm
and reduction to the DFT.

For each ` = 0, . . . , (log n) − 1, we precompute x`,j = cos(j2π/n′), and z`,j for
j = 0, . . . , n` − 1 as defined above. We then compute the (2n, n)-Chebyshev point
evaluation of a given P (x) as follows:

(2n, n)-Chebyshev point evaluation algorithm.
Input: The n coefficients p0, . . . , pn−1 ∈ C polynomial P (x) of degree ≤ n− 1.

1. In work O(n log n), compute the values Fλ,j = P (ωj), j = 0, . . . , n− 1, where
λ is the empty string (this can be done as stated in Proposition 1.3 within
work O(n log n) by the chirp transform, which generalizes the DFT to this
case).

2. Traverse the Chebyshev evaluation tree from root to leaves:
For each ` = 0, . . . , (log n)− 1 do apply Proposition B.2, part 2:
For each j = 0, . . . , n` − 1 and β ∈ {0, 1}` do
let Fβ0,j = (Fβ,j + Fβ,j+n`)/2, Fβ1,j = (Fβ,j − Fβ,j+n`)/(2z`,j).

3. For each j = 0, . . . , n` − 1 and β ∈ {0, 1}` do
let φβ,0 = Fβ,0, as given by Proposition B.2.

4. Traverse the Chebyshev evaluation tree from leaves to root:
For each ` = (logn)− 1, . . . , 0 do apply Proposition B.2, part 3:
For each j = 0, . . . , n` − 1 and β ∈ {0, 1}` do
let φβ,j = φβ0,j + x`,jφβ1,j , φβ,j+n` = φβ0,j − x`,jφβ1,j .

Output: φλ,j= P (xλ,j), j = 0, . . . , n − 1, which is the (2n, n)-Chebyshev evaluation
of P (x).

For each ` = 0, . . . , log n, the work is O(n`) = O(n/2`) for each of the 2` nodes
β ∈ {0, 1}` of depth `, so the total work is O(n`2

` log n) = O(n log n), plus O(n log n)
work for computing the chirp transform by Proposition 1.3.

We can apply this (2n, n)-Chebyshev point evaluation algorithm to compute an
(n′, n)-Chebyshev point evaluation of degree n−1 polynomial P (x), for any n′ = O(n)
such that n divides n′. In the case n′ ≥ 2n, we can view the polynomial P (x) to be of
degree (n′/2)− 1, and apply the (n′, n′/2)-Chebyshev point evaluation algorithm. In

the case n′ < 2n, since n divides n′, we can decompose P (x) =
∑c−1
j=0 Pj(x)xjn, where

c = n′/(2n) = O(1) and each polynomial Pj(x) is of degree ≤ (n/c) − 1, and then
apply the (2n/c, n/c)-Chebyshev point evaluation algorithm a constant c number of

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2087

times.
Thus we have proved that the (n′, n)-Chebyshev point evaluation problem for a

polynomial of degree n − 1 can be solved within work O(n log n) for any n′ = O(n)
such that n divides n′. Since the Chebyshev evaluation tree has depth logn, and there
are 2 log n stages, each taking O(1) time with n work, and the DFT takes O(log n)
with O(n log n) work, it follows that the total circuit depth is O(log n) with O(n log n)
work. This completes the first part of the proof of Lemma 3.1. We next show how to
do (n′, n)-Chebyshev point interpolation by reduction to the DFT. We compute the
interpolation of a polynomial from a set of n values at (2n, n)-Chebyshev points, as
follows:

(2n, n)-Chebyshev point interpolation algorithm.
Input: The values v0, . . . , vn−1 ∈ C at the (2n, n)-Chebyshev points: x0,0, . . . , x0,n−1.

1. Let φλ,j= vj), j = 0, . . . , n− 1.
2. Traverse the Chebyshev evaluation tree from root to leaves:

For each ` = 0, . . . , (log n)− 1 do apply Proposition B.2, part 4:
For each j = 0, . . . , n` − 1 and β ∈ {0, 1}` do
let

φβ0,j = (φβ,j + φβ,j+n`)/2,

φβ1,j = (φβ,j − φβ,j+n`)/(2x`,j).

3. For each j = 0, . . . , n` − 1 and β ∈ {0, 1}` do
let Fβ,0 = φβ,0, as given by Proposition B.2.

4. Traverse the Chebyshev evaluation tree from leaves to root:
For each ` = (logn)− 1, . . . , 0 do apply Proposition B.2, part 1:
For each j = 0, . . . , n` − 1 and β ∈ {0, 1}` do
let

Fβ,j = Fβ0,j + z`,jFβ1,j ,

Fβ,j+n` = Fβ0,j − z`,jFβ1,j .

5. In work O(n log n), compute the inverse DFT of the values Fλ,j = P (ωj), j =
0, . . . , n−1 (this can be done within work O(n log n) as stated in Proposition
1.3), giving:

Output: The n coefficients of the unique interpolated polynomial P (x).
For each ` = 0, . . . , log n, the work is again O(n`) = O(n/2`) for each of the 2`

nodes β ∈ {0, 1}` of depth `, so the total work is again O(n`2
` log n) = O(n log n),

plus O(n log n) work for computing the DFT as in Proposition 1.3.
We can also apply this (2n, n)-Chebyshev point interpolation algorithm to com-

pute an (n′, n)-Chebyshev point interpolation of degree n−1 polynomial P (x) for any
n′, n ≤ n′ < 2n, such that n divides n′. We apply the (2n̄, n̄)-Chebyshev point inter-
polation algorithm, for n̄ = n′/c, to interpolate c polynomials of degree n̄−1 from the
given (n′, n)-Chebyshev points, and then construct P (x) in further work O(n log n) by
the well-known divide-and-conquer interpolation methods of [16, 26, 5, 1]. Thus we
have proved that the (n′, n)-Chebyshev point interpolation problem for a polynomial
of degree n − 1 can be solved within work O(n log n) for any n′ ≤ 2n such that n
divides n′. The shifted version of these evaluation and interpolation problems can

2088 JOHN H. REIF

be solved within the same work bounds using the same techniques by initializing the
recurrences at the leaves to the appropriate values corresponding to the shifts. Again,
since the Chebyshev evaluation tree has depth logn, and there are 2 logn stages, each
taking O(1) time with n work, and the inverse DFT takes O(log n) with O(n log n)
work, it follows that the total circuit depth is O(log n) with O(n log n) work. To
complete the proof of Lemma 3.1, we apply the technique of Proposition 1.1 to solve
the (n′,m)-Chebyshev point evaluation problem, for n′ = O(n), in work O(n+m
log min(n,m)).

Acknowledgments. The author sincerely thanks Chris Lambert, Victor Pauca,
Kathy Redding, Ken Robinson, Steven Tate, and especially Deganit Armon, Octavian
Procopiuc, and D. Sivakumar for comments improving the presentation of the results
in this paper. Don Coppersmith suggested the reduction to the approximation of a
matrix by small rank used in the proof of Theorem 5.1. Donald Rose described to us
a simple proof of Proposition 5.7.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, London, 1974.

[2] A. V. Aho, K. Steiglitz, and J. D. Ullman, Evaluating Polynomials at Fixed Sets of Points,
SIAM J. Comput., 4 (1975), pp. 533–539.

[3] D. Bini and V. Pan, Polynomial and Matrix Computations, 1, Birkhauser, Boston, MA, 1994.
[4] A. B. Borodin and I. Munro, Evaluating polynominals at many points, Inform. Process. Lett.,

1 (1971), pp. 660–68.
[5] A. B. Borodin and I. Munro, The Computational Complexity of Algebraic and Numerical

Problems, American Elsevier, New York, 1975.
[6] P. B. Callahan and S. R. Kosaraju, A decomposition of multi-dimensional point sets with

applications to k-nearest-neighbors and n-body potential fields, J. ACM, 42 (1995), pp.
67–90.

[7] J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle
simulations, SIAM J. Sci. Comput., 9 (1998), pp. 669–686.

[8] J. M. Cooley, P. A. Lewis, and P. D. Welch, History of the fast Fourier transform, Proc.
IEEE, 55 (1967), pp. 1675–1677.

[9] J. M. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier
series, Math. Comp., 19 (1965), pp. 297–301.

[10] G. Dahlquist and A. Björck, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[11] G. C. Danielson and C. Lanczos, Some improvements in practical Fourier analysis and their

application to X-ray scattering from liquids, J. Franklin Inst., 233 (1942), pp. 365–380 and
pp. 435–452.

[12] A. Dutt, M. Gu, and V. Rokhlin, Fast algorithms for polynomial interpolation, integration,
and differentiation, SIAM J. Numer. Anal., 33 (1996), pp. 1689–1711.

[13] A. Dutt, Fast Fourier Transforms for Nonequispaced Data, Technical Report 980, Department
of Computer Science, Yale University, New Haven, CT, 1993.

[14] A. Dutt and V. Rokhlin, Fast Fourier Transforms for Nonequispaced Data II, in Applied
and Computational Harmonic Analysis, Academic Press, 2 (1995), pp. 85–100.

[15] W. D. Elliott and J. A. Board, Fast fourier transform accelerated fast multipole algorithm,
SIAM J. Sci. Comput., 17 (1996), pp. 398–415.

[16] C. M. Fiduccia, Polynomial evaluation via the division algorithm—the fast Fourier transform
revisited, in Proceedings of the 4th Annual ACM Symposium on Theory of Computing,
1972, pp. 88–93.

[17] W. M. Gentleman and G. Sande, Fast Fourier transforms for fun and profit, in Proceedings
of the AFIPS 1966 Fall Joint Computer Conference, 29, 1966, pp. 563–578.

[18] A. Gerasoulis, A fast algorithm for the multiplication of generalized Hilbert matrices with
vectors, Math. Comp., 50 (1988), pp. 179–188.

[19] A. Gerasoulis, M. D. Grigoriadis, and Liping Sun, A fast algorithm for Trummer’s problem,
SIAM J. Sci. Statist. Comput., 8 (1987), pp. s135–s138.

[20] I. J. Good, The interaction algorithm and practical Fourier series, J. Roy. Statist. Soc. Ser.

APPROXIMATE COMPLEX POLYNOMIAL EVALUATION 2089

A, 20 (1958), pp. 361–372. Addendum, 22 (1960), pp. 372–375.
[21] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,

73 (1987), pp. 325–348.
[22] L. Greengard and V. Rokhlin, On the efficient implementation of the fast multipole algo-

rithm, Technical Report RR-602, Dept. of Computer Science, Yale University, New Haven,
CT, 1988.

[23] P. Henrici, Applied and Computational Complex Analysis, III, John Wiley, New York, 1986.
[24] M. S. Henry, Approximation by polynomials: Interpolation and optimal nodes, Amer. Math.

Monthly, 91 (1984), pp. 497–499.
[25] E. Horowitz, A fast method for interpolation using preconditioning, Inform. Process. Lett., 1

(1972), pp. 157–163.
[26] H. T. Kung, Fast evaluation and interpolation, Department of Computer Science, Carnegie-

Mellon University., Pittsburgh, PA, 1973, unpublished manuscript.
[27] R. Moenck and A. B. Borodin, Fast modular transforms via division, in Conf. Record, IEEE

13th Ann. Symposium on Switching and Automata Theory, 1972, pp. 90–96.
[28] A. C. R. Newbery, Error analysis for polynomial evaluation, Math. Comp., 28 (1979), pp.

789–793.
[29] V. Pan, Fast Evaluation and interpolation at the Chebyshev sets of points, Appl. Math. Lett.,

2 (1989), pp. 255–258.
[30] V. Y. Pan, J. H. Reif, and S. R. Tate, The power of combining the techniques of alge-

braic and numerical computing: Improved approximate multipoint polynomial evaluation
and improved multipole algorithms, in Proceedings of the 32nd Annual IEEE Symposium
Foundations of Computer Science, Pittsburgh, PA, 1992, pp. 703–713.

[31] V. Pan, A. Sadikou, E. Landowne, and O. Tiga, A new approach to fast polynomial inter-
polation and multipoint evaluation, Comput. Math. Appl., 25 (1993), pp. 25–30.

[32] L. R. Rabiner and C. M. Rader, eds., Digital Signal Processing, IEEE Press, New York,
1972.

[33] J. H. Reif and S. R. Tate, Fast Spatial Decomposition and Closest Pair Computa-
tion for Limited Precision Input, Technical Report N-96-001, Department of Com-
puter Science, University of North Texas, Denton, TX, 1996; also available online from
http://www.cs.duke.edu/∼reif/paper/Sep.ps.

[34] J. H. Reif and S. R. Tate, N-Body Simulation I: Fast Algorithms for Potential Field
Evaluation and Trummer’s Problem, Technical Report N-96-002, Department of Com-
puter Science, University of North Texas, Denton, TX, 1996; also available online from
http://www.cs.duke.edu/∼reif/paper/Multipole.ps.

[35] V. Rokhlin, A fast algorithm for the discrete Laplace transformation, J. Complexity, 4 (1988),
pp. 12–32.

[36] C. Runge and H. König, Die Grundlehren der mathematischen Wissenschaften, 11, Springer,
Berlin, 1924.

OPTIMAL SEARCH IN TREES∗

YOSI BEN-ASHER† , EITAN FARCHI‡ , AND ILAN NEWMAN†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2090–2102

Abstract. It is well known that the optimal solution for searching in a finite total order set is
binary search. In binary search we divide the set into two “halves” by querying the middle element
and continue the search on the suitable half. What is the equivalent of binary search when the set
P is partially ordered? A query in this case is to a point x ∈ P , with two possible answers: “yes”
indicates that the required element is “below” x or “no” if the element is not below x. We show that
the problem of computing an optimal strategy for search in posets that are tree-like (or forests) is
polynomial in the size of the tree and requires at most O(n4 log3 n) steps.

Optimal solutions of such search problems are often needed in program testing and debugging,
where a given program is represented as a tree and a bug should be found using a minimal set of
queries. This type of search is also applicable in searching classified large tree-like databases (e.g.,
the Internet).

Key words. optimal search, search in trees, binary search, search in graphs, posets

AMS subject classification. 68P10

PII. S009753979731858X

1. Introduction. Binary search is a well-known technique used for searching in
total order sets. Let S = {s1, . . . , sn} be a total ordered set such that si < si+1 for all
i ∈ {1, . . . , n−1}. A binary search usually is used to find out whether a given element
s is a member of S. However, a different interpretation can be used, namely, that one
of the elements in S is “buggy” and needs to be located. In a binary search, we query
the middle element sn

2
. If the answer is “yes,” then the bug is in S′ = {s1, . . . sn2 } and

we continue the search on S′; otherwise we search on the complement of S′, namely
{sn

2 +1, . . . , sn}. It is well known that the binary search is optimal for this case.
In this work we consider the generalization of searching in partially ordered sets

(poset). A query is to a point x in the poset, with two possible answers: “yes”
indicates that the required element is “below” x (less than or equal to x) or “no” if
the element is not below x. Equivalently, P can be represented as a directed acyclic
graph; G, a query is to a node x ∈ G; a “yes”/“no” answer indicates that the answer
is at a node y ∈ G reachable/not reachable from x, correspondingly. We are interested
in the problem of computing the optimal search algorithm for a given input poset.
The complexity measure here is the number of queries needed for the worst-case input
(buggy node). We concentrate on posets that are tree- (forest-) like (every element
except one has one element that covers it). In this case, the partial order set is
represented as a rooted tree T , whose nodes are the elements of S. A query can be
made to any node u ∈ T . A “yes”/“no” answer indicates whether the buggy node
is in the subtree rooted at u, or in its complement. Our results extend naturally to
forest-like posets, too. Some comments are made for Cartesian product posets.

An example of a (optimal) search on a tree of 5 nodes is shown in Figure 1.1. The
arrow points to the next query node. The search takes 3 queries in the worst case.

∗Received by the editors March 24, 1997; accepted for publication (in revised form) September
30, 1997; published electronically June 23, 1999. A preliminary version of this paper appeared in
SODA97.

http://www.siam.org/journals/sicomp/28-6/31858.html
†Department of Computer Science, Haifa University, Haifa 31905, Israel (yosi@mathcs.haifa.ac.il,

ilan@mathcs.haifa.ac.il).
‡I.B.M. Research Center, Haifa 31905, Israel.

2090

OPTIMAL SEARCH IN TREES 2091

a

b

c d

e

b

c d e

a

d

b

d b

e a

c

y e s

y e s

y e s

y e s

on

on
on

on

Fig. 1.1. Searching in a tree.

One motivation for the study of searches in trees (and posets in general) is that it
forms a generalization of the search in linear orders to more complex sets: The known
binary search is optimal for the path of length n with dlog ne cost. Another extreme
example is the search in a completely nonordered set of size n. This is equivalent to
search in a star with n leaves. Here, as we must query each leaf separately, the search
takes n queries. Searching in trees spans a spectrum between these two examples in
terms of the cost function as well as poset type.

There is also a practical motivation: consider the situation where a large tree-
like data structure is being transferred between two agents. Such a situation occurs
when a file system (database) is sent across a network or a back/restore operation is
done. In such cases, it is easy to verify the total data in each subtree by checksum-like
tests (or randomized communication complexity equality testing). Such equality tests
easily detect faults but give no information on which node of the tree is corrupted.
Using a search on the tree (by querying the correctness of the subtrees) allows us to
find the buggy node and avoid retransmitting the whole data structure.

Software testing is another motivation for studying search problems in posets (and
in particular in trees). In general, program testing can be viewed as a two-person
game, namely the tester and his “adversary.” The adversary injects a fault into the
program and the tester has to find the fault while minimizing the number of tests. A
typical scenario in software testing is that the user tests his program by finding a “test
bucket” (a set of inputs) that meets a certain coverage criteria, e.g., branch coverage
or statement coverage [1, 2, 3]. It is plausible that in certain situations it might be
possible to embed such a set of tests (e.g., the union over all test buckets that meet
branch coverage) in a poset or in a tree such that the requirement for covering all
tests can be replaced by a requirement for searching in this poset or tree. Finding an
optimal search can save a lot of tests as the cost of a search might be considerably
smaller than the size of the domain. For example, the syntactic structure of a program
forms a tree; thus, if suitable tests are available, statement coverage might be replaced
by a search in the syntactic tree of the program.

Finally, a possible motivation and direct application is in the area of information
retrieval: Consider a Yahoo-like search scenario. The Yahoo contains an immense tree
that classifies home pages (currently estimated as about 1–2% of the total number of
web homepages). In a typical search, a node is reached and it exposes the next level
of the tree (or part of it). The user chooses the appropriate branch according to the
query he has in mind. As it turns out, this tree is quite deep, which often results in
numerous queries before reaching the target. Clearly, such a top-down search might

2092 YOSI BEN-ASHER, EITAN FARCHI, AND ILAN NEWMAN

be inefficient compared to the possibility of the optimal search of the Yahoo tree (e.g.,
searching in a chain of n nodes (a tree of depth n) requires n queries if we search top
down and only logn queries if we allow to query arbitrary nodes).

A different notion of searching in posets was considered by Linial and Saks [5, 4].
They consider the case of a set of real numbers that are “stored” in a poset so that
their natural order is consistent with the poset order. A search in this case is to
determine if a real x is stored in the set. The possible queries in this case are, as in
our case, the poset elements. The two possible answers for a query z is either “yes”
(means x ≤ e(z) where e(z) is the element stored in z), or “no” (x > e(z)). The first
answer results in excluding all elements greater than z from the poset and the later
excludes all elements below z. Note that the difference between the two models is
the resulting poset after a “yes” answer. It turns out that in spite of the similarity
in definition the two models are quite different, e.g., the product of two paths (see
section 5). Linial and Saks proved lower and upper bounds for the number of queries
needed to search in posets in terms of some of the poset properties; however, they
presented no algorithm to find the exact cost.

Our main result is a polynomial time algorithm (in the size of the tree) that
finds the optimal search strategy for any tree (forest). Let T (v) be the subtree of
T rooted at v. The answer to a query v ∈ T results in a search on either the
subtree rooted at v or its complement T − T (v). Thus, the optimal complexity,
w(T), of the search for T is defined by minimizing over all v ∈ T the expression
1 + max {w(T (v)), w(T − T (v))}. Direct use of this formula to compute w(T) would
give an exponential time algorithm. Another possible approach is trying to compute
w(T) in a bottom-up manner; however, it seems that this, too, needs exponential
time. Knowing the cost of the subtrees is not enough to compute the cost of the
complete tree: a complement subtree produced by querying a node results in a new
subtree whose cost has to be computed all over. Our approach is to get rid of this
difficulty by using further relevant information on subtrees (rather than just the cost
of the optimal search for them). We use a somewhat nonstandard decomposition of
a tree into subtrees, so that the cost of a tree can be determined using the relevant
information of its subtrees. Next, we generalize the results for forests and draw some
conclusions for Cartesian product posets.

We note that for bounded degree trees, an approximation of the optimal strategy
may be obtained by finding a “splitting” vertex that splits the tree into two parts
that are not too big. However, such an approach totally fails for unbounded degree
trees.

2. Basic definitions and preliminary facts. Let us start with some notations:
The subtree of T that is rooted at u is denoted by T (u). When it is clear from the
context, we identify T (u) with u. Deleting all nodes of a subtree T1 from a tree T is
denoted by T − T1, in particular T − u = T − T (u).

Definition 2.1. A search algorithm QT for a tree T with root r is defined
recursively as follows. If |T | = 1, the search is trivial and gives as output the only
node in T . For |T | ≥ 2 a search algorithm is a triplet (v,Qv, QT−v), where v ∈ T − r
(a “first query”), Qv is a search algorithm for T (v) (corresponds to a “yes” answer),
and QT−v is a search algorithm for T − v (“no” answer).

Graphically, we denote QT as

QT = v
no−→

↓
QT−v.

Qv

OPTIMAL SEARCH IN TREES 2093

The cost of a search algorithm Q, denoted by w(Q), is the number of queries
needed to find any buggy node in the worst case. The cost of an optimal search
algorithm for T , w(T), is

w(T) = min
QT

w(QT).

An optimal algorithm is any search algorithm QT such that w(QT) = w(T). Note
that the above definition conforms with the convention that there is always a buggy
node; thus the cost of a single node is zero since this node must be buggy and no
query is needed. The case of a search in which there is a possible “un-found” answer is
easily obtained from the above definition (with the expense of one additional query).
See section 5 for more details.

The following is immediate from the definitions.
Fact 2.1. For a tree T , with |T | > 1, w(T) = 1 + minv∈T max{w(v), w(T−v)}.
A useful property of the cost is that it is monotone.
Observation 2.1. Let T1 be a subtree of T2 (namely, T1 is obtained from T2 by

deleting some nodes), then w(T1) ≤ w(T2).
Fact 2.1 suggests that we might as well start the search by querying a node u ∈ T

for which w(u) < w(T) and w(T−u) is minimal. Applying this idea further leads us to
the definition of the “sequence of complements.” We start by defining a lexicographic
order on finite sequences.

Definition 2.2. Let µ = [µ1, µ2, . . . , µk] and ρ = [ρ1, ρ2, . . . , ρn] be two sequences
of natural numbers. Then µ is lexicographically smaller than ρ (µ <L ρ) if there exists
i such that µi < ρi and for every j < i, µj = ρj.

Definition 2.3. The sequence of complements µ(T) = [µ0, µ1, µ2, . . . , µl] for a
given tree T is defined recursively as follows:

µ0 = w(T).
If |T | = 1, then l = 0 and µ(T) = [0].
For |T | > 1,

[µ1, µ2, . . . , µl] = min {µ(T − u)| w(T (u)) < w(T)} ,

where min is taken according to the lexicographic order.
For example, µ(L) of a path L with five nodes is [3, 0], as its cost is 3; and the node

u that achieves the smallest µ(L−u) is the son of the root for which w(T−u) = 0. The
reader can verify that µ of a star with n leaves is [n, n− 1, . . . , 2, 1, 0]. The following
properties are immediate from the definition: Let µ(T) = [µ0, µ1, . . . , µl]. Then

1. µ0 > µ1 > · · · > µl = 0.
2. l ≤ w(T).

As the sequence of complements is always strictly decreasing, we restrict the order L
to all strictly decreasing finite sequences of nonnegative integers with the last element
being 0. The order L is a discrete total order on this set of sequences. In particular,
every sequence has a rank in this total order, and every sequence has a successor.
Thus, it also follows that µ(T) is a unique, well-defined sequence for every tree T .

Definition 2.4. For T with |T | ≥ 2, λT ∈ T is any node in T for which µ(T−λT)
is the smallest and w(T (λT)) < w(T). Namely λT is such that µ(T) = [w(T), µ(T −
λT)]. Note that for |T | = 1, λT is not defined.

It is immediate from the definition that λT is an optimal node, i.e., there exists
an optimal search algorithm whose first query is λT . Figure 2.1 illustrates λT , µ(T),
and an optimal search algorithm that starts in λT for a particular example. In the

2094 YOSI BEN-ASHER, EITAN FARCHI, AND ILAN NEWMAN

m

nm

n v

y

y

b

a

a b

v

initial tree

u

u

r

y

y

y

y

optimal search algorithm starting at ’v’

r

v u

(3)

(0) (0)

(2)

m n

(2)

(0)

(1)

a

b

Fig. 2.1.

above tree (left side) the cost of each subtree is marked by its root. Here λT = v,
since µ(T − v) = [2, 1, 0] compared (for example) to µ(T − u) = [3, 0].

3. The decomposition of T and the role of µ(T). As mentioned before, it
is not obvious how to efficiently compute the cost of T using the formula of Fact 2.1
in a bottom-up manner. Our solution is to decompose T into subtrees, so that we
can characterize µ(T) as a function of the µ’s of its subtrees. We define the following
operations:

T ′: “Rerooting” operation. T ′ is the tree obtained from T by adding a new node
x whose only child is the root of T .

T ′1 + · · · + T ′k: “grouping” operation. T = T ′1 + T ′2 + · · · + T ′k (also denoted by∑k
i=1 T

′
i) is obtained from disjoint trees T1, T2, . . . , Tk by attaching T1, T2, . . . , Tk

as the children of a new root x. Note that we write it as an operation
on the rerooted trees T ′1, . . . , T

′
k rather than on T1, . . . , Tk, as we will relate

µ(T) to µ(T ′1), . . . , µ(T ′k). In the grouping operation, we will always order
T1, T2, . . . , Tk so that µ(T ′1) ≤L · · · ≤L µ(T ′k).

Fact 3.1. Every rooted tree can be constructed from single nodes using the above
operations.

In the following two sections we will show how µ(T) is determined by the µ’s of
the subtrees used to decompose T according to the operations defined above.

3.1. Properties of the rerooting operation. We relate here the sequence of
complements of any tree T to the sequence of complements of the tree T ′ that is
obtained from T by rerooting. As it will turn out this can simply be characterized by
the following theorem.

Theorem 3.1. Let T be a rooted tree and let T ′ be the tree obtained from T
by rerooting. Then µ(T ′) = succ(µ(T)), where succ is the successor according to the
order L on strictly decreasing nonnegative finite sequences, ending with 0.

The key ingredient in the proof of the theorem is based on the observation that a
“jump” in the coordinates of the sequence µ(T) is a necessary and sufficient condition
for the cost of T ′ to remain the same. The term “jump” indicates that the difference
between two consecutive coordinates of µ(T) is greater than 1. The intuition is that
such a jump can compensate for the expected increase in w(T ′) caused by the extra
node added above the root of T . To demonstrate this on an example, consider a path
P with three nodes, for which µ(P) = [2, 0]; namely, it contains a jump. Indeed, P ′

is a path with 4 nodes and its cost remains 2. The reason why w(P ′) did not increase
is that we can start a search in P ′ by querying λP . For a “yes” answer we proceed as
we would have done in P and the cost certainly won’t change. For a “no” answer we
are left with P ′ − λP = (P − λP)′ but (P − λP) is a single node with zero cost. Thus
w(P ′ − λP) = 1 which increased comparing to P − λP but not enough to increase

OPTIMAL SEARCH IN TREES 2095

w(P ′). Another example is the rerooting T ′ of the tree T in Figure 2.1, showing that
the cost does increase if µ(T) contains no jump. For T of Figure 2.1 λT = v and
µ(T) = [3, 2, 1, 0]. Indeed, the reader can verify the cost increases, and w(T ′) = 4.

We proceed now with the proof of Theorem 3.1.
Proposition 3.2. For a given tree T , w(T) ≤ w(T ′) ≤ w(T) + 1
Proof. The left inequality is immediate from Observation 2.1. The right inequality

follows from the search that starts by querying the (old) root of T .
Proposition 3.3. If w(T ′) = w(T) + 1, then λT ′ = root(T) and µ(T ′) =

[w(T ′), 0].
Proof. Querying v = root(T) leads to w(T ′ − v) = 0 and thus µ(T ′) ≥ [w(T ′), 0],

but [w(T ′), 0] is the smallest sequence [µ0, . . . , µl] (according to <L) for which µ0 =
w(T ′).

Lemma 3.4. Let µ(T) = [µ0, . . . , µl]. If there exists i ≥ 0 such that µi < w(T)−i,
then w(T ′) = w(T).

Proof. Note that the condition of the lemma states that there is a jump between
µi and µi−1. Let α = w(T). We will use induction on |T | to show that there exists
a search algorithm Q for T ′, with w(Q) = α. The premise of the lemma is possible
only for a tree with cost greater than 1; hence the induction base includes only a
path P with three nodes or a star with two leaves. For the latter, the sequence of
complements µ() is [2, 1, 0] and the premise of the lemma is not met. For the path P ,
the sequence of complements is [2, 0], and indeed w(P ′) = w(P) = 2.

Let T be a tree with w(T) = α ≥ 3, and consider the following search algorithm
for T ′:

Q = λT
no−→

↓
Q1,

Q2

where Q1 is an optimal search algorithm for T ′ − λT and Q2 is an optimal search
algorithm for T (λT). Here, w(Q) ≤ 1+max(w(Q2), w(T ′−λT)), but, by the definition
of λT , w(Q2) ≤ α− 1 and thus w(Q) ≤ max(α, 1 +w(T ′−λT)) = max(α, 1 +w((T −
λT)′)). Hence, it is enough to show that w((T − λT)′) ≤ α− 1.

Let us first consider the case where the jump is for i = 1, namely, µ1 = w(T −
λT) ≤ α−2. By Proposition 3.3 for T−λT we have that w((T−λT)′) ≤ w(T−λT)+1 ≤
µ1 + 1 ≤ α− 1.

Consider the case where i > 1. Let T1 = T − λT ; then by the definition of
µ we get that µ(T1) = [µ1, . . . , µl] , with µ1 = w(T − λT) ≤ α − 1. Thus, the
premise of the lemma holds for T1 (with i′ = i − 1), so by the induction hypothesis
w(T ′1) = w(T1) ≤ α− 1.

The opposite of Lemma 3.4 is also true.
Lemma 3.5. Let µ(T) = [µ0, . . . , µl]. If w(T ′) = w(T), then there exists

i ∈ {1, . . . , l} such that µi < w(T)− i.
Proof. Let w(T) = w. It is sufficient to show that if the condition is not met, i.e.,

∀i, µi ≥ w − i, then w(T ′) = w + 1. We prove this by induction on |T |. The base
case is a single node whose µ = [0] and for which T ′ is a path of length 1 with cost
= 1.

For |T | > 1 the assumption above implies that µ(T) = [w,w− 1, w− 2, . . . , 1, 0].
Let Q be an optimal algorithm for T ′ starting with a vertex x. We show that Q must
spend w+1 queries. If w(T (x)) ≥ w, then on a “yes” answer we are left with T (x) (on
which additional w queries are needed) and we are done. Thus we may assume that

2096 YOSI BEN-ASHER, EITAN FARCHI, AND ILAN NEWMAN

w(T (x)) ≤ w−1. Therefore by the definition of λT we get that µ(T−x) ≥L µ(T−λT).
But this means that µ(T − x) = µ(T − λT) = [w − 1, w − 2, . . . , 1, 0] as the successor
of µ(T − λT) has a first coordinate equal to w. Thus, by the induction hypothesis on
T − x (whose µ has no jump), w(T ′ − x) ≥ w(T − x) + 1 = w − 1 + 1 = w. Hence
w(Q) ≥ 1 + w(T ′ − x) = 1 + w.

The above two lemmas yield the following theorem.
Theorem 3.6. Let µ(T) = [µ0, . . . , µl]. Then w(T ′) = w(T), iff there exists

i ≥ 0 such that µi < w(T)− i.
We now conclude with the proof of Theorem 3.1.
Proof. If for a tree T there is no jump, namely, µ(T) = [w,w− 1, . . . , 1, 0], where

w = w(T), then by Theorem 3.6 w(T ′) = w + 1. Moreover, by Proposition 3.3,
µ(T ′) = [w + 1, 0], which is the successor of [w,w − 1, . . . , 1, 0] in the order L.

Assume then that there is a jump in µ(T), and let i be the largest index for which
µi−1 ≥ l − i+ 2, namely,

µ(T) = [µ0, µ1, . . . , µi−1,

µi︷︸︸︷
l − i, l − i− 1, . . . , 2, 1, 0].

Then we prove by induction on w(T) that µ(T ′) = succ(µ(T)) and that λT ′ = λT .
By Theorem 3.6 w(T ′) = w(T) = µ0. Assume λT ′ = x then µ(T ′) = [µ0, µ(T ′ − x)].
But T ′ − x = (T − x)′ and, by the induction hypothesis for (T − x)′, µ(T − x)′ =
succ(µ(T − x)). However, by the definition of λT ,

µ(T − x) ≥ µ(T − λT) = [µ1, . . . , µi−1, l − 1, l − i− 1, . . . , 1, 0].

However,

succ([µ1, . . . , µi−1, l − i, l − i− 1, . . . , 1, 0]) = [µ1, . . . , l − i+ 1, 0],

thus we get that µ(T ′ − x) = succ(µ(T − x) ≥ [µ1, . . . , l − i + 1, 0]. On the other
hand, by the definition of the node x in T ′, we have that µ(T ′ − x) ≤ µ(T ′ − λT) =
µ((T − λT)′) = succ(µ(T − λT)) = [µ1, . . . , l − i+ 1, 0]. Thus we conclude that

µ(T ′) = [µ0, µ1, . . . , l − i+ 1, 0] = succ([µ0, µ1, . . . , µi−1, l − i, l − i− 1, . . . , 1, 0]).

Moreover, as we get that µ(T ′−x) = µ(T ′−λT) this also proves that λT = λT ′ .

3.2. Properties of the grouping operation. We now relate the sequence of
complements of grouping k rerooted trees T ′1+T ′2+· · ·+T ′k to the individual sequences.
First a simpler operation is defined as follows.

Definition 3.7. The “amalgamation” operation T ′1 + T2 on disjoint trees T ′1, T2

is the tree that is obtained by amalgamating the roots of T ′1 and T2 into one node.
Note that in the amalgamation operation it is required that one of the trees be a

rerooted tree. The amalgamation operation exhibits a certain monotonicity.
Lemma 3.8. Let T1, T2, T be trees; then µ(T ′1) ≤L µ(T ′2) =⇒ w(T ′1 + T) ≤

w(T ′2 + T).
Proof. This proof is by induction on the sum n = |T |+k where |T | is the number

of nodes in T and k is the rank of µ(T ′1) defined by the total order <L.
The induction base is for n = 2, and T that has one node. Since the amalgamation

of one node to any tree does not change the tree at all, the base of the induction is
trivially true.

OPTIMAL SEARCH IN TREES 2097

First case—w(T) ≤ w(T ′1): Let w = w(T ′1) and assume Q is any search algorithm
for T +T ′2 with cost w(Q). We give an algorithm for T +T ′1 with cost of at most w(Q).
Indeed let u 6= root(T ′2) be the first query of Q. If u ∈ T then obviously w(Q) ≥ w+1,
as w((T − u) + T ′2) ≥ w(T2) ≥ w. However, the algorithm that first queries the root
of T1 and then proceeds optimally for T1 if the answer is “yes” and optimally for T if
the answer is “no” also achieves w + 1 and we are done.

If u ∈ T2, then we may assume that w(T (u)) ≤ w − 1 (otherwise w(Q) ≥ w + 1
and we are done as before). We also may assume that w(T ′2) = w, as if w(T ′2) ≥ w+1,
then w(Q) ≥ w + 1, but as we have shown, we can clearly search T + T ′ in w + 1
queries. Thus µ(T ′2−λT2

) ≥ µ(T ′1−λT1
) (as µ(T ′2) ≥ µ(T ′1) and the first coordinate in

both sequences is equal to w). In this case by querying λT1
we get that w(T + T ′1) ≤

1 + max(w − 1, w(T + (T1 − λT1)′)). However, by our assumption µ(T ′2 − u) ≥L
µ(T ′2−λT ′2) ≥L µ(T ′1−λT ′1). Thus by induction w(T + (T ′2−u)) ≥ w(T + (T ′1−λT ′1)),
so that w(Q) ≥ 1 + w(T + T ′2 − u) ≥ 1 + w(T + T ′1 − λT1

). On the other hand, as
w(Q) ≥ w, it follows that w(Q) ≥ 1 + max(w − 1, w(T + (T ′1 − λT ′1)) = w(T + T ′1).

Second case—w(T) > w(T ′1): Consider an optimal search algorithm Q for T +T ′2.
We may assume that w(Q) ≤ w(T); otherwise, a search algorithm for T + T ′1 that
starts by querying the root of T1 will use at most w(T)+1 queries (as w(T) > w(T1)),
so that w(T + T ′1) ≤ w(T + T ′2). The lemma follows.

Let y be the first query of Q. It follows that y ∈ T . Consider a search algorithm
Q′ for T ′ + T1 that also starts by querying y. We are left with two trees (T − y) + T ′1
and (T − y) + T ′2. Here, |T − y| < |T | so that we can use the induction assumption
and obtain that w((T − y) + T ′1) ≤ w((T − y) + T ′2). The lemma follows.

We now consider grouping of several trees.

Proposition 3.9. Let T =
∑k
i=1 T

′
i (i.e., T = T ′1 + · · ·+ T ′k) and assume that

µ(T ′1) ≤ · · · ≤ µ(T ′k). Then w(T ′k) ≤ w(T) ≤ w(T ′k) + k − 1.

Proof. The left inequality is immediate from Fact 3.1. The other inequality is
obvious by the following search algorithm for T .

Start by querying root(T1), root(T2), . . . , root(Tk−1). If the answer is “yes” on,
say, the ith query, then proceed by an optimal search on Ti. Otherwise proceed by an
optimal search in Tk. Clearly this search takes at most w(T ′k) + k − 1 queries.

The criterion for determining the exact cost of the grouping operation is given by
the following lemma.

Lemma 3.10. Let T = T ′1 + · · ·+ T ′k. Then

(a) w(T) = w(T ′k) iff w(T ′1 + · · ·+ T ′k−1 + (T ′k − λT ′k)) ≤ w(T ′k)− 1;

(b) for any α > w(T ′k), we have that w(T) ≤ α iff w(T ′1 + · · ·+ T ′k−1) ≤ α− 1.

Proof. The “if” direction for (a) is trivial since, if w(T ′1 + · · · + T ′k−1 + (T ′k −
λT ′

k
)) ≤ w(T ′k), then by querying λT ′

k
we are done. Similarly querying root(Tk) if

w(T ′1 + · · ·+ T ′k−1) ≤ α− 1 proves the “if” direction for (b).

For the other direction of (a)—assume by negation that w(T ′1 + · · · + T ′k−1 +
(T ′k − λT ′k)) ≥ w = w(T ′k)—we show that w(T ′1 + · · · + T ′k) ≥ w + 1. Let Q be a
search algorithm for T ′1 + · · · + T ′k that starts by querying x. If x 6∈ T ′k, then clearly
w(Q) ≥ 1+w. Assume that x ∈ T ′k and w(T (x)) ≤ w−1 (otherwise, for a “yes” answer
w(Q) ≥ 1+w(T (x)) ≥ w+1). Then, by the definition of µ, µ(T ′k−x) ≥L µ(T ′k−λT ′k).

Now, let T̃ = T ′1 + · · · + T ′k−1. Then by Lemma 3.8 we get w((Tk − x)′ + T̃) ≥
w((Tk − λT ′

k
)′ + T̃) ≥ w; hence

w(Q) = 1 + w((Tk − x)′ + T̃)) ≥ 1 + w((Tk − λT ′
k
)′ + T̃) ≥ 1 + w.

2098 YOSI BEN-ASHER, EITAN FARCHI, AND ILAN NEWMAN

For (b), let α > w(T ′k) and assume that w(T ′1 + · · · + T ′k−1) ≥ α. Let Q be a search
algorithm for T that first queries x. If x ∈ T ′k, then w(Q) ≥ 1 + w(T ′1 + · · ·+ T ′k−1 +
T ′k − λT ′

k
) ≥ 1 + w(T ′1 + · · · + T ′k−1) ≥ α + 1. If x ∈ T ′i , where i 6= k, then let

T̃ = T ′1 + · · ·+T ′i−1 +T ′i+1 + · · ·+T ′k−1. By Lemma 3.8 w(T ′1 + · · ·+T ′k−1) = w(T̃ +

T ′i) ≤ w(T̃ + T ′k). Considering the “no” answer after query x, this implies that

w(Q) ≥ 1 + w(T̃ + T ′k) ≥ 1 + w(T̃ + T ′i) ≥ 1 + α.

Finally we relate the sequences of complements.

Lemma 3.11. Let T = T ′1 + · · ·+ T ′k. Then

(a) if w(T) = w(T ′k), then λT = λT ′
k
, µ(T) = [µ0, . . . , µl], where µ0 = w(T ′k) and

[µ1, . . . , µl] = µ(T ′1 + · · ·+ T ′k−1 + (T ′k − λT ′k));

(b) if w(T) > w(T ′k), then λT = root(T ′k), µ(T) = [µ0, . . . , µl], where µ0 = w(T)
and [µ1, . . . , µl] = µ(T ′1 + · · ·+ T ′k−1).

Proof. The proof immediately follows from the proof of Lemma 3.10

4. Constructing the optimal search algorithm. In this section we show that
computing µ(T) (and in fact λT) for a given tree T , can be done in polynomial time
(in the size of T). The algorithm constructs µ(T), λT bottom up using the rerooting
and grouping operations.

We need the following notation: for a given tree T , let µ(T) = [µ0, µ1, . . . , µl];
we denote ∂µ = [µ1, . . . , µl] = µ(T − λT). Note that ∂µ is computed from µ just by
dropping out the first entry. (Although formally it depends on λT , one does not need
to know it explicitly.) Depending on the current operation in the decomposition, the
algorithm performs the following computations.

Rerooting operation: Let T = T ′1.

1. Compute µ(T) = succ(µ(T1)) (Theorem 3.1).
2. If w(T) = w(T1) + 1, then λT = root(T1); otherwise (if w(T) = w(T1)),
λT = λT1

.
This can be done in O(w(T)) steps.

Grouping operation: Let T = T ′1 + · · ·+ T ′k.

1. The µ sequences of T ′1, · · · , T ′k are sorted so that µ(T ′1) ≤L · · · ≤L µ(T ′k).
Each sequence is of length at most w(T), and each entry is bounded by
w(T). Thus sorting can be done (treating each sequence as a number) by
min(w2(T) logw(T), |T | log |T |).

2. For any α it can be determined whether w(T ′1 + · · · + T ′k) ≤ α. This is
done using the following recursive test as suggested by Lemma 3.10. The
test is applied to the vectors of complement of subtrees T ′1, . . . , T

′
k, such that

test(µ(T ′1), . . . , µ(T ′k), α) returns true iff w(T ′1 + · · ·+ T ′k) ≤ α.
a) For α ≥ µ0(T ′k) + k

test(µ(T ′1), . . . , µ(T ′k), α) = true.

b) For w ≤ µ0(T ′k)− 1

test(µ(T ′1), . . . , µ(T ′k), α) = false.

c) For α = µ0(T ′k)

test(µ(T ′1), . . . , µ(T ′k), α) = test(µ(T ′1), . . . , µ(T ′k−1), ∂µ(T ′k), α− 1),

i.e., test(T ′1 + · · ·+ T ′k, α) = test(T ′1 + · · ·+ T ′k−1 + T ′k − λT ′k , α− 1).

OPTIMAL SEARCH IN TREES 2099

d) For µ0(T ′k) < w ≤ µ0(T ′k) + k − 1

test(µ(T ′1), . . . , µ(T ′k), α) = test(µ(T ′1), . . . , µ(T ′k−1), α− 1),

i.e., test(T ′1 + · · ·+ T ′k, α) = test(T ′1 + · · ·+ T ′k−1, α− 1).
The validity of a) and b) is due to Proposition 3.9, and that of c) and d) is
due to Lemma 3.11.
After every application of test it might be required to sort the remaining
sequences of complements. The worst case is if the first coordinate of µ(T ′k)
is deleted for which the correct place of µ(T ′k) among the k sequences can be
found in w(T) logw(T) comparisons. The time needed to compute test(T ′1 +
· · ·+ T ′k, α) is therefore O(w2(T) logw(T)).
We compute the cost w(T ′1 + · · ·+ T ′k) by binary searching for the correct α
in the range w(T ′k), . . . , w(T ′k) + k− 1. This may require log k applications of
test(), Hence the maximal number of steps needed to compute the exact α is
O(w2(T) log2 w(T)) (not including the sorting of phase 1).
Note that the computation of w(T ′1 + · · ·+T ′k) also determines λT at the same
time (as implied by Lemma 3.11).

3. After determining the exact cost α = w(T) = µ0(T), we proceed to find the
next component of µ(T) according to the two cases of Lemma 3.11.
(a) if w(T) = w(T ′k), then λT = λT ′

k
and µ(T)1 = w(T ′1 + · · ·+ T ′k−1 + (T ′k −

λT ′
k
));

(b) if w(T) > w(T ′k), then λT = root(T ′k) and µ(T)1 = w(T ′1 + · · ·+ T ′k−1).
In this way we find each entry of µ(T). Note that resorting µ(T ′1), . . . , µ(T ′k−
λT ′

k
) is done in w(T) logw(T) steps; therefore the whole process takes

O(w3(T) log3 w(T)) steps.
Theorem 4.1. Let T be a tree with n nodes; then µ(T) and λT can be computed

in O(n · w3(T) logw3(T)) = O(n4 log3 n) steps.
Proof. We compute µ(T) by constructing T from subtrees working bottom up,

starting from the leaves to the root. At each intermediate step we compute µ(T1) for
a subtree T1 in O(w3(T) log3 w(T)) steps using the above algorithm. Thus the whole
process for a tree T with |T | = n takes at most O(n · w3(T) log3 w(T)) steps. For
bounded degree trees where w(T) = O(log n) this gives O(n log4 n). For general trees
this might be O(n4 log3 n). Note that each time we compute w(T i) of a subtree T i,
we also determine λT i . Thus λT is computed in the same time bound, and an optimal
search algorithm can be constructed.

An example of the main stages of the algorithm is given in the appendix.

5. Search in forests and Cartesian products posets.
Forests. Our results hold for forests as well. Recall that in our model we assumed

that one of the nodes in the given tree must be buggy. Let w̃(T1, T2, . . . , Tk) denote the
cost of searching in a forest with k trees, where we do not assume that one of the nodes
in T1, . . . , Tk is buggy. It is easy to see that w̃(T1, T2, . . . , Tk) = w(T ′1 +T ′2 + · · ·+T ′k),
where T ′1 + T ′2 + · · · + T ′k is the grouping operation defined in section 3. The reason
is that if none of the nodes in the forest is buggy, then an optimal search algorithm
will identify the root of (T ′1 + T ′2 + · · · + T ′k) as the buggy node. On the other hand
T ′1 + T ′2 + · · · + T ′k can be searched by applying a search algorithm for the forest
T1, T2, . . . , Tk; if this search gives as a result “no buggy element,” then the answer for
T ′1 + T ′2 + · · ·+ T ′k is its root.

Rooted Cartesian products. A rooted poset is a poset with unique greatest
element.

2100 YOSI BEN-ASHER, EITAN FARCHI, AND ILAN NEWMAN

Claim 5.1. Let P1, P2 be two rooted posets and let P = P1 × P2 be the (rooted)
product poset of P1 and P2. Then w(P) ≤ w(P1) + w(P2).

Proof. One may search P by first querying (a, x), where a is the greatest element
of P1 and x is optimal first query for P2. This results in either searching in P1×P2(x)
or P1 × (P2 − P2(x)), where P2(x) is the poset of all elements below x in P2. Going
on in this way by following the optimal strategy for P2 for at most w(P2) queries we
are left with a sub-poset that is isomorphic to P1 for which additional w(P1) queries
is enough.

As it is clear that w(P) ≥ max(w(P1), w(P2)), the above observation gives w(P)
up to a factor of two.

An interesting example (the simplest nontrivial) of a rooted product is a product
of two chains which is a rectangular lattice.

Claim 5.2. Let P1, P2 be disjoint chains and let P = P1 × P2. Then w(P1) +
w(P2)− 2 ≤ w(P) ≤ w(P1) + w(P2).

Proof. The upper bound follows from Claim 5.1. The lower bound follows from
the fact that w(L) ≥ dlog |P |e. If one or both lengths of P1, P2 is a power of 2, then
in fact dlog |P |e is the exact answer.

It is interesting to confront the above with the result of [5] for the Cartesian
products of chains for their model. Let Pn be the n element chain. In both models
w(Pn) = dlog ne. However, in the Linial–Saks model w(Pn × Pn) = 2n − 1, while in
our model w(Pn × Pn) = 2dlog ne.

6. Conclusions. We have presented a polynomial time algorithm for computing
the optimal search strategy for forest-like Posets. The crux of the proof, and the
algorithm, is the observation that the structure of a given tree T can be represented
by a sequence of numbers µ(T). As an example, the cost of an optimal search of
a complete binary tree (T) with n nodes is log n + log∗ n + θ(1). We do not know
any direct method for proving this result rather than computing µ(T) recursively
(following our algorithm).1

Some problems are left open.
1. The main open problem is to give an algorithm that determines the cost

(optimal strategy) for general posets (namely, searching in directed acyclic
graphs).

2. The randomized complexity is quite interesting, too. For a given tree T and
any buggy node, can one do better on the average using a randomized search
algorithm? (A randomized search algorithm can be viewed as a probability
distribution on a set of deterministic search algorithms.) For example, let T
be a rooted star with n leaves; then it is easy to see that any randomized
search algorithm will pay, on the average, n queries. The reason is that an
adversary will put the “bug” in the root of the star, using the fact that any
deterministic algorithm must query all the leaves first (this corresponds to
the fact that the nondeterministic complexity of the star of n leaves is n).
Randomization can help for some trees. For example, for d regular tree of

height h, w(T) = h · d while its randomized complexity is ≤ d·(h+1)
2 . Our

conjuncture is that for every tree T , its randomized complexity is at least
1
2w(T).

3. While our algorithm gives the exact cost for any tree, it would be interesting
to prove tight upper and lower bounds as a function of some natural property

1Further details are left to the reader.

OPTIMAL SEARCH IN TREES 2101

of the tree. For example, log size(T) and d are lower bounds, where d is the
maximal degree of T . However, none of these is tight in general. Another
example is that for trees with maximum degree d, log d+1

d
size(T) is an upper

bound, simply demonstrated by querying a node that splits the tree into two
parts of size ≤ d

d+1size(T) each.
4. For the product of rooted posets we have seen that the cost is at most the

sum of the costs. Is this tight (up to an additive O(1) term) for every rooted
product?

7. Appendix.

1

a

r

x y z

b

c

e f

g

T T T
2

3

Fig. 7.1.

7.1. A detailed example of the algorithm. This section contains a detailed
example showing the main phases of the algorithm combing three subtrees T = T ′3 +
T ′2 + T ′1 as described in Figure 7.1. In early stages, the algorithms have computed
µ(T ′i), λT ′i , i = 1, 2, 3, such that

µ(T ′1) = [3, 1, 0] λT ′1 =′ c′, µ(T ′2) = [3, 1, 0] λT ′2 =′ g′, µ(T ′3) = [1, 0] λT ′3 =′ z′.

We proceed according to the three stages of the grouping operation in the algorithm
to compute µ(T). After sorting the vectors of complements we obtain (the number
of subtrees is k = 3) the possible cost of w(T) is 3 ≤ w(T) ≤ 3 + 2 = 5. Next,
test(T ′3 +T ′2 +T ′1, α) is applied for α = 4 and is computed as follows (the label on the

arrow
x)−→ denotes one of the four cases of test() as described in section 4):
test(T ′3 + T ′2 + T ′1, 4)
µ(T ′1) = [3, 1, 0]
µ(T ′2) = [3, 1, 0]
µ(T ′3) = [1, 0]

 d)−→
 test(T ′3 + T ′2, 3)
µ(T ′2) = [3, 1, 0]
µ(T ′3) = [1, 0]

c)−→
 test(T ′3 + T ′2 − λT ′2 , 2)

∂µ(T ′2) = [1, 0]
µ(T ′3) = [1, 0]

 a)−→ TRUE.

We continue to check if w = 3 using
test(T ′3 + T ′2 + T ′1, 3)
µ(T ′1) = [3, 1, 0]
µ(T ′2) = [3, 1, 0]
µ(T ′3) = [1, 0]

 c)−→

test(T ′3 + T ′2 + T ′1 − λT ′1 , 2)

∂µ(T ′1) = [1, 0]
µ(T ′2) = [3, 1, 0]
µ(T ′3) = [1, 0]

 b)−→ FALSE.

2102 YOSI BEN-ASHER, EITAN FARCHI, AND ILAN NEWMAN

Hence, we have computed the first component in the vector of complements, namely,
µ(T)0 = 4.

The second coordinate, µ(T)1, is obtained by computing w(T ′3 + T ′2) since λT =
root(T1) and the complement is T ′3 +T ′2. The possible range for µ(T)1 is 3 ≤ µ(T)1 ≤
3 + 2− 1 = 4. However, “true” is obtained for the minimal value µ(T)1 = 3, test(T ′3 + T ′2, 3)

µ(T ′2) = [3, 1, 0]
µ(T ′3) = [1, 0]

 c)−→
 test(T ′3 + T ′2 − λT ′2 , 2)

∂µ(T ′2) = [1, 0]
µ(T ′3) = [1, 0]

 a)−→ TRUE,

and we get that µ(T)1 = 3. The third coordinate is computed in a similar way,
namely, 1 ≤ µ(T)2 ≤ 1 + 2− 1 = 2, yet test(T ′3 + T ′2 − λT ′2 , 1)

∂µ(T ′2) = [1, 0]
µ(T ′3) = [1, 0]

 c)−→
[
test(T ′3, 0)
µ(T ′3) = [1, 0]

]
b)−→ FALSE;

hence µ(T)2 = 2.
The set of nodes that were used in the different stages of test(T ′3 + T ′2 + T ′1, 4)

forms the backbone of the optimal search algorithm, i.e.,

QT = x
no−→

↓
g

no−→
↓

z
no−→

↓
y

no−→
↓

r

QT1
QT (g) z y

.

REFERENCES

[1] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, New York, 1990.
[2] P. G. Frankl and E. J. Weyker, Provable improvements on branch testing, IEEE Transaction

on Software Engineering, 19 (1993), pp. 962–975.
[3] J. R. Horgan, S. London, and M. R. Lyu, Achieving software quality with testing coverage

measures, IEEE Trans. Comput., 27 (1994), pp. 60–69.
[4] N. Linial and M. Saks, Every poset has a central element, J. Combin. Theory, 40 (1985),

pp. 195–210.
[5] N. Linial and M. Saks, Searching order structures, J. Algorithms, 6 (1985), pp. 86–103.

WEAK RANDOM SOURCES, HITTING SETS, AND BPP
SIMULATIONS∗

ALEXANDER E. ANDREEV† , ANDREA E. F. CLEMENTI‡ , JOSÉ D. P. ROLIM§ , AND

LUCA TREVISAN¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2103–2116

Abstract. We show how to simulate any BPP algorithm in polynomial time by using a weak
random source of r bits and min-entropy rγ for any γ > 0. This follows from a more general result
about sampling with weak random sources. Our result matches an information-theoretic lower bound
and solves a question that has been open for some years. The previous best results were a polynomial
time simulation of RP [M. Saks, A. Srinivasan, and S. Zhou, Proc. 27th ACM Symp. on Theory of
Computing, 1995, pp. 479–488] and a quasi-polynomial time simulation of BPP [A. Ta-Shma, Proc.
28th ACM Symp. on Theory of Computing, 1996, pp. 276–285].

Departing significantly from previous related works, we do not use extractors; instead, we use the
OR-disperser of Saks, Srinivasan, and Zhou in combination with a tricky use of hitting sets borrowed
from [Andreev, Clementi, and Rolim, J. ACM, 45 (1998), pp. 179–213].

Key words. derandomization, imperfect sources of randomness, hitting sets, randomized com-
putations, expander graphs

AMS subject classifications. 68Q10, 11K45

PII. S0097539797325636

1. Introduction. Randomized algorithms are often the simplest ones that can
be used to solve a given problem, or the most efficient, or both (see [MR95]). For some
problems, including primality testing and approximation of #P-complete counting
problems, only randomized solutions are known.

The practical applicability of such randomized methods depends on the effec-
tive possibility for an algorithm to access truly random bits. Since it is questionable
whether truly random sources really exist, much research has been devoted in the
last decade to finding weaker notions of randomness that are still sufficient to run
BPP algorithms in polynomial time [VV85, SV86, V86, V87, CG88, Z90]. Several
definitions of weak random source have been proposed in the literature, the most
general being the following [CG88, Z90]: for γ > 0, an (r, rγ)-source is a random
source that outputs a string in {0, 1}r, and no string has probability of being output
larger than 2−r

γ

(such an object is also called random source of min-entropy rγ). An
information-theoretic argument shows that a black-box simulation of BPP using an
(r, ro(1))-source is impossible when r is polynomial in the number of random bits used
by the simulated algorithm.

Dispersers and extractors. The usual method of simulating a BPP algorithm
using a weak random source is as follows. Say that, for a given input, the algorithm

∗Received by the editors August 5, 1997; accepted for publication (in revised form) January 23,
1998; published electronically June 23, 1999. An extended abstract of this paper appears in the
Proceedings of the 38th IEEE Symp. on Foundations of Computer Science.

http://www.siam.org/journals/sicomp/28-6/32563.html
†Advanced Development Laboratory, LSI LOGIC, Corp., 2091 Landings Drive, Mountain View,

CA 94043 (andreev@lsil.com).
‡Dipartimento di Matematica, Università “Tor vergata” di Roma, Via della Ricerca Scientifica,

I-00133 Roma, Italy (clementi@mat.uniroma2.it).
§Centre Universitaire d’Informatique, University of Geneva, 24 rue General Dufour, CH 1211,

Geneve 4, Switzerland (rolim@cui.unige.ch).
¶Department of Computer Science, Columbia University, New York, NY 10027

(luca@cs.columbia.edu).

2103

2104 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

requires m (truly) random bits; then we ask the source r bits (note that only one access
to the weak random is required), and we use them to produce a sample space (a set of
m-bit strings). Such strings are fed into the algorithm, and then the majority rule is
used to decide whether to accept or reject. The procedure that computes the sample
space starting from the output of the source is independent of the algorithm that
we want to derandomize. This simulation is basically equivalent [Z90, Z96, NZ96,
SZ94, SSZ95, T96] to a bipartite graph G = (V,W,E) having 2r nodes in the left
component V , 2m nodes in the right component W , and degree d, and such that if we
select a node v in the left component according to an (r, rγ)-source and then a random
neighbor of v, the induced distribution in W is ε-close to the uniform distribution over
W . Such a graph is a (2r, 2m, d, rγ , ε)-extractor. The left nodes are seen as possible
outcomes of the random source and the right nodes as possible random strings for
the algorithm to be simulated. The simulation amounts to selecting a node on the
left side according to the weak random source and then selecting as sample space the
set of its neighbors. If, for some fixed γ, one could achieve d and r polynomial in m,
then a polynomial time simulation of BPP would be possible, using an (r, rγ)-source.
However, the best present construction of extractors for fixed γ > 0 and r = poly(m)

has d = nlog
(k)n [T96]. This implies a quasi-polynomial time simulation of BPP. A

polynomial-time simulation of BPP, using weak random sources of min-entropy rγ for
any fixed γ > 0, was one of the major open questions in the field.

It is not difficult to show that, to simulate RP by means of a weak random source,
OR dispersers [CW89] (from now on, we will simply call them dispersers) are sufficient.
A (2r, 2m, 2r

γ

)-disperser is again a bipartite graph G = (V,W,E) with parameters r,
m, and d as before, but now the property is that for any set V ′ ⊆ V of at least 2r

γ

vertices on the left side and any set W ′ ⊆W of more than 2m/2 vertices on the right
side, there is at least one edge joining V ′ and W ′. This construction is somewhat
easier to obtain, and indeed Saks, Srinivasan, and Zhou [SSZ95] give a disperser with
d = poly(n), for any constant γ > 0, allowing for a polynomial time simulation of RP.

See [N96] for a complete survey on extractors, dispersers, and weak random
sources.

Pseudorandom generators and hitting sets. A more ambitious goal than
simulating BPP with weak random sources is the deterministic simulation of BPP.
Research on this subject tries to isolate reasonable complexity assumptions under
which deterministic simulations of randomized algorithms are possible [Y82, BM84,
N90, BFNW93, NW94, IW97, ACR97].

In some cases, combinatorial objects developed in the study of weak random
sources have been used to give derandomization [NZ96]. Here we reverse this con-
nection and use a derandomization method to take full advantage of a weak random
source.

Two basic combinatorial objects are studied in the theory of derandomization:
pseudorandom generators (whose efficient construction immediately implies a deter-
ministic simulation of BPP) and hitting-set generators (whose efficient construction al-
lows us to simulate RP algorithms). Informally speaking, in the context of derandom-
ization, pseudorandom generators play the role of extractors and hitting-set generators
play that of dispersers. A recent result of Andreev, Clementi, and Rolim [ACR98]
shows how to deterministically simulate BPP algorithms by using hitting set genera-
tors. This suggests that perhaps dispersers could be used to simulate BPP with weak
random sources.

A quick δ-hitting set generator (quick δ-HSG) is an algorithm that, given a pa-

BPP SIMULATIONS USING WEAK RANDOM SOURCES 2105

rameter n, finds in poly(n) time a set Hn ⊆ {0, 1}∗ such that, for any finite Boolean
function f of circuit complexity n, if Prx[f(x) = 1] > δ, then f(a) = 1 for some
a ∈ Hn,1 where the probability is taken uniformly over {0, 1}n. The main technical
result of [ACR98] can be stated as follows.

Lemma 1 (see [ACR98]). For any choice of constants ε, δ > 0, there is a deter-
ministic algorithm that, given access to a quick δ-HSG and given in input any circuit
C of size n, returns in poly(n) time a value D such that |Prx[C(x) = 1] − D| ≤ ε,
where the probability is taken uniformly over all possible x ∈ {0, 1}n.

Lemma 1 immediately implies the following general derandomization result.
Theorem 2. If for some δ > 0 a quick δ-HSG exists, then P = BPP .
Andreev et al. [ACR98] prove Lemma 1 by constructing a set S of size poly(n)

that is ε-discrepant for C, i.e., such that Prx∈S [C(x) = 1] approximates the value
Prx[C(x) = 1] up to an additive error ε. A basic ingredient is the definition of a
discrepancy test that, given a circuit C, a “candidate” set S, and a parameter ε, tests
whether S is ε-discrepant for C. The test also needs an auxiliary set H in input, and,
provided that H has a certain hitting property, the test is “sound;” that is, if the set
S is accepted, then S is ε-discrepant for C. The fact that the test is sound only if
the auxiliary set H is hitting is not a major restriction—since we are assuming that a
hitting-set generator exists, we can use it to generate H. Thus, proving the theorem
amounts to find a set S that passes the test. This task is solved in [ACR98] by means
of a rather involved (and inherently sequential) algorithm. The algorithm indeed
proves a somewhat stronger result than Lemma 1 and has also been used in [ACR97]
in a different context. For the sake of proving Lemma 1, it might however be overkill.

Our results. We show how to use dispersers and weak random sources to sim-
ulate BPP in polynomial time and to even solve a more general sampling problem.

The sampling problem we are interested in is as follows: Given oracle access to
a function f : {0, 1}n → {0, 1} and a weak source of randomness, we want to find
a set S of size poly(n) that with high probability is ε-discrepant for f . It should
be clear that simulating a given BPP algorithm reduces to the above problem: the
computation of a BPP algorithm on a fixed input is an (easy to compute) function
f of the outcomes of the random coins. Being able to approximate the fraction of
random coin outcomes that make f accept, allows us to decide whether or not the
algorithm accepts the input.

We show that dispersers are sufficient for the above sampling problem. The
starting point is the observation that, using a disperser and a weak random source, it
is possible to generate polynomially many small sets S1, . . . , Sk and H1, . . . , Hk such
that, with high probability, one of the Si’s is ε-discrepant for f and one of the Hi’s
has the hitting property required by the discrepancy test (see Theorem 21). Then,
we define H =

⋃
Hi. Since the hitting property is monotone (adding elements to a

set cannot decrease its hitting properties), we have that H will be a hitting set with
high probability. We can thus run the discrepancy test on the sets S1, . . . , Sk, using
H as the reference hitting set. We shall then prove that, with high probability, one
of the Si’s will pass the test and thus be ε-discrepant for f as required.

The main difference between our method and the extractor-based method (men-
tioned at the beginning) is that the ε-discrepant set that is given in output depends
on the specific function f that is accessed as oracle. The source of this nonoblivious-
ness is the selection of a good set Sj among the candidates S1, . . . , Sk. As a result,

1In the next section we will give a seemingly weaker (but in fact equivalent) formal definition.

2106 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

our sampling algorithm is not oblivious according to the definition of Bellare and
Rompel [BR94]; however, it is nonadaptive. See [G97] for definitions of these notions
and for a survey on sampling.

Our main result can be stated in the following way.
Theorem 3 (main theorem). For any γ > 0, there exist a polynomial p and

a deterministic algorithm A such that the following holds. For any ε > 0, n > 0,
any (p(n/ε), p(n/ε)γ)-source X, and any f : {0, 1}n → {0, 1}, on input (ε, n,X) and
oracle access to f , A computes, in time polynomial in n/ε, a value D such that with
probability at least 1− 2−poly(n) over the outcomes of the source,

|Prx[f(x) = 1]−D| ≤ ε.

Note that since the algorithm runs in polynomial time it will make poly(n/ε) queries
to f .

Corollary 4. For any γ > 0, any BPP algorithm can be simulated in polynomial
time, using an (r, rγ)-source.

The idea of generating candidate discrepancy sets S1, . . . , Sk and then applying
the discrepancy test to them also yields a simple proof of Lemma 1. This simpli-
fied proof is presented in a preliminary version of this paper [ACRT97] and also in
an appendix of the final version of [ACR98]. More recently, Fortnow has observed
that an even simpler proof of Theorem 2 can be given by using a previous result of
Lautemann [L83]. Fortnow’s proof of Theorem 2 does not use the discrepancy test.
To the best of our understanding, this new proof does not extend to the context of
dispersers and weak random sources, and it seems that we still need the discrepancy
test in order to prove Theorem 3. An additional, and fairly surprising result observed
by Fortnow is that BPP can be simulated by an RP machine having oracle access to
a promise-RP problem. We present both of Fortnow’s results in section 5.

Overview of the paper. We give some definitions in section 2. In section 3 we
describe the discrepancy test and its properties. In section 4 we prove Theorem 3.
Fortnow’s proof of Theorem 2 is presented in section 5. Section 6 is devoted to some
concluding remarks.

2. Preliminaries. Unless otherwise stated, probabilities are with respect to the
uniform distribution. For any positive integer n we denote by Fn the set of all n-ary
Boolean functions f : {0, 1}n → {0, 1}. For a vector a ∈ {0, 1}n, and a function
f : {0, 1}n → {0, 1}, we define a function f⊕a : {0, 1}n → {0, 1} as f⊕a(x) = f(x⊕a).

We say that a Boolean function f accepts x if f(x) = 1.
Definition 5 (weak random source). A probability distribution D over the set

{0, 1}r is an (r, rγ)-source (weak random source of min entropy rγ) if, for any x ∈
{0, 1}r, D(x) ≤ 2−r

γ

.
For a vertex v of a graph G = (V,E) we let Γ(v) ⊆ V be the set of vertices that

are adjacent to v. For a subset S ⊆ V , we define Γ(S) =
⋃
v∈S Γ(v). We give here

a definition of dispersers which is more convenient than that given in section 1 to
describe our results. It is easy to verify that the two definitions are in fact equivalent.

Definition 6 (disperser). A bipartite multigraph G(V,W,E) with |V | = R and
|W | = N is said to be an (R,N, T)-disperser if, for any subset S ⊆ V such that
|S| ≥ T , it holds that Γ(S) ≥ N/2.

Definition 7 (circuit complexity). For a Boolean function f : {0, 1}n → {0, 1}
we denote by L(f) the minimum size of a circuit computing f (here, for circuit we
mean a circuit whose gates have fan-in at most 2 and arbitrary fan-out).

BPP SIMULATIONS USING WEAK RANDOM SOURCES 2107

Definition 8 (Kolmogorov complexity). Let us fix a universal Turing machine U
with alphabet {0, 1} for programs allowing oracle queries. Given two Boolean functions

f : {0, 1}k → {0, 1} and g : {0, 1}n → {0, 1}, we define the conditional Kolmogorov
complexity of g given f , denoted KU (g|f), as the length of the shortest program for
U that evaluates g having oracle access to f .

For example, KU (f |f) = O(1). As usual, if we fix another universal Turing
machine U ′, it holds that KU ′(g|f) = KU (g|f) + Θ(1). We will usually omit the
subscript. See, e.g., [LV90] for an introduction to Kolmogorov complexity. In this
paper we use only the obvious fact that, for any fixed f , the number of functions g
such that K(g|f) ≤ k is at most 2k.

Definition 9 (hitting set). A (multi)set H ⊆ {0, 1}n is said to be δ-hitting for
a family of functions G ⊆ Fn if, for any f ∈ G with Prx[f(x) = 1] > δ, there exists
x ∈ H such that f(x) = 1.

Recall that by our convention Prx(·) = Prx∈{0,1}n(·).
Definition 10 (discrepancy set). A (multi)set S ⊆ {0, 1}n is said to be

ε-discrepant for a family of functions G ⊆ Fn if, for any f ∈ G,

|Prx∈S [f(x) = 1]−Prx[f(x) = 1]| ≤ ε.

Note that if a set is ε-discrepant for a family G, then it is also ε-hitting for G, but the
converse is not necessarily true.

The definition below is a slight variant of the definition of quick δ-HSG of price
O(log n) given in [ACR98].

Definition 11 (hitting-set generator). A quick δ-HSG is a polynomial-time
algorithm H that, on input a number n in unary, returns a multiset H(n) ⊆ {0, 1}n
that is δ-hitting for the set {f : {0, 1}n → {0, 1} : L(f) ≤ n}.

It may seem awkward to restrict the above definition to functions having circuit
complexity equal to the number of inputs. However, any n-ary function of circuit
complexity N can be seen as a N -ary function of circuit complexity N whose value is
independent of N − n of its inputs. (This point of view does not change the fraction
of satisfying inputs as long as we consider constant fractions as done below.) As a
consequence of this observation, the set H(n) returned by the HSG hits any function
of circuit complexity at most n.

Using straightforward amplification, it is easy to show the following useful prop-
erty of HSGs.

Lemma 12 (see [ACR98]). Let δ(n) and k(n) be polynomial-time computable
functions such that 0 < δ(n) < 1 and k(n) ≤ poly(n). Then if a quick (1−δ(n))-HSG

exists, there also exists a quick (1− (δ((k(n) + 1) · n))
1/k(n)

)-HSG. In particular, for
any two constants 0 < δ, δ′ < 1, if there exists a quick δ-HSG, then there exists a
quick δ′-HSG.

Proof. We use the standard sequential repetition method. For an input n, H′ first

computes (using H) a set H ⊆ {0, 1}(k(n)+1)·n
that is (1 − δ((k(n) + 1) · n))-hitting

for all the functions g : {0, 1}(k(n)+1)n → {0, 1} such that L(g) ≤ (k(n) + 1)n. Then,
it generates a set H ′ ⊆ {0, 1}n by “parsing” each element of H into k(n) + 1 strings
of length n.

We claim that H ′ is (1− (δ((k(n) + 1) · n))
1/k(n)

)-hitting for functions of circuit
size n. Let f : {0, 1}n → {0, 1} be such that L(f) ≤ n and

Prx[f(x) = 1] > 1− (δ((k(n) + 1) · n))
1/k(n)

.

2108 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

disc-test(f, S,H, ε)
begin

pmin := min{p(a, f, S) : a ∈ H ∪ {~0}};
pmax := max{p(a, f, S) : a ∈ H ∪ {~0}};
if pmax − pmin ≤ ε then return (1)

else return (0)
end

Fig. 1. The discrepancy test.

Let fk : {0, 1}(k(n)+1)n → {0, 1} be the function that takes k(n) + 1 strings of {0, 1}n
and whose value is 1 if and only if f evaluates to 1 on at least one of the first k(n)
strings. Note that L(fk) ≤ k(n)L(f) + k(n) = k(n) · (n+ 1). We have

Pry[fk(y) = 1] = 1− (Prx[f(x) = 0])k(n) > 1− δ((k(n) + 1) · n).

Due to its hitting property, H contains an input that satisfies fk and thus H ′ contains
an input that satisfies f . The main claim follows.

For the second claim, if δ′ ≥ δ, then there is nothing to prove since, by definition,
a δ-HSG is also a δ′-HSG for any δ′ ≥ δ. If δ′ < δ, then we take a large enough k
such that δ′ ≥ (1− (1− δ)1/k) and then we use the main claim.

Observe that by applying Lemma 12 with k(n) = poly(n), it is possible to show

that, for any 0 < ε < 1, the existence of a quick (1−2−n
1−ε

)-HSG implies the existence
of a quick (1/poly(n))-HSG. By using random walks on expander graphs instead of
simple repetition, Andreev, Clementi, and Rolim [ACR97] show that, for c > 1/2,
even the existence of a (1− 2−cn)-HSG is an equivalent condition.

3. The discrepancy test. In this section we describe the discrepancy test
from [ACR98]. We present a slight variation of the proof of [ACR98] that the test is
sound and also prove a “completeness” property of the test.

For any vector a ∈ {0, 1}n, function f : {0, 1}n → {0, 1}, and set S ⊆ {0, 1}n,
define

p(a, f, S) = Prx∈S [f(x⊕ a) = 1].(1)

For any two subsets S,H ⊆ {0, 1}n, constant ε > 0, and function f : {0, 1}n → {0, 1},
we define in Figure 1 a discrepancy test, denoted disc-test(f, S,H, ε). In this test,
the set S is tested to be ε-discrepant for f by using the auxiliary (hitting) set H.

Theorem 13 (soundness of disc-test [ACR98]). A constant c1 exists such
that, for any ε > 0, integer n, function f : {0, 1}n → {0, 1}, and sets S,H ⊆ {0, 1}n,
if disc-test(f, S,H, ε) = 1 and H is δ-hitting for the set of functions g such that
K(g|f) ≤ c1 · |S| · n, then S is (ε+ δ)-discrepant for f .

Theorem 13 is the core of the results of [ACR98]. Note that it says that a set H
with a certain one-sided pseudorandom property (the hitting property) can be used to
test S for a two-sided pseudorandom property (the discrepancy property). However,
H has to be hitting for a whole set of functions while S is tested for discrepancy on
a single function (i.e., f). Therefore, roughly speaking, the theorem trades off “glob-
ality” and “two-sidedness.” The version of Theorem 13 proved in [ACR98] requires f
to be computable by a small circuit and H to be δ-hitting for a family of functions of
low circuit complexity. Here we have no requirement on f , and H is required to be
hitting for a set of functions directly “related” to f .

BPP SIMULATIONS USING WEAK RANDOM SOURCES 2109

function bad(a)
constants
pmin, pmax, m;
s1, . . . , sm;

begin
count := 0;
for i := 1 to m do
count := count+ f(a⊕ si);

if count > mpmax or count < mpmin then
return (1)

else
return (0)

end.

Fig. 2. How to compute bad. The algorithm has oracle access to f . It first computes the
number of 1s of f(a⊕ si) for i = 1, . . . ,m and then decides whether to accept or reject by comparing
this number with pmin and pmax.

Proof of Theorem 13. Let f , S = {s1, . . . , sm}, H, ε be fixed throughout the
proof, and suppose H is δ-hitting for all gs with K(g|f) ≤ c1mn. Let us define the
function bad : {0, 1}n → {0, 1} as

badf,S,H(a)
def
= bad(a) =

{
0 if pmin ≤ p(a, f, S) ≤ pmax,
1 otherwise,

where pmin and pmax are as defined in Figure 1.
Claim 14. K(bad|f) ≤ mn+ 2 logm+O(1).
Proof. We observe that bad can be computed with the pseudocode depicted in

Figure 2.
Let us bound the length of such a program. All the elements of S have to be

defined explicitly, and this can be done by using mn bits; pmin and pmax have to be
defined too, and since they are integral multiples of 1/m, logm bits are sufficient to
encode each of them. The rest of the program has constant length. We can conclude
that the total length of the program is mn+ 2 logm+O(1).

We fix c1 large enough so that, using the hypothesis of the theorem, H is δ-hitting
for bad.

Claim 15. Pra∈{0,1}n [bad(a) = 1] ≤ δ.
Proof. Assume, by contradiction, that Pra∈{0,1}n [bad(a) = 1] > δ. Then by

the hitting property of H, there exists some a ∈ H such that bad(a) = 1, which is
impossible by definition of bad, pmin and pmax (as for any a ∈ H, we have pmin ≤
p(a, f, S) ≤ pmax).

Let E [p(a, f, S)] be the average of p(a, f, S) over all the choices of a ∈ {0, 1}n.
Claim 16. E [p(x, f, S)] = Prx[f(x) = 1].
Proof.

E [p(x, f, S)] = Prx∈{0,1}n , y∈S [f(x⊕ y) = 1]

=
1

|S|
∑
y∈S

Prx[f(x⊕ y) = 1]

=
1

|S|
∑
y∈S

Prx[f(x) = 1]

2110 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

= Prx[f(x) = 1] .

From Claim 15 we have the following inequalities (where the first term is due to
a’s for which bad(a) = 0 and the second term is due to the rest):

E [p(a, f, S)] ≤ (1− δ) · pmax + δ · 1 ≤ pmax + δ,(2)

E [p(a, f, S)] ≥ (1− δ) · pmin ≥ pmin − δ.(3)

Recall that whenever the test accepts, pmax − pmin ≤ ε. Also, by definition,

pmin ≤ p(0, f, S) = Prx∈S [f(x) = 1] ≤ pmax.

By Claim 16 and (2), we obtain

Prx[f(x) = 1]−Prx∈S [f(x) = 1] ≤ (pmax + δ)− pmin ≤ ε+ δ,

and, similarly,

Prx∈S [f(x) = 1]−Prx[f(x) = 1] ≤ pmax − (pmin − δ) ≤ ε+ δ.

Thus, S is indeed (ε+ δ)-discrepant for f , and Theorem 13 follows.
We now give a sufficient condition for disc-test to accept.
Theorem 17 (completeness of disc-test). If S is (ε/2)-discrepant for the set

{f⊕a : a ∈ {0, 1}n}, then disc-test(f, S,H, ε) = 1 for any set H ⊆ {0, 1}n.
Proof. Fix H ⊆ {0, 1}n and let a1 (respectively, a2) be a point where pmin =

p(a1, f, S) (respectively, pmax = p(a2, f, S)).

pmin = Prx∈S [f⊕a1(x) = 1]

≥ Prx[f⊕a1(x) = 1]− ε/2
= Prx[f(x) = 1]− ε/2,

where the first inequality is due to the discrepancy property of S. Similarly, we have

pmax = Prx∈S [f⊕a2(x) = 1]

≤ Prx[f⊕a2(x) = 1] + ε/2

= Prx[f(x) = 1] + ε/2,

and thus pmax − pmin ≤ ε.
4. Proof of Theorem 3. The starting point of our proof is the following easy

observation: If we have a set I ⊆ {0, 1}N such that Prx[x ∈ I] > 1/2, then using a
weak random source and the dispersers of [SSZ95], we can generate a polynomial-sized
(in N) set of vectors x1, . . . , xk such that, with high probability, {x1, . . . , xk}∩ I 6= ∅.
This is formalized in Corollary 19 below.

A naive way of using this fact would be to take the set I as the family of
ε-discrepant sets S for f of size m. For large enough m (m = O(1/ε2) would
suffice) the set I will be such that PrS⊆{0,1}m [S ∈ I] > 1/2, and so we can use
the weak random source and the disperser to generate a family of sets S1, . . . , Sk such
that, with high probability, one of them is ε-discrepant for f . But now the problem
is that we are not able to recognize which of these sets has the discrepancy property

BPP SIMULATIONS USING WEAK RANDOM SOURCES 2111

(note that an efficient Las Vegas algorithm to test the discrepancy property would im-
ply ZPP = BPP). Theorem 13 gives indeed a way to test for discrepancy, provided
that we have a hitting set at hand.

We thus define I ⊆ {0, 1}(m+M)·n
as the family of pairs of sets (H,S) such that

H has M elements and the hitting property as in the hypothesis of Theorem 13 and
S has m elements and the discrepancy property as in the hypothesis of Theorem 17.
As shown in Lemma 20, for an appropriate choice of m and M , the set I is such that
Pr(H,S)[(H,S) ∈ I] > 1/2. Using the weak random source, we can thus obtain a
set of pairs (H1, S1), . . . , (Hk, Sk) such that, for some j, the set Sj has the required
discrepancy property and Hj the required hitting property (with high probability).
The next important observation is that the hitting property is monotone, that is, if
a set H has a certain hitting property and J is any set, then H ∪ J has at least the
same hitting property of H (the reader may note that the discrepancy property is not
monotone). As a consequence, the set

⋃
iHi has (with high probability) the hitting

property required by Theorem 13.
We start by quoting the disperser construction of Saks, Srinivasan, and Zhou.
Theorem 18 (construction of dispersers [SSZ95]). For any 0 < λ < α ≤ 1,

for any sufficiently large r, and for any 2r
α ≤ T ≤ 2r, there exists an efficient

construction of a (2r, 2r
λ

, T)-disperser G = (V,W,E) of degree poly(r).
In Theorem 17, by “efficient construction” we mean the existence of an algorithm

that for any vertex of V finds its neighbors in time poly(r).
Corollary 19. For any choice of constants 0 < γ < 1 and c > 0 there exist

a polynomial p and an algorithm A such that the following property holds. For any
n > 0, any set I ⊆ {0, 1}n with |I| > 2n−1, and any (p(n), p(n)γ)-source X, algorithm
A, on input (n,X), outputs a set C ⊆ {0, 1}n of size poly(nc/γ) such that

Pr[C ∩ I = ∅] ≤ 2−n
c

,

where the probability is taken over the outcomes of the source.
We will use Corollary 19 by taking I as the set of pairs (S,H) such that S has

a certain discrepancy property and H has a certain hitting property. Observe that
algorithm A computes the set of “candidates” C without “knowing” which set I has
been fixed.

Proof of Corollary 19. Fix constants α and λ such that 0 < λ < α < γ and
ncλ ≤ nγ − nα. Let r = n1/λ. Consider a (2r, 2n, 2r

α

)-disperser G = (V,W,E) which
can be efficiently constructed, as in Theorem 18. We identify V with {0, 1}r and W
with {0, 1}n. Let B ⊆ V be the set of “bad” vertices v such that Γ(v) ⊆ W − I.
We claim that |B| < 2r

α

; otherwise, we reach a contradiction since, by definition
of disperser, we would have |Γ(B)| ≥ 2n/2 while |W − I| < 2n/2. Let us select
an element v of V using an (r, rγ)-source, and let C be the set of its neighbors.
On the one hand, the probability that we picked a bad vertex v ∈ B is at most

2r
α · 2−rγ = 2n

α/λ−nγ/λ ≤ 2−n
c

. On the other hand, if v 6∈ B, then C ∩ I 6= ∅; the
corollary thus follows.

As preparation for using Corollary 19, we show that, for a randomly chosen pair of
sets (S,H) of sufficiently large sizes, with high probability S has a certain discrepancy
property and H has a certain hitting property.

Lemma 20. There exist two constants c2 and c3 such that for any ε > 0, n > 0,
f : {0, 1}n → {0, 1}, c > 0 and for m = c2n/ε

2 and M = c3cmn/ε, for a randomly

chosen element (v, u) (where v ∈ {0, 1}Mn
and u ∈ {0, 1}mn) the following hold with

probability larger than 1/2:

2112 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

1. v, regarded as a multiset of {0, 1}n of size M , is ε/2-hitting for the set of
functions g such that K(g|f) ≤ cmn;

2. u, regarded as a multiset of {0, 1}n of size m, form a set that is ε/4-discrepant
for {f⊕a : a ∈ {0, 1}n}.

Proof. It suffices to prove that each event holds with probability larger than 3/4.
Regarding the first event, the number of functions g ∈ Fn such that K(g|f) ≤

cmn is clearly at most 2cmn. If one such g has Prx[g(x) = 1] ≥ ε/2, then the
probability that M randomly chosen elements from {0, 1}n do not hit g is at most

(1− ε/2)M ≤ e−εM/2.

Since M = c3cmn/ε, it follows that, for an appropriate choice of c3, the probability
that all the functions g are hit is at least

1− 2cmne−εM/2 > 3/4.

For the second claim, observe that a set of m randomly chosen elements from
{0, 1}n is not ε/4-discrepant for a given function with probability at most 2−Ω(mε2)

(this follows from the Chernoff bound). Since

|{f⊕a : a ∈ {0, 1}n}| ≤ 2n,

we have that the probability that a randomly chosen set of m = (1/ε2)c2n elements
of {0, 1}n is not ε/4-discrepant for {f⊕a : a ∈ {0, 1}n} is at most

2n · 2−Ω(mε2) ≤ 1/4

for an appropriate choice of c2.
The next theorem gives a method for generating (with high probability) a hitting

set and a sequence of candidates for the discrepancy test by using the output of a
weak random source.

Theorem 21. For any γ > 0, there exist a polynomial p and an algorithm
which for any ε > 0, c > 0, n > 0, and (p(cn/ε), p(cn/ε)γ)-source X, given in input
(ε, c, n,X) and having oracle access to a function f : {0, 1}n → {0, 1}, computes, in
time polynomial in n/ε, sets H,S1, . . . , Sk ⊆ {0, 1}n such that the following hold with
probability at least 1− 2−poly(n):

1. |S1| = |S2| = · · · = |Sk|;
2. H is ε/2-hitting for the set of functions g such that K(g|f) ≤ c|S1|n;
3. for some j ∈ {1, . . . , k}, Sj is ε/4-discrepant for the set of functions {f⊕a :

a ∈ {0, 1}n}.
We will use Theorem 21 by taking c as the constant c1 introduced in the statement

of Theorem 13 (soundness of disc-test).
Proof of Theorem 21. Let us apply Corollary 19 to the set I of binary strings

(u, v) satisfying properties 1 and 2 in Lemma 20. Then we can use a weak random
source to generate sets S1, . . . , Sk and H1, . . . , Hk such that, with probability at least
1 − 2−poly(n), for some j the set Sj (respectively, Hj) has the required discrepancy
(respectively, hitting) property item 2 (respectively, 1) of Lemma 20. Since the hitting
property is monotone, we also have that, with at least the same probability, H =⋃
j Hj is ε/2-hitting for the set of functions g with K(g|f) ≤ c|S1|n.

We are now ready to prove Theorem 3.

BPP SIMULATIONS USING WEAK RANDOM SOURCES 2113

Proof of Theorem 3. We generate a set H and sets S1, . . . , Sk as in Theo-
rem 21. With probability at least 1 − 2−poly(n) these sets satisfy properties 1–
3 of Theorem 21. From now on we assume that this is the case. We then run
disc-test(f, Si, H, ε/2) for i = 1, . . . , k, and we return Sj where j is the smallest
index such that disc-test(f, Sj , H, ε) accepts. From Theorem 17 (completeness of
disc-test) and condition 3 of Theorem 21 we have that at least one such index ex-
ists, and from Theorem 13 (soundness of disc-test) we have that the selected set is
ε-discrepant for f . We then output D = Prx∈S [f(x) = 1].

5. A new proof of Theorem 2 and more (by Fortnow). In this section we
will present a simple proof of Theorem 2 from Fortnow. We first have to introduce
some new notation.

For a set S and a property Π we denote by ∃+x ∈ S.Π(x) the statement “at least
half the elements of S have property Π.” A promise problem [ESY84] is a pair of
disjoint sets of strings (Y,N). An algorithm A solves a promise problem (Y,N) if A
accepts any element of Y and rejects any element of N . Languages can be seen as
a special case of promise problems where N is the complement of Y . We denote by
prRP the promise version of the class RP. That is, a promise problem (Y,N) belongs
to prRP if and only if there is a polynomial-time algorithm A(·, ·) and a polynomial
p(·) such that for any x of length n

x ∈ Y ⇒ ∃+y ∈ {0, 1}p(n).A(x, y) = 1,

x ∈ N ⇒ ∀y ∈ {0, 1}p(n).A(x, y) = 0.

We will use the following result of Lautemann [L83] (which is an improvement on a
previous result by Sipser [S83]).

Theorem 22 (Lautemann [L83]). If L ∈ BPP , then there exists a polynomial
time computable Boolean function A(·, ·, ·) and two polynomials p(·) and q(·) such that
for any x of length n

x ∈ L⇒ ∃+y ∈ {0, 1}p(n).∀z ∈ {0, 1}q(n).A(x, y, z) = 1,

x 6∈ L⇒ ∀y ∈ {0, 1}p(n).∃+z ∈ {0, 1}q(n).A(x, y, z) = 0.

It has been observed by Fortnow that Theorem 22 implies that BPP ⊆ RP prRP ,
where we denote RP prRP as the class of languages that are decidable by RP oracle
machines having access to a prRP oracle.

Theorem 23 (Fortnow). BPP ⊆ RP prRP .
Proof. Let L be a BPP language, and let A, p, and q be as in Theorem 22.

Consider the following promise problem (Y,N):

Y = {(x, y) : |y| = p(|x|) ∧ ∃+z ∈ {0, 1}q(n).[A(x, y, z) = 0]};

N = {(x, y) : |y| = p(|x|) ∧ ∀z ∈ {0, 1}q(n).A(x, y, z) = 1}.
By definition (Y,N) ∈ prRP . In Figure 3 an RP oracle algorithm that solves L by
using one query to (Y,N) is described.

We now prove the correctness of the algorithm. If x ∈ L, then for at least half
the choices of y we have that (x, y) ∈ N ; thus the algorithm accepts with probability
at least half. If x 6∈ L, then for any y we have (x, y) ∈ Y , so the algorithm accepts
with probability 0.

Theorem 2 follows from Theorem 23, since it is easy to see that if a δ-HSG exists
for some constant 0 < δ < 1, then any RP problem and any prRP promise problem
is solvable in P.

2114 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

input : x;
begin

Pick a random y ∈ {0, 1}p(|x|);
Ask the oracle query (x, y);
if the oracle answers YES then reject
else accept;

end.

Fig. 3. The RP prRP algorithm solving a generic BPP problem.

6. Conclusions. We have demonstrated how to simulate BPP algorithms in
polynomial time by using weak random sources of r bits and min-entropy rγ for any
γ > 0.

The main novelty in our result has been the use of dispersers in a context where
extractors seemed to be necessary. Extractors have other applications besides the
use of weak random sources (see, e.g., [N96, Z96:stoc]). It could be the case that
techniques similar to ours can give stronger results or simplified proofs in these other
applications as well. It remains an open question whether it is possible, for any
γ > 0 and any m, to efficiently construct a (2r, 2m, d, rγ , 1/7)-extractor with r and d
polynomial in m. Such a construction would provide an alternative proof of the main
result of this paper and would have other interesting applications.

We also emphasize that our simulation runs in NC. This is due to the parallel
nature of our construction and to the fact that it is possible to give anNC construction
of the SSZ-dispersers [SSZ97]. Thus, our method provides also an efficient simulation
of BPNC algorithms using weak random sources.

Likewise, the proof of Lemma 1 as appeared in a preliminary version of this
paper [ACRT97], as well as the proof of Theorem 2 described in section 5, implies
an NC simulation of randomized algorithms when both the algorithm and the hitting
set are given as oracles. In contrast, the proof of Lemma 1 that appeared in [ACR97]
seems to be inherently sequential. Andreev, Clementi, and Rolim [ACR97] have
recently used the NC proof of Theorem 2 in order to provide sufficient conditions (in
terms of worst-case circuit complexity) for NC = BPNC.

Our main result (Theorem 3) can be generalized to the case where the function
f that we want to sample is not Boolean but takes real values in the range [0, 1].
The proof of Theorem 3 contained in this paper can be easily generalized to the case
of such functions. We choose, however, to state and prove only the case of Boolean
functions since proofs are cleaner and since, as proved in [G97], sampling real-valued
functions is reducible to sampling Boolean functions. We can thus get the following
result as a corollary of Theorem 3 and of [G97, Theorem 5.5].

Corollary 24. For any γ > 0, there exist a polynomial p and a deterministic
algorithm A such that the following holds. For any ε > 0, n > 0, any (p(n/ε), p(n/ε)γ)-
source X, and any f : {0, 1}n → [0, 1], on input (ε, n,X) and oracle access to f , A
computes, in time polynomial in n/ε, a value f̃ such that with probability at least
1− 2−poly(n) over the outcomes of the source,

|f̄ − f̃ | ≤ ε,

where f̄ = 2−n
∑
x f(x) is the average of f .

BPP SIMULATIONS USING WEAK RANDOM SOURCES 2115

Acknowledgments. We are grateful to Oded Goldreich for several valuable com-
ments and suggestions on preliminary versions of this paper. In particular, the use
of a counting argument à la Kolmogorov is due to Oded. We thank Lance Fortnow
for his permission to mention his results in this paper. We thank Madhu Sudan and
Avi Wigderson for helpful discussions on Fortnow’s results and Michael Saks, Aravind
Srinivasan, and Shiyu Zhou for showing us that OR-dispersers can be obtained by an
NC construction, and for other helpful conversations.

REFERENCES

[ACR98] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim, A new general de-randomization
method, J. ACM, 45 (1998), pp. 179–213.

[ACR97] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim, Worst-case hardness suffices
for derandomization: A new method for hardness vs randomness trade-offs, in
Proc. 24th International Colloquium on Automata, Languages and Programming
(ICALP), Lecture Notes in Comput. Sci. 1256, Springer-Verlag, New York, 1997,
pp. 177–187.

[ACRT97] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim, and L. Trevisan, Weak random
sources, hitting sets, and BPP simulations, in Proc. 38th IEEE Symposium on
Foundations of Computer Science, 1997, pp. 264–272.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson, BPP has subexponential
time simulations unless EXPTIME has publishable proofs, Comput. Complexity,
3 (1993), pp. 307–318.

[BM84] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-
random bits, SIAM J. Comput., 13 (1984), pp. 850–864.

[BR94] M. Bellare and J. Rompel, Randomness-efficient oblivious sampling, in Proc. 35th
IEEE Symposium on Foundations of Computer Science, 1994, pp. 276–287.

[CG88] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and
probabilistic communication complexity, SIAM J. Comput., 17 (1988), pp. 230–261.

[CW89] A. Cohen and A. Wigderson, Dispersers, deterministic amplification, and weak ran-
dom sources, in Proc. 30th IEEE Symposium on Foundations of Computer Science,
1989, pp. 14–19.

[ESY84] S. Even, A. Selman, and Y. Yacoby, The complexity of promise problems with appli-
cations to public-key cryptography, Inform. and Control, 2 (1984), pp. 159–173.

[G97] O. Goldreich, A sample of samplers—A computational perspective on sampling, Elec-
tronic Colloquium on Computational Complexity, 1997, TR97-020.

[IW97] R. Impagliazzo and A. Wigderson, P= BPP if E requires exponential circuits: De-
randomizing the XOR lemma, in Proc. 29th ACM Symposium on Theory of Com-
puting, 1997, pp. 220–229.

[L83] C. Lautemann, BPP and the polynomial hierarchy, Inform. Proc. Lett., 17 (1983),
pp. 215–217.

[LV90] M. Li and P. Vitany, Kolmogorov complexity and its applications, in Handbook of
Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., Elsevier, New York,
1990, pp. 187–254.

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, UK, 1995.

[N90] N. Nisan, Using Hard Problems to Create Pseudorandom Generators, ACM Distin-
guished Dissertations, MIT Press, Cambridge, MA, 1990.

[N96] N. Nisan, Extracting randomness: How and why, in Proc. 11th IEEE Conference on
Computational Complexity, 1996, pp. 44–58.

[NW94] N. Nisan and A. Wigderson, Hardness vs randomness, J. Comput. System Sci., 49
(1994), pp. 149–167.

[NZ96] N. Nisan and D. Zuckerman, Randomness is linear in space, J. Comput. System Sci.,
52 (1996), pp. 43–52.

[S83] M. Sipser, A complexity theoretic approach to randomness, in Proc. 15th ACM Sym-
posium on Theory of Computing, 1983, pp. 330–335.

[SSZ95] M. Saks, A. Srinivasan, and S. Zhou, Explicit dispersers with polylog degree, in Proc.
27th ACM Symposium on Theory of Computing, 1995, pp. 479–488.

[SSZ97] M. Saks, A. Srinivasan, and S. Zhou, personal communication, March 1997.
[SV86] M. Santha and U. Vazirani, Generating quasi-random sequences from slightly random

2116 ANDREEV, CLEMENTI, ROLIM, AND TREVISAN

sources, J. Comput. System Sci., 33 (1986), pp. 75–87.
[SZ94] A. Srinivasan and D. Zuckerman, Computing with very weak random sources, in Proc.

35th IEEE Symposium on Foundations of Computer Science, 1994, pp. 264–275.
[T96] A. Ta-Shma, On extracting randomness from weak random sources, in Proc. 28th ACM

Symposium on Theory of Computing, 1996, pp. 276–285.
[V86] U. Vazirani, Randomness, Adversaries and Computation, Ph.D. thesis, University of

California, Berkeley, CA, 1986.
[V87] U. Vazirani, Efficiency considerations in using semi-random sources, in Proc. 19th

ACM Symposium on Theory of Computing, 1987, pp. 160–168.
[VV85] U. Vazirani and V. Vazirani, Random polynomial time is equal to slightly random

polynomial time, in Proc. 26th IEEE Symposium on Foundations of Computer
Science, 1985, pp. 417–428.

[Y82] A.C. Yao, Theory and applications of trapdoor functions, in Proc. 23rd IEEE Sympo-
sium on Foundations of Computer Science, 1982, pp. 80-91.

[Z90] D. Zuckerman, General weak random sources, in Proc. 31st IEEE Symposium on
Foundations of Computer Science, 1990, pp. 534–543.

[Z96:stoc] D. Zuckerman, Randomness-optimal sampling, extractors and constructive leader elec-
tion, in Proc. 28th ACM Symposium on Theory of Computing, 1996, pp. 286–295.

[Z96] D. Zuckerman, Simulating BPP using a general weak random source, Algorithmica,
16 (1996), pp. 367–391.

DOMINATORS IN LINEAR TIME∗

STEPHEN ALSTRUP† , DOV HAREL‡ , PETER W. LAURIDSEN† ,
AND MIKKEL THORUP†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2117–2132

Abstract. A linear-time algorithm is presented for finding dominators in control flow graphs.

Key words. control flow analysis, dominators, algorithms

AMS subject classifications. 68Q25, 68N20

PII. S0097539797317263

1. Introduction. Finding the dominator tree for a control flow graph is one
of the most fundamental problems in the area of global flow analysis and program
optimization [2, 3, 4, 6, 12, 17]. The problem was first raised in 1969 by Lowry and
Medlock [17], where an O(n4) algorithm for the problem was proposed (as usual,
n is the number of nodes and m the number of edges in a graph). The result has
been improved several times (see, e.g., [1, 2, 19, 22]), and in 1979 an O(mα(m,n))
algorithm was found by Lengauer and Tarjan [16]. Here α is the inverse Ackermann’s
function. Finally, in 1985 Dov Harel [13] announced a linear-time algorithm. Based on
Harel’s results, linear-time algorithms have been found for many other problems (see,
e.g., [4, 6, 12]). Harel’s description was, however, incomplete. In this paper, we give
a complete description of a different and simpler linear-time dominator algorithm.

The paper is divided as follows. In section 2 the main definitions are given. In
section 3 we outline the Lengauer–Tarjan algorithm. In section 4 we give a linear-time
dominator algorithm. A detailed comparison with Harel’s approach [13] is given in
section 4.7. Finally, in section 5 we briefly discuss dominators in the simpler case of
reducible control flow graphs. The appendix contains implementation details of the
algorithm in section 4.

2. Definitions. A control flow graph is a directed graph G = (V,E), with |V | =
n and |E| = m, in which s ∈ V is a start node, from which all nodes in V are
reachable through the edges in E (see, e.g., [2]). If (v, w) ∈ E, we say that node v is
a predecessor of node w and w is a successor of v. Node v dominates w if and only if
all paths from s to w pass through v. Node v is the immediate dominator of node w,
denoted idom(w) = v if v dominates w and every other node that dominates w also
dominates v. The tree T induced by the edges (idom(w), w) is called the dominator
tree of G. Hence, the root of T is the start node s, and for all other nodes v, its parent
in T is its immediate dominator.

3. Lengauer and Tarjan’s algorithm. In this section we outline Lengauer and
Tarjan’s algorithm, since the idea behind our algorithm is to optimize subroutines used
in this algorithm.

Lengauer and Tarjan’s algorithm [16] runs inO(mα(m,n)) time. Initially a depth-
first search (DFS) [21] is performed in the graph, resulting in a DFS-tree T , in which

∗Received by the editors February 26, 1997; accepted for publication (in revised form) July 1,
1998; published electronically June 29, 1999.

http://www.siam.org/journals/sicomp/28-6/31726.html
†Department of Computer Science, University of Copenhagen, Copenhagen, Denmark (stephen@

diku.dk, waern@diku.dk, mthorup@diku.dk).
‡Microsoft Israel Ltd., R & D Center, Matam Haifa, 31905 Israel (dovh@microsoft.com).

2117

2118 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

the nodes are assigned a DFS-number. In this paper we will not distinguish between
a node and its DFS-number. The nodes are thus ordered such that v < w if the
DFS-number of v is smaller than the DFS-number of w.

The main idea of the Lengauer–Tarjan algorithm is first to compute the so-called
semidominators, sdom(v), for each node v ∈ V \{s} as an intermediate step for finding
dominators. The semidominator of a node v is an ancestor of v defined as

sdom(v) = min{u| a pathu,w1, . . . , wk, v exists, where wi > v for all i = 1, . . . , k}.
The semidominators are found by traversing the tree T in decreasing DFS-number
order while maintaining a dynamic forest, F , which is a subgraph of the DFS-tree T .
Hence, an edge (v, w) ∈ T , included in F , is in F connecting the parent v with its
child w. The following operations should be supported on F :

• LINK(v, w): Adds the edge (v, w) ∈ T to F . The nodes v and w are root
nodes of trees in F .
• EVAL(v): Finds the minimum key value of nodes on the path from r to v,

where r is the root of the tree in F to which v belongs.1

• UPDATE(v, k): Sets key(v) to be k, where the node v must be a singleton
tree.

We will now give a more detailed description of the Lengauer–Tarjan algorithm.
The forest F initially contains all nodes as singleton trees and the computation of
semidominators is done as follows:

• Initially we set key(v) = v for all nodes v ∈ V .
• The nodes are then visited in decreasing DFS-number order, i.e., v is visited

before w if and only if v > w. When visiting a node v, we call UPDATE(v, k),
where k = min{EVAL(w)|(w, v) ∈ E}.
• After visiting v, a call LINK(v, w) is made for all children w of v.

After running this algorithm we have key(v) = sdom(v). The correctness of the
algorithm (i.e., that when a node is updated, it is with the correct sdom-value) follows
from the following theorem given by Lengauer and Tarjan [16, Theorem 4]:

Theorem 3.1. For any node v 6= s, sdom(v) = min(S1

⋃
S2) where S1 =

{w|(w, v) ∈ E ∧ w < v} and S2 = {sdom(u)|u > v ∧ (w, v) ∈ E ∧ u is an ancestor
of w}.

To see the connection between Theorem 3.1 and the algorithm above consider the
visit of node v in the algorithm. Since EVAL(w) = w for w < v, S1 = {EVAL(w)|(w, v)
∈ E ∧ w < v}. To see that S2 = {EVAL(w)|(w, v) ∈ E ∧ w > v}, note that if u > v,
(w, v) ∈ E, and u is an ancestor of w in T , then u and w have already been visited.
Thus u is an ancestor of w in a tree in F , so EVAL(w) includes sdom(u).

Tarjan and Lengauer show that having found the semidominators, the immediate
dominators can be found within the same complexity.

The EVAL-LINK operations in the algorithm are performed using a slightly mod-
ified version of Tarjan’s UNION-FIND algorithm for disjoint sets [23]. Since n LINK
and m EVAL operations are performed, the complexity is O(mα(m,n)). Thus a
linear-time algorithm can be obtained if the EVAL and LINK operations can be per-
formed in O(n+m) time.

1In [16], EVAL is defined to consider the root only if the root is the argument of the EVAL.
In the process of finding a dominator tree, this happens only if the tree is a singleton node. We
have given the definition above to avoid confusion, as it is this definition which will be used in
our algorithm. The Lengauer–Tarjan algorithm presented here is therefore a slight modification of
the original algorithm. More specifically, the modification consists of performing the LINK(v, w)
operation when v is visited instead of when w is visited.

DOMINATORS IN LINEAR TIME 2119

4. A linear-time algorithm. In this section we present a linear-time domina-
tor algorithm. The overall idea is to convert the on-line EVAL-LINK algorithm to an
off-line algorithm by exploiting the fact that the tree resulting from LINK operations
is known in advance. The inspiration for this stems from the linear UNION-FIND
algorithm for disjoint sets by Gabow and Tarjan [11]. In the Gabow–Tarjan algo-
rithm, the tree, T , resulting from all UNION operations is known in advance. More
specifically this means that a UNION(v, w) operation is only permitted if the edge
(v, w) is in T . The FIND queries are then defined as usual, whereas UNION(v, w) is
defined as the union of the sets to which v and w belong. The linear time is achieved
by tabulating the behavior of UNION-FIND within small microtrees of size O(logn).

The original approach of Harel was to convert this linear UNION-FIND algorithm
into an EVAL-LINK algorithm [13]. Roughly speaking, the basic idea was to define a
new parameter of nodes, referred to as pseudodominator, which satisfy the following
two conditions: (a) pseudodominators can be propagated in linear time, and (b) using
pseudodominators, we can compute semidominators in linear time. This approach had
a couple of drawbacks, further elaborated upon in section 4.7. Here we do not involve
pseudodominators, but calculate the semidominators directly. Not only do we know
the structure of the tree resulting from the links, we also know that the LINKS occur
in reverse-DFS order. Instead of converting the linear UNION-FIND algorithm, we
end up using it as a black box. Moreover, the information needed for tabulating
EVAL is found using Fredman and Willard’s Q-heaps [9], which were not available at
the time of [13]. Finally, our choice of microtrees leads to simpler calculations.

4.1. An O(n logn + m)algorithm. We consider a forest, F , of trees. Recall
that to each node a key is associated, which initially contains the DFS-number of the
node. Let Tv denote the tree in F to which v belongs. We will use the term self-
contained for nodes, for which EVAL(v) = key(v). Hence a node v is self-contained
if all ancestors of v in Tv have key values ≥ key(v). Note that the definition implies
that all root nodes in F are self-contained. A node v stops being self-contained when
Tv is linked to a root node u, for which key(u) < key(v).

Lemma 4.1. Let nsa(v) denote the nearest self-contained ancestor of v.
(a) For any node v ∈ V , we have EVAL(v) = key(nsa(v)).
(b) For any node pair u, v ∈ V , if nsa(v) = u at some point in the Lengauer–

Tarjan algorithm, then nsa(v) = nsa(u) in the remainder of the algorithm.
Proof.
(a) By the definition of self-contained nodes, key(nsa(v)) is the least key value

of nodes on the path from the root of Tv to nsa(v). By the same definition,
if nodes with key values < key(nsa(v)) were on the path from nsa(v) to v in
Tv, the node with least depth among these nodes would be self-contained.

(b) By definition, nsa(u) is the nearest self-contained ancestor of u. The fact
that nsa(v) = u implies that Tv = Tu and that all nodes on the path from
u to v in Tv have key values > key(u). By the definition of UPDATE none
of these nodes will change key values again. The node nsa(v) will therefore
always be the nearest self-contained ancestor of u.

By Lemma 4.1(b) we can represent the nsa-relation efficiently by using disjoint
sets. Let each self-contained node, u, be the canonical element of the set {v|nsa(v) =
u}. By Lemma 4.1(a), an EVAL(v) operation is then reduced to finding the canonical
element of the set to which v belongs; hence EVAL(v) = key(SetF ind(v)).

When a LINK(u, v) operation is performed, the node v will no longer be the root
of Tv. Therefore a set A of nodes in Tv may stop being self-contained. A node w ∈ A

2120 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

1

2

4

5 6

7 10

 9

 8

 8

4 7

10

{10}

3

4 4

91

8 1

3 3

32

1

1

Heap(4)

Heap(8)

11

12 12

{4,5,6} {7}

{8,9,11} {12}

Fig. 4.1. To the left a sample DFS-tree in which the nodes are labeled by their DFS-numbers
is given. The full lines indicate the part of the tree which has been linked, hence the node to be
processed is node “3.” The dotted arrows are graph edges. The numbers beside the nodes are their
key values. To the right the two nontrivial heaps containing self-contained nodes are illustrated as
lists. Below the self-contained nodes the sets associated with them are listed.

is the canonical element of the set of nodes whose EVAL values change from key(w)
to key(u). We can thus maintain the structure by unifying the sets associated with
nodes in A with the set associated with u.

To find the set A, a heap, supporting HeapFindMax, HeapExtractMax, and Heap
Union (e.g., [8, 24]), is associated with each root of a tree in F . Each heap contains
the self-contained nodes in the tree (see Figure 4.1). The set A can then be found
by repeatedly extracting the maximum element from the heap associated with v until
the maximum element of this heap is ≤ key(u).

The algorithm LINK(u, v) is as follows:
• While not Empty(Heap(v)) and key(FindMax(Heap(v))) > key(u) do
• w := ExtractMax(Heap(v));
• SetUnion(u,w); /* The canonical element of the resulting set is u */
• od;
• Heap(u) := HeapUnion(Heap(u), Heap(v));

Lemma 4.2. The algorithm presented performs the n LINK and UPDATE oper-
ations interspersed with m EVAL operations in O(m+ n logn) time.

Proof. At most O(n) HeapExtract, HeapFindMax, and HeapUnion operations
are performed. Each of these operations can be done in O(logn) time using an
ordinary heap (e.g. [8, 24]). Since the tree structure is known in advance, the set
operations can be computed in linear time using the result from [11].2 It will, however,
suffice to use a simple disjoint set algorithm which rearranges the smallest of the two
sets.

4.2. Decreasing roots. In section 4.4 we will need the ability to decrease the
key value of a node, while it is the root of a tree. We will therefore extend the algo-
rithm from the previous section to handle the DecreaseRoot(v, k) operation, which
sets key(v) = k, where v is the root of Tv. The DecreaseRoot(v, k) operation should
be done in constant time.

2If this result is used, the SetUnion operation should be changed according to the descrip-
tion given earlier in this section. More specifically, the call would be SetUnion(parent(w), w) and
the canonical element of the resulting set would be the canonical element of the set that includes
parent(w).

DOMINATORS IN LINEAR TIME 2121

Assume that a DecreaseRoot(v, k) operation has been performed. Analogous
to the LINK operation from the previous section, this may imply that some self-
contained nodes in Tv are no longer self-contained. We should therefore remove such
nodes from the heap and unify the sets associated with them with the set associated
with v, as was done in the LINK operation. However, in the algorithm from the
previous section, the root node v is the maximum element in the heap associated with
it. In order to remove nodes from the heap, we would first have to remove v, which
would require O(logn) time. We should note that since the heap returns maximum
values the usual decreasekey operation for heaps cannot be used. We can, however,
take advantage of the fact that the root node will always be the maximum element
in the heap it belongs to. It is therefore not necessary to explicitly insert the root
into the heap until it is linked to its parent. The DecreaseRoot(v, k) operation is
performed as follows.

• While not Empty(Heap(v)) and key(FindMax(Heap(v))) > k do
• w := ExtractMax(Heap(v));
• SetUnion(v, w);
• od;
• key(v) := k;

Lemma 4.3. We can perform d DecreaseRoot and n LINK and UPDATE oper-
ations interspersed with m EVAL operations in O(n logn+m+ d) time.

Proof. We change the algorithm from the previous section by postponing the
insertion of a root node, r, into Heap(r), until r is linked to its parent. This has no
effect on the complexity of EVAL and UPDATE operations stated in Lemma 4.2. Since
each node may be deleted from a heap at most once, the total number of ExtractMax
and SetUnion operations invoked by LINK and DecreaseRoot is still limited by the
number of nodes in the tree. The cost of these operations can therefore be charged
to the LINK operations. Since the remaining operations invoked by DecreaseRoot
are each done in constant time, the additional complexity of the d DecreaseRoot
operations is O(d).

4.3. A linear-time algorithm for paths. We consider the situation in which
the tree T is a path. Recall that in the algorithms from the previous two subsections
we needed a heap to order self-contained nodes. The property which distinguishes
paths from trees in this context is that this ordering is induced by the path. More
specifically, any pair u, v of self-contained nodes on the part of the path which has
been linked are ordered, such that key(v) ≥ key(u) if and only if depth(v) ≤ depth(u).
To perform LINK operations on a path, we can therefore use the algorithm from
the previous section, where the heap is replaced by a stack. The algorithm for the
operation LINK(u, v) on a path is as follows.

• While not StackEmpty and key(StackTop) > key(u) do
• w := StackPop;
• SetUnion(u,w);/* The canonical element of the resulting set is u */
• od;
• StackPush(u);

An EVAL operation on a path is performed in analogy with the previous section,
hence EVAL(v) = key(SetF ind(v)).

Lemma 4.4. If the tree T is a path, we can perform the n LINK and UPDATE
operations and the m EVAL operations in O(n+m) time.

Proof. The stack operations are done in linear time since each node will only be
on the stack once. By using the result from [11] the set operations are performed in
amortized constant time.

2122 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

4.4. A faster algorithm for trees with few leaves. We can take advantage
of the linear time algorithm from the previous section by using it on the paths in T .
More specifically, we define I-paths to be maximal paths of T consisting of at least
two unary nodes, i.e., nodes with at most one child. We now define the forest R as
the forest F with each maximal segment of an I-path from T contracted into a single
node, called an I-node. In the process of linking, the correspondence between R and
the forest F is as follows.

• When the node with largest depth on an I-path is linked to its child, c, in F ,
the I-node is linked to c in R.

• When the node with least depth on an I-path is linked to its parent, p, in F ,
the I-node is linked to p in R.

We will use the result from section 4.2 for nodes in R and the result from the previous
section for nodes on I-paths. The above correspondence means that EVAL queries
on nodes in R correspond to EVAL queries in F if, for any I-path P , key(I-node(P))
is the least key value on the part of P which has been linked. In other words, we
use I-node(P) to represent the minimum self-contained node on P in R. During
the processing of an I-path P , the key value of I-node(P) should thus be properly
updated. This is done by invoking a DecreaseRoot(I-node(P), k) operation each time
a new minimum key value k is found on P .

The EVAL queries on nodes on an I-path, P , will be correct as long as the node
with least depth on P has not yet been linked to its parent. We can therefore construct
an interface between R- and I-paths as follows. We associate a pointer, I-root, with
each node on an I-path. The pointer is initially set to be NULL and when the node
with least depth on an I-path is linked to its parent p, we set I-root(v) = p, for all
nodes v belonging to the I-path. The algorithm for EVAL(v) is as follows (we use
subscripts to distinguish between the structures EVAL operations are performed in):

• if v belongs to an I-path P then
• if I-root(v) =NULL then return EVALP (v)
• else return min {EVALP (v),EVALR(I-root(v))}
• else return EVALR(v).

Lemma 4.5. Let l denote the number of leaves in T . We can perform m EVAL
and n LINK and UPDATE operations in O(l log l +m+ n) time.

Proof. The I-paths are processed in linear time by Lemma 4.4 and since the I-root
pointer is updated only once, this can also be done in linear time. Since the I-paths
have been contracted R contains O(l) nodes. Thus by Lemma 4.3, R can be processed
in time O(l log l + m + d), where d is the number of DecreaseRoot operations. The
number of DecreaseRoot operations is, however, bounded by the number of nodes on
I-paths.

4.5. Reducing to small subtrees. By lemma 4.5 we have that the EVAL-
LINK algorithm can be performed effectively on trees with few leaves. However,
the number of leaves is only bounded by the number of nodes. To reduce the num-
ber of leaves in T , subtrees of size ≤ logn can be removed from the bottom of T
(a technique also used in [7]). We will refer to such subtrees as S-trees. Assume
that all S-trees have been removed from the tree T . Then each leaf in the remain-
ing tree must be a node in T with at least logn descendants. Thus the remaining
tree has at most n/ logn leaves. By Lemma 4.5 we can therefore perform amortized
constant-time EVAL, LINK, and UPDATE operations in the remaining tree.

We now show how to process the S-trees. Recall that the LINK operations are
performed in decreasing DFS-number order. This implies that EVAL operations of

DOMINATORS IN LINEAR TIME 2123

2

5 6

7

14

 15

1610

1

4

 9

 8

1

4

11

3

 A

 B
3

13

12

Fig. 4.2. To the left a sample DFS-tree is given. The boxes indicate S-trees of size ≤ 2. To the
right the reduced tree is given. The nodes “A” and “B” are replacing I-paths. Note that if S-trees of
size ≤ log2 16 = 4 were removed, the tree would be reduced to a single node representing the I-path
1, 3, 8.

nodes in S-trees, induced by nodes outside, will only take place at a time when all
links have been performed inside the structure. Furthermore, the links inside S-
trees are performed successively; hence, each S-tree can be processed independently.
Analogously with I-paths, we can associate a pointer S-root with each node in each
S-tree, which points to the parent of the root of the S-tree after the LINK between
the root and its parent has been performed. Then an EVAL operation on a node v in
an S-tree becomes

EVALS(v), if S-root(v)=NULL,
min{EVALS(v),EVAL(S-root(v))} otherwise.

To perform EVAL, LINK, and UPDATE operations inside an S-tree we could use
lemma 4.2. Alternatively, we could repeat the removal of subtrees on the S-trees
because of the independent nature of S-trees. Let T (m,n, a) denote the time it takes
to support the m EVAL and n LINK and UPDATE operations in the Lengauer–Tarjan
algorithm within subtrees of T each of size ≤ a. For example, the construction of
Lemma 4.2 gives T (m,n, a) = O(m+ n log a).

Lemma 4.6. T (m,n, a) = O(m+ n) + T (m,n, log a).
Proof. We process each subtree S as follows. Remove maximal subtrees of size

at most log a from S. Then, in the upper tree of S we have at most |S|/ log a leaves.
Since a ≥ |S|, by Lemma 4.5 the cost of the LINKs and UPDATEs in S is O(|S|),
resulting in a total cost of O(n) over all S-trees. An EVAL query in the upper tree
of S has constant cost by Lemma 4.5. An EVAL query to an subtree may propagate
to the root via the root-pointer in the subtree, but it takes only additional constant
time.

Since T (m,n, 1) = O(m + n), repeating the above recurrence log∗ n times, we
immediately get

T (m,n, n) = O((m+ n) log∗ n).

However, in this paper we need only to repeat it twice, giving the following corollary.
Corollary 4.7. T (m,n, n) = O(m+ n) + T (m,n, log logn).
In the next subsection, we will show that T (m,n, log logn) = O(m+n), implying

a linear-time algorithm for finding dominators.
Figure 4.2 illustrates the division of a tree into I-paths and S-trees on one level.

2124 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

4.6. Tabulation of small trees. In this section we show how to perform
constant-time EVAL, UPDATE, and LINK operations on trees of size ≤ log logn,
henceforth denoted as microtrees. We will do this by constructing a table containing
EVAL values for all possible forest permutations. We first show how to compute such
a table assuming that a superset of sdom values is known for each microtree. Follow-
ing that we show how to choose this superset. Combining these results we show that
the microtrees can be processed in linear time. Finally we give the theorem, which
completes the dominator algorithm. We start out by giving a lemma by Fredman and
Willard [9].

Lemma 4.8. The Q-heap performs insertion, deletion, and search operations in
constant time and accommodates as many as (logn)1/4 items given the availability of
O(n) time and space for preprocessing and word size ≥ logn.

For a set M ′ of different values we define the rank of a value x ∈ M ′ as the
number of values < x in M ′.

Theorem 4.9. Assume that to each microtree M , |M | ≤ log logn, we are given
a set of values M ′, where |M ′| = O(|M |), and that for all UPDATE(v, k) operations,
v ∈ M ⇒ k ∈ M ′. Assume also that the order in which LINK operations occur
is known. It is then possible to perform constant-time EVAL, LINK, and UPDATE
operations, given the availability of O(n) time and space for preprocessing and word
size ≥ logn.

Proof. First we sort the set M ′ of size O(log logn) in linear time using Lemma 4.8.
The key value of each node is replaced by its rank in M ′, which simply is an index
into the sorted set. In order to perform UPDATE and EVAL operations efficiently, we
need a table which maps key values to ranks and vice versa. Since all key values are
< n, this table requires only O(n) space. Given this table we can now maintain the
microtree using the rank of the node instead of its key value. Thus an EVAL output
from the microtree should be mapped to a key value using the above table. Since the
size of the rank is exponentially smaller than the key value, we can now use tabulation
for microtrees as follows. We construct each possible tree of size ≤ log logn. Since
in general there are at most O(2k) trees of size k (all trees of size k can be uniquely
represented by a bitmap of size 2k), there are at most log n such trees. Due to the
reverse-DFS order of LINKs, in each of the trees there are only log log n ways the
nodes can be partially linked. Finally for each of these forests of partially linked
trees, we construct copies holding all possible permutations of ranks to nodes. In
each of these forests we compute the EVAL value for each node. We then construct
a table which outputs the computed EVAL values. This computation can be done
in a time proportional to the number of nodes in the trees: For each tree with root
r, traverse the tree top-down and set EVAL(r)=r, and for each node v 6= r set
EVAL(v)=min(key(v),EVAL(parent(v))). The number of nodes is the product of
the number of trees (logn), the number of LINK’s (log logn), the number of rank
permutations ((C1∗log logn)log log n), and the number of nodes in each tree (log logn);
thus the number of nodes is (Ci are constants):

logn ∗ log logn ∗ (C1 ∗ log logn)log log n ∗ log logn

= lognC2 ∗ (log logn)2 ∗ log lognlog log n

≤ lognC3 ∗ log lognlog log n

= lognC3 ∗ lognlog log log n

= lognC3+log log log n = O(n).

DOMINATORS IN LINEAR TIME 2125

1

2 6

43

5

Fig. 4.3. A sample tree labeled by DFS-numbers. The bitmap of the tree is “11011000100.”

To store each forest, the forest table from [11], which requires log logn space, can
be used. The rank of each node requires log log logn space. If we attach a new number
to each node inside the forest we can identify each node using log log log n space.
Hence, each entry to the table requires log logn+ log log logn ∗ log logn+ log log logn
space, which will fit into a computer word of size ≥ logn. The size of the table is
thus O(n). To carry out the operations given a microtree, we first compute the table
entry for the tree without any links. The EVAL operations are done by looking up
the table and the LINK and UPDATE operations are done by updating the entry.
Finally, in order to perform UPDATE and EVAL operations, we use the table which
maps key values to ranks and vice versa. Next we will be a little more specific on
how to maintain the forest table. The forest table from [11] supports any ordering of
the LINK operations, whereas in the dominator algorithm the links are performed in
decreasing DFS-number order. We can therefore simplify the representation by using
the DFS-traversal to represent each tree. More specifically, we start at the root and
use a bitmap in which “1” means that an edge is followed down in the tree and “0”
means that we move to the parent of the current node. The tree traversal is finished
when “0” is encountered while the root is the current node. As a special case this
means that a single node tree is represented by the bitmap “0.” The mapping is
illustrated in Figure 4.3. Instead of representing the LINK’s explicitly we can save
the number of nodes in the tree, which at some point in time has been processed by
the algorithm. Since the size of the forests can differ, we also need to save the size
of each tree. Finally the key and EVAL values of the nodes can be saved in order of
the DFS-traversal. The bitmap of an entry can thus have the following configuration
[SIZE‖TREE‖KEYS‖EVAL‖LINK], where SIZE and LINK are blocks of log log logn
bits, EVAL and KEYS use SIZE bits, and TREE uses (2*SIZE-1) bits.

To construct the entry of a microtree we traverse it in DFS-order and set the
bits of TREE and SIZE accordingly. The KEYS are initialized to the rank of the
DFS-numbers and LINK is initialized to 0. A microLINK operation is performed
by incrementing the LINK value and the microUPDATE(v, k) operation is done by
replacing the value of v in the entry with k.

Theorem 4.9 requires a superset M ′ of sdom values for nodes in a microtree M .
The next lemma shows how M ′ can be chosen.

2126 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

Lemma 4.10. Let M1 =
⋃
v∈M min{(EVAL(w))| (w, v) ∈ E ∧ w 6∈ M} and

M ′ = M
⋃
M1. For all v ∈M we have that sdom(v) ∈M ′.

Proof. The lemma is obviously true in case sdom(v) ∈M . Assume therefore that
u = sdom(v) 6∈ M and that u 6∈ M ′. By the definition of semidominators, a path
u = w0, w1, . . . , wk−1, wk = v exists where wi > v for i = 1, . . . , k − 1. Let wj be the
last node on the path not in M . Since u 6∈M ′, the node wj+1 must have a predecessor
x for which EVAL(x) < u. This means that a path exists from a node u′, with u′ < u,
to wj+1 on which all nodes except u′ are > v. This path can be concatenated with
the path wj+1, . . . , wk, v, contradicting that sdom(v) = u.

We now complete the microtree algorithm by showing how to compute the sets
M ′ of Lemma 4.10.

Theorem 4.11. Let M be a microtree of size ≤ log logn. Each EVAL, UPDATE,
and LINK operation inside M in the Lengauer–Tarjan algorithm can be performed in
constant time, given the availability of O(n) time and space for preprocessing and
word size ≥ logn.

Proof. By Theorem 4.9 and Lemma 4.10 we need only to show how to compute
the sets M ′ defined in Lemma 4.10 in O(|M ′|) time. We will show this by induction
on the visits of microtrees. Recall that the Lengauer–Tarjan algorithm visits nodes
in decreasing DFS-number order. When the first microtree is reached all nodes with
larger DFS-numbers have thus been processed. By Corollary 4.7, EVAL queries on
processed nodes outside microtrees can be done in constant time. Furthermore, all
nodes with smaller DFS-numbers will at this stage be singleton trees. The EVAL
queries required in Lemma 4.10 can thus be performed in constant time for the first
microtree. Given an arbitrary microtree M we can therefore assume that constant
time EVAL queries can be performed in microtrees containing nodes with larger DFS-
numbers than the nodes in M . For nodes not in microtrees, we can compute the EVAL
values needed in Lemma 4.10 in constant time by the same arguments as above. By
induction this is also the case for nodes in previously visited microtrees.

Finally we should note that in the proof of Theorem 4.9, O(n) space was used for
the table, which maps key values to ranks for a microtree. Since the microtrees are
computed independently, this space can be reused, so that the overall space require-
ment is O(n).

We can now combine the results of this section in the following theorem.
Theorem 4.12. The EVAL, LINK, and UPDATE operations in the Lengauer–

Tarjan algorithm can be performed in linear time.
Proof. Follows directly from Corollary 4.7 and Theorem 4.11.

4.7. Relation to Harel’s algorithm. The proof of Theorem 1 of [13], which
is omitted, employs a linear–time-table construction using a variant of dynamic pro-
gramming. The details of this construction are beyond the scope of this paper.

Harel’s original value propagation required the construction of supersets of the
sets of sdom values for all microtrees in a separate phase, in order to presort the
values. The main drawback of the technique is that it leads to a rather complicated
case analysis, and checking correctness is pretty tedious. In fact, the original value
propagation algorithm in [13] contains an error (more precisely Theorem 3b in [13] is
false as stated and a concrete counterexample is given in [15, Section 4, p. 12]).

The algorithm described in this paper avoids the above problems [13] by using the
following technique. We change the construction so that microsets are removed only
from the bottom of the tree, which simplifies value propagation. The tables required
to prove Theorem 1 of [13] are replaced by the use of Fredman and Willard’s priority

DOMINATORS IN LINEAR TIME 2127

queues. This technique is more general and allows us to propagate semidominator
values on a per microset basis, just prior to computing the exact semidominator
values for all members of a microset.

5. Algorithms for reducible graphs. The problem of finding dominators in
reducible graphs has been investigated in several papers (e.g., [1, 18, 20]). The reason
why reducible graphs are considered is that the control flow graphs of certain pro-
gramming languages (e.g., Modula-2 [25]) are reducible. A graph is reducible if the
edges can be partitioned into two disjoint sets E′ and E′′ so that

• the graph induced by the edges in E′ is acyclic
• for all edges (v, w) ∈ E′′, w dominates v.

Since the edges E′′ have no influence on the dominance relation, the problem of finding
dominators in reducible graphs is analogous to finding dominators in acyclic graphs.
In this section we therefore assume that graphs are acyclic.

5.1. The former algorithm is not linear. In 1983, Ochranova [18] gave an
algorithm which is claimed to have complexity O(m)3. Unfortunately the paper does
not contain a complexity analysis. In order to disprove the complexity of the algo-
rithm, it is therefore necessary to outline the behavior of the algorithm. For an acyclic
graph we have the following facts:

(a) If a node, x, has a single predecessor, y, then idom(x) = y.
(b) If each of the successors of a node x has more than one predecessor then no

node is dominated by x.
Since at least one successor of the start node s will satisfy the condition in (a), the
dominators can be found by starting at s and using the two facts interchangeably as
follows:

1. If (a) is true for a successor, v, of the current node, w, then set idom(v) = w
and the current node to v.

2. If (b) is true for all successors of the current node w then merge w and
idom(w) (by unifying their successor and predecessor sets respectively). Set
the current node to be the merged node.

In order for the algorithm to be linear, the detection of whether (a) is true in 1
should have constant-time complexity. Furthermore, the merging of two nodes in 2,
which involves union of two sets which are not disjoint, should also have constant-
time complexity. The authors are not aware of a general algorithm with the above
properties.

5.2. A linear-time algorithm. In this section we give a simple linear-time
algorithm for finding dominators in reducible graphs. The algorithm is constructed
by combining new techniques [10] with previously presented ideas (see, e.g., [1, 20]).
In other words, the algorithm is a compilation.

Lemma 5.1. Let T be the dominator tree and let W (w) = {v|(v, w) ∈ E′} be the
set of predecessors of a node w 6= s in G. Furthermore, let x be the node in T with the
largest depth which is an ancestor in T to all the nodes in W (w). Then idom(w) = x.

Proof. x is an ancestor to the nodes in W (w) and therefore dominates w. By
definition of dominators a path from x to idom(w) must exist in T . Conversely,
idom(w) is an ancestor to all nodes in W (w); thus a path from idom(w) to x must
exist. Hence idom(w) = x.

The computation is divided into two main steps as follows:

3Citation: “At least no counterexample was found.”

2128 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

1. The graph G = (V,E′) is acyclic and can therefore be topologically sorted [14]
ensuring that if (v, w) ∈ E′, then v has a lower topological number than w.

2. Now the dominator tree T can be constructed dynamically. Set s to be the
root of the dominator tree T and process each node w ∈ (V \{s}) in increasing
topological order as described below. Note that the part of T built so far, is
used for determining idom for the rest of the nodes.
• Let B = W (w). From lemma 5.1 we have that idom(w) now can be

computed by repeatedly deleting two arbitrary nodes from B and in-
serting the nearest common ancestor (nca) of these nodes into the set
B until the set contains only one node.
• After computing idom(w) the edge (idom(w), w) is added to T .

The only unspecified part of the algorithm is the computation of nca in a tree T
which grows under the addition of leaves. In [10] an algorithm is given which processes
nca and the addition of leaves in constant time per operation.

Theorem 5.2. The algorithm above computes the dominator tree for a reducible
control flow graph with n nodes and m edges in O(n+m) time.

Proof. Step 1 in the algorithm has complexity O(n+m). In step 2 each node is
visited and each edge can result in a query about nca in T , so at most m nca-queries
are performed, which establishes the complexity.

6. Concluding remarks. A linear-time algorithm has been presented for find-
ing dominators. The result, as presented, is purely theoretical, in the sense that
Fredman and Willard’s Q-heaps require that n ≥ 21220

[9]. Some of our ideas may
still be of practical relevance. If, for example, we take Corollary 4.7, giving a rather
simple linear-time reduction to subtrees of size at most log log n, and then use Lemma
4.2 within each of these, we get a simple O(m + n log log logn) algorithm, which in
practice may be competitive with that of Lengauer and Tarjan [16].

The problem with the large constant using RAM Q-heaps has recently been over-
come by a linear-time pointer-machine algorithm to find dominators, due to Buchs-
baum et al. [5].

In the following appendices we present the pseudocode of our algorithm.

Appendix A. Implementation details. We assume that a DFS-search has
been performed in the graph. The I-paths are removed from the tree in the following
way: The child pointer of the parent to the first node and the parent pointer of the
child of the last node are removed. An I-node is inserted in its place (see Figure A.1).
The I-node is numbered by a unique number larger than n. Furthermore, the I-paths
are numbered by a number > 0.

The algorithm uses the following arrays in which the DFS-number of nodes are
used as indices (the arrays marked ∗ are also used in the Lengauer–Tarjan algorithm):

• pred(v)∗: The set of nodes w such that (w, v) ∈ E.
• parent(v)∗: The parent of v in the DFS-tree. To simplify the EVAL operation

we set parent(v) = 0 if v = 0.
• child(v), sibling(v): Pointer to the first child and first sibling of v, respec-

tively, in the DFS-tree.
• I-path(v): If v does not belong to an I-path, I-path(v) = 0. Otherwise
I-path(v) contains the number of the I-path to which v belongs.
• S-tree(v): True if v belongs to an S-tree.
• microtree(v): True if v belongs to a microtree.
• root(v): This field is defined for nodes in S-trees, microtrees, and I-paths.

Before the root of the structure has been linked to its parent, p, root(v) = 0.

DOMINATORS IN LINEAR TIME 2129

7

8

1

9

7

8

1

9

n+k

Fig. A.1. An I-path and the representation of the I-path in the tree. Both child and parent
pointers are illustrated.

Afterwards root(v) contains the number of p.
• first(v): If v belongs to an I-path, this field contains the number of the first

node on the I-path.
• stack(v): If v is the first node on an I-path, this field contains the stack used

for the I-path.
• microroot(v): If v belongs to a microtree then microroot(v) is the number

of the root of the microtree.
• key(v)∗4: After the semidominator of v has been computed, key(v) is the

number of the semidominator of v. Initially key(v) = v.
• bucket(v)∗: The set of nodes whose semidominator is v.
• dom(v)∗: A number which will eventually be the number of the immediate

dominator of v.
The main algorithm is a slight modification of the Lengauer–Tarjan algorithm:

Begin
constructmicrotable; /* This procedure computes the microtable */
for v := 1 to n do bucket(v) := ∅;
v := n;
While v > 1 do begin

if microtree(v) then begin
microdominator(v,microroot(v)); /* see below */
v := microroot(v)− 1;

end else begin
For each w ∈ pred(v) do begin
k :=EVAL(w);
if k < key(v) then UPDATE(v, k);

end;
/* The remainder of the algorithm computes dominators */
/* from semidominators and is analogous to [16] */
For each child w of v do LINK(v, w);
bucket(key(v)) := bucket(key(v))

⋃{v};
For each w ∈ bucket(parent(v)) do begin

4In the Lengauer–Tarjan algorithm, this array is called semi.

2130 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

bucket(parent(v)) := bucket(parent(v))\{w};
k :=EVAL(w)
if k < key(w) then dom(w) := k
else dom(w) := parent(v);

end;
v := v − 1;

end; /* While /*
end; /* While /*
for v := 2 to n do

if dom(v) 6= key(v) then dom(v) := dom(dom(v));
else dom(v) := key(v);

End;

Procedure microdominator(v, root : integer);

The microdominator procedure is analogous to the main algorithm. The only real difference

is that EVAL, LINK, and UPDATE operations are replaced by microEVAL, microLINK, and

microUPDATE operations. Furthermore there are no I-paths in a microtree.

For the EVAL and LINK operations we need the following additional fields:
• heap(v): A heap associated with v.
• I-node(v): If v is the root of an I-path then I-node(v) is the number of the

node which represents the I-path.
Function EVAL(v: integer):integer;
begin

if v = 0 then EVAL:=∞
else if microtree(v) then EVAL:=min(EVAL(root(v),microEVAL(v)))
else if I-path(v) or S-tree(v) then EVAL:=min(EVAL(root(v)), key(SetF ind(v)))
else EVAL:=key(SetF ind(v));

end;

Procedure LINK(v, w: integer);
begin

if microtree(w) then /* w is the root of a microtree */
For each u in the microtree to which w belongs do root(u) := v

else if S-tree(w) and not S-tree(v) then /* w is the root of an S-tree */
For each u in the S-tree to which w belongs do root(u) := v

else if I-path(v) > 0 then begin
if first(v) = v then Init-I-path(v, w) /*see below */
else if I-path(w) = I-path(v) then begin
S := stack(first(v));
While not StackEmpty(S) and key(StackTop(S)) > key(v) do begin
u := StackPop(S);
SetUnion(v, u);

end;
if key(I-node(v)) > key(v) then DecreaseRoot(I-node(v), key(v));
StackPush(v, S);

end;
end else if I-path(w) > 0 then begin /* the path is fully linked */

For each u on the I-path do root(u) := v;
/* Add I-node(w) to heap(I-node(w)) */5

LINK(v, I-node(w));
end else begin /* Neither v nor w is on an I-path */

While not Empty(heap(w)) and key(HeapFindMax(heap(w))) > key(v) do begin
u := HeapExtractMax(heap(w));

5The I-node has not been a member of the heap while the I-path has been processed. The
pseudocode for this operation is omitted to improve program clarity, as it involves creating a dummy
heap and performing a HeapUnion operation on the dummy heap and heap(I-node(w)).

DOMINATORS IN LINEAR TIME 2131

SetUnion(v, u);
end;
HeapUnion(heap(v), heap(w));

end;
end;

Procedure Init-I-path(v, w: integer);
/* v is the first node on an I-path and should be linked to its child w */
begin
CreateStack(S);
stack(v) := S;
StackPush(v, S);
While not Empty(heap(w)) and key(HeapFindMax(heap(w))) > key(v) do begin
w := HeapExtractMax(heap(w));
SetUnion(I-node(v), w);

end;
heap(I-node(v)) := heap(w);
key(I-node(v)) := key(v);

end;

Procedure DecreaseRoot(v, k: integer);
begin

While not Empty(heap(v)) and key(HeapFindMax(heap(v))) > k do begin
w := HeapExtractMax(heap(v));
SetUnion(v, w);

end;
key(v) := k;

end;

Procedure UPDATE(v, k: integer);
begin
key(v) := k;

end;
The pseudocode of the microalgorithm is rather tedious and therefore is omitted.

Acknowledgment. We wish to thank a referee from SIAM Journal on Comput-
ing for some very good and thorough comments. Further, Dov Harel wishes to thank
Eli Dichtermann for recent discussions.

REFERENCES

[1] A. Aho, J. Hopcroft, and J. Ullman, On finding lowest common ancestors in trees, in Fifth
Annual ACM Symposium on the Theory of Computing, 1973, pp. 115–132.

[2] A. Aho and J. Ullman, The Theory of Parsing, Translation and Compiling, vol. II, Prentice-
Hall, Englewood Cliffs, N.J., 1972.

[3] A. Aho and J. Ullman, Principles of Compiler design, Addison-Wesley, Reading, MA, 1979.
[4] G. Bilardi and K. Pingali, A framework for generalized control dependence, in ACM SIG-

PLAN Conference on Programming Language Design and Implementation, 1996, pp. 291–
300.

[5] A. Buchsbaum, H. Kaplan, A. Rogers, and J. Westbrook, Linear-time pointer-machine
algorithms for lca’s, mst verification, and dominators, in Annual ACM Symposium on the
theory of computing (STOC), vol. 30, 1998.

[6] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadek, Efficiently computing static
single assignment form and the control dependence graph, in ACM Trans. Programming
Language Systems, 13 (1991), pp. 451–490.

[7] B. Dixon and R. Tarjan, Optimal parallel verification of minimum spanning trees in loga-
rithmic time, Algorithmica, 17 (1997), pp. 11–18.

[8] J. Driscoll, H. Gabow, R. Shrairman, and R. Tarjan, Relaxed heaps: An alternative to
fibonacci heaps with application to parallel computation, Comm. ACM, 31 (1988), pp. 1343–

2132 S. ALSTRUP, D. HAREL, P. W. LAURIDSEN, AND M. THORUP

1354.
[9] M. Fredman and D. Willard, Trans-dichotomous algorithms for minimum spanning trees

and shortest paths, J. Comput. System Sci., 48 (1994), pp. 533–551.
[10] H. Gabow, Data structure for weighted matching and nearest common ancestors with linking,

in First Annual ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 434–443.
[11] H. Gabow and R. Tarjan, A linear-time algorithm for a special case of disjoint set union, J.

Comput. System Sci., 30 (1985), pp. 209–221.
[12] G. Gao and V. Sreedhar, A linear time algorithm for placing φ-nodes, in ACM SIGPLAN-

SIGACT Symposium on the Principles of Programming Languages, 1995, pp. 62–73.
[13] D. Harel, A linear time algorithm for finding dominators in flow graphs and related problems,

in 17th Annual ACM Symposium on Theory of Computing, 1985, pp. 185–194.
[14] D. Knuth, The Art of Programming, vol. 1, Addison-Wesley, Reading, MA, 1968.
[15] P. Lauridsen, Dominators, Master’s Thesis, Department of Computer Science, University of

Copenhagen, Copenhagen, Denmark, 1996.
[16] T. Lengauer and R. Tarjan, A fast algorithm for finding dominators in a flowgraph, in ACM

Trans. Programming Languages Systems, 1 (1979), pp. 121–141.
[17] E. Lowry and C. Medlock, Object code optimization, Comm. ACM, 12 (1969), pp. 13–22.
[18] R. Ochranova, Finding dominators, in Foundations of Computation Theory, Lecture Notes

in Comput. Sci., 4 (1983), pp. 328–334.
[19] P. Purdom and E. Moore, Immediate predominators in a directed graph, Comm. ACM, 15

(1972), pp. 777–778.
[20] G. Ramalingam and T. Reps, An incremental algorithm for maintaining the dominator tree

of a reducible flowgraph, in 21st Annual ACM Symposium on Principles of Programming
Languages, 1994, pp. 287–298.

[21] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),
pp. 146–160.

[22] R. Tarjan, Finding dominators in directed graphs, SIAM J. Comput., 3 (1974), pp. 62–89.
[23] R. Tarjan, A class of algorithms which require nonlinear time to maintain disjoint sets, J.

Comput. System Sci., 18 (1979), pp. 110–127.
[24] J. Vuillemin, A data structure for manipulating priority queues, Comm. ACM, 21 (1978),

pp. 309–315.
[25] N. Wirth, Programming in modula-2(3rd corr.ed), Springer–Verlag, Berlin, New York, 1985.

APPROXIMATING CAPACITATED ROUTING
AND DELIVERY PROBLEMS∗

PRASAD CHALASANI† AND RAJEEV MOTWANI‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2133–2149

Abstract. We provide approximation algorithms for some capacitated vehicle routing and
delivery problems. These problems can all be viewed as instances of the following k-delivery TSP:
given n source points and n sink points in a metric space, with exactly one item at each source, find a
minimum length tour by a vehicle of finite capacity k to pick up and deliver exactly one item to each
sink. The only known approximation algorithm for this family of problems is the 2.5-approximation
algorithm of Anily and Hassin [Networks, 22 (1992), pp. 419–433] for the special case k = 1. For this
case, we use matroid intersection to obtain a 2-approximation algorithm. Based on this algorithm
and some additional lower bound arguments, we devise a 9.5-approximation for k-delivery TSP with
arbitrary finite k. We also present a 2-approximation algorithm for the case k =∞.

We then initiate the study of dynamic variants of k-delivery TSP that model problems in indus-
trial robotics and other applications. Specifically, we consider the situation where a robot arm (with
finite or infinite capacity) must collect n point-objects moving in the Euclidean plane, and deliver
them to the origin. The point-objects are moving in the plane with known, identical velocities—they
might, for instance, be on a moving conveyor belt. We derive several useful structural properties that
lead to constant-factor approximations for problems of this type that are relevant to the robotics
application. Along the way, we show that maximum latency TSP is implicit in the dynamic prob-
lems, and that the natural “farthest neighbor” heuristic produces a good approximation for several
notions of latency.

Key words. capacitated vehicle routing, capacitated delivery, maximum latency problem, ma-
troid intersection, approximation algorithms, traveling salesperson problem, NP-hard

AMS subject classification. 68Q25

PII. S0097539795295468

1. Introduction. This paper considers two variations on the classical traveling
salesperson problem (TSP): (a) the permissible routes are constrained by the require-
ment that objects must be delivered from sources to sinks by a vehicle of finite capacity
k, and (b) the points to be visited may be moving with a known velocity. We define
the k-delivery TSP: Given n source points and n sink points in some metric space,
with exactly one item placed at each source, compute a minimum length route for a
vehicle of capacity k to deliver exactly one item to each sink, starting and ending at
a fixed location. Note that sources and sinks need not lie at distinct locations. This
problem is an instance of vehicle routing or scheduling problems that have been the
subject of intensive study in the literature [14, 23]. The problem is easily seen to
be NP-hard via a reduction from TSP: place a source and a sink very close to each
point of the TSP problem, and set k = 1; now, an optimal solution to the 1-delivery
TSP is an optimal solution to the TSP instance. Similar reductions can be devised
for arbitrary finite k and for infinite k.

∗Received by the editors December 1, 1995; accepted for publication (in revised form) December
23, 1997; published electronically June 29, 1999. This paper is a revised and expanded version
of Approximation algorithms for robot grasp and delivery, in Proceedings of the 2nd International
Workshop on Algorithmic Foundations of Robotics, Toulouse, France, 1996, pp. 347–362.

http://www.siam.org/journals/sicomp/28-6/29546.html
†Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 (chal@cs.cmu.edu).
‡Department of Computer Science, Stanford University, Stanford, CA 94305 (rajeev@

cs.stanford.edu). The research of this author was supported by the Alfred P. Sloan Research Fellow-
ship, the IBM Faculty Partnership Award, ARO MURI grant DAAH04-96-1-0007, and NSF Young
Investigator Award CCR-9357849 with matching support from IBM, Schlumberger Foundation, Shell
Foundation, and Xerox Corporation.

2133

2134 PRASAD CHALASANI AND RAJEEV MOTWANI

We provide what appear to be the first known polynomial-time constant-factor
approximation algorithms for this problem. Motivated by applications in areas such
as robotics, we formulate a novel dynamic version of TSP where the points are moving
in the plane, and we partially extend our results to that case. In the process we obtain
an approximation algorithm for maximum latency TSP. All our algorithms run in time
polynomial in n and, where meaningful, k. Some of our approximation factors have
been improved upon by Charikar, Khuller, and Raghavachari [12].

In section 2, we begin by considering 1-delivery TSP, or bipartite TSP. This is
closely related to the swapping problem for which Anily and Hassin [2] present a 2.5-
approximation algorithm. We use matroid intersection to obtain a 2-approximation
algorithm for this problem. In section 2.1, based on the 1-delivery approximation
algorithm and additional lower bound arguments, we devise a 9.5-approximation al-
gorithm for k-delivery TSP with arbitrary finite k. It turns out that for infinite
capacity k, the resulting problem is a special case of the “TSP with delivery and
backhauls” for which Anily and Mosheiov [3] obtain a factor-2 approximation.

The k-collect TSP is a well-studied vehicle routing problem [1, 23]: it is the
special case of the k-delivery TSP where all sinks are at the starting location of the
vehicle. Altinkemer and Gavish [1] have shown a 2.5-factor approximation algorithm
for this problem and also established its NP-hardness (for k ≥ 2). In this paper
we motivate and present approximation algorithms for the dynamic k-collect TSP:
n point-objects are moving in the Euclidean plane with fixed, identical velocities
and a robot arm (starting at the origin) with capacity k must pick up and deliver
these objects to the origin. Observe that the dynamic ∞-collect TSP, or simply
dynamic TSP, is a generalization of standard TSP to the case of moving points.
There does not appear to have been any prior theoretical work on dynamic TSP.
As described in section 4, the dynamic problem arises in industrial robotics in the
context of rapid deployment automation [10]. This problem also has some features
of the time-dependent TSP [18, 32] wherein the distance function varies with time.
We restrict ourselves to the case where the moving points’ velocities are sufficiently
smaller than that of the robot arm. This is essential to ensure that the robot arm
is able to retrieve all objects and is certainly a valid assumption in the motivating
application. An interesting variant, which we do not explore here, concerns the model
where the velocities are unrestricted and the goal is to maximize the number of points
visited, with possible restrictions on the total time available. Clearly, this would
involve generalizing the prize-collecting TSP [5] to the case of moving points.

Two complications arise in the case of moving points. First, we lose symmetry
in the distance matrix; fortunately, though, since the points are all moving at the
same velocity, there is some structure in this asymmetry. The second problem is
that the distance of points to the origin is time-dependent, although the distances
between moving points are time-independent. In addition, the dynamic variants have
some interesting and counterintuitive aspects. For instance, suppose k = 1 and there
are two points, initially at (10, 0) and (15, 0). The robot is initially at the origin.
Assuming that the robot can move at speed 1 and the points move at speed 1/2 in
the negative x direction, which point should be visited first? It is easy to check that
visiting the farther point first produces a smaller total time (20) than the other way
round (roughly 22)! In general, the more time we spend visiting points early in the
tour, the closer the later points would have moved to the origin, and so we would
spend less time visiting them from the origin.

Thus, the dynamic problem has some features of maximum latency TSP: given a
set of n points P = {p1, . . . , pn} and a symmetric distance matrix (dij) satisfying the

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2135

triangle inequality, find a path starting at p1 and visiting all other points so as to max-
imize the total latency of the points, where the latency of a point pi is the length of the
path to that point. In section 3, we give a 1/2-approximation algorithm for maximum
latency TSP. We also study some variants that arise implicitly in the dynamic set-
tings. While approximation algorithms for minimum latency TSP are known [7, 22],
there does not appear to be any prior work on our version of the problem.

In section 4.1 we establish some basic properties of travel times involving moving
points (such as the triangle inequality) that are not as obvious as they might seem.
In section 4.6, we show that an optimal dynamic 1-collect tour must visit points in
decreasing order of distances to the origin and that the case k =∞ is an asymmetric
TSP with bounded asymmetry. We then present a constant factor approximation
for the dynamic k-collect problem for arbitrary finite k. Finally, some extensions are
mentioned in section 4.8.

In the rest of the paper we will refer to the sources as blue points and the sinks as
red points. We will also assume for convenience that n is a multiple of k; our results
can be extended to the general case by introducing a few dummy sources and sinks
close to one of the original points.

1.1. Other related work. Capacitated delivery problems have been studied
extensively in the literature [14, 23], although the focus has mostly been on finding
the optimal solution (using sophisticated branch and bound techniques, for example)
and not on finding provably good approximations. Examples of such work include the
following.

(a) The capacitated vehicle routing problem (CVRP) [1, 25, 23]: given n points
in a metric space and an infinite fleet of vehicles of capacity k, find a collection
of vehicle routes starting at origin such that every point is visited by exactly one
vehicle. Typical objective functions to be minimized included number of vehicles,
total distance traveled, maximum distance traveled by a vehicle, or some combination
thereof.

(b) The dial-a-ride problem [6, 34, 27]: compute an optimal route for a k-capacity
van to pick up and drop off n persons between different origin–destination pairs. Note
that this problem differs from the k-delivery TSP in that each person must be dropped
off at a specific destination.

(c) The precedence-constrained TSP [6]: for each vertex i there is a set P (i) of
vertices that must be visited before visiting i, and we are required to find an optimal
TSP satisfying these constraints.

Although there does not appear to be any prior theoretical work on TSP with mov-
ing points, heuristics for related problems have been studied in the robotics literature
(see, for example, Li and Latombe [30]). The static k-collect TSP has received consid-
erable attention in the literature and the best-known result is the 2.5-approximation
algorithm of Altinkemer and Gavish [1]. Also, the k-person TSP is a related prob-
lem and has a 1.5-approximation algorithm due to Frieze [20] (see also Frederickson,
Hecht, and Kim [19]).

2. The k-delivery TSP. We begin by presenting an approximation algorithm
for the 1-delivery TSP that underlies our algorithm for the general case. When the
vehicle has unit capacity, any delivery route must alternately pick up and deliver one
item at a time. The corresponding graph problem is the following.

Bipartite traveling salesperson problem. Given an edge-weighted graph
G satisfying the triangle inequality, with n blue vertices (sources) and n red vertices
(sinks), find the optimal bipartite tour starting and ending at a designated blue vertex

2136 PRASAD CHALASANI AND RAJEEV MOTWANI

s

Fig. 1. A bipartite spanning tree for which no depth-first traversal yields a bipartite tour.

s and visiting all vertices. A tour is bipartite if no two consecutively visited vertices
have the same color.

Anily and Hassin [2] have shown a 2.5-approximation algorithm for a general-
ization of this problem, known as the swapping problem. Their algorithm finds a
perfect matching M consisting of edges that connect red and blue vertices, and it
uses Christofides’s heuristic [13] to find a tour T of the blue vertices. The final de-
livery route consists of visiting the blue vertices in the sequence specified by the tour
T , using the matching edges in M to deliver an item to a sink and return to the blue
vertex (or “shortcut” to the next blue vertex on T). If OPT is the optimal delivery
tour, clearly T ≤ 1.5OPT and M ≤ 0.5OPT, whereas the total length of the deliv-
ery tour is at most T + 2M ≤ 2.5OPT. We exploit some combinatorial properties of
bipartite spanning trees and matroid intersection to improve this factor to 2.

A naive approach toward a 2-approximation is to mimic the well-known 2-approxi-
mation algorithm for the TSP problem: pick a bipartite spanning tree of G and then
perform a depth-first traversal followed by short-cutting. A spanning tree of G is
bipartite if each edge connects a red and blue vertex. Given a bipartite spanning tree
T , we can think of it as a tree rooted at s and do a depth-first traversal of T with
short-cuts (there may in general be several ways to short-cut) and obtain a tour of
G. However, such a tour may not be bipartite; there are bipartite spanning trees that
do not yield a bipartite tour regardless of how we do the depth-first traversal and
short-cuts (see Figure 1).

Our 2-approximation algorithm is based on the following very simple observa-
tions (these observations were communicated to us by Hassin and helped simplify our
argument considerably).

Observations. Let T be a bipartite spanning tree where each blue vertex has
degree at most 2; then, T has exactly one blue vertex v1 of degree 1. If T is rooted
at v1 then every blue vertex has exactly 1 (red) child. Clearly, if we traverse this
rooted tree T in (any) depth-first order, then the sequence of vertices visited are of
alternating color.

Clearly, the OPT bipartite tour contains a bipartite spanning tree where all blue
vertices have degree at most 2. Therefore the weight of the minimum-weight bipartite
spanning tree whose blue vertices have degree at most 2 is a lower bound on OPT.

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2137

Again, if we can find (in polynomial time) the minimum-weight bipartite spanning
tree T whose blue vertices have degree at most 2, then a depth first traversal of T
with short-cuts will yield a tour whose length is at most twice OPT.

We now claim that the problem of finding T can be viewed as that of finding the
minimum-weight, maximum-cardinality subset in the intersection of two matroids [29,
15, 16]. The matroids in this case are M1, the matroid of all bipartite forests, and M2,
the matroid of all bipartite subgraphs whose blue vertices have degree at most 2. For
completeness we review the definition of a matroid, following the standard text [29].

Definition. A matroid M = (E, I) is a structure in which E is a finite set
of elements and I is a family of subsets (called independent sets) of E, such that
φ ∈ I and all proper subsets of a set I ∈ I are in I; and if Ip and Ip+1 are sets in I
containing p and p + 1 elements, respectively, then there exists an element e ∈ Ip+1

such that Ip ∪ {e} ∈ I.
An example of a matroid is the graphic matroid M = (E, I), where E is the set of

edges of an undirected graph, and a subset I ⊂ E is in I if and only if I is cycle-free.
Another example is the matrix matroid M = (C, I), where C is the set of columns of
a fixed matrix A, and a subset S of columns is in I if and only if the columns of S
are linearly independent. A maximal-cardinality independent subset of a matroid is
called a base of a matroid; all bases of a matroid have the same cardinality.

Returning to our problem, let E be the set of all edges that connect red vertices
to blue vertices. Let F denote the collection of all subsets of E that are cycle-free,
and let D denote the collection of subsets S of E such that no more than two edges
of S are incident on any blue vertex. Then it is easily shown that M1 = (E,F) and
M2 = (E,D) are matroids. In addition, the problem of finding a minimum-weight
bipartite spanning tree where the blue vertices have degree at most two is equivalent
to the problem of finding a minimum-weight common base of M1 and M2.

This is a special case of the matroid intersection problem, which was first solved
in polynomial time by Edmonds [15, 16]. Other authors [9] have exploited the special
structure of problems such as ours to improve running times. We obtain the following
theorem.

Theorem 2.1. There is a polynomial-time 2-approximation algorithm for the
bipartite TSP.

2.1. Extension to finite capacity vehicles. We will now show how to obtain
a constant-factor approximation for the case of arbitrary finite k using the algorithm
for the unit capacity case. First, however, we will establish some lower bounds on
the optimal solution. Let Ck denote the (length of the) optimal k-delivery tour, and
let Cr and Cb denote the (length of the) optimal tours on the red and blue points,
respectively. Let A denote the weight of the minimum-weight perfect matching in
the bipartite graph with red vertices on one side and blue vertices on the other. To
keep the notation simple, we will often use the same symbol to denote a graph and
its weight; the context will make it clear which one is intended.

Lemma 2.2. (a) A ≤ C1/2.
(b) 1

2kC1 ≤ Ck.
Proof. Part (a) is easy to see since C1 consists of two perfect matchings and each

is at least as heavy as A. To see part (b), start with an optimal k-delivery tour Ck:
this defines an ordering r1, r2, . . . , rn on the red points and an ordering b1, b2, . . . , bn
on the blue points. We then construct a 1-delivery tour T starting at the blue vertex
b1 as follows. Consider the blue vertices in the order imposed by Ck, connecting the
ith blue vertex bi to the earliest red vertex in the Ck-ordering that has not already

2138 PRASAD CHALASANI AND RAJEEV MOTWANI

been connected to a blue vertex; then add another edge connecting this red vertex to
the next blue vertex bi+1 (if this red vertex is the last one, connect it to the starting
blue vertex b1). By the triangle inequality, each edge e of T is no longer than the sum
of the Ck-edges connecting the endpoints of e; we can thus “charge off” each edge of
T to a collection of edges of Ck. Since there is never a surplus of more than k blue
points in the tour Ck, it follows that no edge of T is charged more than 2k times.
Thus T ≤ 2kCk, from which part (b) follows since C1 ≤ T .

The following lemma is straightforward.
Lemma 2.3. (a) Cr ≤ Ck. (b) Cb ≤ Ck.
We now use the lower bounds just presented to design a constant-factor approxi-

mation algorithm for the k-delivery problem. We first use Christofides’s heuristic to
obtain a 1.5-approximate tour Tr of the red vertices and a 1.5-approximate tour Tb
of the blue vertices. Next, we decompose Tr and Tb into paths of k vertices each, by
deleting a set of edges that are spaced along the tour at intervals of length k. In fact,
there are k such sets of edges in a tour, and we delete the set of maximum weight.
It will be convenient to view each k-path as a “supernode” in the following. We now
overlay the minimum-weight perfect matching of cost A on this graph. Note that any
(red or blue) supernode now has degree exactly k and that there may be several edges
between two given supernodes. Thus we obtain a k-regular bipartite multigraph. The
following result due to König [26, 31] is crucial to the design of our algorithm:

Lemma 2.4. The edges of a d-regular bipartite multigraph can be partitioned into
d perfect matchings.

Using this result, we can partition the perfect matching A into k perfect matchings
on the supernodes. We pick the least-weight matching M out of these and delete all
other edges of A. Clearly, M ≤ A/k ≤ 1

2kC1. At this stage we have a collection of
n/k subgraphs H1, H2, . . . , Hn/k, each consisting of a red supernode connected via an
edge of M to a blue supernode. Now we reintroduce the edges of Tb that were removed
when breaking Tb into k-paths; this imposes a cyclic ordering on the subgraphs Hi;
let us relabel them H1, H2, . . . , Hn/k with this cyclic ordering, where H1 contains the
start blue vertex. We now traverse the subgraphs H1, H2, . . . , Hn/k in sequence as
follows. Within each subgraph Hi, first visit all the blue vertices and then use the
edge of M to go to the red side and visit all the red vertices; then return to the blue
side, go to the blue vertex that is connected via an edge e of Tb to the next subgraph
Hi+1, and use the edge e to go to Hi+1 (or H1 if i = n/k).

We claim that this tour T is within a constant factor of the optimal k-delivery
tour. To verify this, notice that in short-cutting, by triangle inequality, we “charge”
each edge of Tb (that was not deleted) no more than three times, each edge of Tr (that
was not deleted) no more than two times, and each edge of M at most two times.
Notice also that the set of deleted edges in Tb and Tr have total weight at least a 1/k
fraction of the tour’s weight. Thus, we obtain

T ≤ 3

(
1− 1

k

)
Tb + 2

(
1− 1

k

)
Tr + 2M

≤ 3

(
1− 1

k

)
× 1.5Cb + 2

(
1− 1

k

)
× 1.5Cr +

2

2k
C1

≤ 7.5

(
1− 1

k

)
Ck + 2Ck

≤ 9.5

(
1− 7.5

9.5k

)
Ck.

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2139

Note that, while for large k the approximation ratio is 9.5, for small k we do much
better (e.g., 5.75 for k = 2).

Theorem 2.5. The above algorithm gives a 9.5
(
1− 7.5

9.5k

)
-approximation to the

optimal k-Delivery TSP.

3. Maximum latency TSP. A variant of the following problem arises in the
moving points case and is also of independent interest. Given a set of n points
{p1, . . . , pn} in a metric space, find a path visiting all points, starting at a given point
p0, such that the total latency of the points is maximized . If in a given path P the
length of the ith edge traversed is ei, then the latency of the jth point visited (j > 0)

is Lj =
∑j
i=1 ei and the total latency L(P) is

L(P) =

n∑
j=1

Lj =
n∑
i=1

(n− i+ 1)ei.

We would like to find a path P for which L(P) is maximized. We can show that
this problem is NP-hard by reducing from the maximum Hamiltonian path (MaxHP)
problem. A related problem, minimum latency TSP, has been addressed in [7, 22]
where constant-factor approximations are obtained.

We show that the greedy strategy of at any stage, visiting the farthest unvisited
point from the current point achieves a total latency at least half that of the maximum
latency path. (In fact, it can also be shown from our proof that the greedy path has
length at least half that of the MaxHP from the starting point p0. This result was
obtained previously by Fisher, Nemhauser, and Wolsey [17].) The key observation is
the following lemma.

Lemma 3.1. Let Gi be the length of the first i edges in the greedy path starting
from p0. Let Pi be the length of the maximum i-path, i.e., the longest path that visits
i vertices from p0. Then for i ≤ n, Gi ≥ Pi/2.

Proof. For brevity, paths/edges and their lengths are denoted by the same sym-
bols. Consider the maximum matching M in the maximum i-path Pi, i.e., the
maximum-length collection M of independent edges from Pi. Let the (lengths of)
edges of M be m1 ≥ m2 ≥ · · · ≥ mk. Note that Pi ≤ 2(m1 +m2 + · · ·+mk). We will
argue that Gi ≥ (m1 +m2 + · · ·+mk).

Consider the edges in Gi as being directed in the direction of travel, starting from
p0. Call an edge m of M an anchor if there is an edge of Gi that starts at an endpoint
of m; the earliest such edge g of Gi is said to be anchored at m.

Claim A. If g is anchored at m, then g ≥ m, since Gi is greedy and the other
endpoint of m has not yet been visited at the time g was traversed by the greedy path.

Claim B. If m ∈ M is not an anchor, then every edge of Gi has length at least
m/2. To see this, note that neither endpoint of m is visited by Gi (except possibly at
the end). By the triangle inequality, from any point p, at least one of the endpoints of
m is at distance at least m/2. Since Gi is greedy, its edges have length at least m/2.

Now suppose m1,m2, . . . ,mu are anchors and mu+1 is not; i.e., mu+1 is the
heaviest edge of M that is not an anchor. (Note that u could be 0.) Let g1, g2, . . . , gu
be the corresponding anchored edges of Gi. Then Claims A and B imply that g1 +
g2 + · · · + gu ≥ m1 + m2 + · · · + mu and that every edge of Gi has length at least
mu+1/2. There are now two cases to be considered. Recall that k = |M |.

Case 3.1 (u = 0 and i = 2k − 1). If u = 0, then m1 is not an anchor, so all edges
of Gi have length at least m1/2. Also i = 2k − 1 implies that the starting point p0

2140 PRASAD CHALASANI AND RAJEEV MOTWANI

must occur in the matching M . Thus, the first edge of Gi must be anchored at an
edge m′ of M , and the total length of Gi is at least

m′ +
(i− 1)m1

2
≥ m′ +

(2k − 2)m1

2
= m′ + (k − 1)m1 ≥ m1 +m2 + · · ·+mk).

Case 3.2 (u ≥ 1 or i ≥ 2k). Note that the total length L of unanchored edges of
Gi is at least (i− u)mu+1/2. If u ≥ 1,

L ≥ (2k − 1− u− (u− 1))mu+1

2
= (k − u)mu+1,

and if i ≥ 2k,

L ≥ (2k − u− u)mu+1

2
= (k − u)mu+1.

Thus, Gi is at least (m1 +m2 + · · ·+mu) + (k−u)mu+1 ≥ m1 +m2 + · · ·+mk.
Clearly the latency of the ith point in the maximum latency path is at most Pi,

so the lemma implies that the total latency of the greedy path is at least half that of
the maximum latency path. Since Pn is the MaxHP, it also follows that the greedy
path is a 1

2 -approximation of the MaxHP. Lemma 3.1 implies our result.
Theorem 3.2. The greedy strategy of always visiting the farthest unvisited point

achieves a total latency at least half that of the maximum latency path.
We can also show that the greedy heuristic works well for a different “latency

measure” that arises implicitly in dynamic k-collect TSP.
Theorem 3.3. Let α < 1 be a positive constant. For a Hamiltonian path P

starting at p0, define the cost Lα(P) =
∑n−1
i=1 (1 − αn−i)ei. The greedy heuristic

produces a path whose Lα cost is at least (1− α)/2 that of the maximum-Lα path.
Proof. Let G denote the greedy path and H∗ denote the MaxHP. Let P ∗α denote

the path that maximizes Lα(.) and P ∗ be the path that maximizes L(.). Since (1 −
αn−i) < 1 for i = 1, 2, . . . , n− 1, we have

Lα(P ∗α) ≤ length(P ∗α) ≤ length(H∗),

and since (1− αn−i) ≥ 1− α for i = 1, 2, . . . , n− 1, we have

Lα(G) ≥ (1− α)length(G).

The desired result then follows from the fact that length(G) ≥ length(H∗)/2 (Theo-
rem 3.2).

4. TSP for moving-points: Dynamic k-collect TSP. The dynamic k-collect
TSP (defined in the introduction) is inspired by the following application in industrial
robotics. After manufacture, parts are dumped onto a conveyor belt in arbitrary posi-
tions and orientations. Prior to packaging (or assembly), the parts must be collected
by a robot arm of capacity k and delivered to an empty pallet at a fixed location (not
on the belt) that can be treated as the origin of the coordinate space. Once filled, the
pallet is moved away by another conveyor belt, and a new empty pallet appears at
the origin. The general scenario of designing configurations and algorithms for robots
working in their cells to handle parts as they come down a conveyor belt has been
termed rapid deployment automation [4, 10, 30].

For convenience, we switch to the L1 metric, and assume that the robot translates
only parallel to the x- and y-axes. While there are situations where this applies

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2141

O x

y

direction of point motion: speed= v

Origin

Fig. 2. Illustrating the moving-points model. A 3-collect tour is shown.

directly, it is also easy to see that this causes an error of only factor
√

2 with respect
to the L2 metric. We assume that the points p1, p2, . . . , pn are always within the
positive quadrant of the coordinate frame centered at the origin p0 = (0, 0) (see
Figure 2). The robot moves with speed 1, and the belt (and each point pi) moves
with a velocity v directed in the negative x-direction. The y-axis represents the end
of the conveyor belt, and to obtain meaningful results we must assume at the very
least that v is suitably bounded below 1, since a slow robot may be unable to catch
up with some points. In fact, to prove our approximation results it is sufficient to
assume that v ≤ k

2n , which is necessary to ensure that no pi crosses the y-axis while
the robot is in the process of executing the tour. We will assume this upper bound on
v throughout the rest of this paper. Also, we define α = 1−v

1+v .

Some remarks are in order about our restriction to the case where the moving
points’ velocities are sufficiently smaller than that of the robot arm. As further
explicated in section 4.6, this is essential to ensure that the robot arm is able to
retrieve all objects and is certainly a valid assumption in the motivating application.
An interesting variant, which we do not explore here, concerns the model where the
velocities are unrestricted and the goal is to maximize the number of points visited,
with possible restrictions on the total time available. Clearly, this would involve
generalizing the prize-collecting TSP [5] to the case of moving points.

For clarity, we refer to a fixed point in space (such as the origin) as a space-point ,
to distinguish it from a moving-point , pi. Define (xi, yi) as the coordinates of point
pi at time 0, and let di = xi + yi denote the L1 distance of pi from the origin at time
0. Clearly the x-coordinate of pi at time t is xi − vt and the y-coordinate doesn’t
change. The distance of pi from the origin at time t is therefore xi+ yi− vt = di− vt.

4.1. Shortest paths and triangle inequality. We establish several basic prop-
erties of travel times that are not immediate. Henceforth, when we say that the robot
moves from a point A to a space-point B or meets a moving-point pi, we will assume

2142 PRASAD CHALASANI AND RAJEEV MOTWANI

that the robot takes the shortest-time path. What is the quickest way for a robot to
meet a moving-point p? The following lemma characterizes such paths. A robot path
is said to be monotone if no two points on the path have the same x-coordinate or
the same y-coordinate.

Lemma 4.1 (shortest paths). Suppose the robot is at a space-point A and meets
moving-point p at the earliest possible time, say, at space-point B. Then the robot’s
path from A to B is necessarily a shortest path between those points, and the robot
never stops at any time before it meets p.

Proof. At any time the robot may “sit and wait,” move parallel to the x-axis,
or move parallel to the y-axis. Suppose the robot meets point p after time T . If the
robot’s path to B is not the shortest path to B (from A) or the robot stopped at some
time, this means that the robot could have arrived at B at an earlier time T ′ < T
(by either using a shorter path to B or not waiting along the way). At this time T ′

the moving-point p must be to the right of B a distance (T − T ′)v away on the same
y-coordinate, and the robot can meet p in time (T − T ′) v

1+v by moving toward it.
Thus, the total time to meet p could be T ′ + v

1+v (T − T ′), and the time saved would

be (T − T ′) − v
1+v (T − T ′) = 1

1+v (T − T ′), which is positive. This contradicts our
assumption that the robot met p at the earliest possible time.

We have the following important corollaries of the above lemma.

Corollary 4.2 (monotone path). Suppose the robot moves from space-point A
to meet a moving-point p. Then the robot’s path must be monotone. In particular a
quickest way for the robot to meet p is to first move to the y-coordinate of p and then
move toward p.

Proof. The following fact will be useful in this and other proofs about shortest
paths.

Fact 4.3. The shortest (and therefore least travel-time) path for the robot to
move from a given space-point A to a given space-point B is a monotone path; in
particular the monotone path that first moves to the y-coordinate of B and then to the
x-coordinate of B is shortest.

The monotonicity follows from Lemma 4.1 and Fact 4.3. Any monotone path that
meets p can be replaced by a path where all the x-motion is done after the y-motion,
without changing the rendezvous time or coordinates. Clearly the y-motion consists
simply of moving to the y-coordinate of p. At this time p may either be left or right
of the robot. In case p is left of the robot, by monotonicity the quickest way to meet
p is to move toward p. In case p is to the right of the robot, if the robot moves to
the left, then either the path becomes nonmonotone before it meets p or it must stop
and wait for p to catch up with it, both of which are not possible in a shortest path,
by Lemma 4.1. Thus, in this case also the robot must move toward p.

Corollary 4.4 (triangle inequality 1). If the moving-points pi and pj are in
the positive quadrant and the robot is at pi, then the time tij to travel directly to pj
is bounded by the time to travel to pj via the origin.

Proof. If the composition of the robot’s path from pi to the origin and the path
from the origin to pj is not monotone, then by Corollary 4.2 it cannot be shorter
than the shortest pi–pj path; if it is monotone, then it cannot be shorter than the
particular shortest pi–pj path described in Lemma 4.2.

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2143

Corollary 4.5 (triangle inequality 2). Let tij denote the shortest time of travel
from moving-point pi to moving-point pj. Then for any three points pi, pj , p`, tij +
tj` ≥ ti`

4.2. Useful time expressions. The following time expressions are easily veri-
fied; we will use them in the proofs in this paper. In all of the following keep in mind
that di denotes the distance of pi from the origin at time 0.

• Origin to moving-point. The robot is at the origin at time τ and meets
moving-point pi. The earliest rendezvous time is

τ +
di − vτ
1 + v

=
τ + di
1 + v

.(1)

• Moving-point to origin. At time τ the robot is at a moving-point pi, and it
then returns to the origin. The time of return to the origin is

τ + di − vτ = di + (1− v)τ.(2)

• Moving-point to origin to moving-point. At time τ the robot is at a moving-
point pi; it then returns to the origin and goes to moving-point pj . From (2),
the time of arrival at the origin is di + (1 − v)τ , and during this time point
pj moves closer to the origin by a distance v(di + τ(1− v)). Thus the time of
arrival at pj is

di + τ(1− v) +
dj − v[di + τ(1− v)]

1 + v
=
di + dj
1 + v

+ τ
1− v
1 + v

.(3)

4.3. Optimal rendezvous. We can use the above characterization to derive
some expressions for the shortest time (or distance) needed to meet a moving-point.
Suppose at time t0 the robot is at space-point A = (x1, y1), and moving-point p is at
(x2, y2). Let x = |x1 − x2| and y = |y1 − y2|. If the robot moves and meets moving-
point p at the earliest possible time t0 + t, then t equals one of the following. In view
of Lemma 4.2 we may assume that the robot first moves to the y-coordinate of p and
then meets p by moving parallel to the x-axis.

• If p is to the right of A at time t0 and vy ≤ x, then p remains to the right of
the robot when it reaches the y-coordinate of p, so

t = y +
x− vy
1 + v

=
x+ y

1 + v
.(4)

• If p is to the right of A at time t0 and vy > x, then moving-point p will be to
the left of the robot by the time the robot reaches the y-coordinate of p, so

t = y +
vy − x
1− v =

y − x
1− v .(5)

• If p is to the left of A at time t0, then

t = y +
vy + x

1− v =
x+ y

1− v .(6)

4.4. Robot arms with capacity 1. In the remainder of the paper we write Ck
to denote the (length of the) optimal dynamic k-collect tour.

In dynamic 1-collect TSP, the robot must visit the points one at a time, returning
to the origin after visiting each point. We prove the following theorem.

2144 PRASAD CHALASANI AND RAJEEV MOTWANI

Theorem 4.6. For dynamic 1-collect TSP, the minimum-time tour (under the
L1 metric) visits moving-points in decreasing order of their distance from the origin
at time 0.

Proof. Suppose that the robot visits points p1, . . . , pn in that order. We derive an
expression for the total time T (1) taken by a 1-collect tour. Let Tm denote the time
taken by the tour after it has visited m points and returned to the origin. We show
by induction on m that

Tm =
2

1 + v

(
m∑
i=1

αm−idi

)
,

where we recall that α = 1−v
1+v . The base case, m = 1, follows from an application of

(1), using τ = 0 and i = 1; note that the factor of 2 comes from the requirement that
the robot returns to the origin.

For the induction step, we assume that

Tm−1 =
2

1 + v

m−1∑
j=1

αm−(i+1)di.

Suppose that at time Tm−1 the robot has just returned to the origin after visiting the
point pm−1 and that now it is ready to go visit point pm. The time taken to reach
pm is given by an application of (1) with τ = Tm−1 and i = m, which equals

dm
1 + v

− vTm−1

1 + v
.

The total time required is given by

Tm = Tm−1 + 2

(
dm

1 + v
− vTm−1

1 + v

)
=

(
1− 2v

1 + v

)
Tm−1 +

(
2

1 + v
dm

)
= αTm−1 +

2

1 + v
dm

=
2

1 + v

(
m−1∑
i=1

αm−(i+1)+1di

)
+

2

1 + v
dm =

2

1 + v

(
m∑
i=1

αm−idi

)
.

So the total time T (1) taken by a 1-collect tour is given by

T (1) =
2

1 + v

n∑
i=1

αn−idi.(7)

The theorem then follows.
Thus the optimal dynamic 1-collect tour has some aspects of a maximum latency

tour. In fact the maximum latency problem is implicit in the dynamic k-collect
problem for arbitrary finite k. We make this formal in section 4.7 where we introduce
the notion of geometric latency of a tour.

4.5. Robot arms with infinite capacity. In dynamic k-collect TSP with k =
∞, the robot must visit all the n moving-points before returning to the origin. For
the optimal tour, suppose that the last moving-point visited is p and say that p is at

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2145

distance d from the origin at time 0. If the tour reaches p at time Tp, then by (2) the
total time taken is C∞ = d+ (1− v)Tp.

Our strategy for approximating C∞ is to “guess” the last point p visited by the
optimal tour (there are only n possibilities for p) and approximate the minimum-length
path T ∗p from the origin to p that visits every other moving-point before visiting p
(i.e., the minimum Hamiltonian path from the origin to p).

The problem of approximating T ∗p can be set up as an asymmetric TSP instance
on a graph with n + 1 vertices v0, v1, . . . , vn, where v0 represents the origin and vi
the moving-point pi. The directed distance d(vi, vj) is defined to be the appropriate
distance among (4), (5), and (6). Note that the ratio of the two directed distances
between a given pair of vertices is bounded by either (1+v)/(1−v) or (y+x)/(y−x),
where in the second case vy > x, i.e., x/y < v < 1. Thus, the ratio never exceeds
1/α. The best-known approximation algorithm [28] for the minimum Hamiltonian
path between two specified vertices for a symmetric distance matrix has a ratio 5

3 .
Therefore, using this algorithm, we can approximate T ∗p to within a factor 5

3α and
thereby approximate C∞ to within the same ratio.

Theorem 4.7. There is a 5
3α -approximation algorithm for dynamic k-collect TSP

with k =∞.

4.6. Robot arms with finite capacity k. We now consider dynamic k-collect
TSP. We derive an expression for the time T (k) taken by a k-collect tour. Let m = n/k
denote the number of returns to the origin. We note that when the arm capacity is
k, at least n/k returns to the origin are required, and it may be necessary to return
to the origin more often to minimize the tour length. However, it is easy to show
that the assumption of exactly n/k returns affects our results by a factor of at most
2. Also, in our motivating application, the robot may be required to pick exactly
k objects on each excursion from the origin, which would justify our assumption of
exactly n/k returns.

The sequence of edges traversed can be viewed as

(p0, pv(0)) L1 (pu(1), p0), (p0, pv(1)) L2 (pu(2), p0), (p0, pv(2)) L3, . . . , Lm (pu(m), p0),

where each Li denotes the sequence of edges involving nonorigin points in the ith ex-
cursion from the origin. We abuse notation and denote by Li the time spent travers-
ing the corresponding edges. Let D0 = dv(0), Dm = du(m), and, for 2 ≤ i ≤ m − 1,
Di = du(i) + dv(i).

Notice first that the time till the end of L1 is T1 = D0/(1 + v) +L1 and that the
time to the end of L2 (from (1)) is

T2 = α

(
D0

1 + v
+ L1

)
+

D1

1 + v
+ L2.

If we were to return to the origin after L2 (and d denotes the time-0 distance of the
end of L2 to the origin) the total time would be

T ′ = d+ (1− v)T2 = D0α
2 +D1α+ d+ (1− v)[L1α+ L2].

Generalizing this gives the following expression for T (k):

T (k) = D0α
m +D1α

m−1 + · · ·+Dm−1α+Dm(8)

+ (1− v)[L1α
m−1 + L2α

m−2 + · · ·+ Lm].

2146 PRASAD CHALASANI AND RAJEEV MOTWANI

It might appear from (8) that T (k) → 0 as α → 0. However, (8) is valid only if
at all times, all unvisited moving points remain to the right of the origin (i.e., in the
positive quadrant). In the moving belt scenario, the y-axis represents the end of the
belt. A small α corresponds to a v close to 1, whereas the problem is meaningful only
if v is small enough that the points do not cross the y-axis when the robot is in the
process of grasping them. A reasonable restriction on v is that the time for an optimal
k-collect TSP tour should not suffice for any point to cross the origin. This implies
that C1/k ≤ dav/v, where dav denotes the average of the distances di and that C1/k
is a lower bound on the optimal in the static problem (see for instance [1]). Thus, we
will assume that v(2davn)/k ≤ dav, i.e., v ≤ k

2n . This bound on v, although sufficient
to enable us to prove our approximation results, may not be sufficient to ensure that
the points do not cross the y-axis while the robot arm is visiting them. For instance,
if the points are very close to the y-axis or very far from the x-axis, a tighter bound
on v is needed. Nevertheless, we point out that in practical applications, the bound
is close to the correct one since (a) the conveyor belt is of a fixed width, so no point is
too far from the x-axis, and (b) the parts initially appear at some reasonable distance
from the y-axis.

Given that v ≤ k
2n , in the expression (8) for T (k), the smallest coefficient on any

term is

αm = αn/k ≥ (1− k
2n)n/k

(1 + k
2n)n/k

≥ 1

e
.

This implies that T (k) ≥ 1
e (D0 + L1 +D1 + L2 +D2 + · · ·+ Lm +Dm).

Let us denote the sum of terms in the parentheses by T ′. Minimizing T ′ is a static
k-collect TSP problem on n+1 vertices v0, v1, . . . , vn, where the directed distances are
defined as in the C∞ approximation, except that for all i > 0, d(v0, vi) = di = d(vi, v0).
As we showed before, the ratio of the two directed distances between a pair of vertices
never exceeds 1/α, so the k-collect TSP approximation algorithm of [1] can be used
to approximate T ′ to within a factor 2.5/α of optimal. Thus, we can approximate the
optimal k-collect tour time Ck to within a factor 2.5e/α.

Theorem 4.8. For v ≤ k/2n, there is a (2.5e/α)-approximation algorithm for
dynamic k-collect TSP.

The following lower bound, although not used in this paper, may lead to a different
approximation algorithm for Ck than the one we presented above.

Theorem 4.9. For any finite k, C∞ ≤ Ck.
Proof. Consider the optimal tour Ck for capacity k. (We will abuse notation and

use the same symbol for a tour as for its length.) Let d be the time-0 distance from
the origin of the final moving-point p visited by Ck before returning to the origin,
and let Tp be the time taken by T up to this final point p. From (2), the total time
taken is Ck = Tp(1 − v) + d. Note that before reaching the final point p, T may
do the following several times: go from a moving-point pi to the origin and then to
moving-point pj . However by the Triangle Inequality I (Corollary 4.4), a direct path
from pi to pj is no longer than the path via the origin, so we can short-circuit each
such indirect path by a direct path and gain time. By applying these short-circuits
to every origin-return except the last one, we can modify the optimal tour Ck to an
infinite-capacity tour that reaches p at an earlier time T ′p ≤ Tp, and the total time of
this tour would be (1− v)T ′p + d which is no larger than Ck.

4.7. Geometric latency. The somewhat unwieldy expression (8) for T (k) can
be lower-bounded by a more pleasant cost expression, which we call the geometric

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2147

latency of a tour. We describe this below and show how a variant of the maximum
latency problem arises implicitly in minimizing the geometric latency.

Consider the asymmetric k-collect TSP problem with directed distances as defined
in section 4.6. Now consider a capacity-k tour on this graph and let e1, e2, . . . , eu be
the sequence of (weights of) edges traversed. Fix some positive β < 1, and define the
geometric latency Gβ of this tour to be Gβ =

∑u
i=1 β

u−iei. Assuming for convenience
that n is a multiple of k, u = m+ n.

Lemma 4.10. Let β = α1/k and fix a capacity-k tour of length T (k) for the
moving-points problem. Let Gβ be the geometric latency of the corresponding (i.e.,
same order of visiting points) tour in the corresponding asymmetric k-collect TSP
instance as described above. Then T (k) ≥ Gβ.

Proof. Consider expression (8) for T (k). Since (1− v) ≥ α,

T (k) ≥ (D0 + L1)αm + (D1 + L2)αm−1 + · · · + (Dm−1 + Lm)α + Dm.

The lemma follows by comparing weights of corresponding terms in this expression
and the one for Gβ .

Thus, if we are able to find a constant-factor approximation to a capacity-k tour
with minimum geometric latency Gβ , we would have a constant factor approximation
for the dynamic k-collect TSP problem. We know of no such algorithm that runs in
polynomial time. It is worth noting that Gβ may be rewritten as

Gβ =
u∑
i=1

ei −
u−1∑
i=1

(1− βu−iei),

so minimizing Gβ roughly involves simultaneously minimizing the total tour length
and maximizing the second term, which is a variant of the linear latency. As we
mentioned in section 3, we can approximately maximize the second term, but we do
not know how to simultaneously bound the length of the tour.

4.8. Extensions. In conclusion, we briefly mention some easy extensions of the
model and results for the moving-point scenario. We omit the details.

• The first extension is to the case where all points are moving away from the
origin at velocity v, as would be the case in midair refueling of a formation
of planes. The results and analysis are similar to that presented above.
• The second extension is to the case where the conveyor belt is circular and is

rotating around the origin. We can obtain a constant-factor approximation
for the case where the rotation speed is bounded below the robot’s speed.

Acknowledgments. We are grateful to Alan Frieze for suggesting the bipartite
TSP and for his encouragement. We are deeply indebted to Ken Goldberg and Anil
S. Rao for describing the robotics application and the dynamic TSP problem, and for
their valuable feedback and constant encouragement during the course of this work.
Some of the results reported in this paper are based on joint work with Anil Rao [11].

REFERENCES

[1] K. Altinkemer and B. Gavish, Heuristics for delivery problems with constant error guaran-
tees, Transportation Science, 24 (1990), pp. 294–297.

[2] S. Anily and R. Hassin, The swapping problem, Networks, 22 (1992), pp. 419–433.
[3] S. Anily and G. Mosheiov, The traveling salesman problem with delivery and backhauls, Oper.

Res. Lett., 16 (1994), pp. 11–18.

2148 PRASAD CHALASANI AND RAJEEV MOTWANI

[4] M. J. Atallah and S. R. Kosaraju, Efficient solutions to some transportation problems with
applications to minimizing robot arm travel, SIAM J. Comput., 17 (1988), pp. 849–869.

[5] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, Improved approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen, in Proceedings of the 27th Annual
ACM Symposium on the Theory of Computing, Las Vegas, NV, 1995, pp. 277–283.

[6] L. Bianco, A. Mingozzi, S. Riccardelli, and M. Spadoni, Exact and heuristic procedures
for the traveling salesman problem with precedence constraints, based on dynamic program-
ming, INFOR, 32 (1994), pp. 19–32.

[7] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan,
The minimum latency problem, in Proceedings of the 26th Annual ACM Symposium on
the Theory of Computing, Montreal, Quebec, Canada, 1994, pp. 163–171.

[8] A. Blum, P. Chalasani, and S. Vempala, A constant-factor approximation for the k-MST
problem in the plane, in Proceedings of the 27th Annual ACM Symposium on the Theory
of Computing, Las Vegas, NV, 1995, pp. 294–302.

[9] C. Brezovec, G. Cornuejols, and F. Glover, A matroid algorithm and its application to the
efficient solution of two optimization problems on graphs, Math. Programming, 42 (1988),
pp. 471–487.

[10] B. Carlisle and K. Y. Goldberg, Report on TARDA, in Symposium on Theoretical Aspects
of Rapid Deployment Automation, Adept Technology, San Jose, CA, 1994.

[11] P. Chalasani, R. Motwani, and A. Rao, Approximation algorithms for robot grasp and
delivery, in Proceedings of the 2nd International Workshop on Algorithmic Foundations of
Robotics, Toulouse, France, 1996, pp. 347–362.

[12] M. Charikar, S. Khuller, and B. Raghavachari, Algorithms for capacitated vehicle routing,
in Proceedings of the 30th Annual ACM Symposium on Theory of Computing, Dallas, TX,
1998, pp. 349–358.

[13] N. Christofides, Worst-case analysis for a new heuristic for the traveling salesman prob-
lem, in Symposium on New Directions and Recent Results in Algorithms and Complexity,
J. F. Traub, ed., Academic Press, New York, 1976.

[14] N. Christofides, Vehicle routing, in The Traveling Salesman Problem: A Guided Tour of
Combinatorial Optimization, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys, eds., John Wiley, New York, 1985, pp. 431–448.

[15] J. Edmonds, Submodular functions, matroids and certain polyhedra, in Combinatorial Struc-
tures and Their Applications, Proceedings of Calgary International Conference, Calgary,
AB, Canada, 1970, pp. 69–87.

[16] J. Edmonds, Matroid intersection, Ann. Discrete Math., 4 (1979), pp. 39–49.
[17] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, An analysis of approximations for

finding a maximum weight Hamiltonian circuit, Oper. Res., 27 (1979), pp. 799–809.
[18] K. R. Fox, B. Gavish, and S. C. Graves, An n-constraint formulation of the (time-dependent)

traveling salesman problem, Oper. Res., 28 (1980), pp. 1018–1021.
[19] G. N. Frederickson, M. Hecht, and C. Kim, Approximation algorithms for some routing

problems, SIAM J. Comput., 7 (1978), pp. 178–193.
[20] A. M. Frieze, An Extension of Christofides’ Heuristic to the k-person traveling salesman

problem, Discrete Appl. Math., 6 (1983), pp. 79–83.
[21] N. Garg and D. S. Hochbaum, An O(log k) approximation algorithm for the k minimum

spanning tree problem in the plane, in Proceedings of the 26th Annual ACM Symposium
on the Theory of Computing, Montreal, Quebec, Canada, 1994, pp. 432–438.

[22] M. Goemans and J. Kleinberg, An improved approximation ratio for the minimum latency
problem, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
SIAM, Philadelphia, 1996.

[23] B. L. Golden and A. A. Assad, eds., Vehicle Routing: Methods and Studies, North-Holland,
Amsterdam, 1988.

[24] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26–30.
[25] K. Jansen, Bounds for the general capacitated routing problem, Networks, 23 (1993), pp. 165–

173.
[26] D. Konig, Über graphen und ihre andwendung auf determinantentheorie und mengenlehre,

Math. Ann., 77 (1916), pp. 453–465.
[27] M. Kubo and H. Kagusai, Heuristic algorithms for the single-vehicle dial-a-ride problem, J.

Oper. Res. Soc. Japan, 30 (1990), pp. 354–365.
[28] J. A. Hoogeveen, Analysis of Christofides’ heuristic: Some paths are more difficult than

cycles, Oper. Res. Lett., 10 (1991), pp. 291–295.
[29] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart and Winston,

New York, 1976.

APPROXIMATING CAPACITATED ROUTING AND DELIVERY 2149

[30] T-Y. Li and J-C. Latombe, On-line manipulation planning for two robot arms in a dy-
namic environment, in Proceedings of the 12th Annual IEEE International Conference
on Robotics and Automation, 1995, pp. 1048–1055.

[31] L. Lovász and M. Plummer, Mathing Theory, North-Holland Math. Stud. 29, North-Holland,
Amsterdam, 1986.

[32] A. Lucena, Time-dependent traveling salesman problem—the deliveryman case, Networks, 20
(1990), pp. 753–763.

[33] J. Mitchell, Guillotine subdivisions approximate polygonal subdivisions: A simple new method
for the geometric k-MST problem, in Proceedings of the 7th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SIAM, Philadelphia, 1996.

[34] H. Psaraftis, Scheduling large-scale advance-request dial-a-ride systems, Amer. J. Math. Man-
agement Sci., 6 (1986), pp. 327–367.

[35] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, Spanning
trees short or small, in Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, Arlington, VA, 1994, pp. 546–555.

[36] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, An analysis of several heuristics for
the traveling salesman problem, SIAM J. Comput., 6 (1977), pp. 563–581.

ON FLOOR-PLAN OF PLANE GRAPHS∗

XIN HE†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2150–2167

Abstract. A floor-plan is a rectangle partitioned into a set of disjoint rectilinear polygonal
regions (called modules). A floor-plan F represents a plane graph G as follows: Each vertex of G
corresponds to a module of F and two vertices are adjacent in G iff their corresponding modules
share a common boundary. Floor-plans find applications in VLSI chip design.

If a module M is a union of k disjoint rectangles, M is called a k-rectangle module. It was
shown in [K.-H. Yeap and M. Sarrafzadeh, SIAM J. Comput., 22 (1993), pp. 500–526] that every
triangulated plane graph G has a floor-plan using 1-, 2-, and 3-rectangle modules. In this paper, we
present a simple linear time algorithm that constructs a floor-plan for G using only 1- and 2-rectangle
modules.

Key words. algorithm, plane graph, rectangular dual, floor-plan

AMS subject classifications. 05C10, 05C75, 05C85, 68Q25, 68Q35, 68R10

PII. S0097539796308874

1. Introduction. Floor-planning is an early step in VLSI chip design where one
decides the relative location of functional entities on a chip (see [25] and the references
cited within). The most immediate representation of a floor-plan is a partition of a
rectangular chip area into modules (usually rectilinear polygons) where each module
represents a functional entity. In the floor-planning process, we are given a graph
G = (V,E). Each vertex of G represents a functional entity. The edges of G represent
the adjacency requirements between the functional entities. We want to partition a
rectangular chip area into a set of rectilinear polygonal modules and map each vertex
of G to a module such that two vertices are adjacent in G iff their corresponding
modules share a common boundary. If G has such a floor-plan, clearly G must be a
plane graph.

For simplicity, most floor-planning systems are restricted to using rectangular
modules. (In [25], a rectangular module is called a 0-concave rectilinear module or
0-CRM since it has no concave corners). In the literature, a floor-plan of G using only
rectangular modules is called a rectangular dual of G. The problem of constructing
rectangular duals has been extensively studied. The necessary and sufficient condi-
tions for G to have a rectangular dual were given in [14, 15, 16]. An algorithm for
solving this problem was developed in [1, 2]. Although it runs in linear time, this algo-
rithm is fairly complicated. A simple linear time algorithm for solving the rectangular
dual problem was developed in [7, 12, 13]. The coordinates of the rectangular duals
constructed by this algorithm are integers and carry clear combinatorial meaning. A
parallel implementation of this algorithm, working in O(log2 n) time with O(n) pro-
cessors, was given in [8]. A necessary and sufficient condition for a plane graph to
have a rectangular drawing was given in [22]. Based on this characterization, a linear
time algorithm to obtain a rectangular drawing of a plane graph was given in [18].
A rectangular dual of a plane graph G can be obtained by applying this algorithm

∗Received by the editors September 9, 1996; accepted for publication (in revised form) September
15, 1998; published electronically July 7, 1999. A preliminary version of this paper appeared in the
Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, 1997, pp. 426–435.

http://www.siam.org/journals/sicomp/28-6/30887.html
†Department of Computer Science and Engineering, State University of New York at Buffalo,

Buffalo, NY 14260 (xinhe@cs.buffalo.edu). This work was partially supported by National Science
Foundation grant CCR-9205982.

2150

ON FLOOR-PLAN OF PLANE GRAPHS 2151

Fig. 1. Rectilinear modules with 2 concave corners.

to the dual graph of G. The applications of rectangular duals were also discussed in
[5, 9, 17].

However, not every plane graph G has a rectangular dual. If G has a triangle
(a cycle with three edges) that encloses some vertices in its interior (such triangles
will be called separating triangles and were called complex triangles in [25]), then G
cannot have a rectangular dual because at least four rectangles are needed in order
to enclose a nonempty area on the plane.

The problem of constructing floor-plans for general plane graphs (which may have
separating triangles) was investigated in [19, 25]. If G has separating triangles, any
floor-plan of G must use nonrectangular modules. In the applications of floor-plans,
it is desirable to use modules whose shapes are as simple as possible [25]. This raises
a natural question: How complex must these modules be? In [19, 25], the number
of concave corners of a module M is taken as its complexity measure. If M has k
concave corners, it is called a k-CRM in [25]. Thus a 0-CRM is just a rectangle. A
1-CRM is an L-shaped module. The possible shapes of 2-CRMs are shown in Figure
1. The necessary and sufficient conditions for G to have a floor-plan consisting of only
0- and 1-CRMs were given in [19]. It was shown in [25] that, in order to design a
floor-plan for an arbitrary plane graph, it is both necessary and sufficient to use 0-,
1-, and 2-CRMs.

A more natural measure on the complexity of a module M is the minimum number
of disjoint rectangles whose union forms M . If M is the union of k disjoint rectangles,
we call M a k-rectangle module. In particular, a 1-rectangle module is a rectangle.
Some 2-CRMs shown in Figure 1 are 3-rectangle modules. Thus the results in [25] state
that we can always construct a floor-plan of an arbitrary plane graph G using only
1-, 2-, and 3-rectangle modules. As mentioned above, the floor-plans of plane graphs
with separating triangles must use k-rectangle modules for k > 1. The remaining
question is: Can we always find a floor-plan for an arbitrary plane graph G using only
1- and 2-rectangle modules? In this paper, we answer this question affirmatively. We
present a linear time algorithm that constructs a floor-plan for G using only 1- and
2-rectangle modules.

As mentioned above, the existence of separating triangles is the reason for using
nonrectangular modules. The main problem in designing a floor-plan for G using low
complexity modules is to “eliminate” all separating triangles of G in some way. The
weighted separating triangle elimination problem has been shown to be NP-complete
[20].

The floor-plan algorithm in [25] consists of two steps. The first step is to “assign”
all separating triangles of G to the vertices of G so that each vertex is assigned at
most twice. The second step constructs a floor-plan by using the separating triangle-
vertex assignment computed in the first step. The algorithms in [25] for both steps
use recursion and are fairly complex. The floor-plan algorithm presented here uses
the same two steps as in [25]. However, our approaches are quite different from that
in [25]. In the first step, we use the canonical ordering concept introduced in [6]. The

2152 XIN HE

resulting algorithm is extremely simple. Our algorithm for the second step uses the
vertex expansion operation to eliminate all separating triangles and then constructs
a floor-plan of G by calling the rectangular dual algorithm in [7, 12, 13]. Although
both our algorithm and the algorithm in [25] run in linear time, our algorithm is
much simpler. In addition, the floor-plan constructed by our algorithm uses 1- and
2-rectangle modules and integer coordinates. In contrast, the floor-plans produced by
the algorithm in [25] need 3-rectangle modules.

Instead of using the vertex expansion operation, there is another way to eliminate
a separating triangle T from the input graph: Break an edge e of T by adding a new
vertex at the middle of e. A heuristic algorithm based on this approach was given in
[23]. Unfortunately, this approach does not work well. We will present a plane graph
G and show that if the “break edge” approach is used to construct a floor-plan for
G, we must use 3-rectangle modules. The construction of G requires sophisticated
graph-theoretic arguments.

The present paper is organized as follows. Section 2 presents necessary definitions
and background. In section 3, we present our simple floor-plan algorithm. In section
4, we describe a plane graph G whose floor-plan requires using 3-rectangle modules if
the “break-edge” approach is taken.

2. Definitions and background. Most graph-theoretic definitions in this pa-
per are standard [3]. Let G = (V,E) be a planar graph with n vertices. In this paper,
we always assume G is equipped with a fixed plane embedding. Namely G is a plane
graph. The embedding of G divides the plane into a number of connected regions.
Each region is called a face. The unbounded face of G is called its exterior face. Other
faces are interior faces. The vertices and the edges on the boundary of the exterior
face are called exterior vertices and exterior edges. Other vertices and edges are inte-
rior vertices and interior edges. N(v) denotes the set of neighbors of a vertex v. Let
deg(v) = |N(v)|.

In this paper, the terms path and cycle always mean simple path and simple cycle
(i.e., the vertices of path and cycle are distinct). A triangle is a cycle consisting of
three edges. A cycle C of G divides the plane into its interior and exterior regions.
If x is a vertex of a cycle C, we say C contains x. If a vertex y is in the interior of
C, we say C encloses y. If a triangle C encloses at least one vertex in its interior, C
is called a separating cycle. (This definition differs from its standard meaning which
requires that there exists at least one vertex in the interior and at least one vertex
in the exterior of C.) An internally triangulated plane graph is a plane graph all of
whose interior faces are triangles. A triangulated plane graph is a plane graph all of
whose faces (including the exterior face) are triangles.

We assume the embedding information of G is given by the following data struc-
ture. For each v ∈ V , there is a doubly linked circular list containing all vertices
of N(v) in counterclockwise order. The two copies of an edge (u, v) are cross-linked
to each other. This representation can be constructed as a by-product by using a
planarity testing algorithm in linear time (e.g., [10]).

A floor-plan F is a rectangle partitioned into a set of disjoint rectilinear modules.
If all modules of F are rectangles, F is called a rectangular dual. A floor-plan F
represents a plane graph G as follows: Each module of F corresponds to a vertex of
G. Two vertices of G are adjacent in G iff their corresponding modules in F share at
least one line seqment as their common boundary. A floor-plan F of a plane graph G
is shown in Figure 2. The vertices e, i, g form a separating triangle and the module
for g is a nonrectangular module.

ON FLOOR-PLAN OF PLANE GRAPHS 2153

a

b

c

d

e f

gh
i

a

b

c

d

e f

gh
i

F G

Fig. 2. A floor-plan F of a plane graph G.

Given a floor-plan F , the locations where at least two line segments meet are
called the points of F . Since all modules of F are rectilinear polygons, at most four
line segments can meet at the same point. We will assume the degree of any point of
F is at most 3. This convention is used in most literature (see, for example, [25]). This
convention considerably simplifies discussions and does not really limit the generality
of the results. (The reason can be seen as follows. Each interior point of F corresponds
to an internal face of G. Thus each internal face of G consists of either three or four
vertices. If G has a face f consisting of four vertices u, v, w, x in counterclockwise
order, we add a dummy edge (u,w) to triangulate the face f . In the floor-plan for the
resulting graph, the modules for the vertices u and w share a common boundary. In
the VLSI layout problem, we can simply ignore this common boundary. Alternatively,
if four line segments meet at a point p of F , we can replace p by two degree-3 points
connected by a line segment of zero length). Thus we assume all interior faces of G are
triangles. When discussing rectangular duals, we assume that the exterior face of G
has four vertices. (The conversion from the case of more than four exterior vertices to
the case of four exterior vertices were discussed in [1, 7, 14]). When discussing floor-
plans (where nonrectangular modules are allowed), we assume that G has either three
or four exterior vertices. So under these conventions, we can restrict our discussion
to internally triangulated plane graphs with either three or four exterior vertices. We
will call such a graph a triangulated plane graph (TPG). Our floor-plan algorithm is
based on the following theorem [7, 12, 13]:

Theorem 2.1. A TPG G has a rectangular dual iff it has four exterior vertices
and has no separating triangles. Moreover, a rectangular dual of G with integer coor-
dinates can be constructed in linear time.

3. A simple floor-plan algorithm. Let G = (V,E) be a TPG. We want to
construct a floor-plan for G. The basic idea of our algorithm is as follows. First, we
identify a subset V ′ ⊆ V such that every separating triangle T of G contains at
least one vertex x ∈ V ′. (In this case, we say T is assigned to x). Then we convert
G to a new TPG G1 which has no separating triangles. G1 is obtained from G by
performing the vertex expansion operation on all vertices in V ′. When this operation
is performed on a vertex x ∈ V ′, x is “split” into two vertices x1 and x2. The purpose
of this operation is to “destroy” the separating triangles of G assigned to x. Next
we run the rectangular dual algorithm in Theorem 2.1 on G1 to obtain a rectangular
dual F1 of G1. Finally, a floor-plan F of G is constructed from F1 as follows: For each
vertex x ∈ V ′ that was expanded into two vertices x1 and x2 in G1, the module of F
representing x is the union of the two rectangles of F1 corresponding to x1 and x2.

2154 XIN HE

1 2
3

4 5
6

7
8

9

Fig. 3. A canonical ordering of G.

The rest of this section describes the details of our algorithm.
Let T (G) denote the set of all separating triangles of G. If a separating triangle

T1 ∈ T (G) is in the interior of another separating triangle T2 ∈ T (G), T1 is a descen-
dent of T2. If there is no T3 ∈ T (G) such that T1 is a descendent of T3 and T3 is a
descendent of T2, T1 is a child of T2. The child relation defines a forest structure on
T (G).

Consider a separating triangle T ∈ T (G) with three vertices x, y, z. In any floor-
plan of G, in order to satisfy the adjacency requirements of T , at least one of the
three modules for x, y, z must be a nonrectangular module. We will assign T to one
of x, y, z. If a vertex x is assigned a separating triangle, x will be represented by a
nonrectangular module. Consider two separating triangles T1, T2 ∈ T (G) where T1 is
a descendent of T2 and both T1 and T2 contain x. If we use a nonrectangular module
for x, it is possible that the adjacency requirements for both T1 and T2 are satisfied.
So we can assign both T1 and T2 to x. This observation was made in [25]. It leads to
the following definition.

Definition 3.1. A nesting sequence assigned to a vertex x ∈ V is a sequence
T1, T2, . . . , Tk of separating triangles in T (G) such that each Ti (1 ≤ i ≤ k) contains
x; and Ti is a descendent of Ti+1 for 1 ≤ i ≤ k − 1.

In order to construct a floor-plan for G, we need to assign all separating triangles
in T (G) to the vertices of G satisfying the following valid assignment conditions.

Definition 3.2. A valid assignment of G is a mapping of all separating triangles
in T (G) to a set of nesting sequences such that:

1. Each T ∈ T (G) belongs to at least one nesting sequence.
2. Each vertex of G is assigned at most two nesting sequences.

The first step of our floor-plan algorithm is to find a valid assignment of G. Our
algorithm uses the following canonical ordering concept introduced in [6].

Definition 3.3. Let G = (V,E) be a TPG with three exterior vertices u, v, w. A
canonical ordering of G is an ordering of V by v1, v2, . . . , vn such that v1 = u, v2 = v,
vn = w and the following requirements hold for every 4 ≤ k ≤ n:

1. The subgraph Gk−1 of G induced by v1, v2, . . . , vk−1 is biconnected and the
boundary of its exterior face is a cycle Ck−1 containing the edge (v1, v2).

2. vk is in the exterior face of Gk−1, and its neighbors in Gk−1 form a subpath
of the path Ck−1 − {(v1, v2)} consisting of at least two vertices. If k ≤ n− 1,
vk has at least one neighbor in G−Gk−1.

An example of a canonical ordering is shown in Figure 3.
The exterior face Ck of Gk is called the contour of Gk. The canonical ordering

ON FLOOR-PLAN OF PLANE GRAPHS 2155

v

Edges in separating triangles

Other edges

Contour edges

Triangles assigned to a vertex

c c

k

l r

Fig. 4. Assigning separating triangles to vertices.

of G can be viewed as an ordering of adding the vertices one-by-one into the graph
starting from the edge (v1, v2). Let cl, cl+1, . . . , cr be the neighbors of vk in Gk−1

ordered from left to right. When vk is added, it becomes a new contour vertex while
the vertices cl+1, . . . , cr−1 cease to be contour vertices. If vk and two vertices ci, cj
(l ≤ i < j ≤ r) form a separating triangle T , (vk, ci) is called the left edge of T and
(vk, cj) the right edge of T . The following algorithm computes a valid assignment of
G.

Algorithm 1.

Input: A TPG G.

Output: A valid assignment of G.

1. Compute a canonical ordering v1, v2, . . . , vn of G by calling the algorithm in
[11]. (If G has four exterior vertices, a slight modification of the algorithm in
[11] finds a canonical ordering of G. Let u, v, w, x be the four exterior vertices
of G in counterclockwise order. If (v, x) is not an edge of G, u, v, x will be
numbered as v1, v2, vn. If (v, x) is an edge of G, u, v, w will be numbered as
v1, v2, vn).

2. For k := 4 to n Do:
(a) Let cl, cl+1, . . . , cr be the neighbors of vk in Gk−1 ordered from left to

right. For each i (l < i < r), the separating triangles of G (if any) that
are introduced when vk is added and have (vk, ci) as their right edge
define a nesting sequence. Assign this sequence to ci. (See Figure 4.)

(b) The separating triangles of G (if any) that are introduced when vk is
added and have (vk, cr) as their right edge define a nesting sequence.
Assign this sequence to vk. (See Figure 4.)

End Algorithm 1.

Lemma 3.1. Algorithm 1 computes a valid assignment of G and runs in linear
time.

Proof. Consider an arbitrary separating triangle T of G. Let vk be the highest
numbered vertex among the three vertices of T . At the kth stage of the For loop, T
belongs to a nesting sequence that is assigned to either a contour vertex ci or to the
vertex vk. Since T is arbitrary, each separating triangle of G belongs to at least one
nesting sequence.

Any vertex vk of G can be assigned at most two nesting sequences: (i) when it
first becomes a contour vertex (at step 2 (b)); and (ii) when it ceases to be a contour

2156 XIN HE

x
1x2

y
i

y
j

x
1x2

y
i

y
1y

p

(a) (b)

Fig. 5. Vertex expansion operation.

vertex (at step 2 (a)). Thus Algorithm 1 computes a valid assignment of G.

Next, we show Algorithm 1 can be implemented in linear time. A canonical or-
dering of G can be computed in O(n) time [11]. By using the algorithm in [4], we can
enumerate all triangles of G in linear time. For each triangle T of G identified, we can
check if T is a separating triangle of G in O(1) time by using the plane embedding
data structure of G. Thus the set T (G) of all separating triangles of G can be iden-
tified in O(n) time. Sort the separating triangles T in T (G) according to the highest
numbered vertex in T . This can be done by using bucket sort in O(n) time. Let T (vk)
be the separating triangles in T (G) with vk as the highest numbered vertex.

The kth iteration of the For loop processes the separating triangles in T (vk).
Clearly, the number of separating triangles in T (vk) is at most O(deg(vk)). We sort
the separating triangles T in T (vk) according to the right vertex of T on the contour
cl, . . . , cr. This can be done in O(deg(vk)) time by using bucket sort. For each ci
(l < i < r), all separating triangles in T (vk) with (ci, vk) as the right edge are
assigned to ci. All separating triangles with (cr, vk) as the right edge are assigned to
vk. Clearly, the kth iteration can be performed in O(deg(vk)) time. So the total time
to execute step 2 is O(

∑n
k=4 deg(vk)) = O(n).

Remark 1. The vertices v1 and v2 are not assigned any sequence. If G has three
exterior vertices, its exterior face is a separating triangle and the vertex vn is assigned
exactly one sequence. If G has four exterior vertices u = v1, v = v2, w, x, the vertices
w and x are assigned at most one sequence each.

Next we describe the second step of our algorithm: Construct a floor-plan of G
using a valid assignment of G. First we define the vertex expansion operation.

Definition 3.4. Let x be an interior vertex of G with neighbors y1, . . . , yp in
clockwise order. The operation of vertex expansion on x with respect to yi, yj (1 ≤
i < j ≤ p) is (see Figure 5 (a)):

1. Delete x. Create two new vertices x1 and x2. Add a new edge (x1, x2).
2. For t = i+ 1, . . . , j − 1, replace the edge (x, yt) by (x1, yt). For t = j + 1, j +

2, . . . , p, 1, . . . , i− 1, replace the edge (x, yt) by (x2, yt).
3. Replace the two edges (x, yi) and (x, yj) by four new edges: (x1, yi), (x2, yi)

and (x1, yj), (x2, yj).

Definition 3.5. Let x be an exterior vertex of G with neighbors y1, . . . , yp in
clockwise order where y1 and yp are exterior vertices. The operation of vertex expan-
sion on x with respect to yi (1 ≤ i ≤ p) is as follows (see Figure 5 (b)).

1. Delete x. Create two new vertices x1 and x2. Add a new edge (x1, x2).
2. For t = 1, . . . , i − 1, replace the edge (x, yt) by (x1, yt). For t = i + 1, . . . , p,

ON FLOOR-PLAN OF PLANE GRAPHS 2157

replace the edge (x, yt) by (x2, yt).
3. Replace the edge (x, yi) by two new edges: (x1, yi), (x2, yi).

Note that after x is expanded, we always have N(x) = N(x1)∪N(x2). In a valid
assignment of G, each vertex of G is assigned at most two nesting sequences. For
each vertex x that is assigned at least one sequence, we perform the vertex expansion
operation on x. There are three cases.

Case 1. x is an interior vertex and is assigned two sequences {T1, T2, . . . , Tp} and
{S1, S2, . . . , Sq} (where T1 is the innermost triangle in the first sequence and S1 is the
innermost triangle in the second sequence). Let yi be a neighbor of x in the interior
of T1 (since T1 is a separating triangle, yi must exist) and yj be a neighbor of x in the
interior of S1. Perform the vertex expansion operation on x with respect to yi and yj .

Case 2. x is an interior vertex and is assigned one sequence {T1, T2, . . . , Tp} (where
T1 is the innermost triangle in the sequence). Let yi be a neighbor of x in the interior
of T1 and yj be a neighbor of x in the exterior of T1. (It is easy to see that yj must
exist). Perform the vertex expansion operation on x with respect to yi and yj .

Case 3. x is an exterior vertex. In this case, x is assigned one sequence {T1, T2, . . . ,
Tp} (where T1 is the innermost triangle in the sequence). Let yi be a neighbor of x in
the interior of T1. Perform the vertex expansion operation on x with respect to yi.

After performing the vertex expansion operation on all vertices that are assigned
at least one nesting sequence, the resulting graph G1 is a TPG with no separating
triangles. (This is because every separating triangle of G belongs to at least one nesting
sequence assigned to a vertex v, and the expansion of v destroys such a separating
triangle. On the other hand, no new separating triangles can be created by vertex
expansion operation). Below we describe how to obtain a floor-plan for G.

First, assume G has three exterior vertices. By Remark 1, exactly one exterior
vertex is assigned a sequence and is expanded. Thus G1 has four exterior vertices. We
use the algorithm in Theorem 2.1 to find a rectangular dual F1 for G1. A floor-plan
F of G can be obtained from F1 as follows. Consider any vertex x of G. If the vertex
expansion operation is not performed on x, we take the rectangle in F1 for x to be the
module in F representing x. If the vertex expansion operation is performed on x, there
are two vertices x1 and x2 in G1 corresponding to x. The module in F representing
x is the union of the two rectangles in F1 for x1 and x2. Clearly, F is a floor-plan of
G consisting of only 1- and 2-rectangle modules.

Next assume G has four exterior vertices. By Remark 1, either 0, or 1, or 2 exterior
vertices of G are assigned a sequence and expanded. Thus G1 has either 4, or 5, or
6 exterior vertices. In the first case, we can use the same construction described in
the last paragraph. In the other two cases, in order to use Theorem 2.1, we have to
modify the graph G1. We consider the case where G1 has 6 exterior vertices. (The
case of 5 exterior vertices is similar). Let u, v, w, x be the four exterior vertices of G in
counterclockwise order. Suppose that w is expanded to w1 and w2; and x is expanded
to x1 and x2. The exterior face of G1 is u, v, w1, w2, x1, x2 in counterclockwise order
(Figure 6 (a).) It is easily seen that G1 cannot have both edges (u,w2) and (v, x1).
We modify G1 to a new TPG G2 as follows: Add two new vertices y, z and a new
edge (y, z) in the exterior face of G1. Connect y and z to the exterior vertices of G1

according to the following conditions:
Case A. (u,w2) is not an edge of G1. Add edges (z, u), (z, x2), (z, x1), (z, w2) and

the edges (y, w2), (y, w1), (y, v). (See Figure 6 (a).) Let G2 be the resulting graph. It is
easy to check that G2 has no separating triangles. So we can construct a rectangular
dual F2 of G2 by using the algorithm in Theorem 2.1. By removing the two rectangles
of F2 corresponding to y and z (and modifying the rectangles for u and v if necessary),

2158 XIN HE

u

(b) F(a) G

v

yz
x

1 w
1

2
x

2w
u

v

y

z

x
1 w

1

2
x

2w

2 2

Fig. 6. Convert G1 to a TPG with four exterior vertices.

we get a rectangular dual F1 for G1. (See Figure 6 (b).) By using the method described
above, F1 can be converted to a floor-plan F of G.

Case B. (v, x1) is not an edge of G1. Add edges: (z, u), (z, x2), (z, x1), (y, x1),
(y, w2), (y, w1), (y, v). Then the construction is the same as in Case A.

Theorem 3.2. Given an arbitrary TPG G, a floor-plan of G using 1- and 2-
rectangle modules and integer coordinates exists and can be computed in linear time.

Proof. The existence of such a floor-plan is proved in the above discussion. We
only need to show it can be constructed in linear time. A valid assignment of G
can be computed in linear time (Lemma 3.1). The vertex expansion operation on x
can be performed in O(deg(x)) time by using the planar embedding data structure.
Thus the total time for this step is O(

∑
x∈V deg(x)) = O(n). After G1 is constructed,

its rectangular dual F1 can be computed in O(n) time by using the algorithms in
[7, 12, 13]. The conversion from F1 to the floor-plan F of G clearly takes linear
time.

4. A TPG requiring 3-rectangle models using break-edge method. A
heuristic algorithm was proposed in [23] to construct a floor-plan for a triangulated
plane graph G using low complexity modules. Instead of using vertex expansion, this
algorithm uses breaking edge operation to eliminate the separating triangles. In this
section, we show that this heuristic algorithm does not work well. We will describe a
plane graph G and show that if the algorithm in [23] is applied to G, a 3-rectangle
module must be used.

First we describe the “break edge” operation used in [23]. Consider a separating
triangle T of G with three vertices x, y, z. In order to “eliminate” T , an edge of T , say
(x, y) is selected. Let T ′ and T ′′ be the two interior triangular faces of G having (x, y)
on their boundary. Let u and v be the third vertex of T ′ and T ′′, respectively (Figure
7 (a)). Now add a new vertex w at the middle of (x, y) and connect w to u and v. (If
(x, y) is an exterior edge, there is only one interior face T ′ containing (x, y). In this
case, we only connect w to u.) After this “break edge” operation, the resulting graph
is still a TPG and T is no longer a separating triangle. We say the edge (x, y) covers
T . The edge (x, y) is assigned to either x or y.

In order to find a floor-plan F of G, the algorithm in [23] performs this operation
on all separating triangles of G. More precisely, for each separating triangle T , an
edge e = (x, y) of T is selected to cover T and e is assigned to either x or y. Let E1

be the set of the selected edges. Then the “break edge” operation is performed on

ON FLOOR-PLAN OF PLANE GRAPHS 2159

x

wu

y

z vT’

T"
x

wu

y

z
v

(a) (b)

Fig. 7. Break an edge.

every edge in E1. The resulting graph G1 is a TPG with no separating triangles. A
rectangular dual F1 of G1 is constructed. F1 can be converted to a floor-plan F of G
as follows: For each vertex x of G, the module in F representing x is the union of the
rectangles in F1 for x and for the added vertices on the edges that are assigned to x.
(See Figure 7 (b). In this figure, the edge (x, y) is assigned to x. So the module for x
is the union of the two rectangles labeled by x and w.) F is clearly a floor-plan of G.
Note that F uses only 1- and 2-rectangle modules iff each vertex x of G is assigned
at most one edge.

Definition 4.1. A valid cover-assignment of G = (V,E) is a subset E1 ⊆ E
and an assignment of each edge e ∈ E1 to one of its two end vertices such that the
following hold:

1. Each separating triangle T of G has at least one edge in E1.
2. Each vertex of G is assigned at most one edge.

Thus if G has a floor-plan consisting of only 1- and 2-rectangle modules by using
this “break edge” approach, then G must have a valid cover-assignment. In this sec-
tion, we describe a TPG Ḡ and show that Ḡ has no valid cover-assignment. Hence if
the “break edge” approach is used to eliminate the separating triangles of Ḡ, there
must be a vertex v with at least two edges assigned to v. Therefore, in the floor-plan
for Ḡ constructed by using this approach, the module for v is the union of at least
three rectangles. In other words, we are forced to use 3-rectangle modules.

Consider a triangulated plane graphG with n vertices. Let Ḡ be the TPG obtained
from G by adding a new vertex vf in each internal face f of G and connecting vf to
the three vertices of f . We would like to find a floor-plan for Ḡ. Note that all faces of
G are separating triangles of Ḡ. Let G∗ be the dual graph of G. To avoid confusion,
the vertices of G∗ will be referred to as nodes. Each edge e∗ of G∗ corresponds to
an edge e in G. e∗ will be called the dual edge of e. Clearly, G∗ is a 3-regular and
3-connected plane graph.

Our proof plan is as follows: First, we assume that Ḡ has a valid cover-assignment
and derive the conditions that G and G∗ must satisfy. Then we present a graph G
and show that these conditions do not hold for G and G∗.

Define a pseudotree to be a connected graph with at most one cycle. In other
words, a pseudotree is either a tree, or a tree T plus an additional edge connecting
two vertices of T .

Let E1 be a valid cover-assignment of Ḡ. Since only the edges in G can be used
to cover the separating triangles of Ḡ, E1 is actually a subset of the edges in G. Let
G[E1] denote the subgraph of G spanned by E1.

2160 XIN HE

Lemma 4.1. Let E1 be a valid cover-assignment of Ḡ. Let G[E1] denote the
subgraph of G spanned by E1. Then any connected component of G[E1] is a pseudo-
tree.

Proof. Since each edge in E1 is assigned to a unique vertex of G, we have |E1| ≤ n.
Consider a connected component C of G[E1] with k vertices. Being connected, C has
at least k− 1 edges. On the other hand, since every edge of C is assigned to a unique
vertex of C, C contains at most k edges. So C is a pseudotree.

Consider the dual graph G∗ of G. Each node of G∗ corresponds to a face of G.
Since G is a triangulated plane graph, G∗ has 2n− 4 nodes. Let E∗1 be the set of dual
edges of E1. A face f of G is covered by an edge e ∈ E1 iff the dual edge e∗ of e is
incident to the node in G∗ corresponding to f . Since all of the 2n− 4 faces of G must
be covered and each edge of E1 can cover only two faces, we have |E∗1 | = |E1| ≥ n−2.
Hence |E∗1 | = n−2, or n−1, or n. Consider the subgraph G∗−E∗1 (which is obtained
from G∗ by removing the edges in E∗1). Since G∗ is 3-regular, we have the following
three cases.

Case 1. |E∗1 | = n − 2. Then each node in G∗ is incident to exactly one edge in
E∗1 . (Namely, E∗1 is a perfect matching of G∗). Thus, each node of G∗ has degree 2 in
G∗ − E∗1 . Hence G∗ − E∗1 is a collection of disjoint cycles.

Case 2. |E∗1 | = n − 1. Either one node in G∗ is incident to three edges in E∗1
and all other nodes are each incident to one edge in E∗1 ; or two nodes in G∗ are each
incident to two edges in E∗1 and all other nodes are each incident to one edge in E∗1 .
In either case, G∗ − E∗1 is the union of a path and a collection of cycles. (A single
node is considered as a path of length 0).

Case 3. |E∗1 | = n. Similar to Case 2, it can be shown that G∗ − E∗1 is the union
of two paths and a collection of cycles.

This motivates the following definition.

Definition 4.2. A Hamiltonian-like decomposition (HLD) of a 3-regular plane
graph G∗ is a partition of the node set of G∗ into subsets P1, P2, . . . , Ps such that each
Pi (1 ≤ i ≤ s) forms either a cycle or a path of G∗, and at most two Pi’s are paths.

Let P = {P1, P2, . . . , Ps} be a HLD of G∗. Consider a cycle Pk ∈ P. If Pi ∈ P
(i 6= k) is in the interior of Pk, we say Pi is a descendent of Pk. If there is no Pj ∈ P
such that Pi is a descendent of Pj and Pj is a descendent of Pk, then Pi is a child of
Pk. The child relation defines a forest structure on P. Let K(G∗,P) be the following
graph: Its vertex set is P. Pi, Pj ∈ P are adjacent in K(G∗,P) iff Pi is a child of Pj .

Definition 4.3. A HLD P of G∗ is called a linear HLD if the forest K(G∗,P)
has at most two trees and each of them is a linear path (i.e., each vertex has at most
one child).

Theorem 4.2. If Ḡ has a valid cover-assignment E1, then G∗ − E∗1 is a linear
HLD of G∗.

Proof. In the above discussion, we have shown that if Ḡ has a valid cover-
assignment E1, then P = G∗ − E∗1 = {P1, P2, . . . , Pq} is a HLD of G∗. We will
show P is linear. Suppose not. Then there exist Pi, Pj , Pk ∈ P such that one of the
following two situations occurs:

(1) Pk is a cycle; Pi and Pj are children of Pk;

(2) Pi, Pj , Pk are not in the interior of any cycle in P.

The theorem follows if we can prove both (1) and (2) are impossible. We first prove
the situation (1) is impossible. Let Pl1 = Pi, Pl2 = Pj , Pl3 , . . . , Plr be the members in
P that are children of Pk. Let E∗2 ⊂ E∗1 be the subset of the edges in E∗1 that are in
the interior of Pk but in the exterior of Pl1 , Pl2 , . . . , Plr . Let E2 be the subset of the

ON FLOOR-PLAN OF PLANE GRAPHS 2161

A

Bl1

B
l2

B
l3

Nodes in A*

Nodes in B*

Nodes in B*

Nodes in B*
l1

l2

l3

Edges in G[E]

Other edges in G

2

Fig. 8. The proof of the claim.

edges in G corresponding to the edges in E∗2 .
Claim. The subgraph of G[E2] of G is connected and is not a pseudotree.
Note: The claim implies that G[E2] is contained in a connected component of

G[E1] and is not a pseudotree. Hence E1 cannot be a valid cover-assignment of Ḡ by
Lemma 4.1.

Let A∗ be the set of the nodes of G∗ that are on Pk or in the exterior of Pk. For
each 1 ≤ s ≤ r, let B∗ls be the set of the nodes of G∗ that are on Pls or in the interior
of Pls (if Pls is a cycle).

Let A be the region on the plane that is the union of the faces of G corresponding
to the nodes in A∗. Let Bls (1 ≤ s ≤ r) be the region on the plane that is the union
of the faces of G corresponding to the nodes in B∗ls .

It can be seen thatG[E2] is exactly the common boundary of the regionsA,Bl1 , . . . ,
Blr . (See Figure 8 where r = 3). It is easy to show that the common boundary of
these regions are connected. The boundary of Bl1 is a cycle (not necessarily simple).
The boundary of Bl2 is also a cycle. Thus, G[E2] is connected and has at least two
cycles. Hence it is not a pseudotree. This proves the claim. So the situation (1) cannot
occur.

To show the situation (2) cannot occur, let Pk be the member of P that con-
tains the node of G∗ corresponding to the exterior face of G and repeat the above argu-
ment.

In the rest of this section, we present a 3-regular and 3-connected plane graph G∗

that does not have a linear HLD. Then the corresponding graph Ḡ has no valid cover-
assignment by Theorem 4.2. The construction of G∗ is fairly complex. This is to be
expected considering the following historical perspective (see [3], pp. 160–162). While
attempting to prove the 4-color conjecture, Tait “proved” the following proposition
in 1880 [21].

PROPOSITION. Every 3-regular and 3-connected planar graph has a Hamiltonian
cycle.

The 4-color theorem follows easily from this proposition (see [3, pp. 158–159]).
Over sixty years later, however, Tutte showed in [24] that this proposition is false
by giving a counter-example shown in Figure 9 (a) (ignore the vertices a, b, c). This
graph is commonly referred to as the Tutte’s graph. Since the conditions of having a
linear HLD is weaker than that of having a Hamiltonian cycle, it is harder to find a
3-regular and 3-connected planar graph without a linear HLD.

2162 XIN HE

o
z

1

x
1

y
1

y
3

x
3z

3

z
2

x
2

y
2

z

x y
D

1

D
2

D
3

a

b

c

(a) The graph S (b) The graph D

Fig. 9. Tutte’s graph.

We use the Tutte’s graph as a building block in constructing our graph G∗. Let
S denote the graph shown in Figure 9 (a). It is obtained from the Tutte’s graph by
adding three new nodes a, b and c at the middle of three edges. In the following, HP
stands for Hamiltonian path.

Lemma 4.3. In the graph S, there is no HP between a and b; no HP between b
and c, no HP between c and a.

Proof. Tutte’s graph T consists of three copies of the graph D shown in Figure 9
(b). The following fact was proved in [24].

Fact 1. In the graph D, there is no HP between x and y. (However, D does have
a HP between y and z and a HP between x and z.)

Toward a contradiction, suppose that S has a HP Q starting at a and ending at
c.

Case 1. The second node of Q is x1 and the second last node of Q is y1. Then
Q−{(a, x1), (y1, c)} is a HP in the graph S −{(y2, a), (a, x1), (y1, c), (c, x3)} between
x1 and y1. This is impossible.

Case 2. The second node of Q is x1 and the second last node of Q is x3. Then
Q′ = Q − {(a, x1), (x3, c)} is a HP in the graph S − {(y2, a), (a, x1), (y1, c), (c, x3)}
between x1 and x3. It is easy to see that Q′ must have the following form:

A HP of D1 from x1 to z1; the edges (z1, o) and (o, z2); a HP of D2 from z2 to
x2, the edges (x2, b) and (b, y3); a HP of D3 from y3 to x3.

However, the last HP of D3 does not exist by Fact 1. So Case 2 is impossible.

Case 3. The second node of Q is y2 and the second last node of Q is y1. This case
is symmetric to Case 2. Similar to Case 2, this case is impossible.

Case 4. The second node of Q is y2 and the second last node of Q is x3. Then
Q−{(a, y2), (x3, c)} is a HP in the graph S −{(y2, a), (a, x1), (y1, c), (c, x3)} between
y2 and x3. Clearly, this is impossible.

Since all four cases are impossible, the assumed HP between a and c does not
exist. Similarly, we can show S has no HP between a and b and no HP between c and
b.

ON FLOOR-PLAN OF PLANE GRAPHS 2163

o

a
1

d1

b
1

c
1

S
1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

Fig. 10. The graph G∗.

Let G∗ be the graph shown in Figure 10. G∗ consists of six copies of S. Clearly,
G∗ is a 3-regular and 3-connected plane graph. We will show that G∗ does not have
a linear HLD. First, we prove a technical lemma.

Lemma 4.4. The node set of G∗ cannot be partitioned into two paths.
Proof. Towards a contradiction, suppose that the node set of G∗ can be parti-

tioned into two paths P1 and P2. At least one of Si (1 ≤ i ≤ 6), say S1, does not
contain any end nodes of P1 and P2. Since S1 is connected to other parts of G∗ by
only three edges, all nodes of S1 must be entirely contained in either P1 or P2. This
can happen only if there is a HP in S1 between a1 and b1, (or between b1 and c1, or
between c1 and a1). This is impossible by Lemma 4.3.

Theorem 4.5. G∗ does not have a linear HLD.
Proof. Consider any HLD P = {P1, P2, . . . , Ps} of G∗. We show P cannot be a

linear HLD. If no Pi ∈ P is a cycle, then we must have s ≤ 2. This is impossible by
Lemma 4.4. So at least one member of P, say P1, is a cycle. We will show that one of
the following three cases hold for the graph G∗ − P1:

(a) G∗ − P1 has at least 3 connected components; or
(b) G∗ − P1 has two connected components and one of them cannot be enclosed

in the interior of a cycle, nor can it have an HP; or
(c) G∗ − P1 has one connected component C and C cannot be enclosed in the

interiors of two disjoint cycles; nor can C be partitioned into two paths; nor can some
nodes of C be enclosed in a cycle and other nodes of C form a path.

If any of these three cases occurs, it is easily seen that P cannot be a linear HLD
and we are done.

Case 1. The node o is on the cycle P1. Without loss of generality, we assume the
edges (o, d1) and (o, d3) are in P1.

Case 1.1. The edges (d1, a6) and (d3, a3) are in P1. Clearly, P1 must contain either
(i) the edge (b4, c5); (ii) the edge (b1, c2); or (iii) the node d5.

(i) P1 contains (b4, c5). Then P1 passes through Si (i = 3, 4, 5, 6). (See Figure 11
(a). The solid lines indicate P1.) By Lemma 4.3, P1 cannot contain all nodes of Si (for
each i = 3, 4, 5, 6). So there must exist at least one left-over node ui in Si not belonging
to P1. Depending on whether ui’s (i = 3, 4, 5, 6) are in the interior or the exterior of
P1, there are several subcases. If G∗ − P1 has at least three connected components,
then by the remark at the beginning of the proof, P cannot be a linear HLD and we
are done. The only case where G∗−P1 has only two connected components is: u4 and

2164 XIN HE

o

a
1

d1

b
1

c
1S

1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

(a)

o

a
1

d1

b
1

c
1S

1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

(b)

o

a
1

d1

b
1

c
1S

1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

(c)

o

a
1

d1

b
1

c
1S

1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

(d)

o

a
1

d1

b
1

c
1S

1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

(e)

o

a
1

d1

b
1

c
1S

1

S2

S
3 S

4

S
5

S
6

a
2

b
2

c
2

a
3

d
3

b
3

c
3

a
4

b
4c

4

a
5

d5
b

5

c
5

a
6

b
6

c
6

(f)

Fig. 11. The proof of Theorem 4.5.

u5 are in the interior of P1 and form a connected component C1 (of G∗−P1) through
the node d5; u3 and u6 are in the exterior of P1 and form a connected component
C2 (of G∗ − P1) with the nodes in S2 and S1. However, C2 does not have a HP (by
Lemma 4.3); nor can its nodes be enclosed in a simple cycle (since the exterior face
of C2 is not a cycle). Thus, P cannot be linear.

(ii) P1 contains the edge (b1, c2). Then P1 passes through Si (i = 1, 2, 3, 6). (Figure
11 (b).) P1 cannot contain all nodes in Si. Thus, there must exist at least one left-over
node ui in Si (i = 1, 2, 3, 6) not belonging to P1. Note that P1 passes through the
edges (b6, c1), (b1, c2), (b2, c3) and the nodes o, d1, d3. Thus, G∗−P1 has at least three
connected components: one contains u1, one contains u2, and another contains the
nodes in S4 and S5. Thus, P cannot be linear.

(iii) P1 contains the node d5. Then P1 passes through the edges (b3, c4) and
(b5, c6), but not the edge (b4, c5). Similar to the subcase (i), we can show P is not

ON FLOOR-PLAN OF PLANE GRAPHS 2165

linear.

Case 1.2. P1 contains the edges (d1, a1) and (d3, a3). Then P1 passes through
either (i) the edge (b4, c5), (ii) the edge (b1, c2), or (iii) the node d5.

(i) P1 passes through (b4, c5). Then P1 passes through Si (i = 1, 3, 4, 5, 6). Let ui
be the left-over node in Si not belonging to P1. Then G∗ − P1 has at least three con-
nected components: one contains u4 (and possibly u5), one contains u6, and another
contains S2. Thus, P cannot be linear.

(ii) P1 passes through (b1, c2). Then P1 passes through Si (i = 1, 2, 3). (See Figure
11 (c).) Let ui (i = 1, 2, 3) be the left-over node in Si not belonging to P1. Depending
on whether u1, u2, u3 are in the interior or the exterior of P1, there are several subcases.
If G∗ − P1 has at least three connected components, then P cannot be linear. The
only case where G∗ − P1 has only two connected components C1 and C2 is that: C1

contains u2; and C2 contains u1, u3 and the nodes in Sj (j = 4, 5, 6). C2 does not
have a HP (by Lemma 4.3), nor can its nodes be enclosed in the interior of a cycle
(since the exterior face of C2 is not a cycle). Thus, P cannot be linear.

(iii) P1 contains the node d5. Similar to the subcase (i), we can show P is not
linear.

Case 1.3. P1 contains the edges (d1, a6) and (d3, a2). This case is symmetric to
Case 1.2.

Case 1.4. P1 contains the edges (d1, a1) and (d3, a2). Then P1 must pass through
either (i) the edge (b4, c5); or (ii) the edge (b1, c2); or the node d5.

(i) P1 passes through (b4, c5). Then P1 passes through Si (i = 1, 2, 3, 4, 5, 6). Let
ui be the left-over node in Si not belonging to P1. Then G∗ − P1 contains at least
four connected components: one contains u3, one contains u4 (and possibly u5), one
contains u6, and another contains u1 (and possibly u2). Thus, P cannot be linear.

(ii) P1 passes through (b1, c2). Let ui (i = 1, 2) be the left-over node in Si not
belonging to P1. (See Figure 11 (d).) Depending on whether u1 and u2 are in the
interior or the exterior of P1, there are several subcases. One possible (the worst)
subcase is that: both u1 and u2 are in the exterior of P1 and are connected through
Si (i = 3, 4, 5, 6). Thus, G∗ − P1 has only one connected component C containing
u1, u2 and all nodes in Si (i = 3, 4, 5, 6). Note that C has at least six cut nodes:
c3, b3, c4, b5, c6, b6. It is easily seen that C satisfies the condition (c) at the beginning
of the proof. Thus, P cannot be linear.

(iii) P1 contains the node d5. Similar to the subcase (i), we can show P is not
linear.

Case 2. P1 does not contain the node o.

Case 2.1. P1 does not contain the nodes d1, d3, d5. Then P1 must pass through
the edges (bi, ci+1) (for 1 ≤ i ≤ 5) and (b6, c1). (See Figure 11 (e).) Let ui (1 ≤ i ≤
6) be the left-over node in Si not belonging to P1. Depending on whether ui’s are
in the interior or the exterior of P1, there are a number of subcases. One possible
(the worst) case is that: All ui are in the interior of P1 and connected through the
nodes d1, d3, d5, o. Thus, G∗ − P1 has only one connected component C containing
o, d1, d3, d5, u1, . . . , u6. Note that C contains a tree with at least six leaves. It is easily
seen that C satisfies the condition (c) at the beginning of the proof. Thus, P cannot
be linear.

Case 2.2. P1 contains exactly one node from d1, d3, d5, say d1. Then P1 passes
through either (i) the edge (b6, c1), or (ii) the edge (b3, c4).

(i) P1 passes through (b6, c1). Then P1 passes through S1 and S6. Let ui (i = 1, 6)
be the left-over node in Si not belonging P1. Depending on whether u1 and u6 are in

2166 XIN HE

the interior or the exterior of P1, there are a number of subcases. One possible (the
worst) case is that: Both u1 and u6 are in the exterior of P1 and are connected through
the nodes in Si (i = 2, 3, 4, 6). Thus, G∗ − P1 has only one connected component C.
It is easily seen that C satisfies the condition (c) at the beginning of the proof. Thus
P cannot be linear.

(ii) P1 passes through the edge (b3, c4). Then P1 passes through Si (i = 1, 2, 3, 4,
5, 6). Let ui (i = 1, . . . , 6) be the left-over node in Si not belonging to P1. Depending
on whether ui’s are in the interior or the exterior of P1, there are a number of subcases.
If G∗−P1 has at least three connected components, then P cannot be linear. The only
case where G∗−P1 has only two connected components is where u1 and u6 are in the
exterior of P1 and they form a connected component C1 through the edge (b6, c1) and
the nodes u2, u3, u4, u5 are in the interior of P1 and they form a connected component
C2 through the nodes d3, d5, o. It is easily seen that C2 does not have a HP, nor can
its nodes be enclosed in a cycle. Thus, P cannot be linear.

Case 2.3. P1 contains exactly two nodes from d1, d3, d5, say P1 contains d1 and
d3. Since P1 does not contain the node o, P1 must be as shown in Figure 11 (f).
Let ui (i = 1, 2, . . . , 6) be the left-over node in Si not belonging to P1. In the best
case, G∗ − P1 contains at least three connected components: one contains u1 and u6

connected through the edge (b6, c1); one contains u2 and u3 connected through the
edge (b2, c3); and one contains u4 and u5 connected through the node d5. Thus, P
cannot be linear.

Case 2.4. P1 contains the nodes d1, d3, d5. Since P1 does not contain the node o, it
must pass through the edges (b1, c2), (b3, c4), (b5, c6), but not the edges (b2, c3), (b4, c5),
(b6, c1). Let ui (1 ≤ i ≤ 6) be the left-over node in Si not belonging to P1. In the
best case, G∗ − P1 has at least 4 connected components: one contains o alone; one
contains u1 and u6; one contains u2 and u3; one contains u4 and u5. Thus, P cannot
be linear.

Since P cannot be a linear HLD in all cases, the theorem is proved.

Acknowledgments. The author thanks the anonymous referees for their helpful
comments.

REFERENCES

[1] J. Bhasker and S. Sahni, A linear algorithm to check for the existence of a rectangular dual
of a planar triangulated graph, Networks, 17 (1987), pp. 307–317.

[2] J. Bhasker and S. Sahni, A linear algorithm to find a rectangular dual of a planar triangulated
graph, Algorithmica, 3 (1988), pp. 247–278.

[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North Holland, Amster-
dam, 1979.

[4] N. Chiba and N. Takao, Arboricity and subgraph listing algorithms, SIAM J. Comput., 14
(1985), pp. 210–223.

[5] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for drawing graphs:
an annotated bibliography, Comput. Geom., 4 (1994), pp. 235–282.

[6] H. de Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combi-
natorica, 10 (1990), pp. 41–51.

[7] X. He, On finding the rectangular duals of planar triangular graphs, SIAM J. Comput., 22
(1993), pp. 1218–1226.

[8] X. He, An efficient parallel algorithm for finding rectangular duals of planar triangular graphs,
Algorithmica, 13 (1995), pp. 553–572.

[9] W. R. Heller, G. Sorkin, and K. Mailing, The planar package planner for system designers,
in Proceedings of the 19th Annual IEEE Design Automation Conference, New York, 1982,
pp. 253–260.

[10] J. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (1974), pp. 549–568.

ON FLOOR-PLAN OF PLANE GRAPHS 2167

[11] G. Kant, Drawing planar graphs using the lmc-ordering, in Proceedings of the 33rd Annual
IEEE Symposium on the Foundations of Computer Science, Pittsburgh, 1992, pp. 101–110.

[12] G. Kant and X. He, Two algorithms for finding rectangular duals of planar graphs, in Pro-
ceedings of the 19th Workshop on Graph-Theoretic Concepts in Computer Science, 1993.
LNCS 790, pp. 396–410.

[13] G. Kant and X. He, Regular edge labeling of 4-connected plane graph and its applications in
graph drawing algorithms, Theoret. Comput. Sci., 172 (1997), pp. 175–193.

[14] K. Koźmiński and E. Kinnen, Rectangular dual of planar graphs, Networks, 15 (1985), pp.
145–157.

[15] K. Koźmiński and E. Kinnen, Rectangular dualization and rectangular dissection, IEEE Trans.
Circuits and Systems, 35 (1988), pp. 1401–1416.

[16] Y.-T. Lai and S. M. Leinwand, A theory of rectangular dual graphs, Algorithmica, 5 (1990),
pp. 467–483.

[17] K. Mailing, S. H. Mueller, and W. R. Heller, On finding most optimal rectangular package
plans, in Proceedings of the 19th Annual IEEE Design Automation Conference, New York,
1982, pp. 263–270.

[18] M. S. Rahman, S. Nakano, and T. Nishizeki, Rectangular grid drawings of plane graphs,
Comput. Geom., 10 (1998), pp. 203–220.

[19] Y. Sun and M. Sarrafzadeh, Floorplanning by graph dualization: L-shaped models, in Pro-
ceedings of the IEEE International Symposium on Circuits and Systems, 1990, pp. 2845–
2848.

[20] Y. Sun and K-H. Yeap, Edge covering of complex triangles in rectangular dual floorplanning,
J. Circuits Systems Comput., 3 (1993), pp. 721–731.

[21] P. G. Tait, Remarks on coloring of maps, in Proc. Roy. Soc. Edinburgh Sect. A, 10 (1880), p.
729.

[22] C. Thomassen, Plane representations of graphs, in Progress in Graph Theory, J. A. Bondy,
and U. S. R. Murty, eds., Academic Press, Canada, 1984, pp. 43–69.

[23] S. Tsukiyama, K. Koike, and I. Shirakawa, An Algorithm to Eliminate All Complex Trian-
gles in a Maximal Planar Graph for Use in VLSI Floorplan, in Proceedings of the IEEE
Int. Symp. on Circuits and Systems, 1986, pp. 321–324.

[24] W. T. Tutte, On Hamiltonian circuits, J. London Math. Soc., 21 (1946), pp. 98–101.
[25] K.-H. Yeap and M. Sarrafzadeh, Floor-planning by graph dualization: 2-concave rectilinear

modules, SIAM J. Comput., 22 (1993), pp. 500–526.

HORN EXTENSIONS OF A PARTIALLY DEFINED
BOOLEAN FUNCTION∗

KAZUHISA MAKINO† , KEN-ICHI HATANAKA‡ , AND TOSHIHIDE IBARAKI§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2168–2186

Abstract. Given a partially defined Boolean function (pdBf) (T, F), we investigate in this paper
how to find a Horn extension f : {0, 1}n 7→ {0, 1}, which is consistent with (T, F), where T ⊆ {0, 1}n
denotes a set of true Boolean vectors (or positive examples) and F ⊆ {0, 1}n denotes a set of false
Boolean vectors (or negative examples). Given a pdBf (T, F), it is known that the existence of a
Horn extension can be checked in polynomial time. As there are many Horn extensions, however,
we consider those extensions f which have maximal and minimal sets T (f) of the true vectors of
f , respectively. For a pdBf (T, F), there always exists the unique maximal (i.e., maximum) Horn
extension, but there are in general many minimal Horn extensions. We first show that a polynomial
time membership oracle can be constructed for the maximum extension, even if its disjunctive normal
form (DNF) can be very long. Our main contribution is to show that checking if a given Horn DNF
represents a minimal extension and generating a Horn DNF of a minimal Horn extension can both
be done in polynomial time. We also can check in polynomial time if a pdBf (T, F) has the unique
minimal Horn extension. However, the problems of finding a Horn extension f with the smallest
|T (f)| and of obtaining a Horn DNF, whose number of literals is smallest, are both NP-hard.

Key words. partially defined Boolean function, extension, Horn function, knowledge acquisition

AMS subject classifications. 68Q25, 68R05, 68T01

PII. S0097539796297954

1. Introduction. Knowledge acquisition in the form of Boolean logic has been
intensively studied (e.g., [2, 4, 6, 18, 20, 24]): Given a set of data, represented as
a set T ⊆ {0, 1}n of binary “true n-vectors” (or “positive examples”) and a set
F ⊆ {0, 1}n of “false n-vectors” (or “negative examples”), establish a (fully defined)
Boolean function (i.e., extension) f : {0, 1}n 7→ {0, 1} in a specified class C, such that
T ⊆ T (f) and F ⊆ F (f), where T (f) (resp., F (f)) denotes the set of true (resp.,
false) vectors of f . A pair of sets (T, F) is called a partially defined Boolean function
(pdBf) throughout this paper.

For instance, a vector x may represent the symptoms used to diagnose a disease;
e.g., x1 denotes whether temperature is high (x1 = 1) or not (x1 = 0), and x2 denotes
whether blood presure is high (x2 = 1) or not (x2 = 0), etc. Each vector x in
T corresponds to a case of symptoms that caused the disease, while a vector in F
describes a case with which the disease did not appear. Establishing an extension
f , which is consistent with the given data, amounts to finding a logical diagnostic
explanation of the given data.

In this paper, we consider the case in which f is a Horn function [15]. The
class of Horn functions is at the heart of knowledge-based systems [1, 12, 5] and
motivates increasing research, e.g., minimum representations [13, 14], their learning

∗Received by the editors January 29, 1996; accepted for publication (in revised form) September
3, 1998; published electronically July 7, 1999. This work was partially supported by a grant from
the Ministry of Education, Sports, Science, and Culture of Japan.

http://www.siam.org/journals/sicomp/28-6/29795.html
†Department of Systems and Human Science, Graduate School of Engineering Science, Osaka

University, Toyonaka, Osaka, 560, Japan (makino@sys.es.osaka-u.ac.jp).
‡Sumitomo Electric Industries, Shimaya 1-1-3, Konohana-ku, Osaka, 554, Japan

(khata@sei.co.jp).
§Department of Applied Mathematics and Physics, Graduate School of Engineering, Kyoto Uni-

versity, Kyoto, 606, Japan (ibaraki@kuamp.kyoto-u.ac.jp).

2168

HORN EXTENSIONS 2169

and identification [1, 8], and constructing Horn approximations [17, 25]. One of the
main reasons for this attention is that the satisfiability problem (SAT) of a Horn
conjunctive normal form (CNF) (H-SAT in short) can be solved in polynomial time
[7], whereas the SAT of a general CNF is NP-complete [11]. As problem SAT of CNF
is fundamental, many problems related to Horn functions can be solved efficiently.
In terms of sets T (f) and F (f), a Horn function has an elegant characterization: f
is Horn if and only if F (f) is closed under intersection of vectors (i.e., v, w ∈ F (f)
implies v

∧
w ∈ F (f), where

∧
denotes the componentwise AND operation).

Because there are in general many Horn extensions f for a given pdBf (T, F), we
shall mainly consider those extensions that are maximal and minimal in the sense of set
T (f), respectively. We note here that most of the papers written on the representation
by Horn theory (e.g., [4, 8, 17, 18]) are based on model theory, in which finding a Horn
representation f of a given model (T (g), F (g)), where g is a Boolean function and sets
T (g) and/or F (g) of vectors are explicitly given, is a primary target. For example, the
problem of finding the best Horn approximation of a model (T (g), F (g)), i.e., finding
the Horn function with the minimum |F (f)| under the constraint F (f) ⊇ F (g), has
received some attention [18], and it is known [18, 19] that obtaining an irredundant
disjunctive normal form (DNF) of such an f is at least as difficult as computing
the DNF of the dual hd of a positive (i.e., monotone) Boolean function h. The latter
problem is a well-known open problem [3, 9, 16], for which the recent result of Fredman
and Khachiyan [10] shows that there is an O(mo(logm)) time algorithm, where m is
the total length of DNFs for both h and hd. We emphasize that our problem setting is
different from model theory in that the input (T, F) is only partially defined. However,
the above problem of best Horn approximation is very close to the problem of finding
a maximal Horn extension. We also note that, although the problem of finding a
best approximation in terms of T (g) is a bit artificial (since T (g) is not closed under
intersection), finding a minimal Horn extension of a pdBf (T, F) is quite a natural
problem in our framework.

It is known [4] that the existence of at least one Horn extension of a given pdBf
(T, F) can be checked in polynomial time. After preparing necessary notation and
definitions in section 2 and introducing canonical Horn DNFs in section 3, we proceed
to maximal and minimal Horn extensions. In section 4, by using an argument similar
to the one used in model theory, we show that there exists the unique maximal Horn
extension fmax (i.e., maximum) and we provide a polynomial time membership oracle
for fmax. In section 5, we investigate minimal Horn extensions. Contrary to the case
of maximum Horn extension, there are in general many minimal Horn extensions. Our
main contribution is to show that the minimality of fϕ, which denotes the function
represented by a Horn DNF ϕ, can be checked in polynomial time. Based on this, a
minimal Horn extension of a pdBf (T, F) can be generated in polynomial time and
the uniqueness of a minimal extension can also be checked in polynomial time.

To derive the above results, we first show that any minimal Horn extension can
be represented by a canonical Horn DNF, although the converse is not true. The
nontriviality of finding a canonical DNF representing a minimal Horn extension may
be exemplified by the existence of a canonical DNF that satisfies local minimality
but does not represent a minimal Horn extension. To overcome this, we reduce the
nonminimality condition to the condition that some CNF Φv, v ∈ T , is satisfiable,
where Φv is a CNF derived from canonical DNF ϕ, v ∈ T , and (T, F). Although
this does not immediately give a polynomial time algorithm, since Φv is not Horn, we
then derive a series of lemmas, with which (non-Horn) CNFs Φv can be eventually

2170 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

transformed into Horn CNFs Φ∗v. Therefore, the minimality condition can be checked
in polynomial time.

Finally, we show in sections 5 and 6 that the problems of computing a Horn
extension f with the minimum |T (f)| and of finding the shortest Horn DNF (i.e.,
having the smallest number of literals) that represents a Horn extension are both
NP-hard. It is still not known whether there exists a polynomial total time algorithm
to generate all minimal Horn extensions of a given pdBf (T, F).

2. Preliminaries. A Boolean function (or a function) is a mapping f : {0, 1}n 7→
{0, 1}, where x ∈ {0, 1}n is called a Boolean vector (or a vector). If f(x) = 1 (resp.,
0), then x is called a true (resp., false) vector of f . The set of all true vectors (resp.,
false vectors) is denoted by T (f) (resp., F (f)). Denote, for a vector v ∈ {0, 1}n,
ON(v) = {j | vj = 1, j = 1, 2, . . . , n} and OFF (v) = {j | vj = 0, j = 1, 2, . . . , n}. For
vectors v, w ∈ {0, 1}n, we write v ≤ w (resp., v ≥ w) if vi ≤ wi (resp., vi ≥ wi) holds
for all i = 1, 2, . . . , n. Two special functions with T (f) = ∅ and F (f) = ∅ are, resp.,
denoted by f = ⊥ and f = >. For two functions f and g on the same set of variables,
we write f ≤ g if f(x) = 1 implies g(x) = 1 for any x ∈ {0, 1}n and f < g if f ≤ g
and f 6= g.

Boolean variables x1, . . . , xn and their negations x̄1, . . . , x̄n are called literals,
where we call literals x1, . . . , xn positive and literals x̄1, . . . , x̄n negative. A term t is
a conjunction of literals such that at most one of xi and x̄i appears for each i. The
constant 1 (viewed as the conjunction of an empty set of literals) is also considered
a term. We say that a term t subsumes a term t′ if t ≥ t′, where terms t and t′ are
considered the functions they represent. For example, a term xȳ subsumes a term
xȳz. A term t is called an implicant of a function f if t ≤ f . An implicant t of a
function is called prime if there is no implicant t′ > t.

A DNF ϕ is a disjunction of terms. It is well known that a DNF ϕ defines a
function, which we denote by fϕ, and any function can be represented by a DNF
(however, such a representation may not be unique). In this paper, we do not always
distinguish a DNF ϕ from the function fϕ it represents. For example, a term t is
also considered as the function ft. The number of literals in a DNF ϕ is denoted by
|ϕ|. In this paper, we shall deal exclusively with DNF expressions, although some of
the literature on Horn functions is based on CNFs. By complementing the involved
concepts, all the results in this paper can be translated into the results for CNFs.

A term is called positive if it contains only positive literals and is called Horn if
it contains at most one negative literal. A DNF is called positive if it contains only
positive terms and is called Horn if it contains only Horn terms. For example, a DNF
ϕ = 123∨245∨156 is positive and ψ = 157̄∨24∨ 2̄67 is Horn. (Here, for simplicity, a
positive literal xi is denoted as i and a negative literal x̄i as ī.) It is easy to see that, by
complementing Horn DNFs, we obtain Horn CNFs, where a CNF Φ =

∧
i Ci is Horn

if each clause Ci contains at most one positive literal, e.g., (1∨ 2̄∨ 3̄)(1̄∨ 3̄)(1̄∨ 3̄∨ 4)
is Horn, while (1 ∨ 2̄ ∨ 3̄)(1̄ ∨ 3̄)(1 ∨ 3̄ ∨ 4) is not Horn. A Boolean function is called
positive (or monotone) if it can be represented by a positive DNF and Horn if it can
be represented by a Horn DNF. It is known [14] that if f is a Horn function, then
all prime implicants of f are Horn. It is important to know that the following two
variants of SAT for a Horn CNF Φ can be solved in time linear in |Φ| [7, 22]:

Problem H-SAT
Input: A Horn CNF Φ of n variables.
Question: Is there a vector u ∈ {0, 1}n satisfying Φ(u) = 1?

Problem UNIQUE-H-SAT

HORN EXTENSIONS 2171

Input: A Horn CNF Φ of n variables.

Question: Is there a unique vector u ∈ {0, 1}n satisfying Φ(u) = 1?

If the answer to these problems is “yes,” the vector u satisfying Φ(u) = 1 can also
be output in linear time. If the answer to UNIQUE-H-SAT is “no,” two vectors u
and v satisfying Φ(u) = Φ(v) = 1 can also be output in linear time. Based on these,
various problems associated with Horn functions can be solved in polynomial time.
For example, given two Horn DNFs ϕ and ψ, the conditions such as fϕ = fψ and
fϕ < fψ can be checked in O(|ϕ||ψ|) time [14]. Also, for a term t (not necessarily
Horn), condition t ≤ fϕ can be checked in O(|ϕ|) time [14].

A pdBf is defined by a pair of sets (T, F) satisfying T ∩ F = ∅, where T, F ⊆
{0, 1}n. A function f is an extension (or theory) of the pdBf (T, F) if T ⊆ T (f) and
F ⊆ F (f), and it is a Horn extension if f is in addition Horn. We sometimes refer to
a Horn DNF representing a Horn extension of a pdBf (T, F) as a Horn DNF of (T, F).
A Horn extension f of a pdBf (T, F) is called minimal (resp., maximal) if there is
no Horn extension f ′ satisfying f ′ < f (resp., f ′ > f), that is, set T (f) is minimal
(resp., maximal). Furthermore, a Horn extension f of a pdBf (T, F) is minimum
(resp., maximum) if there is no Horn extension f ′ such that |T (f ′)| < |T (f)| (resp.,
|T (f ′)| > |T (f)|). Obviously, a minimum (resp., maximum) Horn extension is one of
the minimal (resp., maximal) Horn extensions.

Example 2.1. Let (T, F) be a pdBf defined by T = {1110, 0011, 0101} and F =
{0010, 1100, 0110}. Then, by generating all extensions of (T, F), we can see that the
unique maximum Horn extension of (T, F) is represented by the DNF

ϕ = 13 ∨ 4 ∨ 12̄

while there are two minimal Horn extensions:

ψ(1) = 1234̄ ∨ 1̄34 ∨ 1̄24,

ψ(2) = 1234̄ ∨ 2̄34 ∨ 23̄4.

Furthermore, ψ(1) represents a minimum Horn extension of (T, F).

3. Canonical Horn DNF. In this section, we first review the following funda-
mental problem, which was originally discussed in [4]:

Problem H-EXTENSION

Input: A pdBf (T, F).

Question: Is there a Horn extension f of (T, F)?

We point out that the following well-known characterization of a Horn function
provides a polynomial time algorithm to solve H-EXTENSION. Call the component-
wise AND operation

∧
of vectors v and w the intersection of v and w. For example,

if v = (0101) and w = (1001), then v
∧
w = (0001). For a set X ⊆ {0, 1}n, the

set of vectors C(X) is called the intersection closure if it is a minimal set that con-
tains X and is closed under intersection. Clearly, intersection closure is unique (i.e.,
“minimal” can be replaced by “minimum”).

Proposition 3.1 (see [21, 8]). A function f is Horn if and only if F (f) =
C(F (f)) (i.e., F (f) is closed under intersection).

The next definition provides a means to generate Horn DNFs from (T, F).

Definition 3.1. For a pdBf (T, F) and a vector v ∈ T , the set of terms R(v) is

2172 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

defined by

R(v) =

{∧j∈ON(v) xj} if OFF (v) = ∅,
{(∧j∈ON(v) xj) x̄l | l ∈ I(v)} if OFF (v) 6= ∅ and I(v) 6= ∅,
∅ if OFF (v) 6= ∅ and I(v) = ∅,

where

F≥v = {w ∈ F | w ≥ v},
I(v) = (∩w∈F≥vON(w)) ∩OFF (v).

By convention, we define I(v) = OFF (v) if F≥v = ∅. A DNF ϕ is called a canonical
Horn DNF of (T, F) if ϕ is given by

ϕ =
∨
v∈T

tv, where tv ∈ R(v),(3.1)

i.e., by selecting one term from each R(v), v ∈ T . Note that the canonical Horn DNF
is not defined if R(v) = ∅ holds for some v ∈ T .

For a v ∈ T , there are many Horn terms t such that t(v) = 1. However, in
order to satisfy t(w) = 0 for all w ∈ F , we can restrict the negative literal x̄l, which
appears in t. The above definition says that I(v) represents the set of such indices l
and R(v) represents the particular subset of terms t such that t(v) = 1 and t(w) = 0
for all w ∈ F . Construction of Horn DNFs in this manner can be found in the
literature of learning theory [1], model theory [17], and Horn approximation [25].
Precisely speaking, however, the above canonical DNF is different from those used in
the literature in that both T and F are explicitly taken into account.

Example 3.1. Let us define T, F ⊆ {0, 1}9 by

T =

v(1) = (111100100)
v(2) = (111010100)
v(3) = (111001010)
v(4) = (001000100)
v(5) = (100000100)
v(6) = (011000001)
v(7) = (110000001)
v(8) = (111111000)

, F =

w(1) = (111100110)
w(2) = (111010111)
w(3) = (111001110)
w(4) = (111000101)

 .

Then F≥v(1) = {w(1)}, F≥v(2) = {w(2)}, F≥v(3) = {w(3)}, F≥v(4) = F≥v(5) = {w(1),

w(2), w(3), w(4)}, F≥v(6) = F≥v(7) = {w(2), w(4)}, and F≥v(8) = ∅.
I(v(1)) = {8}, R(v(1)) = {123478̄},
I(v(2)) = {8, 9}, R(v(2)) = {123578̄, 123579̄},
I(v(3)) = {7}, R(v(3)) = {12367̄8},
I(v(4)) = {1, 2}, R(v(4)) = {1̄37, 2̄37},
I(v(5)) = {2, 3}, R(v(5)) = {12̄7, 13̄7},
I(v(6)) = {1, 7}, R(v(6)) = {1̄239, 237̄9},
I(v(7)) = {3, 7}, R(v(7)) = {123̄9, 127̄9},
I(v(8)) = {7, 8, 9}, R(v(8)) = {1234567̄, 1234568̄, 1234569̄}.

There are 1× 2× 1× 2× 2× 2× 2× 3 = 96 canonical Horn DNFs, among which we
list the following two:

ϕ(1) = 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 237̄9 ∨ 127̄9 ∨ 1234567̄,
ϕ(2) = 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 1̄239 ∨ 123̄9 ∨ 1234569̄.

(3.2)

HORN EXTENSIONS 2173

Lemma 3.1 (see [4]). Any canonical Horn DNF ϕ of a given pdBf (T, F) rep-
resents a Horn extension of (T, F), and (T, F) has no Horn extension if there is no
canonical Horn DNF.

Proof. Let ϕ =
∨
v∈T tv be a canonical Horn DNF of a pdBf (T, F). It is clear

that, for each v ∈ T , we have tv(v) = 1 and tv(w) = 0 for all w ∈ F . This implies
that ϕ represents a Horn extension. Conversely, if there is no canonical Horn DNF,
then R(v) = ∅ holds for some v ∈ T , i.e., OFF (v) 6= ∅ and I(v) = ∅ holds for some
v ∈ T . This means (∩w∈F≥vON(w)) ∩ OFF (v) = ∅; i.e.,

∧
w∈F≥v w = v. Therefore

F (f) of no Horn extension f of (T, F) is closed under intersection, and there is no
Horn extension by Proposition 3.1.

Therefore, we have the following results.
Theorem 3.1 (see [4]). Problem H-EXTENSION can be solved in O(n|T ||F |)

time, and if a pdBf (T, F) has a Horn extension, one of its canonical Horn DNFs can
be obtained in O(n|T ||F |) time.

Proof. The proof is immediate from the above discussion and the fact that a
canonical Horn DNF of (T, F) can be constructed in O(n|T ||F |) time.

4. Maximum Horn extension. In this section, we first show the uniqueness
of a maximal Horn extension.

Theorem 4.1. If a given pdBf (T, F) has a Horn extension, its maximal Horn
extension is unique.

Proof. By Proposition 3.1, F (f) of any Horn extension f of (T, F) is closed under
intersection. Let us define fmax by F (fmax) = C(F), that is,

fmax(v) =

{
0 if v ∈ C(F),
1 otherwise.

(4.1)

Since C(F) is the unique minimal set that contains F and is closed under intersec-
tion, this fmax is the unique maximal Horn extension (that is, T (f) is maximal) of
(T, F).

Unfortunately, it is known [17] that there is a pdBf (T, F) for which the size of
any DNF ϕ of fmax is exponential in n, |T |, and |F |. In other words, there may not
be any compact DNF representation of fmax. However, we can do better if we do
not stick to the DNF representation. Note that fmax of (4.1) is defined by C(F), for
which v ∈ C(F) holds if and only if ∧

w∈F≥v
w = v.

As this condition can be checked in polynomial time in n and |F | for a given v, we
can build an oracle that answers membership queries for fmax in polynomial time.

A vector x ∈ X ⊆ {0, 1}n is called extreme [8] with respect to a set X if
x 6∈ C(X \ {x}). The set of all extremal vectors of X is called the characteristic
set of X [17, 19] (or its base [8]) and is denoted by C∗(X). Note that every set
X ⊆ {0, 1}n has the unique characteristic set C∗(X) and that C∗(X) ⊆ X is the
minimum set satisfying C(C∗(X)) = C(X). It is known [8] that C∗(X) can be con-
structed from X in polynomial time in n and |X|; therefore C∗(F) = C∗(C(F)) can
be computed from F of (T, F) in polynomial time. There are a number of papers on
the relationship between C∗(F (f)) of a Horn function f and its Horn DNF expression
ϕ [9, 17, 19]. For example, there is a polynomial total time algorithm (i.e., polynomial
algorithm in the length of input and output) for computing from C∗(F (f)) all prime

2174 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

implicants of Horn DNF ϕ that represents f if and only if there is a polynomial total
time algorithm for dualizing a positive function h (i.e., computing all prime implicants
of hd from all prime implicants of h, where hd(x) = h̄(x̄)); if there is a polynomial
total time algorithm for computing from C∗(F (f)) an irredundant Horn DNF ϕ that
represents f (i.e., no term in ϕ can be dropped), then there is a polynomial total
time algorithm for dualizing a positive function. From the viewpoint of fmax (whose
C∗(F (fmax)) = C∗(F) can be computed in polynomial time), this shows that com-
puting an irredundant Horn DNF ϕ of fmax is at least as hard as dualizing a positive
function. It is not known yet [3, 9, 16] whether or not the problem of dualizing a
positive function has a polynomial total time algorithm. However, the recent result
by Fredman and Khachiyan [10] shows that dualizing a positive function can be done
in O(mo(logm)) time, where m denotes the number of prime implicants of f and fd,
and hence it is unlikely for the problem to be NP-hard.

5. Minimal Horn extensions. There are in general many minimal Horn ex-
tensions of a given pdBf (T, F). However, these minimal Horn extensions can all have
canonical Horn DNFs of Definition 3.1.

Lemma 5.1. A minimal Horn extension f of a given pdBf (T, F) can always be
represented by a canonical Horn DNF.

Proof. Assume that there exists a minimal Horn extension f , which cannot be
represented by a canonical DNF. Since f is a Horn extension, for every v ∈ T , there
is a Horn implicant tv =

∧
i∈P xi

∧
i∈N x̄i of f such that tv(v) = 1 (i.e., P ⊆ ON(v)

and N ⊆ OFF (v)) and |N | ≤ 1. Then by the definition of R(v), there is a term
t′v ∈ R(v) such that t′v ≤ tv. Define a canonical Horn DNF ϕ =

∨
v∈T t

′
v. This ϕ

satisfies fϕ < f since fϕ ≤ f holds and f cannot be represented by a canonical Horn
DNF ϕ, contradicting the minimality of f .

The converse, however, is not true (i.e., some canonical Horn DNFs do not repre-
sent minimal Horn extensions), as will be shown in Example 5.1 in the next subsection.
Recall that a Horn DNF ϕ representing a Horn extension of (T, F) is called a Horn
DNF of a pdBf (T, F). Furthermore, we say that a Horn DNF ϕ of (T, F) is minimal
if fϕ is a minimal Horn extension of (T, F). It is interesting to know whether the
following problem can be solved in polynomial time, where we assume that a Horn
DNF ϕ (not necessarily canonical) is given as an input:

Problem MINIMAL-H-EXTENSION

Input: A pdBf (T, F) and a Horn DNF ϕ.

Question: Is ϕ a minimal Horn DNF of (T, F)?

In passing, we note an interesting implication of Lemma 5.1: all minimal Horn
extensions of (T, F) have “short” DNFs in the sense that all canonical Horn DNFs
have only |T | terms, respectively. This contrasts with the fact that the DNFs of some
maximum Horn extensions have exponentially many terms, as noted after Theorem
4.1.

5.1. Checking the minimality of a Horn DNF. We show via a series of
lemmas in this subsection that MINIMAL-H-EXTENSION can be solved in polyno-
mial time. In the following, we assume without loss of generality that (1, 1, . . . , 1) 6∈
T holds, because it can be shown that, for a pdBf (T, F) with (1, 1, . . . , 1) ∈ T ,
ϕ ∨ (∧nj=1xj) is a minimal Horn DNF of (T, F) if and only if ϕ is a minimal Horn
DNF of (T \ {(1, 1, . . . , 1)}, F). For a pdBf (T, F), a vector v ∈ T , and a Horn DNF

HORN EXTENSIONS 2175

ϕ of (T, F), define

I(v;ϕ) = {l ∈ I(v) | (∧j∈ON(v) xj) x̄l ≤ fϕ},
R(v;ϕ) = {t ∈ R(v) | t ≤ fϕ} (= {(∧j∈ON(v) xj) x̄l | l ∈ I(v;ϕ)}).

Note that Lemma 5.1 implies I(v;ϕ) 6= ∅ and R(v;ϕ) 6= ∅ for all v ∈ T . By
Lemma 5.1, if a Horn DNF ϕ of (T, F) is not minimal, then there exists a canonical
Horn DNF ψ of (T, F) such that fψ < fϕ, where ψ can be written as

ψ =
∨
v∈T

tv; tv ∈ R(v;ϕ).

It is known that the candidate set of terms R(v;ϕ) can be computed in polynomial
time. More precisely, given a canonical Horn DNF ϕ and a vector v ∈ T , set I(v;ϕ) can
be constructed in time linear in |ϕ| by using the following forward chaining procedure
[13].

Algorithm F-CHAINING
Input: A Horn DNF ϕ and a vector v ∈ T .
Output: Set I(v;ϕ).
Step 1: S := ON(v) and I(v;ϕ) := ∅.
Step 2: If there exists a term t = (∧i∈S′xi)x̄l in ϕ such that S′ ⊆ S and l 6∈ S,

let S := S ∪ {l}. Repeat Step 2 until no term in ϕ satisfies the condition.
Step 3: I(v;ϕ) := S \ON(v).

The essential part of this algorithm comes from the consensus procedure [23].
Given a DNF ϕ, the consensus procedure generates a new implicant

∧
j∈P1∪P2

xj∧
j∈N1∪N2

x̄j from two implicants xi (
∧
j∈P1

xj
∧
j∈N1

x̄j) and x̄i (
∧
j∈P2

xj
∧
j∈N2

x̄j)

such that i 6∈ Pk ∪Nk for k = 1, 2, and P1 ∩N2 = N1 ∩ P2 = ∅. For example, 23̄45̄6
is generated from 13̄45̄ and 1̄23̄46. It is known [23] that all prime implicants of fϕ
eventually can be generated by the consensus procedure starting from the terms of
ϕ. Since every prime implicant of a Horn function is Horn, Algorithm F-CHAINING
works correctly.

Example 5.1. Consider the pdBf (T, F) given in Example 3.1 and choose two
canonical Horn DNFs ϕ(1) and ϕ(2) of (3.2). Then

I(v(1);ϕ(1)) = {8}, I(v(1);ϕ(2)) = {8},
I(v(2);ϕ(1)) = {9}, I(v(2);ϕ(2)) = {9},
I(v(3);ϕ(1)) = {7}, I(v(3);ϕ(2)) = {7},
I(v(4);ϕ(1)) = {1}, I(v(4);ϕ(2)) = {1},
I(v(5);ϕ(1)) = {3}, I(v(5);ϕ(2)) = {3},
I(v(6);ϕ(1)) = {1, 7}, I(v(6);ϕ(2)) = {1},
I(v(7);ϕ(1)) = {3, 7}, I(v(7);ϕ(2)) = {3},
I(v(8);ϕ(1)) = {7, 8, 9}, I(v(8);ϕ(2)) = {9},

and

R(v(1);ϕ(1)) = {123478̄}, R(v(1);ϕ(2)) = {123478̄},
R(v(2);ϕ(1)) = {123579̄}, R(v(2);ϕ(2)) = {123579̄},
R(v(3);ϕ(1)) = {12367̄8}, R(v(3);ϕ(2)) = {12367̄8},
R(v(4);ϕ(1)) = {1̄37}, R(v(4);ϕ(2)) = {1̄37},
R(v(5);ϕ(1)) = {13̄7}, R(v(5);ϕ(2)) = {13̄7},
R(v(6);ϕ(1)) = {1̄239, 237̄9}, R(v(6);ϕ(2)) = {1̄239},
R(v(7);ϕ(1)) = {123̄9, 127̄9}, R(v(7);ϕ(2)) = {123̄9},
R(v(8);ϕ(1)) = {1234567̄, 1234568̄, 1234569̄}, R(v(8);ϕ(2)) = {1234569̄}.

2176 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

The two functions fϕ(1) and fϕ(2) satisfy fϕ(1) ≥ fϕ(2) , since both are canonical and

R(v(l);ϕ(1)) ⊇ R(v(l);ϕ(2)) holds for all l. Furthermore, 237̄9 ≤ fϕ(1) and 237̄9 6≤ fϕ(2)

imply fϕ(1) > fϕ(2) . Therefore, ϕ(1) is not minimal. However, this ϕ(1) satisfies local

minimality in the sense that, after replacing one of its terms tv by t′v ∈ R(v(l);ϕ(1)) \
{tv} for any l with |R(v(l);ϕ(1))| > 1, the resulting DNF also represents fϕ(1) . For
example, the following two DNFs also represent the same fϕ(1) :

ϕ(3) = 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 237̄9 ∨ 127̄9 ∨ 1234568̄,
ϕ(4) = 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 1̄239 ∨ 127̄9 ∨ 1234567̄.

This result shows that local minimality of ϕ (in the above sense) does not always imply
its minimality. Therefore, some other proof is necessary to ensure the minimality. Of
course, if we replace more than one term in ϕ(1), the resulting DNF may represent a
different function; ϕ(2) is such an example.

On the other hand, ϕ(2) is minimal since |R(v(l);ϕ(2))| = 1 for all l = 1, 2, . . . , 8.
However, this is not always the case, since there can be a minimal ϕ with |R(v(l);ϕ)| >
1 for some l. For example, consider a pdBf (T, F) defined by T = {v(1) = (1100),
v(2) = (1010), v(3) = (0101)} and F = ∅, and a canonical DNF ϕ = 123̄ ∨ 134̄ ∨ 23̄4.
Then I(v(1);ϕ) = {3, 4}, I(v(2);ϕ) = {4}, and I(v(3);ϕ) = {3}; that is, R(v(1);ϕ) =
{123̄, 124̄}, R(v(2);ϕ) = {134̄}, and R(v(3);ϕ) = {23̄4}. However, since it is easy to
see that ϕ′ = 124̄ ∨ 134̄ ∨ 23̄4 satisfies fϕ′ = fϕ, there is no canonical DNF ψ such
that ψ < ϕ; hence ϕ is minimal.

Example 5.1 may suggest that Problem MINIMAL-H-EXTENSION is not trivial.
Let us now examine the condition when ϕ is not minimal.

Let f be a Horn extension of (T, F). Then f is not minimal if and only if there is a
nonempty subset of T (f)\T , whose removal from T (f) results in a new Horn extension.
This means that there exists a vector u ∈ T (f) such that C(F (f) ∪ {u}) ∩ T = ∅
holds, where C(X) denotes the intersection closure of X. In other words, u∧∧w∈S w
is different from any vector in T for all S ⊆ F (f). Since u ∧ ∧w∈S w = a holds for
some a ∈ T and S ⊆ F (f) if and only if it holds for S = F (f)≥a, where F (f)≥a =
{w ∈ F (f) |w ≥ a}, this argument leads to the following lemma.

Lemma 5.2. Let f be a Horn extension of a pdBf (T, F). Then f is not minimal
if and only if there exists a vector u ∈ T (f) such that

u ∧
∧

w∈F (f)≥a

w 6= a for all a ∈ T.(5.1)

Assume that f can be represented by a canonical Horn DNF ϕ of a pdBf (T, F)
(i.e., f = fϕ). Then y =

∧
w∈F (f)≥a w for an a ∈ T is given by ON(y) = ON(a) ∪

I(a;ϕ), because, by the definition of I(a;ϕ), all vectors w such that w ≥ a and
wl = 0 for some l ∈ I(a;ϕ) satisfy ϕ(w) = 1 (i.e., w 6∈ F (f)), and, for every l ∈
OFF (a) \ I(a;ϕ), there is a vector w ∈ F (f)≥a such that wl = 0 (since otherwise l
must be included in I(a;ϕ)). In other words, u∧∧w∈F (f)≥a w = a holds for an a ∈ T
if and only if u satisfies ON(u) ⊇ ON(a) and OFF (u) ⊇ I(a;ϕ). Thus, the condition
(5.1) in Lemma 5.2 can be rewritten as follows.

Lemma 5.3. Let ϕ =
∨
v∈T tv be a canonical Horn DNF of a pdBf (T, F). Then

ϕ is not minimal if and only if at least one of the following CNFs is satisfiable:

Φv = tv ∧
∧
a∈T

Ca, v ∈ T,(5.2)

HORN EXTENSIONS 2177

where

Ca =

 ∨
j∈ON(a)

x̄j ∨
∨

j∈I(a;ϕ)

xj

 .(5.3)

That is, there is a vector u ∈ {0, 1}n such that Φv(u) = 1 for some v ∈ T .
Proof. By the above discussion, ϕ is not minimal if and only if the formula

ϕ(x) ∧
∧
a∈T

 ∨
j∈ON(a)

x̄j ∨
∨

j∈I(a;ϕ)

xj

is satisfiable, which is equivalent to (5.2).

Example 5.2. Consider the pdBf (T, F) of Example 3.1. Recall that we have the
following canonical DNF:

ϕ = ϕ(1) = 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 237̄9 ∨ 127̄9 ∨ 1234567̄.

Using I(v(l);ϕ(1)), l = 1, 2, . . . , 8, listed in Example 5.1, (5.2) can be written as

Φv(1) =123478̄(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(2) =123579̄(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(3) =12367̄8(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(4) =1̄37(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(5) =13̄7(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(6) =237̄9(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(7) =127̄9(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9),

Φv(8) =1234567̄(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 7̄ ∨ 8)(1̄ ∨ 2̄ ∨ 3̄ ∨ 5̄ ∨ 7̄ ∨ 9)(1̄ ∨ 2̄ ∨ 3̄ ∨ 6̄ ∨ 7 ∨ 8̄)(1 ∨ 3̄ ∨ 7̄)
(1̄ ∨ 3 ∨ 7̄)(1 ∨ 2̄ ∨ 3̄ ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3 ∨ 7 ∨ 9̄)(1̄ ∨ 2̄ ∨ 3̄ ∨ 4̄ ∨ 5̄ ∨ 6̄ ∨ 7 ∨ 8 ∨ 9).

Now take a vector u = (111000001). This u satisfies Φv(6)(u) = 1, showing that fϕ is not a

minimal Horn extension of (T, F).

Note that CNFs Φv of (5.2) are not Horn, in general, and therefore their SATs
in Lemma 5.3 may not be easy. However, we prove in the rest of this subsection that
this can be done in polynomial time.

Let ϕ =
∨
v∈T tv be a canonical Horn DNF of (T, F). Given a v ∈ T , define

Î(v;ϕ) = I(v;ϕ) \ {lv},(5.4)

where x̄lv is the negative literal in tv. Now assume that Φv defined by (5.2) is satis-
fiable, i.e., there is a vector u ∈ {0, 1}n such that Φv(u) = 1. This means tv(u) = 1,
and hence

ON(u) ⊇ ON(v) and lv ∈ OFF (u).(5.5)

Therefore, we can fix uj = 1 for all j ∈ ON(v) and ulv = 0. We also have

ON(u) ∩ Î(v;ϕ) 6= ∅(5.6)

2178 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

in order to satisfy the clause (
∨
j∈ON(v) x̄j ∨

∨
j∈I(v;ϕ) xj) associated with a = v.

Furthermore, we shall show below that we can fix

uj = 0 for all j ∈ OFF (v) \ I(v;ϕ)(5.7)

without loss of generality. As a result of these observations, we denote by

Φ′v =
∧
a∈T

C ′a(5.8)

the CNF obtained from Φv by fixing variables xj to 1 for j ∈ ON(v) and 0 for

j ∈ OFF (v) \ Î(v;ϕ), in which C ′a denotes the clause obtained from Ca in the same
way. Then Φv is satisfiable if and only if Φ′v is satisfiable. Note that only those xj
satisfying j ∈ Î(v;ϕ) remain as variables in Φ′v. In Example 5.2, it can be seen that
Φ′
v(i) = ⊥ for i = 1, 2, 3, 4, 5, Φ′

v(6) = 1, Φ′
v(7) = 3, and Φ′

v(8) = 8̄(8 ∨ 9). This may
indicate that Φ′v is much simpler than Φv to consider.

Now we prove the above claim (5.7) after showing the next lemma.
Lemma 5.4. Let ϕ =

∨
v∈T tv be a canonical Horn DNF of a pdBf (T, F). Let

Φv = tv ∧
∧
a∈T Ca and Φ′v =

∧
a∈T C

′
a be defined as above for a v ∈ T . Then C ′a 6= >

holds for an a ∈ T if and only if the following two conditions hold:
(i) ON(a) ⊆ ON(v) ∪ Î(v;ϕ),
(ii) I(a;ϕ) ⊆ I(v;ϕ).
Proof. It is easy to see that if a satisfies (i) and (ii), then C ′a 6= > holds because

C ′a is obtained from Ca = (
∨
j∈ON(a) x̄j∨

∨
j∈I(a;ϕ) xj) by fixing xj = 1 for j ∈ ON(v)

and 0 for j ∈ OFF (v) \ Î(v;ϕ).
On the other hand, let us assume that C ′a 6= > holds. If there exists an l ∈

ON(a) \ (ON(v) ∪ Î(v;ϕ)) (= ON(a) ∩ (OFF (v) \ Î(v;ϕ))), then C ′a = > holds,
because the xl is fixed to 0, which is a contradiction to the assumption. This proves
property (i).

Next, to prove (ii), assume that there exists an index l ∈ I(a;ϕ) \ I(v;ϕ). The
following two cases are possible:

(a) l ∈ ON(v) ∩ I(a;ϕ). Then, xl is fixed to 1 and C ′a = > holds, which is a
contradiction.

(b) l ∈ OFF (v) ∩ I(a;ϕ). Clearly, l ∈ (OFF (v) \ I(v;ϕ)) ∩ I(a;ϕ). Then
l ∈ I(a;ϕ) implies (

∧
j∈ON(a) xj) x̄l ≤ fϕ, and therefore, by property (i), ∧

j∈ON(v)∪ I(v;ϕ)

xj

 x̄l ≤ fϕ.(5.9)

Now, l ∈ OFF (v) \ I(v;ϕ) implies that (
∧
j∈ON(v) xj) x̄l 6≤ fϕ. However, since

(
∧
j∈ON(v) xj) x̄h ≤ fϕ for all h ∈ I(v;ϕ) and

T

 ∧
j∈ON(v)∪I(v;ϕ)

xj

 x̄l

= T

 ∧
j∈ON(v)

xj

 x̄l

 \ T
 ∧

j∈ON(v)

xj

 ∨
h∈I(v;ϕ)

x̄h

 x̄l

 ,

we have (
∧
j∈ON(v)∪I(v;ϕ) xj) x̄l 6≤ fϕ, which is a contradiction to (5.9).

HORN EXTENSIONS 2179

Now, we prove our claim.
Lemma 5.5. Let ϕ =

∨
v∈T tv be a canonical Horn DNF of a pdBf (T, F). If

a vector u satisfies Φv(u) = 1 for a vector v ∈ T , then the vector u′ also satisfies
Φv(u

′) = 1, where u′ is defined by

u′j =

{
uj if j ∈ ON(v) ∪ I(v;ϕ),
0 otherwise.

(5.10)

Proof. Let Φ′v =
∧
a∈T C

′
a and consider an a ∈ T such that C ′a 6= >. By

Φv(u) = 1, Ca(u) = (
∨
j∈ON(a) ūj ∨

∨
j∈I(a;ϕ) uj) = 1 holds. However, considering

the condition ON(a) ∪ I(a;ϕ) ⊆ ON(v) ∪ I(v;ϕ) (which follows from Lemma 5.4),
we have Ca(u′) = Ca(u) = 1. Furthermore, Cb(u

′) = 1 holds for all other clauses Cb
with C ′b = >, and also tv(u

′) = 1 holds. These prove Φv(u
′) = 1.

Now, we summarize the above result as the following lemma.
Lemma 5.6. Let ϕ =

∨
v∈T tv be a canonical Horn DNF of a pdBf (T, F). Then

ϕ is not minimal if and only if at least one of the CNFs Φ′v, v ∈ T , is satisfiable,
where Φ′v is defined by (5.8).

In order to find a vector u such that Φ′v(u) = 1, we can remove from Φ′v all the
clauses C ′a = >. Furthermore, by (5.6), if a vector u satisfies C ′v(u) = 1, then all
other clauses C ′a such that I(a;ϕ) = I(v;ϕ) satisfy C ′a(u) = 1. Therefore, we can
also remove from Φ′v all the clauses C ′a satisfying a 6= v and I(a;ϕ) = I(v;ϕ). In the
following, we write the resulting CNF also as Φ′v. In other words, denoting by Tv the
set of vectors a ∈ T such that C ′a 6= > and I(a;ϕ) ⊂ I(v;ϕ), where ⊂ denotes proper
inclusion, Φ′v can be written as

Φ′v = C ′v ∧
∧
a∈Tv

C ′a.(5.11)

Note that v 6∈ Tv holds by definition, and that a vector u satisfies C ′v(u) = 1 if and
only if ON(u) ∩ Î(v;ϕ) 6= ∅ holds (since C ′v =

∨
j∈Î(v;ϕ) xj). Since C ′v is a special

clause in Φ′v (see the subsequent discussion), we check the conditions C ′v(u) = 1 and
Φ′′v(u) = 1 separately, where Φ′′v =

∧
a∈Tv C

′
a. We emphasize here that these CNFs

Φ′′v (and hence Φ′v) may still be non-Horn. However, the following lemma shows that
they can be transformed into Horn CNFs

Φ∗v =
∧
a∈Tv

C∗a ,(5.12)

where C∗a denotes the clause obtained from C ′a by removing all literals xj , j ∈ Î(a;ϕ).

For example, if C ′a = (1̄ ∨ 2̄ ∨ 3 ∨ 4 ∨ 5) and Î(a;ϕ) = {4, 5, 6}, then C∗a = (1̄ ∨ 2̄ ∨ 3)
holds; in this case x̄3 is the negative literal in ta. We can easily see that Φ∗v is in
fact Horn, because each clause C∗a has at most one positive literal xla , which appears
negated in ta.

Lemma 5.7. Let ϕ =
∨
v∈T tv be a canonical Horn DNF of a pdBf (T, F). Then

ϕ is not minimal if and only if at least one of the Horn CNFs Φ∗v, v ∈ T , has a vector
u ∈ {0, 1}n such that Φ∗v(u) = 1 and ON(u) ∩ Î(v;ϕ) 6= ∅.

Proof. Let us first assume that some Φ∗v has a vector u such that Φ∗v(u) = 1
and ON(u) ∩ Î(v;ϕ) 6= ∅. Since Φ∗v(u) = 1 and ON(u) ∩ Î(v;ϕ) 6= ∅, resp., imply
C ′a(u) = 1 for all a ∈ Tv, and C ′v(u) = 1 (note that C ′v =

∨
j∈Î(v;ϕ) xj), we have

Φ′v(u) = 1. Thus Lemma 5.6 shows the if-part.

2180 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

To prove the only-if part, let us assume by Lemma 5.6 that Φ′v has a vector u
such that Φ′v(u) = 1 and has the minimum |I(v;ϕ)|; i.e., no Φ′w satisfies |I(w;ϕ)| <
|I(v;ϕ)|. By (5.6), this u must satisfy ON(u) ∩ Î(v;ϕ) 6= ∅. To show Φ∗v(u) = 1,
let us assume the contrary, i.e., C∗b (u) = 0 holds for some b ∈ Tv. Without loss of
generality, we assume that the condition

uj = 1 for all j ∈ ON(v) and 0 for all j ∈ OFF (v) \ Î(v;ϕ)(5.13)

holds, since Φ′v consists of only those variables xj satisfying j ∈ Î(v;ϕ). Then C∗b (u) =
0 implies tb(u) = (

∨
j∈ON(b) ūj ∨ ulb) = 0, where x̄lb is the negative literal in tb. This

is because C∗b is obtained from the clause (
∨
j∈ON(b) x̄j ∨ xlb) by fixing xj = 1 for

j ∈ ON(v) and 0 for j ∈ OFF (v) \ Î(v;ϕ) (which u also satisfies by (5.13)). Thus
we have tb(u) = 1. Since Φv = tv ∧

∧
a∈T Ca and Φb = tb ∧

∧
a∈T Ca, tb(u) = 1 and

Φv(u) = 1 imply Φb(u) = 1. However, by Lemmas 5.3 and 5.6, this means that Φ′b is
satisfiable, which is a contradiction to our assumption that |I(v;ϕ)| is the minimum
(since I(b;ϕ) ⊂ I(v;ϕ) holds by (ii) of Lemma 5.4 and the discussion following Lemma
5.6).

Based on Lemma 5.7, we can propose an algorithm to solve problem MINIMAL-
H-EXTENSION.

Algorithm CHECK-MINIMAL
Input: A pdBf (T, F) and a Horn DNF ϕ.
Question: Is ϕ a minimal Horn DNF of (T, F) ?
Step 1: Check if fϕ is a Horn extension of (T, F). If not, output “no” and halt.
Step 2: Construct a canonical Horn DNF ψ =

∨
v∈T tv such that fψ ≤ fϕ. If

fψ < fϕ, then output “no” and halt; otherwise (i.e., fψ = fϕ), rewrite ψ as ϕ.

Step 3: For each v ∈ T , check if Φ∗v has a vector u such that ON(u)∩ Î(v;ϕ) 6= ∅
and Φ∗v(u) = 1. Output “no” if some Φ∗v has such a vector; otherwise, “yes.”
Halt.

Theorem 5.1. Given a pdBf (T, F) and a Horn DNF ϕ, Problem MINIMAL-H-
EXTENSION can be solved in O(|F ||ϕ|+n|T ||ϕ|+n|T |2) time by Algorithm CHECK-
MINIMAL, where T, F ⊆ {0, 1}n and |ϕ| denotes the number of literals in ϕ.

Proof. The correctness of Algorithm CHECK-MINIMAL follows from Lemma 5.7.
We therefore consider its time complexity. Step 1 can be executed in O((|T |+ |F |)|ϕ|)
time, since we can check if ϕ(v) = 1 or 0 for each v ∈ T ∪F in O(|ϕ|) time. In Step 2,
we first compute I(v;ϕ) for all v ∈ T , which can be done in O(|T ||ϕ|) time by applying
Algorithm F-CHAINING in subsection 5.1 to all v ∈ T . Choose an arbitrary term
tv ∈ R(v;ϕ) for each v ∈ T , and then construct a canonical Horn DNF ψ =

∨
v∈T tv,

which satisfies fψ ≤ fϕ and |ψ| ≤ n|T |. This can be done in O(n|T |) time. Checking if
two Horn DNFs ψ and ϕ satisfy fψ < fϕ can then be done in O(|ψ||ϕ|) = O(n|T ||ϕ|)
time [14]. Totally, Step 2 requires O(n|T ||ϕ|) time. In Step 3, for each v ∈ T , we can
construct Φ∗v in O(n|T |) time, because I(v;ϕ) was already obtained in Step 2.

Let us now consider how to check if there is a vector u such that ON(u)∩Î(v;ϕ) 6=
∅ and Φ∗v(u) = 1. Since the variable set of Φ∗v is Î(v;ϕ), we regard Φ∗v as a CNF of
|Î(v;ϕ)| variables in this proof. For notational convenience, given a u ∈ {0, 1}n,
we write Φ∗v(u|Î(v;ϕ)) = 1 instead of Φ∗v(u) = 1, where u|S is the projection of u

to S ⊆ {1, 2, . . . , n}. To check if there is a vector u|Î(v;ϕ) 6= (0, 0, . . . , 0) such that

Φ∗v(u|Î(v;ϕ)) = 1, we consider two cases, Φ∗v(0, 0, . . . , 0) = 0 and Φ∗v(0, 0, . . . , 0) = 1.

If Φ∗v(0, 0, . . . , 0) = 0, then solve H-SAT for Φ∗v (see section 2); if the output of H-
SAT is “yes” (resp., “no”), there is a desired vector u (resp., no desired vector u).

HORN EXTENSIONS 2181

On the other hand, if Φ∗v(0, 0, . . . , 0) = 1, then solve UNIQUE-H-SAT (see section 2)
to see if (0, 0, . . . , 0) is the unique vector such that Φ∗v(0, 0, . . . , 0) = 1. There is no
desired vector u if and only if (0, 0, . . . , 0) is the unique such vector. Since H-SAT
and UNIQUE-H-SAT can be solved in time linear in the number of literals [7, 22],
this can be done in O(|ϕ|) = O(n|T |) time for each v ∈ T . Therefore, Step 3 can be
executed in O(n|T |)× |T | = O(n|T |2) time.

Summing up the time of all steps, we conclude that Algorithm CHECK-MINIMAL
requires O(|F ||ϕ|+ n|T ||ϕ|+ n|T |2) time.

If a given DNF ϕ is already a canonical Horn DNF, we can skip Steps 1 and 2 of
CHECK-MINIMAL, leading to the following corollary.

Corollary 5.1. Given a pdBf (T, F) and a canonical Horn DNF ϕ of (T, F),
Problem MINIMAL-H-EXTENSION can be solved in O(n|T |2) time.

Example 5.3. Consider the pdBf (T, F) and canonical Horn DNF ϕ = ϕ(1) of
Example 3.1, to which we apply Algorithm CHECK-MINIMAL. Sets I(v(l);ϕ), l =
1, 2, . . . , |T |, are listed in Example 5.1. It can be seen that Φ∗

v(i) = ⊥ for i = 1, 2, 3, 4, 5,
Φ∗
v(6) = Φ∗

v(7) = >, and Φ∗
v(8) = 8̄. Clearly, Φ∗

v(i) , i = 6, 7, 8, has a vector u satisfying
the condition in Step 3 of CHECK-MINIMAL. Consequently, this ϕ does not represent
a minimal Horn extension of (T, F).

5.2. Generating a minimal Horn extension. In this subsection, we consider
the generation of a minimal canonical Horn DNF of a given pdBf (T, F). To generate
a minimal canonical Horn DNF of a given pdBf (T, F), we first construct a canonical
Horn DNF ϕ and then recursively check if some Φ∗v, v ∈ T , has a vector u ∈ {0, 1}n
satisfying ON(u) ∩ Î(v;ϕ) 6= ∅, Φ∗v(u) = 1, and (5.13). If no, output ϕ and halt.
Otherwise, update ϕ to a canonical Horn DNF ϕ′ such that ϕ′(u) = 0 and ϕ′ < ϕ.

Note that condition (5.13) for u is not restrictive, because Φ∗v consists of only
variables xj satisfying j ∈ Î(v;ϕ). Furthermore, by this restriction, Φ∗v(u) = 1 implies
Φv(u) = 1, and hence we can construct the above ϕ′. Formally, it can be written as
follows.

Algorithm FIND-MINIMAL
Input: A pdBf (T, F).
Output: A minimal canonical Horn DNF ϕ of (T, F) if (T, F) has a Horn exten-

sion; otherwise, “no.”
Step 1: If (T, F) has a Horn extension, construct a canonical DNF ϕ =

∨
v∈T tv;

otherwise, output “no” and halt.
Step 2: For each v ∈ T , check if Φ∗v has a vector u ∈ {0, 1}n satisfying ON(u)∩

Î(v;ϕ) 6= ∅, Φ∗v(u) = 1, and (5.13). If no Φ∗v has such a vector u, then output
the current ϕ and halt. On the other hand, if Φ∗v has such a vector u, based
on this u, define

Ru(a;ϕ) = {t ∈ R(a;ϕ) | t(u) = 0}, a ∈ T,(5.14)

and reconstruct a canonical Horn DNF ϕ by

ϕ :=
∨
a∈T

ta, ta ∈ Ru(a;ϕ),(5.15)

where ta ∈ Ru(a;ϕ) is chosen arbitrarily if |Ru(a;ϕ)| ≥ 2. Return to Step 2.

In Step 2, if we have a desired vector u, Ru(a;ϕ) of (5.14) can be easily obtained
as follows:

Ru(a;ϕ) =

{
R(a;ϕ) if ON(a) ∩OFF (u) 6= ∅,
{(∧j∈ON(a) xj) x̄l | l ∈ ON(u) ∩ I(a;ϕ)} otherwise.

2182 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

Theorem 5.2. Given a pdBf (T, F), where T, F ⊆ {0, 1}n, a minimal canonical
Horn DNF ϕ of (T, F) can be generated in O(n|T |(|F |+ n|T |2)) time if (T, F) has a
Horn extension.

Proof. FIND-MINIMAL is similar to CHECK-MINIMAL of subsection 5.1. To
show its correctness, we need only prove that (i) Ru(a;ϕ) 6= ∅ holds for all a ∈ T in
(5.14) and (ii) FIND-MINIMAL will eventually halt.

(i) By the definition of Φ∗v and the assumption (5.13) on u, Φ∗v(u) = 1 implies
Φv(u) = 1. This means that Ca(u) = 1 holds for all a ∈ T , where Ca = (

∨
j∈ON(a) x̄j∨∨

j∈I(a;ϕ) xj), and hence some t ∈ R(a;ϕ) satisfies t(u) = 0, by the definition of

Ru(a;ϕ). Therefore, Ru(a;ϕ) 6= ∅ holds for all a ∈ T .

(ii) Let ϕ′ be the DNF constructed by (5.15) from ϕ during an iteration. Then ϕ′

is clearly a canonical Horn DNF of (T, F), and fϕ′ < fϕ holds since u ∈ T (ϕ) \T (ϕ′).
More precisely, ∑

a∈T
|R(a;ϕ′)| <

∑
a∈T
|R(a;ϕ)| (≤ n|T |)

holds. This is because R(a;ϕ′) ⊆ R(a;ϕ) holds for all a ∈ T , and tv in ϕ is included
in R(v;ϕ) but not in R(v;ϕ′) (since Φv(u) = 1 implies tv(u) = 1). Thus the number
of iterations is at most n|T |, which proves (ii).

Finally, let us consider its time complexity. By Theorem 3.1, Step 1 can be
done in O(n|T ||F |) time. In Step 2, for each v ∈ T , we can obtain Φ∗v from ϕ in
O(|ϕ|) = O(n|T |) time, since I(v;ϕ) can be computed in O(|ϕ|) = O(n|T |) time
by applying F-CHAINING of subsection 5.1 to a vector v. Similar to the proof of
Theorem 5.1, for each v ∈ T , a vector u satisfying ON(u) ∩ Î(v;ϕ) 6= ∅, Φ∗v(u) = 1,
and (5.13) can be computed in O(n|T |) time, if there is at least one such u. Thus
O(n|T |)× |T | = O(n|T |2) time is required to find the desired vector u. Once we have
such a vector u, ta ∈ Ru(a;ϕ) can be obtained in O(n) time for each a ∈ T . (See the
discussion below Algorithm FIND-MINIMAL.) This means that the new ϕ of (5.15)
can be obtained in O(n|T |) time. Hence each iteration of Step 2 requires O(n|T |2)
time. Since the number of iterations is at most n|T |, Step 2 requires O(n2|T |3) time
in total.

Consequently, Algorithm FIND-MINIMAL can be executed inO(n|T |(|F |+n|T |2))
time.

Example 5.4. Consider again the pdBf (T, F) of Example 3.1. We demonstrate
Algorithm FIND-MINIMAL by assuming that a canonical DNF ϕ = ϕ(1) of Example
3.1 is obtained in Step 1.

First iteration. Sets I(v(l);ϕ), l = 1, 2, . . . , 8, are listed in Example 5.1. We
have Φ∗

v(i) = ⊥ for i = 1, 2, . . . , 5, Φ∗
v(6) = Φ∗

v(7) = >, and Φ∗
v(8) = 8̄, which are ob-

tained in Example 5.3. For example, Φ∗
v(6) has a vector u = (111000001) satisfying the

condition in Step 2 of FIND-MINIMAL. Based on this u, we construct Ru(v(l);ϕ) of
(5.14): Ru(v(1);ϕ) = {123478̄}, Ru(v(2);ϕ) = {123579̄}, Ru(v(3);ϕ) = {12367̄8},
Ru(v(4);ϕ) = {1̄37}, Ru(v(5);ϕ) = {13̄7}, Ru(v(6);ϕ) = {1̄239}, Ru(v(7);ϕ) =
{123̄9}, andRu(v(8);ϕ) = {1234567̄, 1234568̄, 1234569̄}. By (5.15), we obtain a canon-
ical Horn DNF

ϕ := 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 1̄239 ∨ 123̄9 ∨ 1234567̄,

if 1234567̄ is chosen from Ru(v(8);ϕ).

HORN EXTENSIONS 2183

Second iteration. Construct I(v(1);ϕ) = {8}, I(v(2);ϕ) = {9}, I(v(3);ϕ) =
{7}, I(v(4);ϕ) = {1}, I(v(5);ϕ) = {3}, I(v(6);ϕ) = {1}, I(v(7);ϕ) = {3}, and
I(v(8);ϕ) = {7, 8, 9}. Then we have Φ∗

v(i) = ⊥ for i = 1, 2, . . . , 7 and Φ∗
v(8) = 8̄.

Φ∗
v(8) has a vector u = (111111001) satisfying the condition in Step 2 of FIND-

MINIMAL. By (5.14), we construct Ru(v(1);ϕ) = {123478̄}, Ru(v(2);ϕ) = {123579̄},
Ru(v(3);ϕ) = {12367̄8}, Ru(v(4);ϕ) = {1̄37}, Ru(v(5);ϕ) = {13̄7}, Ru(v(6);ϕ) =
{1̄239}, Ru(v(7);ϕ) = {123̄9}, and Ru(v(8);ϕ) = {1234569̄}. The next canonical
Horn DNF ϕ constructed by (5.15) is

ϕ := 123478̄ ∨ 123579̄ ∨ 12367̄8 ∨ 1̄37 ∨ 13̄7 ∨ 1̄239 ∨ 123̄9 ∨ 1234569̄.

Third iteration. Construct I(v(1);ϕ) = {8}, I(v(2);ϕ) = {9}, I(v(3);ϕ) = {7},
I(v(4);ϕ) = {1}, I(v(5);ϕ) = {3}, I(v(6);ϕ) = {1}, I(v(7);ϕ) = {3}, and I(v(8);ϕ) =
{9}. We have Φ∗

v(i) = ⊥ for i = 1, 2, . . . , 8. Therefore, the above ϕ obtained in the

second iteration is a minimal Horn DNF of (T, F). This ϕ is equal to ϕ(2) of Example
3.1.

5.3. Minimum and unique minimal Horn extensions. In this subsection,
we first consider the problem of computing a minimum (i.e., with the smallest |T (f)|)
Horn extension f among all minimal Horn extensions and then the condition for the
uniqueness of a minimal Horn extension.

Problem MINIMUM-H-EXTENSION
Input: A pdBf (T, F).
Output: A minimum Horn DNF ϕ of (T, F) if (T, F) has a Horn extension;

otherwise, “no.”

Theorem 5.3. Problem MINIMUM-H-EXTENSION is NP-hard, even if F = ∅.
Proof. We transform Problem VERTEX COVER to this problem, where VER-

TEX COVER is known to be NP-hard [11]. Let G = (V,E) be an undirected graph,
where V = {1, . . . , n}. Let us define T, F ⊆ {0, 1}n as follows:

T = {xA |A = V \ {i, j}, (i, j) ∈ E} and
F = ∅,

where xA denotes the characteristic vector of set A ⊆ V (i.e., xAj = 1 if j ∈ A and

xAj = 0 if j 6∈ A). As F = ∅, this (T, F) obviously has a Horn extension. Let
ϕ =

∨
v∈T tv with tv = (

∧
j∈Pv xj)x̄lv be a canonical Horn DNF that represents a

minimum Horn extension of (T, F). We claim that |T (fϕ)| = |E|+ τ(G), where τ(G)
denotes the cardinality of a minimum vertex cover of G. This will prove the theorem,
since Problem VERTEX COVER (i.e., computing τ(G)) is known to be NP-hard [11]
and |T (fϕ)| can be computed from such a ϕ in polynomial time.

To prove the claim, we first show that |T (fϕ)| ≥ |E|+τ(G). Since ϕ is a canonical
Horn DNF, we have Pv = ON(v) (where |ON(v)| = n − 2), lv ∈ I(v) (= OFF (v)),
and T (tv) = {v, xV \{lv}}. Therefore, T (fϕ) = T ∪ {xV \{lv} | v ∈ T}. Since OFF (v)
of each v ∈ T corresponds to an edge of G, set {lv | v ∈ T} forms a vertex cover of G.
Therefore,

|T (ϕ)| = |T ∪ {xV \{lv} | v ∈ T}|
= |E|+ |{lv | v ∈ T}|
≥ |E|+ τ(G).

2184 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

Conversely, let W ⊆ V be a minimum vertex cover with |W | = τ(G). Then define
a Horn DNF ϕ

W
=
∨
v∈T tv, where tv = (

∧
j∈ON(v) xj) x̄lv for some lv ∈ OFF (v)∩W .

Then T (tv) = {v, xV \{lv}} holds and ϕ
W

is a Horn DNF of (T, F). Furthermore,

|T (ϕ
W

)| = |T ∪ {xV \{k} | k ∈W}| = |E|+ |W | = |E|+ τ(G).
However, the uniqueness of a minimal Horn extension can be decided in polyno-

mial time.

Problem UMIN-H-EXTENSION
Input: A pdBf (T, F).
Question: Does (T, F) have the unique minimal Horn extension?

Lemma 5.8. Let ϕ =
∨
v∈T tv be a minimal canonical Horn DNF of a pdBf

(T, F). Then (T, F) does not have the unique minimal Horn extension (which is fϕ)
if and only if at least one of the CNFs

Φ†v = tv ∧
∧
a∈T

C†a, v ∈ T,(5.16)

where C†a = (
∨
j∈ON(a) x̄j ∨

∨
j∈I(a) xj), is satisfiable.

Proof. To show the if-part, let us first assume that a vector u satisfies Φ†v(u) = 1.
Then obviously ϕ(u) = 1 holds, and, for each a ∈ T , there is a term t∗a in R(v) such
that t∗a(u) = 0. By choosing such a term t∗a for each a ∈ T , we have a canonical Horn
DNF ψ =

∨
a∈T t

∗
a of (T, F) such that ψ(u) = 0. Therefore, u satisfies ϕ(u) = 1 and

ψ(u) = 0, which proves that (T, F) has at least two minimal Horn extensions.
Conversely, if no Φ†v is satisfiable, then, for every vector u such that ϕ(u) = 1,

some clause C†a satisfies C†a(u) = 0. By the definition of I(a), this implies that
t∗a(u) = 1 holds for all t∗a ∈ R(a). Therefore, if a vector u satisfies ϕ(u) = 1, then
ψ(u) = 1 must hold for all canonical Horn DNFs ψ =

∨
a∈T t

∗
a, which shows that

(T, F) has the unique minimal Horn extension.
Note that this lemma corresponds to Lemma 5.3, and all other lemmas, theo-

rems, and algorithms in subsection 5.1 are valid, even if Φv and I(v;ϕ) are replaced
by Φ†v and I(v), respectively. (Recall that I(v) becomes I(v;ϕ) if ϕ represents fmax.)
Therefore, in order to solve Problem UMIN-H-EXTENSION, first construct a canon-
ical DNF ϕ such that fϕ is a minimal Horn extension by Algorithm FIND-MINIMAL
in subsection 5.2, and then check the condition in Lemma 5.8 by using Algorithm
CHECK-MINIMAL with the above replacement incorporated.

Theorem 5.4. Problem UMIN-H-EXTENSION can be solved in O(n|T |(|F | +
n|T |2)) time.

Proof. We consider only its time complexity. A minimal canonical Horn DNF ϕ
can be constructed in O(n|T |(|F |+ n|T |2)) time by Theorem 5.2. We also can check
the condition in Lemma 5.8 in O(n|T |2) time (Corollary 5.1) by using the modified
CHECK-MINIMAL.

6. Shortest Horn extensions. Finally, we show that the following problem,
related to the knowledge compression for expert systems [13, 14], is intractable:

Problem SHORTEST-H-EXTENSION
Input: A pdBf (T, F) and a positive integer k.
Question: Is there a Horn DNF ϕ of (T, F) such that |ϕ| ≤ k?

Theorem 6.1. Problem SHORTEST-H-EXTENSION is NP-complete.
Proof. This problem is in NP, since we can check in polynomial time if a given

DNF ϕ represents a Horn extension of (T, F) and satisfies |ϕ| ≤ k. Now we transform

HORN EXTENSIONS 2185

Problem VERTEX COVER to this problem, where VERTEX COVER is known to
be NP-hard [11]. Let G = (V,E) be an undirected graph, where V = {1, 2, . . . , n}.
Let us define T, F ⊆ {0, 1}n as follows:

T = {xA |A = V \ {i, j}, (i, j) ∈ E},
F = {e = (11 . . . 1)},

where xA denotes the characteristic vector of set A ⊆ V .
We claim that there is a Horn DNF ϕ of (T, F) such that |ϕ| ≤ k if and only

if τ(G) ≤ k, where τ(G) denotes the cardinality of a minimum vertex cover of G.
Similar to the proof of Theorem 5.3, this will complete the proof.

Let ϕ =
∨
l∈L tl, where tl =

∧
j∈Pl xj

∧
j∈Nl x̄j , be a Horn DNF of (T, F) such

that |ϕ| ≤ k. Then, for every l ∈ L, the following conditions hold:
(a) Nl 6= ∅, i.e., |Nl| = 1 holds since otherwise tl(e) = 1, which is a contradiction.
(b) Pl = ∅ holds, since replacing Pl by ∅ produces a shorter good term t′l such

that |t′l| ≤ |tl|, tl(a) = 1 implies t′l(a) = 1 for all a ∈ T , and t′l(e) = 0.
Furthermore, since ϕ(a) = 1 for every a ∈ T , there must exist an l ∈ L such that
tl(a) = 1 (i.e., Nl ⊆ OFF (a) = {i, j} for the corresponding edge (i, j) ∈ E). Hence
∪l∈LNl is a vertex cover of G such that | ∪l∈L Nl| = |ϕ| ≤ k.

Conversely, if W is a vertex cover with |W | ≤ k, then ϕ
W

=
∨
j∈W x̄j is a Horn

DNF of (T, F) such that |ϕ
W
| ≤ k.

7. Conclusion and future research. Because there are in general many Horn
extensions for a given pdBf (T, F), in this paper we considered Horn extensions with
special properties. In particular, we investigated maximal and minimal Horn ex-
tensions and pointed out that the maximal Horn extension is always unique (i.e.,
maximum) but there are many minimal Horn extensions. The main contribution of
this paper is to show that checking if a Horn DNF is minimal and generating a mini-
mal Horn DNF of a pdBf (T, F) both can be done in polynomial time. We can also
check in polynomial time if a minimal extension is unique. However, the problems of
finding a Horn DNF of a minimum Horn extension and finding a shortest Horn DNF
of a pdBf (T, F) are shown to be NP-hard.

A possible topic for future research is the development of an efficient algorithm
to generate all minimal Horn extensions of a given pdBf (T, F).

Acknowledgments. The authors greatly appreciate the comments given by two
anonymous reviewers, which helped improve the readability of this paper. In partic-
ular, one of the reviewers gave us an alternative proof of Lemma 5.7 and suggested a
shorter presentation of subsection 5.1 (which was originally written in a form dual to
the current version).

REFERENCES

[1] D. Angluin, M. Frazier, and L. Pitt, Learning conjunctions of Horn clauses, Mach. Learn-
ing, 9 (1992), pp. 147–164.

[2] E. Boros, V. Gurvich, P. L. Hammer, T. Ibaraki, and A. Kogan, Decompositions of par-
tially defined Boolean functions, Discrete Appl. Math., 62 (1995), pp. 51–75.

[3] J. C. Bioch and T. Ibaraki, Complexity of identification and dualization of positive Boolean
functions, Inform. and Comput., 123 (1995), pp. 50–63.

[4] E. Boros, T. Ibaraki, and K. Makino, Error-free and best-fit extensions of partially defined
Boolean functions, Inform. and Comput., 140 (1998), pp. 254–283.

[5] S. Ceri, G. Gottlob, and L. Tanca, Logic Programming and Databases, Springer, Berlin,
New York, 1990.

2186 K. MAKINO, K.-I. HATANAKA, AND T. IBARAKI

[6] Y. Crama, P. L. Hammer, and T. Ibaraki, Cause-effect relationships and partially defined
Boolean functions, Ann. Oper. Res., 16 (1988), pp. 299–326.

[7] D. W. Dowling and J. H. Gallier, Linear-time algorithms for testing the satisfying of propo-
sitional Horn formulae, J. Logic Programming, 3 (1984), pp. 267–284.

[8] R. Dechter and J. Pearl, Structure identification in relational data, Artificial Intelligence,
58 (1992), pp. 237–270.

[9] T. Eiter and G. Gottlob, Identifying the minimal transversals of a hypergraph and related
problems, SIAM J. Comput., 24 (1995), pp. 1278–1304.

[10] M. Fredman and L. Khachiyan, On the complexity of dualization of monotone disjunctive
normal forms, J. Algorithms, 21 (1996), pp. 618–628.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, New York, 1979.
[12] M. Golumbic, P. L. Hammer, P. Hansen, and T. Ibaraki, eds., Horn Logic, Search and Sat-

isfiability, Ann. Math. Artificial Intelligence, 1 (1990), no. 1–4, Baltzer Science Publishers
BV, Amsterdam, 1990.

[13] P. L. Hammer and A. Kogan, Optimal compression of propositional Horn knowledge bases:
Complexity and approximation, Artificial Intelligence, 64 (1993), pp. 131–145.

[14] P. L. Hammer and A. Kogan, Horn functions and their DNFs, Inform. Process. Lett., 44
(1992), pp. 23–29.

[15] A. Horn, On sentences which are true of direct unions of algebras, J. Symbolic Logic, 16
(1951), pp. 14–21.

[16] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, On generating all maximal inde-
pendent sets, Inform. Process. Lett., 27 (1988), pp. 119–123.

[17] H. A. Kautz, M. J. Kearns, and B. Selman, Horn approximations of empirical data, Artificial
Intelligence, 74 (1995), pp. 129–145.

[18] D. Kavvadias, C. H. Papadimitriou, and M. Sideri, On Horn envelopes and hypergraph
transversals, in ISAAC’93, Algorithms and Computation, K. W. Ng et al., eds., Lecture
Notes in Comput. Sci. 762, Springer, Berlin, 1993, pp. 399–405.

[19] R. Khardon, Translating between Horn representations and their characteristic models, J.
Artificial Intelligence Res., 3 (1995), pp. 349–372.

[20] K. Makino, K. Yano, and T. Ibaraki, Positive and Horn decomposability of partially defined
Boolean functions, Discrete Appl. Math., 74 (1997), pp. 251–274.

[21] J. C. C. McKinsey, The decision problem for some classes of sentences without quantifiers,
J. Symbolic Logic, 8 (1943), pp. 61–76.

[22] D. Pretolani, A linear time algorithm for unique Horn satisfiability, Inform. Process. Lett.,
48 (1993), pp. 61–66.

[23] W. Quine, A way to simplify truth functions, Amer. Math. Monthly, 62 (1955), pp. 627–631.
[24] J. R. Quinlan, Induction of decision trees, Mach. Learning, 1 (1986), pp. 81–106.
[25] B. Selman and H. Kautz, Knowledge compilation using Horn approximations, in Proceedings

of the Ninth National Conference on Artificial Intelligence (AAAI-91), July 14–19, 1991,
Anaheim, CA, Amer. Assoc. Artif. Intell., Menlo Park, CA, 1991, pp. 904–909.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS∗

GUY EVEN† , JOSEPH (SEFFI) NAOR‡ , SATISH RAO§ , AND BARUCH SCHIEBER¶

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2187–2214

Abstract. We study graph partitioning problems on graphs with edge capacities and vertex
weights. The problems of b-balanced cuts and k-balanced partitions are unified into a new problem
called minimum capacity ρ-separators. A ρ-separator is a subset of edges whose removal parti-
tions the vertex set into connected components such that the sum of the vertex weights in each
component is at most ρ times the weight of the graph. We present a new and simple O(logn)-
approximation algorithm for minimum capacity ρ-separators which is based on spreading metrics
yielding an O(logn)-approximation algorithm both for b-balanced cuts and k-balanced partitions.
In particular, this result improves the previous best known approximation factor for k-balanced
partitions in undirected graphs by a factor of O(log k). We enhance these results by presenting a
version of the algorithm that obtains an O(log opt)-approximation factor. The algorithm is based
on a technique called spreading metrics that enables us to formulate directly the minimum capacity
ρ-separator problem as an integer program. We also introduce a generalization called the simultane-
ous separator problem, where the goal is to find a minimum capacity subset of edges that separates
a given collection of subsets simultaneously. We extend our results to directed graphs for values of
ρ ≥ 1/2. We conclude with an efficient algorithm for computing an optimal spreading metric for ρ-
separators. This yields more efficient algorithms for computing b-balanced cuts than were previously
known.

Key words. graph partitioning, approximation algorithms, graph separator, spreading metrics

AMS subject classifications. 05C85, 68R10, 68Q20, 68Q25, 68Q35, 90C05, 94C15

PII. S0097539796308217

1. Introduction. Two well-studied graph partitioning problems are finding min-
imum capacity b-balanced cuts and k-balanced partitions in undirected and directed
graphs. The input for these problems consists of a graph having edge capacities and
also vertex weights. Given a parameter 0 < b ≤ 1/2, the b-balanced cut problem is to
find a minimum capacity cut such that the weight of the vertex sets on each side of
the cut is at least b times the weight of the graph. Given an integer k, the k-balanced
partitioning problem is to find a minimum capacity subset of edges whose removal
partitions the graph into at most k roughly equally weighted subgraphs that are
disconnected from each other. (Section 2 formally defines these problems and their
vertex counterparts.) These problems have many applications, among them VLSI
layout, circuit testing and simulation, parallel scientific processing, and sparse linear
system solving. In essence, graph partitioning is used in these applications either for
divide-and-conquer algorithms or for facilitating parallelism.

Since these graph partitioning problems are NP-hard, two approaches have been
taken. In the first approach, efficient heuristics were designed (e.g., [8]); however,

∗Received by the editors August 16, 1996; accepted for publication (in revised form) June 5, 1998;
published electronically July 7, 1999.

http://www.siam.org/journals/sicomp/28-6/30821.html
†Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

(guy@eng.tau.ac.il).
‡Computer Science Department, Technion, Haifa 32000, Israel (naor@cs.technion.ac.il). The

research of this author was supported in part by grant 92-00225 from the United States–Israel
Binational Science Foundation, Jerusalem, Israel.
§NEC Research Institute, 4 Independence Way, Princeton, NJ 08540 (satish@research.

nj.nec.com).
¶IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (sbar@watson.

ibm.com).

2187

2188 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

these heuristics did not make any guarantee on the quality of the solution. In the
second approach, polynomial-time approximation algorithms were designed [13], and
an upper bound on the ratio between the value of an approximate solution and an
optimal solution is given. The techniques used by these two approaches differ greatly.
Lang and Rao [14] conducted some experiments based on [13] and reported that the
technique is successful for large graphs if long running times are allowed and if an
additional clean-up phase [8] is used. (See also [1].)

We unify the problems of b-balanced cuts and k-balanced partitions into a new
problem called ρ-separators. Given a parameter 0 < ρ < 1, the ρ-separator problem
is to find a minimum capacity cut that partitions the vertex set into connected com-
ponents such that the weight of each is at most ρ times the weight of the graph. We
also introduce a more general problem called simultaneous separators: a collection
of subsets U1, . . . , Us of the vertex set is given together with separation parameters
ρ1, . . . , ρs. The goal is to find a minimum capacity cut that partitions the vertex set
into connected components such that each connected component contains at most ρi
of the weight of subset Ui for all i.

We present a unified framework that allows us to obtain new graph partitioning
algorithms. These algorithms help bridge the gap between heuristics and approxi-
mation algorithms in the following ways: First, we obtain improved approximation
factors. Second, our algorithm is faster by a factor of O(|V |). Third, our main tech-
nique may also be used in conjunction with techniques such as cutting planes. Thus,
apart from yielding improved algorithms for graph partitioning, our techniques may
be used to design new heuristics that differ significantly from the Kernighan and Lin
algorithm [8] and simulated annealing [7].

Our framework is based on spreading metrics which provide a direct fractional
relaxation of graph partitioning problems. Spreading metrics were introduced by
Even et al. [3] to obtain improved approximation factors for certain NP-hard graph
problems that are amenable to a divide-and-conquer approach. Informally, a spread-
ing metric on a graph is an assignment of lengths to either the edges or the vertices,
so that subgraphs on which the optimization problem is nontrivial are spread apart in
the associated metric space. In addition, the volume of the spreading metric provides
a lower bound on the cost of solving the optimization problem on the input graph.
Spreading metrics are used to find a cut in the graph whose cost depends on the vol-
ume of the spreading metric in one of the resulting subgraphs. In [3] this cut defines
the divide step, and then each subproblem is solved recursively.

1.1. Our results. We believe that the definition of ρ-separators captures the
type of partitioning that is actually required in applications. Namely, instead of
limiting the number of resulting parts, which is not always important for divide-and-
conquer applications or for parallelism, we limit only the sizes or weights of each part.
This enables us to unify the problems of b-balanced cuts and k-balanced partitions.
We also consider a generalization called simultaneous separators.

Our approximation algorithms are simple and deal easily with the weighted ver-
sion. The approximation factors for undirected graphs are summarized in Table 1.1,
where n denotes the number of vertices in the graph. Note that in order to perform
a fair comparison in Table 1.1, we assume that an optimal spreading metric is used.
If an α-approximate spreading metric is used, then the approximation factor for the
problems we solve is multiplied by α. (A similar issue applies for previous algorithms
with regard to solving linear programs.) In particular, the approximation factor of our
k-balanced partitioning algorithm improves over previous algorithms by a factor of

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2189

Table 1.1

Capacities of found solutions when an optimal spreading metric is used where optρ
4
= cap. of

optimal ρ-separator, optb
4
= cap. of optimal b-balanced cut, optk

4
= cap. of optimal (k, 1)-balanced

partition, and opt1/2
4
= cap. of optimal bisector.

Problem Our work Previous work

ρ′-separator

(
ρ′
ρ′−ρ + o(1)

)
· lnn · optρ O(logn · log 1/ρ′) · optρ

[13, 12, 17]

b′-balanced cut

(
1−b′
b−b′ + o(1)

)
· lnn · optb 8 ·

(
1

3(b−b′) + ln 1−b
b−b′

)
· lnn · optb

(b′ ≤ 1/3) [13, 6]

k-balanced (2 + o(1)) · lnn · optk O(logn · log k) · optk
partition [12, 17]

separator (4 + o(1)) · lnn · opt1/2 ∼ 24.8 · lnn · opt1/2

[13, 6]

O(log k), and our separator approximation improves over previous algorithms roughly
by a factor of 6. Note that we compare the cost of the found solution with the cost of
an optimal solution to a more restricted problem; this is the reason for the term “pseu-
doapproximation” used in the literature. For example, we compute a ρ′-separator and
compare its cost with the cost of an optimal ρ-separator, for ρ < ρ′. The algorithm
for approximating ρ-separators holds for directed graphs with constants four times as
large if ρ ≥ 1/2. Since we require for directed graphs that ρ ≥ 1/2, we are not able
to approximate k-balanced partitions in directed graphs for k > 4, since this requires
ρ′ = 2/k < 1/2.

Our use of spreading metrics introduces a direct fractional relaxation of the par-
titioning problems. The connection between the fractional relaxation and the original
problem is natural and a repeated evaluation of fractional edge lengths is not required,
as opposed to the Leighton–Rao algorithm [13].

The running time of our algorithms is dominated by the complexity of finding a
spreading metric. Spreading metrics can be computed by general linear programming
algorithms (such as the ellipsoid algorithm). However, we present much more efficient
approximate algorithms that are based on the framework presented in the papers of
Plotkin, Tardos, and Shmoys [16] and Young [18]. These efficient algorithms apply
only to undirected graphs. Specifically, the complexity of our deterministic algorithm

which computes a constant approximation for a spreading metric is Õ(m2n · ρ′

ρ′−ρ).1

The randomized version has an expected running time of Õ(m2/(ρ′ − ρ)); moreover,
this running time is achieved with probability 1− e−Ω(m). For balanced cuts, (ρ′− ρ)
is typically a constant. This improves over the implementation of the Leighton–Rao
algorithm suggested by Leighton et al. [11], where the time complexity is Õ(mn3)
with the use of expanders and Õ(mn4) without the use of expanders. (Expanders are
needed to reduce the number of commodities from Ω(n2) to Ω(n).)

Since our efficient algorithms approximate spreading metrics rather than compute
them exactly, applying them increases the approximation factors for ρ-separators.
Specifically, in the case of arbitrary vertex weights, the following error terms are

1The notation Õ ignores polylogarithmic factors, and |V | = n, |E| = m.

2190 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

generated by our approximate algorithm for spreading metrics: (a) a multiplicative
error bounded by 2(1 + ε) introduced in approximating the optimization oracle (see
section 7.3.2); (b) a multiplicative error bounded by 2 introduced in the randomized
version (see section 7.3.3); (c) an additive error bounded by 2 · optρ introduced in
the scaling procedure (needed for bounding the optimal cost) (see section 7.2); and
(d) additional multiplicative error terms as specified in items (a) and (b) (for the
randomized version) introduced in the transformation of a solution into a spreading
metric (see section 7.4).

Finally, we presentO(log opt)-approximation factors for all these problems, which
for small values of opt is better than the O(logn)-approximation factors.

1.2. Comparison with previous work. The seminal work of Leighton and
Rao [13] is the only previous paper that provides a pseudoapproximation algorithm
for b-balanced cuts. Given a graph and two parameters 0 < b ≤ 1/2 and 0 < b′ ≤
min{1/3, b} (typically, b = 1/2 and b′ = 1/3), Leighton and Rao presented an algo-
rithm that finds a cut whose capacity is O(log n

b−b′ · OPTb), where OPTb denotes the
capacity of an optimum b-balanced cut. Leighton and Rao approach the problem
of finding b-balanced cuts indirectly. They define the notion of a sparse cut, whose
fractional relaxation is the dual problem of a multicommodity flow problem. They
present an O(logn)-approximation algorithm for computing an optimal sparse cut.
The Leighton–Rao algorithm proceeds by accumulating approximate optimal sparse
cuts, cutting off in each iteration the smaller part of the graph, until a fraction of b′

of the weight of the graph is accumulated. Approximating an optimal sparse cut in
each iteration is done in two stages. First, a new linear program is solved. Then a
good cut is searched for by trying to find a shallow depth subgraph that contains a
majority of the vertices. Finding the right expansion ratio is done by trial and error
until a right value is observed. Finally, Leighton and Rao show that the union of the
O(logn)-approximate sparse cuts results with an O(log n

b−b′ ·OPTb) capacity b′-balanced
cut.

Our algorithm differs from the Leighton–Rao algorithm in several ways. First,
we consider a direct linear programming formulation for ρ-separators. We need to
solve this linear program only once; the Leighton–Rao algorithm needs to solve a new
linear program after each cut is taken. The use of spreading metrics enables us to
control the weight of the pieces that are chopped off in undirected graphs so that
chopped off pieces need not be further partitioned. In contrast, in the Leighton–Rao
algorithm the only guarantee is that the weight of the chopped off part is at most
half the weight of the remaining subgraph. Controlling the weight of the chopped off
pieces enables us to find k-balanced partitions in undirected graphs without having to
recursively partition the chopped off pieces. Our criterion for finding good cuts (e.g.,
the expansion ratio) is known in advance, and we do not need a trial-and-error stage
in order to compute a cut.

Garg, Vazirani, and Yannakakis [6] presented an O(log k)-approximation algo-
rithm for multicuts in undirected networks. They also described how to approximate
sparse cuts and obtain an 8 logn-approximation. Our results are related to their work
in the following ways. We use their credit scheme, and our cut procedure is basically
identical to their region growing technique. In fact, although they present their algo-
rithm as a “cut packing” algorithm, one may interpret it as an algorithm for finding
“good” cuts in graphs that have constant diameter.

The k-balanced partitioning problem was considered by Leighton, Makedon, and
Tragoudas [12] and by Simon and Teng [17]. Their suggested approximation algo-

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2191

rithm is based on recursive bisection or on recursively partitioning the graph with
approximate separators, yielding an approximation factor of O(logn log k).

In a recent paper, Even et al. [3] employed spreading metrics and improved the
approximation factor from O(log2 n) to O(logn log logn) for a variety of graph opti-
mization problems. The graph partitioning framework presented here can be used to
cast the problems we deal with into the paradigm of [3], yielding somewhat weaker
approximation factors than the factors presented here. In fact, since we are unable to
apply the algorithm presented here to the k-balanced partitioning problem in directed
graphs, the best approximation algorithm for this problem is given by applying our
framework along with the recursion presented in [3], yielding an O(logn log logn)-
approximation factor.

We are able to obtain O(logn)-approximation factors as compared to the
O(logn log logn)-approximation factors in [3] because we can partition the graph in
each iteration into two parts, the smaller part being small enough so that further
partitioning of it is not required. Hence, we often refer to such a partitioning as
“chopping off” a piece. In [3] we were not able to guarantee that one of the parts is
trivial, and hence both parts needed to be recursively partitioned.

The simultaneous separation problem was considered previously only for the case
where the number of sets to be partitioned is a constant, e.g., [9, p. 67]. These
instances of the simultaneous separation problem have been solved by recursively ap-
plying the Leighton–Rao algorithm. Since the number of sets to be partitioned has a
logarithmic effect on the approximation factor, this approach yields weaker approx-
imation factors than the approximation factors we present. Note that the Steiner
multicut problem, considered in Klein et al. [10], can be modeled as a simultaneous
separation problem. However, the separation in the Steiner multicut problem is not
required to be balanced at all, and thus our approximation algorithm yields inferior
results as compared to [10].

Although the weighted b-balanced cut problem was considered previously by sev-
eral researchers, the literature lacks a description of an approximation algorithm for
the weighted case, and only a brief sketch is available in [13].

The paper is organized as follows. In section 2 we define the problems considered
in this paper. In section 3 we consider spreading metrics for ρ-separators in undirected
graphs. In section 4 we describe an approximation algorithm for finding a ρ′-separator
in undirected graphs. In section 5 we consider ρ′-separators in directed graphs. In
section 6 we consider simultaneous separators. Finally, in section 7 we describe an
efficient algorithm for computing suboptimal spreading metrics.

2. The problems. In this section we define the problems considered in this
paper. We start with the well-known problems of finding balanced cuts and balanced
partitions. Then, we define the problem of finding ρ-separators that captures the two
previous problems as a special case. We also define a more general problem that we
call simultaneous separators. All of these problems are NP-complete [5].

To simplify the presentation, we define the “edge” version of the problems and
consider only undirected graphs. We end this section with remarks about the “vertex”
version of these problems and the directed case.

Let G = (V,E) be an undirected graph with nonnegative edge capacities {c(e)}e
and nonnegative vertex weights {w(v)}v. For S ⊂ V , a cut (S, V − S) is a subset of

E that disconnects S from V − S. For F ⊆ E, let c(F)
4
=
∑
e∈F c(e). For U ⊆ V , let

w(U)
4
=
∑
v∈U w(u).

The b-balanced cut problem. Given a balance parameter 0 < b ≤ 1/2 and a graph

2192 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

G = (V,E), a b-balanced cut in G is a cut (S, V − S) that satisfies b ·w(V) ≤ w(S) ≤
(1− b) · w(V). The b-balanced cut problem with input G = (V,E) and b is to find a
minimum capacity b-balanced cut in G.

When the balance parameter equals 1/2, the balanced condition is often relaxed
to bb · w(V)c ≤ w(S) ≤ d(1− b) · w(V)e. This relaxation avoids having an infeasible
constraint in the case of bisection due to “rounding” problems.

The (k, ν)-balanced partitioning problem. Given integer k ≥ 2 and a real ν ≥ 1,
a (k, ν)-balanced partition of G = (V,E) is a subset of the edges whose removal
partitions the graph into at most k parts, where each part consists of a union of
connected components and the sum of the vertex weights in each part is at most
ν
k · w(V). The (k, ν)-balanced partitioning problem with input G = (V,E), k, and ν
is to find a minimum capacity (k, ν)-balanced partition of G.

The following claim implies that, without loss of generality, we may assume that
ν ≤ 2.

Claim 2.1. Any (k, ν)-balanced partition, where ν ≥ 2, induces a (k′, ν′)-balanced
partition, where k′ < k and ν′ < 2.

Proof. Let F denote a (k, ν)-balanced partition of G = (V,E), where ν ≥ 2.
Let A1, A2, . . . , As denote the vertex sets of the connected components in the graph
G′ = (V,E − F), where s ≤ k. Define wi = w(Ai)/w(V). By definition, wi ≤ ν

k for
every 1 ≤ i ≤ s. Merge connected components, until wi + wj >

ν
k , for every i 6= j.

Let F ′ denote the edges connecting vertices belonging to different components (after
the merging of small components). To simplify notation, assume that no merging
took place. Below, we prove that s < 2k

ν ≤ k. We get that F is an (s, ν′)-balanced

partition, where ν′
s = ν

k . Substituting s < 2k
ν , we get ν′ < 2.

We now prove that s < 2k
ν . Since wi + wj >

ν
k , for every i 6= j, there is at most

one index ` for which w` ≤ ν
2k . We distinguish between two cases.

Case 1. wi >
ν
2k for all 1 ≤ i ≤ s. In this case 1 =

∑s
i=1 wi > s ν2k , and the upper

bound on s follows.
Case 2. There exists an index 1 ≤ ` ≤ s for which w` ≤ ν

2k . In this case for all
indices 1 ≤ i ≤ s, where i 6= `, wi >

ν
k − w`. Summing up we get 1 =

∑s
i=1 wi >

(s− 1)(νk − w`) + w`. This implies

s <
k + ν − 2kw`
ν − kw` = 2 +

k − ν
ν − kw` ≤ 2 +

k − ν
ν − ν/2 =

2k

ν
.

From now on we refer to (k, 2)-balanced partitions as k-balanced partitions.
The ρ-separator problem. Given 0 < ρ ≤ 1, a ρ-separator in G = (V,E) is a subset

of edges whose removal partitions the graph into connected components such that the
sum of the vertex weights in each component is at most ρ · w(V). The ρ-separator
problem with input G = (V,E) and ρ is to find a minimum capacity ρ-separator in
G.

The simultaneous separator problem. Let U
4
= {U1, U2, . . . , Us} denote a set of

subsets of vertices, namely, Ui ⊆ V , for every i. Let ρ
4
= {ρ1, ρ2, . . . , ρs} denote a set

of parameters that satisfies 0 < ρi ≤ 1, for every i. Given such U and ρ, a (U ,ρ)-
simultaneous separator is a subset of edges whose removal partitions the graph into
connected components such that for each such component H = (U ′, E′)

∀ 1 ≤ i ≤ s : w(U ′ ∩ Ui) ≤ ρi · w(Ui).

The simultaneous separator problem with input G = (V,E), U , and ρ is to find a
minimum capacity (U ,ρ)-simultaneous separator in G.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2193

We note that our algorithm can be extended to solve the more general case in
which each node v has s weight values associated with it, and the partitioning con-
straint for Ui and ρi is with respect to the ith weight measure.

We next exhibit certain connections between the problems defined herein. Clearly,
every b-balanced cut is also a (1 − b)-separator. The next claim shows that if b ≤
1/3, then every (1− b)-separator induces a b-balanced cut of at most the same cost.
Together, these two assertions imply that the balanced cut problem for b ≤ 1/3 is
equivalent to the ρ-separator problem (where ρ = 1− b ≥ 2/3).

Claim 2.2. If 0 < b ≤ 1/3, then every (1− b)-separator, F , induces a b-balanced
cut (A, V −A) such that c(A, V −A) ≤ c(F).

Proof. Let F ⊆ E denote a (1 − b)-separator of G = (V,E). Let A1, A2, . . . , As
denote the vertex-sets of the connected components in the graph G′ = (V,E − F). If
there exists an Ai such that w(Ai) ≥ b ·w(V), then the cut (Ai, V −Ai) is a b-balanced
cut whose capacity is at most the capacity of the ρ-separator. Otherwise, define
i0 = max{i : w(∪j≤iAj) < b ·w(V)}. Let A = A1 ∪ · · ·Ai0+1, then w(A) < 2b ·w(V).
Since b ≤ 1/3, we conclude that b·w(V) ≤ w(A) < (1−b)·w(V), and hence (A, V −A)
is a b-balanced cut whose cost is at most the capacity of the ρ-separator.

It follows from the definitions that every k-balanced partition induces a 2/k-
separator. We claim that every ρ-separator induces a (d2/ρe−1)-balanced partition.

Claim 2.3. Every ρ-separator induces a (d2/ρe)-balanced partition.
Proof. Let F denote a ρ-separator of G = (V,E). Let A1, A2, . . . , As denote

the vertex sets of the connected components in the graph G′ = (V,E − F). Define
wi = w(Ai)/w(V). By definition, wi ≤ ρ for every 1 ≤ i ≤ s. Merge connected
components, until wi + wj > ρ, for every i 6= j. Let F ′ denote the edges connecting
vertices belonging to different components (after the merging of small components).
To simplify notation, assume that no merging took place. Similar to Claim 2.2 it can
be shown that s < 2/ρ, and the claim follows.

We conclude with some remarks.
1. In the vertex version of the above problems, every vertex has both a capacity

and a weight. The problem is then to find a minimum capacity subset of
vertices whose removal partitions the graph into connected components, the
weight of which satisfies the relevant constraint.

2. The edge version is reducible to the vertex case by introducing dummy vertices
on each edge. Hence, we can also consider “heterogeneous” versions of the
simultaneous separation problem in which the separation constraints are on
subsets containing both edges and vertices.

3. All the problems can be extended to directed graphs. In this case, the defi-
nitions should be modified, and “connected components” should be replaced
with “strongly connected components.”

3. A spreading metric for ρ-separators in undirected graphs. A spread-
ing metric is an assignment of edge lengths that satisfies two properties: (a) it provides
a lower bound, and (b) it satisfies a radius guarantee. Obviously, we are also inter-
ested in computing spreading metrics efficiently. We obtain a spreading metric by
writing a linear program and showing that its optimal solutions are spreading met-
rics. The integer program corresponding to the linear program is a direct formulation
of ρ-separators, as shown in the lower bound property below.

We start by defining a spreading metric. Note that two parameters are involved:
our lower bound is with respect to ρ-separators, and our goal is to find a ρ′-separator,
for ρ′ > ρ. Therefore, the radius guarantee is stated with respect to ρ′.

2194 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

Notation. Given edge lengths {d(e)}e∈E and a subset of vertices S, let distS(v, u)
denote the distance in the subgraph induced by S between the vertices v and u.

Definition 3.1. An assignment of nonnegative edge lengths {d(e)}e∈E is a
spreading metric for ρ-separators which can be used for finding ρ′-separators (where
ρ′ > ρ), if it satisfies the following properties:

1. Lower bound: The volume of the assignment, defined by
∑
e∈E c(e)d(e), is a

lower bound on the minimum capacity of a ρ-separator.
2. Radius guarantee: Loosely speaking, every “heavy” subset of vertices has at

least constant radius. Formally, for every subset S ⊆ V for which w(S) >
ρ′ · w(V), and for every vertex v ∈ S,

radius(v, S) >
ρ′ − ρ
ρ′

,

where radius(v, S)
4
= max {distS(v, u) : u ∈ S}.

We obtain a spreading metric for ρ-separators by writing a linear program that
attaches edge lengths d(e) to each edge e ∈ E. The linear program is defined as
follows:

(P1) min
∑
e∈E

c(e) · d(e)

subject to (s.t.) ∀S ⊆ V ∀v ∈ S :
∑
u∈S

distV (v, u) · w(u) ≥ w(S)− ρ · w(V)

∀e ∈ E : 0 ≤ d(e) ≤ 1.

Note that the first type of constraints holds trivially if w(S) ≤ ρ · w(v).

One could formulate the linear program using distS(v, u) rather than distV (v, u).
Let (P1S) denote the linear program obtained from (P1) by using distS(v, u) instead
of distS(v, u). Since distS(v, u) is never smaller than distV (v, u), it follows that the
feasible solutions of (P1) are a subset of the feasible solutions of (P1S), and hence
the cost of a minimum cost solution of (P1S) is not greater than the minimum cost
of (P1). In section 3 we show that the feasible solutions of (P1S) are also feasible
solutions of (P1), and hence the optima of the two linear programs are equal.

In section 7.1 we consider a modification of (P1S) in which only a subset of the
constraints of (P1S) is kept, namely, constraints corresponding to subsets of weight
greater than ρ′ · w(V).

Notation. Let τ denote the cost of an optimal (fractional) solution of the linear
program (P1).

We now show that an optimal solution of (P1) is a spreading metric, namely, that
τ is a lower bound, and that the radius guarantee is satisfied. We then show that an
optimal solution of (P1) can be computed in polynomial time.

Lower bound. We show that every ρ-separator, F , induces a feasible {0, 1}-
solution of the linear program by defining d(e) = 1, if e ∈ F , and d(e) = 0, otherwise.
Consider a subset S ⊆ V that satisfies w(S) > ρ · w(V), and consider a vertex
v ∈ S. We need to show that the constraint corresponding to S and v is satisfied.
Let compF (v) denote the connected component that contains v in the graph G′ =
(V,E − F). Every path from v to a vertex u ∈ S − compF (v) must contain at least

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2195

one edge e ∈ F whose length equals 1; hence distV (v, u) ≥ 1. Therefore,∑
u∈S

distV (v, u) · w(u) ≥
∑

u∈S−compF (v)

distV (v, u) · w(u)

≥ w(S − compF (v))

≥ w(S)− w(compF (v))

≥ w(S)− ρ · w(V).

The cost of the integral solution induced by a ρ-separator equals the capacity
of the ρ-separator. Hence, the cost of an optimal fractional solution of the linear
program cannot be greater than the cost of a minimum capacity ρ-separator.

Radius guarantee. Every feasible solution of (P1) satisfies the following radius
guarantee.

Lemma 3.2. If S ⊆ V satisfies w(S) > ρ′ · w(V), then for every vertex v ∈ S,

radius(v, S) >
ρ′ − ρ
ρ′

.

Proof. Fix S and v, and consider the constraint corresponding to them. This
constraint gives a lower bound on the weighted sum of the distances from v to the
vertices in S. Hence, it provides a lower bound on the weighted average distance from
v to the vertices in S. Let u ∈ S denote a vertex whose distance from v is not less
than the weighted average distance of a vertex in S from v. Then,

distV (v, u) ≥ 1− ρ · w(V)

w(S)
≥ 1− ρ · w(V)

ρ′ · w(V)
.

Since distS(v, u) ≥ distV (v, u), the lemma follows.

Polynomial time computability. The formulation for the linear program (P1)
is shorthand for a linear program that contains exponentially many constraints: For
every “heavy” subset S, and for every v ∈ S, consider all combinations of paths
from v to all other vertices in S, and require that the weighted sum of the lengths
of the paths satisfies the corresponding constraint. Since the number of constraints
is exponential, naive implementation of known polynomial time LP-solvers would not
provide an efficient way of computing spreading metrics. This is because the running
time of these solvers is polynomial in both the number of variables and the number
of constraints.

We describe below how a spreading metric can be computed in polynomial time
using the ellipsoid algorithm [15]. Algorithms for computing spreading metrics with
better asymptotic running times are presented in section 7.

Applying the ellipsoid algorithm requires a polynomial-time separation procedure
that, given a candidate solution {d(e)}e, either finds a violated constraint or proves
that it is indeed a solution.

We rewrite the constraints of (P1) as follows:

∀S ⊆ V, ∀v ∈ S :
∑
u∈S

(distV (v, u)− 1) · w(u) ≥ −ρ · w(V).(3.1)

Given a vertex v, the left-hand side of (3.1) is minimized when the subset Sv = {u :
distV (v, u) ≤ 1} is chosen. Therefore, if the constraint corresponding to v and Sv

2196 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

is satisfied, then all the constraints in which distances are measured from v are also
satisfied. This means that if the constraints corresponding to v and Sv are satisfied
for every vertex v, then the edge lengths constitute a feasible solution to (P1). Hence,
a polynomial-time separation procedure exists.

Since Sv is a sphere of radius 1, it follows that distV (v, u) = distS(v, u) for ev-
ery u ∈ Sv. Therefore, the linear programs (P1) and (P1S) have the same feasible
solutions and the same optima.

4. Finding a ρ′-separator. In this section we describe the approximation al-
gorithm for ρ′-separators. The input consists of a graph G = (V,E) with edge capac-
ities c(e) and vertex weights w(v). The input also contains a spreading metric for a
ρ-separator (ρ′ ≥ ρ), represented by edge lengths {d(e)} for all e ∈ E.

The algorithm consists of a cut procedure that partitions a subset of vertices
whose weight is larger than ρ′ · w(V). This procedure cuts off a subset of vertices
with weight at most ρ′ · w(V), and hence the chopped off pieces need not be further
partitioned. Initially, the cut procedure is applied to the whole graph; then it is
applied iteratively to the remaining part until its weight is not greater than ρ′ ·w(V).

The cut procedure presented in this section is identical to the sphere growing
procedure in [6]; the only difference is in the parameters used in the definition of the
volume and the upper bound on the radius. Our presentation emphasizes the ability
to find a cut whose capacity is logarithmic in the volume of the spreading metric when
the diameter of the graph is constant (see (4.2)).

4.1. Assigning volumes. Following Garg, Vazirani, and Yannakakis [6] we as-
sign volumes to spheres that are grown around vertices. These volumes will define
the credit that is attributed to the spheres in order to pay for the cut disconnecting
them from the rest of the graph. Our definition of volume deviates slightly from the
definition of [6] so as to reduce the constants.

Definition 4.1. Let v denote a vertex in a subgraph induced by V ′. The r-sphere
centered at v, denoted by N(v, r), is defined by

N(v, r)
4
= {u : distV ′(u, v) < r} .

Note that N(v, r) includes only vertices whose distance from v is strictly less
than r.

Notation. Let E(v, r) denote the set of edges whose endpoints belong to N(v, r),
namely, E(v, r) = E ∩ (N(v, r) ×N(v, r)). Let cut(v, r) denote the set of edges that
belong to the cut (N(v, r), V −N(v, r)).

The volume of a sphere is a positive value that we attach to spheres and is the sum
of three components: (1) a “seed value” set to ε · τ , where τ is the cost of the optimal
fractional solution, (2) the contribution of edges in E(v, r), and (3) the contribution
of edges in cut(v, r).

Definition 4.2. The volume of N(v, r), denoted by vol(v, r), is defined by

vol(v, r)
4
= ε · τ +

∑
e∈E(v,r)

c(e) · d(e) +
∑

(x,y)∈cut(v,r)

c(x, y) · (r − distN(v,r)(v, x)),

where ε = 1
n lnn .

4.2. The cut procedure. In this section, we describe a procedure for parti-
tioning a subgraph G′ = (V ′, E′) of G into two parts, given a spreading metric for a
ρ-separator of G. The procedure is applied when w(V ′) > ρ′ · w(V), and it finds a

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2197

cut-proc (V ′, E′, {c(e)}e∈E′ , {d(e)}e∈E′)
r̃ = ρ′−ρ

ρ′

choose an arbitrary v ∈ V ′.
T = {v}
v′ = closest vertex to T in V ′ − T .

while c(T, V ′ − T) > 1
r̃ · ln

(
vol(v,r̃)
vol(v,0)

)
· vol(v, distV ′(v, v

′)) do

begin
T = T ∪ {v′}
v′ = closest vertex to T in V ′ − T .
end

Return T

Fig. 4.1. The cut procedure.

sphere N(v, r) that satisfies the following two properties: (1) w(N(v, r)) ≤ ρ′ ·w(V),
and (2) the ratio between c(cut(v, r)) and vol(v, r) is logarithmic.

4.2.1. Description. The cut procedure runs Dijkstra’s single source shortest
paths algorithm from an arbitrary vertex v ∈ V ′. In each iteration, before adding
the closest vertex v′ ∈ V ′ to the set of vertices whose distances from v are already
determined, the procedure checks whether r = distV ′(v, v

′) is a “good” radius. The
procedure stops when it finds the first good radius and returns N(v, r) as the set of
vertices to be chopped off. The procedure, called “cut-proc,” is depicted in Figure
4.1.

Theorem 4.3. Given a subgraph G′ = (V ′, E′) that satisfies w(V ′) > ρ′ · w(V),
and given a spreading metric {d(e)}e, procedure cut-proc finds a subset T ⊂ V ′ that
satisfies w(T) ≤ ρ′ · w(V).

4.2.2. Proof of Theorem 4.3. Let v ∈ V ′ be the vertex chosen by the cut
procedure. Consider vol(v, r) as a function of r, as depicted in Figure 4.2. Note that
it is a monotone piecewise linear function whose initial value equals ε · τ and whose
final value equals (1 + ε) · τ . The endpoints of the linear segments correspond to
distances measured from v to vertices in V ′. In other words, if we sort the vertices of
V ′ in ascending distance order from v: v = v0, v1, . . . , vn, then for every 0 ≤ i < n the
function vol(v, r) is linear in the closed interval r ∈ [dist(v0, vi), dist(v0, vi+1)]. More-

over, the derivate vol′(v, r) 4= dvol(v,r)
dr in the open interval (dist(v0, vi), dist(v0, vi+1))

equals c(cut(v, r)). This can readily be seen by observing that in this open interval,
only the cut edges contribute to the growth of the volume, and that the coefficient of
r equals the sum of the capacities of the cut edges.

The cut procedure searches for a radius r for which the ratio between vol′(v, r)
and vol(v, r) is logarithmic. We need to show that such a radius r ≤ r̃ exists and that
the procedure finds it. Note that r ≤ r̃ implies that w(v, r) ≤ ρ′ · w(V) (see Lemma
3.2).

Recall that r̃
4
= ρ′−ρ

ρ′ and let Ii denote the open interval (dist(v0, vi), dist(v0, vi+1)).
The following claim proves the existence of a good radius.

2198 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

ετ

vol(v, r)

r
dist(v0, v2)dist(v0, v1)

(1 + ε)τ

Fig. 4.2. vol(v, r) as a function of r.

Claim 4.4. For every vertex v ∈ V ′, there exists an r ∈ (0, r̃] ∩ ∪iIi that satisfies

vol′(v, r)
vol(v, r)

≤ 1

r̃
· ln
(

vol(v, r̃)

vol(v, 0)

)
.

Proof. By contradiction, suppose that for every r ∈ (0, r̃] ∩ ∪iIi,

vol′(v, r)
vol(v, r)

>
1

r̃
· ln
(

vol(v, r̃)

vol(v, 0)

)
.

The left-hand side of the above equation is defined and continuous in the interval
(0, r̃] except for finitely many points. Hence, we may take the integral of both sides,
yielding ∫ r̃

0

vol′(v, r)
vol(v, r)

dr >
1

r̃
ln

(
vol(v, r̃)

vol(v, 0)

)∫ r̃

0

dr.(4.1)

Using the identity
∫ f ′(x)

f(x) dx = ln f(x), we can evaluate the left-hand side of inequal-

ity (4.1), ∫ r̃

0

vol′(v, r)
vol(v, r)

dr = ln(vol(v, r̃))− ln(vol(v, 0))

= ln

(
vol(v, r̃)

vol(v, 0)

)
.

However, the right-hand side of inequality (4.1) also equals the same value (a
contradiction) and the claim follows.

The cut-proc procedure considers only radii in the set {distV ′(v, u)}u∈V ′ . (Note
that since T is a sphere in V ′, it follows that distV ′(v, v

′) = distT (v, v′) for every vertex
v′ ∈ T.) In order to enable computability of a good radius, we show that among the

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2199

distances {distV ′(v, u)}u∈V ′ there exists a good radius. The following claim proves
this property.

Claim 4.5. Let v ∈ V ′ denote an arbitrary vertex. Let r0 denote the radius whose
existence is guaranteed by Claim 4.4. Define r1 to be

r1
4
= min {distV ′(v, u) : u ∈ V ′ and distV ′(v, u) ≥ r0} .

Then, r1 satisfies

c(cut(v, r1)) ≤ 1

r̃
· ln
(

vol(v, r̃)

vol(v, 0)

)
· vol(v, r1),(4.2)

w(N(v, r1)) ≤ ρ′ · w(V ′).(4.3)

Proof. Since N(v, r1) consists of the vertices whose distance from v is strictly less
that r1, it follows that N(v, r0) = N(v, r1), and hence these spheres define the same
cut. In particular, c(cut(v, r1)) = vol′(v, r0). Inequality (4.2) follows from Claim 4.4
and from vol(v, r0) ≤ vol(v, r1).

Since N(v, r1) = N(v, r0), and since r0 ≤ r̃, Lemma 3.2 implies inequality (4.3),
and the claim follows.

Claims 4.4 and 4.5 show that among the set of radii {distV ′(v0, vi)}i there exists
a good radius. The cut procedure simply performs an exhaustive search in ascending
distance order and stops as soon as it finds the first radius that satisfies inequality
(4.2). The found radius also satisfies inequality (4.3) (since it is not greater than r1),
and hence the theorem follows.

4.3. Analysis of the approximation factor. In this section we prove the
O(logn)-approximation factor of the proposed algorithm. We also outline how the
algorithm may be modified to obtain an O(log τ)-approximation algorithm.

The cut procedure is called repetitively until the weight of the remaining subset
of vertices drops below (or becomes equal to) ρ′ ·w(V). Each call chops off a sphere,
and the chopped off spheres are disjoint. The volume of each sphere consists of the
contribution of the edges contained inside, the contribution of the edges of the cut,
and the contribution of the seed value. The sum of the contributions of the edges and
edges of the cut to the volumes of the chopped off spheres is bounded by τ . The sum
of the seed values is bounded by ετn.

The capacity of the cut (T, V ′ − T) found by the cut procedure satisfies

c(T, V ′ − T) ≤ 1

r̃
· ln
(

vol(v, r̃)

vol(v, 0)

)
· vol(v, distV ′(v, v

′)).

But vol(v, r̃) ≤ (1 + ε)τ and vol(v, 0) = ετ . Hence, the sum of the capacities of the
cuts found by the calls to the cut procedure is bounded by

1

r̃
· ln
(

1 + ε

ε

)
· τ · (1 + εn).

Plugging in ε = 1
n lnn yields the following theorem.

Theorem 4.6. The algorithm presented above finds a ρ′-separator whose capacity
is at most (

ρ′

ρ′ − ρ + o(1)

)
· lnn · τ,

2200 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

where τ is the volume of the spreading metric, and hence is a lower bound on the cost
of an optimal ρ-separator.

One could also obtain an O(log(τ/γ))-approximation factor, where γ is the min-
imum edge capacity. From now on, we assume without loss of generality that the
minimum edge capacity is one, and we show how to obtain an O(log τ)-approximation
factor. This is done by the following modifications. (1) Define ε = 0; namely, do not
add seed values to the volume of spheres. (2) Let δ denote a positive parameter to
be specified later. Start the cut procedure with an initial sphere of radius r̃/(1 + δ),
and substitute all occurrences of vol(v, 0) with vol(v, r̃/(1 + δ)). (3) Instead of consid-
ering the half-open interval (0, r̃], consider the half-open interval (r̃/(1 + δ), r̃]. Now,

substitute all occurrences of 1
r̃ with 1+1/δ

r̃ . (This is the reciprocal of the length of
the half-open interval.) After these modifications, the sum of the volumes of the
chopped off pieces is bounded by τ . Since c(e) ≥ 1, for every edge e ∈ E we have
vol(v, r̃/(1 + δ)) ≥ r̃/(1 + δ) (otherwise the subgraph is not connected). Thus, the
sum of the capacities of the cuts found by the calls to the cut procedure is bounded
by

1 + 1/δ

r̃
· ln
(

(1 + δ)τ

r̃

)
· τ.

Assign, for example, δ = e5 − 1, and the capacity of the ρ′-separator is bounded by

1.01 · ρ
ρ′ − ρ ·

(
5 + ln

(
ρ

ρ′ − ρ · τ
))
· τ.

Thus, we obtain an O(log τ)-approximation factor.

5. ρ′-separators in directed graphs. In this section we describe the approxi-
mation algorithm for ρ′-separators in directed graphs when ρ′ ≥ 1/2. This algorithm
is very similar to the algorithm for undirected separators; however, our control over
the weight of the chopped off pieces is diminished, and we can guarantee only that
the weight of chopped off pieces is at most half of the weight of the vertices in the
remaining subgraph. Hence, our algorithm is applicable only for values of ρ′ ≥ 1/2
and the approximation factors are larger by a factor of 4. We first define the spreading
metrics for directed graphs and later point out the modifications of the undirected
ρ-separator algorithm required for directed separators.

5.1. Spreading metrics for directed graphs. The spreading metric in the
directed case for a parameter ρ is obtained by the following linear program:

min
∑
e∈E

c(e) · d(e)

s.t. ∀S ⊆ V, ∀v ∈ S :
∑
u∈S

(distV (v, u) + distV (u, v)) · w(u) ≥ w(S)− ρ · w(V)

∀e ∈ E : 0 ≤ d(e) ≤ 1.

We omit the proofs that an optimal spreading metric is computable in polynomial
time and that it is a lower bound on the capacity of an optimal ρ-separator. We also
omit the proof that the spreading metric satisfies a modified radius guarantee that is
stated below.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2201

Lemma 5.1. If S ⊆ V satisfies w(S) > ρ′ · w(V), then for every vertex v ∈ S
there exists a vertex u ∈ S such that

distS(v, u) + distS(u, v) >
ρ′ − ρ
ρ′

.

5.2. Finding a ρ′-separator in directed graphs. In each iteration we find a
pair of vertices s, t ∈ V ′ that achieves the diameter; namely, distV ′(s, t) =

max{distV ′(u, v) : u, v ∈ V ′}. Note that Lemma 5.1 implies that dist(s, t) > ρ′−ρ
2ρ′ .

After finding s and t, we call the cut procedure twice: the first instance with the
remaining subgraph G′ = (V ′, E′) and s as the initial vertex, and the second instance
with the reversed subgraph G′rev(V

′, E′rev) and t as the initial vertex. (A reversed
graph is obtained by reversing the directions of the edges while preserving the edge
weights and capacities.) The cut procedure assigns volumes in the same fashion as
in the undirected case. However, we modify the definition of r̃ in the cut procedure

to be r̃ = ρ′−ρ
4ρ′ . Let T denote the subset of vertices returned by the first call to

the cut procedure, and let Trev denote the subset of vertices returned by the second
call. In the following theorem, we claim that min{w(T), w(Trev)} ≤ w(V ′)/2. If
w(T) ≤W (V ′)/2, then we choose the cut (T, V ′ − T) and chop off T . Otherwise, we
choose the cut (V ′ − Trev, Trev) and chop off Trev.

Theorem 5.2. Let G′ = (V ′, E′) be a directed subgraph that satisfies w(V ′) >
ρ′ ·w(V). Given a (directed) spreading metric {d(e)}e, let s, t ∈ V ′ satisfy dist(s, t) >
ρ′−ρ
2ρ′ . Let T and Trev be the subsets of vertices returned by two calls to the proce-

dure cut-proc: the first with input G′ and s as its initial vertex, and the second with
input G′rev and t as its initial vertex. Then, the weights w(T) and w(Trev) satisfy
min{w(T), w(Trev)} ≤ w(V ′)/2.

Proof. Let N = N(s, r̃) and Nrev = Nrev(t, r̃), where Nrev(t, r̃) denotes a sphere

in the reversed graph (recall that we now use r̃ = ρ′−ρ
4ρ′). Since dist(s, t) > 2 · r̃, it

follows that N and Nrev are disjoint. Since w(N) + w(Nrev) ≤ w(V ′), we conclude
that either w(N) or w(Nrev) is at most w(V ′)/2.

To complete, we show that T ⊆ N and Trev ⊆ Nrev, and hence min{w(T),
w(Trev)} ≤ min{w(N), w(Nrev)} ≤ w(V ′)/2. This is easy since Claims 4.4 and 4.5
(without inequality (4.3)) are applicable, and hence the theorem follows.

5.3. Approximation factor in directed graphs. In the directed case, the
ratio between the capacity of the directed ρ′-separator and the volume of the spreading
is four times larger than the corresponding ratio in the undirected case. This is due to

the fact that in the directed case r̃ = ρ′−ρ
4ρ . Hence the approximation factors increase

by a factor of 4 as compared to the approximation factors in the undirected case.

6. Simultaneous separators. In this section we review the modifications that
are needed to solve the problem of simultaneous separators with similar approximation
factors. As in the other problems, we describe a pseudoapproximation algorithm.
The input consists of a graph with edge capacities and vertex weights, a sequence of
subsets of vertices U = {U1, U2, . . . , Us}, and two sequences of separation parameters
ρ = {ρ1, ρ2, . . . , ρs} and ρ′ = {ρ′1, ρ′2, . . . , ρ′s}. The required output is a (U ,ρ′)-
simultaneous separator, and we compare its cost to an optimal (U ,ρ)-simultaneous
separator.

We describe only the undirected case, and the discussion carries over to the di-
rected case if ρi ≥ 1/2, for every 1 ≤ i ≤ s.

2202 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

6.1. A spreading metric for simultaneous separators. The spreading met-
ric for (U ,ρ)-simultaneous separators is obtained by the following linear program:

min
∑
e∈E

c(e) · d(e)

s.t. ∀i, ∀S ⊆ V, ∀v ∈ S :
∑

u∈S∩Ui
dist(v, u) · w(u) ≥ w(S ∩ Ui)− ρi · w(Ui)

∀e ∈ E : 0 ≤ d(e) ≤ 1.

We omit the proofs concerning an optimal spreading metric but state the radius
guarantee lemma for this case.

Lemma 6.1. If S ⊆ V satisfies w(S∩Ui) > ρ′i ·w(Ui), then for every vertex v ∈ S

radius(v, S ∩ Ui) > ρ′i − ρi
ρ′i

.

The only modification required for finding a simultaneous separator is the def-

inition of r̃. We define r̃
4
= min1≤i≤s

ρ′i−ρi
ρ′
i

. The algorithm proceeds by chopping

off parts from the graph using the cut procedure as long as the remaining subgraph
does not satisfy the simultaneous separation requirements. The approximation factor
obtained is (1/r̃ + o(1)) · lnn. The only difference in the ratio between the capacity
of the simultaneous separator and the volume of the spreading metric stems from the
definition of r̃.

7. Computing spreading metrics efficiently. Plotkin, Tardos, and Shmoys
[16] defined a framework of fractional packing and covering problems and developed
fast algorithms for computing approximate solutions therein. Young [18] also devised
fast algorithms for finding approximate solutions in this framework. In this section
we show how to use this framework to compute spreading metrics efficiently. We note
that our results hold only in the case of undirected graphs. We henceforth refer to
the algorithm described in [16] as the PST algorithm and to the algorithm described
in [18] as the Y algorithm. We first describe the fractional packing setting of [16].
Let G = (V,E) denote a graph, where |V | = n and |E| = m. For an optimization
problem on graphs, the input consists of the following:

1. A convex set P ⊆ R`. (Note that ` may be even exponential in n since its
influence on the running time is indirect.)

2. A nonnegative linear function U : P → Rm.
We consider U as m real valued linear functions indexed by the edges of the graph.
The goal in the fractional packing problem is to compute λ∗ defined by

λ∗ 4= min
x∈P

max
e∈E

Ue(x).

Rather than computing λ∗ precisely, the PST and Y algorithms do the following.
Given an error parameter ε, they find a vector x′ ∈ P such that Ue(x

′) ≤ (1 + ε)λ∗,
for every e ∈ E. Moreover, they also compute a solution to the dual fractional covering
problem. This input to the dual problem consists of the following:

1. A convex set Q ⊆ Rm.
2. A nonnegative linear function UD : Q→ R`.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2203

We view each point in Q as an assignment of lengths d(e) to the edges, and we consider
UD as ` real valued linear functions. The goal in the fractional covering problem is
to compute µ∗ defined by

µ∗ 4= max
y∈Q

min
1≤i≤`

UDi (y).

The PST and Y algorithms require the existence of an optimization oracle. The
input to the optimization oracle is a dual solution which is an assignment of edge
lengths {d(e)}e∈E . The output is a vector x ∈ P which minimizes the objective
function

∑
e∈E Ue(x) · d(e). In other words, given a y ∈ Q, the optimization oracle

computes an x ∈ P that minimizes the inner product y · U(x). Both the PST and
the Y algorithms still work well even if the optimization oracle returns a suboptimal
result. Specifically, if the optimization oracle outputs a vector x ∈ P for which∑

e∈E
Ue(x) · d(e) ≤ 2 · min

x′∈P

∑
e∈E

Ue(x
′) · d(e),

then the algorithms find a vector x′ ∈ P such that Ue(x
′) ≤ 2(1 + ε)λ∗, for every

e ∈ E.
A key parameter that affects the running time of the PST and Y algorithms is

the width of the set P with respect to the function U . The width is denoted by Umax

and is defined by

Umax
4
= max

x∈P
max
e∈E

Ue(x).

With this setting, the complexities of the PST and Y algorithms are as follows.
The complexity of the PST algorithm is

O

((
Umax · ln(m/ε) ln(1/ε)

λ∗ · ε2

)
· (T (compute U) + T (oracle))

)
,

where T (compute U) denotes the time required to compute U(x) with respect to an
intermediate value of x, and T (oracle) denotes the time required by the optimization
oracle for answering a single query.

The complexity of the Y algorithm is

O

((
(1 + ε) · Umax · ln(m)

λ∗ · ε2

)
· (T (compute U) + T (oracle))

)
.

Note that ` may even be exponentially large without affecting the complexity of
the algorithms as long as we can (a) efficiently compute U(x) for the intermediate
vectors x ∈ P that are encountered in the course of running the algorithms, and (b)
efficiently compute the oracle.

In the rest of this section we present efficient implementations of the PST and Y
algorithms for computing a spreading metric for ρ-separators. We present a determin-

istic algorithm that has a running time of Õ(m2n · ρ′

ρ′−ρ) and a randomized algorithm

that has an expected running time of Õ(m2/(ρ′ − ρ)). The following implementation
issues are discussed:

• In section 7.1, modification of the linear program (P1) so that it fits the
framework of [16], and adjustment of the linear program so that the width of

the convex set P is at most ρ′

ρ′−ρ .

2204 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

• In section 7.2, scaling of the problem so that the optimal solution λ∗ satisfies
1/λ∗ = O(m).
• In section 7.3, construction of a deterministic optimization oracle that runs

in Õ(mn) time, and a randomized version that succeeds in finding a 2-
approximate solution in Õ(m/ρ′) time with high probability.

• In section 7.4, implementation issues such as computing U in O(m) time and
deriving a dual solution.

7.1. The modified formulation. In this section we rewrite the linear program
(P1S) so that it fits the framework of [16]. This modification will ensure that the
width is a constant.

We first define a modified version of (P1S), denoted by (P1′).

(P1′) min
∑
e∈E

c(e) · d(e)

s.t. ∀S ⊆ V such that w(S) > ρ′ · w(V), ∀v ∈ S :
∑
u∈S

distS(v, u) · w(u) ≥ s(w(S))

∀e ∈ E : d(e) ≥ 0,

where s(w(S)) = w(S)− ρ · w(V).
Observe the following details in (P1′): (a) the constraints that d(e) ≤ 1 are

omitted; (b) the distances distS(v, u) are used; and, most important, (c) we omit the
constraints for subsets S whose weight is less than or equal to ρ′ · w(V).

Omitting the constraints d(e) ≤ 1 from (P1S) does not change the cost of an
optimal solution. The reason for this is that if d(e) is a feasible solution of (P1S),
then so is d′(e) = min{1, d(e)}.

It is also easy to show that (i) the cost of an optimal solution of (P1′) is a lower
bound on the minimum capacity of a ρ-separator; and (ii) every feasible solution of
(P1′) satisfies the radius guarantee as stated in Lemma 3.2. Thus, optimal solutions
of (P1′) are also spreading metrics.

We now define a linear program (P2) using the following notation. A rooted tree in
a graph G is a pair (T, r), where the vertices and edges of the tree T belong to G and r
is a designated vertex of T called the root. Removing an edge from T disconnects the
tree into two subtrees, where one contains the root r and the other does not contain it.
For every edge e in a rooted tree (T, r), define ω(T, r, e) to be the sum of the weights
of the vertices of the subtree of T that are disconnected from the root r by removing
edge e. Let T denote the set of all rooted trees of weight greater than ρ′ · w(V).

We define linear program (P2) as follows:

(P2) min
∑
e∈E

c(e) · d(e)

s.t. for all rooted trees (T, r) ∈ T :
∑
e∈T

d(e) · ω(T, r, e) ≥ s(w(T))

∀e ∈ E : d(e) ≥ 0,

where s(w(T)) = w(T)− ρ · w(V).
Lemma 7.1. The sets of feasible solutions to linear programs (P1′) and (P2) are

equal, and hence their optima are also equal.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2205

Proof. Consider a rooted tree (T, r), and let v, u ∈ T . Define distT (v, u) to
be the distance from v to u in T . It is easy to see that

∑
u∈T distT (r, u) · w(u) =∑

e∈T d(e) · ω(T, r, e). Thus, in (P2) these two expressions are interchangeable.
Given a subset S and a vertex r ∈ S, consider a rooted tree (T, r) of shortest

paths in S. For every u ∈ S, it follows that distS(r, u) = distT (r, u). Therefore, every
feasible solution of (P2) is also a feasible solution of (P1′).

We now show that every feasible solution of (P1′) is also a feasible solution of
(P2). Given a rooted tree (T, r), let S denote the vertex set of T . Let (T ′, r) denote a
shortest-path tree of S. The constraint corresponding to (T ′, r) is satisfied since it is
identical to the constraint corresponding to S and r. Since distT (r, u) ≥ distT ′(r, u),
for every vertex u ∈ S, it follows that the constraint corresponding to (T, r) is also
satisfied, and the lemma follows.

The utilization of edge e by a rooted tree (T, r) ∈ T is defined by

Ue(T, r)
4
=

ω(T, r, e)

c(e) · s(w(T))
.

We define y(e)
4
= c(e) · d(e) and rewrite the linear program (P2) as follows:

(P3) min
∑
e∈E

y(e)

s.t. for all rooted trees (T, r) ∈ T :
∑
e∈T

y(e) · Ue(T, r) ≥ 1

∀e ∈ E : y(e) ≥ 0.

We construct the dual program of (P3) as follows. For every rooted tree (T, r) ∈
T , define a nonnegative variable x̃(T, r).

Given a vector x̃ = {x̃(T, r)}(T,r)∈T , define the utilization of edge e by x̃ as
follows:

Ue(x̃)
4
=

∑
{(T,r): e∈T}

Ue(T, r) · x̃(T, r).

The dual program of (P3) is defined as follows:

(D3) max
∑

(T,r)∈T
x̃(T, r)

s.t. for all edges e ∈ E: Ue(x̃) ≤ 1

for all rooted trees (T, r) ∈ T : x̃(T, r) ≥ 0.

We now translate the linear program (D3) into a fractional packing problem
(D4) solvable by the PST and Y algorithms. Define a fractional rooted tree to be
a convex combination of rooted trees. A fractional rooted tree is represented by
a nonnegative vector x = {x(T, r)}(T,r)∈T such that

∑
(T,r)∈T x(T, r) = 1. Define

the convex set P ⊆ R` to be the set of fractional rooted trees, where ` denotes the
cardinality of T . The fractional packing problem (D4) is to compute an x∗ ∈ P
that minimizes maxe∈E Ue(x). The approximate solution x′ ∈ P computed by the

2206 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

PST algorithm or the Y algorithm satisfies maxe∈E Ue(x′) ≤ (1 + ε) · λ∗, where

λ∗ 4= minx∈P maxe∈E Ue(x).
The relation between problems (D3) and (D4) is as follows. Every feasible solu-

tion x̃ of (D3) can be scaled to a vector x ∈ P by setting x = x̃/
∑
T,r x̃(T, r). The

maximum edge utilization of x is bounded by 1/
∑
T,r x̃(T, r). Conversely, given a

vector x ∈ P with maximum edge utilization λ, define x̃ = x/λ to obtain a feasi-
ble solution of (D3) for which

∑
T,r x̃(T, r) = 1/λ. Thus, every optimal solution of

problem (D4) can be scaled to an optimal of (D3) and vice versa. Moreover, this
translation by scaling also preserves approximation factors of approximate solutions.

The fractional covering problem (P4) that is dual to (D4) and corresponds to
(P3) is defined as follows. Let Q denote the convex set of all vectors y ∈ Rm for
which

∑
e∈E y(e) = 1. Define the cost of a rooted tree (T, r) with respect to y by

costy(T, r)
4
=
∑
e∈T y(e) · Ue(T, r). Problem (P4) is to find a vector y ∈ Q that

maximizes the cost of a minimum cost tree with respect to y. In other words, define,
µ∗ = maxy∈Q minT,r costy(T, r), and the goal is to find a vector y ∈ Q for which
costy(T, r) ≥ µ∗ for all rooted trees (T, r).

To be precise, the PST and Y algorithms find vectors x ∈ P and y ∈ Q such that

(1 + ε) ·min
T,r

costy(T, r) ≥ max
e∈E

Ue(x).(7.1)

Combined with linear programming duality, (7.1) implies that the computed costs
of the solutions x and y are within a factor of (1 + ε) from the optimum λ∗ = µ∗.
We then scale back the vector y to obtain an approximate solution of linear program
(P1′) which constitutes a spreading metric.

We conclude by showing that the width of P with respect to U is constant. Since
every point x ∈ P is a convex combination of rooted trees and since U is linear, it
follows that the width is obtained on a single rooted tree.

Claim 7.2. If the capacities of the edges are at least a unit, then the width Umax

is at most ρ′

(ρ′−ρ) .

Proof. As discussed above,

Umax = max
(T,r)∈T

max
e∈E

Ue(T, r) = max
(T,r,e)

ω(T, r, e)

c(e) · s(w(T))
.

Note that ω(T, r, e) ≤ w(T). Since we consider only rooted trees for which w(T) >
ρ′ ·w(V), it follows that s(w(T)) = w(T)− ρ ·w(V) ≥ w(T)(1− ρ/ρ′), and the claim
follows.

7.2. Bounding the optimal cost. The running time of the PST and Y al-
gorithms depends on 1/λ∗, where λ∗ is the optimal cost of the fractional packing
problem (D4). In this section we show how scaling can be used to bound the value
of 1/λ∗ by 2m. Let optρ denote the capacity of an optimal ρ-separator. Since every
ρ-separator is a feasible solution to linear program (P1′), it follows that optρ ≥ 1/λ∗.
Hence, it suffices to bound optρ by 2m.

We present a reduction that scales the minimum capacity of a ρ-separator so that
it is bounded by 2m. The cost associated with this reduction is at most 2 · optρ.
Namely, the reduction adds edges to the ρ′-separator that we compute, and the sum
of the capacities of these edges is at most 2 · optρ. This, of course, suffices for a
constant approximation. The overhead of running our reduction is a multiplicative
factor of O(logm), since one needs to execute the PST (or Y) algorithm O(logm)
times.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2207

Suppose that we have a bound t satisfying optρ ≤ t ≤ 2optρ. Consider the
following scaling. Define

Lightt
4
=

{
e ∈ E : c(e) ≤ t

2m

}
,

Heavyt
4
= {e ∈ E : c(e) > t} .

Clearly, edges in Heavyt do not belong to an optimal ρ-separator. Therefore,
contracting edges in Heavyt does not modify the capacity of an optimal ρ-separator.
By contracting we mean that connected components in Heavyt are merged into a
single node, the weight of which equals the sum of the weights of the original vertices,
and the capacity of an edge incident to two merged vertices equals the sum of the
capacities of the edges connecting the original vertices.

The total capacity of edges in Lightt is bounded by optρ. Therefore, we can add
all the edges in Lightt to our solution, and the overhead of this step is bounded by
optρ. Adding the edges in Lightt to our solution means that we may delete these
edges from the graph.

Next, scale the capacities of the remaining edges as follows: c′(e) = 2m
t · c(e).

Note that the capacities of the remaining edges are between 1 and 2m.
Let G′ = (V ′, E′) denote the graph obtained after contracting edges in Heavyt,

deleting edges in Lightt, and scaling the edge capacities. Let opt′ρ denote the capacity
of an optimal ρ-separator in G′. The following claims prove the required properties
of the reduction from G to G′.

Claim 7.3. The capacity of an optimal ρ-separator in G′ satisfies opt′ρ ≤ 2m
t ·

optρ ≤ 2m.
Proof. We show that there is a ρ-separator in G′ of capacity at most 2m. Consider

an optimal ρ-separator F in G. Since F is optimal, it does not contain any of the
edges in Heavyt. It follows that if (u, v) ∈ F , (u,w) ∈ Heavyt, and (w, v) ∈ E, then
(w, v) ∈ F . Therefore, we can transform a ρ-separator F in G into a ρ-separator F ′

in G′ simply by choosing the edges in G′ that originate from edges in F . Moreover,
c′(F ′) ≤ 2m

t · c(F). Since optρ ≤ t, opt′ρ ≤ 2m.
Claim 7.4. Every ρ̂-separator F ′ in G′ can be transformed in linear time into a

ρ̂-separator F in G such that c(F) ≤ t
2m · c′(F ′) + optρ.

Proof. Every ρ̂-separator F ′ in G′ can be transformed into a ρ̂-separator in
G − Lightt by choosing the edges in G from which the edges in F ′ originate. This
translation satisfies c(F) ≤ t

2m · c′(F). Adding the edges of Lightt yields a ρ̂-separator
in G of cost bounded by t

2m · c′(F ′) + optρ.
We conclude from Claims 7.3 and 7.4 that any ρ̂-separator F ′ whose capacity is

at most α ·opt′ρ, for some α ≥ 1, can be transformed into a ρ̂-separator F in G whose
capacity is at most (α+ 1) · optρ.

The reduction presented so far enables us to run the approximation algorithms
on a graph in which an optimal ρ-separator has capacity at most 2m. This reduction
assumes the existence of 2-approximation for optρ, which we do not have. Thus, we
resort to guessing, starting from t = 1 and doubling t for the next guess. Suppose we
prescale the graph so that optρ ≤ m2 and all edge capacities remain not less than 1;
then only 2 logm guesses are required. For every guess of t, we solve approximately
the problem (D4) on the corresponding graph and choose the best solution among
the 2 logm solutions. (Note that if our guess of t is “too large,” then many edges are
contained in Lightt, and Lightt is a ρ-separator. If t is “too small,” then Heavyt spans
a subgraph that is too heavy, rendering the problem infeasible.)

2208 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

We now discuss how to perform prescaling so that 1 ≤ optρ ≤ m2. Note that this
prescaling keeps all edge capacities not less than 1. After this prescaling, it suffices
to consider the “guesses” 1 ≤ t = 2i ≤ m2 and pick the best solution among the
O(logm) possibilities.

We first order the edges in increasing cost order, namely, c(e1) ≤ · · · ≤ c(em).
We then compute the index i0 that satisfies

i0
4
= min{i : {e1, . . . , ei} is a ρ-separator}.

Note that i0 can be found using a binary search, and hence it can be computed in
O(m logm) time.

We claim that c(ei0) ≤ optρ ≤ i0 · c(ei0) ≤ m · c(ei0). The upper bound follows
directly from the definition of i0. The lower bound follows since if optρ < c(ei0),
then an optimal ρ-separator would consist of edges in the subset {e1, . . . , ei0−1}, a
contradiction to the definition of i0.

Following the scaling technique discussed above, define

Light
4
=

{
e ∈ E : c(e) ≤ c(ei0)

m

}
,

Heavy
4
= {e ∈ E : c(e) > m · c(ei0)}.

Since c(ei0) < optρ, the sum of the capacities of the edges in Light is bounded by
optρ, and we add the edges of Light to our solution and delete them from the graph,
as before. Since optρ < m · c(ei0), the capacity of each edge in Heavy is more than
optρ. Therefore, the edges in Heavy do not belong to an optimal ρ-separator and
they can be contracted.

Next, scale the capacities of the remaining edges as follows: c′(e) = m
c(ei0) · c(e).

It is easy to see that this achieves the desired prescaling.

7.3. The optimization oracle. The optimization oracle receives as input non-
negative edge lengths {d(e)}e and finds a fractional rooted tree x̃ ∈ P that minimizes∑
e∈E d(e) · Ue(x̃). Such a vector is called a min-cost fractional rooted tree since one

may interpret the edge lengths as edge costs.
Claim 7.5. Let x̃ ∈ P be a min-cost fractional rooted tree. Then, for every rooted

tree (T, r) ∈ T for which x̃(T, r) > 0,∑
e∈(T,r)

d(e) · Ue(T, r) =
∑
e∈E

d(e) · Ue(x̃).

Proof. Observe that every rooted tree is also a fractional rooted tree. Hence, if
there exists a rooted tree (T ′, r′) for which x̃(T ′, r′) > 0 and∑

e∈(T ′,r′)

d(e) · Ue(T ′, r′) >
∑
e∈E

d(e) · Ue(x̃),

then there also exists a rooted tree (T ′′, r′′) for which x̃(T ′′, r′′) > 0 and∑
e∈(T ′′,r′′)

d(e) · Ue(T ′′, r′′) <
∑
e∈E

d(e) · Ue(x̃),

yielding a contradiction to the assumption that x̃ is a min-cost fractional tree. The
claim follows.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2209

It follows from Claim 7.5 that in order to compute a min-cost vector, it suffices
to find a min-cost tree. Namely, our goal is to find a rooted tree (T, r) ∈ T that
minimizes

cost(T, r)
4
=

∑
e∈(T,r)

ω(T, r, e) · d(e)

c(e) · s(w(T))
.

We prove that finding a minimum-cost rooted tree in the case where the ver-
tices have arbitrary weights is NP-complete by a reduction from the subset-sum
problem [5, p. 223].

The input to an instance of the subset-sum problem consists of a fraction α ∈
(0, 1) and n positive weights w1, w2, . . . , wn that satisfy

∑n
i=1 wi = 1. The question

is whether there exists a subset of indices I ⊆ [1..n] such that
∑
i∈I wi = α.

The reduction to the weighted optimization oracle is as follows. We choose any
pair ρ′ > ρ such that ρ′ − ρ = α. For simplicity, we choose ρ = (1 − α)/2 and
ρ′ = (1 +α)/2. Consider a star graph with a center vertex r and n vertices connected
to the center, denoted by v1, v2, . . . , vn. Define the edge capacities and the edge
lengths all to be 1, namely, d(r, vi) = c(r, vi) = 1 for all 1 ≤ i ≤ n. Define the vertex
weights as follows: w(vi) = wi for all 1 ≤ i ≤ n, and w(r) = ρ/(1− ρ′) (which in our
case means w(r) = 1).

Claim 7.6. The cost of a minimum-cost rooted tree (T ∗, r∗) in the instance of
the weighted optimization oracle is 1/2 if and only if the answer to the instance of
the subset-sum problem is affirmative.

Proof. It can readily be verified that since w(r) is relatively large, a minimum-cost
tree must be rooted at r. Due to the unit edge lengths and edge capacities, the cost
of a rooted tree (T, r) equals

cost(T, r) =
w(T)− w(r)

w(T)− ρ(1 + w(r))
=

w(T)− 1

w(T)− 2ρ
.

Since w(r) > ρ(1 + w(r)), it follows that the cost is minimized when w(T) is
minimized, namely, when w(T) = ρ′(1 + w(r)). If there exists a tree (T, r) such that
w(T) = ρ′(1 + w(r)), then its cost is the smallest possible and cost(T, r) = 1/2.

However, there exists such a tree if and only if there exists a subset I ⊆ [1..n]
such that

w(r) +
∑
i∈I

wi = ρ′(1 + w(r)).

That occurs if and only if
∑
i∈I wi = α, and the claim follows.

The rest of this section is organized as follows:
1. An algorithm for computing the optimization oracle in the case of unit vertex

weights is presented. The running time of this algorithm is Õ(mn).
2. A (2 + ε)-approximation algorithm for the optimization oracle in the case of

arbitrary vertex weights is presented. The running time of this algorithm is
Õ(mn).

3. A randomized approximation algorithm for the optimization oracle (for both
the weighted and unweighted case) is presented for reducing the running time
of the optimization oracle. The randomized algorithm reduces the running
time by a factor of Õ(n · ρ′).

2210 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

7.3.1. Precise optimization oracle for the unit-weight case. We consider
here the case where all vertices have unit weight. Define a k-vertex min-cost tree
rooted at r, denoted by T (r, k), to be a rooted tree whose cost is minimum among the
rooted trees (T, r) for which |T | = k. We find a min-cost tree by computing, for every
root r and for every 1 ≤ k ≤ n, a k-vertex min-cost tree rooted at r. The min-cost
tree is then chosen among these n2 trees. We henceforth focus on computing T (r, k)
for a fixed root r. Define

γ(T, r)
4
= cost(T, r) · s(|T |) =

∑
e∈T

d(e)

c(e)
· ω(T, r, e).

Let d′(e) 4= d(e)/c(e). Given a rooted tree (T, r), let dist′T (r, u) denote the distance
in T from r to u with respect to edge lengths d′(e). Clearly,

γ(T, r) =
∑
u∈T

dist′T (r, u).(7.2)

The consequence of (7.2) is that computing T (r, k) reduces to that of computing
the k closest vertices to r with respect to edge lengths d′(e). Hence, for a given
root r we can compute T (r, k) for all values of k by running Dijkstra’s shortest paths
algorithm which has complexity O(m+n logn) [4]. Since we need to run the algorithm
for all choices for the root r, we get that the total running time of the min-cost
subroutine is O(mn+ n2 logn).

7.3.2. Approximate optimization oracle for the weighted case. First, we
extend the definition of γ(T, r) from the unweighted case to deal with vertex weights.
Define

γ(T, r)
4
= cost(T, r) · s(w(T)) =

∑
e∈T

d(e)

c(e)
· ω(T, r, e) = d′(e) · ω(T, r, e).

Clearly,

γ(T, r) =
∑
u∈T

dist′T (r, u) · w(u).(7.3)

The optimization oracle in the weighted case searches for a rooted tree (T, r) ∈ T
that minimizes γ(T, r)/s(w(T)). The approximate oracle “guesses” an interval for the
denominator and searches for rooted trees that minimize the numerator.

Figure 7.1 depicts a 2(1+ε)-approximation algorithm for the optimization oracle.
Algorithm apx-opt-oracle is based on a procedure called apx-min-γ which, given a root
r and a threshold t, finds a rooted tree (T, r) of weight at least t such that γ(T, r) ≤
2 · min{(T ′,r′):w(T ′)≥t} γ(T ′, r′). Algorithm apx-opt-oracle calls procedure apx-min-γ
from every possible root with a sequence of increasing thresholds and returns a rooted
tree of minimum cost among all the computed trees. The following claim summarizes
the approximation factor of algorithm apx-opt-oracle.

Claim 7.7. Algorithm apx-opt-oracle finds a 2(1+ε)-approximate min-cost rooted
tree.

Proof. Consider a min-cost rooted tree (T ∗, r∗). Let t0, t1, . . . denote the sequence
of thresholds considered by the algorithm. Suppose that ti ≤ w(T ∗) < ti+1. Let
(T, r∗) denote the rooted tree that is found by procedure apx-min-γ with respect to
threshold ti and root r∗.

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2211

apx-opt-oracle (V,E, {w(v)}v∈V , {d′(e)}e∈E)
(assume that ρ, ρ′ are known)

Set (T̃ , r̃) to be any rooted tree in T .
t = ρ′ · w(V) (set initial threshold to be ρ′ · w(V))
while t ≤ w(V) do

begin
for every root r ∈ V do

begin
T = apx-min-γ (V,E, {w(v)}v∈V , {d′(e)}e∈E , r, t)
if γ(T,r)
s(w(T)) <

γ(T̃ ,r̃)

s(w(T̃))
then { T̃ = T and r̃ = r}

end
t = (t− ρ · w(V))(1 + ε) + ρ · w(V)
end

Return (T̃ , r̃)

Fig. 7.1. 2(1 + ε)-approximation for min-cost rooted tree.

The 2-approximation of procedure apx-min-γ implies that γ(T, r∗) ≤ 2γ(T ∗, r∗).
Also, the fact that w(T ∗) < ti+1 implies that

w(T ∗)− ρ · w(V)

w(T)− ρ · w(V)
<
ti+1 − ρ · w(V)

ti − ρ · w(V)
= 1 + ε.

Therefore, cost(T, r∗) ≤ 2(1 + ε) · cost(T ∗, r∗), and since algorithm apx-opt-oracle
returns a rooted tree the cost of which is not greater than cost(T, r∗), the claim
follows.

We now turn to the procedure apx-min-γ depicted in Figure 7.2. Recall that
this procedure finds a rooted tree (T, r) of weight at least t such that γ(T, r) ≤
2 ·min{(T ′,r′):w(T ′)≥t} γ(T ′, r′). Note that it is computationally prohibitive to find the
exact minimum since for any fixed t > ρ′ · w(V), searching for a tree rooted at r of
weight at least t that minimizes γ(T, r) is NP-hard. The reduction is again from the
subset-sum problem and is analogous to the reduction given above to the problem
of searching for a tree rooted at r of weight at least ρ′ ·w(V) that minimizes γ(T, r).

The procedure apx-min-γ grows a shortest-path tree rooted at r. Whenever the
total weight of the vertices in the tree exceeds the threshold t, the resulting tree is
considered a candidate for a min-cost tree, and the last vertex added to the tree
is deleted from the tree. The procedure returns the minimum cost tree among all
candidate trees. The following claim summarizes the approximation factor that it
obtains.

Claim 7.8. Algorithm apx-min-γ computes a 2-approximate min-cost tree of
weight at least t rooted at vertex r.

Proof. Let T ∗ denote a min-cost tree rooted at r of weight at least t. Given a
tree T in List, let last(T) denote the last vertex added to T . Consider the first tree
T in List such that last(T) ∈ T ∗. We show that the cost of T is at most twice the
cost of T ∗.

First, we prove that such a tree T exists. Assume to the contrary that for all the
trees T ′ in List, last(T ′) 6∈ T ∗. Since a vertex is added to X only if it is Last(T ′)
for some T ′ in List, we get that X ∩ T ∗ is empty upon termination. Let Tf denote

2212 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

apx-min-γ (V,E, {w(v)}v∈V , {d′(e)}e∈E , r, t)

List = empty list (list of candidate trees)
X = φ (set of deleted vertices)
T = {r} (current tree)
repeat

let v be a closest vertex to r in the subgraph induced by V −X,
among all vertices in V − T −X.

let e = (u, v) be the last edge in a shortest path from r to v
in the subgraph induced by V −X. (u ∈ T)

if w(T) + w(v) ≥ t, then add T ∪ {e} to List and add v to X.
else add v to T .

until V − T −X is empty
Return min-cost tree in List

Fig. 7.2. 2-approximation for min-cost tree of weight at least t rooted at r.

the last tree that is added to List. Since X ∩ T ∗ is empty, it follows that T ∗ ⊆ Tf .
Consider the vertex v of T ∗ that is added last to Tf . After v is added, the weight of
the current tree (which is a subtree of Tf) is at least t. Hence, v should be added to
X, which is a contradiction.

Consider the following partitioning of T ∪ T ∗ into three sets:

A = T − T ∗,
B = (T ∩ T ∗)− last(T),

C = (T ∗ − T) + last(T).

We partition T into two: T − last(T) and last(T). Since last(T) ∈ T ∗, the cost
of last(T) is not greater than the cost of T ∗. We show that the cost of T − last(T) is
not greater than the cost of T ∗ as well.

By the definition of T , when T is constructed (before last(T) is added to X),
set X does not contain any vertices of T ∗. The algorithm adds vertices to T in non-
descending order of distance, where the distance is measured in the subgraphs induced
by V − X. Since X ∩ T = ∅ the distances in these subgraphs are the same as the
distances in the whole graph. Therefore, the vertices of A are closer (or at least as
close) to r than any vertex in C. Namely, for every v ∈ A, distV (r, v) ≤ distV (r, u)
for all u ∈ C.

By the definition of T , w(A) + w(B) < t. On the other hand, since T ∗ = B ∪ C,
it follows that w(B) + w(C) ≥ t. Hence, w(A) < w(C). Together with the fact that
the vertices in A are closer to r than any vertex in C, we obtain that the cost of A
is smaller than the cost of C, and hence the cost of T − last(T) = A ∪ B is smaller
than the cost of T ∗, and the claim follows.

The complexity of algorithm apx-min-γ is dominated by the complexity of
Dijkstra’s shortest paths algorithm which has complexity O(m+n logn) [4]. The num-
ber of iterations in algorithm apx-opt-oracle, for every root, is bounded by log(1/ρ′)/
log(1 + ε) which is at most O(1/(ρ′ · ε)). Hence, the total complexity of computing a
2(1 + ε)-approximate min-cost tree is Õ(mn).

FAST APPROXIMATE GRAPH PARTITIONING ALGORITHMS 2213

7.3.3. A randomized algorithm. Consider a tree T , and let c be a root such
that the cost (T, c) is minimum among the costs of all rooted trees (T, r), where r ∈ T .
The following claim shows that if a root r of T is chosen at random with probability
w(r)/w(T), then the expected cost of (T, r) is at most twice the cost of (T, c). Denote
the cost of a rooted tree (T, r) by cost(T, r) and the expected cost by Exp[cost(T, r)].

Claim 7.9. If a root r is chosen with probability w(r)/w(T), then Exp[cost(T, r)] ≤
2 · cost(T, c).

Proof. The cost of a tree (T, r) is defined to be∑
e∈T

ω(T, r, e) · d(e)

c(e) · s(w(T))
.

Suppose that edge e disconnects T into two subtrees, T1 and T2, such that w(T1) ≤
w(T2). Clearly, ω(T, c, e) ≥ w(T1). On the other hand,

Exp[ω(T, r, e)] =
2w(T1) · w(T2)

w(T)
,

yielding the bound Exp[ω(T, r, e)] ≤ 2 · ω(T, c, e). Hence, by linearity of expectation,

Exp[cost(T, r)] = Exp

[∑
e∈T

ω(T, r, e) · d(e)

c(e) · s(w(T))

]
=
∑
e∈T

Exp[ω(T, r, e)] · d(e)

c(e) · s(w(T))

≤
∑
e∈T

2 · ω(T, c, e) · d(e)

c(e) · s(w(T))
= 2 · cost(T, c),

completing the proof.
Combining the last claim with the algorithm for computing a min-cost tree rooted

at vertex r yields the following randomized algorithm for finding a 2-approximate
min-cost tree. The algorithm chooses a vertex v ∈ V with probability w(v)/w(V)
and outputs a min-cost tree T rooted at v. This saves the need to compute min-cost
rooted trees for every possible root. Fix an optimal min-cost rooted tree (T ∗, r∗).
Since w(T ∗) ≥ ρ′w(V), the probability that v ∈ T ∗ is at least ρ′, in which case the
expected cost of (T, v) is at most twice the cost of (T ∗, r∗). With probability bounded
by 1 − ρ′, we fail. To amplify the probability of success, we may need to repeat
the above algorithm Õ(1/ρ′) times, yielding that the complexity of the randomized
algorithm is Õ(m/ρ′).

7.4. Implementation issues. We first point out how to compute U(x) on the
intermediate values of x in O(m) time. The main reason this is possible is that the
optimization oracle returns a single rooted tree (T, r). Therefore, the edge utilizations
with respect to this rooted tree need to be computed. In the Y algorithm this is all
we need, and in the PST algorithm, the new vector x is a weighted average of the old
one and the rooted tree returned by the optimization oracle. Since the function U is
linear, we simply take the weighted average of the edge utilizations.

Second, we discuss how to scale the vector y ∈ Q returned by the PST and Y
algorithms to obtain a spreading metric. The scaling consists of the following stages:

1. Transform y into a solution y′ of (P3) by setting y′(e) = y(e)
minT,r costy(T,r)

.

Note that in the weighted case, the denominator is only approximated, which
adds another error to the approximation factor. (For the deterministic oracle
this error is bounded by 2(1 + ε), and for the randomized oracle this error is
bounded by 4(1 + ε).)

2. Transform y′ into a solution d of (P2) by setting d(e) = y′(e)/c(e).

2214 G. EVEN, J. NAOR, S. RAO, AND B. SCHIEBER

Acknowledgments. We thank Serge Plotkin and Éva Tardos for their generous
help in applying the framework described in [16] for approximating spreading met-
rics. We thank Naveen Garg for discussions about the constants in previous related
approximation algorithms. We thank Neal Young for helpful remarks about his pa-
per [18]. We thank Mark Rosenschein for pointing out the need for a different oracle
in the weighted case.

REFERENCES

[1] J. W. Beery and M. K. Goldberg, Path optimization for graph partitioning problems, Dis-
crete Appl. Math., 90 (1999), pp. 27–50.

[2] G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and
multicuts in directed graphs, Algorithmica, 20 (1998), pp. 151–174.

[3] G. Even, J. Naor, S. Rao, and B. Schieber, Divide-and-conquer approximation algorithms
via spreading metrics, in Proceedings 36th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press, Piscataway, NJ, 1995, pp. 62–71.

[4] M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM, 34 (1987), pp. 596–615.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[6] N. Garg, V. V. Vazirani, and M. Yannakakis, Approximate max-flow min-(multi)cut theo-
rems and their applications, SIAM J. Comput., 25 (1996), pp. 235–251.

[7] D. S. Johnson, C. R. Aragon, L. A. McGoech, and C. Schevon, Optimization by simulated
annealing: Part I, graph partitioning, Oper. Res., 37 (1989), pp. 865–892.

[8] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
System Tech. J., 49 (1970), pp. 291–307.

[9] T. Kloks, Treewidth, Lecture Notes in Comput. Sci. 842, Springer-Verlag, Berlin, Heidelberg,
1994.

[10] P. N. Klein, S. A. Plotkin, S. Rao, and É. Tardos, Approximation algorithms for Steiner
and directed mutlicuts, J. Algorithms, 22 (1997), pp. 241–269.

[11] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas, Fast
approximation algorithms for multicommodity flow problems, J. Comput. System Sci., 50
(1995), pp. 228–243.

[12] T. Leighton, F. Makedon, and S. Tragoudas, Approximation algorithms for VLSI partition
problems, in Proceedings 1990 IEEE International Symposium on Circuits and Systems,
(ISCAS ’90), New Orleans, LA, Vol. 4, IEEE Computer Society Press, Piscataway, NJ,
1990, pp. 2865–2868.

[13] T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms, in Proceedings
29th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, 1988, pp. 422–431; J. ACM, to appear.

[14] K. Lang and S. Rao, Finding near-optimal cuts: An empirical evaluation, in Proceedings
4th Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, 1993, SIAM,
Philadelphia, 1993, pp. 212–221.

[15] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-
ming, SIAM Stud. Appl. Math. 13, SIAM, Philadelphia, 1994.

[16] S. Plotkin, D. Shmoys, and É. Tardos, Fast approximation algorithms for fractional packing
and covering problems, Math. Oper. Res., 20 (1995), pp. 257–301.

[17] H. D. Simon and S.-H. Teng, How good is recursive bisection?, SIAM J. Sci. Comput., 18
(1997), pp. 1436–1445.

[18] N. Young, Randomized rounding without solving the linear program, in Proceedings 6th Annual
ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 1995, SIAM, Philadelphia,
1995, pp. 170–178.

AN OPTIMAL ALGORITHM FOR EUCLIDEAN SHORTEST PATHS
IN THE PLANE ∗

JOHN HERSHBERGER† AND SUBHASH SURI‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2215–2256

Abstract. We propose an optimal-time algorithm for a classical problem in plane computational
geometry: computing a shortest path between two points in the presence of polygonal obstacles.
Our algorithm runs in worst-case time O(n logn) and requires O(n logn) space, where n is the total
number of vertices in the obstacle polygons. The algorithm is based on an efficient implementation of
wavefront propagation among polygonal obstacles, and it actually computes a planar map encoding
shortest paths from a fixed source point to all other points of the plane; the map can be used to
answer single-source shortest path queries in O(logn) time. The time complexity of our algorithm is
a significant improvement over all previously published results on the shortest path problem. Finally,
we also discuss extensions to more general shortest path problems, involving nonpoint and multiple
sources.

Key words. shortest path, shortest path map, Euclidean distance, obstacle avoidance, quad-
tree, planar subdivision, weighted distance

AMS subject classifications. 68Q25, 68Q20, 68P05, 51-04

PII. S0097539795289604

1. Introduction.

1.1. The background and our result. The Euclidean shortest path problem
is one of the oldest and best-known problems in computational geometry. Given a
planar set of polygonal obstacles with disjoint interiors, the problem is to compute
a shortest path between two points avoiding all the obstacles. Due to its simple for-
mulation and obvious applications in routing and robotics, the problem has drawn
the attention of many researchers in computational geometry; we mention only a few
papers most relevant to our work [4, 13, 14, 17, 18, 19, 24].

The problem of computing shortest paths in the presence of a single obstacle has
received special attention, due to its applications in various geometric problems in-
volving a simple polygon [4, 13, 14, 17]. The roles of free space and obstacle space
have traditionally been reversed in this special case: the interior of the polygon rep-
resents the free space and the boundary of the polygon represents an impenetrable
obstacle. After several years of continued efforts, an optimal, linear-time algorithm is
now known for computing a shortest path in a simple polygon [13, 14].

The general case of multiple obstacles, however, has proved to be substantially
more difficult. There have been two fundamentally different approaches to the prob-
lem: the visibility graph method and the shortest path map method .1 The visibility
graph method is based on constructing a graph whose nodes are the vertices of the

∗Received by the editors July 31, 1995; accepted for publication (in revised form) December 4,
1997; published electronically July 9, 1999. A preliminary version of this paper appeared in the
Proceedings of the 34th IEEE Symposium on Foundations of Computer Science, 1993, pp. 508–517.
The authors were at DEC Systems Research Center, Palo Alto, CA, and Bellcore, Morristown, NJ,
respectively, when this research was conducted.

http://www.siam.org/journals/sicomp/28-6/28960.html
†Mentor Graphics Corporation, 8005 SW Boeckman Rd., Wilsonville, OR 97070 (john hershberger

@mentor.com).
‡Department of Computer Science, Washington University, St. Louis, MO 63130 (suri@cs.

wustl.edu).
1Several authors have also considered approximation algorithms for the shortest path problem [5,

7]; we consider only the exact shortest path problem.

2215

2216 JOHN HERSHBERGER AND SUBHASH SURI

obstacles and whose edges are pairs of mutually visible vertices. The shortest path
between two vertices can be found by running any Dijkstra-type algorithm on this
graph [8, 9, 11]. This approach fueled intense research on computing visibility graphs,
culminating in an optimal O(n logn + E) time algorithm by Ghosh and Mount [12],
where E is the number of edges in the graph. Unfortunately, the visibility graph can
have Ω(n2) edges in the worst case, and so any shortest path algorithm that depends
on an explicit construction of the visibility graph will have a similar worst-case run-
ning time [1, 2, 15, 21, 24]. A “holy grail” of this approach is to build and search only
the portion of the visibility graph that is relevant to the shortest path computation,
but no noteworthy progress has been made on that front.

The second approach tries to solve a more general problem: for a given source
point s, build a shortest path map (a subdivision of the plane) so that all points of
a region have the same vertex sequence in their shortest path to s. This map is an
encoding of shortest paths from s to all points of the plane. The shortest path map
approach seems inherently more geometric than the graph-theoretic method based on
visibility graphs. Nevertheless, most algorithms using the shortest path map approach
also have Ω(n2) worst-case running times; however, their running times typically have
the form O(nk g(n)), where k is the number of obstacles and g(n) is a sublinear func-
tion, such as the poly-logarithm [15, 18, 23]. Thus, for a small number of obstacles,
these bounds approach the time complexity for a single obstacle. Mitchell has recently
published an algorithm for computing a shortest path map that runs in O(n3/2+ε)
time and space [19], for any ε > 0, with the constant in the big-Oh notation depend-
ing on ε. Mitchell’s algorithm uses some advanced range searching data structures to
compute the vertices of the shortest path map.

The only lower bound known for the shortest path problem is Ω(n logn) in the
algebraic computation tree model, and so there remained a relatively large gap be-
tween the known upper and lower bounds on the problem. (The lower bound follows
easily by a reduction from sorting.) Nevertheless, there had been a general belief in
the computational geometry community that an almost-linear-time algorithm must
be achievable.

In this paper, we validate this belief by presenting an optimal O(n logn) time
algorithm for computing shortest paths in the presence of polygonal obstacles; n de-
notes the total number of vertices in all the obstacle polygons. Our algorithm takes
the shortest path map approach and builds a subdivision of the plane, which after an
additional linear-time preprocessing can be used to answer shortest path queries from
a fixed point [10, 16].

A key idea in our algorithm is a special, quad-tree-style subdivision of the plane
with respect to an arbitrary set of points P . This subdivision, called a conforming
subdivision, divides the plane into a linear number of cells using horizontal and ver-
tical edges so that the following critical condition holds: each point of P lies in a
separate cell, and there are O(1) cells within distance α|e| of every subdivision edge
e, where |e| is the length of e and α is a parameter (we choose α = 2 for our appli-
cation). Though a subdivision into square cells with this property can be obtained
using a quad-tree construction of Bern, Eppstein, and Gilbert [3], that subdivision
has size O(n logA), where A is the aspect ratio of the Delaunay triangulation of P .
Our subdivision achieves its linear upper bound by enforcing a weaker condition; in
particular, cells in our subdivision may be nonconvex and the subdivision itself may
not be connected. Nevertheless, our conforming subdivision appears to be a useful
tool and is likely to have other applications. In particular, we discuss extensions of our

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2217

technique that can handle generalized versions of the shortest path problem. These
include versions with multiple sources (the “geodesic Voronoi diagram”) or nonpoint
sources such as line segments or disks.

1.2. An overview of the algorithm. We use a technique dubbed the contin-
uous Dijkstra method in the literature [18, 19, 20]. It simulates the expansion of a
wavefront from a point source in the presence of polygonal obstacles. The wavefront
at time t consists of all points of the plane whose shortest path distance to the source
is t. The boundary of the wavefront is a set of cycles, each composed of a sequence of
circular arcs. Each arc, called a wavelet , is generated by an obstacle vertex already
covered by the wavefront; the vertex is called the generator of its wavelet. The meet-
ing point between two adjacent wavelets sweeps along a bisector curve, which is either
a straight line or a hyperbola. Simulating the wavefront requires processing events
that change its topology. These events fall into two categories: wavefront-wavefront
collisions and wavefront-obstacle collisions. The ability to process these events effi-
ciently is the key to a fast algorithm for the shortest path problem. Detecting and
processing these events quickly, however, appears to be quite difficult, and except for
the recent result of Mitchell [19], all previous algorithms employing the continuous
Dijkstra method have led to no better than an Ω(n2) worst-case time bound.

We introduce two new ideas to speed up the implementation of the wavefront
propagation method: a quad-tree-style subdivision of the plane, and an approximate
wavefront. Our first idea is to recognize that advancing a wavefront from event to
event can be difficult without a sufficiently well-behaved subdivision of the plane to
guide the propagation. We build a special subdivision of size O(n) on the vertices of
the obstacles, temporarily ignoring the line segments between them. Each cell of this
subdivision, called a conforming subdivision, has a constant number of straight line
edges, contains at most one obstacle vertex, and satisfies the following crucial prop-
erty: for any edge e of the subdivision, there are O(1) cells within distance 2|e| of e.
We then insert the obstacle line segments into the subdivision, but maintain both the
linear size of the subdivision and its conforming property—except now a nonobstacle
edge e has the property that there are O(1) cells within shortest path distance 2|e|
of the edge. These cells form the units of our propagation algorithm: in each step,
we advance the wavefront through one cell. Since each cell has constant descriptive
complexity, we are able to do the propagation in a cell efficiently.

Inside a cell, a wavefront-obstacle event is relatively easy to handle. However,
a wavefront-wavefront event is more complex. There are two types of wavefront-
wavefront events, depending on whether or not the colliding wavelets are neighbors in
the wavefront. The collision of neighboring wavelets occurs when a wavelet is engulfed
by the expanding wavelets of its two neighbors. This event is easy to detect and pro-
cess. The collisions between nonneighboring wavelets, however, are more troublesome,
and to process them we introduce our second idea—the approximate wavefront.

When trying to propagate the wavefront across a boundary edge of a cell, we
abandon the idea of computing the wavefront exactly; instead, we maintain two sep-
arate wavefronts approaching the edge from opposite sides. Each of these wavefronts
is an approximate wavefront , representing the wavefront that hits the edge from only
one side.

We use timers to make a conservative estimate of the time each edge is engulfed
by the wavefront, and discard any parts of the wavefront arriving at a cell bound-
ary after a timer at that boundary edge goes off. A critical task of these timers is
to ensure that the wavefront-wavefront collisions of the true shortest path map are

2218 JOHN HERSHBERGER AND SUBHASH SURI

detected during approximate wavefront propagation in a small neighborhood of their
actual location. The algorithm propagates the approximate wavefront, remembering
the wavefront-wavefront collisions and updating the wavefront so that it has enough
information to act as an approximate wavefront at any time.

At the end of the propagation phase, we collect all the collision information, then
use Voronoi diagram techniques in each cell to compute the collision events in that
cell precisely. The collisions determine the edges of the final shortest path map.

This paper contains seven sections. Section 2 describes our conforming subdivi-
sion of the free space, and section 6 gives the details of its construction. Section 3
presents the key shortest path properties used by our algorithm. Section 4 describes
our algorithm for computing a shortest path map. The data structures and finer
details of our algorithm are discussed in section 5. We close in section 7 with some
discussion and open problems.

2. A conforming subdivision of the free space. The input to our shortest
path problem is a source vertex s and a family of obstacles O = {O1, O2, . . . , Ok},
where each obstacle is a simple polygon and the closures of any two obstacles are
disjoint. (It is not hard to extend our algorithm to handle more general polygonal
obstacles, but for convenience we limit our discussion to disjoint, nonnested obstacles.)
The total number of vertices in all the obstacles is n. The plane minus the interiors of
all obstacle polygons is called the free space, and a path is called legal if it lies entirely
in the free space—that is, a legal path is disjoint from the interiors of all obstacle
polygons in the family O. Given two points in the plane, a Euclidean shortest path
between them is a legal path of minimum total length connecting the two points.

A key ingredient of our shortest path algorithm is a special subdivision of the
plane into cells of constant descriptive complexity. We construct this subdivision in
two steps: the first step builds a subdivision by considering only the vertices of the
obstacle polygons; the second step inserts the obstacle edges into the subdivision.
Our algorithm for the first step (constructing a conforming subdivision for points) is
somewhat complicated and quite independent of our main topic, the shortest paths,
and so we have moved its presentation to section 6 at the end of the paper. In the
present section, we assume the construction for points, and describe how to modify
this subdivision when obstacle edges are inserted. We start with some preliminary
definitions.

2.1. The well-covering regions. Our subdivision is inspired by quad-trees,
though it is best implemented bottom-up. A crucial property of our subdivision is
the well-covering of its internal edges. Given a straight-line subdivision S of the
plane, an edge e ∈ S is said to be well-covered with parameter α if the following three
conditions hold:

(W1) There exists a set of cells C(e) ⊆ S such that e lies in the interior of their
union. The union is denoted U(e) = {c | c ∈ C(e)}.

(W2) The total complexity of all the cells in C(e) is O(α).
(W3) If f is an edge on the boundary of the union U(e), then the Euclidean distance

between e and f is at least α ·max (|e|, |f |).
The edge is strongly well-covered if the stronger condition (W3′) holds:

(W3′) If f is an edge on or outside the boundary of the union U(e), then the Eu-
clidean distance between e and f is at least α ·max (|e|, |f |).

In either case, the region U(e) is called the well-covering region of e. Our wavefront
simulation algorithm cares only about the distance between e and the edges on the
boundary of U(e); that is, it requires its subdivision edges to be well-covered, but

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2219

not strongly well-covered. The strong condition on the distance between e and the
edges outside U(e) is used only in our construction of the conforming subdivision
(cf. Lemma 2.2).

Let V denote the set of vertices of the obstacle polygons, plus the source vertex s.
A subdivision S is called a (strong) α-conforming subdivision for V if

(C1) Each cell of S contains at most one point of V in its closure (interior plus
boundary),

(C2) Each edge of S is (strongly) well-covered with parameter α, and
(C3) The well-covering region of every edge of S contains at most one vertex of V .
The subdivision is called “conforming” because conditions (C1) and (C3) force

it to conform to the distribution of points in V . Figure 2.1 shows an example of a
well-covering region in a 1-conforming subdivision. The region U(e), drawn shaded,
is not necessarily a minimal well-covering region; rather, it is the region constructed
by our algorithm.

e

Fig. 2.1. Part of a strong 1-conforming subdivision of a set of points. The shaded region is the
union of cells U(e) forming a well-covering region of e.

Our algorithm is based on a 2-conforming subdivision for V . For convenience, in
the rest of the paper we use the term conforming to mean 2-conforming; when the
conformity parameter is not 2, we state it explicitly.

2.2. Computing a conforming subdivision. Our strong conforming subdivi-
sion S is similar to a quad-tree in that all its edges are horizontal or vertical. However,
the cells of S may be nonconvex and the subdivision itself may be disconnected. Each
cell is reasonably well behaved, though there is at most one hole per cell. More specif-
ically, each cell is either a square or a square-annulus (a square minus a square—see
Figure 2.2); the boundaries of these squares, however, may be subdivided into a con-
stant number of edges. Each square-annulus also has the following minimum clearance
property:

Minimum clearance property: The minimum width of an annulus in
the subdivision (the minimum distance from the inner square to the

2220 JOHN HERSHBERGER AND SUBHASH SURI

outer square) is at least one-quarter of the side length of the outer
square.

Annuli and square faces are both subject to the uniform edge property:

Uniform edge property:
• Every edge on the outer square of an annulus has length 1/(4dαe)

times the side length of the outer square. Every edge on the in-
ner square has length 1/(4dαe) times the side length of the inner
square.
• The lengths of edges on the boundary of a square cell differ

by at most a factor of 4.

Our algorithm for computing a strong conforming subdivision of V is presented in
section 6; describing it here would cause an unduly long digression. We simply state
the main result from section 6.

Fig. 2.2. A square-annulus. The distance from the inner square to the outer square is at least
1/4 the side length of the outer square.

Theorem 2.1 (Conforming Subdivision Theorem). For any α ≥ 1, every set of n
points in the plane admits a strong α-conforming subdivision of O(αn) size satisfying
the following additional properties: (1) all edges of the subdivision are horizontal or
vertical, (2) each face is either a square or a square-annulus (with subdivided bound-
ary), (3) each annulus has the minimum clearance property, (4) each face has the
uniform edge property, and (5) every data point is contained in the interior of a
square face. Such a subdivision can be computed in time O(αn+ n logn).

We modify the strong conforming subdivision of V to accommodate the edges of
the obstacles, producing a conforming subdivision of the free space. In the modified
subdivision, there are two types of edges: the edges introduced by the subdivision con-
struction and the original obstacle edges. To distinguish between them, we call the
former transparent edges and the latter opaque edges; a wavefront can pass through
the transparent edges, but it is blocked by the opaque edges. We require that all
transparent edges be well-covered in the conforming subdivision of the free space (but
not strongly so). Conditions (W1) and (W3) in the definition of well-covering are
modified for the subdivision of free space as follows:

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2221

(W1fs) Let e be a transparent edge of S. There exists a set of cells C(e) ⊆ S
such that e is contained in the closure of the union of cells U(e) = {c
| c ∈ C(e)}.

(W3fs) Let e and f be two transparent edges of S such that f lies on the
boundary of the well-covering region U(e). Then the shortest path
distance between e and f is at least α ·max (|e|, |f |).

Condition (W3fs) ensures that e does not touch any transparent boundary edge
of U(e), although it may touch opaque boundary edges.

Figure 2.3 shows an example of a well-covering region with obstacles. Lemma
2.2 shows how to modify a strong conforming subdivision of obstacle vertices to ob-
tain a conforming subdivision of the free space. This subdivision of free space has
the additional property that each obstacle vertex is incident to a transparent edge.

Remark. Our shortest path algorithm computes the distance from the source to
the endpoints of all the transparent edges. The condition in the following lemma that
each obstacle vertex is incident to a transparent edge ensures that the distance to
each obstacle vertex is correctly computed.

e

Fig. 2.3. Part of a 1-conforming subdivision of free space. The shaded region is the well-
covering region U(e).

Lemma 2.2. Every family of disjoint simple polygons with a total of n vertices
admits a 2-conforming subdivision of the free space with size O(n) in which each
obstacle vertex is incident to a transparent edge.

Proof. Let S be a strong 2-conforming subdivision for V (the source vertex plus
the vertices of the obstacle polygons), constructed according to Theorem 2.1. S has
O(n) vertices, edges, and faces (also referred to as cells), and each face is either a
square or a square-annulus. Overlaying the obstacle edges on top of S cuts the plane
into O(n2) cells. We call a face of this new subdivision Soverlay interesting if its bound-
ary contains an obstacle vertex or a vertex of S. For every vertex of O and for every
vertex of S, we keep intact the cells in Soverlay to which the vertex is incident (at
most four cells per S vertex and two cells per obstacle vertex). We delete every edge
fragment of S not on the boundary of one of these interesting cells.

Partition each cell containing an obstacle vertex v by extending edges vertically
up and down from v. This cuts the cell into at most three convex pieces (since the
cell is derived from a square of S). Let c be the square in S that contains v, and let δ
be the length of the shortest edge on the boundary of c. Subdivide each of the added

2222 JOHN HERSHBERGER AND SUBHASH SURI

Fig. 2.4. Constructing a conforming subdivision of the free space, given a strong conforming
subdivision for the obstacle vertices. The shaded cells on the right are interesting cells.

vertical edges incident to v into pieces of length at most δ (this produces O(1) vertical
edge fragments, since there are O(1) edges on the boundary of c, all of approximately
equal lengths, by the uniform edge property).

In the resulting subdivision, call it S ′, all cells are convex except those derived
from square-annuli. Every nonconvexity in Soverlay is derived from a nonconvexity
in either S or O, since each face is the intersection of a face of S with a face in
the arrangement of obstacle segments. Hence all nonconvex faces of Soverlay are in-
teresting cells. Any face in Soverlay with an obstacle vertex on the boundary is cut
into convex pieces by the vertical edges added through the vertex. The only other
nonconvex vertices in Soverlay are annulus vertices. Each edge fragment that is deleted
lies on the common boundary of two uninteresting faces; its deletion creates no new
nonconvexities.

If a cell c of S has p edges on its boundary, then each subcell of c in S ′ that
contains one of c’s vertices has size at most 2p + O(1): each convex corner of c may
be cut off by an obstacle edge, adding an extra edge; two obstacle edges may enter
and exit through the same edge, leaving an obstacle vertex in the cell; and a subcell
of an annulus may have up to two additional edges connecting the inner and outer
squares. Adding vertical edges through each obstacle vertex splits a cell into at most
three subcells, with at most O(1) additional edges shared between them. Because
each cell of S has constant complexity, the same is true of the interesting cells of S ′.
It follows that the total complexity of the interesting cells is O(n). Each uninteresting
cell of S ′ (without a vertex of S or V) has at most eight edges—four edge fragments
from S and four from O. Each vertex in S ′ is a vertex of an interesting cell, so S ′ has
O(n) vertices, and, by planarity, O(n) faces. See Figure 2.4 for a simplified example
of the construction of S ′. In the remainder of the proof, we show that the portion of
S ′ outside all obstacles in O is a conforming subdivision of the free space.

Condition (C1) is easily satisfied: each vertex of V lies in its own square cell in S.
These cells are interesting, and hence are retained (possibly subdivided) in S ′. Each
cell of Soverlay therefore contains at most one vertex of V in its closure.

To show that all transparent edges of S ′ are well-covered (condition (C2)), con-
sider such an edge e′. Edge e′ may be a fragment of an edge e ∈ S (possibly e = e′),
or it may be a fragment of a vertical edge added incident to an obstacle vertex. In
the former case, define U = U(e). In the latter case, e′ is inside a square c of S; define
U to be the union of U(e) over all edges of c. Note that the boundary of U is covered
by edge fragments in S (and hence in Soverlay) but need not be in S ′: some edge frag-
ments on the boundary of U may be erased in the construction of S ′. That is, U is a
union of cells of S (and hence of Soverlay), but not necessarily of S ′. Region U satisfies
conditions (W1fs) and (W3fs); the latter holds because U satisfies condition (W3) for

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2223

the transparent edges of S, and hence for those of Soverlay. However, because U is not
necessarily a union of cells of S ′, and may be cut into a nonconstant number of pieces
by the obstacle polygons, we cannot use it directly as the well-covering region of e′ in
S ′.

We intersect U with free space. This partitions U into connected components
R1, R2, Exactly one component, call it R1, contains e′. We show that each Ri is
a union of O(1) cells of Soverlay, and hence that it has constant total complexity. We
argue that for each cell c in S, only a constant number of Soverlay subcells of c belong
to Ri. If two subcells of c in Soverlay both belong to Ri, then the obstacle edges
separating them must have endpoints either inside U , or contained in one or more
holes of U if U is multiply connected (see Figure 2.5). If we walk along the boundary
of Ri, we visit subcells of c repeatedly. Between each pair of different subcells of c,
we traverse the boundary of a different hole of U (or the outer boundary of U , or the
unique obstacle vertex inside U). Because U has O(1) holes, only O(1) subcells of c
belong to Ri.

U

Fig. 2.5. A cell of U may be partitioned into many subcells in Soverlay, but only O(1) of them
belong to any one Ri.

For any given component Ri, let c(Ri) be the cells of Soverlay in Ri; |c(Ri)| = O(1).
Corresponding to each c ∈ c(Ri), there is a unique cell c′ in S ′ such that c ⊆ c′. Cell c
is a strict subset of c′ if and only if some edge of c was erased during the construction
of S ′. If c is a strict subset of c′, then c′ is an uninteresting cell, and hence has at
most eight edges. Thus both c and c′ have constant complexity. Define

c′(Ri) = {c′ | c′ ∈ S ′ and c ⊆ c′ for some c ∈ c(Ri)}.
We have |c′(Ri)| = O(|c(Ri)|) = O(1).

If U is nonconvex, it may be the case that some cell c′ of S ′ that intersects Ri also
intersects another component Rj , that is, c′(Ri)∩ c′(Rj) 6= ∅ (see Figure 2.6). Let us
say that two components are connected, Ri ∼ Rj , if and only if c′(Ri) ∩ c′(Rj) 6= ∅,
and extend ∼ to an equivalence relation by transitive closure.

We define U ′ = U(e′), the well-covering region for e′ in S ′, to be the union of
c′(Ri) for all Ri in the equivalence class of R1 under the ∼ relation. We argue that U ′
has constant complexity. Let R be the set of Ri that contain a vertex of S or O. The
set of cells c′(R) =

⋃
Ri∈R c

′(Ri) has O(1) total complexity. Further, if Ri /∈ R, then

2224 JOHN HERSHBERGER AND SUBHASH SURI

U(e)

Rj

Ri

c'(R)j

Fig. 2.6. Ri and Rj are disjoint components of U(e) in Soverlay. Ri is partitioned by a vertical
line inside U(e), so c(Ri) consists of two cells; c(Rj) is a single cell. c′(Rj) intersects both Ri and
Rj , so Ri ∼ Rj . Note that c′(Rj) may have transparent edges outside U(e).

c′(Ri) is a single convex cell with O(1) complexity (because all transparent edges of
c(Ri) inside U have been deleted). If such a cell c′ = c′(Ri) does not intersect any
component in R, then the union of c′(Rj) for all Rj ∼ Ri is just the single cell c′. On
the other hand, if c′ does intersect some Rj ∈ R, then c′∪c′(Rj) is identical to c′(Rj).
Because edge e′ was not deleted, R1 ∈ R. It follows that U ′ ⊆ c′(R), and hence U ′
satisfies condition (W2).

The definition of U(e′) implies that every transparent edge f ′ on the boundary
of U(e′) is outside or on the boundary of U . Edge f ′ is a subset of some edge f of
S, so the Euclidean distance from e′ to f ′ is at least 2 ·max(|e′|, |f ′|). It follows that
condition (W3fs) holds. Condition (W1fs) holds by construction.

Let us now establish condition (C3). A well-covering region U(e′) in S ′ contains
no obstacle vertex that lies outside the well-covering region U in S from which U(e′)
is derived, since no edges of S that bound vertex-containing cells are deleted. If e′ is a
fragment of an edge e of S, then its well-covering region U(e′) in S ′ contains at most
one obstacle vertex, since the same is true for U = U(e) in S. If e′ is one of the edges
added to S ′ inside a vertex-containing square, its well-covering region U is the union
of O(1) well-covering regions of S. Each component region contains the square and
its vertex and no other vertex; hence the well-covering region of e′ in S ′ also satisfies
condition (C3).

This completes our proof that S ′ is a conforming subdivision of the free space
corresponding to the set of obstacles O.

Our next lemma shows that the conforming subdivision described above can be
computed in O(n logn) time.

Lemma 2.3. The linear-size conforming subdivision of free space described in
Lemma 2.2 can be built in time O(n logn).

Proof. We start with a strong 2-conforming subdivision S of the obstacle vertices;
S is computed in O(n logn) time by Theorem 2.1. In O(n logn) additional time, we
build a point-location data structure for the obstacle polygons, so that given a query
point q, we can in O(logn) time find the obstacle edge immediately to the left, right,

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2225

above, or below q [10, 16]. The edges of S ′ are obstacle edges, transparent edges on
the boundary of kept cells, and transparent edges incident to obstacle vertices. To
identify the second kind of edges, we trace the boundary of each kept cell separately.
Each kept cell is contained in a single cell of S and has at least one vertex on its
boundary, so we trace starting from each vertex. Tracing along an obstacle edge
is easy, since the next transparent edge intersected is one of the O(1) edges on the
boundary of the current cell in S. We use the point-location structure to trace along
transparent edges: the next cell vertex is either a vertex of S or the first obstacle point
hit by the ray that the current point and edge define. This tracing takes O(n logn)
time altogether. The third kind of edges can be computed in O(n) total time by
local operations in each cell containing an obstacle vertex. To stitch the three kinds
of edges into a single adjacency structure S ′, we use an O(n logn) time plane sweep
algorithm [22].

This completes our discussion of the conforming subdivision. Our shortest path
algorithm, described in section 4, relies heavily on the well-covering property of this
subdivision. But first we establish some key geometric properties of shortest paths
used by our algorithm.

3. Geometric properties of shortest paths. This section summarizes the
properties of shortest paths we use in our algorithm. Most of these definitions and
lemmas have appeared earlier [17, 18, 23]; we include them here for completeness.

The triangle inequality implies that a Euclidean shortest path turns only at obsta-
cle vertices. Shortest paths need not be unique, though—for instance, every obstacle
polygon Oi has at least one point on its boundary reached by two shortest paths; the
two shortest paths together form a cycle enclosing the polygon. We use the notation
π(p, q) to denote the set of shortest paths connecting two points p and q. The length
of any path in π(p, q) is the shortest path distance between p and q, denoted d(p, q).
(Clearly, if one or both points lie inside an obstacle, there is no legal path between
them; their shortest path distance is assumed to be infinite.) If the shortest path
between p and q is the line segment pq, then p and q are said to be mutually visible.
We occasionally use d(X,Y) to denote the shortest path distance between two sets
of points X and Y , which is the minimum d(x, y) over all pairs of points x ∈ X and
y ∈ Y .

We consider the problem of computing shortest paths from a fixed point s to all
points of the free space. We define the weight of an obstacle vertex to be its shortest
path distance to s. Given an arbitrary point p in free space, its weighted distance to a
visible vertex u is defined as |pu|+d(u, s)—the straight-line distance from p to u plus
the shortest path distance from u to s. Obviously, the shortest path distance d(p, s)
is the minimum weighted distance between p and all vertices visible to p.

The predecessor of an arbitrary point p is defined as the vertex (or vertices) of
V adjacent to p in π(p, s); recall that V includes both s and the obstacle vertices. A
predecessor of p is necessarily visible from p. (If p and s are mutually visible, then s
is a predecessor of p.) The shortest path map of a particular source point s, denoted
SPM (s), is a subdivision of the plane into two-dimensional regions such that all the
points in one region have the same unique predecessor. Points on region boundaries
have multiple predecessors. These boundaries are pieces of bisectors—a bisector is
the locus of points equidistant (by weighted distance) from two obstacle vertices, and
it is in general an arc of a hyperbola. Figure 3.1 shows an example of a shortest path
map.

The next three lemmas establish some fundamental properties of shortest paths

2226 JOHN HERSHBERGER AND SUBHASH SURI

s

Fig. 3.1. SPM (s) and a wavefront sweeping it.

and shortest path maps.

Lemma 3.1. The set of points in the plane with multiple predecessors has measure
zero.

Proof. A point p with two obstacle vertices u and v as predecessors lies on the
bisector of u and v, which is the hyperbola determined by the equation

|pu|+ d(u, s) = |pv|+ d(v, s).

There are at most O(n2) such hyperbolas, and each has measure zero.
There are two types of edges in the subdivision SPM (s): (portions of) obstacle

edges and arcs of hyperbolas determined by pairs of weighted vertices. The hyperbolic
arcs may degenerate to straight lines—this happens when the weights of two vertices
are equal, or differ by precisely the distance between the vertices; in the latter case
the vertex with smaller weight is a predecessor of the other vertex. The vertices of
SPM (s) are of three types: the obstacle vertices, the intersections of obstacle edges
with (bisector) hyperbolic arcs, and the intersections of two or more bisectors; each
of the last variety of vertices has three or more predecessors. The following lemma
proves a linear upper bound on the total size of a shortest path map.

Lemma 3.2. The shortest path map SPM (s) has O(n) vertices, edges, and faces.
Each edge is a segment of a line or a hyperbola.

Proof. We first observe that each face of SPM (s) is star-shaped, with the unique
predecessor vertex for the face in its kernel—this follows from Lemma 3.1, which
shows that interior points of a face have a unique predecessor.

The key step in the proof is to show that each obstacle vertex is the predecessor
vertex for at most one face in SPM (s). Consider a vertex u that is the predecessor
of a face F , and let pred(u) be the set of predecessors of u; observe that d(u, s) =
|uv|+ d(v, s) for any v ∈ pred(u).

By the triangle inequality, if a point p is visible from a vertex v ∈ pred(u), with
v, u, p not collinear, then p cannot have u as its predecessor. Consider the subset of
the free space that is visible from u but not visible from v ∈ pred(u). Let R(u, v)
denote the component of this subset that is incident to u. Then R(u, v) lies in an

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2227

u v

p
q

l

Fig. 3.2. The intersection of qu with pv has two predecessors, even though it is not on a
bisector—a contradiction.

angular wedge around u of less than 180◦. Define

R(u) =
⋂

v∈pred(u)

R(u, v).

Clearly, F ⊆ R(u). We claim that there is at most one face of SPM (s) in R(u) with
u as its predecessor. Suppose there were two faces, F1 and F2, both having u as their
unique predecessor. The faces F1 and F2 have exactly one point in common: the
vertex u. In the space between F1 and F2, there is a point p arbitrarily close to u
with predecessor z such that z is distinct from both u and pred(u). In other words,
|pu| + d(u, s) > |pz| + d(z, s). However, as p moves towards u, the difference in the
distance shrinks, and finally d(u, s) = |uz|+d(z, s). But then z must be a predecessor
of u, contradicting the hypothesis. Thus, a vertex u is a predecessor of at most one
face in the shortest path map.

Finally, to prove the linear upper bound on the size of the shortest path map,
recall that the number of obstacle vertices is n; the remaining vertices border at least
three faces of SPM (s) (for this argument, we count the obstacle polygons as faces of
the shortest path map). Since the number of faces is O(n), Euler’s formula for planar
graphs implies that the total number of vertices is also O(n). This completes the
proof.

Lemma 3.3. Let u and v be two obstacle vertices that lie on the same side of a line
`. If ` intersects the bisector generated by u and v more than once, the intersections
lie on opposite sides of the line supporting uv.

Proof. If the bisector is a straight line, the claim follows readily. Otherwise, the
bisector is a hyperbola, and let us consider an arbitrary point p on this bisector. Every
point on pu has u as its predecessor, and every point on pv has v as its predecessor.
Points in the interiors of pu and pv have only one predecessor since they are not on
the bisector (see Figure 3.2). If the half-bisector on one side of uv intersects ` at two
points p and q, then there is an intersection of pu with qv or pv with qu that is not
on the bisector and yet has two predecessors—a contradiction.

With these preliminaries in place, we can now describe our shortest path algo-
rithm, which works by propagating a wavefront through the conforming subdivision
of the free space.

4. The shortest path algorithm. Our algorithm uses the continuous Dijkstra
method [18, 19, 20], which simulates a unit-speed wavefront expanding from a point
source and spreading among the obstacles. At simulation time t, the wavefront con-
sists of points whose shortest path distance to the source is t. The wavefront is a set
of disjoint paths and closed cycles. Each path or cycle is a sequence of circular arcs,
called wavelets. Each wavelet is centered on an obstacle vertex that is already covered

2228 JOHN HERSHBERGER AND SUBHASH SURI

by the wavefront, called the generator of the wavelet. As the wavefront expands, the
meeting point of two adjacent wavelets sweeps along a bisector curve, which is the
hyperbolic bisector of the two wavelets’ generators. The endpoints of paths in the
wavefront are formed where wavelets meet obstacle boundaries; these endpoints sweep
along obstacle boundaries as the wavefront expands. During the wavefront simulation,
the topology of the wavefront is changed by events of two types: wavefront-wavefront
collisions and wavefront-obstacle collisions.

Our shortest path algorithm has two phases: a wavefront propagation phase, fol-
lowed by a map computation phase. The first phase simulates the wavefront and
determines approximate locations of all the wavefront collision events. The second
phase uses this information to build the shortest path map in each cell of the conform-
ing subdivision. In the following two subsections, we describe the details of these two
phases, deferring the data structures and implementation issues of the propagation
until the next section.

4.1. The propagation algorithm. Our algorithm works by propagating the
wavefront through the cells of the conforming subdivision of the free space. The
wavefront propagates between adjacent cells only across transparent edges; it dies
upon meeting an opaque edge.

Propagating the exact wavefront appears to be quite difficult, so we content our-
selves with computing two “single-sided” approximations to the wavefront at each
transparent edge. Specifically, at each transparent edge, we compute two approxi-
mate wavefronts, passing through the edge in opposite directions. An approximate
wavefront represents the wavefront reaching an edge from one side of the edge only.
We can think of an approximate wavefront as labeling each point p on the edge with
the time at which the approximate wavefront reaches p. The true distance d(p, s) is
the minimum of the two labels from opposite sides of the edge.

Remark. In some cases we can determine that a portion of a wavefront arrives at
an edge after the wavefront from the other side of the same edge, and in such cases
we drop the part that arrives later. In that sense, an approximate wavefront is not
necessarily a complete representation of all the wavelets coming from one side of the
edge.

An approximate wavefront at an edge e is represented as a sequence of obstacle
vertices weighted with their shortest path distances from s. These vertices are the
generators of the wavelets in the approximate wavefront. All the generators in an
approximate wavefront sequence lie on the same side of e, since the approximate
wavefront passes through e in one direction only. The core of our algorithm is a method
for computing an approximate wavefront at an edge e based on the approximate
wavefronts of nearby edges. These nearby edges are formalized in the following with
the definitions of input(e) and output(e).

We denote by input(e) the set of edges whose approximate wavefronts are used
to compute the approximate wavefronts at e. This set consists of the transparent
edges on the boundary of U(e), the well-covering region of e (cf. section 2.1). To
compute the approximate wavefront at e, we propagate the approximate wavefronts
from input(e) to e inside U(e). The propagation algorithm introduces bends only at
obstacle vertices in the closure of U(e); that is, the shortest paths corresponding to
the wavefront do not bend except at obstacle vertices. Because U(e) need not be
convex (nor even simply connected), nonconvexities of U(e) may block the wavefronts
from some edges of input(e) from reaching e. Typically, the paths corresponding to
blocked wavefronts either run into obstacles outside U(e), or they pass through free

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2229

space outside U(e) and re-enter through other edges of input(e).
We denote by output(e) the set of edges to which the approximate wavefronts of e

will be passed; output(e) = input(e)∪{f | e ∈ input(f)}. We set output(e) to contain
input(e) because our algorithm for detecting wavefront collision events depends on
output(e) having a cycle enclosing e.

Lemma 4.1. For any transparent edge e, output(e) contains a constant number
of edges.

Proof. Because |U(f)| = O(1) for all f , and each U(f) is a connected set of cells
of S ′, no edge e can belong to input(f) for more than O(1) edges f .

Our simulation of the wavefront propagation is loosely synchronized. For a trans-
parent edge e = ab, we define d̃(e, s) = min(d(a, s), d(b, s)); this is a rough estimate of
d(e, s), since d(e, s) ≤ d̃(e, s) ≤ d(e, s)+ 1

2 |e|. We compute the approximate wavefronts
for e at the first time we are sure that e has been completely covered by wavefronts
from the edges in input(e). This time is d̃(e, s) + |e|, the approximate time at which
the expanding wavefront first hits an endpoint of e, plus the length of e. It is a con-
servative estimate of the time when e is completely run over by the wavefront.

We compute d̃(e, s) + |e| on the fly for each edge e using a variable covertime(e).
Initially, for every edge e whose well-covering region U(e) includes the source point s,
we calculate an upper bound on d̃(e, s) directly, considering only straight-line paths
inside U(e), and set covertime(e) to this upper bound plus |e|. For all other edges, we
initialize covertime(e) = ∞. Thus covertime(e) is not equal to d̃(e, s) + |e| only for
edges e = ab such that π(a, s) or π(b, s) crosses the boundary of U(e). The simula-
tion maintains a time parameter t, and processes edges in order of their covertime(·)
values. The main loop of the simulation is as follows:

Propagation Algorithm

while there is an unprocessed transparent edge do
1. Select the edge e with minimum covertime(e), and set t :=

covertime(e).
2. Compute the approximate wavefronts at e based on the approximate

wavefronts from all edges f ∈ input(e) satisfying covertime(f) <
covertime(e). Compute d(v, s) exactly for each endpoint v of e.

3. For each edge g ∈ output(e), compute the time tg when the ap-
proximate wavefront from e first engulfs an endpoint of g. Set
covertime(g) := min (covertime(g), tg + |g|).

endwhile

The following lemma proves the consistency of our algorithm—it shows that
covertime() is correctly maintained and that the edges required for processing e are
already processed. The details of Step 2 appear in sections 4.1.1 and 4.1.2; the com-
putation of tg in Step 3 is described in section 5.

Lemma 4.2. During the wavefront propagation, the following invariants hold:
(a) If the wavefront of an edge f ∈ input(e) contributes to an approximate wave-

front of e, then d̃(f, s) + |f | < d̃(e, s) + |e|.
(b) The value of covertime(e) is updated a constant number of times.
(c) The final value of covertime(e) is d̃(e, s) + |e|. This value is reached no later

than the simulation clock reaches that time.

2230 JOHN HERSHBERGER AND SUBHASH SURI

(d) Edge e is processed at simulation time d̃(e, s) + |e|.
Proof. We establish the invariants separately:
(a) Any wavelet that contributes to the approximate wavefront at e must reach

e at some time te with d(e, s) ≤ te < d̃(e, s) + |e|. Such a wavelet reaches e either
by traveling straight from s inside U(e) or by passing through a transparent edge
f ∈ input(e) at an earlier time tf , with d(f, s) ≤ tf < d̃(f, s)+|f | and te ≥ tf+d(e, f).
By condition (W3fs) of a well-covering region with parameter 2, d(e, f) ≥ 2|f |, and so
te ≥ d(f, s) + 2|f |. Since d̃(f, s) ≤ d(f, s) + 1

2 |f |, we can conclude that d̃(f, s) + |f | <
d̃(e, s) + |e|.

(b) The value of covertime(e) is updated only when an edge f is processed such
that f ∈ input(e) or e ∈ input(f). There are O(1) such edges, by Lemma 4.1.

(c), (d) We prove these by induction on the simulation clock. Claims (c) and (d)
hold for the edges whose initial covertime(·) values are not infinite. The wavelet that
first reaches an endpoint of e (at te = d̃(e, s)) passes through some f ∈ input(e). By
induction and the proof of (a), f has already been processed before the simulation
clock reaches te, and so covertime(e) is set to d̃(e, s) + |e| no later than te = d̃(e, s).
The variable covertime(e) cannot be set to any smaller value, because no approximate
wavefront can reach the endpoints of e earlier than d̃(e, s). It follows that e will be
processed at simulation time d̃(e, s) + |e|.

Lemma 4.3. For every vertex v of our conforming subdivision, the propagation
algorithm correctly determines the distance d(v, s) before v is used as a generator in
any wavefront.

Proof. Every vertex v of the conforming subdivision is an endpoint of a trans-
parent edge e. The wavefront that determines d(v, s) either reaches v from s by
traveling only inside U(e), or it passes through an edge f ∈ input(e) such that
covertime(f) < covertime(e). In the former case, initialization computes d(v, s) cor-
rectly; in the latter case, Step 2 of the propagation algorithm implies that d(v, s) is
correctly computed. If v is an obstacle vertex, it may appear as a generator in a
wavefront, but it will not be used until after d(v, s) is computed at time d̃(e, s) + |e|
(Lemma 4.2(d)).

While a well-covering region U(e) has constant complexity, it is not necessarily
simply connected; consider, for instance, the case of a square-annulus. Consequently,
there may be multiple, topologically distinct paths from a boundary edge f ∈ input(e)
to e. In order to avoid comparing paths of different topologies, we split the wave-
front W (e) into topologically equivalent pieces. In particular, let W (e) denote one
of the two approximate wavefronts passing through e. In computing W (e) from a
set {W (f) | f ∈ input(e)}, we use topologically constrained versions of the incoming
wavefronts, denoted W (f, e). A wavefront W (f, e) is a portion of W (f) that follows
a single topological path inside U(e) from f to e.

If U(e) contains islands, there are multiple topologically distinct paths from an
edge f ∈ input(e) to e. When we need to refer to multiple topologically distinguished
wavefronts from a single edge f to e, we use primed notation: W (f, e), W (f ′, e), etc.

If two points p, q ∈ e are hit by a single topologically constrained wavefront
W (f, e), then the segments connecting p and q to their predecessors among the gen-
erator vertices in W (f) intersect f and e, and the quadrilateral bounded by those
segments and f and e is a subset of U(e). (The paths are not always segments: if
an obstacle vertex v lies in the well-covering region of e and the path from f to p
turns at v, then the predecessor of p in W (f, e) may be v. Even in this case, the
paths from p and q to f can be continuously deformed to each other inside U(e).) For

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2231

any point p ∈ e, the shortest path π(p, s) passes through some f ∈ input(e) (unless
s ∈ U(e)), so constraining the source wavefronts to pass through input(e) does not
lose any essential information.

4.1.1. The artificial wavefronts. When we compute the approximate wave-
fronts at a transparent edge e, we allow limited interaction between waves coming
from opposite sides of the edge. This lets us eliminate some waves coming from one
side of the edge that are dominated by waves from the other side. The interaction
between the wavefronts from two sides is implemented using artificial wavefronts.
These artificial wavefronts are our only mechanism for pruning the wavefront that
arrives second at a transparent edge. We depend on artificial wavefronts to eliminate
dominated wavefronts within a constant number of cells of where they first become
dominated.

Consider a horizontal transparent edge e, and let v be an endpoint of e. We
introduce an artificial wavefront with generator v and weight d(v, s) into the com-
putation of both approximate wavefronts at e. The triangle inequality implies that
d(p, s) ≤ d(v, s) + |vp|, for any point p ∈ e. If the artificial wavefront reaches p ∈ e
before the wavefront from below e reaches p, then p is surely reached first by the upper
wavefront, and so there is no need to propagate the lower wavefront through p. See
Figure 4.1 for an illustration. In essence, an artificial wavefront is a convenient mech-
anism for discarding parts of the actual wavefront that are completely dominated by
some other part of the wavefront. A generator of an artificial wavefront is not passed
on to output(e) as part of the approximate wavefront, unless it is also a vertex of O.

v
p

from s

Fig. 4.1. An artificial wavefront generated by v. If d(v, s) + |vp| is less than the time at which
the wavefront from below reaches p, then p is reached first by a wavefront from above.

Remark. An artificial wavefront is just a conceptual device that lets us argue
about shortest paths without having to exhibit a specific shortest path. We use this
technique in our proofs (e.g., Lemma 4.8) to discard generators at a cell boundary
if the wavelet from an artificial wavefront reaches that boundary before the wavelets
from those generators. Since the path passing through an artificial generator is no
shorter than the true path from the predecessor of the artificial generator, the paths
from the losing generators cannot be shortest paths.

When we compute the approximate wavefront passing through e from below (that
is, coming from predecessors below e), the contributing wavefronts are the following:

1. All wavefronts W (f, e) for f ∈ input(e) and f below the line supporting e.
(If f intersects the line supporting e, we split W (f, e) in two, and keep only
the portion W (f ′, e) that comes from the part of f below e.)

2. An artificial wavefront expanding from each endpoint of e. An artificial wave-
front generator v has weight d(v, s).

2232 JOHN HERSHBERGER AND SUBHASH SURI

The contributing wavefronts for the approximate wavefront passing through e from
above are symmetric. The wavefront coming directly from s is handled separately.

The approximate wavefront from below is what the true wavefront would be if
we were to block off the wavefront from above by adding extra obstacles. In physical
terms, we can imagine replacing the transparent edge e with an (open) opaque ob-
stacle segment. The opaque segment absorbs the wavefront from above, but the open
endpoints let the wavefront from above pass through to generate artificial wavefronts.
(Open endpoints are needed only to guard against the case in which an actual obsta-
cle segment shares an endpoint of e, in which case replacing e with a closed segment
would prevent artificial wavefronts from passing through the endpoint.)

Consider a set of wavefronts that reach e from the same side. We say that a
contributing wavefront W (f) claims a point p ∈ e if W (f) reaches p before any other
contributor from the same side of e.

Lemma 4.4. Let e be horizontal, and let W (f, e) and W (g, e) be two contributors
to the approximate wavefront that passes through e from below. Let x and x′ be points
on e claimed by W (f, e), and let y be a point on e claimed by W (g, e). Then y cannot
lie between x and x′.

Proof. Consider the shortest paths π(x, s), π(x′, s), and π(y, s) in the modified
environment in which e has been replaced by an open, opaque segment. These paths
connect x and x′ to f , and y to g, inside U(e). Shortest paths π(x, s), π(x′, s),
and π(y, s) do not cross. The subpaths of π(x, s) and π(x′, s) inside U(e) can be
continuously deformed to each other inside U(e), so g is not between them. It follows
that y is not between them, either.

Lemma 4.5. Let u and v be two obstacle vertices, both generating wavelets that
are considered when the approximate wavefront passing through an edge e from below
is computed. Then the bisector generated by u and v intersects e at most once in
SPM (s).

Proof. Suppose the bisector intersects e twice. Without loss of generality assume
u lies inside the loop formed by the bisector and e. If the bisector intersects e twice in
SPM (s), then the segment from u to its predecessor must intersect e between the two
bisector intersections. This means that d(e, s) < d(u, s); in fact, d(e, s)+2|e| ≤ d(u, s).
Hence d̃(e, s) + |e| < d(u, s), and u cannot contribute to the approximate wavefront
at e: it does not become a generator until after e is processed, contradicting the
assumption that both u and v contribute to the approximate wavefront at e.

Lemma 4.6. Given W (f, e) for each f below e that contributes to W (e), we can
compute the interval of e claimed by each W (f, e) in O(1 + k) total time, where k is
the total number of generators in all wavefronts W (f, e) that are absent from W (e).

Proof. For each contributing wavefront W (f, e), we show how to determine the
portion of e claimed by W (f, e) if only one other contributing wavefront W (g, e) is
present. Lemma 4.4 implies that this portion is contiguous. The intersection of these
claimed portions, taken over all other contributors W (g, e), is the part of e claimed
by W (f, e) in W (e).

In constant time we determine whether the claim of W (f, e) is left or right of that
of W (g, e). If both W (f, e) and W (g, e) reach the left endpoint of e, in constant time,
check which one reaches it sooner. Otherwise, one of W (f, e) and W (g, e) reaches a
point on e that is left of any point reached by the other, and this point determines
the ordering. Without loss of generality, assume that the claim of W (f, e) is left of
that of W (g, e).

By Lemma 4.4, we can combine the two wavefronts using only local operations.

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2233

Let a denote the generator in W (f, e) claiming the rightmost point on e. Let pa be
the left endpoint of a’s interval on e. Similarly, let b denote the generator in W (g, e)
claiming the leftmost point on e, and let pb be the right endpoint of b’s interval on e.
Compute the bisector of a and b, and let its intersection with e be the point x. (By
Lemma 4.5, there is only one intersection point in SPM (s). If the hyperbola generated
by a and b intersects e twice, then a is to the left of b at only one of the intersections,
and we use that intersection as x.) See Figure 4.2. If x is to the left of pa, then
delete a from W (f, e); if x is to the right of pb, then delete b from W (g, e); in either
case, redefine a, b, pa, pb, recompute x, and repeat this test. If pa is left of pb and x
lies between them, then x is the right endpoint of W (f, e)’s claim in the presence of
W (g, e).

a

x ep
a

b

p
b

Fig. 4.2. The contribution of b to W (e) is constrained to be left of pb and right of x, and
therefore does not exist.

By combining the claimed regions for all contributors W (f, e), we construct the
approximate wavefront at e. The time bound follows since we spend constant time
per generator that is deleted for each pair of wavefronts, and the total number of
wavefronts W (f, e) to be merged is also a constant. This finishes the proof.

Lemma 4.7. Any generator deleted during the construction of an approximate
wavefront at edge e does not contribute to the true wavefront at e. Every generator that
contributes to the true wavefront at e either is s or belongs to one of the approximate
wavefronts at e.

Proof. The first part is clear—every deleted generator is dominated by some
other generator at e. The second part follows by induction from two facts: any
wavelet that contributes to the true wavefront at e must come either from s inside
U(e) or through one of the edges in input(e) (by the definition of well-covering). The
approximate wavefronts at input(e) are ready before they are needed to construct
W (e) (by Lemma 4.2).

4.1.2. The bisector events. When we propagate an approximate wavefront
W (e) to output(e), we may detect bisector events, which are intersections of bisectors
with each other or with obstacles. Bisector events are detected in two ways: (1)
during the computation of W (e, g) from W (e) for some g ∈ output(e); (2) during the
merging process described in Lemma 4.6.

1. Bisector events of the first kind are detected when we simulate the advance of
the wavefront from e to g to computeW (e, g); the details of this simulation are
discussed in section 5. In particular, if two generators u and v are nonadjacent
in W (e), but become adjacent at any time during the propagation from e to
g, then there is a bisector event involving u and v.

2234 JOHN HERSHBERGER AND SUBHASH SURI

2. Bisector events of the second kind are detected during merging. If a generator
v contributes to one of the input wavefronts W (e, g) but not to the merged
wavefront W (g) at g, then v is involved in a bisector event on the way from e
to g. (As a special case, if a generator’s claim on W (g) is shortened (but not
eliminated) by an artificial wavefront, then that generator is also considered
to have a bisector event. This adds at most two extra bisector events for each
edge g.)

Our algorithm detects bisector events in a small neighborhood of their actual
location in SPM (s). To ensure that all bisector events are properly localized, we
mark the generators that participate in a bisector event in O(1) cells near where the
event is detected: if a generator v is involved in a bisector event in a cell c, then v is
guaranteed to belong to a set of marked generators for c. However, the set of marked
generators for a cell c may be a superset of the generators that actually participate
in bisector events in c. We will show that the total number of generators marked in
all the cells is O(n). The precise rules for marking the generators are given below.

Marking Rules for Generators

1. If a generator v lies in a cell c, then mark v in c.
2. Let e be a transparent edge, and let W (e) be the approximate wave-

front coming from some generator v’s side of e.
(a) If v claims an endpoint of e in W (e), or if it would do so except

for an artificial wavefront, then mark v in all cells incident to the
claimed endpoint.

(b) If v’s claim in W (e) is shortened or eliminated by an artificial
wavefront, then mark v in the cell on v’s side of e.

3. Let e and f be two transparent edges with f ∈ output(e). Mark v
in both the cells that have e as an edge if one of the following events
occurs:
(a) v claims an endpoint of f in W (e, f);
(b) v participates in a bisector event detected either during the com-

putation of W (e, f) from W (e), or during the merging step at f
(Lemma 4.6). (We also mark v as having a bisector event if v’s
claim on W (f) is shortened by an artificial wavefront.)

4. If v claims part of an opaque edge when it is propagated from an edge
e toward output(e), mark v in both cells with e on their boundary.

Rules 2a and 3a both apply when a wavefront claims an endpoint of an edge.
The main difference between the two rules is that Rule 2a puts marks in cells near
the claimed endpoint, and Rule 3a puts marks in cells near the source edge of the
wavefront.

A generator may contribute to a wavefront more than once in the wavefront
sequence; each mark applies to only one instance of the generator in the sequence.
The following technical lemma is used in the proof of Lemma 4.9 to establish the
correctness of the marking rules.

Lemma 4.8. Let v be a generator that contributes to an approximate wavefront
W (e). Suppose there is a point p ∈ e that is claimed by v in W (e) but not in SPM (s)

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2235

(because a wave from the other side of e reaches p first). Then v is marked in the cell
c on v’s side of e.

Proof. If v is unmarked in c, there must be generators u and w such that u, v, w
are consecutive in W (e)—otherwise Rule 2 would apply. The bisectors (u, v) and
(v, w) must exit from U(e) through the same transparent edge h—otherwise Rule
3 or 4 would apply. For the same reason, the region bounded by (u, v), (v, w), h, and
e is a subset of U(e)—if the region contained a non-U(e) island, v would claim an
endpoint of a boundary edge of that island. Edge h is by definition part of input(e).
Consider the point p ∈ e that is claimed by v in the approximate wavefront W (e) but
not in the true wavefront at e, and suppose that the true predecessor of p is z 6= v.
The vertex z is either an obstacle vertex or the source s. In the former case, z lies
outside U(e) or on its boundary ∂U(e)—by condition (C3), U(e) contains at most one
obstacle vertex, so any vertex not strictly outside U(e) must be connected to points
outside U(e) by opaque edges. Vertex z may lie strictly inside U(e) only if z = s.

Let us first assume that z lies outside the well-covering region U(e)—the proof
simplifies in the other case, which is considered below. Let q denote the intersection
point between zp and input(e) closest to p (recall that input(e) ⊂ output(e), and
input(e) ⊂ ∂U(e)). Based on the position of q relative to the bisectors (u, v) and
(v, w), we argue that v must have been involved in a bisector event detected by our
algorithm, and thus marked in cell c.

First, consider the case in which q lies between the bisectors (u, v) and (v, w)
on the edge h. Now, since |qp| ≥ |h| (by the well-covering property), the endpoints
of h are engulfed by a wavefront from z or from some other generator before the
wavefront from z reaches p at time d(z, s) + |zp|. The artificial wavefronts from
h’s endpoints will cover h before time d(z, s) + |zp| + |h|. By assumption we have
d(v, s) + |vp| > d(z, s) + |zp|. The wavefront from v cannot reach e earlier than
d(v, s) + |vp| − |e|. By well-covering with parameter 2, d(e, h) is at least |e|+ |h|, and
so the wavefront from v reaches h no earlier than d(v, s)+|vp|+|h| > d(z, s)+|zp|+|h|,
at which time h is already covered by the artificial wavefront. The claim of v on h is
shortened by the artificial wavefront (in fact, v’s claim is eliminated completely), and
so it must be marked by Rule 3b.

In the second case, q is not between the bisectors (u, v) and (v, w) on h. The
segment qp must intersect one of the bisectors. Without loss of generality, assume qp
intersects bisector (u, v). Since every point on qp has z as its predecessor in SPM (s),
the bisector (u, v) does not reach ∂U(e) in SPM (s). We show that our propagation and
merging algorithms will detect a bisector event for (u, v). Let r be the intersection
point between the bisector (u, v) and the edge h. As noted in the discussion after
Lemma 4.3, the triangle defined by the segments ur, vr, and e is a subset of U(e).
Bisector (u, v) crosses the triangle boundary on e and at r, but nowhere else. The
larger region R bounded by e, h, ur, and bisector (v, w) also is a subset of U(e), and it
contains point p. Because qp crosses into R to intersect (u, v), and it does not intersect
the (v, w) or h sides of R, qp must intersect ur; let x be the point of intersection.
The wavelet from z reaches x before the one from u, so the path z → x→ r, starting
at time d(z, s), reaches r before the path u → r, starting at time d(u, s). Observe
also that the path z → x → r is a legal path—it lies in free space. Now, consider
the shortest path from z to r inside the triangle 4zxr that does not cross h or any
obstacle edge (see Figure 4.3). Because z → x → r lies in free space, such a path
exists, and is shorter than z → x → r. This path claims r from the same side as u
before the wavelet from u reaches r. (If the path passes through an endpoint of h,
then an artificial wavefront claims r; otherwise the last obstacle vertex on the path

2236 JOHN HERSHBERGER AND SUBHASH SURI

claims r.) Thus, a bisector event for (u, v) is detected during the computation of
W (e, h) or W (h), and v is marked by Rule 3b.

v

p

z

r
h

e

u w

x

q

Fig. 4.3. The shaded path from z to r claims r before the wavelet from u, and from the same
side of h as u.

Next consider what happens if the predecessor vertex z lies on the boundary of
the well-covering region U(e). Let h be a boundary edge of U(e) incident to z. In this
case we detect a bisector event involving v when we advance the wavefront from e to
output(e): if z lies between the bisectors (u, v) and (v, w), then v is marked by Rule
3a or 4; if z is not between the bisectors, the segment zp intersects one of the bisectors,
say (u, v), and we detect a bisector event for (u, v) in advancing the wavefront from e
to output(e).

Finally, consider the case in which z = s lies inside U(e). If z is not between
the bisectors (u, v) and (v, w), segment zp intersects one of them and the proof is
as above. Let r be the intersection of (u, v) with h, and let t be the intersection of
(v, w) with h. The convex quadrilateral bounded by subsegments of e, ur, h, and tw
is contained inside U(e). Hence if z is between the bisectors (u, v) and (v, w), the
entire segment rt is visible from z (that is, 4zrt is empty) and so v’s claim on h is
eliminated by z. Therefore v is marked by Rule 3b. This completes the proof.

Lemma 4.9. If a generator v participates in a bisector event of SPM (s) in a cell
c, then v is marked in c.

Proof. If a bisector has an endpoint on an opaque edge of c, it either emanates
from an obstacle vertex on the edge, or it is defined by two generators that claim part
of the opaque edge. Rules 1 and 4 guarantee that all such generators are marked in c.
If a generator v that contributes to an approximate wavefront in c is unmarked, then
by Rule 2a there must be transparent edges e and f on the boundary of c such that
W (e) and W (f) both contain the generator subsequence u, v, w, for some u and w.
Without loss of generality assume W (e) enters c and W (f) leaves c. If v participates
in a bisector event of SPM (s) in c, then at least one point p inside the region R
bounded by e, f , (u, v), and (v, w) is not claimed by v in SPM (s). Let z be the
true predecessor of p. Let r and t be the intersections of (u, v) and (v, w) with f ,
respectively. Region R is contained in the convex quadrilateral Q bounded by ur, rt,
tw, and the line supporting e. Because u, v, w is a subsequence of W (e), no vertex
on the same side of e as v claims any point of the side of Q collinear with e; that is,
zp does not cross that side of Q. If r and t are both claimed by v in SPM (s), then
ur ∈ π(s, r), and wt ∈ π(s, t). In this case π(s, p) cannot cross ur or wt, and hence it

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2237

must cross rt. The intersection of zp with rt is a point q that satisfies the hypothesis
of Lemma 4.8, and so v is marked in c. On the other hand, if either r or t is not
claimed by v in SPM (s), that vertex satisfies the hypothesis of Lemma 4.8, and so v
is marked in c.

The following technical lemma shows that the approximate wavefronts are not
too different from the true wavefronts; this lets us bound the number of marks made
by the marking rules.

Lemma 4.10. Let B be the set of pairs (e, b) of transparent edges e and bisectors
b such that b crosses e in some approximate wavefront, but the same crossing does not
occur in SPM (s). Then |B| = O(n).

Proof. Let (e, b) be a pair in B. Bisector b is defined by two generators u and
v. The proof of Lemma 4.8 notes that each generator (except possibly s) is outside
or on the boundary of U(e). That proof also shows that b’s intersection with e in
some approximate wavefront (that is, the presence of u and v in W (e)) is proof that
u and v claim points on the boundary of U(e) (in input(e)) in SPM (s). Let p = b∩ e.
Because (e, b) is not an incident pair in SPM (s), there must be at least one bisector
event in SPM (s) that lies in the interior of U(e) between the line segments up and
vp. We can charge the early demise of b to any one of these bisector events.

The segments pu and pv are disjoint inside U(e) from the corresponding segments
defined by any other pair (e, b′) ∈ B—in the modified shortest path problem in which
the obstacles are O ∪ {e}, the segments pv and pu belong to π(s, p), and hence they
are disjoint from any other such segments. Thus the sector bounded by ⇀pu and ⇀pv
is disjoint inside U(e) from the sector defined by any other pair (e, b′) ∈ B, so each
bisector event inside U(e) is charged at most once for all pairs in B that have e as
the first element of the pair. Each cell in the conforming subdivision belongs to O(1)
well-covering regions U(e). Hence the sum over all transparent edges e of the number
of bisector events in U(e) is only O(n). This total is an upper bound on |B|.

Lemma 4.11. The total number of marked generators over all cells is O(n).

Proof. We begin by defining a propagation region for each edge e. For any
transparent edge e, let P (e) be the collection of cells through which wavefronts
propagate on the way from e to all edges f ∈ output(e). Clearly P (e) ⊆ U(e) ∪
{U(f) | f ∈ output(e)}. The number of cells in P (e) is constant, since |output(e)| is
constant, and so is the number of cells in U(f) for any f . Furthermore, since every
cell of P (e) is within a constant number of cells of e, each cell c belongs to P (e′) for
only a constant number of edges e′.

The total number of generator-cell marks made under Rule 1 is clearly O(n).

Each P (e) has constant complexity, so there are O(n) edge pairs (e, f), where e is
transparent and f is either transparent and in output(e), or opaque and inside or on
the boundary of P (e). From this it follows that the number of marks made by Rules
2a and 3a is O(n). Similarly, there are O(n) Rule 4 marks in which the wavelet from
v claims an endpoint of the opaque edge, or is the first or last nonartificial wavelet in
W (e).

Any Rule 4 mark not yet counted involves a generator v that does not reach any
opaque edge endpoint when propagated forward from e. Because v is not the first or
last nonartificial wavelet in W (e), there is a generator u such that v’s claim on e in
W (e) is bounded on the left by bisector (u, v). We can assume that (u, v) intersects e
in SPM (s); by Lemma 4.10 there are only O(n) bisector-edge pairs that intersect in
approximate wavefronts but not in SPM (s). Bisector (u, v) terminates in P (e), either
on the opaque edge or in a bisector event before the opaque edge. Let us charge the

2238 JOHN HERSHBERGER AND SUBHASH SURI

marking of v at e to this endpoint of (u, v) in SPM (s). Because each cell belongs to
P (e′) for a constant number of edges e′, each vertex of SPM (s) is charged O(1) times.
Since |SPM (s)| = O(n), the number of Rule 4 marks is O(n).

The proofs for Rules 2b and 3b are similar to that for Rule 4. We begin with
the proof for Rule 3b. We can assume that the interval claimed by v on e in W (e) is
bounded by two bisectors (u, v) and (v, w), for two nonartificial generators u and w;
the first and last generators in W (e), counted separately, sum to at most O(n) overall.
Furthermore, we can assume that (u, v) and (v, w) both intersect e in SPM (s); there
are only O(n) bisector-edge pairs that appear in some approximate wavefront but not
in SPM (s) (Lemma 4.10). At least one of the two bisectors fails to reach the boundary
of P (e) in SPM (s), because Rule 3b applies, and a detected bisector event implies the
existence of an actual bisector event no later than the point of detection; we charge
the marking of v to that bisector endpoint. Each bisector event gets charged O(1)
times, and there are O(n) bisector events in SPM (s).

To bound the number of Rule 2b marks, consider where the generator v lies.
There is at most one generator v inside U(e), and so O(n) marks for such generators
overall. If v lies outside U(e), there is at least one edge in input(e) where v is marked
by Rule 3b because of the shortening of v’s claim on e. Charge the Rule 2b mark at
e to this Rule 3b mark. There are O(n) Rule 3b marks and hence O(n) Rule 2b
marks.

We defer the finer details of the propagation algorithm to section 5 and instead
describe the second phase of the algorithm next, namely, the shortest path map
computation.

4.2. Computing the shortest path map. At the end of the propagation
phase, approximate wavefronts for all transparent edges have been computed. Fur-
thermore, for every cell c, a set of marked generators is known; each marked generator
is in the approximate wavefront of one of the boundary edges of c, and all but O(1)
of them contribute to a bisector event either in c or in one of O(1) nearby cells.
The algorithms of Lemma 4.6 and section 5 let us compute the marked generators in
O(logn) time apiece.

We now show how to break the interior of a cell c into active and inactive re-
gions such that no vertices of SPM (s) lie in the inactive regions. By Lemma 4.9,
no unmarked generator contributes to a bisector event in c. A bisector defined by a
marked generator and an unmarked neighbor belongs to SPM (s). All such bisectors
are disjoint. They partition c into regions such that each region is claimed only by
marked generators or only by unmarked generators. These are the active and inactive
regions, respectively (see Figure 4.4). The active regions can be computed in time
proportional to the number of marked generators in c, since the order of the generators
along the boundary of c is known.

The boundary of an active region consists of O(1) segments. Each segment is
a transparent edge fragment, an opaque edge, or a bisector in SPM (s). Let e be a
transparent edge fragment bounding an active region, and let W (e) be the wavefront
that enters the active region by crossing e. In the absence of wavefronts from other
transparent edges, W (e) partitions the active region into pieces we call S-faces, each
with a unique predecessor in W (e). These S-faces may not cover the active region,
since each point in an S-face must be connected to its predecessor by a segment that
intersects e. Denote this partition by S(e). S(e) is essentially a shortest path map,
restricted to the active region and considering only generators in W (e). If a point p
lies in an S-face of S(e) with predecessor v, then S(e) assigns weight |pv|+ d(v, s) to

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2239

A

I

A

A

A

A

A

A

I

I

I

Fig. 4.4. Active regions (white) and inactive regions (shaded). Each region-bounding bisector
is defined by one marked and one unmarked generator.

p. Points outside any S-face are assigned infinite weight by S(e). We can compute
S(e) in O(m logm) time, where m = |W (e)|, by using the propagation algorithm and
data structure of section 5.

The following lemma shows how to combine the wavefronts incident to different
boundary edges of an active region.

Lemma 4.12. Given the approximate wavefronts on the boundary of a cell c and
a set of k marked generators in those wavefronts, we can compute the vertices of
SPM (s) inside c in time O(k log k).

Proof. Consider an active region inside c and two transparent edge fragments
e and f on the boundary of this active region. We can use the merge step from a
standard divide-and-conquer Voronoi diagram algorithm to compute the portion of
the region nearer to W (e) than to W (f), using weighted distance, in time O(|W (e)|+
|W (f)|). More specifically, assume that S(e) and S(f) have both been computed. Let
m = |W (e)|+ |W (f)|. Each of S(e) and S(f) defines a distance function on the points
of the active region. The pointwise minimum of these two functions determines which
points are nearer to W (e) than to W (f) under weighted distance. Consider a point p
in the S-face for some generator v ∈ W (e). Point p belongs to v’s S-face in SPM (s)
only if all of the segment pv is closer to v than to any generator in W (f). The set of
points p such that the entire segment from p to its predecessor is closer to W (e) than
to W (f) is bounded by a single chain Γ of O(m) hyperbolic arcs. (The number of
arcs follows from Lemma 3.2.) To find Γ, first trace along a ray emanating from some
generator v ∈ W (e), marching through S(e) and S(f) simultaneously, until the ray
reaches the boundary of c or reaches a point whose weight in S(f) equals its weight
in S(e). This takes O(m) time, since a line cuts O(m) edges of S(e) and S(f). Then
trace outward from this point along Γ. Each arc of Γ is a hyperbola determined by
the generators of the S-faces of S(e) and S(f) containing the current point; trace
along the hyperbola until it leaves one of the two S-faces, then follow the hyperbola
determined by the next pair of S-faces, etc. This procedure takes O(1) time per arc
of Γ, or O(m) time altogether (see Figure 4.5).

The tracing procedure computes the region closer to W (e) than to W (f) for one
edge f . Intersecting the results for all such edges f on the boundary of the active
region produces the region R(e) claimed by W (e) in SPM (s). Intersecting R(e)
with S(e) gives the vertices of SPM (s) to which W (e) contributes. We repeat this
computation for each transparent edge fragment to find all the vertices of SPM (s) in

2240 JOHN HERSHBERGER AND SUBHASH SURI

e

f

v

Fig. 4.5. To find the region closer to W (e) than to W (f) under weighted distance, trace a ray
from some v ∈W (e) through S(e) and S(f) until it hits a point equidistant from the two wavefronts;
then trace outward from the point along the bisector Γ.

the active region. Applying this algorithm to all active regions finds all vertices of
SPM (s) inside c.

The partition S(e) determined by each edge fragment e participates O(1) times
in a Voronoi-style merge, so the total cost of merging is O(k). Hence the running
time is dominated by the propagation algorithm, which takes O(k log k) time al-
together.

Lemma 4.13. The shortest path map vertices computed cell-by-cell can be com-
bined to build SPM (s) in additional O(n logn) time.

Proof. To compute SPM (s), we compute all its edges separately, then use a
standard plane sweep to assemble them, as follows. Create a list of the bisector
endpoints discovered in the computation of Lemma 4.12, each identified by a key
consisting of two generators. Put each three-bisector endpoint into the list three
times, once for each bisector. Put each bisector/edge collision in once, labeled with
the generators of the bisector. Now sort the list to group together endpoints belonging
to each bisector. Take the endpoints belonging to the bisector of a generator pair (v, w)
and sort them along the hyperbola determined by the weighted generators v and w.
This determines all edges of SPM (s) on the hyperbola. Doing this for all pairs that
appear as keys in the sorted list gives all O(n) hyperbolic arcs of SPM (s). Finally,
with a standard plane sweep [22], we can combine these arcs with the edges of O to
build the subdivision SPM (s).

5. An implementation of the wavefront propagation. In this section, we
give the implementation details of our algorithm. We describe the data structures
used by our algorithm and finer details of the propagation algorithm.

5.1. The data structures. An approximate wavefront is a list of generators
(obstacle vertices). Our algorithm performs the following two types of operations on
these lists:

1. Standard list operations: insert, delete, concatenate, split, find previous and
next elements, and search. The search operation locates the position of a
query point in the list of bisectors defined by the generators at a particular
time.

2. Priority queue operations: we assign each generator in the list a priority, and
the data structure needs to update priorities and find the minimum priority
in the list.

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2241

Both of these types of operations can be supported by a data structure based on
balanced binary trees, for example, red-black trees, with the generators at the leaves.
In particular, the list operations take O(logn) time each because the maximum list
length is O(n). The priority queue operations are supported by adding a priority
field to the nodes of the binary tree: each node records the minimum priority of the
leaves in its subtree. Each priority queue operation takes O(logn) time, while the list
operations retain their O(logn) bound.

We also require our data structure to be fully persistent—we need the ability to
operate on past versions of any list. Each of the two kinds of operations uses O(1)
storage per node of the binary tree, so we can make the data structure fully persistent
by path-copying. Each of our operations affects O(logn) nodes of the tree, including
all the ancestors of every affected node. Once we have determined which nodes an
operation will affect, and before the operation modifies any node, we copy all of the
nodes that will be affected, then modify the copies. This creates a new version of
the tree while leaving the old version unchanged. The data structure uses O(m logn)
storage, where m is the total number of data structure operations, and keeps the
O(logn) per-operation time bound quoted above.

Lemma 5.1. There is a linear-space data structure that represents an approximate
wavefront and supports list operations and priority queue operations in O(logn) time
per operation. The data structure can be made fully persistent at the expense of an
additional O(logn) space per operation.

5.2. Details of the wavefront propagation. Using the data structures just
described, we now show how to propagate an approximate wavefront from edge to
edge. In particular, given an approximate wavefront W (e), we show how to compute
W (e, g) for every edge g ∈ output(e). In the process, we also determine the time of
first contact between W (e, g) and the endpoints of g.

We describe how to compute W (e, g) for all the transparent edges g on the
boundary of e’s cell. Because the edges of output(e) belong to a constant number
of cells in the neighborhood of e, we can use this primitive to compute W (e, g) for
all g ∈ output(e). When we propagate the wavefront cell-by-cell, we effectively split
W (e, g) into multiple pieces, each labeled by the sequence of transparent edges it
follows from e to g. We assemble W (e, g) out of these component wavefronts by
concatenating pieces that correspond to topologically equivalent paths inside U(e).
(Recall that for a pair e and g, there may be several constrained wavefronts W (e, g),
W (e′, g), etc., topologically distinguished by the paths they follow among the islands
inside U(e).) Each component piece is a list of generators; adjacent pieces may contain
a single duplicate generator, namely, the generator that claims the common endpoint.
Before concatenation of the lists, one copy of the duplicate generator is deleted. In
Figure 5.1, W (e, g) is assembled from W (e′, g) and W (e′′, g), where e′ and e′′ are two
edges on the boundary of g’s cell.

5.2.1. Preparing the cells for propagation. The propagation algorithm that
follows assumes that the cell c is convex. When c is nonconvex, which is the case for
subcells of an annulus cell, we temporarily break c into convex subcells by adding
transparent edges parallel to e through the points of nonconvexity, as illustrated by
Figure 5.2.

Let f 6= e be another transparent edge on the boundary of c. Our propagation
algorithm assumes the following invariant:

Propagation invariant: When a wavefront W (e, f) is propagated
for distance 2|f | beyond f , it intersects only a constant number of

2242 JOHN HERSHBERGER AND SUBHASH SURI

e'

e

g

e"

Fig. 5.1. W (e, g) may reach g via multiple paths.

e e

obstacle

Fig. 5.2. Preparing nonconvex cells for wave propagation.

cells of the conforming subdivision of the free space.

The edges of the conforming subdivision S ′ already satisfy the propagation in-
variant, since each edge f is well-covered with parameter 2. However, we need to be
more careful in dealing with a cell derived from an annulus. We subdivide each of the
newly added, nonconvexity-removing edges into O(1) pieces, each no longer than the
edges of S on the annulus’s outer boundary (one-eighth the side length of the outer
square, by the uniform edge property of the conforming subdivision). Let H denote
the convex hull of e and the inner square of the annulus. If H intersects a newly
added edge f , then we further partition f ∩ H into pieces no longer than the inner
boundary’s edges (one-eighth the side length of the inner square). We illustrate this
last step in Figure 5.3. Because f is parallel to e, and the inner boundary of the an-
nulus is well separated from the outer boundary (cf. the minimum clearance property
of the conforming subdivision S), the total length of edges inside H is proportional
to the side length of the inner square. It follows that the partition step creates only
O(1) edges.

The subdivided edges satisfy the propagation invariant: for any such edge f , let
g′ be an edge of c such that W (e, f) leaves c by passing through g′. Edge g′ is an
edge of S ′, the conforming subdivision of free space; it is a fragment of an edge g of
S, the conforming subdivision for the vertices. The construction of S ′ in Lemma 2.2
ensures that there are O(1) cells of S ′ within shortest path distance 2|g| of g′. The
subdivision of nonconvexity-removing edges guarantees that |f | ≤ |g|, which implies
that the propagation invariant holds for edge f .

5.2.2. Simulating the wavefront propagation across convex cells. So far
we have used a wavefront in its static form, namely, as a sequence of generators whose

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2243

e

H

f

Fig. 5.3. Subdividing the added edges.

bisectors intersect an edge in the subdivision. We now describe a dynamic form of the
wavefront, in which we track changes in the combinatorial structure of the wavefront
as it sweeps across a cell. In particular, we simulate the evolution of a wavefront W (e)
as it sweeps across a cell c after entering it through the edge e; the cell c is a convex
cell satisfying the propagation invariant. Our simulation detects and processes any
bisector events involving the generators of W (e) that may occur inside c. Events are
processed in order of increasing distance from s, that is, in simulation time order.
Generators are marked as events are processed, though the description below does
not necessarily itemize all the marks made.

Let W denote the current dynamic wavefront at any time during the simulation.
At the start of the simulation, we have W = W (e), the approximate wavefront that
passes through e—it is a list of generators, each claiming some portion of e. Every
generator v ∈ W defines a pair of bisectors with its neighbors in the list. If v is the
first generator in the list, then its first bisector is the ray from v through the endpoint
of e at v’s end of the list; the last bisector for the last generator is defined similarly. If
v is an endpoint of e, then there is no first bisector (or last bisector, as appropriate).

To process bisector events in order, we maintain the corresponding generators of
W in a priority queue. The priority of a generator v is the weighted distance to the
point at which the two bisectors defined by v intersect beyond e; the priority is infinite
if the bisectors do not intersect beyond e. Specifically, if the bisectors defined by v
and its neighbors intersect ahead of e, either in c or beyond it, at a point p, then
priority(v) = |vp| + d(v, s). Our simulation of the wavefront propagation processes
these bisector events in order of increasing priority up to some maximum priority
tstop, which is determined by the shape of c, as explained below. This limit tstop is
the minimum of individual tstop(f) values for each transparent edge f on c. Initially,
we set tstop =∞ and tstop(f) =∞ for all f . We also initialize an empty set T , which
is used to hold generators whose priorities need to be reset after the simulation.

At each step of the simulation, we extract the event with minimum priority from
the queue; let v be the generator vertex producing this event. If the event occurs
inside c (that is, the intersection point corresponding to the event lies in c), then we
delete v from the generator list and recompute the priorities of its neighbors. We
mark v in W (e) for the cell c; in addition, we also mark v for a constant number of
cells near c to satisfy Rule 3 of section 4.1.2.

If, however, v’s event occurs outside c, then we set priority(v) = ∞, and add v

2244 JOHN HERSHBERGER AND SUBHASH SURI

to the set T . The generator list is not changed in this case, because we have found
the correct intersection between the boundary of c and the wavelet from v, at least
locally. If we were to process all the bisector events of W in strict time order, the
generators on either side of v might participate in further bisector events outside c
before the last bisector event inside c occurred. However, we are not interested in
those events now. Setting priority(v) to ∞ avoids processing those events outside c.

We compute the intersection points of the two bisectors defined by v with the
boundary of c. If either intersection lies on an opaque edge, or if they lie on different
transparent edges with an opaque edge between, mark the generator v for cell c and
O(1) neighbors to satisfy Rule 4 of section 4.1.2. If either of the intersection points,
say x, lies on a transparent edge, say f , then we update tstop as follows:

tstop(f) = min(tstop(f), d(v, s) + |vx|+ |f |),
tstop = min(tstop, tstop(f)).

The second term of the minimum in the first line above is a time at which the wavefront
W certainly will have swept over f ; it is also no more than 2|f | greater than the time
at which the wavefront W first contacts f .

When we reach priority tstop, either tstop = ∞ and all events inside c have been
processed, or tstop <∞ and there is a transparent edge f on the boundary of c with
tstop(f) = tstop. The definition of tstop(f) ensures that all the bisector events needed
to produce W (e, f) have been processed. We compute the static wavefront W (e, f)
from the current dynamic wavefront W , as follows. We first locate the endpoints of f
in W by searching outward from one of the bisectors in W that intersects f—there is
at least one such bisector. At this point we mark the endpoint-claiming generators to
satisfy Rule 2. We split the current generator list at the endpoints of f ; this breaks up
the wavefront into three parts: one that passes through f (in fact, once the generator
priorities are reset, this part becomes W (e, f)), and the other two that pass on the
left and right of f . We continue with the simulation process on the latter two pieces
independently, after we have reset tstop in each piece to be the minimum of tstop(g)
over the transparent edges g in that piece.

If we stop because tstop =∞, we split the current generator list at all the trans-
parent edge endpoints, producing W (e, f) for each transparent edge f , plus some
wavefront pieces that hit only opaque edges.

If no transparent edges remain in some piece, all bisectors in the piece hit an
opaque edge. We mark all the generators in that piece for cell c and in O(1) nearby
cells to satisfy Rule 4, as well as making all necessary marks for Rules 2 and 3.

When we finish, we reset the priority of each vertex in the temporary set T , based
on the bisectors it defines with its neighbors in the (new) list. This ensures that each
wavefront fragment W (e, f) has its priorities set properly.

Once we have computed the wavefront W (e, f), we determine the time of first
contact between this wavefront and each endpoint of f . Each endpoint p lies in the
region claimed by some v ∈ W (e); v is the first or last generator in W (e, f). The
time of first contact is d(v, s) + |vp|. (Because of visibility constraints, p may not be
claimed by any generator in W (e); recall that W (e, f) is constrained to reach f by
paths passing through e and contained in U(f). In this case the time of first contact
is infinite.)

The propagation algorithm performs O(1) priority queue and list operations per
bisector event processed, plus O(1) per edge of the conforming subdivision. Each
operation takes O(logn) time and space. Because the wavefront data structure is

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2245

fully persistent, all the modifications to a single wavefront list W (e) are independent:
for example, a wavefront W (e, f) may share generators with a wavefront W (e, g), for
f, g ∈ output(e), but that overlap causes no problems.

We summarize the main result of the preceding discussion in the following lemma.
Lemma 5.2. Every bisector event processed in the procedure above either (1) lies

inside c, (2) involves a generator whose region is truncated by an opaque edge of c,
(3) is associated with tstop(f) being set to a finite value for the first time for some
transparent edge f of c, or (4) lies within shortest path distance 2|f | of a transparent
edge f of c. If the number of events is m, then the procedure takes O(m logn) time.

As argued in the proof of Lemma 4.11, our simulation of the wavefront propagation
discovers a bisector event for a generator v within a constant number of cells of a true
bisector event for v in the shortest path map SPM (s). By the propagation invariant,
the bisector events processed during the propagation of a wavefront W (e) across a
cell c lie within a constant number of cells near the edge e (cf. Lemma 5.2 (4)). We
conclude that a generator v is marked for a constant number of cells in the vicinity
of each of the true bisector events involving v. Thus, the total number of events
processed and generators marked during the wavefront propagation is O(n). This
concludes the proof of our main result.

Theorem 5.3. Let O be a family of polygonal obstacles in the plane with pairwise
disjoint interiors and a total of n vertices. Given a point s, we can construct the
shortest path map from s with respect to O in time O(n logn) and space O(n logn).

The shortest path map SPM (s) can be preprocessed for point location, after
which a shortest path query from s to any point t in the plane can be answered in
time O(logn) [10, 16]. A shortest path π(s, t) can be computed in additional time
O(k), where k is the number of edges in the path.

6. Constructing a conforming subdivision. This section contains the proof
of Theorem 2.1. It gives an algorithm to construct an α-conforming subdivision for
a set V of n points in the plane. The main part of the algorithm constructs a 1-
conforming subdivision of size O(n) in O(n logn) time. The following lemma shows
how to transform this subdivision into an α-conforming subdivision of size O(αn) in
O(αn) additional time.

Lemma 6.1. Let V be a set of n points, and let S1 be a 1-conforming subdivision
for V of size O(n). For any α > 1, we can build an α-conforming subdivision Sα for
V with complexity O(αn) in time O(αn). If S1 is a strong 1-conforming subdivision,
then Sα is a strong α-conforming subdivision.

Proof. Subdivide each edge of S1 into dαe equal-length pieces. Define the well-
covering region of each edge e in Sα to be the same as the well-covering region in
S1 of the edge of S1 of which e is a fragment. These operations can be performed
in O(αn) time. We show below that the subdivision thus defined satisfies properties
(C1)–(C3). Text in [brackets] applies if S1 is strongly 1-conforming.

(C1) Sα has the same set of cells as S1, so each cell of Sα contains at most one
point of V in its closure.

(C2) Each internal edge eα of Sα is well-covered with parameter α, since it satisfies
conditions (W1), (W2), and (W3) [(W3′)]. Let e1 be the edge of S1 of which
eα is a fragment. Let Cα(eα) be the set of cells of Sα whose union Uα(eα) is
the well-covering region of eα. Define C1(e1) and U1(e1) analogously.

(W1) Uα(eα) covers the same area as U1(e1), so eα is contained in its interior.
(W2) Each edge of each cell in C1(e1) is divided in dαe pieces in Cα(eα), so the

total complexity of Cα(eα) is O(α).

2246 JOHN HERSHBERGER AND SUBHASH SURI

(W3) [(W3′)]
Let fα be an edge of Sα on [or outside] the boundary of Uα(eα), and let
f1 be the edge of S1 from which it is derived. The Euclidean distance
between eα and fα is at least as large as the distance between e1 and
f1, which is at least max(|e1|, |f1|) ≥ max(α|eα|, α|fα|).

(C3) Well-covering regions in Sα are the same as in S1, so each contains at most
one vertex of V .

This establishes the lemma.

Before we describe the construction of the 1-conforming subdivision, we need a
few definitions.

6.1. The i-boxes and i-quads. We fix a Cartesian coordinate system in the
plane. For any integer i, an ith-order grid in this coordinate system is the arrangement
of all lines x = k2i and y = k2i, where k ranges over all integers. Each face of this
grid is a square of size 2i × 2i, whose lower-left corner lies at a point (k2i, l2i) for a
pair of integers k, l. We call each such face an i-box .

Any 4 × 4 array of i-boxes is called an i-quad. Though an i-quad has the same
size as an (i+ 2)-box, it is not necessarily an (i+ 2)-box because it may not be a face
in the (i + 2)-order grid. The four nonboundary i-boxes of an i-quad form its core;
that is, the core of an i-quad is a 2× 2 array of i-boxes. Observe that an i-box b may
have up to four i-quads that contain b in their cores.

Our algorithm for building a 1-conforming partition of the point set V is a bottom-
up procedure. The algorithm simulates a growth process in which we grow a square
box around each data point, until the entire plane is covered by these boxes. The
simulation works in discrete stages numbered −2, 0, 2, 4, It produces a subdivision
of the plane into orthogonal cells. The key object associated with a data point p in
stage i is an i-quad containing p in its core. In fact, the following stronger condition
holds inductively: each (i − 2)-quad constructed in stage (i − 2) lies in the core of
some i-quad constructed in stage i.

In each stage, we maintain only a minimal set of quads. The set of quads in stage
i is denoted Q(i). This set is partitioned into equivalence classes under the transitive
closure of the overlap relation—two quads q and q′ are in the same equivalence class if
there is a sequence of quads q = q0, q1, . . . , qm = q′ ∈ Q(i) such that qj and qj+1 over-
lap (have a common interior point) for all j = 0, 1, . . . ,m− 1. Let {S1(i), . . . , Sk(i)}
denote the partition of Q(i) into equivalence classes in the ith stage, and let ≡i denote
the equivalence relation.

The region of the plane covered by quads in one class of this partition is called a
component . Each component in stage i is either an i-quad or the union of i-quads. We
can classify each component as either a simple component or a complex component.
A component at stage i is simple if (1) its outer boundary is an i-quad and (2) it
contains exactly one (i−2)-quad of Q(i−2) in its interior. Otherwise, the component
is complex.

6.2. The invariants. As the algorithm progresses, we draw the boundaries of
certain components. Each boundary edge is a straight line segment, parallel to one
of the axes, and together these edges subdivide the plane into orthogonal cells. The
critical property of our subdivision is the following conforming property :

Invariant 1: For any edge e and cell c of the subdivision, c has
an interior point within distance |e| of e if and only if c and e are

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2247

incident (their closures intersect). Thus there are at most six cells
within distance |e| of any edge e.

Our algorithm draws edges of increasing lengths, and so we never need to subdi-
vide previously drawn edges inside a component. In order to help maintain Invariant 1,
we will also enforce the following auxiliary invariant.

Invariant 2: The boundary of each complex component in stage i is
subdivided into edges of length 2i that are aligned with the ith-order
grid.

Our algorithm does not actually draw the outer boundary of a simple component
until just before it merges with another component to form a complex component.
Indeed, this is crucial to ensure that the final subdivision has only O(n) size, and
not Θ(n logA), where A is the maximum aspect ratio of a triangle in the Delaunay
triangulation of the input points [3].

There are two main parts to our algorithm—one involves growing the (i−2)-quads
of stage (i−2) to i-quads of stage i, and the other involves computing and maintaining
the equivalence classes and drawing subdivision edges to satisfy Invariants 1 and 2.
These tasks are performed by procedures growth and build-subdivision, respectively.
We postpone the discussion of growth till later, but introduce the necessary terminol-
ogy to allow us to describe build-subdivision.

Given an i-quad q, growth(q) is an (i+ 2)-quad containing q inside its core. For a
family S of i-quads, growth(S) is a minimal set of (i+2)-quads satisfying the following:

∀ q ∈ S, ∃ q̄ ∈ growth(S) s.t. q̄ = growth(q).

As mentioned earlier, up to four (i + 2)-quads may qualify for the role of growth(q).
We will describe later how the procedure growth chooses growth(q), but for now we
will use growth(q) as a unique (i + 2)-quad returned by the procedure growth. We
also use the notation q̄ to denote growth(q).

6.3. Details of build-subdivision. By proper scaling and translation of the
plane, we assume that either the horizontal or the vertical distance between any two
points in V is at least 1, and no point coordinate is a multiple of 1/4. For every point
p ∈ V , we compute a (−2)-quad with p in the upper-left (−2)-box of its core; this
choice ensures that quads of different points are disjoint. These quads form the initial
set of quadsQ(−2)—each quad inQ(−2) forms its own singleton component under the
equivalence class in stage −2. We regard all quads in Q(−2) as simple components.
We draw a (−2)-box around each point p. Each of these (−2)-boxes is contained
in the core of its (−2)-quad. (The (−2)-quads are not drawn.) Invariants 1 and 2
are both clearly satisfied at this stage. The pseudo-code below describes the details
of the algorithm build-subdivision. This pseudo-code is correct, but not particularly
efficient; an efficient implementation is presented in section 6.5.

2248 JOHN HERSHBERGER AND SUBHASH SURI

Algorithm build-subdivision

while |Q(i)| > 1 do
1. Increment i : i = i+ 2.

2. (∗ Compute Q(i) from Q(i− 2). ∗)
(a) Initialize Q(i) = ∅.
(b) for each equivalence class S of Q(i− 2) do

Q(i) = Q(i) ∪ growth(S).
(c) for every pair of i-quads q, q′ ∈ Q(i) do

if q ∩ q′ 6= ∅, set q ≡i q′.
(d) Extend ≡i to an equivalence relation by transitive closure,

and compute the equivalence classes.

3. (∗ Process simple components of ≡i−2 that are about to merge
with some other component. ∗)
for each q ∈ Q(i− 2) do

(a) Let q̄ = growth(q) as computed in Step 2.
(b) if q is a simple component of Q(i− 2)

but q̄ is not a simple component of Q(i) then
Draw the boundary box of q and subdivide each of
its sides into four edges at the (i− 2)-order grid lines.

4. (∗ Process complex components. ∗)
for each equivalence class S of Q(i) do

Let S′ = {q ∈ Q(i− 2) s.t. growth(q) ∈ S}.
if |S′| > 1 then (∗ S is complex ∗)

(a) Let R1 = ∪q∈S′ {the core of growth(q)}.
(b) Let R2 = ∪q∈S′ {the region covered by q}.
(c) Draw (i− 2)-boxes to fill the region between the

boundaries of R1 and R2.
(d) Draw i-boxes to fill the region between the boundaries

of R1 and S; break each cell boundary with an endpoint
incident to R1 into four edges of length 2i−2, to satisfy
Invariant 1.

endwhile

Lemma 6.2. The subdivision computed by the algorithm build-subdivision satisfies
Invariants 1 and 2.

Proof. We prove by induction that the invariants hold inside the family of quads
Q(i), for all i. The initial family of quads Q(−2) clearly satisfies the two invariants.
We show that no step of the algorithm build-subdivision ever violates these invariants.
Step 2 computes growth(S) for each equivalence class of Q(i− 2) and then computes
Q(i). No new edges are drawn in this step.

The only edges drawn in Step 3 are on the boundaries of simple components. Let
q be an (i− 2)-quad that is a simple component of Q(i− 2). By definition, the single
(i− 4)-quad of Q(i− 4) contained in q lies in its core and thus is separated from the
outer boundary of q by a gap of at least 2i−2 on all sides. Hence the edges already
drawn in the core satisfy Invariant 1: they have length no more than 2i−2 (actually

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2249

2i−4, except when i = 0), and are separated from the boundary of q by a gap of at
least 2i−2. We draw the boundary of q in Step 3; since any previously drawn edges
within q lie in its core, the new edges satisfy Invariant 1. Invariant 2 holds vacuously.

Step 4 subdivides the region covered by each complex component S. Again, the
boundary of S is separated from any components of Q(i− 2) contained in it by a gap
at least the width of an i-box. Step 4(c) adds (i− 2)-boxes to pad the region covered
by Q(i− 2) out to the boundaries of i-boxes. By Invariant 2, the newly drawn boxes
satisfy Invariant 1 with respect to the previously drawn edges; they clearly satisfy
Invariant 1 with respect to each other’s edges. Step 4(d) packs the area between
the core and the boundary of S with i-boxes, and breaks the segments incident to
previously drawn cells into four pieces to guarantee Invariant 1 with respect to those
cells. (The previously drawn edges on the core boundary have length 2i−2, so by
induction the cells incident to them have side lengths at least 2i−2. It follows that the
cells inside the core satisfy Invariant 1 with respect to the newly drawn segments of
length 2i−2.) The segments on the boundary of S are unbroken, so Invariant 2 holds
at the next stage of the algorithm. This completes the proof.

Lemma 6.3. The subdivision produced by build-subdivision has size O(n).
Proof. We show that the algorithm draws a linear number of edges altogether.

The number of edges drawn in Step 3 is proportional to the number drawn in Step 4—
we draw a constant number of edges in Step 3 for each simple component that merges
to form a complex component at the next stage. The number of edges drawn in Step 4
for a complex component S is O(|S′|), the number of (i − 2)-quads whose growths
constitute S. The key observation in proving the linear bound is that the total size
of Q decreases every two stages by an amount proportional to the total number of
quads in complex components. This fact, which we prove in the next subsection
(Lemma 6.5), can be expressed as follows: If ei edges are drawn in stage i, then

|Q(i+ 2)| ≤ |Q(i− 2)| − Θ(ei).

That is, there exists an absolute constant β such that

βei ≤ |Q(i− 2)| − |Q(i+ 2)|.

If we sum this inequality over all even i ≥ 0, the right-hand side telescopes, and we
obtain

β
∑
i

ei ≤ |Q(−2)|+ |Q(0)| − 2.

Since |Q(−2)| = n, we have
∑
i ei ≤ (2n − 2)/β. The total number of edges in the

subdivision is O(n).
Lemma 6.4. The subdivision that build-subdivision produces is strongly 1-conform

ing and satisfies the following additional properties: (1) all edges of the subdivision
are horizontal or vertical, (2) each face is either a square or a square-annulus (with
subdivided boundary), (3) each annulus has the minimum clearance property, (4) each
face has the uniform edge property, and (5) every point of V is contained in a square
face.

Proof. Strong 1-conformity is a consequence of Invariant 1, as we now show.
Condition (C1) is trivially true, since each point is initially enclosed by a square. To
establish well-covering (Condition (C2)), let I(e) be the union of the (at most six)
cells incident to an edge e. By Invariant 1, the distance from e to any edge outside or

2250 JOHN HERSHBERGER AND SUBHASH SURI

e

Fig. 6.1. A well-covering region U(e). The boundary of I(e) is shown dashed.

on the boundary of I(e) is at least |e|. Edge e may be collinear with other edges of
the two cells on whose boundary it lies. We define C(e) to be the set of cells incident
to any of these collinear edges; U(e), the union of these cells, is a superset of I(e). See
Figure 6.1. Because the two cells with e as a boundary edge meet only along edges
collinear with e, this definition of U(e) means that for any edge f on or outside the
boundary of U(e), I(f) does not contain both cells incident to e. But this implies, by
Invariant 1, that e is on or outside the boundary of I(f), and hence the distance from
e to f is at least |f |. Edge e certainly lies in the interior of U(e) (Condition (W1)).
Condition (W2) follows because C(e) is the union of I(e′) for O(1) edges e′ collinear
with e, |I(e′)| ≤ 6 for each e′, and each cell has constant complexity. As noted above,
the minimum distance between e and any edge f on or outside the boundary of U(e)
is at least max(|e|, |f |), which establishes Condition (W3′). Condition (C3) follows
from the observation that a well-covering region U(e) includes a vertex v of V if and
only if e is an edge of the square containing v. This is because each vertex-containing
square is the inner square of a square-annulus in the subdivision. No edge belongs to
two such squares, so Condition (C3) holds.

Properties (1)–(5) hold by construction. This completes the proof.

6.4. The algorithm growth(). In this subsection, we describe our algorithm
for computing growth(S) for a set of i-quads S, and prove that the number of quads
decreases every two stages by an amount proportional to the total complexity of the
complex components. Let S ⊂ Q(i) be a set of i-quads forming a complex component
under the equivalence relation ≡i. Recall that growth(S) is a minimal set of (i+ 2)-
quads such that each i-quad of S lies in the core of some (i + 2)-quad in growth(S).
We will show that

|growth(growth(S))| ≤ κ|S|,

for an absolute constant 0 < κ < 1. The pseudo-code below describes an unoptimized
version of our algorithm for computing growth(S). The algorithm works by building
a graph on the quads in S.

In this algorithm, Step 1 builds a graph whose nodes are the i-quads of S; two
quads q1 and q2 have an edge between them if their union q1 ∪ q2 lies in some 2 × 2
array of (i+ 2)-boxes. The maximum node degree of this graph is O(1) since only a

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2251

Algorithm growth(S)

0. Set growth(S) = ∅.
1. for each pair of quads q1, q2 ∈ S do

if q1 ∪ q2 can be contained in a 2× 2 array of (i+ 2)-boxes, then
Put an edge between q1 and q2.

2. Compute a maximal matching in the graph computed in Step 1.
3. for each edge (q1, q2) in the maximal matching do

Choose an (i+ 2)-quad q̄ containing q1, q2 in its core.
Set growth(q1) = growth(q2) = q̄, and add q̄ to growth(S).

4. for each unmatched quad q ∈ S do
Set growth(q) = q̄, where q̄ is an (i+ 2)-quad containing q in its core.
Add q̄ to growth(S).

constant number of i-quads can touch any i-quad q. Thus, a maximal matching in
this graph has Θ(|E|) edges. Each i-quad at stage i maps to an (i+ 2)-quad at stage
(i + 2). Since each matching edge corresponds to two i-quads that map to the same
(i+ 2)-quad, it clearly follows that

|growth(S)| = |S| −Θ(|E|).
The crucial fact to prove is that |E| is a constant fraction of |S| at stage (i+ 2).

Lemma 6.5. Let S ⊂ Q(i) be a set of two or more i-quads such that growth(S) is a
complex component under the equivalence relation ≡i+2. Then |growth(growth(S))| ≤
κ|S|, for an absolute constant 0 < κ < 1.

Proof. We show that either |growth(S)| < (3/4)|S|, or at least half of the quads
of growth(S) can be contained in a 2× 2 array of (i+ 2)-boxes with some other quad
of growth(S).

If |growth(S)| < (3/4)|S|, then we are done, because the following inequality
obviously holds: |growth(growth(S))| ≤ |growth(S)| ≤ (3/4)|S|. Therefore, suppose
that |growth(S)| ≥ (3/4)|S|. Then at least half the i-quads of S are not matched in
Step 2 of the function growth(), and their growths contribute more than half of the
(i+2)-quads of growth(S). Consider one such i-quad q ∈ S. Since S is a nonsingleton
equivalence class, there exists another i-quad q′ ∈ S that overlaps q. Let q̄ = growth(q)
and q̄′ = growth(q′). By assumption, q̄ 6= q̄′. The cores of q̄ and q̄′ both contain the
overlap region q ∩ q′, so the cores must overlap. Therefore both cores are contained
within a 3×3 array of (i+2)-boxes, and both the (i+2)-quads q̄ and q̄′ are contained
within a 5× 5 array of (i+ 2)-boxes. This ensures that q̄ and q̄′ are joined by an edge
in the graph of growth(S): any two (i+ 2)-quads whose bounding box is contained in
a 5× 5 array of (i+ 2)-boxes can be covered by a 2× 2 array of (i+ 4)-boxes. Hence
the number of edges in the maximal matching of growth(S) is Ω(|S|), which proves
the inequality |growth(growth(S))| ≤ κ|S| for some κ < 1.

Since the number of edges drawn at stage i, call it ei, is proportional to the
number of (i−2)-quads whose growths belong to complex components, the preceding
lemma establishes the earlier claim that

|Q(i+ 2)| ≤ |Q(i− 2)| − Θ(ei).

For any q, q′ ∈ S, we have growth(q) = growth(q′) only if q and q′ are touching—
their closures intersect—otherwise q and q′ cannot be contained in the core of the

2252 JOHN HERSHBERGER AND SUBHASH SURI

same (i + 2)-quad. We use this fact to implement the procedure growth(S) to run
in time O(|S| log |S|): each quad of S touches at most a constant number of other
quads, and we can compute which quads touch using an O(|S| log |S|) plane sweep
algorithm [22]. From the set of touching pairs we can compute the graph edges in
Step 1 of growth(S) in O(|S|) additional time. All other steps of growth(S) take time
proportional to the graph size, which is O(|S|).

6.5. An O(n logn) implementation of build-subdivision. In order to keep
the time complexity of build-subdivision independent of the aspect ratio of the points,
we process a simple component only when it is about to merge with another com-
ponent. In other words, the amount of processing is proportional to the number of
boundary edges drawn at any stage. Except for Step 2(b), which computes growths,
and Step 2(c), which detects overlapping i-quads, all other steps can be implemented
to run in time proportional to the number of edges drawn in the subdivision. (Steps
3 and 4 use the adjacency information computed in Step 2(c) to run in linear time.)

We maintain the simple components and the complex components of Q(i) in two
separate sets. We compute growth(S) explicitly for the complex components, but
only implicitly for the simple components. Suppose that q is a singleton component
of Q(i− 2j), and growthj(q) ∈ Q(i) is the result of applying the growth() operator j
times. If growthk(q) is simple for all positive k ≤ j, then growthj(q) can be determined
in constant time from q using the floor operation. The set of simple components of
Q(i) is maintained as a set of singletons from earlier stages; when we determine
that a simple component is about to merge with another component (Step 2(c)), we
compute the simple component explicitly. The transitive closure can be computed in
time proportional to the total size of the complex components, which is proportional
to the number of edges drawn at this stage. Since the final subdivision has size O(n),
all the work except that in Steps 2(b) and 2(c) takes a linear amount of time. In
the following we show how to use a minimum spanning tree algorithm to implement
Step 2(c) in O(n logn) time.

6.5.1. The merging of i-quads. Before we present the algorithm, we discuss
the distance properties satisfied by points that lie in the same equivalence class in
stage i. We say that a quad q is a containing i-quad of a point u ∈ V if q ∈ Q(i)
and u lies in q’s core. A point u belongs to an equivalence class S ∈ Q(i) if there is a
containing i-quad of u in S.

Lemma 6.6. Let u be a point of V and let q ∈ Q(i) be a containing i-quad of u.
Then the minimum L∞ distance between u and the outer boundary of q is 2i.

Proof. The lemma depends on the property that u lies in the core of q. Since q
has side length 2i+2, and u lies at least a quarter of this distance away from the outer
boundary, the lemma follows.

In the following, the notation d∞(u, v) denotes the distance between the points u
and v under the L∞ norm.

Lemma 6.7. Let u and v be two points of V that belong to different equivalence
classes of Q(i). Then d∞(u, v) > 2× 2i.

Proof. Let qu and qv be two containing i-quads for u and v, respectively. Since u
and v lie in different equivalence classes, these i-quads do not intersect. By Lemma 6.6,
each of the points lies at least a distance 2i away from the outer boundaries of
their i-quads, which immediately gives the lower bound on d∞(u, v) stated in the
lemma.

Lemma 6.8. Let u, v ∈ V be two points and let qu, qv, respectively, be two i-quads
of Q(i) containing them. If qu ∩ qv 6= ∅, then d∞(u, v) < 6× 2i.

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2253

Proof. By Lemma 6.6, the maximum distance between u and the outer boundary
of qu is at most 3× 2i. The same holds for v and qv, which implies the upper bound
on d∞(u, v).

6.5.2. Minimum spanning trees. Let VS be the set of points in the core of
some component S ∈ Q(i). Our implementation of build-subdivision is based on the
observation that the longest edge of the L∞ minimum spanning tree of VS has length
less than 6 × 2i. To make this observation more precise, we define G(i) to be the
graph on V containing exactly those edges whose L∞ length is at most 6 × 2i, and
define MSF (i) to be the minimum spanning forest of G(i).

Lemma 6.9. The points contained in any component of Q(i) belong to a single
tree of MSF (i).

Proof. Let S be a component of Q(i). By Lemma 6.8, the points contained in
S can be linked by a tree with edges shorter than 6 × 2i. For any bipartition of the
points of VS , the minimum weight edge linking the two subsets is shorter than 6× 2i.
The minimum spanning tree of VS has all edges shorter than 6× 2i, and therefore VS
belongs to a single tree of MSF (i).

Lemma 6.10. If i-quads q1 and q2 belong to different components of Q(i), then
their points belong to different trees of MSF (i− 2).

Proof. Every edge from a point in q1’s component to any point outside that
component has length greater than 2×2i, by Lemma 6.7. The points of quads q1 and
q2 are in the same tree of MSF (i− 2) only if every bipartition of V that separates
the points of q1 from those of q2 is bridged by an edge of length less than 6 × 2i−2.
But the bipartition separating the points of q1’s component of Q(i) from the rest of
V has bridge length greater than 2× 2i > 6× 2i−2.

Our algorithm is based on an efficient construction of MSF (i) for all i such that
MSF (i) 6= MSF (i− 2). The standard algorithm for computing a geometric minimum
spanning tree is well suited to our needs. We compute the L∞ Delaunay triangulation
of V in O(n logn) time [6], then run Kruskal’s MST algorithm [8]. Kruskal’s algorithm
inserts the O(n) Delaunay edges into the current minimum spanning forest in sorted
order from shortest to longest; any edge that joins two trees of the forest is retained,
and all other edges are dropped. For each edge e added to the forest, we compute
k = 2

⌈
1
2 log2(|e|/6)

⌉
, which determines the stage k at which e is added to MSF (k).

By stopping just before each stage change, we produce MSF (i) for each even i such
that MSF (i) 6= MSF (i− 2) in O(n logn) total time.

The implementation of build-subdivision below replaces Steps 1 and 2 of build-
subdivision with more efficient code based on minimum spanning trees. First, we
process only stages at which something happens: MSF (i) changes, or there are com-
plex components of Q(i) whose growth computation is nontrivial. (This optimization
is not usually significant; it matters only if the ratio of maximum to minimum point
separation is greater than 2n.) Second, we compute growth(S) only for complex com-
ponents and for simple components that will merge with another component soon,
and compute the equivalence classes of Q(i) only for this same set of quads. Simple
components that are well separated from others are not involved in the computation.

The running time of this algorithm is dominated by the O(k log k) required for
a plane sweep [22] of k = |Q(i, T)| quads in Step 2(c–d). There are O(k) quads
in complex components either in Q(i, T) or in Q(i + 2, T), so there are O(k) edges
drawn for these quads at stage i or i+ 2. We amortize this cost by charging O(log k)
per edge of the subdivision, getting O(n logn) time overall. The computation of the
Delaunay triangulation and the minimum spanning forest contributes a term of the

2254 JOHN HERSHBERGER AND SUBHASH SURI

Implementation of build-subdivision

For each T ∈ MSF (i), maintain the corresponding set of i-quads in Q(i) that
are the containing quads for the vertices of T . Call this set Q(i, T).

Initialize i = −2. Initialize MSF (−2) to be a forest of singleton vertices. For
each vertex v ∈ V , Q(−2, {v}) is a singleton quad with v in its core.

Maintain a set N of trees in MSF (i) such that for each T ∈ N , |Q(i, T)| > 1;
that is, T ’s component is not a singleton quad. Initialize N = ∅.
while |Q(i)| > 1 do

iold = i;
if |N | > 0 then i = i+ 2
else Set i to the smallest even i′ > i such that MSF (i′) 6= MSF (i).
foreach edge e of MSF (i) not in MSF (iold) do

Let T1 and T2 be the trees linked by e.
foreach Tx ∈ {T1, T2} do

if Tx ∈ N then
Remove Tx from N .

else
Compute the singleton (i− 2)-quad in Q(i− 2, Tx).

Join T1 and T2 to get T ′, and put T ′ in N .
Set Q(i− 2, T ′) = Q(i− 2, T1) ∪Q(i− 2, T2).

end

(∗ Invariant: if T ∈ N , then Q(i− 2, T) is correctly computed. ∗)
foreach T ∈ N do

2(a) Initialize Q(i, T) = ∅.
2(b) for each equivalence class S of Q(i− 2, T)) do

Q(i, T) = Q(i, T) ∪ growth(S).
2(c–d) Compute the equivalence classes of Q(i, T) by plane sweep.
3–4 Perform Steps 3 and 4 of build-subdivision on Q(i, T).
if |Q(i, T)| = 1 then Delete T from N .

end
endwhile

same asymptotic magnitude.

We have established the following lemma.

Lemma 6.11. Algorithm build-subdivision can be implemented to run using
O(n logn) standard operations on a real RAM, plus O(n) floor and base-2 logarithm
operations.

Lemmas 6.1, 6.3, 6.4, and 6.11 establish the main theorem of this section.

Conforming Subdivision Theorem. For any α ≥ 1, every set of n points in the
plane admits a strong α-conforming subdivision of O(αn) size satisfying the following
additional properties: (1) all edges of the subdivision are horizontal or vertical, (2)
each face is either a square or a square-annulus (with subdivided boundary), (3) each
annulus has the minimum clearance property, (4) each face has the uniform edge
property, and (5) every data point is contained in the interior of a square face. Such

EUCLIDEAN SHORTEST PATHS IN THE PLANE 2255

a subdivision can be computed in time O(αn+ n logn).

7. Extensions and concluding remarks. We have presented a worst-case
optimal algorithm for the planar, Euclidean shortest path problem. Our algorithm
uses the wavefront propagation method and builds a shortest path map, which can
be used to answer shortest path queries from a fixed source in logarithmic time.
We introduced several new ideas and techniques in order to implement the wavefront
propagation optimally. Perhaps the most original contribution of our paper is the idea
of a conforming subdivision—it is a quad-tree-like subdivision that seems especially
useful for line segments. We expect this subdivision to find other applications in
computational geometry.

Our wavefront simulation is highly “local” in the sense that all interactions among
bisectors occur within “small” regions (well-covering regions). Obviously, we still
require the bisectors to satisfy some global properties, such as the ones stated in
Lemmas 3.2 and 3.3, but the locality of processing allows our algorithm to extend to
several more general instances of the shortest path problem. These include generaliza-
tions involving the shape and number of sources. We sketch below the modifications
necessary for some of these extensions.

Nonpoint sources. When the source is not a point, but rather a more complex
geometric shape such as a line segment or a disk, then the initial wavelet originating
from the source has a more complicated form: it is the Minkowski sum of a disk and
the source. However, the intermediate generators are still just the obstacle vertices,
and they generate circular wavelets. Thus, except for initialization and propagating
the initial wavelets, the rest of the wavefront propagation algorithm does not change.
The initialization involves computing “direct” distances to all the cells that are within
a constant number of cells of the source, which can be done easily in O(n logn) time.

Multiple sources. Computing shortest paths in the presence of multiple sources
is equivalent to computing a “geodesic Voronoi diagram”: a partition of the free
space into regions so that all points in a region have the same nearest source and
the combinatorial structure of the shortest path to that source is also the same for
all points in the region. To help visualize the process, we might imagine that the
wavefront of each source has a distinct color; in the end, the region claimed by each
source acquires the color of its source.

During the initialization, we compute direct distances between each source and the
corners of its well-covering regions; if well-covering regions overlap, we use the Voronoi
diagram of the sources to decide which corner is closer to which source. Again, this
can be done in O(n logn) time initially. We maintain a common priority queue for all
the sources, and as each obstacle vertex is claimed, it acquires the color of its claiming
source. Knowing the color of each generator helps us determine whether a bisector
is bounding two regions belonging to the same source or two different sources. In
all other respects, the processing of bisectors in cells is the same as in the original
algorithm.

Other generalizations. The ideas mentioned above also work for multiple
sources with specified release times. In particular, each source has associated with it
an initial “delay” and its wavelet is issued after the specified delay. The delays are
easily handled by our algorithm: just add the delay time of each source to its initial
priority queue entries. The rest of the algorithm proceeds as before.

Open problems. Finally, we conclude with two open problems.

2256 JOHN HERSHBERGER AND SUBHASH SURI

1. Can the space complexity of our algorithm be reduced to linear?
2. Does our wavefront propagation method extend to the shortest path problem

on the surface of a convex polytope?

Acknowledgment. We are grateful to an anonymous referee for a thoughtful
and thorough review; the referee’s suggestions significantly improved the presentation
of our results.

REFERENCES

[1] T. Asano, An efficient algorithm for finding the visibility polygons for a polygonal region with
holes, Trans. IECE Japan, E-68 (1985), pp. 557–559.

[2] T. Asano, L. Guibas, J. Hershberger, and H. Imai, Visibility of disjoint polygons, Algorith-
mica, 1 (1986), pp. 49–63.

[3] M. Bern, D. Eppstein, and J. R. Gilbert, Provably good mesh generation, in Proceedings
of the 31st IEEE Symposium on Foundations of Computer Science, St. Louis, MO, 1990,
pp. 231–241.

[4] B. Chazelle, A theorem on polygon cutting with applications, in Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, Chicago, IL, 1982, pp. 339–349.

[5] L. P. Chew, There are planar graphs almost as good as the complete graph, J. Comput. System
Sci., 39 (1989), pp. 205–219.

[6] L. P. Chew and R. L. Drysdale, Voronoi diagrams based on convex distance functions, in
Proceedings of the ACM Symposium on Computational Geometry, Baltimore, MD, 1985,
pp. 235–244.

[7] K. L. Clarkson, Approximation algorithms for shortest path motion planning, in Proceedings
of the 19th ACM Symposium on Theory of Computing, New York, NY, 1987, pp. 56–65.

[8] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1993.

[9] E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[10] H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone sub-
division, SIAM J. Comput., 15 (1986), pp. 317–340.

[11] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network optimization
algorithms, J. ACM, 34 (1987), pp. 596–615.

[12] S. K. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs,
SIAM J. Comput., 20 (1991), pp. 888–910.

[13] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear time algorithms
for visibility and shortest path problems inside triangulated simple polygons, Algorithmica,
2 (1987), pp. 209–233.

[14] J. Hershberger and J. Snoeyink, Computing minimum length paths of a given homotopy
class, Comput. Geom., 4 (1994), pp. 63–97.

[15] S. Kapoor and S. N. Maheshwari, Efficient algorithms for Euclidean shortest paths and
visibility problems with polygonal obstacles, in Proceedings of the 4th ACM Symposium on
Computational Geometry, Urbana-Champaign, IL, 1988, pp. 172–182.

[16] D. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput., 12 (1983), pp. 28–
35.

[17] D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear bar-
riers, Networks, 14 (1984), pp. 393–410.

[18] J. S. B. Mitchell, A new algorithm for shortest paths among obstacles in the plane, Ann.
Math. Artificial Intelligence, 3 (1991), pp. 83–106.

[19] J. S. B. Mitchell, Shortest paths among obstacles in the plane, Internat. J. Comput. Geom.
Appl., 6 (1996), pp. 309–332.

[20] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem,
SIAM J. Comput., 16 (1987), pp. 647–668.

[21] M. H. Overmars and E. Welzl, New methods for computing visibility graphs, in Proceedings
of the 4th ACM Symposium on Computational Geometry, Urbana-Champaign, IL, 1988,
pp. 164–171.

[22] F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.

[23] J. Reif and J. Storer, Shortest paths in the plane with polygonal obstacles, J. ACM, 41
(1994), pp. 982–1012.

[24] H. Rohnert, Shortest paths in the plane with convex polygonal obstacles, Inform. Process.
Lett., 23 (1986), pp. 71–76.

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON THE
NNJAG MODEL∗

JEFF EDMONDS† , CHUNG KEUNG POON‡ , AND DIMITRIS ACHLIOPTAS§

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2257–2284

Abstract. Directed st-connectivity is the problem of deciding whether or not there exists a
path from a distinguished node s to a distinguished node t in a directed graph. We prove a time–
space lower bound on the probabilistic NNJAG model of Poon [Proc. 34th Annual Symposium on
Foundations of Computer Science, Palo Alto, CA, 1993, pp. 218–227]. Let n be the number of
nodes in the input graph and S and T be the space and time used by the NNJAG, respectively. We

show that, for any δ > 0, if an NNJAG uses space S ∈ O(n1−δ), then T ∈ 2Ω(log2(n/S)); otherwise

T ∈ 2Ω(log2(
n logn
S

)/ log logn) × (nS/ logn)1/2. (In a preliminary version of this paper by Edmonds
and Poon [Proc. 27th Annual ACM Symposium on Theory of Computing, Las Vegas, NV, 1995, pp.

147–156.], a lower bound of T ∈ 2Ω(log2(
n logn
S

)/ log logn) × (nS/ logn)1/2 was proved.) Our result
greatly improves the previous lower bound of ST ∈ Ω(n2/ logn) on the JAG model by Barnes and
Edmonds [Proc. 34th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, 1993,
pp. 228–237] and that of S1/3T ∈ Ω(n4/3) on the NNJAG model by Edmonds [Time-Space Lower
Bounds for Undirected and Directed ST-Connectivity on JAG Models, Ph.D. thesis, University of
Toronto, Toronto, ON, Canada, 1993]. Our lower bound is tight for S ∈ O(n1−δ), for any δ > 0,
matching the upper bound of Barnes et al.[Proc. 7th Annual IEEE Conference on Structure in
Complexity Theory, Boston, MA, 1992, pp. 27–33]. As a corollary of this improved lower bound, we
obtain the first tight space lower bound of Ω(log2 n) on the NNJAG model. No tight space lower
bound was previously known even for the more restricted JAG model.

Key words. lower bounds, space–time tradeoffs, space complexity, connectivity

AMS subject classifications. 68Q15, 68Q25, 68R10, 05C20, 05C40

PII. S0097539795295948

1. Introduction. The st-connectivity problem (stcon) is a fundamental prob-
lem in computer science, as it is the natural abstraction of many search processes.
Its space and time–space complexities are of special interest because there are many
applications such as game searching, program verification, and databases in which the
size of the input graph is too large compared to the size of the internal memory of a
machine. In these applications algorithms that run in small space, and preferably in
small time simultaneously, are required. Stcon is also important in computational
complexity theory because it is complete for NSPACE(logn) under logarithmic space
reductions. Both stcon and the corresponding problem for undirected graphs, ust-
con, are hard for DSPACE(logn) since any problem solvable deterministically in log-
arithmic space can be reduced to either problem. (See Lewis and Papadimitriou [22]
and Savitch [28].) Thus, showing that there is no deterministic logarithmic space algo-
rithm for stcon that would separate the classes DSPACE(logn) and NSPACE(logn),

∗Received by the editors December 13, 1995; accepted for publication (in revised form) June 2,
1997; published electronically August 3, 1999.

http://www.siam.org/journals/sicomp/28-6/29594.html
†Department of Computer Science, York University, Toronto, ON M3J 1P3, Canada

(jeff@cs.yorku.ca). A major portion of this work was done while the author was at the Interna-
tional Computer Science Institute, Berkeley, CA.
‡Department of Computer Science, City University of Hong Kong, Hong Kong. This work was

partially supported by Texas Advanced Research Projects Grant 003658386. A major portion of
it was done while the author was at the Deptartment of Computer Science, University of Toronto,
Canada (ckpoon@cs.cityu.edu.hk).
§Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada (op-

tas@cs.toronto.edu).

2257

2258 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

while devising such an algorithm would prove that DSPACE(f(n)) = NSPACE(f(n))
for any space-constructible function f(n) ∈ Ω(logn) [28]. Stcon is also a candidate
problem for separating the classes of SC and NC [20]. Below we mention the pre-
vious works that are most relevant to our paper. For more information on graph
connectivity, we refer the reader to the beautiful survey paper by Wigderson [31].

1.1. Previous work. The most commonly used algorithms for st-connectivity,
breadth- and depth-first search run in optimal time O(m+n) and use O(n logn) space.
At the other extreme, Savitch [28] provided an algorithm that usesO(log2 n) space and
requires time exponential in its space bound (i.e., time nO(log n)). Tompa [30] showed
that stcon cannot be solved in polynomial time and sublinear space simultaneously
by the repeated squaring method. However, Barnes et al. [3] gave a polynomial time

algorithm for stcon that uses space S ∈ n/2Θ(
√

log n), providing the first polynomial
time, sublinear space algorithm. This shows that the repeated squaring method is
too restricted. In fact, their algorithm implies a general time–space upper bound of

T ∈ 2O(log2(n logn
S)) × n3 for S ∈ Ω(log2 n).

A natural question is whether the upper bounds of Savitch and Barnes et al.
are tight. Unfortunately, proving nontrivial lower bounds for natural decision prob-
lems on any general model of computation, such as Turing machines and branching
programs, appears to be beyond the reach of current techniques. Thus, it is nat-
ural to consider structured computational models [12] whose basic operations are
based on the structure of the input, as opposed to being based on the bits in the
input’s encoding. A natural structured model for stcon is the “jumping automa-
ton for graphs,” or JAG, introduced by Cook and Rackoff [13]. A JAG moves a set
of pebbles on the graph. There are two basic operations—moving a pebble along
a directed edge in the graph and jumping a pebble from its current location to the
node occupied by another pebble. Although the JAG model is structured, it is pow-
erful enough to simulate most known algorithms for stcon and related problems.
For example, depth-first and breadth-first search, random walks [1], and the algo-
rithms of Savitch and Barnes et al. can all be simulated on a JAG (see [13, 27]). To
our kowledge, all known deterministic or probabilistic algorithms for directed stcon
are implementable on a JAG. However, it is not clear how a nondeterministic JAG
can simulate Immerman’s and Szelepcsényi’s O(logn)-space algorithm for directed
st-nonconnectivity (stcon) [19, 29]. This motivated Poon [26] to introduce the more
general node-named JAG (NNJAG) model, an extension of the JAG, where the com-
putation is allowed to depend on the names of the nodes on which the pebbles are
located. Using this added power, Poon [26] showed how to simulate the Immerman/
Szelepcsényi algorithm on a nondeterministic NNJAG.

Cook and Rackoff [13] proved a lower bound of Ω(log2 n/ log logn) on the space
required for a JAG to compute stcon. Within the log logn factor, this is tight with
Savitch’s algorithm. Berman and Simon [7] extended this result to the probabilis-
tic JAG model. More precisely, they showed that any probabilistic JAG that solves

stcon within 2logO(1) n expected time requires Ω(log2 n/ log logn) space. Their prob-
abilistic JAG is allowed to flip a coin in each step and is able to solve stcon with
1-sided error, using O(logn) space and O(nn) expected time (see Gill [18]). In the
following, we will refer to such a probabilistic machine as a coin-flipping machine.

Poon [26] further generalized the bound, showing that S ∈ Ω(log2 n
log log n+log log T) for any

coin-flipping probabilistic NNJAG with space S and expected time T .

Regarding the time–space tradeoff, there are many lower bounds proved for ust-

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2259

con on various weaker variants of the JAG model [6, 11, 13]. Edmonds [15] was
the first to prove a time–space lower bound for ustcon on the regular JAG model
(with bounded space). All these results apply to (directed) stcon, which contains
ustcon as a special case. However, ustcon appears to be easier than stcon both
in terms of space and time–space complexity. For example, Nisan, Szemerédi, and
Wigderson [24] showed that ustcon can be solved in O(log1.5 n) space on a deter-
ministic Turing machine. There is also a randomized O(logn) space, polynomial time
algorithm (by Aleliunas et al. [1]) and a deterministic O(log2 n) space, polynomial
time algorithm (by Nisan [23]) for this problem. Although it is not known whether
the algorithms in [24, 23] can be simulated on a JAG or NNJAG, ustcon can in-
deed be solved in O(logn) space and polynomial time on a JAG due to the existence
of polynomial length universal traversal sequences [1]. Thus, one cannot hope to
get superpolynomial time lower bounds for stcon by establishing similar bounds for
ustcon.

The first nontrivial lower bound explicitly for stcon was given by Barnes and
Edmonds [4]. They showed that ST ∈ Ω(n2/ logn) on the JAG model. In fact their
result was proved on a more powerful variant of JAG called many states, big step JAG
which, unlike an ordinary JAG, is capable of traversing trees in O(logn) space. Using
a proof technique completely different from [4], Edmonds [14] showed that S1/3T ∈
Ω(n4/3) on the NNJAG model. These results still do not yield superpolynomial lower
bounds on time no matter how small S is. In view of this large gap between the
upper and lower bounds and the fact that the Barnes et al. algorithm was obtained
by combining several rather simple ideas, it seemed that further improvements to the
upper bound were quite possible.

1.2. New results. Rather surprisingly, in a preliminary version of this paper by

Edmonds and Poon [16], a lower bound of T ∈ 2Ω(log2(n logn
S)/ log log n)× (nS/ logn)1/2

is obtained. This implies that superpolynomial running time is necessary to solve

the problem whenever S is smaller than (n logn)/2ω(
√

log n·log log n). The bound also

nearly matches the upper bound of T ∈ 2O(log2(n logn
S))×n3 (which is superpolynomial

for S ∈ (n logn)/2ω(
√

log n)) by Barnes et al. [3]. Here, by a more careful choice of
parameters and a tighter analysis, we prove that for any δ > 0, a probabilistic NNJAG
with 2-sided error, using space S ∈ O(n1−δ), requires expected time T ∈ 2Ω(log2(n/S)),
matching the upper bound of [3].

In this paper, we define an S-space probabilistic NNJAG as a distribution of S-
space deterministic NNJAGs. Hence, the probabilistic NNJAG must use time T ∈
2O(S) or else it will cycle. From this fact and the time–space tradeoff, we obtain
the first tight space lower bound of Ω(log2 n) on a probabilistic NNJAG with 2-sided
error. No tight space lower bound was previously known even for the more restricted
JAG model. However, a coin-flipping probabilistic JAG or NNJAG (as defined in

[7, 26]) can run usefully for up to 22O(S)

expected time. As mentioned before, it can
solve stcon with O(logn) space and O(nn) expected time. Thus, one can prove
only a time–space lower bound on this coin-flipping model. Since a coin-flipping
probabilistic NNJAG with space S and time T can be simulated on our probabilistic
NNJAG, using time T and space S + log T , our result is valid on the coin-flipping
model for S ∈ Ω(log2 n) (since log T ∈ O(S)). For space S ∈ O(log2 n), our result

still implies a lower bound of T ∈ 2Ω(log2 n) on the coin-flipping model. However, for

S ∈ O(log2 n
log log n), Poon [26] gives a stronger lower bound of T ∈ 2(2Ω(log2 n/S)). For

example, when S ∈ O(logn), his result implies that T ∈ 2n
c

for some constant c > 0.

2260 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

This paper borrows a lot of techniques from [14]. The bound is proved for the
probabilistic NNJAG model by transforming the machine into a structured branching
program, and applying a progress argument introduced by Borodin et al. [10] and
also used in many proofs of time–space trade-off lower bounds, including [8, 5, 9, 33].
Roughly, the argument is that for every short path of the computation, the probability
that lots of progress is made, conditional on the fact that this computation path
is followed, is less than 2−S . (With space S there are at most 2S different such
subcomputations.) Our proof, however, is complicated by the fact that this is not
true for some “lucky” computation paths, and hence a number of new techniques are
required to overcome this. In addition, the argument is applied recursively, yielding a
substantially greater lower bound than would be possible without recursion. We note
that similar recursive techniques have also been used in [13, 7, 33, 15, 26].

1.3. Organization of this paper. We first define the NNJAG model in section
2. In section 3, we give the statement of our main result and its corollaries. In sections
4 and 5, we describe the families of graphs used to defeat the NNJAG. In section 6,
we define a notion of progress for an NNJAG on such families of graphs. In section 7,
we enhance and stylize the NNJAG model to simplify our proof. Sections 8 through
12 contain the technical proof of the lower bound. Section 8 contains the proof of
an inductive statement, Lemma 8.3, from which our main result follows. The proof
makes forward references to Lemmas 8.1 and 8.2, which are proved in sections 10
through 12 and section 9, respectively. Section 13 gives the conclusion and some open
problems.

2. The NNJAG model. A (deterministic) NNJAG [26] J is a finite state au-
tomaton with p distinguishable pebbles, q states, and a transition function ∆. The
transition function ∆ can depend nonuniformly on the size n of the input graph, and
the values of p, q can be functions of n. The input to J is a triple (G, s, t), where G
is an n-node graph containing nodes s and t. For every node in G, its out-edges are
labeled with consecutive integers starting at 0. The nodes in G are also labeled from
0 to n−1. We define the instantaneous description (id) of J as the pair (Q,Π), where
Q is the current state and Π is a mapping of pebbles to nodes, specifying the current
location of each pebble in the graph. When J is in id (Q,Π), the transition function
∆ determines the next move for J based on (1) the state Q and (2) the mapping Π.
A move is either a walk or a jump. A walk (P, i,Q′) consists of moving pebble P
along the edge labeled i that comes out of the node Π(P) and then assuming state
Q′. (If there is no such edge, the pebble just remains on the same node.) A jump
(P, P ′, Q′) consists of moving pebble P to the node Π(P ′) and then assuming state
Q′. The NNJAG J is initialized to state Q0 with all its pebbles on node s. It is said
to accept an input (G, s, t) if it enters an accepting state on this input. An NNJAG
solves stcon for n-node graphs if for every input (G, s, t), where G is an n-node di-
rected graph, it accepts the input if and only if there is a directed path from s to t in
G. We define the space used by the NNJAG as p logn+ log q, i.e., as the number of
bits needed to specify an id. The time used is the number of moves it has made. For
simplicity, we assume that the labels of nodes s and t are always fixed (say, as 0 and
n− 1, respectively). Hence, s and t are not part of the input.

A probabilistic NNJAG J is defined as a distribution on deterministic NNJAGs.
On a given input, it first chooses probabilistically a deterministic NNJAG from the
distribution and then runs this deterministic NNJAG on the input. The space used
is taken as the maximum over all the deterministic NNJAGs in the distribution and
the expected (worst case) time is the expected (worst case) running time over the

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2261

distribution. We say that J solves stcon with 2-sided error if for every input (G, s, t)
the probability of J entering an accepting state is at least 3/4 when there is a path
from node s to t and is at most 1/4 otherwise.

3. Statement of results. Our main result is the following.
Theorem 3.1. If J is a probabilistic NNJAG that solves stcon on n-node

graphs while taking expected time T and using space S, then T ∈ 2Ω(log2(n/S)) when

S ∈ O(n1−δ), where δ > 0 and T ∈ 2Ω(log2(n logn
S)/ log log n)× (nS/ logn)1/2 otherwise.

The proof of Theorem 3.1 follows by applying Yao’s lemma [32] to the following
theorem.

Theorem 3.2. For any δ, ε > 0 there is a distribution D on n-node graphs such
that

1. PrG∈D [G ∈ stcon] = 1/2, and
2. for any deterministic NNJAG, using space S ∈ O(n1−δ) and (worst case)

time T 6∈ 2Ω(log2(n/S)), or S ∈ ω(n1−δ) and T /∈ 2Ω(log2(n logn
S)/ log log n)) ×

(nS/ logn)1/2,

PrG∈D[J is correct on input G] <
1

2
+ 2ε.

Proof of Theorem 3.1. Theorem 3 of [32] states that for any randomized algo-
rithm J that has probability of error at most λ and any input distribution D, the
expected time of J on the worst case input is at least half the average time of the best
deterministic algorithm that errs with probability at most 2λ on random input chosen
from D. By Theorem 3.2, the latter quantity is at least T × (1− 2λ− 1

2 − 2ε), where

T ∈ 2Ω(log2(n/S)) for S ∈ O(n1−δ) and T ∈ 2Ω(log2(n logn
S)/ log log n) × (nS/ logn)1/2

otherwise. Putting λ as some constant less than 1
4 − ε and since S ∈ O(n1−δ) for

some δ > 0, we get the required lower bound on a probabilistic NNJAG that errs with
probability at most λ.

Theorem 3.2 is strong enough to yield an optimal space lower bound for the
deterministic NNJAG model, as an immediate corollary.

Corollary 1. Any probabilistic NNJAG that solves stcon requires Ω(log2 n)
space.

Proof. Once the deterministic NNJAG to be used is chosen from the distribution,
the probabilistic NNJAG becomes deterministic. Hence, while using space at most S,
the NNJAG cannot take more than 2O(S) steps without going into an infinite loop.
If an NNJAG J uses space S /∈ Ω(log2 n), then for sufficiently large n the number
of steps it can take is smaller than the lower bound implied by Theorem 3.2 and the
result follows.

4. Layered graphs. From now on, we let δ be a fixed positive constant. A
(d, x, f)-layered graph, first defined in [4], is a graph consisting of d layers, each con-
taining x nodes. The jth node in layer i is denoted by (and named) u〈i,j〉. (Hence,
the NNJAG always knows the location of a pebble in terms of i, j.) Every node has
at most f outgoing edges to some (not necessarily distinct) nodes in the next layer.
Here, we will set f = Θ((n logn/S)1/2) for S ∈ O(n1−δ) and f = 2 otherwise.

Let D = d80 logn/ log fe (so that fD ≥ n80). Note that D is constant with
respect to n if S ∈ O(n1−δ) and D ∈ Θ(logn) otherwise. The distribution B(x)
is a distribution on (D,x, f)-layered graphs. Each graph G ∈ B(x) will have x/2
hard paths (to be defined shortly) of length D and is obtained as follows. In each
layer i, except the top layer, we pick (without replacement) a sequence of x/2 nodes,

2262 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

uniformly at random. Let us denote the jth node picked as v〈i,j〉. (It is the node
u〈i,j′〉 for some j′.) These nodes are called the hard nodes. The remaining x/2 nodes
in that layer are called the easy nodes. For layer 1, we choose the sequence of nodes
u〈1,1〉, u〈1,2〉, . . . , u〈1,x/2〉 as the sequence of hard nodes. We shall put in edges so that
if an NNJAG walks a pebble D − 1 steps starting from a hard node in the top layer,
then it is difficult for the pebble to be on a hard node when it reaches layer D.

First, the hard nodes are connected by the edges (v〈i,j〉, v〈i+1,j〉) for each i ∈
[1 . . . D − 1] and each j ∈ [1..x/2]. The path from v〈1,j〉 to v〈D,j〉 is called the jth
hard path. The nodes v〈1,j〉 and v〈D,j〉 are called the root and goal of the jth hard
path, respectively. Thus, there are x/2 hard paths, roots, and goals in G. The edge
labels are chosen independently and uniformly from [0 . . . f−1]. Thus, for each root r

the vector of edge labels on the hard path rooted at r, denoted ~̀r, is chosen uniformly
at random from [0..f − 1]D−1.

For each layer i ∈ [1..D−1], each hard node v〈i,j〉 will have further f−1 outgoing
edges, and each easy node will have f outgoing edges. The destinations of these edges
are chosen independently (with replacement) at random from the set of easy nodes in
layer i+ 1. In this way, the in-degree of each hard node is kept to 1.

5. Recursively layered graphs. Set χ = Θ((n
3S

log n)1/4) for S ∈ O(n1−δ) and

χ = Θ((nS
log n)1/2) otherwise. Set K = b log(n/(4χ))

log 2D c. Thus, K ∈ Θ(log(n log n
S)) for

S ∈ O(n1−δ) and K ∈ Θ(log(n log n
S)/ log logn) otherwise. Moreover, K ≤ logn since

S ≥ logn. We first construct, recursively, K + 1 distributions H0,H1, . . . ,HK on
layered graphs, where Hk is a distribution on (Dk, 2kχ, f)-layered graphs. Each such
graph has χ super goals. In addition, for k > 0, each graph in Hk has Dk−12k−1χ

hard paths of length D, each one with a goal. Our input distribution D of n-node
graphs in Theorem 3.2 is formed by adding a few nodes and edges to each graph in
HK .

The distribution H0 contains only one graph, which is simply a layer of χ isolated
nodes. These nodes are the super goals. For k > 0, a graph G in Hk is formed as
follows. We choose a graph G′ from Hk−1 and replace each layer i of G′ with a graph
Gi chosen from B(2kχ). Note that each Gi has 2kχ/2 = 2k−1χ hard paths and that
each layer of G′ has the same number of nodes. We identify the jth hard path of Gi
(i.e., the path from v〈1,j〉 to v〈D,j〉 of Gi) with the jth node in layer i (i.e., u〈i,j〉) of
G′. Every edge that goes into u〈i,j〉 of G′ will now go into v〈1,j〉 of Gi, and every edge
that goes out of u〈i,j〉 of G′ will go out of v〈D,j〉 of Gi. The easy nodes in Gi are not
connected to any node outside Gi.

Since G is uniquely determined by G′ and G1, . . . , GDk−1 (and viceversa), we often
denote G as a tuple 〈G1, G2, . . . , GDk−1 ;G′〉. The graph G′ is called the collapsed
graph of G, denoted C(G). The set of hard paths (respectively, roots and goals)
of G is the union of all the sets of hard paths (respectively, roots and goals) in
G1, G2, . . . , GDk−1 . Hence, G has Dk−12k−1χ hard paths (and the same number of
roots and goals) in total. The χ super goal nodes in G are the goal nodes of the χ

hard paths in GDk−1 , representing the χ super goal nodes in G′ ∈ Hk−1. Note that
the super goals are on the bottom level of G and are associated with the χ nodes in
the graph from H0. The edges within each of the Gis are called the base edges of G.
The other edges, i.e., those connecting the Gis, are in one-to-one correspondence with
the edges in the collapsed graph C(G) of G, and hence they are called the collapsed
edges. Note that graphs in H1 have base edges but not collapsed edges, and the graph
in H0 does not have any edge at all.

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2263

Fig. 1. An example: f = 2.

Figure 1 shows a graph G ∈ Hk on the right and its collapsed graph C(G) ∈ Hk−1

and the symbol for a base graph in B(2kχ) on the left. We rearranged the nodes so
that all the hard nodes in the Gi’s appear on the left half.

For each k ∈ [0..K], we obtain a distribution Gk by adding to each graph in Hk
the following auxiliary nodes and edges (see Figure 2):

(A1) a directed path (s = w1, w2, . . . , w2kχ) with w1 = s and, for each j ∈ [1..2kχ],
an edge from wj to u〈1,j〉 of G;

(A2) the isolated node t;
(A3) a special isolated node, referred to as the lost node;
(A4) a number of isolated nodes so that the total number of nodes in the graph is

exactly n.
The lost node is introduced for technical reasons that will become clear in section

7. These auxiliary nodes and edges are fixed for each graph G ∈ Gk. Hence, for k > 0,
G can still be specified by a tuple 〈G1, G2, . . . , GDk−1 ;G′〉, where G1, . . . , GDk−1 are in
B(2kχ) and G′ is in Hk. The collapsed graph of G, denoted by C(G), is the graph G′

augmented with the auxiliary nodes and edges needed to form a graph in Gk−1 from a
graph in Hk−1. Thus, C(G) is in Gk−1. Note that, excluding the nodes added in (A4),
each graph in Gk consists of a (Dk, 2kχ, f)-layered graph, a path with 2kχ nodes, the
node t and the lost node. These add up to a total of (2D)kχ + 2kχ + 2 ≤ 4(2D)kχ

≤ n nodes for k ≤ K by our choice of χ and K. Hence, we are not adding a negative
number of nodes in (A4). Finally, the distribution D of Theorem 3.2 is defined as
follows. First choose a graph G′ ∈ GK and then uniformly at random choose one of
the χ super goals in G′ as the special node. With probability 1/2 connect the special
node to the isolated node t to form a graph G. Clearly, PrG∈D [G ∈ stcon] = 1/2.

6. Defining progress. Consider the computation of an NNJAG J on input G.
We will analyze the progress of J during different phases of the computation. In the
following definition, a subcomputation A refers to a sequence of moves taken by the

2264 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

Fig. 2. A graph in Gk.

NNJAG, starting from certain id (Q,Π). Once we recast an NNJAG as a branching
program in section 7, one can think of A as a subbranching program.

Definition 1. For any subcomputation A and any input G ∈ Gk, wA(G) is the
number of different goals in G that were pebbled (i.e., reached by a pebble) at any
time during A. Similarly, w∗A(G) is the number of super goals in G that were pebbled
during A.

Note that when A begins, some pebbles may already be sitting on a goal node.
These goals will be counted as progress in wA(G). However, there can be at most
S/ logn such progress. The following lemma shows why reaching the other goals is
difficult for an NNJAG.

Lemma 6.1. If at some step T ′ a particular hard path does not contain any pebble
and at some later step T ′′ a pebble arrives at the goal of this path, then each edge in
that path must be traversed by some pebble between step T ′ and T ′′.

Proof. Observe that every node on a hard path has in-degree 1 and that in the
NNJAG model a pebble can arrive at a node only if the node is already occupied by
some pebble or if it walks to the node.

We point out that it is not necessary for a general computation model to find out
the hard path before it can inspect the edge connections of the associated goal node.
This is the only significant difference between a general model and an NNJAG model
that we will employ in our proof.

Recall that an input G = 〈G1, . . . , GDk−1 ;G′〉 ∈ Gk consists of the collapsed graph
G′ ∈ Gk−1 and the base graphs G1, . . . , GDk−1 ∈ B(2kχ). The NNJAG has to learn
both the structure of the base graphs and that of the collapsed graph. Obviously,
wA(G) measures how much A has learned about the base graphs. The following
lemma shows that wA(G) is also a good estimate of the number of different collapsed
edges traversed during a subcomputation A.

Lemma 6.2. The number of different collapsed edges of an input graph G ∈ Gk
that can be traversed during a subcomputation A of an NNJAG is at most f×wA(G).

Proof. An NNJAG can traverse an edge (u, v) only if there is a pebble on node
u before the traversal. If the edge is a collapsed edge, u must be a goal. Since every
goal has out-degree at most f , pebbling one such node allows the NNJAG to traverse

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2265

at most f different collapsed edges.
Lemma 8.3, to follow, uses Lemmas 6.1 and 6.2 recursively to prove that it is hard

for an NNJAG to reach the χ super goal nodes. Roughly speaking, the argument goes
as follows. Suppose we have proved that it is hard to visit the super goals of graphs
chosen from Gk−1 within time Tk−1. Consider a graph G = 〈G1, . . . , GDk−1 ;G′〉 in Gk
and an NNJAG J with time Tk. We will prove, using Lemma 6.1, that for any input
G′ ∈ Gk−1, it is hard for J to visit many goals in the graphs G1, . . . , GDk−1 ∈ B(2kχ)
within time Tk. In particular, Lemma 6.2 implies that no more than Tk−1 different
edges in G′ are traversed. To conclude the argument, we show that J is effectively
an NNJAG trying to reach, within time Tk−1, the super goals for graphs chosen from
Gk−1, which is difficult by the inductive assumption.

It should be pointed out that J can traverse the same edge many times (which
is natural, since J cannot remember the result of too many edge traversals with
limited space). Therefore, we cannot directly claim that J runs in Tk−1 time on
inputs from Gk−1. For this reason, we measure the time of an NNJAG using the
s-height, hA(), of the corresponding branching program A. Precise definitions of s-
height will be given in section 7. Here, we just state that an NNJAG running in
time T will have hA(G) ≤ T for any G. Thus Lemma 8.3 will imply that if J

is an NNJAG that uses space S ∈ O(n1−δ) and time T /∈ 2Ω(log2(n/S)) or space

S ∈ ω(n1−δ) and time T /∈ 2Ω(log2(n logn
S)/ log log n)× (nS/ logn)1/2, then for any ε > 0,

PrG∈D [w∗J(G) > εχ] < ε. Below we show how Theorem 3.2 follows from this last
statement.

Proof of Theorem 3.2. Choose G ∈ D. Recall that this can be done by choosing
Ga ∈ GK and then choosing one of its χ super goals to be special, uniformly at
random. Let Gb be the same as Ga except with an edge from the special node to t.
Then G is uniformly chosen to be Ga or Gb. If Ga is such that w∗J(Ga) > εχ, i.e., J
reaches a lot of super goals, then assume that J gives the correct answer on G. From
Lemma 8.3, the probability of this event is less than ε. If J pebbles at most εχ super
goals, then the probability that J pebbles the special node is at most ε because the
NNJAG cannot tell that a super goal is special unless it pebbles the node. Finally,
if J does not pebble the special node it cannot learn whether there is an edge from
the special node to t. Therefore, in this case, the computations on Ga and Gb are the
same and hence the probability of giving the correct answer for G is 1/2. Thus, the
probability of giving the right answer for G is less than 1/2 + 2ε.

7. An NNJAG as a branching program. We will introduce a variant of the
NNJAG model which we call the pebble location redundant NNJAG model. The reason
is that while the new model maintains all the power of an NNJAG it helps us prove a
collapsing lemma. In particular, we shall show that it is helpful to construct a pebble
location redundant NNJAG J ′ for graphs in Gk−1 from a pebble location redundant
NNJAG J for graphs in Gk. We call this the “collapsing” of J to J ′.

An NNJAG is said to be pebble location redundant if the current state always de-
termines the current location of all the pebbles and, hence, the state alone is sufficient
to specify the id of the NNJAG. More formally, this means that there is a function
Π̂ such that if the NNJAG is in state Q, then Π̂(Q) specifies the locations of all the
pebbles. As a first step in getting a pebble location redundant NNJAG, we enhance
a standard NNJAG as follows. First, we allow it to jump a pebble to the lost node
(which is isolated), and for any j ∈ [1..2kχ] to the nodes wj and u〈1,j〉. We call such
a jump a node-jump. Note that in the standard NNJAG model a pebble can jump
only to (the node occupied already by) another pebble. Also, we modify a step to be

2266 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

taken from an id (Q,Π) by the NNJAG to consist of the following substeps.

Substep 1. Based on (Q,Π), either it walks a pebble P along the edge with a specified
label `, or it node-jumps a pebble P . It can also choose not to move any pebble. Let
Π1 specify the new pebble locations.

Substep 2. Based on (Q,Π) and Π1, it performs a (possibly empty) sequence of
pebble-to-pebble jumps and then assumes some state Q′.
The intuition supporting these modifications is that a sequence of moves of a standard
NNJAG can be viewed as a sequence of “macro steps,” each of which starts with a
walk, followed by a (possibly empty) sequence of jumps. Each such jump causes the
standard NNJAG to enter a unique next id. Intuitively, the NNJAG “learns” about
the input only by taking walking steps. Each macro step can be performed in one
step in the enhanced model. It follows that a time lower bound on this new model
implies the same lower bound on the number of walking steps on the original model.
For any NNJAG J (modified as above) with p pebbles, q states, and T time, we can
construct a pebble location redundant NNJAG J ′ so that for any possible id (Q,Π)
of J , J ′ will have a state 〈Q,Π〉. In this state, J ′ will perform the same action as
J does on id (Q,Π).1 Thus, the pebble location redundant NNJAG J ′ will have p
pebbles and q × np states; hence using space log(q × np) + p logn = log q + 2p logn,
which is at most twice the space of J . Moreover, it uses no more time than J .

To be able to discuss subcomputations of the NNJAG better, it is convenient to
recast the NNJAG as an r-way branching program [8] (defined below). Although an
r-way branching program is a general model of computation, the branching program
we will examine has “structure” imposed by Lemmas 6.1 and 6.2 regarding NNJAG
computations.

A branching program is a directed acyclic graph with a designated source node
and a number of sink nodes. Each sink node in the graph is labeled with either accept
or reject and each nonsink node is labeled with an input variable. Furthermore, for
each possible value of the input variable that labels a nonsink node, there is a unique
out-edge from this nonsink node, labeled with that value. Hence, the out-degree of
the graph is at most r, where r is the maximum number of different values possible
for an input variable. A subbranching program is simply a subgraph rooted at some
node.

The nodes in this graph represent the possible states of the machine’s memory.
In particular, the source node represents the initial memory state. In each step the
machine queries an input variable, depending on the current state of its memory,
and then changes its memory to another state based on the value returned. Which
variable to query and which state to go to, on each possible outcome, are specified
by the graph. It is easy to see that for every input, there will be a unique path in
the graph from the source node to a sink node. We call such a path the computation
path followed by the input. We say that a branching program accepts an input if and
only if the computation path followed by the input leads to a sink node labeled with
accept.

Consider an arbitrary (pebble location redundant) NNJAG J that uses space S,
takes time T , and takes inputs from a distribution of n-node graphs with out-degree

1Note that in general, a standard NNJAG cannot be made pebble location redundant because, if
the move taken from an id (Q1,Π1) is a walk, the new pebble location, Π2, will depend on the input

graph. Hence, the NNJAG cannot know which new state Q2 to move to so that Π̂(Q2) = Π2. In
contrast, in the modified NNJAG the pebble location, Π2, after Substep 2, is uniquely determined

by (Q1,Π1) and Π′1. Hence, it is possible for the NNJAG to choose a state Q2 so that Π̂(Q2) = Π2.

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2267

f . The corresponding branching program A has a row of configuration nodes for
each of the time steps t ∈ [1 . . . T]. Each row has 2S configuration nodes (Q,Π, t),
one for each NNJAG id (Q,Π). For every id (Q,Π) of J and time step t, there
will be a configuration vertex (Q,Π, t) in A. The configuration vertex (Q0,Π0, 1),
where (Q0,Π0) is the start id of J , is taken as the start vertex of A. For each accept id
(Qa,Πa) of J , (Qa,Πa, 1), (Qa,Πa, 1), . . . , (Qa,Πa, T) are accept configuration vertices
in A, and likewise for the reject ids. The input variables labeling the configuration
vertices of A are the variables X〈u,`〉, where u ∈ [0..n − 1] is a node name and
` ∈ [0..f − 1] is an edge label. The variable X〈u,`〉 will have value v if there is
an edge (u, v) labeled with ` in the input graph and the value “undefined” if there is
no such edge. Thus, if in id (Q,Π) the first substep of J walks a pebble from node u
along the edge with label `, the configuration vertex (Q,Π, t) in A will be labeled with
the variable X〈u,`〉. Furthermore, the vertex will have a directed edge labeled with
v to configuration vertex (Q′,Π′, t + 1) if for some input graph, X〈u,`〉 = v (i.e., the
queried edge has destination v) and the subsequent jumps taken in Substep 2 by J
bring the machine to the id (Q′,Π′). If J does not walk any pebble in Substep 1, the
configuration vertex will not get any label and will have only one unlabeled out-edge
pointing to some configuration vertex (Q′,Π′, t+ 1), depending on Substep 2 of J .

Note that the branching program A so constructed is leveled in the sense that each
configuration vertex can be assigned a level number so that edges from level i only go
to level i+1. Moreover, all the rows in A are identical, because the transition function
of the (deterministic) NNJAG does not depend on time. Therefore, the number of
distinct subbranching programs of a fixed height is at most 2S .

Finally, we introduce a variant of branching programs called sectioned branching
programs. A branching program is said to be sectioned if its vertices are partitioned
into sections so that the out-edges of a vertex in section i can only go to vertices in
section i or i+ 1. Thus, each computation path will go through each section at most
once.

Definition 2. A branching program A is properly sectioned for an input G if it
queries at most 3fS

log n different edges of G in each section. If A is properly sectioned

for G, then its s-height on G, denoted hA(G), is 3fS
log n times the number of sections A

contains; otherwise, hA(G) is infinite.
Note that a set of queries to the same edge of the input graph within a section is

charged as only one query in the s-height measure. The branching program defined
earlier can be viewed as a sectioned branching program with T/ 3fS

log n sections, each of

which queries at most 3fS
log n different input edges. Moreover, on every input G, A will

have s-height T = (T/ 3fS
log n)× 3fS

log n .

8. Proof outline. In the rest of this paper, a directed edge from u to v with
label ` will be denoted by the triple 〈u, `, v〉. Also, by G(O) we denote the distribution
obtained by selecting those graphs in G that satisfy a condition O. We will derive
Lemma 8.3 by induction. Before doing so, we present two lemmas that are central
to the proof of that inductive statement. The first mainly concerns traversing base
edges of graphs in Gk. It bounds the probability of a machine making a lot of progress
within a short period of time.

Lemma 8.1 (main lemma). Let A be any sectioned subbranching program derived
from some pebble location redundant NNJAG with at most S/ logn pebbles. Then for
any k ∈ [1..K],

PrG∈Gk [wA(G) ≥ 3S/ logn and hA(G) ≤ χ/8] < 2−2S .

2268 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

The intuition behind Lemma 8.1 is as follows. Recall that wA(G) is the number
of goals that get pebbled. We “give away” one such node for each of the (at most)
S/ logn pebbles. When hA(G) ≤ χ/8, A queries at most χ/8 different edges in G.
Consider the probability of pebbling the goal corresponding to an arbitrary root r,
assuming that the hard path rooted at r does not contain any pebble initially. There
are fD−1 possibilities for the vector, ~̀r, of edge labels on this hard path. To remind
us of its dependency on G, let us use the symbol ~̀r(G) instead of ~̀r in the following.

An NNJAG can move a pebble down from r following some vector ~̀ ∈ [0..f−1]D−1 of

edge labels, hoping that ~̀= ~̀
r(G). For G drawn from Gk, this probability is f−(D−1).

The NNJAG can dynamically choose ~̀ based on the names of the nodes on the path
it has traced so far. However, this will not be a lot of help, since the name of the
nodes on the hard path are chosen randomly. Recall that fD ≥ n80. Since χ ∈ O(n),
it follows that fD−1 � χ/8. Clearly, by querying at most χ/8 different edges in the

input graph, on the one hand, the NNJAG cannot try many different ~̀s. Hence, the
probability of having at least one of them being successful is small.

On the other hand, the NNJAG can eliminate some of the possibilities it needs
to consider by detecting “collisions of edges” and hence increase the probability that
it succeeds. For example, when it learns that two different edges have the same
destination node v, it learns that this node v is not on the hard path since its in-degree
is bigger than 1. Hence, any path continuing from node v need not be traversed.
However, within χ/8 steps, the probability that an edge traversed by the NNJAG
collides with some other traversed edge can be shown to be at most 1/4. (Intuitively,

the probability is
χ/8

2kχ/2 ≤ 1/8. For the simplicity of the proof, we argue in section 11

that this probability is at most 1/4.) By analyzing a variant of branching processes, we

can show that the probability of eliminating a large number of vectors ~̀ ∈ [0..f−1]D−1

in this way, is small. In other words, with high probability, the NNJAG still has a
lot of possible ~̀s to try out. This discussion considers only a single root. When there
are many roots, we need to take care of the dependencies among them before we can
apply some Chernoff-type bounds. The detailed analysis and proof of Lemma 8.1
comprise sections 10, 11, and 12.

The second lemma concerns the traversal of collapsed edges of graphs in Gk. Let
E be a fixed set of Dk−1 base graphs G1, . . . , GDk−1 ∈ B(2kχ) (we call such a set of
graphs a complete set) and Gk(E) be the distribution of Gk conditioned on these fixed
graphs. The lemma relates the computation of a pebble location redundant NNJAG J
on inputs in Gk(E) to that of a faster (in terms of s-height) pebble location redundant
NNJAG J ′ on inputs in Gk−1. For any complete set E of base graphs, define a function
CE from nodes in G ∈ Gk(E) to nodes in C(G) ∈ Gk−1 as follows:

CE(v) =

{
wi if v = wi for some i ∈ [1..2k−1χ],
u〈i,j〉 if v is on the jth hard path in Gi,
lost otherwise.

Note that the function is well defined because for an input G ∈ Gk(E), whether
a node v is a hard node, an easy node, or an auxiliary node is fixed. For any pebble
mapping Π for graphs in Gk(E), denote CE(Π) as the pebble mapping Π′ for graphs
in Gk−1 such that for any pebble P , Π′(P) = CE(Π(P)).

Lemma 8.2 (collapsing lemma). Let k be any integer in [1..K], J be any pebble
location redundant NNJAG with p pebbles and q states, and E be any complete set of
base graphs. There exists a corresponding pebble location redundant NNJAG J ′ with
the same number of pebbles and states such that, for any G ∈ Gk(E), J is in id (Q,Π)

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2269

in some step on input G if and only if J ′ is in id (Q,CE(Π)) in the same step on
input C(G) ∈ Gk−1.

Note that J and J ′ use the same space. Moreover, J traverses a collapsed edge
〈u, `, v〉 in G if and only if J ′ traverses the corresponding edge 〈CE(u), `, CE(v)〉 in
C(G), and J accepts G if and only if J ′ accepts C(G). The proof of Lemma 8.2 is
given in section 9. Having stated Lemmas 8.1 and 8.2, we are ready to state and
prove the following inductive statement.

Lemma 8.3. For any ε > 0 and any k ∈ [0..K], if Tk = εχ
(χ log n

24fS

)k
and A is

a sectioned branching program with no more than Tk/(
3fS
log n) sections, derived from a

pebble location redundant NNJAG J which uses at most space S, then

PrG∈Gk [w∗A(G) > εχ and hA(G) ≤ Tk] ≤ k2−S < ε.

Proof of Lemma 8.3.
Base case. When k = 0, the branching program A can query at most T0 = εχ

different edges. Hence, it cannot discover more than εχ super goals.
Inductive step. Assume that the lemma is true for k − 1. Consider a sectioned

branching program A having at most Tk/
3fS
log n sections derived from some pebble

location redundant NNJAG J with at most S space. Suppose, for the sake of contra-
diction, that PrG∈Gk [w∗A(G) > εχ and hA(G) ≤ Tk] > k2−S . We will show that in

this case there exists some sectioned branching program A′ with at most Tk−1/
3fS
log n

sections corresponding to some pebble location redundant NNJAG J ′ using at most
S space such that PrG′∈Gk−1

[w∗A′(G
′) > εχ and hA′(G

′) ≤ Tk−1] > (k− 1)2−S . This
contradicts the inductive hypothesis.

We break A into at most Tk−1/
3fS
log n slices so that slice i consists of section

i(Tk/Tk−1) to section (i + 1)(Tk/Tk−1) − 1, inclusive. (Thus each slice contains

Tk/Tk−1 =
χ log n
24fS sections.) Let F be the set of G ∈ Gk such that hA(G) ≤ Tk

and at least one subbranching program Â, which lies completely within a slice, has
w
Â

(G) ≥ 3S/ logn. Since hA(G) being finite implies that Â is properly sectioned for

G, h
Â

(G) ≤ (Tk/Tk−1)(3fS
log n) = χ/8.

Consider the maximal subbranching program Â which lies completely within slice
i and is rooted at the node through which G first enters slice i. There are at most
2S such subbranching programs in A. Combining this fact with Lemma 8.1, we have
PrG∈Gk [G ∈ F] < 2−S . Therefore, PrG∈Gk [w∗A(G) > εχ and hA(G) ≤ Tk and G /∈ F]
> (k − 1)2−S . Let us choose a complete set E of base graphs so that
PrG∈Gk(E) [w∗A(G) > εχ and hA(G) ≤ Tk and G /∈ F] > (k − 1)2−S . By Lemma 8.2,
we can construct from the pebble location redundant NNJAG J , another pebble lo-
cation redundant NNJAG J ′ that runs on Gk−1 with the same number of pebbles and
states as J . From J ′, we can construct a sectioned branching program A′ with at most
Tk−1/

3fS
log n sections, one section for each of the slices of A. This is done by putting a

configuration vertex of A′ in section i if and only if the corresponding2 configuration
vertex of A is in slice i. In A, edges go only from vertices in slice i to vertices in
slice i or i + 1. Therefore, in A′, edges go only from vertices in section i to vertices
in section i or i+ 1. Hence, this is a legal way of partitioning the vertices of A′ into
sections. Now, consider an arbitrary graph G ∈ Gk(E) − F . At most 3S

log n progress

2There is a one-to-one correspondence between states of J and J ′. It is not hard to see that
there is also a one-to-one correspondence between configuration vertices of A and A′.

2270 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

is made in the unique maximal subbranching program that G passes through in each
slice of A. By Lemma 6.2, each such subbranching program can query at most 3fS

log n
different collapsed edges in G. Hence, each corresponding subbranching program in
A′ queries at most 3fS

log n different edges in C(G). Therefore, A′ is properly sectioned

for C(G) for all G ∈ Gk(E) − F . Since A has Tk−1/
3fS
log n slices, A′ has the same

number of sections. It follows that hA′(C(G)) ≤ Tk−1 for all G ∈ Gk(E) − F . Since
C(G) is chosen independent of the Gis, the distribution Gk(E) is isomorphic to the
distribution Gk−1. Therefore,

PrC(G)∈Gk−1
[w∗A′(C(G)) > εχ and hA′(C(G)) ≤ Tk−1]

≥ PrG∈Gk(E) [w∗A′(C(G)) > εχ and G /∈ F]

= PrG∈Gk(E) [w∗A(G) > εχ and G /∈ F]

≥ PrG∈Gk(E) [w∗A(G) > εχ and hA(G) ≤ Tk and G /∈ F]

> (k − 1)2−S .

For k = K the above inductive statement implies that any deterministic pebble
location redundant NNJAG which uses at most S space and takes O(TK) time, will
pebble more than εχ super goals with probability less than K2−S . Recall that TK =

εχ
(χ log n

24fS

)K
. For S ∈ O(n1−δ), we set f = Θ((n logn/S)1/2), χ = Θ((n3S/ logn)1/4),

and K = Θ(log(n log n
S)). Hence TK = 2Ω(log2(n logn

S))× (n3S/ logn)1/4 = 2Ω(log2(n/S)).

For S ∈ ω(n1−δ), we set f = 2, χ = Θ((nS/ logn)1/2), andK = Θ(log(n log n
S)/ log logn).

Thus, we get TK = 2Ω(log2(n logn
S)/ log log n)×(nS/ logn)1/2. For big enough n, K2−S <

ε, since K ≤ logn and S ≥ logn. Thus, if J is an NNJAG that uses space S and time
T /∈ Ω(TK), then for any ε > 0, PrG∈D [w∗J(G) > εχ] < ε.

Note that for S ∈ O(n1−δ), the input graph has out-degree f = Θ((n log n
S)1/2)

which is nonconstant. We can convert the graphs of out-degree f into graphs of out-
degree 2 by replacing each node with a binary tree of size O(f). This blows up the

number of nodes by a factor of f . Hence, our lower bound becomes T ∈ 2Ω(log2(n/fS))

= 2Ω(log2(n/S)), where n is the number of nodes in the out-degree 2 graph.

9. Collapsing an NNJAG.

Lemma 8.2 (repeated). Let k be any integer in [1..K], J be any pebble location
redundant NNJAG with p pebbles and q states, and E be any complete set of base
graphs. There exists a corresponding pebble location redundant NNJAG J ′ with the
same number of pebbles and states such that, for any G ∈ Gk(E), J is in id (Q,Π) in
some step on input G if and only if J ′ is in id (Q,CE(Π)) in the same step on input
C(G) ∈ Gk−1.

Proof. J ′ will have the same set of states as J . Let Π̂ be the function that maps
the states of J to its pebble locations. We shall prove, by induction on the number
of steps taken, that if J is in state Q in step t on input G ∈ Gk(E), then J ′ is in the

same state in step t on input C(G) ∈ Gk−1 and CE(Π̂(Q)) specifies the locations of
its pebbles in that step. This proves the claim. Initially, J and J ′ are at state Q0.
Both Π̂(Q0) and CE(Π̂(Q0)) specify that all pebbles are on node s.

Assume that at step t, J is in state Q on input G and that, at the same step, J ′

is in state Q on C(G) and its pebble locations are specified by CE(Π̂(Q)). The move
of J ′ will be determined by the move of J . For the first substep there are three cases.

Case 1. If J does nothing , then J ′ also does nothing.

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2271

Case 2. If J walks pebble P along the edge with label `, then there are three
subcases, depending on the node u that P was on.
(2a) If u is the lost node or the node wj for some j ∈ [1..2kχ], then the destination,

v, of P is fixed and CE(v) is either the lost node, the node u〈1,j〉, or wj+1.
Hence, J ′ node-jumps pebble P to CE(v).

(2b) If u is a hard node in layer D of some Gi (i.e., u is a goal node), then the
out-edges of u are collapsed edges. In this case, J ′ walks pebble P along edge
`.

(2c) If u is not a goal node, and not an auxiliary node, then the destination, v, is
fixed for all G ∈ Gk(E). If CE(u) 6= CE(v), then u must be a hard node and
v must be an easy node. Hence, J ′ node-jumps pebble P to CE(v), which is
the lost node. If CE(u) = CE(v), then J ′ does nothing.

Case 3. If J node-jumps pebble P to node v, then v must be either the lost node
or wj or u〈1,j〉 for some j ∈ [1..2kχ]. Hence CE(v) is either the lost node, wj , or u〈1,j〉
for some j ∈ [1..2k−1χ]. J ′ just node-jumps pebble P to CE(v).

Let Π1 be the pebble locations of J after the first substep and let J assume state
Q′ in the second substep. In its second substep, J ′ performs the same sequence of
pebble-to-pebble jumps as in the second substep of J and then assumes state Q′ if
and only if its pebble locations after the first substep is CE(Π1).

Let us check that in all the above cases the pebble location of J ′ after the first
substep is indeed CE(Π1). By the inductive hypothesis pebble P of J ′ was on node
CE(u) before the first substep while pebble P of J was on node u. Since J only moves
pebble P from node u to v in the first substep, we just need to show that J ′ moves P
from node CE(u) to CE(v) in the first substep. This is obviously true in all the above
cases except (2b). In Case (2b), 〈u, `, v〉 is a collapsed edge in G. By the definitions
of Gk and Gk−1, 〈CE(u), `, CE(v)〉 is an edge in C(G). Hence, pebble P of J ′ will be
on node CE(v) after the first substep. It follows that J ′ will also assume state Q′ in
the second substep. Moreover, in the second substep, J changes the pebble locations
from Π1 to Π̂(Q′) by pebble-to-pebble jumps. By construction, J ′ will also change

the pebble locations from CE(Π1) to CE(Π̂(Q′)).

10. Proof of the main lemma.
Lemma 8.1 (repeated). Let A be any sectioned subbranching program derived from

some pebble location redundant NNJAG with at most S/ logn pebbles. Then, for any
k ∈ [1..K],

PrG∈Gk [wA(G) ≥ 3S/ logn and hA(G) ≤ χ/8] < 2−2S .

Proof. Recall that every G ∈ Gk consists of Dk−1 graphs, G1, G2,. . . , GDk−1 ,
chosen independently from B(2kχ), a graph G′ chosen from Hk−1 and some fixed
auxiliary nodes and edges. Each Gi has 2k−1χ roots. Therefore, there are (2D)k−1χ

roots. Recall as well that wA(G) denotes how many of the (2D)k−1χ goals have been
discovered and that hA(G) is a measure of the number of edges queried.

Our proof will concentrate on the traversing of the base edges in G. We assume
that G′ is fixed and known to A. Hence, the probability is only over the graphs
G1, . . . , GDk−1 ∈ B(2kχ). Let Bk be the distribution

{ 〈G1, . . . , GDk−1〉 | G1, . . . , GDk−1 ∈ B(2kχ) }.
We allow the machine to query any variable X〈u,`〉 if u is a node in the top layer of a
Gi. Moreover, each time a variable X〈u,`〉 is queried, the following are returned: (1)

2272 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

the value, v, of X〈u,`〉; (2) whether v is a goal node; and, if so, (3) its corresponding
root node. With these changes, we can assume that the machine does not query any
collapsed edge, as there is no need.

Also, we modify A so that it has the following properties: (1) A is a decision
tree (i.e., it will not forget the answer to any previous query); (2) A will not repeat
any previous query; and (3) each computation path γ in A queries at most χ/8
different (base) edges and discovers at most 3S/ logn different goal nodes. (If γ
queries more than χ/8 different edges, we will cut it right after it queries the (χ/8)th
edge. Similarly, if γ discovers more than 3S/ logn different goal nodes, we will cut it
right after it discovers the (3S/ logn)th node.) It is clear that the modifications will
not decrease the probability stated in the lemma. With all the above assumptions
and modifications, we just need to show that PrG∈Bk [wA(G) ≥ 3S/ logn] ≤ 2−2S .

Just before A starts, each of the S/ logn pebbles may already be partially way
down a hard path or even on a goal node. To simplify the analysis, we assume that
the goals of those hard paths that initially contain pebbles will be discovered by A.
There are at most S/ logn such goals. To pebble the remaining goals, we know, by
Lemma 6.1, that the entire hard path must be traversed by the NNJAG. In other
words, every edge in the hard path has to be queried by A. Let w′A(G) be the number
of roots such that every edge on its hard path in G has been queried by A. To prove
the lemma, it suffices to show that PrG∈Bk [w′A(G) ≥ 2S/ logn] < 2−2S .

Consider an arbitrary computation path γ in A. It can be specified by the se-
quence of base edges, Eγ , it has queried and the sequence of node names, Rγ , specify-
ing whether a goal node is discovered in each step (and if applicable, its corresponding
root). For example, suppose γ queries the variable X〈u,`〉 which has the value v and
then the variable X〈u′,`′〉 which has the value v′. Suppose v is not a goal but v′ is
the goal node of root r; then Eγ = (〈u, `, v〉 , 〈u′, `′, v′〉) and Rγ = (0, r) (assuming no
root has name 0).

When γ is the computation path followed on input G we will say that “G follows
γ.” (It might be useful to think of G as being “processed” by A along γ.) First, let us

understand what we can deduce about ~̀r(G), the sequence of edge labels on the hard
path in G rooted at r, given that G ∈ Bk(Eγ). (Note that G may not actually follow
γ, because it might not agree with Rγ .) We say that a node v is a collision node with
respect to Eγ if Eγ contains two distinct edges 〈u, `, v〉 and 〈u′, `′, v〉 with the same
destination v. Since v has in-degree at least 2, it is known to be an easy node.

In general, we can classify ~̀ ∈ [0..f − 1]D−1 according to γ and r as follows.
Suppose we trace out a path through the edges in Eγ , starting at the root r and

following the sequence of edge labels ~̀ until the next edge to be taken is not contained
in Eγ . Then one of the following three possibilities will occur:

1. The path passes through some collision node with respect to Eγ .
2. The path reaches layer D without passing through any collision node with

respect to Eγ .
3. The path stops before reaching layer D and does not pass through any colli-

sion node with respect to Eγ .

We define Y〈γ,r〉 and Z〈γ,r〉 to contain the vectors ~̀ ∈ [0..f−1]D−1 such that when
the above procedure is applied, the second and third outcomes occur, respectively.

Claim 1. For any computation path γ in A, any input graph G ∈ Bk(Eγ), and

any root r, ~̀r(G) ∈ Y〈γ,r〉 ∪ Z〈γ,r〉.
Proof. For any ~̀ /∈ Y〈γ,r〉 ∪ Z〈γ,r〉 and any input G ∈ Bk(Eγ), the path from

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2273

the root r labeled with ~̀ in G contains a collision node. Since collision nodes have
in-degree at least two in Eγ , they do not lie on the hard path. Thus, ~̀r(G) 6= ~̀.

Definition 3. For any computation path γ and any G ∈ Bk(Eγ), Prog〈γ,r〉(G)
is defined as the random variable indicating that all the edges in the hard path in G
rooted at r are mentioned in Eγ .

Obviously, Prog〈γ,r〉(G) is true if ~̀r(G) ∈ Y〈γ,r〉 and false if ~̀r(G) ∈ Z〈γ,r〉. If G
actually follows γ and Prog〈γ,r〉(G) is true, then the goal of root r is discovered. Let
y〈γ,r〉 = |Y〈γ,r〉| and z〈γ,r〉 = |Z〈γ,r〉|. Briefly, the probability that Prog〈γ,r〉(G) is true,

given that G ∈ Bk(Eγ) is approximately
y〈γ,r〉

y〈γ,r〉+z〈γ,r〉
, because all ~̀ ∈ Y〈γ,r〉 ∪ Z〈γ,r〉

have about the same probability to be chosen as ~̀r(G).
Let D′ = D/8. We say that root r is a high-collision root with respect to the

computation path γ if y〈γ,r〉+z〈γ,r〉 ≤ fD′ . Otherwise, we say that it is a low-collision
root with respect to γ. We say that γ is a high-collision computation if there are at
least S/ logn high-collision roots with respect to γ. Otherwise, we say that it is a
low-collision computation. Let C be the set of all high-collision computation paths.
Then

PrG∈Bk

[
w′A(G) ≥ 2S

logn

]
≤
∑
γ∈C

PrG∈Bk [G follows γ] +
∑
γ /∈C

PrG∈Bk

[
w′A(G) ≥ 2S

logn
and G follows γ

]
≡ SUM 1 + SUM 2.

By Claim 2 in section 11, SUM 1 is at most 2−3S . Consider SUM 2. If both events
“w′A(G) ≥ 2S/ logn” and “G follows γ” occur, there exist at least 2S/ logn roots r
such that Prog〈γ,r〉(G) is true; i.e., all the edges on the hard path rooted at r in G are
in Eγ . For γ /∈ C, at least S/ logn of these are low-collision roots with respect to Eγ .

Definition 4. For any computation path γ and any G ∈ Bk(Eγ), w′′γ (G) is
defined as the number of roots r such that r is a low-collision root with respect to γ
and Prog〈γ,r〉(G) is true.

Then

SUM 2 ≤
∑
γ 6∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
and G follows γ

]
.

Since “G follows γ” implies “G ∈ Bk(Eγ),”

SUM 2 ≤
∑
γ 6∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
and G ∈ Bk(Eγ)

]

≤ max
γ 6∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
| G ∈ Bk(Eγ)

]
×
∑
γ 6∈C

PrG∈Bk [G ∈ Bk(Eγ)] .

We claim that, for each graph G ∈ Bk, there are at most 26S different computation
paths γ for which G satisfies Eγ . To see this, observe that every computation path γ
in A queries at most χ/8 different base edges and discovers at most 3S/ logn different
goal nodes, each having at most n name choices for its corresponding root. Hence,

there are at most
(χ/8

3S/ log n

) × n3S/ log n ≤ 26S different sequences Rγ . If there were

more than 26S different computation paths γ’s such that G satisfies Eγ , then there

2274 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

exist two different computation paths γ and γ′ such that Rγ = Rγ′ and G satisfies
both Eγ and Eγ′ . For γ and γ′ to be different, there must be an edge 〈u, `, v〉 in
Eγ and an edge in 〈u, `, v′〉 in Eγ′ such that v 6= v′. Then G cannot satisfy both
Eγ and Eγ′ , a contradiction. Hence, our claim follows. From this claim, we have∑
γ 6∈C PrG∈Bk [G ∈ Bk(Eγ)] ≤ 26S and thus,

SUM 2 ≤ max
γ /∈C

PrG∈Bk

[
w′′γ (G) ≥ S

logn
| G ∈ Bk(Eγ)

]
× 26S .

Claim 4 of section 12 shows that PrG∈Bk
[
w′′γ (G) ≥ S/ logn | G ∈ Bk(Eγ)

]
is at most

2−9S for any γ in A. In conclusion,

SUM 1 + SUM 2 ≤ 2−3S + 2−9S+6S

≤ 2−3S+1

≤ 2−2S ,

where all inequalities hold for big enough n. Therefore, Lemma 8.1 (main lemma)
follows.

11. Bounding SUM 1. This section bounds the first sum, SUM 1, at the end
of the proof for Lemma 8.1 (main lemma).

Claim 2.
∑
γ∈C PrG∈Bk [G follows γ] ≤ 2−3S.

Proof. We first define two games called the edge-collision game and the branching-
process game. Let Sed and Sbr be the random variables indicating the success of
each game, respectively. We shall show that

∑
γ∈C PrG∈Bk [G follows γ] ≤ Pr [Sed]

≤ Pr [Sbr] ≤ 2−3S .

11.1. The edge-collision game. The edge-collision game is defined as follows.
Dk−1 graphs G1, G2, . . . , GDk−1 are chosen randomly and independently from B(2kχ).
The player is informed of the hard path of each root in each Gi. He then queries edges
of the Gis one at a time. When the player queries an edge, he specifies 〈u, `〉, where
u is a node and ` ∈ [0..f − 1] is an edge label. The destination node v of the edge
〈u, `, v〉 is then revealed to the player. Based on the result of the previous queries, he
chooses the next edge to query. He is allowed to query at most χ/8 edges total.

The aim of the player is to minimize the number of leaves of certain trees associ-
ated with the queried edges. To be precise, let E be the sequence of base edges of the
input graph G that the player has queried during the game. Recall that in section 10
a node v is called a collision node with respect to E if it is the destination of more
than one edge in E. In this game, each edge in E will be in one of two conditions:
alive or dead. An edge is said to be dead if its destination node is (1) a collision
node or (2) the source of a previously queried edge. Otherwise, it is alive. We shall
construct from E a collection of f -ary trees by taking the following steps.
Step 1. If E does not contain a path from any root r to a node v, then delete v from
G (along with all its in-edges and out-edges).
Step 2. Delete all the nodes (along with their in-edges and out-edges) that are proper
descendents in E of the destinations of the dead edges. The dead edges and their
destinations are kept. The remaining edges in E that are alive are called the y-edges
and their destination nodes are called the y-nodes. Each such node has a unique path
from some root to it and that path contains no dead edges. Hence, the y-edges form
a collection of disjoint f -ary trees.

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2275

Step3. “Fill up” the above trees so that each node has exactly f outgoing edges. More
precisely, for each y-node that does not have exactly f outgoing edges (counting the
dead edges), add the missing edges and attach to each such edge a complete f -ary
tree, of appropriate depth, such that its leaves are at layer D. The nodes and edges
that are added in this way are referred to as the z-nodes and the z-edges. They do not
correspond to actual nodes and edges in the input graph G. Note that each z-node
also has a unique path from some root to it and that path contains no dead edges.
We shall measure the performance of the game player by two sets of parameters.
They are somewhat similar to y〈γ,r〉, z〈γ,r〉 defined in section 10. Define ỹr and z̃r
(the performance parameters) as the number of y- and z-nodes at layer D that are
descendents of the root node r. Again, a root r is said to be a high-collision root if
ỹr + z̃r ≤ fD

′
, where D′ = D/8 as defined in section 10. The goal of the player is

to create as many high-collision roots as possible. More precisely, the player wins if
there are more than S/ logn high-collision roots. Let Sed be the indicator variable of
this event.

Note that the edge-collision game player can query whatever edges queried by A
and hence ensure that Eγ ⊆ E, where Eγ and E are the set of edges queried by A and
the game player, respectively. Consider the conditions for a root to be a high-collision
root. In A, a root r is a high-collision root with respect to Eγ if y〈γ,r〉 + z〈γ,r〉 ≤ fD′ ,
i.e., the number of vectors ~̀ ∈ Y〈γ,r〉 ∪ Z〈γ,r〉 is small. If a vector ~̀ ∈ [0..f − 1]D−1

is not in Y〈γ,r〉 ∪ Z〈γ,r〉, then the path obtained by following ~̀ from r must contain a
collision node in Eγ . The same node will also be a collision node in the edge-collision
game, provided Eγ ⊆ E . It follows that a high-collision root in A will also be a
high-collision root in the game. Therefore,

∑
γ∈C PrG∈Bk [G follows γ] ≤ Pr [Sed].

11.2. The branching-process game. Before we introduce the branching-process
game, we introduce some machinery that will be useful in bounding its probability of
success.

Consider a rooted, complete, f -ary tree of depth d. We allow every edge of such a
tree to die independently of all other edges with a fixed probability α. A node u is said
to be alive if and only if no edge along the unique path from the root to u is dead. If Zi
denotes the number of alive vertices at level i, then the sequence Z0 = 1, Z1, . . . , Zi, . . .
forms a branching process [2]. We will be interested in the distribution of the number
of live vertices with depth d, i.e., the random variable Zd. The expected number of
live children for an alive node is (1−α)f , and the expected value of Zd is ((1−α)f)d.
More precisely, the generating function for the offspring distribution in this branching
process is g(x) = (α+(1−α)x)f (i.e., the probability that a node has i out-edges that
do not die is the coefficient of xi in g(x)). A well-known fact is that if (1− α)f > 1,
then Pr [Zd = 0] = ξ, where ξ is the unique x ∈ (0, 1) such that g(x) = x. Moreover
η = g′(ξ) < 1. The following lemma states that the probability that Zd is much
smaller than its expected value is not much greater than the probability that it is 0.

Lemma 11.1 (see [25]). If (1−α)f > 1, then for d̃ ∈ [1, . . . , d] such that d−d̃→∞
and d→∞,

Pr
[
Zd ≤ ((1− α)f)d̃

]
≤ ξ +O(ηd−d̃).

In the branching-process game we will consider a variant of the above trees defined
in section 11.1, with depth D and out-degree f . For these trees, the variation lies in
the existence of a fixed path from the root to some leaf whose edges are guaranteed

2276 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

to survive; all other edges die independently with probability 1/4. Such a tree is said
to wither if it has at most fD

′
live leaves. We want to bound the probability, ρ, that

this happens.
To allow for a uniform treatment we first convert the f -ary trees to binary trees

when f > 2. In particular, if f > 2, then f = O(nε) for some ε > 0, and hence we can
assume that f is a power of 2. Thus, we replace each node v and its f edges/children
with a complete binary tree Tv of depth log f , i.e., with f leaves. If v is not on
the path that is guaranteed to survive, then all the edges in Tv die independently,
with probability 1/4. Otherwise, the edges along a unique path of Tv (the path
corresponding to the edge guaranteed to live) are guaranteed to survive while the rest
die independently with probability 1/4. It is easy to see, inductively, that for any set
of nodes at depth i log f , i = 0 . . . D, in the resulting binary tree, the probability of
being alive is no more than that of the corresponding nodes at depth i in the f -ary
tree. Moreover, D = d80 logne/ log f , for all f , and hence it will suffice to prove the
bound for f = 2 (D = d80 logne).

Let vi be the node at depth i which is on the path whose edges are guaranteed
to survive and let v′i be the sibling of vi. Let ρ′ be the probability that for all vi,
i ∈ [1..2D/3], either v′i is dead or v′i is alive, but the subtree rooted at v′i, Tv′i has

at most fD
′

live nodes, at depth D. Clearly, ρ ≤ ρ′. Each Tv′
i
, is a complete binary

tree of depth D − i, where every edge dies with probability 1/4. For α = 1/4 and
f = 2, we have ξ = 1/9 and η = 1/2. As D tends to infinity with n and Tv′

i
has depth

at least D/3, we can apply Lemma 11.1 to bound the probability that Tv′
i

has fewer

than fD
′

live nodes at depth D (given that v′i is alive) by 1/9 + O((1/2)D−i−D
′
).

Thus, the probability that Tv′
i

has at most fD
′

live leaves at depth D is no more

than 1/4 + 1/9 + O((1/2)D−i−D
′
) ≤ 1/4 + 1/9 + O((1/2)D/3−D

′
) = β < 1/2, since

D′ = D/8, D = d80 logne and n can be arbitrarily large. Since the 2D/3 subtrees
grow independently, we get ρ ≤ ρ′ ≤ β2D/3 ∈ O(n−5).

In the branching-process game in our graph we say that the root r of the same
type of tree above is a high-collision root if the tree rooted at r withers. Since there
are at most n roots, the expected number of high collision roots is µ ≤ n×ρ ∈ O(n−4).
Let Sbr be the random variable indicating the event that there are more than S/ logn
high-collision roots. As each tree grows independently of the others, we can apply the
Chernoff bound and prove that

Pr [Sbr]

= Pr

[
number of high collision roots ≥

(
S

µ logn

)
µ

]
≤ 2−(S

logn)(log(S
µ logn)−log e).

Since µ ∈ O(n−4), Pr [Sbr] ≤ 2−3S .

11.3. Branching-process game versus edge-collision game. This subsec-
tion proves the second inequality mentioned in the proof of Claim 2.

Lemma 11.2. The success of the edge-collision game is probabilistically dominated
by the success of the branching processes game, i.e., Pr [Sed] ≤ Pr [Sbr].

Proof. The edge-collision game starts by random choice of the graphs G1, G2, . . . ,
GDk−1 in B(2kχ). For each i ∈ [1..Dk−1], the first step in choosing Gi according to the
distribution B(2kχ) is to randomly partition the 2kχ nodes at each layer into 2kχ/2
easy nodes and 2kχ/2 hard nodes and to choose the hard path rooted at each root

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2277

r. This information is revealed to the player. The edges in these paths correspond to
the edges in the branching-process game that are guaranteed to live.

The next step in choosing Gi according to the distribution B(2kχ) is to choose
for every remaining edge its destination among the 2kχ/2 easy nodes at the next
layer. This needs to be done only for those edges queried by the player. For each
i ∈ [1..Dk−1], for each layer d ∈ [1..D], and for each τ ∈ [1..χ/8], define the variable
v〈i,d,τ〉 to uniformly and independently take on a value from [1..2kχ/2]. Suppose
that the player is querying 〈u, `〉, where u is a node at layer d in the graph Gi, and
this is the τth query to easy edges at this layer in this graph. Then the variable
v〈i,d,τ〉 ∈ [1..2kχ/2] specifies the other endpoint of edge 〈u, `〉 among the 2kχ/2 easy
nodes at the next layer.

Consider the edge 〈u, `〉 queried at time t for some t ∈ [1..χ/8]. Before this query,
we do not know in advance which edges will be queried after time t because the player
is able to choose them dynamically based on the result of the current query. However,
the random variables v〈i,d,τ〉 do tell us the resulting destinations of all the edges
queried or to be queried. Together with the knowledge of the source of edges queried
before time t, we can tell whether the current edge will die. Specifically, suppose 〈u, `〉
is the τth edge queried at layer d in Gi. Then it will die if either (1) there is another
query at this layer τ ′ ∈ [1..χ/8] with the same destination, i.e., v〈i,d,τ〉 = v〈i,d,τ ′〉 for
some τ ′ 6= τ or (2) the destination is the source of some edge queried before time t.

In order to compare the success probability of the edge-collision game and the
branching-process game, let us first define random variables that will indicate which
edges die in the branching-process game. For each root r in each of the graphs Gi,
there is a corresponding root in the branching-process game. Consider the complete
f -ary tree of height D rooted at such a root r. A specific edge in this tree can be
specified by a string ~̀ ∈ [0..f − 1]∗. For each such edge, let x〈r,~̀〉 ∈ {0, 1} be the

random variable indicating whether this edge dies. If the edge is one of the edges
that are guaranteed to live in the branching-process game, i.e., the fixed hard path in
the input graph, then Pr[x〈r,~̀〉] = 0. Otherwise, Pr[x〈r,~̀〉] = 1/4 independent of the

other x variables.

Now consider a fixed algorithm for the edge-collision game. For each intermediate
time step t ∈ [0..χ/8], we define the tth game as follows. The game starts with t time
steps of the fixed algorithm for the edge-collision game. Let Et be the resulting base
edges queried. We want these edges to die in the tth game if and only if they die in
the edge-collision game. As previously mentioned, the edge associated with v〈i,d,τ〉 is
dead if and only if (1) there is another query at this layer τ ′ ∈ [1..χ/8] with the same
destination, i.e., v〈i,d,τ〉 = v〈i,d,τ ′〉, or (2) the destination, i.e., v〈i,d,τ〉, is the source
of an edge queried before time t. In (1), the query associated with v〈i,d,τ ′〉 can occur
either before or after time step t. Either way, we consider the edge associated with
v〈i,d,τ〉 dead. Given which edges in Et have died, the set Et can be transformed, as
described in Steps (1) through (3) in section 11.1, into a collection of f -ary trees made
up of y-nodes and y-edges (the living ones), z-nodes and z-edges, and some collision
nodes and dead edges. The tth game is completed by finishing the branching process
on the z-edges. Namely, each such edge will live or die according to the corresponding
random variable x〈r,~̀〉 ∈ {0, 1}. A node u in the resulting collection of trees is said

to be alive if all the edges on the path from the root of the tree to u are alive. A root
is said to be a high-collision root if it has at most fD

′
living nodes in layer D. The

tth game succeeds if there are more than S/ logn high-collision roots. Let St be the
random variable indicating the success of the game.

2278 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

Observe that the 0th game is simply the branching-process game and hence Sbr =
S0. The (χ/8)th game differs from the edge-collision game only in that in the edge-
collision game all the z-nodes and z-edges added in Step 3 are treated as live while in
the (χ/8)th game some of the z-edges may die according to the x〈r,~̀〉 variables. The

additional children at layer D hurt only the edge-collision game player. Therefore,

Pr
[
S(χ/8)

]
≥ Pr [Sed]. What remains to be proved is that, for every t ∈ [1..χ/8],

Pr [St−1] ≥ Pr [St].

Let ~V(<t) specify a possible computation up to and including the (t− 1)st query.
It will specify the values of t− 1 of the v〈i,d,τ〉 variables. Which of them are specified

will depend dynamically on the computation. The computation ~V(<t) will also specify
the set of queried edges in the graph Et−1 and the next query 〈u, `〉 made by the
player. Let the node u be on layer d of Gi and the query be the τth one at this layer
in this graph.

Let us consider the following cases. In the first case, Et−1 does not contain a
unique path with no dead edges from a root to u. In this case, the descendant nodes
and edges of node u will be deleted from the y-node tree, both in the (t− 1)st game
and in the tth game. Hence, whether this edge dies has no effect on either game. In
the second case, 〈u, `〉 is on a hard path. For both games, the edge is guaranteed to
live.

In the third case, Et−1 contains a unique path with no dead edges from a root to

u and 〈u, `〉 is not on a hard path. Let r and ~̀ specify the root and the labels in this
path. In the (t−1)st game, whether the edge from 〈u, `〉 dies is specified by the variable
x〈r,~̀〉 ∈ {0, 1}. In the tth game, the destination of the edge from 〈u, `〉 is specified by

the variable v〈i,d,τ〉. Consider one setting ~V(>t) of all the v〈i′,d′,τ ′〉 variables other than

those set by ~V(<t) and other than the variable v〈i,d,τ〉. Consider as well one setting
~X(6=t) of all the x variables other than x〈r,~̀〉.

Compare Pr[St−1 | ~V(<t), ~V(>t), ~X(6=t)] and Pr[St | ~V(<t), ~V(>t), ~X(6=t)]. In both
cases, the probability is only over the values of v〈i,d,τ〉 and x〈r,~̀〉. Everything else is

fixed by ~V(<t), ~V(>t), and ~X(6=t). For every value of v〈i,d,τ〉 and x〈r,~̀〉, which edges die

before time step t and which die after time step t is the same for both the (t−1)st and
the tth game. The only change in the game is whether or not the edge from 〈u, `〉 dies.

In the (t− 1)st game, this edge dies with probability Pr[x〈r,~̀〉 | ~V(<t), ~V(>t), ~X(6=t)] =

1/4. In the tth game, this edge dies if there exists a τ ′ ∈ [1..χ/8] (τ ′ 6= τ) for which
v〈i,d,τ〉 = v〈i,d,τ ′〉 or v〈i,d,τ〉 is equal to the source of an edge queried before time t.
~V(<t) and ~V(>t) fix at most χ/8 − 1 different values of the variables v〈i,d,τ ′〉 and at
most t − 1 ≤ χ/8 − 1 different values as the sources. The value for v〈i,d,τ〉 is chosen

uniformly from [1..2kχ/2]. Therefore, the probability that v〈i,d,τ〉 collides with one of

these ≤ 2(χ/8− 1) values given ~V(<t), ~V(>t), ~X(6=t) is at most 1/4. Having a smaller
probability of this edge dying can hurt only the tth game player. We can conclude
that

Pr
[
St−1

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]
≥ Pr

[
St

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]

and hence

Pr [St−1]

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2279

=
∑

~V(<t),~V(>t), ~X(6=t)

Pr
[
St−1

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]
× Pr

[
~V(<t), ~V(>t), ~X(6=t)

]
≥

∑
~V(<t),~V(>t), ~X(6=t)

Pr
[
St

∣∣∣ ~V(<t), ~V(>t), ~X(6=t)
]
× Pr

[
~V(<t), ~V(>t), ~X(6=t)

]
= Pr [St] .

12. Bounding SUM 2. This section bounds the second sum at the end of the
proof of Lemma 8.1. It suffices to show that PrG∈Bk

[
w′′γ (G) ≥ S/ logn | G ∈ Bk(Eγ)

]
≤ 2−9S . The event w′′γ (G) ≥ S/ logn happens when at least S/ logn of the low
collision roots r have Prog〈γ,r〉(G) true. If, for every root r, Prog〈γ,r〉(G) were true
with a fixed probability independent of the other roots, then we could apply the
Chernoff bound directly. However, there are indeed dependencies among different
roots. Fortunately, if each event has a low probability of success no matter what
outcomes of the other events have, then by the following lemma from Edmonds [14]
the Chernoff bound still holds.

Lemma 12.1 (Lemma 14 of [14]). Let R be the set of roots. For each r ∈ R, let
x̂r ∈ { 0, 1 } be the random variable indicating the success of the rth trial. For each
r ∈ R and O ∈ { 0, 1 }R−{ r }, let Z〈r,O〉 = Pr[x̂r = 1 | O], where O indicates that the
other trials have the stated outcomes. If for every r and every possible outcome of the
other trials O, Z〈r,O〉 ≤ ρ, then for every δ > 1, Pr[

∑
r∈R x̂r ≥ 2δρ|R|] ≤ 2−0.38δρ|R|.

Proof. Let X̂ =
∑
r∈R x̂r. To bound Pr[X̂ ≥ 2δρ|R|], we will consider a sequence

of random variables, xr, r ∈ R, defined as follows: for x1, we choose uniformly at
random λ1 ∈ [0, 1] and set x1 = 1 if and only if λ1 ≤ Pr [x̂1 = 1]. In general, if we
have set x1 = a1, . . . , xi = ai, we choose uniformly at random λi+1 ∈ [0, 1] and set
xi+1 = 1 if and only if λi+1 ≤ Pr [x̂i+1 = 1 | x̂1 = a1 ∧ · · · ∧ x̂i = ai]. Clearly, the
sequences x̂r and xr are identically distributed and Pr [xr = 1] ≤ ρ for all r ∈ R.

Consider now a sequence of random variables yr defined by yr = 1 if and only
if λr ≤ ρ, r ∈ R, where λr is as above. By construction, xr ≤ yr for all r ∈ R.
Hence, if X =

∑
r∈R xr and Y =

∑
r∈R yr, then X ≤ Y . Moreover Y is the sum of

|R| independent Boolean random variables. Applying the Chernoff bound we get, for
δ > 1,

Pr
[
X̂ ≥ 2δρ|R|

]
= Pr [X ≥ 2δρ|R|] ≤ Pr [Y ≥ 2δρ|R|] ≤ 2−0.38δρ|R|.

In Claim 3, we first show that the probability that Prog〈γ,r〉(G) is true is small
for low-collision roots r. Then we will apply Lemma 12.1 in Claim 4 to get the desired
bound for the second sum.

Claim 3. For any computation path γ in A, any root r, and any subset O of
roots indicating for which roots r′ other than r, Prog〈γ,r′〉(G) is true,

PrG∈Bk
[
Prog〈γ,r〉(G) | G ∈ Bk(Eγ) and O

]
≤ 4

3

y〈γ,r〉
y〈γ,r〉 + z〈γ,r〉

.

Proof. Let us consider a fixed γ and r. Recall that ~̀r(G) is the random variable
indicating the vector of edge labels on the hard path rooted at r in graph G drawn
from Bk and that ~̀r(G) ∈ Y〈γ,r〉 ∪ Z〈γ,r〉. Recall as well that Prog〈γ,r〉(G) is true if

and only if ~̀r(G) ∈ Y〈γ,r〉. We shall drop the subscripts in Y〈γ,r〉, Z〈γ,r〉, y〈γ,r〉, z〈γ,r〉,
~̀
r(G), Prog〈γ,r〉(G), and Eγ , when there is no chance of confusion. We shall also write

2280 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

PrG∈Bk [· | G ∈ Bk(Eγ)] as Pr [· | E]. Note that

Pr [Prog(G) | E and O]

=
Pr [Prog(G) | E and O]

Pr [Prog(G) | E and O] + Pr [¬Prog(G) | E and O]

=

∑
~̀∈Y Pr

[
~̀(G) = ~̀ | E and O

]
∑
~̀∈Y Pr

[
~̀(G) = ~̀ | E and O

]
+
∑
~̀∈Z Pr

[
~̀(G) = ~̀ | E and O

] .
Let ~̀y be the vector in Y that maximizes Pr[~̀(G) = ~̀ | E and O] over ~̀ ∈ Y and let
~̀
z be the vector in Z that minimizes Pr[~̀(G) = ~̀ | E and O] over ~̀ ∈ Z. The above

probability is at most

y × Pr
[
~̀(G) = ~̀

y | E and O
]

y × Pr
[
~̀(G) = ~̀

y | E and O
]

+ z × Pr
[
~̀(G) = ~̀

z | E and O
]

=
y

y +
Pr[~̀(G)=~̀z|E and O]
Pr[~̀(G)=~̀y|E and O]

× z
.

What remains to be proven is that

Pr
[
~̀(G) = ~̀

z | E and O
]

Pr
[
~̀(G) = ~̀

y | E and O
] ≥ 3

4
.

Let Ny(G) and Nz(G), respectively, be the set of edges on the path with label ~̀y
and ~̀

z from root r in G. Let H(G) be the random variable specifying the hard path

rooted at r in G, i.e., both the nodes and the labels ~̀(G). The fact that ~̀y ∈ Y means

that the path following the edge labels in ~̀
y is totally contained in E. Therefore,

Ny(G) is equal to some fixed value Ny determined by E. Then the statements ~̀(G) =
~̀
y and ~̀(G) = ~̀

z are equivalent to H(G) = Ny and H(G) = Nz(G), respectively.
The possible values Nz for the random variable Nz(G) (i.e., the path in G rooted at

r with edge labels ~̀z) can be divided into two sets. Let Nz ∈ Az if and only if some
edge 〈u, `, v〉 in Nz has the same destination with a different edge 〈u′, `′, v′〉 in E, i.e.,
v = v′ but 〈u, `〉 6= 〈u′, `′〉. In this case, Nz cannot be the hard path. That is, for
Nz ∈ Az, Pr [H(G) = Nz | E and O] = 0. Now consider an Nz /∈ Az. Given that
G contains E ∪Nz and satisfies O, we argue that it is equally likely for H(G) to be
Ny or Nz. To see this, first observe that O does not affect how H(G) can be chosen
because O is a condition on the hard paths of roots other than r. Second, both fixed
paths Ny and Nz, started from root r, are contained in E ∪Nz. Furthermore, neither
Ny nor Nz contains any collision node with respect to E ∪ Nz. By symmetry, it is
equally likely for Ny and Nz to be chosen as H(G). Hence,

Pr [H(G) = Ny | Nz(G) = Nz and E and O]

= Pr [H(G) = Nz | Nz(G) = Nz and E and O] .

Note as well that “H(G) = Nz” implies “Nz(G) = Nz.” Therefore,

Pr [H(G) = Ny and Nz(G) = Nz | E and O]

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2281

= Pr [H(G) = Nz and Nz(G) = Nz | E and O]

= Pr [H(G) = Nz | E and O] .

The above ratio then becomes

Pr
[
~̀(G) = ~̀

z | E and O
]

Pr
[
~̀(G) = ~̀

y | E and O
]

=

∑
Nz /∈Az Pr [H(G) = Nz | E and O]

Pr [H(G) = Ny | E and O]

=

∑
Nz /∈Az Pr [H(G) = Ny and Nz(G) = Nz | E and O]

Pr [H(G) = Ny | E and O]

= Pr [Nz(G) /∈ Az | H(G) = Ny and E and O] .

The input distribution Bk first chooses the hard paths. Then every other edge is
added independently at random. If Nz(G) is not a hard path, at each level i ∈ [2..D],
its node is chosen from the 2kχ/2 easy nodes at this level. A sufficient condition for
Nz(G) not to be in Az is that for all its edges not fixed by E, their destinations do
not collide with any node mentioned in E. Let hi be the number of nodes mentioned
in E at level i that Nz(G) must avoid. It follows that

Pr [Nz(G) /∈ Az | H(G) = Ny and E and O]

≥ Πi∈[2..D]

(
1− hi

2kχ/2

)
≥ 1−

∑
i∈[2..D] hi

2kχ/2
≥ 1− 2 · χ/8

2kχ/2
≥ 3

4

because
∑
i∈[2..D] hi ≤ χ/8 and E contains at most χ/8, different edges and each edge

involves two nodes.
Claim 4. For any computation path γ in A,

PrG∈Bk [w′′γ (G) ≥ S/ logn | G ∈ Bk(Eγ)] ≤ 2−9S .

Proof. Recall that w′′γ (G) is the number of roots r in G such that r is a low-
collision root with respect to γ and Prog〈γ,r〉(G) is true. Hence, the expected value µ
of w′′γ (G) is ∑

low-collision roots r

PrG∈Bk
[

Prog〈γ,r〉(G) | G ∈ Bk(Eγ)
]
,

and by Claim 3,

µ ≤
∑

low-collision root r

4

3
× y〈γ,r〉
y〈γ,r〉 + z〈γ,r〉

≤ 4

3

∑
low-collision root r y〈γ,r〉

fD′

≤
χ

6 · fD′ ,

2282 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

as
∑
r y〈γ,r〉 ≤ χ/8 (at most χ/8 different edges are queried by γ). Since χ ∈ O(n)

and fD
′ ≥ n10, we have µ ∈ O(n−9). By Lemma 12.1,

PrG∈Bk

[
w′′γ (G) ≥ S

logn
| G ∈ Bk(Eγ)

]
≤ 2−(S

logn)(log(S
µ logn)−log e)

≤ 2−9S .

13. Conclusion. We have proven that any 2-sided probabilistic NNJAG solving
the st-connectivity problem for n-node graphs in (expected) time T using space S must

have T ∈ 2Ω(log2(n/S)) when S ∈ O(n1−δ) for some δ > 0, and T ∈ 2Ω(log2(n logn
S)/

log log n)×(nS/ logn)1/2 for general S ∈ O(n logn). This greatly improves the previous
bounds of ST ∈ Ω(n2/ logn) by Barnes and Edmonds [4] and S1/3T ∈ Ω(n4/3) by
Edmonds [14]. Moreover, the bound is tight for S ∈ n1−Ω(1). As a corollary, we also
obtained a space lower bound of Ω(log2 n) on a probabilistic NNJAG. No such tight
lower bound was known before, even in the more restricted JAG model.

An obvious open problem is to close the gap between the upper and lower bounds
when S /∈ n1−Ω(1). However, the major open problem is to prove similar lower bounds
on a general model of computation. To achieve that, one possible approach is to start
with a JAG/NNJAG-like model and add more and more power, pushing our way
towards the ultimate model of the branching program. A major complaint regarding
a JAG or NNJAG is its restricted access to the inputs. As pointed out in Etessami and
Immerman [17], the space lower bounds of [13, 7, 26] are proven on a tree. However,
it is easy for a RAM to solve stcon on trees in O(logn) space. All it needs to do is
to walk a “pebble” from node t backward and see if it hits node s.

In response to this, we define a model called the Stack NNJAG that can solve
stcon for trees in O(logn) space, and yet on this model we can still prove the same
time–space lower bound. In this model, there is a constant number of stack pebbles in
addition to those regular pebbles. Each stack pebble has a stack which can remember
the path that it has traversed since its last jump. More precisely, all the pebbles,
whether regular or stack pebbles, are initially on node s. The stack of each stack
pebble is empty initially. Whenever a stack pebble walks along an edge (u, v), the
node u is pushed onto the stack. Whenever a stack pebble jumps to another pebble
P ′, it empties its stack. If P ′ is also a stack pebble, then P copies the stack of P ′ to
its own stack. A stack pebble can also backtrack along the path, i.e., to move to the
node v if v is the top of the stack and then pop the stack. Note that the pebble is
not allowed to visit any arbitrary node. Any node reachable by a stack pebble must
be reachable from s by a directed path. The space for storing the stacks is given for
free.

To prove the time–space lower bound, observe that the height of the graph used in
our paper is O(

√
(n logn)/S). If

√
(n logn)/S ≤ S/ logn, each stack can store only

at most O(S/ logn) nodes. Since a stack NNJAG has a constant number of stack
pebbles, it can be simulated by a normal NNJAG with at most Θ(S/ logn) extra
pebbles. The extra pebbles simply jump to and remain on each node that a stack
pebble reaches. This increases the space used by the algorithm by at most Θ(S). If√

(n logn)/S ≥ S/ logn, then S ≤ n1/3 logn. In this case, the bound we have for a

normal NNJAG is T = 2Ω(log2 n). Now observe that the height of each stack is at most

TIGHT LOWER BOUNDS FOR st-CONNECTIVITY ON NNJAG 2283

the height of the graph, i.e., at mostO(
√
n logn). Hence, any stack NNJAG with space

S can be simulated by a normal NNJAG with space O(S +
√
n logn) ∈ O(

√
n logn),

and the same lower bound applies.

Note that the stack NNJAG model seems to be incomparable with a branching
program because of the way we charge the space. Also, defining an intermediate
model between the NNJAG model and branching program seems hard. For example,
allowing the model to move a pebble to an arbitrary node or to the next node in some
fixed ordering would give the power of branching programs. Within a polynomial
factor of time and constant factor of space, so does allowing it to move a pebble
backward along any directed edge [6]. The idea is that one can treat the graph as
undirected and, using a universal traversal sequence [1], visit any vertex in polynomial
time. Hence, whenever the branching program queries the out-edges of a node v, the
enhanced NNJAG can place a pebble on node v (by the universal traversal sequence)
and perform the same query on v.

Acknowledgments. We are especially grateful to Greg Barnes for his invaluable
insights. We thank Allan Borodin, Faith Fich, Charles Rackoff, and Hisao Tamaki
for their helpful discussions and support. We also thank the annonymous referees for
their careful reading and helpful comments. Last but not the least, we thank Johan
H̊astad for pointing out a bug in the original proof of Lemma 12.1.

REFERENCES

[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff, Random walks,
universal traversal sequences, and the complexity of maze problems, in Proc. 20th Annual
Symposium on Foundations of Computer Science, IEEE, San Juan, PR, 1979, pp. 218–223.

[2] K. B. Athreya and P. E. Ney, eds., Branching Processes, Springer-Verlag, Berlin, 1972.
[3] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber, A sublinear space, polynomial time

algorithm for directed s-t connectivity, in Proc. 7th Annual IEEE Conference on Structure
in Complexity Theory, Boston, MA, 1992, pp. 27–33.

[4] G. Barnes and J. Edmonds Time-space lower bounds for directed s-t connectivity on JAG
models, in Proc. 34th Annual Symposium on Foundations of Computer Science, Palo Alto,
CA, 1993, pp. 228–237.

[5] P. Beame, A general sequential time-space tradeoff for finding unique elements, SIAM J.
Comput. 20 (1991), pp. 270–277.

[6] P. Beame, A. Borodin, P. Raghavan, W. L. Ruzzo, and M. Tompa, Time-space tradeoffs
for undirected graph connectivity, SIAM J. Comput., 28 (1998), pp. 1051–1072.

[7] P. Berman and J. Simon, Lower bounds on graph threading by probabilistic machines, in
Proc. 24th Annual IEEE Symposium on Foundations of Computer Science, Tucson, AZ,
November 1983, pp. 304–311.

[8] A. Borodin and S. Cook, A time-space tradeoff for sorting on a general sequential model of
computation, SIAM J. Comput., 11 (1982), pp. 287–297.

[9] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson, A time-space
tradeoff for element distinctness, SIAM J. Comput., 16 (1987), pp. 97–99.

[10] A. Borodin, M. J. Fischer, D. G. Kirkpatrick, N. A. Lynch, and M. Tompa, A time-space
tradeoff for sorting on non-oblivious machines, J. Comput. System Sci., 22 (1981), pp.
351–364.

[11] A. Borodin, W. L. Ruzzo, and M. Tompa, Lower bounds on the length of universal traversal
sequences, J. Comput. System Sci., 45 (1992), pp. 180–203.

[12] A. Borodin, Structured vs. general models in computational complexity, Enseign. Math.,
XXVIII 1982, pp. 171–190. Also in [21, pp. 47–65].

[13] S. A. Cook and C. W. Rackoff, Space lower bounds for maze threadability on restricted
machines, SIAM J. Comput., 9 (1980), pp. 636–652.

[14] J. Edmonds, Time-Space Lower Bounds for Undirected and Directed ST-Connectivity on JAG
Models, Ph.D. thesis, University of Toronto, Toronto, ON, Canada, 1993.

[15] J. Edmonds, Time-space trade-offs for undirected st-connectivity on a JAG, in Proc. 25th
Annual ACM Symposium on Theory of Computing, San Diego, CA, 1993, pp. 718–727.

2284 JEFF EDMONDS, CHUNG KEUNG POON, AND DIMITRIS ACHLIOPTAS

[16] J. Edmonds and C. K. Poon, A nearly optimal time-space lower bound for directed st-
connectivity on the NNJAG model, in Proc. 27th Annual ACM Symposium on Theory
of Computing, Las Vegas, NV, 1995, pp. 147–156.

[17] K. Etessami and N. Immerman, Reachability and the power of local ordering, in Proc. 11th
Annual Symposium on Theoretical Aspects of Computer Science, February 1994, Lecture
Notes in Comp. Sci. 775, Springer-Verlag, New York, 1994, pp. 123–135.

[18] J. Gill, Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6
(1977), pp. 675–695.

[19] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17
(1988), pp. 935–938.

[20] D. S. Johnson, A catalog of complexity classes, in Handbook of Theoretical Computer Science,
Vol. A: Algorithms and Complexity, Jan van Leeuwan, ed., Elsevier, Amsterdam, 1990,
Chap. 2, pp. 67–161.

[21] Logic and Algorithmic, An International Symposium Held in Honor of Ernst Specker, Zürich,
February 5–11, 1980, Enseign. Math. 30, Université de Genève, Geneva, Switzerland, 1982.

[22] H. R. Lewis and C. H. Papadimitriou, Symmetric space-bounded computation, Theoret. Com-
put. Sci., 19 (1982), pp. 161–187.

[23] N. Nisan, RL ⊆ SC . in Proc. 24th Annual ACM Symposium on Theory of Computing, Victoria,
BC. Canada, 1992, pp. 619–623.

[24] N. Nisan, E. Szemerédi, and A. Wigderson, Undirected connectivity in O(log1.5 n) space,
in Proc. 33rd Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh,
PA, 1992.

[25] N. Pippenger, The asymptotic optimality of spider-web networks, Discrete Appl. Math., 37/38
(1992), pp. 437–450.

[26] C. K. Poon, Space bounds for graph connectivity problems on node-named JAGs and node-
ordered JAGs, in Proc. 34th Annual Symposium on Foundations of Computer Science,
Palo Alto, CA, 1993, pp. 218–227.

[27] C. K. Poon, On the Complexity of the ST-Connectivity Problem, Ph.D. thesis, University of
Toronto, Toronto, ON, Canada, 1996.

[28] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities,
J. Comput. System Sci., 4 (1970), pp. 177–192.

[29] R. Szelepcsényi, The method of forcing for nondeterministic automata, Acta Inform., 26
(1988), pp. 279–284.

[30] M. Tompa, Two familiar transitive closure algorithms which admit no polynomial time, sub-
linear space implementations, SIAM J. Comput., 11 (1982), pp. 130–137.

[31] A. Wigderson, The complexity of graph connectivity, in Proc. 17th Symp. Mathematical Foun-
dations of Computer Science, August 1992, I. M. Havel and V. Koubek, eds., Lecture Notes
in Comput. Sci. 629, Springer-Verlag, New York, 1992, pp. 112–132.

[32] A. C. Yao, Probabilistic computations: Toward a unified measure of complexity, in Proc. 18th
Annual IEEE Symposium on Foundations of Computer Science, Providence, RI, 1977, pp.
222–227.

[33] A. C. Yao, Near-optimal time-space tradeoff for element distinctness, in Proc. 29th Annual
IEEE Symposium on Foundations of Computer Science, White Plains, NY, 1988, pp. 91–97.

COMPUTING TWO-DIMENSIONAL INTEGER HULLS∗

WARWICK HARVEY†

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 6, pp. 2285–2299

Abstract. An optimal algorithm is presented for computing the smallest set of linear inequalities
that define the integer hull of a possibly unbounded two-dimensional convex polygon R. Input to the
algorithm is a set of linear inequalities defining R, and the integer hull computed is the convex hull
of the integer points of R. It is proven that the integer hull has at most O(n logAmax) inequalities,
where n is the number of input inequalities and Amax is the magnitude of the largest input coefficient.
It is shown that the algorithm presented has complexity O(n logAmax) and that this is optimal by
proving that the integer hull may have Ω(n logAmax) inequalities in the worst case.

Key words. integer convex hull, linear inequalities, continued fractions

AMS subject classifications. 52C05, 11A55, 68Q25, 90C10

PII. S009753979528977X

1. Introduction and motivation. In this paper we present an algorithm for
finding the integer hull of a possibly unbounded two-dimensional (planar) convex re-
gion in polynomial time, given the set of linear inequalities defining the region. By the
integer hull of a region we mean the convex hull of the integer points contained in that
region. This algorithm grew out of work in the field of constraint logic programming
(CLP) [11], specifically integer solvers for CLP. As a result, the algorithm is presented
in an incremental formulation (that is, the input is processed one inequality at a time
with the integer hull being updated fully after each) because that is what is most suit-
able for use in a CLP language. While a nonincremental formulation of the algorithm
can likely be made to run faster in practice, it will not improve the (worst case) time
complexity, since in section 7 we prove our algorithm is optimal.

We see this two-dimensional algorithm as a first step and hope to generalize it
to an algorithm for efficiently finding the integer hulls of systems in an arbitrary
number of dimensions. There are several reasons why being able to compute the
integer hull of a system is useful. The integer hull provides a convenient and concise
description of the set of all integer solutions of the input set, which is particularly
useful if the number of such solutions is large or even infinite. It also implicitly answers
the satisfiability question, which is the basis of constraint solvers for CLP. Thus
if incrementally computing the integer hull is efficient enough, it may provide an
interesting alternative to the partial solvers for integer CLP used to date (e.g., [7, 4,
10]). Finally, the integer hull allows integer linear optimization to be performed in
polynomial time by using real optimization algorithms, though this is likely to be of
limited utility unless a number of such optimizations are to be performed on the same
feasible set.

In section 2 we discuss existing and related work. In section 3 we discuss some
assumptions and notation. Section 4 shows how to find the integer hull of a single
pair of inequalities, while section 5 uses this technique to compute the integer hull of

∗Received by the editors August 1, 1995; accepted for publication (in revised form) September
18, 1997; published electronically August 16, 1999.

http://www.siam.org/journals/sicomp/28-6/28977.html
†Department of Computer Science, University of Melbourne, Parkville 3052, Australia. Present

address: School of Computer Science and Software Engineering, Monash University, Clayton 3168,
Australia (wharvey@cs.monash.edu.au).

2285

2286 WARWICK HARVEY

a full set of inequalities. In section 6 we prove a time bound on the algorithm, and in
section 7 we prove optimality. Finally, in section 8 we describe areas for future work.

2. Existing and related work. The only other existing algorithm for comput-
ing the integer hull of a polyhedron of which we are aware is presented in Schrijver [16,
Chap. 23]. The algorithm works by successive approximation of the integer hull and
is guaranteed to terminate after a finite number of such approximation steps. Each
step involves finding the minimal total dual integral system describing the current
approximation. Since such a system can be exponentially large, clearly each step can
take exponential time. Moreover, Schrijver presents an example which shows that,
even when restricted to the two-dimensional case, the number of steps taken may be
exponential in the size of the problem. Our algorithm solves the given example in
linear time.

Kannan [12] gave an algorithm for two-dimensional linear integer optimization
in polynomial time (assuming the variables are nonnegative). Lenstra [13] showed
that linear integer optimization in any fixed number of dimensions could be done in
polynomial time. An interesting question is whether a similar result can be found for
the problem of computing the integer hull, i.e., whether it can be done in polynomial
time for any fixed number of dimensions.

There exist a number of algorithms for computing the convex hull of a finite set
of points. Several algorithms and a review of others can be found in [9] and [15].
They include algorithms specifically for two dimensions, as well as algorithms for an
arbitrary number of dimensions. Attempting to use these algorithms to help find the
integer hull still leaves the problem of constructing the point set to give them and
does not allow the handling of infinite solution sets.

Quite a number of algorithms have been developed for finding a (precise) finite de-
scription of all solutions of linear Diophantine equations and inequalities. For example,
there are algorithms which focus on finding minimal solutions (e.g., [8]), algorithms
which focus on finding nonambiguous solutions (e.g., [1]), and algorithms which focus
on avoiding introducing slack variables (e.g., [2]). All of these algorithms resort to
complete enumeration when the solution space is finite, which is inefficient if it is
particularly large. Whether this matters, and whether the integer hull would be a
better representation, depends on the end use for the algorithm.

3. Preliminaries. In the following, we assume that the coefficients of the input
inequalities are integers; rational coefficients can be handled by appropriate multipli-
cation. Because we are working in two dimensions, any given inequality Ci (for some
i) can be written in the form

aix+ biy ≤ ci.
For each such inequality, we assume that gcd(|ai|, |bi|) = 1. If this is not the case (say,
gcd(|ai|, |bi|) = ki), then it can be made so by replacing it with

ai
ki
x+

bi
ki
y ≤

⌊
ci
ki

⌋
.

Note that the set of integer points satisfying this replacement inequality is exactly
the set of integer points satisfying the original inequality.

We also use C=
i to denote the supporting line of Ci, namely,

aix+ biy = ci.

TWO-DIMENSIONAL INTEGER HULLS 2287

We make use of a number of results from the theory of continued fractions. For
an introduction to continued fractions, see, for instance, [6] or [3, Chap. 32]. Briefly,
any quantity X can be written as

a1+ 1
a2+ 1

a3+ 1
a4 + · · ·

,

where the ak’s (called partial quotients) are integers and all denominators are positive.
The expansion terminates exactly when X is rational. The principal convergents of X
are rational approximations pk/qk to X, obtained by truncating the continued fraction
expansion of X after the kth term. pk and qk can be computed using the recurrence
relations

p0 = 1; p1 = a1; pk = akpk−1 + pk−2, k ≥ 2;
q0 = 0; q1 = 1; qk = akqk−1 + qk−2, k ≥ 2.

The principal convergents are “good” approximations in that no simpler fraction is
as close to X in value as any particular principal convergent. If any ak > 1, then
between pk−2/qk−2 and pk/qk we define intermediate convergents

pk−2 + jpk−1

qk−2 + jqk−1
, j = 1 · · · ak − 1.

4. Finding the integer hull of a pair of inequalities. Before we look at the
full integer hull computation, we first show how to compute the integer hull of a pair
of inequalities that are adjacent on the (real) hull. This is a key step in computing
the integer hull of an arbitrary set of inequalities, which is described in section 5.

Assume the two inequalities are

a1x+ b1y ≤ c1 (C1),

a2x+ b2y ≤ c2 (C2).

Let ∆ be the determinant of the coefficient matrix (i.e., ∆ = a1b2−b1a2). Without
loss of generality, assume that the (counterclockwise) angle between C1 and C2 is less
than 180 degrees so that ∆ > 0 (otherwise, swap C1 and C2).

We now compute the intersection point of C=
1 and C=

2 , which will be an extreme
point of the (real) feasible region. If this point is integral, then clearly we already have
the integer hull and we are done. Otherwise, we need to perform cuts to obtain the
integer hull, and we now describe how to compute exactly which cuts are needed to
completely define the integer hull.

First, we perform a unimodular1 transformation from x and y to X and Y such
that one of the inequalities is transformed into an inequality in only one variable
(say, X), specifically, an inequality of the form X ≤ c. We would also like the other
transformed inequality to have a nonpositive X coefficient and a positive Y coefficient
to ensure a standard orientation for later parts of the algorithm. The unimodularity of
the transformation ensures that computing the integer hull in XY space is equivalent

1A unimodular matrix (transformation) is an integral matrix with determinant ±1. The main
property of interest to us here is that both the transformation and its inverse preserve integrality:
they both map integer points to integer points.

2288 WARWICK HARVEY

to doing it in xy space. To determine the transformation matrix, we thus need to
solve [

a1 b1
a2 b2

] [
α β
γ δ

]
=

[
t u
1 0

]
(4.1a)

such that

(unimodularity) αδ − βγ = ±1,(4.1b)

t ≤ 0,(4.1c)

u > 0.(4.1d)

The transformed inequalities will then be

tX + uY ≤ c1,(4.2a)

X ≤ c2.(4.2b)

Lemma 4.1. The transformation matrix[
α β
γ δ

]
=

[
α0 + kb2 b2
γ0 − ka2 −a2

]
satisfies the conditions (4.1), where α0 and γ0 are any integral solution of a2α0+b2γ0 =

1 and k =
⌊
−a1α0−b1γ0

∆

⌋
.

Proof. It is straightforward that (4.1a), (4.1b), and (4.1d) hold. For (4.1c) we
have

t = a1α+ b1γ
= a1α0 + ka1b2 + b1γ0 − kb1a2

= ∆

{
a1α0 + b1γ0

∆
+

⌊−a1α0 − b1γ0

∆

⌋}
≤ 0, since ∆ > 0.

We now find the integer point on the supporting line of (4.2a) that is immediately
on the feasible side of the supporting line of (4.2b), i.e., the point on the line with
the largest X coordinate while still being feasible (call it (x1, y1)). Given an arbitrary
integral point (x0, y0) on the supporting line of (4.2a) (which we can find by using,
for example, a modified Euclid’s algorithm), the point we are after is given by

(x1, y1) =

(
x0 +

⌊
c2 − x0

u

⌋
u, y0 −

⌊
c2 − x0

u

⌋
t

)
.

We now translate the coordinate system so that this point becomes the new origin:[
X ′

Y ′

]
=

[
X
Y

]
−
[
x1

y1

]
.

This means the inequalities (4.2a) and (4.2b) now become

tX ′ + uY ′ ≤ 0,(4.3a)

X ′ ≤ c2 − x1.(4.3b)

TWO-DIMENSIONAL INTEGER HULLS 2289

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 X′

10

9

8

−12X′ + 19Y′ ≤ 0

X′ ≤ 11
Y′

Fig. 4.1. Two inequality integer hull example: the transformed initial inequalities.

For example, if the initial inequalities are 5x+ 2y ≤ 8 and −2x+ 3y ≤ 4, the
transformed inequalities are −12X ′ + 19Y ′ ≤ 0 and X ′ ≤ 11, as shown in Figure 4.1.

We are now up to the “interesting” part, where we actually start computing the
integer hull. If we think of the boundary of the real region as being a piece of string,
and assume each integer point on the plane has a peg in it, finding the integer hull can
be thought of as pulling the string tight. To compute this, we essentially need to find
the points where the string bends. Due to our construction, there are no integer points
on (4.3a) between the origin and where it meets (4.3b), so the first of these articulation
points is the origin itself. The main task in finding the next one is determining the
gradient of the next segment of “string.” This involves rotating this “slack” section of
(4.3a) (between the origin and where it meets (4.3b)) clockwise about the origin until
it hits the first integer point(s) which satisfy (4.3b). The requirement that it satisfies
(4.3b) means we only consider points with X ′-coordinate no greater than c2 − x1. If
we look at the problem in terms of the gradients of lines passing through the origin,
the feasible integer points correspond to gradients p/q such that q ≤ c2 − x1. Thus
we are looking for the fraction p/q which is as close to −t/u as possible (on the “less
than” side) with a denominator no greater than c2 − x1. To find it, we make use of
the following theorem.

Theorem 4.2. Suppose we are required to find the fraction, whose denomina-
tor does not exceed D, which most closely approximates, but is no greater than, the
quantity X. If we construct a sequence of fractions containing all the odd principal
convergents of X with their corresponding intermediate convergents (if such conver-
gents exist), then the fraction we desire is the element of this sequence with the largest
denominator no greater than D.

Proof. See, for example, [3, Chap. 32, sects. 12–16].

Thus the fraction we are looking for can be found by searching the sequence of
odd principal convergents for −t/u and the corresponding intermediate convergents
(these convergents correspond to the circled points in Figure 4.1). Since the inter-

2290 WARWICK HARVEY

mediate convergents, if any, have denominators in arithmetic progression between
the denominators of the principal convergents on either side, we actually only (con-
struct and) search the sequence of odd principal convergents and then compute the
appropriate intermediate convergent directly.

Let p/q be the fraction found by the search. Then this is the gradient of the line
from the origin to the first integer point encountered when sweeping the hull segment
around. Thus the next segment of the integer hull is given by

−pX ′ + qY ′ ≤ 0.(4.4)

Transformed back to the original coordinate system, it is

(pδ + qγ)x− (pβ + qα)y ≤ −px1 + qy1.(4.5)

As the next step in our algorithm, we determine whether this new inequality (4.4)
intersects (4.3b) (the vertical inequality) at an integer extreme point. If it does, then
we have finished computing the integer hull of the original pair of inequalities. If it
does not, then we need to proceed with computing the next cut. If we stay in X ′Y ′

space, this is just the first cut of the integer hull of (4.4) and (4.3b). The inequalities
are already oriented appropriately, so we just need to translate them to bring them
into our standard form. This involves finding the integer point on the supporting line
of (4.4) that has greatest X ′ coordinate while still being feasible with respect to (4.3b)
and moving it to the origin. Note that the “hard” part of finding this integer point,
namely, finding an arbitrary point on the line, can be skipped because we already
have one: the origin. Thus computing the translation is trivial. We also note that we
need not compute the list of convergents for the gradient of (4.4) because it is a prefix
of the list of convergents we already computed for −t/u (p/q was basically formed by
truncating the continued fraction expansion of −t/u).

5. Constructing the full two-dimensional integer hull. We now describe
how to find the full two-dimensional integer hull of a set of inequalities in an incremen-
tal fashion. Adding the first inequality (to an empty existing set) is straightforward
and obvious, so we concentrate on what happens when we add an inequality to an
existing integer hull. We keep the inequalities sorted based on orientation (e.g., using
the counterclockwise angle between the x-axis and the normal vector of the inequal-
ity). The question of what data structure to use to store the inequalities is deferred
to section 6, where we analyze the computational complexity of the algorithm.

Since the existing system is an integer hull, we may assume that it is satisfiable and
contains no redundant inequalities. Let the inequality being added be C ≡ ax+by ≤ c.
The first thing we do is check whether the augmented system is (real) unsatisfiable.
This is equivalent to checking whether ax+ by > c (or equivalently ax+ by ≥ c+ 1)
is (real) redundant with respect to the existing system.

An inequality is (real) redundant if every point that is feasible with respect to
every other inequality is also feasible with respect to this inequality. This means that
if it is redundant, its supporting line lies on or outside the convex hull of the other
inequalities and it is either parallel to the closest edge of the feasible region or there
is a closest vertex. For the first case (parallel), we can just check whether there is
another inequality with the same orientation and compare right-hand side constants.
Otherwise, for the second case, we can find the inequalities that belong just before
(Ci−1) and just after (Ci+1), the inequality being checked (Ci) in the sorted sequence,
and see whether these form a vertex which is both feasible with respect to Ci and

TWO-DIMENSIONAL INTEGER HULLS 2291

also the closest feasible point to C=
i . This is the case if the (counterclockwise) angle

between Ci−1 and Ci+1 is less than 180 degrees and the intersection of C=
i−1 and C=

i+1

is feasible with respect to Ci.
If we have discovered that the augmented system is unsatisfiable, then there is no

integer hull and we stop. Otherwise, we proceed by checking whether the inequality
we are adding is redundant. If it is, then we have nothing to do and the integer hull is
unchanged. Otherwise, we proceed to check the inequalities immediately before and
after it for redundancy. If the inequality immediately before (after) it is redundant,
the redundant inequality is discarded and the next inequality before (resp., after) it
is checked. This process continues until an irredundant inequality is found.

Note that at this point the set of inequalities define a convex hull (though most
likely not an integer hull), and since all but one inequality (C) was part of the existing
integer hull, all the vertices that are not on C= are guaranteed to be at integral
locations.

We consider two cases, depending on whether or not the new inequality has a
feasible integer point on its supporting line. The first case is where it does. We can
just compute the integer hull of C pairwise with each of the adjacent inequalities, as
per section 4 (as long as the relevant angle is less than 180 degrees; if it isn’t, the
region is unbounded between the inequalities and there are no cuts to compute), and
add the resulting cuts to our description of the integer hull. Note that since the new
inequality contains a feasible integer point, the pairwise integer hulls are guaranteed
not to overlap. This is because at worst there is only one feasible integer point on the
supporting line of the new inequality and the two pairwise integer hulls meet at this
point. Note that any inequality involved in a nonintegral intersection before the cuts
were made may have become redundant (if it only had one feasible integer point on
its supporting line to begin with), so this must be checked for and the inequalities
must be discarded if they are indeed redundant.

The second case is where there is no feasible integer point on the supporting line
of the new inequality. In this case, computing the pairwise integer hulls of the new
inequality with the inequalities on either side of it will generate cuts which overlap,
and the new inequality is guaranteed to be redundant with respect to the final integer
hull. The method described here shows how to deal with these overlapping cuts in a
way which ensures that no more than one redundant cut is ever generated.

Let Ci be the new inequality with Ci−1 and Ci+1 the inequalities immediately to
the clockwise and counterclockwise sides of Ci, respectively. We commence computing
the cuts that form the integer hull of Ci−1 and Ci, as per section 4, and continue until
we make a cut (call it C ′i) that causes Ci to become (real) redundant.2 At this point,
we now have at most one vertex remaining which is nonintegral, namely, the one at
the intersection of C ′i and Ci+1. Thus to complete the integer hull, we simply compute
the pairwise integer hull of C ′i and Ci+1. As before, some of the inequalities need to
be checked for (real) redundancy. These are Ci−1, Ci+1, and C ′i (Ci is guaranteed to
be redundant and thus need not be checked, just discarded).

This completes the integer hull algorithm.

6. Computational complexity. We now demonstrate that the algorithm pre-
sented has complexity O(n logAmax). The time analysis is presented in terms of basic
arithmetic operations (+,−,×, /).

2We start with Ci−1 and Ci rather than Ci and Ci+1 so that the pairwise hull algorithm generates
cuts in an appropriate order (“outside in”), beginning with those adjacent to Ci−1 and working
toward Ci.

2292 WARWICK HARVEY

We start with the following definitions. Let Amax be the maximum absolute value
of any coefficient of x or y in any original inequality added to the system.

We start by obtaining bounds for the coefficients of the inequalities that define
the integer hull.

In the following, we assume all fractions p/q are in lowest terms (i.e., gcd(p, q) =
1). Let p+/q+ (p−/q−) be the smallest (resp., largest) rational that is greater than
(resp., less than) p/q with a denominator no larger than q.

Lemma 6.1. If pj−1/qj−1 and pj/qj are consecutive principal convergents of p/q,
then pjqj−1 − pj−1qj = (−1)j.

Proof. See, for example, [3, Chap. 32, sect. 8].
Lemma 6.2. If p/q and p′/q′ are two fractions such that pq′ − p′q = 1 and

q > 0, then no fraction can lie between them unless its denominator is greater than
the denominator of both of them.

Proof. See, for example, [3, Chap. 32, Sect. 12].
Lemma 6.3. Consider the two fractions

pn−1

qn−1
,

pn − pn−1

qn − qn−1
.

If 0 < p/q < 1, then one of these is the closest above approximation (p+/q+) of
p/q = pn/qn and the other is the closest below approximation (p−/q−), depending on
whether n is odd or even.

Proof. 0 < p/q < 1 implies that q > 0, and also that n ≥ 1, so that pn−1 and
qn−1 are defined. Thus, using Lemmas 6.2 and 6.1, it is straightforward that these
are the closest above and below approximations with denominators no greater than
q. If n is odd, then pn−1/qn−1 is the above approximation; if n is even, it is the below
approximation.

Corollary 6.4. pq+ − p+q = −1 and pq− − p−q = 1 if 0 < p/q < 1.
Proof. This is obvious from Lemmas 6.3 and 6.1.
Lemma 6.5. Consider two inequalities C0 and Cn with C1 · · ·Cn−1 being the cuts

required to form the pairwise integer hull. Consider any cut Ci (1 ≤ i ≤ n− 1). If the
magnitude of the larger of the coefficients of Ci is greater than 1, then it is strictly
smaller than the largest magnitude coefficient appearing in Ci−1 and Ci+1.

Proof. If Ci ≡ aix+ biy ≤ ci, then we can assume, without loss of generality, that
0 ≤ ai ≤ bi. However, bi > 1 implies bi 6= ai and ai 6= 0 (since gcd(ai, bi) = 1), so we
have 0 < ai < bi. Let a+

i /b
+
i and a−i /b

−
i be closest above and below approximations to

ai/bi, respectively. Let P0 = (x0, y0) and P1 = (x1, y1) be the (integral) intersection
points of C=

i with C=
i−1 and C=

i+1, respectively, so that x0 > x1 and y0 < y1 (see
Figure 6.1).Note that x0 − x1 = kbi and y1 − y0 = kai for some integer k > 0. Also
note that Ci is the cut required to form the integer hull of Ci−1 and Ci+1 and that
there are no integer points which are infeasible with respect to Ci that are feasible
with respect to Ci−1 and Ci+1 (i.e., the introduced cut excludes no feasible integer
points). Consider the integer point P2 = (x2, y2) = (x0− b+i , y0 + a+

i). P2 is infeasible
with respect to Ci, so it must be infeasible with respect to at least one of Ci−1 and
Ci+1. We consider two possibilities:

1. Suppose P2 is infeasible with respect to Ci−1. This means that the gradient of
Ci−1 must be between ai/−bi and a+

i /−b+i . By Corollary 6.4 and Lemma 6.2,
any gradient that lies between these two has a denominator of magnitude
larger than bi. Since bi > ai, this means Ci−1 must have a coefficient (namely,
bi−1) larger in magnitude than both ai and bi.

TWO-DIMENSIONAL INTEGER HULLS 2293

P2(x2, y2)

P0(x0, y0)

P1(x1, y1)

Ci

Ci−1

Ci+1

Fig. 6.1. Determining bounds on the coefficients of adjacent cuts.

2. Suppose P2 is infeasible with respect to Ci+1. This means that the gradient
of Ci+1 must be between ai/− bi and

y1 − y2

−(x1 − x2)
=

kai − a+
i

−(kbi − b+i)
.

Again by Corollary 6.4 and Lemma 6.2, any gradient that lies between these
two has a denominator of magnitude larger than bi, which in turn means Ci+1

must have a coefficient (namely, bi+1) larger in magnitude than both ai and
bi.

Since at least one of these two possibilities must be true, we have that at least
one of Ci−1 and Ci+1 must have a coefficient larger in magnitude than those of Ci,
as long as at least one of the coefficients of Ci is greater than 1.

Theorem 6.6. For the integer hull of a pair of inequalities, the coefficients of
the generated cuts are no larger in magnitude than the largest of those of the original
inequalities.

Proof. Let the two inequalities be C0 and Cn with the generated cuts being
C1 · · ·Cn−1. Let Ai be the magnitude of the largest coefficient of Ci, i = 0 · · ·n.
We note that no Ai = 0, since that would imply that Ci ≡ 0x+ 0y ≤ ci. Let j be the
smallest i such that Ai is minimal, so that ∀i, Ai ≥ Aj . If j > 0, we have Aj−1 > Aj ,
so Aj−1 > 1. If j > 1, Lemma 6.5 implies Aj−2 > Aj−1 since Aj < Aj−1. Further
applications of Lemma 6.5 yield, in turn,

Aj−2 < Aj−3, Aj−3 < Aj−4, . . . , A1 < A0.

Thus ∀i ≤ j, Ai ≤ A0.
Let k = min{i : i > j ∧ Ai > Aj}. If k is not defined (e.g., j = n), then

Aj = Aj+1 = · · · = An. Otherwise, we have Aj = Aj+1 = · · · = Ak−1 and Ak > Ak−1.
As before, repeated applications of Lemma 6.5 yield, in turn,

Ak < Ak+1, Ak+1 < Ak+2, . . . , An−1 < An.

Thus ∀i ≥ j, Ai ≤ An.
This means that all Ai are no larger than the larger of A0 and An, and the

theorem is proved.
Theorem 6.7. The coefficients of the inequalities defining an integer hull are no

larger in magnitude than the largest coefficient of the input inequalities.
Proof. Since all the inequalities in the system at any given time are either original

input inequalities or are part of a pairwise integer hull of some combination of original

2294 WARWICK HARVEY

inequalities and inequalities already in the system, the result follows by a simple
induction argument on Theorem 6.6.

Now that we have an upper bound on the size of the coefficients in the system,
we can obtain an upper bound on the number of inequalities in the system.

Lemma 6.8. The integer hull of a pair of inequalities with largest magnitude
coefficient Amax requires at most O(logAmax) inequalities to define it.

Proof. Each cut generated in the transformed space corresponds to either an odd
principal convergent of the gradient (−t/u) of the main transformed inequality or to
an intermediate convergent between two such odd principal convergents. To achieve
the bound, we start by showing that even if there are many intermediate convergents
between two odd principal convergents, only one can correspond to a cut of the integer
hull. Consider an intermediate convergent that is used for a cut. If p2k−1/q2k−1 and
p2k+1/q2k+1 are the odd principal convergents it lies between, then it is of the form
p2k−1+jp2k

q2k−1+jq2k
for some j. Note that j is chosen as large as possible subject to the bound

on the denominator, so the “slack” between the denominator and the bound must
be less than q2k. Since the translation in preparation for the next cut reduces the
bound by (at least) the size of the denominator selected, this means the new bound
must be less than q2k. This, in turn, precludes any other intermediate convergents
between p2k−1/q2k−1 and p2k+1/q2k+1 from being used to generate cuts, since such a
convergent must have a denominator of at least q2k−1 + q2k.

Thus we can generate no more than two cuts for each odd principal convergent:
one for the odd principal convergent itself and one for a corresponding intermediate
convergent.

The number of principal convergents is the same as the number of steps in the
Euclidean algorithm for finding g.c.ds, applied to |t| and u. This is O(log(min(|t|, u)))
[5, p. 811], but

min(|t|, u) ≤ u = a1β + b1δ = a1b2 − b1a2 = O(A2
max)

(this last step by Theorem 6.7). So we have O(logAmax) principal convergents and
thus O(logAmax) cuts generated.

Lemma 6.9.When computing the integer hull of n (initial) inequalities with largest
magnitude coefficient Amax, at most O(n logAmax) cuts are added.

Proof. Each time we add a new inequality to the integer hull, we perform at
most two pairwise integer hull computations. By Lemma 6.8, each of these generates
O(logAmax) inequalities, and so after adding n (initial) inequalities, we can have
added no more than O(n logAmax) inequalities.

Lemma 6.10. The integer hull of a set of any number of inequalities with coef-
ficients of magnitude no larger than Amax requires at most O(A2

max) inequalities to
define it.

Proof. If the largest magnitude of an input coefficient is Amax, then by Theo-
rem 6.7, the magnitudes of all coefficients in the integer hull are no greater than
Amax. This means there are at most O(A2

max) different possible combinations of coef-
ficients. Since there are no redundant inequalities in the integer hull, there can be no
more than one inequality with a given combination of coefficients, and the result
follows.

We now proceed to analyze the time complexity of the algorithm. We start by
analyzing the pairwise integer hull, and then we use that analysis to derive a time
bound for the full algorithm.

TWO-DIMENSIONAL INTEGER HULLS 2295

Theorem 6.11. Computing the pairwise hull of two inequalities with largest
magnitude coefficient Amax is O(logAmax).

Proof. To compute the integer hull of a pair of inequalities, the following steps
are performed:

1. If the intersection point is integral, we stop. Finding the intersection point
and determining whether it is integral is O(1).

2. Determine the transformation matrix. The main step in determining the
transformation matrix is finding a solution to a2α+ b2γ = 1; everything else is O(1).
Thus this step is O(logAmax), using, for instance, a modified Euclid’s algorithm to
solve the equation.

3. Compute the odd principal convergents. We just compute all the principal
convergents of |t/u|; this is O(log(min(|t|, |u|))) = O(logAmax).

4. Repeat the following steps until the intersection point is integral. Each pass
through this loop generates one cut, and so by Lemma 6.8, we loop no more than
O(logAmax) times.

(i) Determine the appropriate translation. The first time we perform this trans-
lation we must find an initial integer point on the supporting line of the “main” in-
equality, which is O(logAmax), and then find the correct integer point, which is O(1).
All subsequent translation computations start with an integer point given, so we just
require the O(1) adjustment.

(ii) Search for the appropriate principal convergent. If we do a simple linear
search backwards in the list of principal convergents, this is O(logAmax). However,
no principal convergent checked in one pass needs be checked again in a subsequent
pass, so we can amortize the search cost for a total of O(logAmax) over all passes
through the loop.

(iii) Compute the appropriate intermediate convergent. This is O(1).
(iv) Transform the new cut back to the original coordinate system. This is O(1).

The result follows directly from the above analysis.

We now turn to the full integer hull algorithm.

Theorem 6.12. Incrementally computing the integer hull of n inequalities with
largest magnitude coefficient Amax is O(n logAmax).

Proof. For this analysis, we assume the inequalities in the system are stored in
a level-linked (a,b)-tree, sorted based on their orientation. Level-linked (a,b)-trees
are described in [14], along with proofs of the complexity results used here. Some
modification of the standard operations on level-linked (a,b)-trees is required for our
purposes, since our data is inherently circular in nature and wraps around from largest
to smallest, but these do not affect the results.

Let Nj be the number of inequalities defining the existing integer hull just before
we add the jth inequality (Cj ≡ ajx+ bjy ≤ cj). By Lemma 6.10, Nj is O(A2

max). In
particular, this means that logNj is O(logAmax), and thus we have bounds for various
tree operations (search, split, concatenate) which are independent of the number of
inequalities added so far.

To add the inequality to the system and recompute the integer hull, we perform
the following steps:

1. Tighten the inequality being added. This step consists mainly of computing
the g.c.d. of |aj | and |bj |, which is O(log(min(|aj |, |bj |))) = O(logAmax).

2. Check satisfiability of augmented system. This requires searching the data
structure to find where the complement of Cj would go and accessing at most two
adjacent items. This is O(logAmax), and the actual check is O(1).

2296 WARWICK HARVEY

3. Eliminate initial redundancy. This requires searching the data structure to
find where Cj would go (O(logAmax)) and then performing a series of redundancy
checks. Since no inequality can be found to be redundant more than once, and at
most O(n logAmax) inequalities are added to the system for n input inequalities
(Lemma 6.9), we have a total of O(n logAmax) eliminations performed, summed over
all n incremental steps. Since all but a constant number of redundancy checks at
each incremental step result in an elimination, this means O(n logAmax) redundancy
checks are performed in total. Accessing the adjacent inequalities to perform one of
these checks is O(1), as is the actual check, which means the total cost of redundancy
checks over all n additions is O(n logAmax). Since all the inequalities to be eliminated
due to redundancy are adjacent to each other, we can delete them all at the same
time by performing two splits of the tree, which is O(logAmax) (we leave it split until
we are ready to insert the new inequalities). Thus this step as a whole, summed over
all n additions, is O(n logAmax).

4. Compute the cuts. We treat this as two instances of finding the integer hull
of a pair of inequalities. This is not strictly the case when there are no integer points
on the feasible segment of the supporting line of the inequality being added, but the
extra redundancy checks required have no bearing on the computational complexity.
Thus this step is O(logAmax), by Theorem 6.11.

5. Add the cuts to the system. Since all the inequalities added will be adjacent
to each other, and will be inserted at the point the existing tree was split, we can
insert them all at the same time. Constructing a new tree from a sorted set is linear
in the number of items in the tree, so this is O(logAmax) by Lemma 6.8. Then we
just perform two concatenation operations to add the new tree between the two parts
created in step 3. This is also O(logAmax), so the step as a whole is O(logAmax).

6. Eliminate final redundancy. This requires at most three redundancy checks
and three deletions and hence is O(logAmax).

Each step is either O(logAmax) for each inequality added or is O(n logAmax)
summed over all n inequalities. Outputting the inequalities is linear in the number
output, which is O(n logAmax) by Lemma 6.9. The result follows.

7. Proof of optimality. We now show that our algorithm is optimal by demon-
strating a worst case lower bound complexity of Ω(n logAmax). We do this by con-
structing a family of examples which generate Ω(n logAmax) output constraints.

Lemma 7.1. The integer hull of

−2x+ y ≤ −1,(7.1a)

−F2k+5x+ F2k+4y ≤ −1(7.1b)

has k cuts, where Fn is the nth Fibonacci number (with F0 = 0, F1 = 1).

Proof. Let φ = 1+
√

5
2 be the golden ratio. The continued fraction representation

of φ is infinite with all partial quotients 1. Thus the sequence of closest below approx-
imations to φ are given by p2j+1/q2j+1 for j ≥ 0, where pi, qi satisfy the recurrence
relations

p0 = 1; p1 = 1; pi = pi−1 + pi−2, i ≥ 2;
q0 = 0; q1 = 1; qi = qi−1 + qi−2, i ≥ 2.

Clearly, the pi’s and qi’s both form the Fibonacci sequence with pi = Fi+1 and qi = Fi.
The below approximations are thus given by F2j+2/F2j+1, j ≥ 0.

If we were to compute the (infinite) integer hull of −φx+y ≤ 0 and −x ≤ −1 (see
Figure 7.1), then these below approximations clearly define the vertices of the integer

TWO-DIMENSIONAL INTEGER HULLS 2297

9
−φx + y ≤ 0

y

x65432

1

2

3

4

5

6

7

8

(q3, p3)

(q5, p5)

1

(q1, p1)

−x ≤ −1

Fig. 7.1. The infinite integer hull of −φx+ y ≤ 0 and−x ≤ −1.

hull. The inequality defining the jth edge (the edge between the jth and (j + 1)th
vertices) is then

−(p2j+3− p2j+1)x+ (q2j+3− q2j+1)y ≤ −(p2j+3− p2j+1)q2j+1 + (q2j+3− q2j+1)p2j+1,
i.e., −p2j+2x+ q2j+2y ≤ −p2j+2q2j+1 + q2j+2p2j+1,

i.e., −F2j+3x+ F2j+2y ≤ −1

(the last step by Lemma 6.1).
Note that we can select any two of these inequalities (say, j = j0 and j = j1),

and the cuts needed to form the integer hull of the selected pair consist simply of all
the inequalities between them in the above integer hull (namely, j = j0 + 1 . . . j1− 1).
In particular, we can choose j0 = 0 and j1 = k + 1 and have the integer hull contain
k cuts. The result follows.

Lemma 7.2. It is possible for a system with 2m inequalities with largest magnitude
coefficient O(mφ2k) to require at least mk cuts to complete the integer hull.

Proof. We note that we can perform both translations and unimodular transfor-
mations on the integer hull used in Lemma 7.1 without altering its basic structure.
Applying the unimodular transformation

[
1 0
−i 1

]
, we obtain

−(2 + i)x+ y ≤ −1,(7.2a)

−(F2k+5 + iF2k+4)x+ F2k+4y ≤ −1.(7.2b)

Note that, since F2k+5/F2k+4 > 1, both the inequalities (and all the cuts) have
gradients larger than 1 + i, and no greater than 2 + i, which means that the range
of gradients for one value of i does not overlap with that of another. This means
that, with appropriate translation, we can construct a system of 2m inequalities,
by including a “copy” of (7.2) for all values of i from 0 to m − 1, such that the
integer hulls of each component do not interfere with each other. By Lemma 7.1,
each component has k cuts, so with m noninterfering components, we have (at least)
mk cuts (depending on the exact translation used, there may be cuts between each
“block”).

The magnitude of the largest coefficient of the system is F2k+5 + (m − 1)F2k+4.
Using the closed form expression for Fj in terms of φ (Fj = 1√

5
(φj − (−φ)−j)), we

2298 WARWICK HARVEY

have that this is O(mφ2k+4) = O(mφ2k), and the result follows.

Theorem 7.3. It is possible for a system of n inequalities with coefficients of
magnitude no larger than Amax to have an integer hull consisting of Ω(n logAmax)
inequalities.

Proof. Consider Lemma 7.2 with k = Ω(logm). Then n = 2m,Amax = O(mφ2k),
and we have mk cuts. Thus n logAmax = O(m(k + logm)). But k = Ω(logm), so
n logAmax = O(mk). This means mk = Ω(n logAmax) and we have the result.

Theorem 7.4. Our algorithm for computing two-dimensional integer hulls is
optimal.

Proof. By Theorem 7.3, any algorithm must be Ω(n logAmax) on some problem
instances. By Theorem 6.12, our algorithm is O(n logAmax) on all problem instances,
and the result follows.

8. Future work. We have done some work toward developing an integer hull
algorithm that works in three dimensions, but we have yet to establish whether this
algorithm can be made to be polynomial time. If it can, then we hope to generalize to
an arbitrary number of dimensions and tackle the very interesting question of whether
such an algorithm is polynomial time for any fixed number of dimensions.

At some stage we also hope to determine whether such algorithms can be usefully
employed in a constraint solver for a CLP language by buying enough of a reduction
in domain sizes to offset the extra overhead incurred on more than just a few select
problem classes.

Acknowledgments. The geometrical interpretation of continued fractions and
their convergents used in this paper is from [6, Chap. IV, sect. 12] and appears to be
due to Smith [17, Art. 20].

The author would like to thank Peter Stuckey for his comments on many drafts
of this paper. The author would also like to thank the anonymous referees for their
feedback, advice, and suggestions. In particular, credit must be given to one anony-
mous referee for a suggestion on how to obtain improved bounds on the coefficients
of generated cuts (the bounds presented in an earlier version of this work were messy
and not particularly tight, with the proofs hard to follow). While the ideas proposed
by the referee are not used in the paper, the bounds yielded were sufficiently good for
the whole question of optimality to be addressed and provided the motivation to find
the proof of even tighter bounds that is presented in this version of the paper.

Finally, the author would like to thank Gary Eddy for his help in selecting an
appropriate data structure for storing the inequalities.

REFERENCES

[1] H. Abdulrab and M. Maksimenko, General solution of systems of linear diophantine equa-
tions and inequations, in Rewriting Techniques and Applications—6th International Con-
ference, RTA-95, J. Hsiang, ed., Lecture Notes in Comput. Sci. 914, Springer-Verlag, Berlin,
1995, pp. 339–351.

[2] F. Ajili and E. Contejean, Complete solving of linear diophantine equations and inequations
without adding variables, in Principles and Practice of Constraint Programming—CP ’95,
U. Montanari and F. Rossi, eds., Lecture Notes in Comput. Sci. 976, Springer-Verlag,
Berlin, 1995, pp. 1–17.

[3] G. Chrystal, Algebra–An Elementary Text-Book–Part II, Adam and Charles Black, Edin-
burgh, 1889.

[4] P. Codognet and D. Diaz, Compiling constraints in clp(FD), J. Logic Programming, 27
(1996), pp. 185–226.

TWO-DIMENSIONAL INTEGER HULLS 2299

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT
Electrical Engineering and Computer Science Series, MIT Press, Cambridge, MA, 1990.

[6] H. Davenport, The Higher Arithmetic, 6th ed., Cambridge University Press, Cambridge, UK,
1992.

[7] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier,
The constraint logic programming language CHIP, in Proceedings of the International
Conference on Fifth Generation Computer Systems FGCS-88, Tokyo, Japan, Springer-
Verlag, New York, 1988, pp. 693–702.

[8] E. Domenjod and A. P. Tomàs, From Elliott-MacMahon to an algorithm for general linear
constraints on naturals, in Principles and Practice of Constraint Programming—CP ’95,
U. Montanari and F. Rossi, eds., Lecture Notes in Comput. Sci. 976, Springer-Verlag,
Berlin, 1995, pp. 18–35.

[9] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, 1987.
[10] W. Harvey and P. J. Stuckey, A unit two variable per inequality integer constraint solver

for constraint logic programming, in Proceedings of the Twentieth Australasian Computer
Science Conference (ACSC’97), Sydney, Australia, Macquarie University, Sydney, 1997,
pp. 102–111.

[11] J. Jaffar and M. J. Maher, Constraint logic programming: A survey, J. Logic Programming,
19/20 (1994), pp. 503–581.

[12] R. Kannan, A polynomial algorithm for the two variable integer programming problem,
J. ACM, 27 (1980), pp. 118–122.

[13] H. W. Lenstra, Jr., Integer programming with a fixed number of variables, Math. Oper. Res.,
8 (1983), pp. 538–547.

[14] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, Berlin, 1984.

[15] F. P. Preparata and M. I. Shamos, Computational Geometry—An Introduction, Texts
Monogr. Comput. Sci., Springer-Verlag, New York, 1985.

[16] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete
Mathematics, Wiley-Interscience, New York, 1986.

[17] H. J. S. Smith, A note on continued fractions, in The Collected Mathematical Papers of Henry
John Stephen Smith, vol. 2, J. W. L. Glaisher, ed., Clarendon Press, Oxford, UK, 1894,
pp. 135–147.

	SMJCAT_V28_i1_p0001
	SMJCAT_V28_i1_p0010
	SMJCAT_V28_i1_p0027
	SMJCAT_V28_i1_p0036
	SMJCAT_V28_i1_p0057
	SMJCAT_V28_i1_p0105
	SMJCAT_V28_i1_p0137
	SMJCAT_V28_i1_p0152
	SMJCAT_V28_i1_p0164
	SMJCAT_V28_i1_p0192
	SMJCAT_V28_i1_p0210
	SMJCAT_V28_i1_p0237
	SMJCAT_V28_i1_p0254
	SMJCAT_V28_i1_p0263
	SMJCAT_V28_i1_p0278
	SMJCAT_V28_i1_p0297
	SMJCAT_V28_i1_p0311
	SMJCAT_V28_i1_p0325
	SMJCAT_V28_i1_p0341
	SMJCAT_V28_i2_p0383
	SMJCAT_V28_i2_p0394
	SMJCAT_V28_i2_p0409
	SMJCAT_V28_i2_p0433
	SMJCAT_V28_i2_p0447
	SMJCAT_V28_i2_p0463
	SMJCAT_V28_i2_p0471
	SMJCAT_V28_i2_p0487
	SMJCAT_V28_i2_p0511
	SMJCAT_V28_i2_p0525
	SMJCAT_V28_i2_p0541
	SMJCAT_V28_i2_p0574
	SMJCAT_V28_i2_p0612
	SMJCAT_V28_i2_p0637
	SMJCAT_V28_i2_p0652
	SMJCAT_V28_i2_p0674
	SMJCAT_V28_i2_p0700
	SMJCAT_V28_i2_p0704
	SMJCAT_V28_i2_p0709
	SMJCAT_V28_i2_p0720
	SMJCAT_V28_i2_p0733
	SMJCAT_V28_i3_p0771
	SMJCAT_V28_i3_p0782
	SMJCAT_V28_i3_p0798
	SMJCAT_V28_i3_p0816
	SMJCAT_V28_i3_p0822
	SMJCAT_V28_i3_p0841
	SMJCAT_V28_i3_p0847
	SMJCAT_V28_i3_p0864
	SMJCAT_V28_i3_p0890
	SMJCAT_V28_i3_p0904
	SMJCAT_V28_i3_p0935
	SMJCAT_V28_i3_p0955
	SMJCAT_V28_i3_p0970
	SMJCAT_V28_i3_p0984
	SMJCAT_V28_i3_p1004
	SMJCAT_V28_i3_p1021
	SMJCAT_V28_i3_p1035
	SMJCAT_V28_i3_p1051
	SMJCAT_V28_i3_p1073
	SMJCAT_V28_i3_p1086
	SMJCAT_V28_i3_p1112
	SMJCAT_V28_i3_p1136
	SMJCAT_V28_i4_p1155
	SMJCAT_V28_i4_p1167
	SMJCAT_V28_i4_p1182
	SMJCAT_V28_i4_p1198
	SMJCAT_V28_i4_p1215
	SMJCAT_V28_i4_p1225
	SMJCAT_V28_i4_p1232
	SMJCAT_V28_i4_p1247
	SMJCAT_V28_i4_p1264
	SMJCAT_V28_i4_p1284
	SMJCAT_V28_i4_p1298
	SMJCAT_V28_i4_p1310
	SMJCAT_V28_i4_p1326
	SMJCAT_V28_i4_p1347
	SMJCAT_V28_i4_p1364
	SMJCAT_V28_i4_p1397
	SMJCAT_V28_i4_p1414
	SMJCAT_V28_i4_p1433
	SMJCAT_V28_i4_p1460
	SMJCAT_V28_i4_p1510
	SMJCAT_V28_i5_p1541
	SMJCAT_V28_i5_p1552
	SMJCAT_V28_i5_p1576
	SMJCAT_V28_i5_p1588
	SMJCAT_V28_i5_p1627
	SMJCAT_V28_i5_p1641
	SMJCAT_V28_i5_p1664
	SMJCAT_V28_i5_p1689
	SMJCAT_V28_i5_p1722
	SMJCAT_V28_i5_p1759
	SMJCAT_V28_i5_p1783
	SMJCAT_V28_i5_p1806
	SMJCAT_V28_i5_p1829
	SMJCAT_V28_i5_p1848
	SMJCAT_V28_i5_p1875
	SMJCAT_V28_i5_p1906
	SMJCAT_V28_i6_p1923
	SMJCAT_V28_i6_p1941
	SMJCAT_V28_i6_p1970
	SMJCAT_V28_i6_p1972
	SMJCAT_V28_i6_p1998
	SMJCAT_V28_i6_p2030
	SMJCAT_V28_i6_p2059
	SMJCAT_V28_i6_p2090
	SMJCAT_V28_i6_p2103
	SMJCAT_V28_i6_p2117
	SMJCAT_V28_i6_p2133
	SMJCAT_V28_i6_p2150
	SMJCAT_V28_i6_p2168
	SMJCAT_V28_i6_p2187
	SMJCAT_V28_i6_p2215
	SMJCAT_V28_i6_p2257
	SMJCAT_V28_i6_p2285

